Sample records for eso vista public

  1. ESO Public Surveys at VISTA: Lessons learned from Cycle 1 Surveys and the start of Cycle 2

    NASA Astrophysics Data System (ADS)

    Arnaboldi, M.; Delmotte, N.; Gadotti, D.; Hilker, M.; Hussain, G.; Mascetti, L.; Micol, A.; Petr-Gotzens, M.; Rejkuba, M.; Retzlaff, J.; Ivison, R.; Leibundgut, B.; Romaniello, M.

    2017-06-01

    The ESO Public Surveys on VISTA serve the science goals of the survey teams while increasing the legacy value of ESO programmes, thanks to their homogeneity and the breadth of their sky coverage in multiple bands. These projects address a variety of research areas: from the detection of planets via microlensing, to stars, the Milky Way and Local Group galaxies, to extragalactic astronomy, galaxy evolution, the high-redshift Universe and cosmology. In 2015, as the first generation of imaging surveys was nearing completion, a second call for Public Surveys was opened to define a coherent scientific programme for VISTA until the commissioning of the wide-field multi-fibre spectrograph, 4MOST, in 2020. This article presents the status of the Cycle 1 surveys as well as an overview of the seven new programmes in Cycle 2, including their science goals, coverage on the sky and observing strategies. We conclude with a forward look at the Cycle 2 data releases and the timelines for their release.

  2. Public surveys at ESO

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda; Delmotte, Nausicaa; Hilker, Michael; Hussain, Gaitee; Mascetti, Laura; Micol, Alberto; Petr-Gotzens, Monika; Rejkuba, Marina; Retzlaff, Jörg; Mieske, Steffen; Szeifert, Thomas; Ivison, Rob; Leibundgut, Bruno; Romaniello, Martino

    2016-07-01

    ESO has a strong mandate to survey the Southern Sky. In this article, we describe the ESO telescopes and instruments that are currently used for ESO Public Surveys, and the future plans of the community with the new wide-field-spectroscopic instruments. We summarize the ESO policies governing the management of these projects on behalf of the community. The on-going ESO Public Surveys and their science goals, their status of completion, and the new projects selected during the second ESO VISTA call in 2015/2016 are discussed. We then present the impact of these projects in terms of current numbers of refereed publications and the scientific data products published through the ESO Science Archive Facility by the survey teams, including the independent access and scientific use of the published survey data products by the astronomical community.

  3. VISIONS - Vista Star Formation Atlas

    NASA Astrophysics Data System (ADS)

    Meingast, Stefan; Alves, J.; Boui, H.; Ascenso, J.

    2017-06-01

    In this talk I will present the new ESO public survey VISIONS. Starting in early 2017 we will use the ESO VISTA survey telescope in a 550 h long programme to map the largest molecular cloud complexes within 500 pc in a multi-epoch program. The survey is optimized for measuring the proper motions of young stellar objects invisible to Gaia and mapping the cloud-structure with extinction. VISIONS will address a series of ISM topics ranging from the connection of dense cores to YSOs and the dynamical evolution of embedded clusters to variations in the reddening law on both small and large scales.

  4. VISTA Views the Sculptor Galaxy

    NASA Astrophysics Data System (ADS)

    2010-06-01

    A spectacular new image of the Sculptor Galaxy (NGC 253) has been taken with the ESO VISTA telescope at the Paranal Observatory in Chile as part of one of its first major observational campaigns. By observing in infrared light VISTA's view is less affected by dust and reveals a myriad of cooler stars as well as a prominent bar of stars across the central region. The VISTA image provides much new information on the history and development of the galaxy. The Sculptor Galaxy (NGC 253) lies in the constellation of the same name and is one of the brightest galaxies in the sky. It is prominent enough to be seen with good binoculars and was discovered by Caroline Herschel from England in 1783. NGC 253 is a spiral galaxy that lies about 13 million light-years away. It is the brightest member of a small collection of galaxies called the Sculptor Group, one of the closest such groupings to our own Local Group of galaxies. Part of its visual prominence comes from its status as a starburst galaxy, one in the throes of rapid star formation. NGC 253 is also very dusty, which obscures the view of many parts of the galaxy (eso0902). Seen from Earth, the galaxy is almost edge on, with the spiral arms clearly visible in the outer parts, along with a bright core at its centre. VISTA, the Visible and Infrared Survey Telescope for Astronomy, the latest addition to ESO's Paranal Observatory in the Chilean Atacama Desert, is the world's largest survey telescope. After being handed over to ESO at the end of 2009 (eso0949) the telescope was used for two detailed studies of small sections of the sky before it embarked on the much larger surveys that are now in progress. One of these "mini surveys" was a detailed study of NGC 253 and its environment. As VISTA works at infrared wavelengths it can see right through most of the dust that is such a prominent feature of the Sculptor Galaxy when viewed in visible light. Huge numbers of cooler stars that are barely detectable with visible-light telescopes are now also seen. The VISTA view reveals most of what was hidden by the thick dust clouds in the central part of the disc and allows a clear view of a prominent bar of stars across the nuclear region - a feature that is not seen in visible light pictures. The majestic spiral arms now spread over the whole disc of the galaxy. The spectacular viewing conditions VISTA shares with ESO's Very Large Telescope (VLT), located on the next mountain peak, also allow VISTA images to be exceptionally sharp for a ground-based telescope. With this powerful instrument at their command astronomers wanted to peel away some of the mysteries of the Sculptor Galaxy. They are studying the myriad of cool red giant stars in the halo that surrounds the galaxy, measuring the composition of some of NGC 253's small dwarf satellite galaxies, and searching for as yet undiscovered new objects such as globular clusters and ultra-compact dwarf galaxies that would otherwise be invisible without the deep VISTA infrared images. Using the unique VISTA data they plan to map how the galaxy formed and has evolved. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. VISTA: Pioneering New Survey Telescope Starts Work

    NASA Astrophysics Data System (ADS)

    2009-12-01

    A new telescope - VISTA (the Visible and Infrared Survey Telescope for Astronomy) - has just started work at ESO's Paranal Observatory and has made its first release of pictures. VISTA is a survey telescope working at infrared wavelengths and is the world's largest telescope dedicated to mapping the sky. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. Spectacular new images of the Flame Nebula, the centre of our Milky Way galaxy and the Fornax Galaxy Cluster show that it is working extremely well. VISTA is the latest telescope to be added to ESO's Paranal Observatory in the Atacama Desert of northern Chile. It is housed on the peak adjacent to the one hosting the ESO Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA's main mirror is 4.1 metres across and is the most highly curved mirror of this size and quality ever made - its deviations from a perfect surface are less than a few thousandths of the thickness of a human hair - and its construction and polishing presented formidable challenges. VISTA was conceived and developed by a consortium of 18 universities in the United Kingdom [1] led by Queen Mary, University of London and became an in-kind contribution to ESO as part of the UK's accession agreement. The telescope design and construction were project-managed by the Science and Technology Facilities Council's UK Astronomy Technology Centre (STFC, UK ATC). Provisional acceptance of VISTA was formally granted by ESO at a ceremony at ESO's Headquarters in Garching, Germany, attended by representatives of Queen Mary, University of London and STFC, on 10 December 2009 and the telescope will now be operated by ESO. "VISTA is a unique addition to ESO's observatory on Cerro Paranal. It will play a pioneering role in surveying the southern sky at infrared wavelengths and will find many interesting targets for further study by the Very Large Telescope, ALMA and the future European Extremely Large Telescope," says Tim de Zeeuw, the ESO Director General. At the heart of VISTA is a 3-tonne camera containing 16 special detectors sensitive to infrared light, with a combined total of 67 million pixels. Observing at wavelengths longer than those visible with the human eye allows VISTA to study objects that are otherwise impossible to see in visible light because they are either too cool, obscured by dust clouds or because they are so far away that their light has been stretched beyond the visible range by the expansion of the Universe. To avoid swamping the faint infrared radiation coming from space, the camera has to be cooled to -200 degrees Celsius and is sealed with the largest infrared-transparent window ever made. The VISTA camera was designed and built by a consortium including the Rutherford Appleton Laboratory, the UK ATC and the University of Durham in the United Kingdom. Because VISTA is a large telescope that also has a large field of view it can both detect faint sources and also cover wide areas of sky quickly. Each VISTA image captures a section of sky covering about ten times the area of the full Moon and it will be able to detect and catalogue objects over the whole southern sky with a sensitivity that is forty times greater than that achieved with earlier infrared sky surveys such as the highly successful Two Micron All-Sky Survey. This jump in observational power - comparable to the step in sensitivity from the unaided eye to Galileo's first telescope - will reveal vast numbers of new objects and allow the creation of far more complete inventories of rare and exotic objects in the southern sky. "We're delighted to have been able to provide the astronomical community with the VISTA telescope. The exceptional quality of the scientific data is a tribute to all the scientists and engineers who were involved in this exciting and challenging project," adds Ian Robson, Head of the UK ATC. The first released image shows the Flame Nebula (NGC 2024), a spectacular star-forming cloud of gas and dust in the familiar constellation of Orion (the Hunter) and its surroundings. In visible light the core of the object is hidden behind thick clouds of dust, but the VISTA image, taken at infrared wavelengths, can penetrate the murk and reveal the cluster of hot young stars hidden within. The wide field of view of the VISTA camera also captures the glow of NGC 2023 and the ghostly form of the famous Horsehead Nebula. The second image is a mosaic of two VISTA views towards the centre of our Milky Way galaxy in the constellation of Sagittarius (the Archer). Vast numbers of stars are revealed - this single picture shows about one million stars - and the majority are normally hidden behind thick dust clouds and only become visible at infrared wavelengths. For the final image, VISTA has stared far beyond our galaxy to take a family photograph of a cluster of galaxies in the constellation of Fornax (the Chemical Furnace). The wide field allows many galaxies to be captured in a single image including the striking barred-spiral NGC 1365 and the big elliptical galaxy NGC 1399. VISTA will spend almost all of its time mapping the southern sky in a systematic fashion. The telescope is embarking on six major sky surveys with different scientific goals over its first five years. One survey will cover the entire southern sky and others will be dedicated to smaller regions to be studied in greater detail. VISTA's surveys will help our understanding of the nature, distribution and origin of known types of stars and galaxies, map the three-dimensional structure of our galaxy and the neighbouring Magellanic Clouds, and help determine the relation between the structure of the Universe and the mysterious dark energy and dark matter. The huge data volumes - typically 300 gigabytes per night or more than 100 terabytes per year - will flow back into the ESO digital archive and will be processed into images and catalogues at data centres in the United Kingdom at the Universities of Cambridge and Edinburgh. All data will become public and be available to astronomers around the globe. Jim Emerson of Queen Mary, University of London and leader of the VISTA consortium, is looking forward to a rich harvest of science from the new telescope: "History has shown us some of the most exciting results that come out of projects like VISTA are the ones you least expect - and I'm personally very excited to see what these will be!" Notes [1] The VISTA Consortium is led by Queen Mary, University of London and consists of: Queen Mary, University of London; Queen's University of Belfast; University of Birmingham; University of Cambridge; Cardiff University; University of Central Lancashire; University of Durham; The University of Edinburgh; University of Hertfordshire; Keele University; Leicester University; Liverpool John Moores University; University of Nottingham; University of Oxford; University of St Andrews; University of Southampton; University of Sussex and University College London. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. VISTA Captures Celestial Cat's Hidden Secrets

    NASA Astrophysics Data System (ADS)

    2010-04-01

    The Cat's Paw Nebula, NGC 6334, is a huge stellar nursery, the birthplace of hundreds of massive stars. In a magnificent new ESO image taken with the Visible and Infrared Survey Telescope for Astronomy (VISTA) at the Paranal Observatory in Chile, the glowing gas and dust clouds obscuring the view are penetrated by infrared light and some of the Cat's hidden young stars are revealed. Towards the heart of the Milky Way, 5500 light-years from Earth in the constellation of Scorpius (the Scorpion), the Cat's Paw Nebula stretches across 50 light-years. In visible light, gas and dust are illuminated by hot young stars, creating strange reddish shapes that give the object its nickname. A recent image by ESO's Wide Field Imager (WFI) at the La Silla Observatory (eso1003) captured this visible light view in great detail. NGC 6334 is one of the most active nurseries of massive stars in our galaxy. VISTA, the latest addition to ESO's Paranal Observatory in the Chilean Atacama Desert, is the world's largest survey telescope (eso0949). It works at infrared wavelengths, seeing right through much of the dust that is such a beautiful but distracting aspect of the nebula, and revealing objects hidden from the sight of visible light telescopes. Visible light tends to be scattered and absorbed by interstellar dust, but the dust is nearly transparent to infrared light. VISTA has a main mirror that is 4.1 metres across and it is equipped with the largest infrared camera on any telescope. It shares the spectacular viewing conditions with ESO's Very Large Telescope (VLT), which is located on the nearby summit. With this powerful instrument at their command, astronomers were keen to see the birth pains of the big young stars in the Cat's Paw Nebula, some nearly ten times the mass of the Sun. The view in the infrared is strikingly different from that in visible light. With the dust obscuring the view far less, they can learn much more about how these stars form and develop in their first few million years of life. VISTA's very wide field of view allows the whole star-forming region to be imaged in one shot with much greater clarity than ever before. The VISTA image is filled with countless stars of our Milky Way galaxy overlaid with spectacular tendrils of dark dust that are seen here fully for the first time. The dust is sufficiently thick in places to block even the near-infrared radiation to which VISTA's camera is sensitive. In many of the dusty areas, such as those close to the centre of the picture, features that appear orange are apparent - evidence of otherwise hidden active young stars and their accompanying jets. Further out though, slightly older stars are laid bare to VISTA's vision, revealing the processes taking them from their first nuclear fusion along the unsteady path of the first few million years of their lives. The VISTA telescope is now embarking on several big surveys of the southern sky that will take years to complete. The telescope's large mirror, high quality images, sensitive camera and huge field of view make it by far the most powerful infrared survey telescope on Earth. As this striking image shows, VISTA will keep astronomers busy analysing data they could not have otherwise acquired. This cat is out of the bag. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  7. Ambitious Survey Spots Stellar Nurseries

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers scanning the skies as part of ESO's VISTA Magellanic Cloud survey have now obtained a spectacular picture of the Tarantula Nebula in our neighbouring galaxy, the Large Magellanic Cloud. This panoramic near-infrared view captures the nebula itself in great detail as well as the rich surrounding area of sky. The image was obtained at the start of a very ambitious survey of our neighbouring galaxies, the Magellanic Clouds, and their environment. The leader of the survey team, Maria-Rosa Cioni (University of Hertfordshire, UK) explains: "This view is of one of the most important regions of star formation in the local Universe - the spectacular 30 Doradus star-forming region, also called the Tarantula Nebula. At its core is a large cluster of stars called RMC 136, in which some of the most massive stars known are located." ESO's VISTA telescope [1] is a new survey telescope at the Paranal Observatory in Chile (eso0949). VISTA is equipped with a huge camera that detects light in the near-infrared part of the spectrum, revealing a wealth of detail about astronomical objects that gives us insight into the inner workings of astronomical phenomena. Near-infrared light has a longer wavelength than visible light and so we cannot see it directly for ourselves, but it can pass through much of the dust that would normally obscure our view. This makes it particularly useful for studying objects such as young stars that are still enshrouded in the gas and dust clouds from which they formed. Another powerful aspect of VISTA is the large area of the sky that its camera can capture in each shot. This image is the latest view from the VISTA Magellanic Cloud Survey (VMC). The project will scan a vast area - 184 square degrees of the sky (corresponding to almost one thousand times the apparent area of the full Moon) including our neighbouring galaxies the Large and Small Magellanic Clouds. The end result will be a detailed study of the star formation history and three-dimensional geometry of the Magellanic system. Chris Evans from the VMC team adds: "The VISTA images will allow us to extend our studies beyond the inner regions of the Tarantula into the multitude of smaller stellar nurseries nearby, which also harbour a rich population of young and massive stars. Armed with the new, exquisite infrared images, we will be able to probe the cocoons in which massive stars are still forming today, while also looking at their interaction with older stars in the wider region." The wide-field image shows a host of different objects. The bright area above the centre is the Tarantula Nebula itself, with the RMC 136 cluster of massive stars in its core. To the left is the NGC 2100 star cluster. To the right is the tiny remnant of the supernova SN1987A (eso1032). Below the centre are a series of star-forming regions including NGC 2080 - nicknamed the "Ghost Head Nebula" - and the NGC 2083 star cluster. The VISTA Magellanic Cloud Survey is one of six huge near-infrared surveys of the southern sky that will take up most of the first five years of operations of VISTA. Notes [1] VISTA ― the Visible and Infrared Survey Telescope for Astronomy ― is the newest telescope at ESO's Paranal Observatory in northern Chile. VISTA is a survey telescope working at near-infrared wavelengths and is the world's largest survey telescope. Its large mirror, wide field of view and very sensitive detectors will reveal a completely new view of the southern sky. The telescope is housed on the peak adjacent to the one hosting ESO's Very Large Telescope (VLT) and shares the same exceptional observing conditions. VISTA has a main mirror that is 4.1 m across. In photographic terms it can be thought of as a 67-megapixel digital camera with a 13 000 mm f/3.25 mirror lens. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  8. Britain Approaches ESO about Installation of Major New Telescope at Paranal

    NASA Astrophysics Data System (ADS)

    2000-02-01

    The Executive Board of the UK Visible and Infrared Survey Telescope (VISTA) project announced today [1] that it is aiming at the installation of a new and powerful astronomical telescope at the ESO Paranal Observatory (Chile). This 4-metre telescope is a specialised wide-angle facility equipped with powerful cameras and efficient detectors that will enable it to obtain deep images of large sky areas in short time. These survey observations will be made in several wavebands in the optical and, in particular, the near-infrared region of the electromagnetic spectrum. VISTA will become the largest and most effective telescope of its type when it enters into operation in 2004. It is a project of a consortium of 18 UK universities [2]. Construction is expected to start in spring 2000. Funding of the project was announced in May 1999, as one of the first allocations from the "Joint Infrastructure Fund (JIF)", an initiative of the UK Government's Department of Trade and Industry, the Wellcome Trust, and the Higher Education Funding Council for England. ESO's Director General, Dr. Catherine Cesarsky , is very pleased with this decision. She received a mandate from the ESO Council in December 1999 to negotiate a contract with the UK Particle Physics and Astronomy Research Council (PPARC) , acting on behalf of the VISTA Executive Board, for the installation of VISTA at Paranal and now looks forward to settle the associated legal and operational details with her British counterparts at good pace. "The installation of VISTA at Paranal will be of great benefit to all European astronomers", she says. "The placement of a survey telescope of this size next to ESO's VLT, the world's largest optical telescope, opens a plethora of exciting opportunities for joint research projects. Deep observations with VISTA, especially in infrared wavebands, will provide a most valuable, first census of large regions of space. This will most certainly lead to the discoveries of many new and interesting celestial objects which can then be studied in much more detail with the many specialised instruments at the powerful VLT Unit Telescopes." ESO, the European Southern Observatory, has eight member states, Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. The United Kingdom participated actively in the early discussions in the 1950's about the establishment of ESO, but later elected not to join, mainly because of its access to other southern astronomical facilities in Australia and South Africa. ESO already possesses a smaller survey instrument at the La Silla Observatory (Chile), with the optical Wide-Field Imager at the ESO/MPG 2.2-m telescope. In addition, the 2.6-m VLT Survey Telescope (VST) with the 16kx16k OmegaCam camera will be installed at Paranal in 2002. It will operate in the visual region of the spectrum and, together with VISTA's infrared capability, ensure unequalled sky- and wavelength coverage from one observing site. Notes [1] The announcement was made in a PPARC Press Release, available at http://www.pparc.ac.uk and at the AlphaGalileo site. [2] Universities in the VISTA Consortium are (in alphabetical order) Birmingham, Cambridge, Cardiff, Durham, Edinburgh, Hertfordshire, Keele, Central Lancashire, Leicester, Liverpool John Moores, Nottingham, Oxford, Queen Mary & Westfield College, Queen's University Belfast, St Andrews, Southampton, Sussex, University College London.

  9. Orion in a New Light - VISTA exposes high-speed antics of young stars

    NASA Astrophysics Data System (ADS)

    2010-02-01

    The Orion Nebula reveals many of its hidden secrets in a dramatic image taken by ESO's new VISTA survey telescope. The telescope's huge field of view can show the full splendour of the whole nebula and VISTA's infrared vision also allows it to peer deeply into dusty regions that are normally hidden and expose the curious behaviour of the very active young stars buried there. VISTA - the Visible and Infrared Survey Telescope for Astronomy - is the latest addition to ESO's Paranal Observatory (eso0949). It is the largest survey telescope in the world and is dedicated to mapping the sky at infrared wavelengths. The large (4.1-metre) mirror, wide field of view and very sensitive detectors make VISTA a unique instrument. This dramatic new image of the Orion Nebula illustrates VISTA's remarkable powers. The Orion Nebula [1] is a vast stellar nursery lying about 1350 light-years from Earth. Although the nebula is spectacular when seen through an ordinary telescope, what can be seen using visible light is only a small part of a cloud of gas in which stars are forming. Most of the action is deeply embedded in dust clouds and to see what is really happening astronomers need to use telescopes with detectors sensitive to the longer wavelength radiation that can penetrate the dust. VISTA has imaged the Orion Nebula at wavelengths about twice as long as can be detected by the human eye. As in the many visible light pictures of this object, the new wide field VISTA image shows the familiar bat-like form of the nebula in the centre of the picture as well as the fascinating surrounding area. At the very heart of this region lie the four bright stars forming the Trapezium, a group of very hot young stars pumping out fierce ultraviolet radiation that is clearing the surrounding region and making the gas glow. However, observing in the infrared allows VISTA to reveal many other young stars in this central region that cannot be seen in visible light. Looking to the region above the centre of the picture, curious red features appear that are completely invisible except in the infrared. Many of these are very young stars that are still growing and are seen through the dusty clouds from which they form. These youthful stars eject streams of gas with typical speeds of 700 000 km/hour and many of the red features highlight the places where these gas streams collide with the surrounding gas, causing emission from excited molecules and atoms in the gas. There are also a few faint, red features below the Orion Nebula in the image, showing that stars form there too, but with much less vigour. These strange features are of great interest to astronomers studying the birth and youth of stars. This new image shows the power of the VISTA telescope to image wide areas of sky quickly and deeply in the near-infrared part of the spectrum. The telescope is just starting to survey the sky and astronomers are anticipating a rich harvest of science from this unique ESO facility. Notes [1] The Orion Nebula lies in the sword of the famous celestial hunter and is a favourite target both for casual sky watchers and astrophysicists alike. It is faintly visible to the unaided eye and appeared to early telescopic observers as a small cluster of blue-white stars surrounded by a mysterious grey-green mist. The object was first described in the early seventeenth century although the identity of the discoverer is uncertain. The French comet-hunter Messier made an accurate sketch of its main features in the mid-eighteenth century and gave it the number 42 in his famous catalogue. He also allocated the number 43 to the smaller detached region just above the main part of the nebula. Later William Herschel speculated that the nebula might be "the chaotic material of future suns" and astronomers have since discovered that the mist is indeed gas glowing under the fierce ultraviolet light from young hot stars that have recently formed there. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  10. VISTA Reveals the Secret of the Unicorn

    NASA Astrophysics Data System (ADS)

    2010-10-01

    A new infrared image from ESO's VISTA survey telescope reveals an extraordinary landscape of glowing tendrils of gas, dark clouds and young stars within the constellation of Monoceros (the Unicorn). This star-forming region, known as Monoceros R2, is embedded within a huge dark cloud. The region is almost completely obscured by interstellar dust when viewed in visible light, but is spectacular in the infrared. An active stellar nursery lies hidden inside a massive dark cloud rich in molecules and dust in the constellation of Monoceros. Although it appears close in the sky to the more familiar Orion Nebula it is actually almost twice as far from Earth, at a distance of about 2700 light-years. In visible light a grouping of massive hot stars creates a beautiful collection of reflection nebulae where the bluish starlight is scattered from parts of the dark, foggy outer layers of the molecular cloud. However, most of the new-born massive stars remain hidden as the thick interstellar dust strongly absorbs their ultraviolet and visible light. In this gorgeous infrared image taken from ESO's Paranal Observatory in northern Chile, the Visible and Infrared Survey Telescope for Astronomy (VISTA [1], eso0949) penetrates the dark curtain of cosmic dust and reveals in astonishing detail the folds, loops and filaments sculpted from the dusty interstellar matter by intense particle winds and the radiation emitted by hot young stars. "When I first saw this image I just said 'Wow!' I was amazed to see all the dust streamers so clearly around the Monoceros R2 cluster, as well as the jets from highly embedded young stellar objects. There is such a great wealth of exciting detail revealed in these VISTA images," says Jim Emerson, of Queen Mary, University of London and leader of the VISTA consortium. With its huge field of view, large mirror and sensitive camera, VISTA is ideal for obtaining deep, high quality infrared images of large areas of the sky, such as the Monoceros R2 region. The width of VISTA's field of view is equivalent to about 80 light-years at this distance. Since the dust is largely transparent at infrared wavelengths, many young stars that cannot be seen in visible-light images become apparent. The most massive of these stars are less than ten million years old. The new image was created from exposures taken in three different parts of the near-infrared spectrum. In molecular clouds like Monoceros R2, the low temperatures and relatively high densities allow molecules to form, such as hydrogen, which under certain conditions emit strongly in the near infrared. Many of the pink and red structures that appear in the VISTA image are probably the glows from molecular hydrogen in outflows from young stars. Monoceros R2 has a dense core, no more than two light-years in extent, which is packed with very massive young stars, as well as a cluster of bright infrared sources, which are typically new-born massive stars still surrounded by dusty discs. This region lies at the centre of the image, where a much higher concentration of stars is visible on close inspection and where the prominent reddish features probably indicate emission from molecular hydrogen. The rightmost of the bright clouds in the centre of the picture is NGC 2170, the brightest reflection nebula in this region. In visible light, the nebulae appear as bright, light blue islands in a dark ocean, while in the infrared frenetic factories are revealed in their interiors where hundreds of massive stars are coming into existence. NGC 2170 is faintly visible through a small telescope and was discovered by William Herschel from England in 1784. Stars form in a process that typically lasts few million years and which takes place inside large clouds of interstellar gas and dust, hundreds of light-years across. Because the interstellar dust is opaque to visible light, infrared and radio observations are crucial in the understanding of the earliest stages of the stellar evolution. By mapping the southern sky systematically, VISTA will gather some 300 gigabytes per night, providing a huge amount of information on those regions that will be studied in greater detail by the Very Large Telescope (VLT), the Atacama Large Millimeter/submillimeter Array (ALMA) and, in the future, by the European Extremely Large Telescope (E-ELT). Notes [1] With its 4.1-metre primary mirror, VISTA is the largest survey telescope in the world and is equipped with the largest infrared camera on any telescope, with 67 million pixels. It is dedicated to sky surveys, which began early in 2010. Located on a peak next to Cerro Paranal, the home of the ESO VLT in northern Chile, VISTA shares the same exceptional observing conditions. Due to the remarkable quality of the sky in this area of the Atacama Desert, one of the driest sites on Earth, Cerro Armazones, located only 20 km away from Cerro Paranal, has been recently selected as the site for the future E-ELT. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  11. Stellar Variability in the VVV Survey: An Update

    NASA Astrophysics Data System (ADS)

    Catelan, M.; Dekany, I.; Hempel, M.; Minniti, D.

    The Vista Variables in the Via Lactea (VVV) ESO Public Survey consists in a near-infrared time-series survey of the Galactic bulge and inner disk; covering 562 square degrees of the sky; over a total timespan of more than 5 years. In this paper; we provide an updated account of the current status of the survey; especially in the context of stellar variability studies. In this sense; we give a first description of our efforts towards the construction of the VVV Variable Star Catalog (VVV-VSC).

  12. VizieR Online Data Catalog: VISTA Magellanic Survey (VMC) catalog (Cioni+, 2011)

    NASA Astrophysics Data System (ADS)

    Cioni, M.-R. L.; Clementini, G.; Girardi, L.; Guandalini, R.; Gullieuszik, M.; Miszalski, B.; Moretti, M.-I.; Ripepi, V.; Rubele, S.; Bagheri, G.; Bekki, K.; Cross, N.; de Blok, W. J. G.; de Grijs, R.; Emerson, J. P.; Evans, C. J.; Gibson, B.; Gonzales-Solares, E.; Groenewegen, M. A. T.; Irwin, M.; Ivanov, V. D.; Lewis, J.; Marconi, M.; Marquette, J.-B.; Mastropietro, C.; Moore, B.; Napiwotzki, R.; Naylor, T.; Oliveira, J. M.; Read, M.; Sutorius, E.; van Loon, J. Th.; Wilkinson, M. I.; Wood, P. R.

    2017-11-01

    The VISTA survey of the Magellanic Clouds system (VMC) survey is a homogeneous and uniform YJKs survey of ~184deg2 across the Magellanic system. Observations were obtained with the VISTA telescope as part of the VISTA survey of the Magellanic Cloud system (VMC; ESO program 179.B-2003). This data release is based on the observa tions of twelve new VMC survey tiles LMC 35, 42, 43, 73, 93, SMC 43, 52, 54, BRI 28, 35, and STR 11, 21. Observations were acquired between November 2009 and August 2013. (1 data file).

  13. VISTA Stares Deeply into the Blue Lagoon

    NASA Astrophysics Data System (ADS)

    2011-01-01

    This new infrared image of the Lagoon Nebula was captured as part of a five-year study of the Milky Way using ESO's VISTA telescope at the Paranal Observatory in Chile. This is a small piece of a much larger image of the region surrounding the nebula, which is, in turn, only one part of a huge survey. Astronomers are currently using ESO's Visible and Infrared Survey Telescope for Astronomy (VISTA) to scour the Milky Way's central regions for variable objects and map its structure in greater detail than ever before. This huge survey is called VISTA Variables in the Via Lactea (VVV) [1]. The new infrared image presented here was taken as part of this survey. It shows the stellar nursery called the Lagoon Nebula (also known as Messier 8, see eso0936), which lies about 4000-5000 light-years away in the constellation of Sagittarius (the Archer). Infrared observations allow astronomers to peer behind the veil of dust that prevents them from seeing celestial objects in visible light. This is because visible light, which has a wavelength that is about the same size as the dust particles, is strongly scattered, but the longer wavelength infrared light can pass through the dust largely unscathed. VISTA, with its 4.1-metre diameter mirror - the largest survey telescope in the world - is dedicated to surveying large areas of the sky at near-infrared wavelengths deeply and quickly. It is therefore ideally suited to studying star birth. Stars typically form in large molecular clouds of gas and dust, which collapse under their own weight. The Lagoon Nebula, however, is also home to a number of much more compact regions of collapsing gas and dust, called Bok globules [2]. These dark clouds are so dense that, even in the infrared, they can block the starlight from background stars. But the most famous dark feature in the nebula, for which it is named, is the lagoon-shaped dust lane that winds its way through the glowing cloud of gas. Hot, young stars, which give off intense ultraviolet light, are responsible for making the nebula glow brightly. But the Lagoon Nebula is also home to much younger stellar infants. Newborn stars have been detected in the nebula that are so young that they are still surrounded by their natal accretion discs. Such new born stars occasionally eject jets of matter from their poles. When this ejected material ploughs into the surrounding gas short-lived bright streaks called Herbig-Haro objects [3] are formed, making the new-borns easy to spot. In the last five years, several Herbig-Haro objects have been detected in the Lagoon Nebula, so the baby boom is clearly still in progress here. Notes [1] This survey, one of six VISTA surveys currently in progress, will image the central parts of the Milky Way many times over a period of five years and will detect huge numbers of new variable objects. [2] Bart Bok was a Dutch-American astronomer who spent most of his long career in the United States and Australia. He first noticed the dark spots that now bear his name, in star formation regions and speculated that they may be associated with the earliest stages of star formation. The hidden baby stars were only observed directly when infrared imaging was possible several decades later. [3] Although not the first to see such objects, the astronomers George Herbig and Guillermo Haro were the first to study the spectra of these strange objects in detail and realise that they were not just clumps of gas and dust that reflected light, or glowed under the influence of the ultraviolet light from young stars, but were a new class of objects associated with star formation. More information The science team for VVV includes Dante Minniti (Universidad Catolica, Chile), Phil Lucas (University of Hertfordshire, UK), Ignacio Toledo (Universidad Catolica) and Maren Hempel (Universidad Catolica). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  14. Identificación de objetos extensos en el VVV

    NASA Astrophysics Data System (ADS)

    Baravalle, L.; Alonso, M. V.; Nilo Castellón, J. L.; Minniti, D.

    2017-10-01

    The Vista Variables en la Via Lactea (VVV) is an ESO public survey in the near infrared of the bulge and southern mid-plane of the Milky Way. The main goal of the VVV is the study of the stellar population and variable stars but it can also be useful for extragalactic investigations behind the Galaxy. Using the VVV images and the combination of SExtractor + PSFEx, we have obtained astrometric and photometric data of two peripheric regions of the Galactic disk. Our goal is to identify and characterise the extragalactic sources. In this work we show our detection algorithm and adopted methodology.

  15. Pulsating stars in the VMC survey

    NASA Astrophysics Data System (ADS)

    Cioni, Maria-Rosa L.; Ripepi, Vincenzo; Clementini, Gisella; Groenewegen, Martin A. T.; Moretti, Maria I.; Muraveva, Tatiana; Subramanian, Smitha

    2017-09-01

    The VISTA survey of the Magellanic Clouds system (VMC) began observations in 2009 and since then, it has collected multi-epoch data at Ks and in addition multi-band data in Y and J for a wide range of stellar populations across the Magellanic system. Among them are pulsating variable stars: Cepheids, RR Lyrae, and asymptotic giant branch stars that represent useful tracers of the host system geometry. Based on observations made with VISTA at ESO under programme ID 179.B-2003.

  16. New Galactic star clusters discovered in the VVV survey

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Bonatto, C.; Kurtev, R.; Clarke, J. R. A.; Peñaloza, F.; Sale, S. E.; Minniti, D.; Alonso-García, J.; Artigau, E.; Barbá, R.; Bica, E.; Baume, G. L.; Catelan, M.; Chenè, A. N.; Dias, B.; Folkes, S. L.; Froebrich, D.; Geisler, D.; de Grijs, R.; Hanson, M. M.; Hempel, M.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mauro, F.; Moni Bidin, C.; Rejkuba, M.; Saito, R. K.; Tamura, M.; Toledo, I.

    2011-08-01

    Context. VISTA Variables in the Vía Láctea (VVV) is one of the six ESO Public Surveys operating on the new 4-m Visible and Infrared Survey Telescope for Astronomy (VISTA). VVV is scanning the Milky Way bulge and an adjacent section of the disk, where star formation activity is high. One of the principal goals of the VVV Survey is to find new star clusters of differentages. Aims: In order to trace the early epochs of star cluster formation we concentrated our search in the directions to those of known star formation regions, masers, radio, and infrared sources. Methods: The disk area covered by VVV was visually inspected using the pipeline processed and calibrated KS-band tile images for stellar overdensities. Subsequently, we examined the composite JHKS and ZJKS color images of each candidate. PSF photometry of 15 × 15 arcmin fields centered on the candidates was then performed on the Cambridge Astronomy Survey Unit reduced images. After statistical field-star decontamination, color-magnitude and color-color diagrams were constructed and analyzed. Results: We report the discovery of 96 new infrared open clusters and stellar groups. Most of the new cluster candidates are faint and compact (with small angular sizes), highly reddened, and younger than 5 Myr. For relatively well populated cluster candidates we derived their fundamental parameters such as reddening, distance, and age by fitting the solar-metallicity Padova isochrones to the color-magnitude diagrams. Based on observations gathered with VIRCAM, VISTA of the ESO as part of observing programs 172.B-2002Appendix A is available in electronic form at http://www.aanda.orgTable 1 is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/532/A131

  17. Bulge RR Lyrae stars in the VVV tile b201

    NASA Astrophysics Data System (ADS)

    Gran, F.; Minniti, D.; Saito, R. K.; Navarrete, C.; Dékány, I.; McDonald, I.; Contreras Ramos, R.; Catelan, M.

    2015-03-01

    Context. The VISTA Variables in the Vía Láctea (VVV) Survey is one of the six ESO public surveys currently ongoing at the VISTA telescope on Cerro Paranal, Chile. VVV uses near-IR (ZYJHKs) filters that at present provide photometry to a depth of Ks ~ 17.0 mag in up to 36 epochs spanning over four years, and aim at discovering more than 106 variable sources as well as trace the structure of the Galactic bulge and part of the southern disk. Aims: A variability search was performed to find RR Lyrae variable stars. The low stellar density of the VVV tile b201, which is centered at (ℓ,b) ~ (-9°, -9°), makes it suitable to search for variable stars. Previous studies have identified some RR Lyrae stars using optical bands that served to test our search procedure. The main goal is to measure the reddening, interstellar extinction, and distances of the RR Lyrae stars and to study their distribution on the Milky Way bulge. Methods: For each star in the tile with more than 25 epochs (~90% of the objects down to Ks ~ 17.0 mag), the standard deviation and χ2 test were calculated to identify variable candidates. Periods were determined using the analysis of variance. Objects with periods in the RR Lyrae range of 0.2 ≤ P ≤ 1.2 days were selected as candidate RR Lyrae. They were individually examined to exclude false positives. Results: A total of 1.5 sq deg were analyzed, and we found 39 RR Lyr stars, 27 of which belong to the ab-type and 12 to the c-type. Our analysis recovers all the previously identified RR Lyrae variables in the field and discovers 29 new RR Lyr stars. The reddening and extinction toward all the RRab stars in this tile were derived, and distance estimations were obtained through the period-luminosity relation. Despite the limited amount of RR Lyrae stars studied, our results are consistent with a spheroidal or central distribution around ~8.1 and ~8.5 kpc. for either the Cardelli or Nishiyama extinction law. Our analysis does not reveal a stream-like structure. Nevertheless, a larger area must be analyzed to definitively rule out streams. Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002.

  18. One more neighbor: The first brown dwarf in the VVV survey

    NASA Astrophysics Data System (ADS)

    Beamín, J. C.; Minniti, D.; Gromadzki, M.; Kurtev, R.; Ivanov, V. D.; Beletsky, Y.; Lucas, P.; Saito, R. K.; Borissova, J.

    2013-09-01

    Context. The discovery of brown dwarfs (BDs) in the solar neighborhood and young star clusters has helped to constraint the low-mass end of the stellar mass function and the initial mass function. We use data of the Vista Variables in the Vía Láctea (VVV), a near-infrared (NIR) multi-wavelength (ZYJHKs) multi-epoch (Ks) ESO Public Survey mapping the Milky Way bulge and southern Galactic plane to search for nearby BDs. Aims: The ultimate aim of the project is to improve the completeness of the census of nearby stellar and substellar objects towards the Galactic bulge and inner disk regions. Methods: Taking advantage of the homogeneous sample of VVV multi-epoch data, we identified stars with high proper motion ( ≥ 0.1'' yr-1), and then selected low-mass objects using NIR colors. We searched for a possible parallax signature using the all available Ks band epochs. We set some constraints on the month-to-year scale Ks band variability of our candidates, and even searched for possible transiting companions. We obtained NIR spectra to properly classify spectral type and then the physical properties of the final list of candidates. Results: We report the discovery of VVV BD001, a new member of the local volume-limited sample (within 20 pc from the Sun) with well defined proper motion, distance, and luminosity. The spectral type of this new object is an L5 ± 1, unusually blue dwarf. The proper motion for this BD is PM(α) = -0.5455 ± 0.004'' yr-1, PM(δ) = -0.3255 ± 0.004'' yr-1, and it has a parallax of 57 ± 4 mas which translates into a distance of 17.5 ± 1.1 pc. VVV BD001 shows no evidence of variability (ΔKs < 0.05 mag) over two years, especially constrained on a six month scale during the year 2012. Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002.

  19. Milky Way demographics with the VVV survey. I. The 84-million star colour-magnitude diagram of the Galactic bulge

    NASA Astrophysics Data System (ADS)

    Saito, R. K.; Minniti, D.; Dias, B.; Hempel, M.; Rejkuba, M.; Alonso-García, J.; Barbuy, B.; Catelan, M.; Emerson, J. P.; Gonzalez, O. A.; Lucas, P. W.; Zoccali, M.

    2012-08-01

    Context. The Milky Way (MW) bulge is a fundamental Galactic component for understanding the formation and evolution of galaxies, in particular our own. The ESO Public Survey VISTA Variables in the Vía Láctea is a deep near-IR survey mapping the Galactic bulge and southern plane. Particularly for the bulge area, VVV is covering ~315 deg2. Data taken during 2010 and 2011 covered the entire bulge area in the JHKs bands. Aims: We used VVV data for the whole bulge area as a single and homogeneous data set to build for the first time a single colour - magnitude diagram (CMD) for the entire Galactic bulge. Methods: Photometric data in the JHKs bands were combined to produce a single and huge data set containing 173 150 467 sources in the three bands, for the ~315 deg2 covered by VVV in the bulge. Selecting only the data points flagged as stellar, the total number of sources is 84 095 284. Results: We built the largest colour-magnitude diagrams published up to date, containing 173.1+ million sources for all data points, and more than 84.0 million sources accounting for the stellar sources only. The CMD has a complex shape, mostly owing to the complexity of the stellar population and the effects of extinction and reddening towards the Galactic centre. The red clump (RC) giants are seen double in magnitude at b ~ -8° -10°, while in the inner part (b ~ -3°) they appear to be spreading in colour, or even splitting into a secondary peak. Stellar population models show the predominance of main-sequence and giant stars. The analysis of the outermost bulge area reveals a well-defined sequence of late K and M dwarfs, seen at (J - Ks) ~ 0.7-0.9 mag and Ks ≳ 14 mag. Conclusions: The interpretation of the CMD yields important information about the MW bulge, showing the fingerprint of its structure and content. We report a well-defined red dwarf sequence in the outermost bulge, which is important for the planetary transit searches of VVV. The double RC in magnitude seen in the outer bulge is the signature of the X-shaped MW bulge, while the spreading of the RC in colour, and even its splitting into a secondary peak, are caused by reddening effects. The region around the Galactic centre is harder to interpret because it is strongly affected by reddening and extinction. Based on observations taken within the ESO VISTA Public Survey VVV, Programme ID 179.B-2002.The VVV survey data are available through the ESO archive http://www.eso.org/sci/archive.html

  20. Variable stars around selected open clusters in the VVV area: Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Medina, Nicolas; Borissova, Jura; Bayo, Amelia; Kurtev, Radostin; Lucas, Philip

    2017-09-01

    Time-varying phenomena are one of the most substantial sources of astrophysical information, and led to many fundamental discoveries in modern astronomy. We have developed an automated tool to search and analyze variable sources in the near infrared Ks band, using the data from the Vista Variables in the Vía Láctea (VVV) ESO Public Survey ([5, 8]). One of our main goals is to investigate the Young Stellar Objects (YSOs) in the Galactic star forming regions, looking for: Variability. New pre-main sequence star clusters. Here we present the newly discovered YSOs within some selected stellar clusters in our Galaxy.

  1. The VISTA ZYJHKs photometric system: calibration from 2MASS

    NASA Astrophysics Data System (ADS)

    González-Fernández, C.; Hodgkin, S. T.; Irwin, M. J.; González-Solares, E.; Koposov, S. E.; Lewis, J. R.; Emerson, J. P.; Hewett, P. C.; Yoldaş, A. K.; Riello, M.

    2018-03-01

    In this paper, we describe the routine photometric calibration of data taken with the VISTA infrared camera (VIRCAM) instrument on the ESO Visible and Infrared Survey Telescope for Astronomy (VISTA) telescope. The broad-band ZYJHKs data are directly calibrated from Two Micron all Sky Survey (2MASS) point sources visible in every VISTA image. We present the empirical transformations between the 2MASS and VISTA, and Wide-Field Camera and VISTA, photometric systems for regions of low reddening. We investigate the long-term performance of VISTA+VIRCAM. An investigation of the dependence of the photometric calibration on interstellar reddening leads to these conclusions: (1) For all broad-band filters, a linear colour-dependent correction compensates the gross effects of reddening where E(B - V) < 5.0. (2) For Z and Y, there is a significantly larger scatter above E(B - V) = 5.0, and insufficient measurements to adequately constrain the relation beyond this value. (3) The JHKs filters can be corrected to a few per cent up to E(B - V) = 10.0. We analyse spatial systematics over month-long time-scales, both inter- and intradetector and show that these are present only at very low levels in VISTA. We monitor and remove residual detector-to-detector offsets. We compare the calibration of the main pipeline products: pawprints and tiles. We show how variable seeing and transparency affect the final calibration accuracy of VISTA tiles, and discuss a technique, grouting, for mitigating these effects. Comparison between repeated reference fields is used to demonstrate that the VISTA photometry is precise to better than ≃ 2 per cent for the YJHKs bands and 3 per cent for the Z bands. Finally, we present empirically determined offsets to transform VISTA magnitudes into a true Vega system.

  2. 4MOST: the 4-metre Multi-Object Spectroscopic Telescope project at preliminary design review

    NASA Astrophysics Data System (ADS)

    de Jong, Roelof S.; Barden, Samuel C.; Bellido-Tirado, Olga; Brynnel, Joar G.; Frey, Steffen; Giannone, Domenico; Haynes, Roger; Johl, Diana; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob C.; Winkler, Roland; Ansorge, Wolfgang R.; Feltzing, Sofia; McMahon, Richard G.; Baker, Gabriella; Caillier, Patrick; Dwelly, Tom; Gaessler, Wolfgang; Iwert, Olaf; Mandel, Holger G.; Piskunov, Nikolai A.; Pragt, Johan H.; Walton, Nicholas A.; Bensby, Thomas; Bergemann, Maria; Chiappini, Cristina; Christlieb, Norbert; Cioni, Maria-Rosa L.; Driver, Simon; Finoguenov, Alexis; Helmi, Amina; Irwin, Michael J.; Kitaura, Francisco-Shu; Kneib, Jean-Paul; Liske, Jochen; Merloni, Andrea; Minchev, Ivan; Richard, Johan; Starkenburg, Else

    2016-08-01

    We present an overview of the 4MOST project at the Preliminary Design Review. 4MOST is a major new wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of ESO. 4MOST has a broad range of science goals ranging from Galactic Archaeology and stellar physics to the high-energy physics, galaxy evolution, and cosmology. Starting in 2021, 4MOST will deploy 2436 fibres in a 4.1 square degree field-of-view using a positioner based on the tilting spine principle. The fibres will feed one high-resolution (R 20,000) and two medium resolution (R 5000) spectrographs with fixed 3-channel designs and identical 6k x 6k CCD detectors. 4MOST will have a unique operations concept in which 5-year public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure. The 4MOST Facility Simulator (4FS) was developed to demonstrate the feasibility of this observing concept, showing that we can expect to observe more than 25 million objects in each 5-year survey period and will eventually be used to plan and conduct the actual survey.

  3. Celestial Fireworks from Dying Stars

    NASA Astrophysics Data System (ADS)

    2011-04-01

    This image of the nebula NGC 3582, which was captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, shows giant loops of gas bearing a striking resemblance to solar prominences. These loops are thought to have been ejected by dying stars, but new stars are also being born within this stellar nursery. These energetic youngsters emit intense ultraviolet radiation that makes the gas in the nebula glow, producing the fiery display shown here. NGC 3582 is part of a large star-forming region in the Milky Way, called RCW 57. It lies close to the central plane of the Milky Way in the southern constellation of Carina (The Keel of Jason's ship, the Argo). John Herschel first saw this complex region of glowing gas and dark dust clouds in 1834, during his stay in South Africa. Some of the stars forming in regions like NGC 3582 are much heavier than the Sun. These monster stars emit energy at prodigious rates and have very short lives that end in explosions as supernovae. The material ejected from these dramatic events creates bubbles in the surrounding gas and dust. This is the probable cause of the loops visible in this picture. This image was taken through multiple filters. From the Wide Field Imager, data taken through a red filter are shown in green and red, and data taken through a filter that isolates the red glow characteristic of hydrogen are also shown in red. Additional infrared data from the Digitized Sky Survey are shown in blue. The image was processed by ESO using the observational data identified by Joe DePasquale, from the United States [1], who participated in ESO's Hidden Treasures 2010 astrophotography competition [2]. The competition was organised by ESO in October-November 2010, for everyone who enjoys making beautiful images of the night sky using astronomical data obtained using professional telescopes. Notes [1] Joe searched through ESO's archive and identified datasets that he used to compose his image of NGC 3582, which was the tenth highest ranked entry in the competition, out of almost 100 entries. His original work can be seen here. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. To find out more about Hidden Treasures, visit http://www.eso.org/public/outreach/hiddentreasures/. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. EVALSO: A New High-speed Data Link to Chilean Observatories

    NASA Astrophysics Data System (ADS)

    2010-11-01

    Stretching 100 kilometres through Chile's harsh Atacama Desert, a newly inaugurated data cable is creating new opportunities at ESO's Paranal Observatory and the Observatorio Cerro Armazones. Connecting these facilities to the main Latin American scientific data backbone completes the last gap in the high-speed link between the observatories and Europe. This new cable is part of the EVALSO (Enabling Virtual Access to Latin American Southern Observatories) project [1], a European Commission FP7 [2] co-funded programme co-ordinated by the University of Trieste that includes ESO, Observatorio Cerro Armazones (OCA, part of Ruhr-Universität Bochum), the Chilean academic network REUNA and other organisations. As well as the cable itself, the EVALSO project involves buying capacity on existing infrastructure to complete a high-bandwidth connection from the Paranal area to ESO's headquarters near Munich, Germany. Project co-ordinator Fernando Liello said: "This project has been an excellent collaboration between the consortium members. As well as giving a fast connection to the two observatories, it brings wider benefits to the academic communities both in Europe and Latin America." The sites of Paranal and Armazones are ideal for astronomical observation due to their high altitude, clear skies and remoteness from light pollution. But their location means they are far from any pre-existing communications infrastructure, which until now has left them dependent on a microwave link to send scientific data back to a base station near Antofagasta. Telescopes at ESO's Paranal observatory produce well over 100 gigabytes of data per night, equivalent to more than 20 DVDs, even after compressing the files. While the existing link is sufficient to carry the data from the current generation of instruments at the Very Large Telescope (VLT), it does not have the bandwidth to handle data from the VISTA telescope (Visible and Infrared Survey Telescope for Astronomy, see eso0949), or for the new generation of VLT instruments coming online in the next few years. This means that for much of the data coming from Paranal, the only practical way to send it to ESO Headquarters has been to save it onto hard drives and send these by airmail. This can mean a wait of days or even weeks before observations from VISTA are ready for analysis. Even with this careful rationing of the connection and sophisticated data management to use the connection as efficiently as possible, the link can get saturated at peak times. While this causes no major problems at present, it indicates that the link is reaching capacity. ESO Director General Tim de Zeeuw said: "ESO's observatory at Paranal is growing, with new telescopes and instruments coming online. Our world-class scientific observatories need state-of-the-art infrastructure." In the place of the existing connection, which has a limit of 16 megabit/s (similar to home ADSL broadband), EVALSO will provide a much faster 10 gigabit/s link - a speed fast enough to transfer an entire DVD movie in a matter of seconds [3]. Mario Campolargo, Director, Emerging Technologies and Infrastructures at the European Commission, said: "It is strategically important that the community of astronomers of Europe gets the best access possible to the ESO observatories: this is one of the reasons why the European Union supports the deployment of regional e-infrastructures for science in Latin America and interlinks them with GÉANT [4] and other EU e-infrastructures." The dramatic increase in bandwidth will allow increased use of Paranal's data from a distance, in real-time. It will allow easier monitoring of the VISTA telescope's performance, and quicker access to VLT data, increasing the responsiveness of quality control. And with the expanded bandwidth, new opportunities will open up, such as astronomers and technicians taking part in meetings via high-definition videoconferencing without having to travel to Chile. Moreover, looking forward, the new link will provide enough bandwidth to keep up with the ever-growing volumes of information from Paranal and Armazones in future years, as new and bandwidth-intensive instruments come into use. Immediate remote access to data at a distant location is not just about saving money and making the observatory's work more efficient. For unexpected and unpredictable events, such as gamma-ray bursts, there is often not enough time for astronomers to travel to observatories, and EVALSO will give experts a chance to work remotely on these events almost as if they were at the observatory. Notes [1] EVALSO is funded under the European Commission FP7 and is a partnership among Universita degli Studi di Trieste (Italy), ESO, Ruhr-Universität Bochum (Germany), Consortium GARR (Gestione Ampliamento Rete Ricerca) (Italy), Universiteit Leiden (Netherlands), Istituto Nazionale di Astrofisica (Italy), Queen Mary, University of London (UK), Cooperacion LatinoAmericana de Redes Avanzasas (CLARA) (Uruguay), and Red Universitaria Nacional (REUNA) (Chile). [2] FP7 (the European Commission Seventh Framework Programme for Research and Technical Development) is the European Union's main instrument for funding research. Its aim is to make, or keep, the EU as a world leader in its priority areas in science and technology. [3] The newly laid cable has a bandwidth of 10 gigabit/s. The entire network infrastructure between Paranal to ESO HQ in Germany is theoretically capable of transferring data at a maximum of 1 gigabit/s. [4] GÉANT is a pan-European data network dedicated to the research and education community. It connects 40 million users across 40 countries. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. VizieR Online Data Catalog: 25 Ori group low-mass stars (Downes+, 2014)

    NASA Astrophysics Data System (ADS)

    Downes, J. J.; Briceno, C.; Mateu, C.; Hernandez, J.; Vivas, A. K.; Calvet, N.; Hartmann, L.; Petr-Gotzens, M. G.; Allen, L.

    2015-04-01

    Multi-epoch optical V-, R-, I-band and Hα observations across the entire Orion OB1 association (spanning ~180deg2) were obtained as part of the CVSO (Briceno et al., 2005AJ....129..907B, Cat. J/AJ/129/907), being conducted since 1998 with the Jurgen Stock 1.0/1.5 Schmidt-type telescope and the 8000x8000-pixel QUEST-I CCD Mosaic camera, at the National Astronomical Observatory of Venezuela. During 2009 a new dedicated 4m survey telescope, the Visible and Infrared Survey Telescope for Astronomy (VISTA), located at ESO's Paranal Observatory, was commissioned by the VISTA consortium. For the Galactic Science Verification of VISTA, an ~30deg2 area of the Orion OB1 association, which included the Orion Belt region, part of the Orion A cloud, the 25 Orionis and σ Ori clusters, was imaged in the Z, Y, J, H and Ks filters, during 2009 October 16 to November 2. (3 data files).

  6. ESO Highlights in 2008

    NASA Astrophysics Data System (ADS)

    2009-01-01

    As is now the tradition, the European Southern Observatory looks back at the exciting moments of last year. 2008 was in several aspects an exceptionally good year. Over the year, ESO's telescopes provided data for more than 700 scientific publications in refereed journals, making ESO the most productive ground-based observatory in the world. ESO PR Highlights 2008 ESO PR Photo 01a/09 The image above is a clickable map. These are only some of the press releases issued by ESO in 2008. For a full listing, please go to ESO 2008 page. Austria signed the agreement to join the other 13 ESO member states (ESO 11/08 and 20/08), while the year marked the 10th anniversary of first light for ESO's "perfect science machine", the Very Large Telescope (ESO 16/08 and 17/08). The ALMA project, for which ESO is the European partner, had a major milestone in December, as the observatory was equipped with its first antenna (ESO 49/08). Also the Atacama Pathfinder Experiment (APEX) telescope impressed this year with some very impressive and publicly visible results. Highlights came in many fields: Astronomers for instance used the Very Large Telescope (VLT) to discover and image a probable giant planet long sought around the star Beta Pictoris (ESO 42/08). This is now the eighth extrasolar planet to have been imaged since the VLT imaged the first extrasolar planet in 2004 (three of eight were imaged with VLT). The VLT also enabled three students to confirm the nature of a unique planet (ESO 45/08). This extraordinary find, which turned up during their research project, is a planet about five times as massive as Jupiter. This is the first planet discovered orbiting a fast-rotating hot star. The world's foremost planet-hunting instrument, HARPS, located at ESO's La Silla observatory, scored a new first, finding a system of three super-Earths around a star (ESO 19/08). Based on the complete HARPS sample, astronomers now think that one Sun-like star out of three harbours short orbit, low-mass planets. With the VLT and another recent instrument, CRIRES, astronomers have also been able to study planet-forming discs around young Sun-like stars in unsurpassed detail, clearly revealing the motion and distribution of the gas in the inner parts of the disc, possibly implying the presence of giant planets (ESO 27/08). As the result of an impressive 16-year long study, that combines data obtained with ESO's New Technology Telescope and the VLT, a team of German astronomers has produced the most detailed view ever of the surroundings of the monster lurking at our Galaxy's heart -- a supermassive black hole (ESO 46/08). Combining data from APEX and the VLT, another team studied the violent flares coming from this region (ESO 41/08). The flares are the likely signatures of material being torn apart by the black hole. Making such science discoveries doesn't happen without the best technological tools. ESO is constantly upgrading its battery of instruments and telescopes on Cerro Paranal, home of the VLT. For example, the PRIMA instrument for the VLT Interferometer (VLTI) recently saw first light (ESO 29/08). When fully operational, PRIMA will boost the capabilities of the VLTI to see sources much fainter than any previous interferometers, and determine positions on the sky better than any other existing astronomical facility. The Multi-Conjugate Adaptive Optics Demonstrator (MAD) prototype, mounted on the VLT, provided astronomers with the sharpest image of the full disc of planet Jupiter ever taken from the Earth's surface (ESO 33/08). The future VISTA telescope on Paranal also received its record-curved 4.1-metre mirror, paving the way for unique surveys of the southern sky in the infrared (ESO 10/08). In preparation for other instruments of the future, staff at ESO joined with quantum optics specialists to develop a new calibration system for ultra-precise spectrographs (ESO 26/08). Given the presence of such state-of-the-art technology, it is perhaps no surprise that the crucial scenes from the latest James Bond sequel were filmed at Paranal (even though the director was really more interested in blowing up the Residencia, the lodge where staff and visitors can relax after working at one of the world's most advanced ground-based astronomical observatories). In March, a movie crew of 300 people, including the principal actors, were shooting at Paranal (ESO 007/08 and 38/08). On the outreach side, ESO's series of video podcasts, the ESOcast, premiered with the first three episodes. More than two thousand new and historic ESO images were put online in the ESO image archive as well as more than 300 hundred videos, mostly in High Definition. The work to digitise ESO's heritage will continue in 2009. Doubtless just as many exciting results will be presented this year too. Especially as 2009 has been officially declared the International Year of Astronomy (IYA) by the UN, UNESCO and the International Astronomical Union. The Year is coordinated from the global IYA Secretariat hosted by ESO. In addition ESO leads a number of global and regional activities.

  7. 45 CFR 1210.3-9 - Decision by Director of VISTA.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Decision by Director of VISTA. 1210.3-9 Section 1210.3-9 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early...

  8. 45 CFR 1210.3-9 - Decision by Director of VISTA.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Decision by Director of VISTA. 1210.3-9 Section 1210.3-9 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early...

  9. 45 CFR 1210.3-9 - Decision by Director of VISTA.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Decision by Director of VISTA. 1210.3-9 Section 1210.3-9 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early...

  10. 45 CFR 1210.3-9 - Decision by Director of VISTA.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Decision by Director of VISTA. 1210.3-9 Section 1210.3-9 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early...

  11. 45 CFR 1210.3-9 - Decision by Director of VISTA.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Decision by Director of VISTA. 1210.3-9 Section 1210.3-9 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early...

  12. VISION - Vienna survey in Orion. I. VISTA Orion A Survey

    NASA Astrophysics Data System (ADS)

    Meingast, Stefan; Alves, João; Mardones, Diego; Teixeira, Paula Stella; Lombardi, Marco; Großschedl, Josefa; Ascenso, Joana; Bouy, Herve; Forbrich, Jan; Goodman, Alyssa; Hacar, Alvaro; Hasenberger, Birgit; Kainulainen, Jouni; Kubiak, Karolina; Lada, Charles; Lada, Elizabeth; Moitinho, André; Petr-Gotzens, Monika; Rodrigues, Lara; Román-Zúñiga, Carlos G.

    2016-03-01

    Context. Orion A hosts the nearest massive star factory, thus offering a unique opportunity to resolve the processes connected with the formation of both low- and high-mass stars. Here we present the most detailed and sensitive near-infrared (NIR) observations of the entire molecular cloud to date. Aims: With the unique combination of high image quality, survey coverage, and sensitivity, our NIR survey of Orion A aims at establishing a solid empirical foundation for further studies of this important cloud. In this first paper we present the observations, data reduction, and source catalog generation. To demonstrate the data quality, we present a first application of our catalog to estimate the number of stars currently forming inside Orion A and to verify the existence of a more evolved young foreground population. Methods: We used the European Southern Observatory's (ESO) Visible and Infrared Survey Telescope for Astronomy (VISTA) to survey the entire Orion A molecular cloud in the NIR J,H, and KS bands, covering a total of ~18.3 deg2. We implemented all data reduction recipes independently of the ESO pipeline. Estimates of the young populations toward Orion A are derived via the KS-band luminosity function. Results: Our catalog (799 995 sources) increases the source counts compared to the Two Micron All Sky Survey by about an order of magnitude. The 90% completeness limits are 20.4, 19.9, and 19.0 mag in J,H, and KS, respectively. The reduced images have 20% better resolution on average compared to pipeline products. We find between 2300 and 3000 embedded objects in Orion A and confirm that there is an extended foreground population above the Galactic field, in agreement with previous work. Conclusions: The Orion A VISTA catalog represents the most detailed NIR view of the nearest massive star-forming region and provides a fundamental basis for future studies of star formation processes toward Orion. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 090.C-0797(A).Image data and full Table B.1 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/587/A153

  13. VizieR Online Data Catalog: VISTA Variables in the Via Lactea Survey DR1 (Saito+, 2012)

    NASA Astrophysics Data System (ADS)

    Saito, R. K.; Hempel, M.; Minniti, D.; Lucas, P. W.; Rejkuba, M.; Toledo, I.; Gonzalez, O. A.; Alonso-Garcia, J.; Irwin, M. J.; Gonzalez-Solares, E.; Hodgkin, S. T.; Lewis, J. R.; Cross, N.; Ivanov, V. D.; Kerins, E.; Emerson, J. P.; Soto, M.; Amores, E. B.; Gurovich, S.; Dekany, I.; Angeloni, R.; Beamin, J. C.; Catelan, M.; Padilla, N.; Zoccali, M.; Pietrukowicz, P.; Moni Bidin, C.; Mauro, F.; Geisler, D.; Folkes, S. L.; Sale, S. E.; Borissova, J.; Kurtev, R.; Ahumada, A. V.; Alonso, M. V.; Adamson, A.; Arias, J. I.; Bandyopadhyay, R. M.; Barba, R. H.; Barbuy, B.; Baume, G. L.; Bedin, L. R.; Bellini, A.; Benjamin, R.; Bica, E.; Bonatto, C.; Bronfman, L.; Carraro, G.; Chene, A. N.; Claria, J. J.; Clarke, J. R. A.; Contreras, C.; Corvillon, A.; de Grijs, R.; Dias, B.; Drew, J. E.; Farina, C.; Feinstein, C.; Fernandez-Lajus, E.; Gamen, R. C.; Gieren, W.; Goldman, B.; Gonzalez-Fernandez, C.; Grand, R. J. J.; Gunthardt, G.; Hambly, N. C.; Hanson, M. M.; Helminiak, K. G.; Hoare, M. G.; Huckvale, L.; Jordan, A.; Kinemuchi, K.; Longmore, A.; Lopez-Corredoira, M.; Maccarone, T.; Maja! Ess, D.; M Artin, E. L.; Masetti, N.; Mennickent, R. E.; Mirabel, I. F.; Monaco, L.; Morelli, L.; Motta, V.; Palma, T.; Parisi, M. C.; Parker, Q.; Penaloza, F.; Pietrzynski, G.; Pignata, G.; Popescu, B.; Read, M. A.; Rojas, A.; Roman-Lopes, A.; Ruiz, M. T.; Saviane, I.; Schreiber, M. R.; Schroeder, A. C.; Sharma, S.; Smith, M. D.; Sodre, L. Jr; Stead, J.; Stephens, A. W.; Tamura, M.; Tappert, C.; Thompson, M. A.; Valenti, E.; Vanzi, L.; Walton, N. A.; Weidmann, W.; Zijlstra, A.

    2015-01-01

    The VVV survey targets the galactic bulge and a piece of the adjacent plane in Z, Y, J, H, and Ks. The total area of this survey is 520 square degrees and contains 355 open and 33 globular clusters. The VVV is multi-epoch in nature in order to detect a large number of variable objects and will provide > 100 carefully spaced observations for each tile. 5-sigma detection limits are Z=21.9, Y=21.2, J=20.2, H=18.2, Ks=18.1. These will be used to create a 3-dimensional map of the Bulge from well-understood distance indicators such as RR Lyrae stars. Other science drivers include the ages of stellar populations, globular cluster evolution, as well as the stellar initial mass function. The VVV Survey data delivered in this part of ESO Data Release 1 (DR1) includes the VISTA/VIRCAM paw-print and tile images that were acquired until September 30, 2010, and processed by the Cambridge Astronomical Survey Unit (CASU). This VVV_CAT data release contains the single-epoch band-merged (Z,Y,J,H,Ks) catalogues associated with the VVV tile images that have already been released in the part of DR1 identified as VVV in the ESO archive. VVV_CAT contains 269 tile catalogues. (1 data file).

  14. Light, Wind and Fire - Beautiful Image of a Cosmic Sculpture

    NASA Astrophysics Data System (ADS)

    2010-02-01

    Today ESO has released a dramatic new image of NGC 346, the brightest star-forming region in our neighbouring galaxy, the Small Magellanic Cloud, 210 000 light-years away towards the constellation of Tucana (the Toucan). The light, wind and heat given off by massive stars have dispersed the glowing gas within and around this star cluster, forming a surrounding wispy nebular structure that looks like a cobweb. NGC 346, like other beautiful astronomical scenes, is a work in progress, and changes as the aeons pass. As yet more stars form from loose matter in the area, they will ignite, scattering leftover dust and gas, carving out great ripples and altering the face of this lustrous object. NGC 346 spans approximately 200 light-years, a region of space about fifty times the distance between the Sun and its nearest stellar neighbours. Astronomers classify NGC 346 as an open cluster of stars, indicating that this stellar brood all originated from the same collapsed cloud of matter. The associated nebula containing this clutch of bright stars is known as an emission nebula, meaning that gas within it has been heated up by stars until the gas emits its own light, just like the neon gas used in electric store signs. Many stars in NGC 346 are relatively young in cosmic terms with their births dating back only a few million years or so (eso0834). Powerful winds thrown off by a massive star set off this recent round of star birth by compressing large amounts of matter, the first critical step towards igniting new stars. This cloud of material then collapses under its own gravity, until some regions become dense and hot enough to roar forth as a brilliantly shining, nuclear fusion-powered furnace - a star, illuminating the residual debris of gas and dust. In sufficiently congested regions like NGC 346, with high levels of recent star birth, the result is a glorious, glowing vista for our telescopes to capture. NGC 346 is in the Small Magellanic Cloud, a dwarf galaxy some 210 000 light-years away from Earth and in close proximity to our home, the much larger Milky Way Galaxy. Like its sister the Large Magellanic Cloud, the Small Magellanic Cloud is visible with the unaided eye from the southern hemisphere and has served as an extragalactic laboratory for astronomers studying the dynamics of star formation. This particular image was obtained using the Wide Field Imager (WFI) instrument at the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. Images like this help astronomers chronicle star birth and evolution, while offering glimpses of how stellar development influences the appearance of the cosmic environment over time. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  15. E-ELT Site Chosen - World's Biggest Eye on the Sky to be Located on Armazones, Chile

    NASA Astrophysics Data System (ADS)

    2010-04-01

    On 26 April 2010, the ESO Council selected Cerro Armazones as the baseline site for the planned 42-metre European Extremely Large Telescope (E-ELT). Cerro Armazones is a mountain at an altitude of 3060 metres in the central part of Chile's Atacama Desert, some 130 kilometres south of the town of Antofagasta and about 20 kilometres from Cerro Paranal, home of ESO's Very Large Telescope. "This is an important milestone that allows us to finalise the baseline design of this very ambitious project, which will vastly advance astronomical knowledge," says Tim de Zeeuw, ESO's Director General. "I thank the site selection team for the tremendous work they have done over the past few years." ESO's next step is to build a European extremely large optical/infrared telescope (E-ELT) with a primary mirror 42 metres in diameter. The E-ELT will be "the world's biggest eye on the sky" - the only such telescope in the world. ESO is drawing up detailed construction plans together with the community. The E-ELT will address many of the most pressing unsolved questions in astronomy, and may, eventually, revolutionise our perception of the Universe, much as Galileo's telescope did 400 years ago. The final go-ahead for construction is expected at the end of 2010, with the start of operations planned for 2018. The decision on the E-ELT site was taken by the ESO Council, which is the governing body of the Organisation composed of representatives of ESO's fourteen Member States, and is based on an extensive comparative meteorological investigation, which lasted several years. The majority of the data collected during the site selection campaigns will be made public in the course of the year 2010. Various factors needed to be considered in the site selection process. Obviously the "astronomical quality" of the atmosphere, for instance, the number of clear nights, the amount of water vapour, and the "stability" of the atmosphere (also known as seeing) played a crucial role. But other parameters had to be taken into account as well, such as the costs of construction and operations, and the operational and scientific synergy with other major facilities (VLT/VLTI, VISTA, VST, ALMA and SKA etc). In March 2010, the ESO Council was provided with a preliminary report with the main conclusions from the E-ELT Site Selection Advisory Committee [1]. These conclusions confirmed that all the sites examined in the final shortlist (Armazones, Ventarrones, Tolonchar and Vizcachas in Chile, and La Palma in Spain) have very good conditions for astronomical observing, each one with its particular strengths. The technical report concluded that Cerro Armazones, near Paranal, stands out as the clearly preferred site, because it has the best balance of sky quality for all the factors considered and can be operated in an integrated fashion with ESO's Paranal Observatory. Cerro Armazones and Paranal share the same ideal conditions for astronomical observations. In particular, over 320 nights are clear per year. Taking into account the very clear recommendation of the Site Selection Advisory Committee and all other relevant aspects, especially the scientific quality of the site, Council has now endorsed the choice of Cerro Armazones as the E-ELT baseline site [2]. "Adding the transformational scientific capabilities of the E-ELT to the already tremendously powerful integrated VLT observatory guarantees the long-term future of Paranal as the most advanced optical/infrared observatory in the world and further strengthens ESO's position as the world-leading organisation for ground-based astronomy," says de Zeeuw. In anticipation of the choice of Cerro Armazones as the future site of the E-ELT and to facilitate and support the project, the Chilean Government has agreed to donate to ESO a substantial tract of land contiguous to ESO's Paranal property and containing Armazones in order to ensure the continued protection of the site against all adverse influences, in particular light pollution and mining activities. Notes [1] The independent E-ELT Site Selection Advisory Committee (SSAC) has been analysing results from several possible sites worldwide in great detail. Similar efforts have been carried out by the Thirty-Meter Telescope (TMT) site selection team from the US. For the sake of efficiency, the sites pre-selected by the TMT team (all in North and South America) were not studied by the SSAC, as the TMT team shared their data with the SSAC. Two of the sites on the SSAC short list, including Armazones, were on the TMT list. [2] The full ESO Council Resolution reads as follow: Resolution of ESO Council on the Baseline Site for the E-ELT Recognising * the very clear recommendation from the Site Selection Advisory Committee that the E-ELT should be located on Cerro Armazones in Northern Chile * the considerable scientific synergy that would result between the E-ELT and future facilities in the Southern Hemisphere, most notably ALMA and SKA * the operational and scientific synergies with Paranal that would result and expressing its warmest appreciation for * the very generous offers from Spain and Chile to host the E-ELT * the very considerable contributions to the quality and depth of the discussion on the siting of the E-ELT made by Chile and Spain in the course of developing their offers; Council has concluded that the overriding driver for the decision on the location of the E-ELT should be the scientific quality of the site. The scientific qualities of Cerro Armazones and the positive impact that locating the E-ELT there will have on the future scientific leadership of ESO are sufficiently compelling to outweigh the very substantial offer made by Spain. Council has therefore resolved to approve the recommendation of the Director General to adopt Cerro Armazones in Chile as the baseline site for the E-ELT. Council noted that this decision is essential for the completion of the construction proposal for decision at a later date. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence.

  16. The Emergence of the Infrared Transient VVV-WIT-06

    NASA Astrophysics Data System (ADS)

    Minniti, D.; Saito, R. K.; Forster, F.; Pignata, G.; Ivanov, V. D.; Lucas, P. W.; Beamin, J. C.; Borissova, J.; Catelan, M.; Gonzalez, O. A.; Hempel, M.; Hsiao, E.; Kurtev, R.; Majaess, D.; Masetti, N.; Morrell, N. I.; Phillips, M. M.; Pullen, J. B.; Rejkuba, M.; Smith, L.; Surot, F.; Valenti, E.; Zoccali, M.

    2017-11-01

    We report the discovery of an enigmatic large-amplitude ({{Δ }}{Ks}> 10.5 mag) transient event in near-IR data obtained by the VISTA Variables in the Via Lactea (VVV) ESO Public Survey. The object (designated VVV-WIT-06) is located at R.A. = 17:07:18.917, decl. = -39:06:26.45 (J2000), corresponding to Galactic coordinates l = 347.14539, b = 0.88522. It exhibits a clear eruption, peaking at Ks = 9 mag during 2013 July and fading to {Ks}˜ 16.5 in 2017. Our late near-IR spectra show post-outburst emission lines, including some broad emission lines (upward of {FWHM}˜ 3000 km s-1). We estimate a total extinction of {A}V=10{--}15 mag in the surrounding field, and no progenitor was observed in ZYJHKs images obtained during 2010-2012 (down to {K}s> 18.5 mag). Subsequent deep near-IR imaging and spectroscopy, in concert with the available multiband photometry, indicate that VVV-WIT-06 may be either: (I) the closest Type I SN observed in about 400 years, (II) an exotic high-amplitude nova that would extend the known realm of such objects, or (III) a stellar merger. In all of these cases, VVV-WIT-06 is a fascinating and curious astrophysical target under any of the scenarios considered. Based on observations taken within the ESO programmes 179.B-2002 and 298.D-5048, and on observations carried out at the Magellan Telescope at LCO.

  17. 4MOST systems engineering: from conceptual design to preliminary design review

    NASA Astrophysics Data System (ADS)

    Bellido-Tirado, Olga; Frey, Steffen; Barden, Samuel C.; Brynnel, Joar; Giannone, Domenico; Haynes, Roger; de Jong, Roelof S.; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob; Winkler, Roland

    2016-08-01

    The 4MOST Facility is a high-multiplex, wide-field, brief-fed spectrograph system for the ESO VISTA telescope. It aims to create a world-class spectroscopic survey facility unique in its combination of wide-field multiplex, spectral resolution, spectral coverage, and sensitivity. At the end of 2014, after a successful concept optimization design phase, 4MOST entered into its Preliminary Design Phase. Here we present the process and tools adopted during the Preliminary Design Phase to define the subsystems specifications, coordinate the interface control documents and draft the system verification procedures.

  18. 45 CFR 1211.1-16 - Grievance procedure for National VISTA Grant Volunteers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Volunteers. 1211.1-16 Section 1211.1-16 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-16 Grievance procedure for National VISTA Grant Volunteers. The grievance procedure for National VISTA Grant Volunteers shall...

  19. 45 CFR 1211.1-16 - Grievance procedure for National VISTA Grant Volunteers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Volunteers. 1211.1-16 Section 1211.1-16 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-16 Grievance procedure for National VISTA Grant Volunteers. The grievance procedure for National VISTA Grant Volunteers shall...

  20. 45 CFR 1217.6 - Roles of volunteers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Roles of volunteers. 1217.6 Section 1217.6 Public... VISTA VOLUNTEER LEADER § 1217.6 Roles of volunteers. VISTA volunteer leaders may have the following roles: (a) Primary contact with VISTA volunteers on personal and administrative matters. (b) Aid in...

  1. 45 CFR 1211.1-16 - Grievance procedure for National VISTA Grant Volunteers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Volunteers. 1211.1-16 Section 1211.1-16 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-16 Grievance procedure for National VISTA Grant Volunteers. The grievance procedure for National VISTA Grant Volunteers shall...

  2. 45 CFR 1211.1-16 - Grievance procedure for National VISTA Grant Volunteers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Volunteers. 1211.1-16 Section 1211.1-16 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-16 Grievance procedure for National VISTA Grant Volunteers. The grievance procedure for National VISTA Grant Volunteers shall...

  3. 45 CFR 1217.6 - Roles of volunteers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Roles of volunteers. 1217.6 Section 1217.6 Public... VISTA VOLUNTEER LEADER § 1217.6 Roles of volunteers. VISTA volunteer leaders may have the following roles: (a) Primary contact with VISTA volunteers on personal and administrative matters. (b) Aid in...

  4. 45 CFR 1217.6 - Roles of volunteers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Roles of volunteers. 1217.6 Section 1217.6 Public... VISTA VOLUNTEER LEADER § 1217.6 Roles of volunteers. VISTA volunteer leaders may have the following roles: (a) Primary contact with VISTA volunteers on personal and administrative matters. (b) Aid in...

  5. 45 CFR 1211.1-16 - Grievance procedure for National VISTA Grant Volunteers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Volunteers. 1211.1-16 Section 1211.1-16 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VOLUNTEER GRIEVANCE PROCEDURES § 1211.1-16 Grievance procedure for National VISTA Grant Volunteers. The grievance procedure for National VISTA Grant Volunteers shall...

  6. Massive open star clusters using the VVV survey. II. Discovery of six clusters with Wolf-Rayet stars

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Bonatto, C.; Majaess, D. J.; Baume, G.; Clarke, J. R. A.; Kurtev, R.; Schnurr, O.; Bouret, J.-C.; Catelan, M.; Emerson, J. P.; Feinstein, C.; Geisler, D.; de Grijs, R.; Hervé, A.; Ivanov, V. D.; Kumar, M. S. N.; Lucas, P.; Mahy, L.; Martins, F.; Mauro, F.; Minniti, D.; Moni Bidin, C.

    2013-01-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims: This is the second in a series of papers about young, massive open clusters observed using the VVV survey. We present the first study of six recently discovered clusters. These clusters contain at least one newly discovered Wolf-Rayet (WR) star. Methods: Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: We find that the six studied stellar groups are real young (2-7 Myr) and massive (between 0.8 and 2.2 × 103 M⊙) clusters. They are highly obscured (AV ~ 5-24 mag) and compact (1-2 pc). In addition to WR stars, two of the six clusters also contain at least one red supergiant star, and one of these two clusters also contains a blue supergiant. We claim the discovery of 8 new WR stars, and 3 stars showing WR-like emission lines which could be classified WR or OIf. Preliminary analysis provides initial masses of ~30-50 M⊙ for the WR stars. Finally, we discuss the spiral structure of the Galaxy using the six new clusters as tracers, together with the previously studied VVV clusters. Based on observations with ISAAC, VLT, ESO (programme 087.D-0341A), New Technology Telescope at ESO's La Silla Observatory (programme 087.D-0490A) and with the Clay telescope at the Las Campanas Observatory (programme CN2011A-086). Also based on data from the VVV survey (programme 172.B-2002).

  7. President of Czech Republic visits ESO's Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2011-04-01

    On 6 April 2011, the ESO Paranal Observatory was honoured with a visit from the President of the Czech Republic, Václav Klaus, and his wife Livia Klausová, who also took the opportunity to admire Cerro Armazones, the future site of the planned E-ELT. The distinguished visitor was shown the technical installations at the observatory, and was present when the dome of one of the four 8.2-metre Unit Telescopes of ESO's Very Large Telescope opened for a night's observing at Cerro Paranal, the world's most advanced visible-light observatory. "I'm delighted to welcome President Klaus to the Paranal Observatory and to show him first-hand the world-leading astronomical facility that ESO has designed, has built, and operates for European astronomy," said ESO's Director General, Tim de Zeeuw. President Klaus replied, "I am very impressed by the remarkable technology that ESO has built here in the heart of the desert. Czech astronomers are already making good use of these facilities and we look forward to having Czech industry and its scientific community contribute to the future E-ELT." From the VLT platform, the President had the opportunity to admire Cerro Armazones as well as other spectacular views of Chile's Atacama Desert surrounding Paranal. Adjacent to Cerro Paranal, Armazones has been chosen as the site for the future E-ELT (see eso1018). ESO is seeking approval from its governing bodies by the end of 2011 for the go-ahead for the 1-billion euro E-ELT. Construction is expected to begin in 2012 and the start of operations is planned for early in the next decade. President Klaus was accompanied by the Minister of Foreign Affairs of the Czech Republic, Karel Schwarzenberg, the Czech Ambassador in Chile, Zdenek Kubánek, dignitaries of the government, and a Czech industrial delegation. The group was hosted at Paranal by the ESO Director General, Tim de Zeeuw, the ESO Representative in Chile, Massimo Tarenghi, the Director of Operations, Andreas Kaufer, and Jan Palous, Czech representative at the ESO Council. After the opening of the telescopes, President Klaus had the opportunity to enjoy the spectacular sunset over the Pacific Ocean from the VLT platform. Then he visited the VLT control room, which operates the four Unit Telescopes and the VLT Interferometer (VLTI). Here, the President took part in the start of observations from the console of one of the VLT Unit telescopes. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  8. Production of the 4.1-m Zerodur mirror blank for the VISTA Telescope

    NASA Astrophysics Data System (ADS)

    Doehring, Thorsten; Jedamzik, Ralf; Wittmer, Volker; Thomas, Armin

    2004-09-01

    VISTA (Visible and Infrared Survey Telescope for Astronomy) is designed to be the world's largest wide field telescope. After finishing of the construction the telescope will be part of ESO and located in Chile close to the VLT observatory at Cerro Paranal. In November 2001 SCHOTT was selected by the VISTA project office at the Royal Observatory of Edinburgh to deliver the 4.1 m diameter primary mirror blank. The manufacturing of the mirror blank made from the zero expansion material Zerodur was challenging especially due to the f/1 design. Several tons of the glass ceramic material were removed during the grinding operation. A meniscus blank with a diameter of 4100 mm and a thickness of 171.5 mm was generated, having a large central hole of 1200 mm and an aspherical shape of the concave surface. Also the handling and turning operations needed special effort and were performed by a skilled team. This paper presents details and pictures of the corresponding production and inspection sequence at SCHOTT. The geometrical parameters were measured during manufacturing by help of a laser tracker system and the achieved parameters were compared with the initial technical specification. The final quality inspection verified the excellent quality of the mirror blank. The close co-operation between the astronomers and industry resulted in a project management without problems. In April 2003 the VISTA blank was delivered successfully within a ceremony dedicated to the anniversary of "100 years of astronomical mirror blanks from SCHOTT."

  9. Reusing the VLT control system on the VISTA Telescope

    NASA Astrophysics Data System (ADS)

    Terrett, D. L.; Stewart, Malcolm

    2010-07-01

    Once it was decided that the VISTA infra-red survey telescope would be built on Paranal and operated by ESO it was clear that there would be many long term advantages in basing the control system on that of the VLTs. Benefits over developing a new system such as lower development costs or disadvantages such as constraints on the design were not the most important factors in deciding how to implement the TCS, but now that the telescope is complete the pros and cons of re-using an existing system can be evaluated. This paper reviews the lessons learned during construction and commissioning and attempts to show where reusing an existing system was a help and where it was a hindrance. It highlights those things that could have been done differently to better exploit the fact the we were using a system that was already proven to work and where, with hindsight, we would have been better to re-implement components from scratch rather than modifying an existing one.

  10. VizieR Online Data Catalog: KiDS-ESO-DR3 multi-band source catalog (de Jong+, 2017)

    NASA Astrophysics Data System (ADS)

    de Jong, J. T. A.; Verdoes Kleijn, G. A.; Erben, T.; Hildebrandt, H.; Kuijken, K.; Sikkema, G.; Brescia, M.; Bilicki, M.; Napolitano, N. R.; Amaro, V.; Begeman, K. G.; Boxhoorn, D. R.; Buddelmeijer, H.; Cavuoti, S.; Getman, F.; Grado, A.; Helmich, E.; Huang, Z.; Irisarri, N.; La Barbera, F.; Longo, G.; McFarland, J. P.; Nakajima, R.; Paolillo, M.; Puddu, E.; Radovich, M.; Rifatto, A.; Tortora, C; Valentijn, E. A.; Vellucci, C.; Vriend, W-J.; Amon, A.; Blake, C.; Choi, A.; Fenech, Conti I.; Herbonnet, R.; Heymans, C.; Hoekstra, H.; Klaes, D.; Merten, J.; Miller, L.; Schneider, P.; Viola, M.

    2017-04-01

    KiDS-ESO-DR3 contains a multi-band source catalogue encompassing all publicly released tiles, a total of 440 survey tiles including the coadded images, weight maps, masks and source lists of 292 survey tiles of KiDS-ESO-DR3, adding to the 148 tiles released previously (50 in KiDS-ESO-DR1 and 98 in KiDS-ESO-DR2). (1 data file).

  11. Finland Becomes Eleventh ESO Member State

    NASA Astrophysics Data System (ADS)

    2004-07-01

    Finland has become the eleventh member state of the European Southern Observatory (ESO) [1]. The formal accession procedure was carried through as planned and has now been completed. Following the signing of the corresponding Agreement earlier this year (ESO PR 02/04), acceptance by the Finnish Parliament and ratification by the Finnish President of the Agreement as well as the ESO Convention and the associated protocols in June [2] and the deposit of the instruments of accession today, Finland has now officially joined ESO. ESO warmly welcomes the new member country and its scientific community that is renowned for their expertise in many frontline areas. The related opportunities will contribute to strenghtening of pioneering research with the powerful facilities at ESO's observatories, to the benefit of Astronomy and Astrophysics as well as European science in general. ESO also looks forward to collaboration with the Finnish high-tech industry. For Finland, the membership in ESO is motivated by scientific and technological objectives as well as by the objective of improving the public understanding of science. The Finnish Government is committed to increasing the public research funding in order to improve the quality, impact and internationalisation of research. Membership in ESO offers unique facilities for astronomical research which would not otherwise be available for Finnish astronomers. Finland is also very interested in taking part in technological development projects in fields like ICT, optics and instrumentation. For young scientists and engineers, ESO is a challenging, international working and learning environment. Finland has already taken part in the educational programmes of ESO, and as a member this activity will be broadened and intensified. In Finland there are also several science journalists and a large community of amateur astronomers who will be very happy to take part in ESO's outreach activities.

  12. The VISTA Carina Nebula Survey . I. Introduction and source catalog

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Zeidler, P.; Ratzka, T.; Roccatagliata, V.; Petr-Gotzens, M. G.

    2014-12-01

    Context. The Carina Nebula is one of the most massive and active star-forming regions in our Galaxy and has been studied with numerous multiwavelength observations in the past five years. However, most of these studies were restricted to the inner parts (≲1 square-degree) of the nebula, and thus covered only a small fraction of the whole cloud complex. Aims: Our aim was to conduct a near-infrared survey that covers the full spatial extent (~5 square-degrees) of the Carina Nebula complex and is sensitive enough to detect all associated young stars through extinctions of up to AV ≈ 6 mag. Methods: We used the 4m Visible and Infrared Survey Telescope for Astronomy (VISTA) of ESO to map an area of 6.7 square-degrees around the Carina Nebula in the near-infrared J-, H-, Ks-bands. Results: The analysis of our VISTA data revealed 4 840 807 individual near-infrared sources, 3 951 580 of which are detected in at least two bands. The faintest S/N ≥ 3 detections have magnitudes of J ≈ 21.2, H ≈ 19.9, and Ks ≈ 19.3. For objects at the distance of the Carina Nebula (2.3 kpc), our catalog is estimated to be complete down to stellar masses of ≈0.1 M⊙ for young stars with extinctions of AV ≈ 5 mag; for regions in the brightest parts of the central nebula with particularly strong diffuse emission, the completeness limit is at slightly higher stellar masses. We describe the photometric calibration, the characteristics, and the quality of these data. VISTA images of several newly detected or yet rarely studied clusters in the outer parts of the Carina Nebula complex are presented. Finally, a list of stars with high proper motions that were discovered in our analysis is provided in an appendix. Conclusions: Our catalog represents by far the most comprehensive deep near-infrared catalog of the Carina Nebula complex. It provides a new basis for spatially complete investigations of the young stellar population in this important star-forming complex. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under programme ID 088.C-0117.The catalog (full Table 2) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/572/A116

  13. UK Announces Intention to Join ESO

    NASA Astrophysics Data System (ADS)

    2000-11-01

    Summary The Particle Physics and Astronomy Research Council (PPARC) , the UK's strategic science investment agency, today announced that the government of the United Kingdom is making funds available that provide a baseline for this country to join the European Southern Observatory (ESO) . The ESO Director General, Dr. Catherine Cesarsky , and the ESO Community warmly welcome this move towards fuller integration in European astronomy. "With the UK as a potential member country of ESO, our joint opportunities for front-line research and technology will grow significantly", she said. "This announcement is a clear sign of confidence in ESO's abilities, most recently demonstrated with the construction and operation of the unique Very Large Telescope (VLT) on Paranal. Together we will look forward with confidence towards new, exciting projects in ground-based astronomy." It was decided earlier this year to place the 4-m UK Visible and Infrared Survey Telescope (VISTA) at Paranal, cf. ESO Press Release 03/00. Following negotiations between ESO and PPARC, a detailed proposal for the associated UK/ESO Agreement with the various entry modalities will now be presented to the ESO Council for approval. Before this Agreement can enter into force, the ESO Convention and associated protocols must also be ratified by the UK Parliament. Research and key technologies According to the PPARC press release, increased funding for science, announced by the UK government today, will enable UK astronomers to prepare for the next generation of telescopes and expand their current telescope portfolio through membership of the European Southern Observatory (ESO). The uplift to its baseline budget will enable PPARC to enter into final negotiations for UK membership of the ESO. This will ensure that UK astronomers, together with their colleagues in the ESO member states, are actively involved in global scale preparations for the next generation of astronomy facilities. among these are ALMA (Atacama Large Millimeter Array) in Chile and the very large optical/infrared telescopes now undergoing conceptual studies. ESO membership will give UK astronomers access to the suite of four world-class 8.2-meter VLT Unit Telescopes at the Paranal Observatory (Chile), as well as other state-of-the-art facilities at ESO's other observatory at La Silla. Through PPARC the UK already participates in joint collaborative European science programmes such as CERN and the European Space Agency (ESA), which have already proved their value on the world scale. Joining ESO will consolidate this policy, strengthen ESO and enhance the future vigour of European astronomy. Statements Commenting on the funding announcement, Prof. Ian Halliday , PPARC's CEO, said that " this new funding will ensure our physicists and astronomers remain at the forefront of international research - leading in discoveries that push back the frontiers of knowledge - and the UK economy will also benefit through the provision of highly trained people and the resulting advances in IT and commercial spin-offs ". Prof. Mike Edmunds , UCW Cardiff, and Chairman of the UK Astronomy Review Panel which recently set out a programme of opportunities and priorities for the next 10 - 20 years added that " this is excellent news for UK science and lays the foundation for cutting edge research over the next ten years. British astronomers will be delighted by the Government's rapid and positive response to their case. " Speaking on behalf of the ESO Organisation and the community of more than 2500 astronomers in the ESO member states [2], the ESO Director General, Dr. Catherine Cesarsky , declared: "When ESO was created in 1962, the UK decided not to join, because of access to other facilities in the Southern Hemisphere. But now ESO has developed into one of the world's main astronomical organisations, with top technology and operating the VLT at Paranal, the largest and most efficient optical/infrared telescope facility in the world. We look forward to receiving our UK colleagues in our midst and work together on the realization of future cutting-edge projects." Joining ESO was considered a top priority for UK astronomy following a community report to the UK Long Term Science Review, which set out a programme of opportunities and priorities for PPARC science over the next 10 to 20 years. The report is available on the web at URL: www.pparc.ac.uk/ltsr.

  14. VVV Survey Search for Habitable Planets around M Dwarfs

    NASA Astrophysics Data System (ADS)

    Minniti, Dante

    2015-08-01

    VISTA Variables in the Vía Láctea (VVV) is a public ESO near- infrared (near-IR) variability survey aimed at scanning the Milky Way Bulge and an adjacent section of the mid-plane. The survey covers an area of 562 sqdeg in the Galactic bulge and the southern disk, containing a billion point sources. In this work we discuss the selection of nearby M-type dwarf stars using multicolor cuts. The ZYJHKs photometry allows an accurate estimation of the spectral types of the M-dwarf candidates. Our procedure is applied for fields located far from the Galactic center where the photometric quality is best. The results of this search covering 15 sqdeg allow us to estimate the total number of M-dwarfs that can be photometrically monitored in the VVV database. In addition, we analyze the light curves of the ~10000 best candidate M-dwarf stars searching for extrasolar planetary transits. In this poster we present the light curves of a hundred good transit candidates, and select those that lie in the HZ around their parent stars.

  15. A Disturbed Galactic Duo

    NASA Astrophysics Data System (ADS)

    2011-04-01

    The galaxies in this cosmic pairing, captured by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, display some curious features, demonstrating that each member of the duo is close enough to feel the distorting gravitational influence of the other. The gravitational tug of war has warped the spiral shape of one galaxy, NGC 3169, and fragmented the dust lanes in its companion NGC 3166. Meanwhile, a third, smaller galaxy to the lower right, NGC 3165, has a front-row seat to the gravitational twisting and pulling of its bigger neighbours. This galactic grouping, found about 70 million light-years away in the constellation Sextans (The Sextant), was discovered by the English astronomer William Herschel in 1783. Modern astronomers have gauged the distance between NGC 3169 (left) and NGC 3166 (right) as a mere 50 000 light-years, a separation that is only about half the diameter of the Milky Way galaxy. In such tight quarters, gravity can start to play havoc with galactic structure. Spiral galaxies like NGC 3169 and NGC 3166 tend to have orderly swirls of stars and dust pinwheeling about their glowing centres. Close encounters with other massive objects can jumble this classic configuration, often serving as a disfiguring prelude to the merging of galaxies into one larger galaxy. So far, the interactions of NGC 3169 and NGC 3166 have just lent a bit of character. NGC 3169's arms, shining bright with big, young, blue stars, have been teased apart, and lots of luminous gas has been drawn out from its disc. In NGC 3166's case, the dust lanes that also usually outline spiral arms are in disarray. Unlike its bluer counterpart, NGC 3166 is not forming many new stars. NGC 3169 has another distinction: the faint yellow dot beaming through a veil of dark dust just to the left of and close to the galaxy's centre [1]. This flash is the leftover of a supernova detected in 2003 and known accordingly as SN 2003cg. A supernova of this variety, classified as a Type Ia, is thought to occur when a dense, hot star called a white dwarf - a remnant of medium-sized stars like our Sun - gravitationally sucks gas away from a nearby companion star. This added fuel eventually causes the whole star to explode in a runaway fusion reaction. The new image presented here of a remarkable galactic dynamic duo is based on data selected by Igor Chekalin for ESO's Hidden Treasures 2010 astrophotography competition. Chekalin won the first overall prize and this image received the second highest ranking of the nearly 100 contest entries [2]. Notes [1] Other much more noticeable points of light, such as the one toward the left end of the spiral arm running underneath of NGC 3169's core, are stars within the Milky Way that happen to fall by chance very close to the line of sight between our telescopes and the galaxies. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. To find out more about Hidden Treasures, visit http://www.eso.org/public/outreach/hiddentreasures/. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  16. Brazil to Join the European Southern Observatory

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The Federative Republic of Brazil has yesterday signed the formal accession agreement paving the way for it to become a Member State of the European Southern Observatory (ESO). Following government ratification Brazil will become the fifteenth Member State and the first from outside Europe. On 29 December 2010, at a ceremony in Brasilia, the Brazilian Minister of Science and Technology, Sergio Machado Rezende and the ESO Director General, Tim de Zeeuw signed the formal accession agreement aiming to make Brazil a Member State of the European Southern Observatory. Brazil will become the fifteen Member State and the first from outside Europe. Since the agreement means accession to an international convention, the agreement must now be submitted to the Brazilian Parliament for ratification [1]. The signing of the agreement followed the unanimous approval by the ESO Council during an extraordinary meeting on 21 December 2010. "Joining ESO will give new impetus to the development of science, technology and innovation in Brazil as part of the considerable efforts our government is making to keep the country advancing in these strategic areas," says Rezende. The European Southern Observatory has a long history of successful involvement with South America, ever since Chile was selected as the best site for its observatories in 1963. Until now, however, no non-European country has joined ESO as a Member State. "The membership of Brazil will give the vibrant Brazilian astronomical community full access to the most productive observatory in the world and open up opportunities for Brazilian high-tech industry to contribute to the European Extremely Large Telescope project. It will also bring new resources and skills to the organisation at the right time for them to make a major contribution to this exciting project," adds ESO Director General, Tim de Zeeuw. The European Extremely Large Telescope (E-ELT) telescope design phase was recently completed and a major review was conducted where every aspect of this large project was scrutinised by an international panel of independent experts. The panel found that the E-ELT project is technically ready to enter the construction phase. The go-ahead for E-ELT construction is planned for 2011 and when operations start early in the next decade, European, Brazilian and Chilean astronomers will have access to this giant telescope. The president of ESO's governing body, the Council, Laurent Vigroux, concludes: "Astronomers in Brazil will benefit from collaborating with European colleagues, and naturally from having observing time at ESO's world-class observatories at La Silla and Paranal, as well as on ALMA, which ESO is constructing with its international partners." Notes [1] After ratification of Brazil's membership, the ESO Member States will be Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  17. VizieR Online Data Catalog: Variables in Centaurus field F170 (Pietrukowicz+, 2012)

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, P.; Minniti, D.; Alonso-Garcia; J.; Hempel, M.

    2011-10-01

    VJHKs photometry of stars in two VIMOS disc fields: F167 and F170. Data table with 333 variables detected in the field F170 in Centaurus. The optical observations were taken with the 8.2-m Unit Telescope 3 + VIMOS imager with a scale of 0.205"/pix at ESO Very Large Telescope at Paranal Observatory. Date of the observations: Apr 11-12, 2005. The infrared observations were obtained with the 4.1-m VISTA telescope + VIRCAM with a scale of 0.34"/pix also at Paranal Observatory. Date of the observations: Mar-Apr 2010. (4 data files).

  18. A Nearby Galactic Exemplar

    NASA Astrophysics Data System (ADS)

    2010-09-01

    ESO has released a spectacular new image of NGC 300, a spiral galaxy similar to the Milky Way, and located in the nearby Sculptor Group of galaxies. Taken with the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile, this 50-hour exposure reveals the structure of the galaxy in exquisite detail. NGC 300 lies about six million light-years away and appears to be about two thirds the size of the full Moon on the sky. Originally discovered from Australia by the Scottish astronomer James Dunlop early in the nineteenth century, NGC 300 is one of the closest and most prominent spiral galaxies in the southern skies and is bright enough to be seen easily in binoculars. It lies in the inconspicuous constellation of Sculptor, which has few bright stars, but is home to a collection of nearby galaxies that form the Sculptor Group [1]. Other members that have been imaged by ESO telescopes include NGC 55 (eso0914), NGC 253 (eso1025, eso0902) and NGC 7793 (eso0914). Many galaxies have at least some slight peculiarity, but NGC 300 seems to be remarkably normal. This makes it an ideal specimen for astronomers studying the structure and content of spiral galaxies such as our own. This picture from the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile was assembled from many individual images taken through a large set of different filters with a total exposure time close to 50 hours. The data was acquired over many observing nights, spanning several years. The main purpose of this extensive observational campaign was to take an unusually thorough census of the stars in the galaxy, counting both the number and varieties of the stars, and marking regions, or even individual stars, that warrant deeper and more focussed investigation. But such a rich data collection will also have many other uses for years to come. By observing the galaxy with filters that isolate the light coming specifically from hydrogen and oxygen, the many star-forming regions along NGC 300's spiral arms are shown with particular clarity in this image as red and pink clouds. With its huge field of view, 34 x 34 arcminutes, similar to the apparent size of the full Moon in the sky, the WFI is an ideal tool for astronomers to study large objects such as NGC 300. NGC 300 is also the home of many interesting astronomical phenomena that have been studied with ESO telescopes. ESO astronomers recently discovered the most distant and one of the most massive stellar-mass black holes yet found (eso1004) in this galaxy, as the partner of a hot and luminous Wolf-Rayet star in a binary system. NGC 300 and another galaxy, NGC 55, are slowly spinning around and towards each other, in the early stages of a lengthy merging process (eso0914). The current best estimate of the distance to the NCG 300 was also determined by astronomers using ESO's Very Large Telescope at the Paranal Observatory (eso0524), among others. Notes [1] Although it is normally considered as member of the Sculptor Group, the most recent distance measurements show that NGC 300 lies significantly closer to us than many of the other galaxies in the group and may be only loosely associated with them. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. ESO science data product standard for 1D spectral products

    NASA Astrophysics Data System (ADS)

    Micol, Alberto; Arnaboldi, Magda; Delmotte, Nausicaa A. R.; Mascetti, Laura; Retzlaff, Joerg

    2016-07-01

    The ESO Phase 3 process allows the upload, validation, storage, and publication of reduced data through the ESO Science Archive Facility. Since its introduction, 2 million data products have been archived and published; 80% of them are one-dimensional extracted and calibrated spectra. Central to Phase3 is the ESO science data product standard that defines metadata and data format of any product. This contribution describes the ESO data standard for 1d-spectra, its adoption by the reduction pipelines of selected instrument modes for in-house generation of reduced spectra, the enhanced archive legacy value. Archive usage statistics are provided.

  20. 45 CFR 1210.3-8 - Termination file and Examiner's report.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Termination file and Examiner's report. 1210.3-8 Section 1210.3-8 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-8...

  1. VizieR Online Data Catalog: VVV Survey RR Lyr stars in Southern Galactic plane (Minniti+, 2017)

    NASA Astrophysics Data System (ADS)

    Minniti, D.; Dekany, I.; Majaess, D.; Palma, T.; Pullen, J.; Rejkuba, M.; Alonso-Garcia, J.; Catelan, M.; Contreras Ramos, R.; Gonzalez, O. A.; Hempel, M.; Irwin, M.; Lucas, P. W.; Saito, R. K.; Tissera, P.; Valenti, E.; Zoccali, M.

    2017-08-01

    The NIR VISTA Variables in the Via Lactea (VVV) Survey observations were acquired with the VIRCAM camera at the VISTA 4.1m telescope at ESO Paranal Observatory. In the disk fields typically 70 epochs of observations were acquired in the Ks-band between the years 2010 and 2015, in addition to complementary single-epoch observations in the ZYJH bands. The 16 NIR detectors of VIRCAM produce an image of 11.6'*11.6' and a pixel scale of 0.34''/pixel. The deep multi-epoch Ks band photometry allows us to unveil faint variable sources deep in the disk regions of our Galaxy. A search for RRab stars was made throughout tiles d001 to d038 of the VVV survey's disk field, which is a thin slice through the Galactic plane spanning 295

  2. On the RR Lyrae Stars in Globulars. V. The Complete Near-infrared (JHK s ) Census of ω Centauri RR Lyrae Variables

    NASA Astrophysics Data System (ADS)

    Braga, V. F.; Stetson, P. B.; Bono, G.; Dall’Ora, M.; Ferraro, I.; Fiorentino, G.; Iannicola, G.; Marconi, M.; Marengo, M.; Monson, A. J.; Neeley, J.; Persson, S. E.; Beaton, R. L.; Buonanno, R.; Calamida, A.; Castellani, M.; Di Carlo, E.; Fabrizio, M.; Freedman, W. L.; Inno, L.; Madore, B. F.; Magurno, D.; Marchetti, E.; Marinoni, S.; Marrese, P.; Matsunaga, N.; Minniti, D.; Monelli, M.; Nonino, M.; Piersimoni, A. M.; Pietrinferni, A.; Prada-Moroni, P.; Pulone, L.; Stellingwerf, R.; Tognelli, E.; Walker, A. R.; Valenti, E.; Zoccali, M.

    2018-03-01

    We present a new complete near-infrared (NIR, JHK s ) census of RR Lyrae stars (RRLs) in the globular ω Cen (NGC 5139). We collected 15,472 JHK s images with 4–8 m class telescopes over 15 years (2000–2015) covering a sky area around the cluster center of 60 × 34 arcmin2. These images provided calibrated photometry for 182 out of the 198 cluster RRL candidates with 10 to 60 measurements per band. We also provide new homogeneous estimates of the photometric amplitude for 180 (J), 176 (H) and 174 (K s ) RRLs. These data were supplemented with single-epoch JK s magnitudes from VHS and with single-epoch H magnitudes from 2MASS. Using proprietary optical and NIR data together with new optical light curves (ASAS-SN) we also updated pulsation periods for 59 candidate RRLs. As a whole, we provide JHK s magnitudes for 90 RRab (fundamentals), 103 RRc (first overtones) and one RRd (mixed-mode pulsator). We found that NIR/optical photometric amplitude ratios increase when moving from first overtone to fundamental and to long-period (P > 0.7 days) fundamental RRLs. Using predicted period–luminosity–metallicity relations, we derive a true distance modulus of 13.674 ± 0.008 ± 0.038 mag (statistical error and standard deviation of the median) based on spectroscopic iron abundances, and of 13.698 ± 0.004 ± 0.048 mag based on photometric iron abundances. We also found evidence of possible systematics at the 5%–10% level in the zero-point of the period–luminosity relations based on the five calibrating RRLs whose parallaxes had been determined with the HST. This publication makes use of data gathered with the Magellan/Baade Telescope at Las Campanas Observatory, the Blanco Telescope at Cerro Tololo Inter-American Observatory, NTT at La Silla (ESO Program IDs: 64.N-0038(A), 66.D-0557(A), 68.D-0545(A), 073.D-0313(A), ID 073.D-0313(A) and 59.A-9004(D)), VISTA at Paranal (ESO Program ID: 179.A-2010) and VLT at Paranal (ESO Program ID: ID96406).

  3. ESO's Hidden Treasures Brought to Light

    NASA Astrophysics Data System (ADS)

    2011-01-01

    ESO's Hidden Treasures 2010 astrophotography competition attracted nearly 100 entries, and ESO is delighted to announce the winners. Hidden Treasures gave amateur astronomers the opportunity to search ESO's vast archives of astronomical data for a well-hidden cosmic gem. Astronomy enthusiast Igor Chekalin from Russia won the first prize in this difficult but rewarding challenge - the trip of a lifetime to ESO's Very Large Telescope at Paranal, Chile. The pictures of the Universe that can be seen in ESO's releases are impressive. However, many hours of skilful work are required to assemble the raw greyscale data captured by the telescopes into these colourful images, correcting them for distortions and unwanted signatures of the instrument, and enhancing them so as to bring out the details contained in the astronomical data. ESO has a team of professional image processors, but for the ESO's Hidden Treasures 2010 competition, the experts decided to give astronomy and photography enthusiasts the opportunity to show the world what they could do with the mammoth amount of data contained in ESO's archives. The enthusiasts who responded to the call submitted nearly 100 entries in total - far exceeding initial expectations, given the difficult nature of the challenge. "We were completely taken aback both by the quantity and the quality of the images that were submitted. This was not a challenge for the faint-hearted, requiring both an advanced knowledge of data processing and an artistic eye. We are thrilled to have discovered so many talented people," said Lars Lindberg Christensen, Head of ESO's education and Public Outreach Department. Digging through many terabytes of professional astronomical data, the entrants had to identify a series of greyscale images of a celestial object that would reveal the hidden beauty of our Universe. The chance of a great reward for the lucky winner was enough to spur on the competitors; the first prize being a trip to ESO's Very Large Telescope in Paranal, Chile, with guided tours and the opportunity to participate in a night's observations. Runner-up prizes included an iPod, books and DVDs. Furthermore, the highest ranked images will be released for the world to see on www.eso.org as Photo Releases or Pictures of the Week, co-crediting the winners. The jury evaluated the entries based on the quality of the data processing, the originality of the image and the overall aesthetic feel. As several of the highest ranked images were submitted by the same people, the jury decided to make awards to the ten most talented participants, so as to give more people the opportunity to win a prize and reward their hard work and talent. The ten winners of the competition are: * First prize, a trip to Paranal + goodies: Igor Chekalin (Russia). * Second prize, an iPod Touch + goodies: Sergey Stepanenko (Ukraine). * Third Prize, VLT laser cube model + goodies: Andy Strappazzon (Belgium). * Fourth to tenth prizes, Eyes on the Skies Book + DVD + goodies: Joseph (Joe) DePasquale (USA), Manuel (Manu) Mejias (Argentina), Alberto Milani (Italy), Joshua (Josh) Barrington (USA), Oleg Maliy (Ukraine), Adam Kiil (United Kingdom), Javier Fuentes (Chile). The ten winners submitted the twenty highest ranked images: 1. M78 by Igor Chekalin. 2. NGC3169 & NGC3166 and SN 2003cg by Igor Chekalin. 3. NGC6729 by Sergey Stepanenko. 4. The Moon by Andy Strappazzon. 5. NGC 3621 by Joseph (Joe) DePasquale. 6. NGC 371 by Manuel (Manu) Mejias. 7. Dust of Orion Nebula (ESO 2.2m telescope) by Igor Chekalin. 8. NGC1850 EMMI by Sergey Stepanenko. 9. Abell 1060 by Manuel (Manu) Mejias. 10. Celestial Prominences NGC3582 by Joseph DePasquale. 11. Globular Cluster NGC288 by Alberto Milani. 12. Antennae Galaxies by Alberto Milani. 13. Sakurai's Object by Joshua (Josh) Barrington. 14. NGC 1929, N44 Superbubble by Manuel (Manu) Mejias. 15. NGC 3521 by Oleg Maliy. 16. NGC 6744 by Andy Strappazzon. 17. NGC 2217 by Oleg Maliy. 18. VIMOS.2008-01-31T07_16_47j by Adam Kiil. 19. NGC 2467 - number 2 by Josh Barrington. 20. Haffner 18 and 19 by Javier Fuentes. Igor Chekalin, winner of the trip to Paranal, says: "It was a great experience and pleasure to work with such amazing data. As an amateur astrophotographer, this was the most difficult processing and post-processing job I have ever done. My participation in the Hidden Treasures competition gave me a range of challenges, from installing new software to studying techniques and even operating systems that I did not know before." The success of the ESO's Hidden Treasures 2010 competition and the enthusiasm of the skilled participants made it easy to decide to run a follow-up to the competition. Stay tuned and check www.eso.org for news about ESO's Hidden Treasures 2011. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. United Kingdom to Join ESO on July 1, 2002

    NASA Astrophysics Data System (ADS)

    2001-12-01

    ESO and PPARC Councils Endorse Terms of Accession [1] The Councils of the European Southern Observatory (ESO) and the UK Particle Physics and Astronomy Research Council (PPARC) , at their respective meetings on December 3 and 5, 2001, have endorsed the terms for UK membership of ESO, as recently agreed by their Negotiating Teams. All members of the Councils - the governing bodies of the two organisations - welcomed the positive spirit in which the extensive negotiations had been conducted and expressed great satisfaction at the successful outcome of a complex process. The formal procedure of accession will now commence in the UK and is expected to be achieved in good time to allow accession from July 2002. The European Southern Observatory is the main European organisation for astronomy and the United Kingdom will become its tenth member state [2]. ESO operates two major observatories in the Chilean Atacama desert where the conditions for astronomical observations are second-to-none on earth and it has recently put into operation the world's foremost optical/infrared telescope, the Very Large Telescope (VLT) at Paranal. With UK membership, British astronomers will join their European colleagues in preparing new projects now being planned on a global scale. They will also be able to pursue their research on some of the most powerful astronomical instruments available. The ESO Director General, Dr. Catherine Cesarsky , is "delighted that we have come this far after the lengthy negotiations needed to prepare properly the admission of another major European country to our organisation. When ESO was created nearly 40 years ago, the UK was planning for its own facilities in the southern hemisphere, in collaboration with Australia, and decided not to join. However, the impressive scientific and technological advances since then and ESOs emergence as a prime player on the European research scene have convinced our UK colleagues of the great advantages of presenting a united European face in astronomy through ESO". The President of the ESO Council, Dr. Arno Freytag , shares this opinion fully. "This is a most important step in the continuing process of European integration. The entry of the UK will of course be very useful to the scientists in that country, but I have no doubt that the benefits will be mutual. With its world-level astronomical and engineering expertise and with one of the most active research communities in Europe, the UK will bring significant intellectual, technical and financial resources to strengthen ESO. I have no doubt that the impressive research that is now being carried out by numerous astronomers with the ESO facilities has been our best advertisement and I am sure that this has had an important effect on the very welcome decision by the UK to join ESO." The UK will pay the usual annual contribution to ESO from the date of its entry. It has also been decided that as an important part of the special contribution to be made on entry, the UK will deliver the VISTA infrared survey telescope to ESO as an in-kind contribution. This wide-field telescope facility is now being constructed in the UK for a consortium of universities and it was decided already last year to place it at Paranal, cf. ESO PR 03/00. It will now become a fully integrated part of the ESO Paranal Observatory providing important survey observations in support of the VLT. Ian Halliday , Chief Executive of PPARC, is "delighted that the negotiations with ESO and subsequent Council meetings have passed this critical decision point. We now expect a straightforward parliamentary process to ratify the intergovernmental treaty. This decision will allow UK astronomers to have access to the world-class VLT telescopes at Paranal. Just as importantly UK Astronomy will have a sound basis for the future ALMA and OWL projects in a European context. This is a major increase in investment in, and capability for, UK Astronomy." Notes [1]: Both ESO and PPARC issue co-ordinated Press Releases about the UK accession today. The PPARC release is available at URL: http://www.pparc.ac.uk/NW/ESOstars.asp [2]: ESO's current member state are Belgium, Denmark, France, Germany, Italy, the Netherlands, Portugal, Sweden and Switzerland.

  5. Complementing asteroseismology with 4MOST spectroscopy

    NASA Astrophysics Data System (ADS)

    de Jong, R. S.; 4MOST Consortium; 4MOST Spectroscopy Consortium

    2016-09-01

    4MOST is a wide-field, high-multiplex spectroscopic survey facility under development for the VISTA telescope of the European Southern Observatory (ESO). Its main science drivers are in the areas of galactic archeology, high-energy physics, galaxy evolution and cosmology. 4MOST will in particular provide the spectroscopic complements to the large area surveys coming from space missions like Gaia, eROSITA, Euclid, and PLATO. 4MOST will have an unique operations concept in which 5-years public surveys from both the consortium and the ESO community will be combined and observed in parallel during each exposure, resulting in more than 25 million spectra of targets spread over a large fraction of the southern sky. As a dedicated spectroscopic survey facility with a large field-of-view, a high multiplex that can be reconfigured quickly, and with a broad wavelength coverage, 4MOST is particularly well suited to complement the upcoming asteroseismology space missions like TESS and PLATO. Here we show that, by dedicating the observing time during twilight and poor observing conditions to bright stars, 4MOST will obtain resolution {R>18 000} spectra of nearly all stars brighter than ˜ 12th magnitude at Dec < 30o every ˜ 2 years. 4MOST is also expected to spectroscopically complement any fainter asteroseismology target to be observed with PLATO. These observations will provide a chemical characterization of nearly all stars to be observed with the TESS and PLATO missions and place any planets found in a full chemo-dynamical context of the star formation history of the Galaxy, yield very accurate ages and masses for all stars that can be characterized with asteroseismology, and allow removal of contaminants from target samples (e.g., spectroscopic binaries).

  6. ESO and Chile: 10 Years of Productive Scientific Collaboration

    NASA Astrophysics Data System (ADS)

    2006-06-01

    ESO and the Government of Chile launched today the book "10 Years Exploring the Universe", written by the beneficiaries of the ESO-Chile Joint Committee. This annual fund provides grants for individual Chilean scientists, research infrastructures, scientific congresses, workshops for science teachers and astronomy outreach programmes for the public. In a ceremony held in Santiago on 19 June 2006, the European Organisation for Astronomical Research in the Southern Hemisphere (ESO) and the Chilean Ministry of Foreign Affairs marked the 10th Anniversary of the Supplementary Agreement, which granted to Chilean astronomers up to 10 percent of the total observing time on ESO telescopes. This agreement also established an annual fund for the development of astronomy, managed by the so-called "ESO-Chile Joint Committee". ESO PR Photo 21/06 ESO PR Photo 21/06 Ten Years ESO-Chile Agreement Ceremony The celebration event was hosted by ESO Director General, Dr. Catherine Cesarsky, and the Director of Special Policy for the Chilean Ministry of Foreign Affairs, Ambassador Luis Winter. "ESO's commitment is, and always will be, to promote astronomy and scientific knowledge in the country hosting our observatories", said ESO Director General, Dr. Catherine Cesarsky. "We hope Chile and Europe will continue with great achievements in this fascinating joint adventure, the exploration of the universe." On behalf of the Government of Chile, Ambassador Luis Winter outlined the historical importance of the Supplementary Agreement, ratified by the Chilean Congress in 1996. "Such is the magnitude of ESO-Chile Joint Committee that, only in 2005, this annual fund represented 8 percent of all financing sources for Chilean astronomy, including those from Government and universities", Ambassador Winter said. The ESO Representative and Head of Science in Chile, Dr. Felix Mirabel, and the appointed Chilean astronomer for the ESO-Chile Joint Committee, Dr. Leonardo Bronfman, also took part in the ceremony, along with ambassadors in Chile of ESO members States, and representatives of the Chilean government and the scientific community. To review the impact of the numerous projects financed over the last decade, ESO presented the book "10 Years Exploring the Universe", based on the reports of the beneficiaries of the ESO-Chile fund. Since the beginning, the ESO-Chile fund has granted over 2.5 million euros to finance post-doc and astronomy professors for main Chilean universities, development of research infrastructure, organisation of scientific congresses, workshops for science teachers, and astronomy outreach programmes for the public. In addition to the 400,000 euros given annually by ESO to the ESO-Chile Joint Committee, around 550,000 euros are granted every year to finance regional collaboration programmes, fellowships for students in Chilean universities, and the development of radio astronomy through the ALMA-Chile Committee. In total, apart form the 10 percent of the observing time at all ESO telescopes, ESO contributes annually with 950,000 euros for the promotion of astronomy and scientific culture in Chile. The growth of astronomy and related sciences in Chile in the last years has been outstanding. According to a study by the Chilean Academy of Science in 2005, the number of astronomers has doubled over the last 20 years and there has been an 8-fold increase in the number of scientific publications. It is gratifying to see that 100 percent of the observing time granted by international observatories in Chile is actually used by the national community. The same study stated that astronomy could be the first scientific discipline in Chile with the standards of a developed country, with additional benefits in terms of technological improvement and growth of human resources. The English edition of the book "10 Years Exploring the Universe" is available here. The Spanish edition can be downloaded here.

  7. 45 CFR 1210.3-10 - Reinstatement of Volunteer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Reinstatement of Volunteer. 1210.3-10 Section 1210... COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-10 Reinstatement of Volunteer. (a) If the Regional Director or Director of VISTA...

  8. 45 CFR 1210.3-10 - Reinstatement of Volunteer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 45 Public Welfare 4 2014-10-01 2014-10-01 false Reinstatement of Volunteer. 1210.3-10 Section 1210... COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-10 Reinstatement of Volunteer. (a) If the Regional Director or Director of VISTA...

  9. 45 CFR 1210.3-10 - Reinstatement of Volunteer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Reinstatement of Volunteer. 1210.3-10 Section 1210... COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-10 Reinstatement of Volunteer. (a) If the Regional Director or Director of VISTA...

  10. 45 CFR 1210.3-10 - Reinstatement of Volunteer.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 45 Public Welfare 4 2012-10-01 2012-10-01 false Reinstatement of Volunteer. 1210.3-10 Section 1210... COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-10 Reinstatement of Volunteer. (a) If the Regional Director or Director of VISTA...

  11. 45 CFR 1210.3-10 - Reinstatement of Volunteer.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Reinstatement of Volunteer. 1210.3-10 Section 1210... COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-10 Reinstatement of Volunteer. (a) If the Regional Director or Director of VISTA...

  12. World Wide Web Search Engines: AltaVista and Yahoo.

    ERIC Educational Resources Information Center

    Machovec, George S., Ed.

    1996-01-01

    Examines the history, structure, and search capabilities of Internet search tools AltaVista and Yahoo. AltaVista provides relevance-ranked feedback on full-text searches. Yahoo indexes Web "citations" only but does organize information hierarchically into predefined categories. Yahoo has recently become a publicly held company and…

  13. The 4MOST facility control software

    NASA Astrophysics Data System (ADS)

    Pramskiy, Alexander; Mandel, Holger; Rothmaier, Florian; Stilz, Ingo; Winkler, Roland; Hahn, Thomas

    2016-07-01

    The 4-m Multi-Object Spectrographic Telescope (4MOST) is one high-resolution (R 18000) and two lowresolution (R fi 5000) spectrographs covering the wavelength range between 390 and 950 nm. The spectrographs will be installed on ESO VISTA telescope and will be fed by approximately 2400 fibres. The instrument is capable to simultaneously obtain spectra of about 2400 objects distributed over an hexagonal field-of-view of four square degrees. This paper aims at giving an overview of the control software design, which is based on the standard ESO VLT software architecture and customised to fit the needs of the 4MOST instrument. In particular, the facility control software is intended to arrange the precise positioning of the fibres, to schedule and observe many surveys in parallel, and to combine the output from the three spectrographs. Moreover, 4MOST's software will include user-friendly graphical user interfaces that enable users to interact with the facility control system and to monitor all data-taking and calibration tasks of the instrument. A secondary guiding system will be implemented to correct for any fibre exure and thus to improve 4MOST's guiding performance. The large amount of fibres requires the custom design of data exchange to avoid performance issues. The observation sequences are designed to use spectrographs in parallel with synchronous points for data exchange between subsystems. In order to control hardware devices, Programmable Logic Controller (PLC) components will be used, the new standard for future instruments at ESO.

  14. Brilliant Star in a Colourful Neighbourhood

    NASA Astrophysics Data System (ADS)

    2010-07-01

    A spectacular new image from ESO's Wide Field Imager at the La Silla Observatory in Chile shows the brilliant and unusual star WR 22 and its colourful surroundings. WR 22 is a very hot and bright star that is shedding its atmosphere into space at a rate many millions of times faster than the Sun. It lies in the outer part of the dramatic Carina Nebula from which it formed. Very massive stars live fast and die young. Some of these stellar beacons have such intense radiation passing through their thick atmospheres late in their lives that they shed material into space many millions of times more quickly than relatively sedate stars such as the Sun. These rare, very hot and massive objects are known as Wolf-Rayet stars [1], after the two French astronomers who first identified them in the mid-nineteenth century, and one of the most massive ones yet measured is known as WR 22. It appears at the centre of this picture, which was created from images taken through red, green and blue filters with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. WR 22 is a member of a double star system and has been measured to have a mass at least 70 times that of the Sun. WR 22 lies in the southern constellation of Carina, the keel of Jason's ship Argo in Greek mythology. Although the star lies over 5000 light-years from the Earth it is so bright that it can just be faintly seen with the unaided eye under good conditions. WR 22 is one of many exceptionally brilliant stars associated with the beautiful Carina Nebula (also known as NGC 3372) and the outer part of this huge region of star formation in the southern Milky Way forms the colourful backdrop to this image. The subtle colours of the rich background tapestry are a result of the interactions between the intense ultraviolet radiation coming from hot massive stars, including WR 22, and the vast gas clouds, mostly hydrogen, from which they formed. The central part of this enormous complex of gas and dust lies off the left side of this picture as can be seen in image eso1031b. This area includes the remarkable star Eta Carinae and was featured in an earlier press release (eso0905). Notes [1] More information about Wolf-Rayet stars More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  15. The Milky Way above La Silla

    NASA Astrophysics Data System (ADS)

    2004-09-01

    Anybody who visits a high-altitude astronomical observatory at this time of the year will be impressed by the beauty of the Milky Way band that stretches across the sky. Compared to the poor views from cities and other human conglomerations, the dark and bright nebulae come into view together with an astonishing palette of clear stellar colours. This view above the ESO La Silla Observatory in the southernmost part of the Atacama desert was obtained some evenings ago by ESO Software Engineer Nico Housen. Normally stationed at the Paranal Observatory, he seized the opportunity of a visit to ESO's other observatory site to produce this amazing vista of the early evening scenery. To the left is the decommisioned 15-metre dish of the Swedish-ESO Submillimetre Telescope (SEST), and on the right in the background is the dome of the ESO 3.6-metre telescope, at the highest point of the mountain. The southern Milky Way is seen along the right border of the SEST and above the 3.6 metre telescope. There is an upside-down reflection of the sky and the horizon behind the photographer in the highly polished antenna dish of the SEST. Besides the reflection of the horizon (the darker part in the top of the dish) and the Milky Way (which runs as a thin cloud from the bottom of the dish up to the horizon) there is also a yellow area of light to the right. This is the reflection of the city lights of the city of La Serena, about 100 km away and too faint to disturb observations of celestial objects high above La Silla. The 3.6-m telescope began operations in 1976 and was ESO's largest telescope until the advent of the VLT at Paranal. Never endowed with a fancy name like the VLT Unit telescopes, the "3.6-m" houses several state-of-the-art astronomical instruments, including the ultra-precise HARPS facility that is used to hunt for exoplanets, cf. ESO PR 22/04. The SEST was for a long time the only instrument of its kind in the southern hemisphere. With it, ESO gained invaluable experience in ground-based non-optical observations, paving the way for the ALMA project. The Atacama Large Millimetre Array (ALMA) [1] is one of the largest ground-based astronomy projects of the next decade after the ESO VLT. Its construction started last year and will be completed by 2011. When ready, it will be the largest and most sensitive astronomical observatory of its kind, comprisiing some sixty-four 12-m antennas located on a 10-km wide plateau at a 5000-m elevation in the Atacama Desert. More information on ALMA can be found on ESO PR 29/03 or on the ESO ALMA web page. ESO PR Photo 27/04 may be reproduced if Nico Housen and the European Southern Observatory are mentioned as source. Technical information: The photo was obtained on September 4, 2004 at about 20:45 hrs local time (00:45 hrs UT) with a Nikon D100 digital camera with a Sigma 20mm/f1.8 lens. The exposure time was about 40 sec at 1600 ASA.

  16. Clear New View of a Classic Spiral

    NASA Astrophysics Data System (ADS)

    2010-05-01

    ESO is releasing a beautiful image of the nearby galaxy Messier 83 taken by the HAWK-I instrument on ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The picture shows the galaxy in infrared light and demonstrates the impressive power of the camera to create one of the sharpest and most detailed pictures of Messier 83 ever taken from the ground. The galaxy Messier 83 (eso0825) is located about 15 million light-years away in the constellation of Hydra (the Sea Serpent). It spans over 40 000 light-years, only 40 percent the size of the Milky Way, but in many ways is quite similar to our home galaxy, both in its spiral shape and the presence of a bar of stars across its centre. Messier 83 is famous among astronomers for its many supernovae: vast explosions that end the lives of some stars. Over the last century, six supernovae have been observed in Messier 83 - a record number that is matched by only one other galaxy. Even without supernovae, Messier 83 is one of the brightest nearby galaxies, visible using just binoculars. Messier 83 has been observed in the infrared part of the spectrum using HAWK-I [1], a powerful camera on ESO's Very Large Telescope (VLT). When viewed in infrared light most of the obscuring dust that hides much of Messier 83 becomes transparent. The brightly lit gas around hot young stars in the spiral arms is also less prominent in infrared pictures. As a result much more of the structure of the galaxy and the vast hordes of its constituent stars can be seen. This clear view is important for astronomers looking for clusters of young stars, especially those hidden in dusty regions of the galaxy. Studying such star clusters was one of the main scientific goals of these observations [2]. When compared to earlier images, the acute vision of HAWK-I reveals far more stars within the galaxy. The combination of the huge mirror of the VLT, the large field of view and great sensitivity of the camera, and the superb observing conditions at ESO's Paranal Observatory makes HAWK-I one of the most powerful near-infrared imagers in the world. Astronomers are eagerly queuing up for the chance to use the camera, which began operation in 2007 (eso0736), and to get some of the best ground-based infrared images ever of the night sky. Notes [1] HAWK-I stands for High-Acuity Wide-field K-band Imager. More technical details about the camera can be found in an earlier press release (eso0736). [2] The data used to prepare this image were acquired by a team led by Mark Gieles (University of Cambridge) and Yuri Beletsky (ESO). Mischa Schirmer (University of Bonn) performed the challenging data processing. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  17. 45 CFR 1217.4 - Selection procedure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Selection procedure. 1217.4 Section 1217.4 Public... VISTA VOLUNTEER LEADER § 1217.4 Selection procedure. (a) Nomination. Candidates may be nominated in... Director's review. (b) Selection. VISTA volunteer leaders will be selected by the Regional Director (or his...

  18. Open House at the ESO Headquarters

    NASA Astrophysics Data System (ADS)

    Madsen, C.

    2006-12-01

    On 15 October, the ESO Headquarters opened its doors to the public as part of the All-Campus Open House organised in connection with the inauguration of the extension of the underground line U6 from Munich to the Garching campus. The day was blessed with clear skies and plenty of sunshine, and a large number of citizens took advantage of the opportunity to visit the campus. The estimated number of visitors at ESO was close to 3000 people, a record number. Another record was set by the number of ESO staff who, in anticipation of the high num-ber of guests, volunteered to spend their Sunday at work to explain what ESO is doing and why it is important.

  19. VizieR Online Data Catalog: The populations of Carina. II. Abundances (Norris+, 2017)

    NASA Astrophysics Data System (ADS)

    Norris, J. E.; Yong, D.; Venn, K. A.; Gilmore, G.; Casagrande, L.; Dotter, A.

    2017-08-01

    Our selection of objects is based on unpublished CCD V, I observations that we have made of the Carina galaxy. High-resolution, moderate-S/N spectra were obtained of 39 Carina red giants, during 2007 November-2008 March, with the FLAMES system at the 8.2m Kueyen (VLT/UT2) telescope at Cerro Paranal. The spectra cover the wavelength ranges 4800-5750Å and 5840-6800Å. The resolving power was R=47000. Photometry has been obtained from several sources: P. B. Stetson provided us with homogenized BVI, M. J. Irwin furnished JHK from ESO VISTA survey photometry, and M. Gullieuszik supplied BVIJHKs. (12 data files).

  20. The ESO Survey of Non-Publishing Programmes

    NASA Astrophysics Data System (ADS)

    Patat, F.; Boffin, H. M. J.; Bordelon, D.; Grothkopf, U.; Meakins, S.; Mieske, S.; Rejkuba, M.

    2017-12-01

    One of the classic ways to measure the success of a scientific facility is the publication return, which is defined as the refereed papers produced per unit of allocated resources (for example, telescope time or proposals). The recent studies by Sterzik et al. (2015, 2016) have shown that 30–50 % of the programmes allocated time at ESO do not produce a refereed publication. While this may be inherent to the scientific process, this finding prompted further investigation. For this purpose, ESO conducted a Survey of Non-Publishing Programmes (SNPP) within the activities of the Time Allocation Working Group, similar to the monitoring campaign that was recently implemented at ALMA (Stoehr et al., 2016). The SNPP targeted 1278 programmes scheduled between ESO Periods 78 and 90 (October 2006 to March 2013) that had not published a refereed paper as of April 2016. The poll was launched on 6 May 2016, remained open for four weeks, and returned 965 valid responses. This article summarises and discusses the results of this survey, the first of its kind at ESO.

  1. ESO Telescope Designer Raymond Wilson Wins Prestigious Kavli Award for Astrophysics

    NASA Astrophysics Data System (ADS)

    2010-06-01

    Raymond Wilson, whose pioneering optics research at ESO made today's giant telescopes possible thanks to "active optics" technology, has been awarded the 2010 Kavli Prize in astrophysics. The founder and original leader of the Optics and Telescopes Group at ESO, Wilson shares the million-dollar prize with two American scientists, Jerry Nelson and Roger Angel. The biennial prize, presented by the Norwegian Academy of Science and Letters, the Kavli Foundation, and the Norwegian Ministry of Education and Research, was instituted in 2008 and is given to researchers who significantly advance knowledge in the fields of nanoscience, neuroscience, and astrophysics, acting as a complement to the Nobel Prize. The award is named for and funded by Fred Kavli, the Norwegian entrepreneur and phi­lanthropist who later founded the Kavlico Corpora­tion in the US - today one of the world's largest suppliers of sensors for aeronautic, automotive and industrial applications. Wilson, who joined ESO in 1972, strived to achieve optical perfection, developing the concept of active optics as a way to enhance the size of telescopic primary mirrors. It is the size of these mirrors that determines the ability of a telescope to gather light and study faint and distant objects. Before active optics, mirrors over six metres in diameter were impossible, being too heavy, costly, and likely to bend from gravity and temperature changes. The use of active optics, which preserves optimal image quality by continually adjusting the mirror's shape during observations, made lighter, thinner so-called "meniscus mirrors" possible. Wilson first led the implementation of active optics in the revolutionary New Technology Telescope at ESO's La Silla Observatory, and continued to develop and improve the technology until his retirement in 1993. Since then, active optics have become a standard part of modern astronomy, applied in every big telescope including ESO's Very Large Telescope (VLT), a telescope array with four individual telescopes with 17.5 cm thick 8.2-metre mirrors. Active optics has contributed towards making the VLT the world's most successful ground-based observatory and will be an integral part of ESO's European Extremely Large Telescope (E-ELT) project. Active optics technology is also part of the twin 10-metre Keck telescopes, the Subaru telescope's 8.2-metre mirror and the two 8.1-metre Gemini telescopes. Co-prize winners Jerry Nelson and Roger Angel respectively pioneered the use of segmentation in telescope primary mirrors - as used on the Keck telescopes, and the development of lightweight mirrors with short focal ratios. A webcast from Oslo, Norway, announcing the prize winners is available at www.kavlifoundation.org and www.kavliprize.no. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  2. ESO takes the public on an astronomical journey "Around the World in 80 Telescopes"

    NASA Astrophysics Data System (ADS)

    2009-03-01

    A live 24-hour free public video webcast, "Around the World in 80 Telescopes", will take place from 3 April 09:00 UT/GMT to 4 April 09:00 UT/GMT, chasing day and night around the globe to let viewers "visit" some of the most advanced astronomical telescopes on and off the planet. The webcast, organised by ESO for the International Year of Astronomy 2009 (IYA2009), is the first time that so many large observatories have been linked together for a public event. ESO PR Photo 13a/09 Map of Participating Observatories ESO PR Photo 13b/09 100 Hours of Astronomy logo Viewers will see new images of the cosmos, find out what observatories in their home countries or on the other side of the planet are discovering, send in questions and messages, and discover what astronomers are doing right now. Participating telescopes include those at observatories in Chile such as ESO's Very Large Telescope and La Silla, the Hawaii-based telescopes Gemini North and Keck, the Anglo-Australian Telescope, telescopes in the Canary Islands, the Southern African Large Telescope, space-based telescopes such as the NASA/ESA Hubble Space Telescope, ESA XMM-Newton and Integral, and many more. "Around the World in 80 Telescopes" will take viewers to every continent, including Antarctica! The webcast production will be hosted at ESO's headquarters near Munich, Germany, with live internet streaming by Ustream.tv. Anyone with a web browser supporting Adobe Flash will be able to follow the show, free of charge, from the website www.100hoursofastronomy.org and be a part of the project by sending messages and questions. The video player can be freely embedded on other websites. TV stations, web portals and science centres can also use the high quality feed. Representatives of the media who wish to report from the "front-line" and interview the team should get in touch. "Around the World in 80 Telescopes" is a major component of the 100 Hours of Astronomy (100HA), a Cornerstone project of the International Year of Astronomy 2009. 100HA is on track to be the largest single science public outreach event ever, with more than 1500 events registered in over 130 countries. 100HA will take place over four days and nights, from 2-5 April 2009. It is a worldwide celebration composed of a broad range of activities aimed at involving the public. During this period, people from around the globe will share the experience and wonder of observing the sky. For many, it will be their first glimpse of the marvels of the heavens through a telescope. For others, it is the perfect opportunity to impart their knowledge and excitement, helping unveil the cosmos to fresh and eager eyes. Astronomers at ESO are also organising local public events near their headquarters in Garching, near Munich. In the Munich city centre, ESO astronomers, together with colleagues from the Excellence Cluster Universe, will share their views of the cosmos with members of the public. ESO in Chile is also participating in a series of events to celebrate the 100 Hours of Astronomy. In Antofagasta, an exhibition by international and local astrophotographers will be unveiled at the main mall in the city. Star parties will be organised for the public in the desert outside Antofagasta, in coordination with the local university UCN. In Santiago, ESO is offering, along with other international observatories and the Chilean astronomical community, a complete set of programmes, including public talks, night observations and interactive exhibitions. In San Pedro de Atacama, the ALMA project will install an inflatable planetarium for the local community, and astronomy workshops and star parties will be offered to the public. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO plays also a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor. The vision of the IYA2009 is to help the citizens of the world rediscover their place in the Universe through the day and night-time skies the impact of astronomy and basic sciences on our daily lives, and understand better how scientific knowledge can contribute to a more equitable and peaceful society. Ustream.TV is the live interactive video broadcast platform that enables anyone with a camera and an internet connection to quickly and easily broadcast to a global audience of unlimited size. In less than two minutes, anyone can become a broadcaster by creating their own channel on Ustream or by broadcasting through their own site, empowering them to engage with their audience and further build their brand.

  3. A fibre positioner solution for the 4MOST instrument

    NASA Astrophysics Data System (ADS)

    Lang-Bardl, Florian; Bender, Ralf; Grupp, Frank; Häuser, Marco; Hess, Hans-Joachim; Junk, Veronika; Kosyra, Ralf; Muschielok, Bernard; Richter, Josef; Schlichter, Jörg; Schwab, Christoph

    2012-09-01

    4MOST1 is a multi object spectrograph facility for ESO's NTT or VISTA telescope. 4MOST is one of the two projects selected for a conceptual design study by ESO. The 4MOST instrument will be able to position < 1500 fibres in the focal plane and collect spectra in a high resolution (R=20000)2 and a low resolution (R=5000) mode (HRM, LRM). The spectral coverage for the LRM is 400-900 nm, the HRM covers 390-459 nm and 564-676 nm. We will present one of the possible positioner designs and first tests of some components for the focal plane array. The design follows the LAMOST3 positioner and has two rotational axes to move the fibre inside the patrol disc. Each axis consists of a stepper motor attached to micro harmonic drive (MHD). The small outer dimensions and high gear ratios of the MHD-stepper motor package, makes them perfectly suitable for our application. The MHD is also backlash free and self-locking what gives us the opportunity to minimize power consumption and heat dissipation during observation without loosing the position of the fibre on sky. The control electronics will also be miniaturized and part of the positioner unit.

  4. Shaping ESO2020+ Together: Feedback from the Community Poll

    NASA Astrophysics Data System (ADS)

    Primas, F.; Ivison, R.; Berger, J.-P.; Caselli, P.; De Gregorio-Monsalvo, I.; Alonso Herrero, A.; Knudsen, K. K.; Leibundgut, B.; Moitinho, A.; Saviane, I.; Spyromilio, J.; Testi, L.; Vennes, S.

    2015-09-01

    A thorough evaluation and prioritisation of the ESO science programme into the 2020+ timeframe took place under the auspices of a working group, comprising astronomers drawn from ESO’s advisory structure and from within ESO. This group reported to ESO’s Scientific Technical Committee, and to ESO Council, concluding the exercise with the publication of a report, “Science Priorities at ESO”. A community poll and a dedicated workshop, held in January 2015, formed part of the information gathering process. The community poll was designed to probe the demographics of the user community, its scientific interests, use of observing facilities and plans for use of future telescopes and instruments, its views on types of observing programmes and on the provision of data processing and archiving. A total of 1775 full responses to the poll were received and an analysis of the results is presented here. Foremost is the importance of regular observing programmes on all ESO observing facilities, in addition to Large Programmes and Public Surveys. There was also a strong community requirement for ESO to process and archive data obtained at ESO facilities. Other aspects, especially those related to future facilities, are more challenging to interpret because of biases related to the distribution of science expertise and favoured wavelength regime amongst the targeted audience. The results of the poll formed a fundamental component of the report and pro-vide useful data to guide the evolution of ESO’s science programme.

  5. ESO's Two Observatories Merge

    NASA Astrophysics Data System (ADS)

    2005-02-01

    On February 1, 2005, the European Southern Observatory (ESO) has merged its two observatories, La Silla and Paranal, into one. This move will help Europe's prime organisation for astronomy to better manage its many and diverse projects by deploying available resources more efficiently where and when they are needed. The merged observatory will be known as the La Silla Paranal Observatory. Catherine Cesarsky, ESO's Director General, comments the new development: "The merging, which was planned during the past year with the deep involvement of all the staff, has created unified maintenance and engineering (including software, mechanics, electronics and optics) departments across the two sites, further increasing the already very high efficiency of our telescopes. It is my great pleasure to commend the excellent work of Jorge Melnick, former director of the La Silla Observatory, and of Roberto Gilmozzi, the director of Paranal." ESO's headquarters are located in Garching, in the vicinity of Munich (Bavaria, Germany), and this intergovernmental organisation has established itself as a world-leader in astronomy. Created in 1962, ESO is now supported by eleven member states (Belgium, Denmark, Finland, France, Germany, Italy, The Netherlands, Portugal, Sweden, Switzerland, and the United Kingdom). It operates major telescopes on two remote sites, all located in Chile: La Silla, about 600 km north of Santiago and at an altitude of 2400m; Paranal, a 2600m high mountain in the Atacama Desert 120 km south of the coastal city of Antofagasta. Most recently, ESO has started the construction of an observatory at Chajnantor, a 5000m high site, also in the Atacama Desert. La Silla, north of the town of La Serena, has been the bastion of the organization's facilities since 1964. It is the site of two of the most productive 4-m class telescopes in the world, the New Technology Telescope (NTT) - the first major telescope equipped with active optics - and the 3.6-m, which hosts HARPS, a unique instrument capable of measuring stellar radial velocities with an unsurpassed accuracy better than 1 m/s, making it a very powerful tool for the discovery of extra-solar planets. In addition, astronomers have also access to the 2.2-m ESO/MPG telescope with its Wide Field Imager camera. A new control room, the RITZ (Remote Integrated Telescope Zentrum), allows operating all three ESO telescopes at La Silla from a single place. The La Silla Observatory is also the first world-class observatory to have been granted certification for the International Organization for Standardization (ISO) 9001 Quality Management System. Moreover, the infrastructure of La Silla is still used by many of the ESO member states for targeted projects such as the Swiss 1.2-m Euler telescope and the robotic telescope specialized in the follow-up of gamma-ray bursts detected by satellites, the Italian REM (Rapid Eye Mount). In addition, La Silla is in charge of the APEX (Atacama Pathfinder Experiment) 12-m sub-millimetre telescope which will soon start routine observations at Chajnantor, the site of the future Atacama Large Millimeter Array (ALMA). The APEX project is a collaboration between the Max Planck Society in Germany, Onsala Observatory in Sweden and ESO. ESO also operates Paranal, home of the Very Large Telescope (VLT) and the VLT Interferometer (VLTI). Antu, the first 8.2-m Unit Telescope of the VLT, saw First Light in May 1998, starting what has become a revolution in European astronomy. Since then, the three other Unit Telescopes - Kueyen, Melipal and Yepun - have been successfully put into operation with an impressive suite of the most advanced astronomical instruments. The interferometric mode of the VLT (VLTI) is also operational and fully integrated in the VLT data flow system. In the VLTI mode, one state-of-the-art instrument is already available and another will follow soon. With its remarkable resolution and unsurpassed surface area, the VLT is at the forefront of astronomical technology and is one of the premier facilities in the world for optical and near-infrared observations. In addition to the state-of-the-art Very Large Telescope and the four Auxiliary Telescopes of 1.8-m diameter which can move to relocate in up to 30 different locations feeding the interferometer, Paranal will also be home to the 2.6-m VLT Survey telescope (VST) and the 4.2-m VISTA IR survey telescope. Both Paranal and La Silla have a proven record of their unique ability to address most current issues in observational astronomy. In 2004 alone, each observatory provided data for the publication of about 350 peer-reviewed journal articles, more than any other ground-based observatory. With the present merging of these top-ranking astronomical observatories, fostering synergies and harmonizing the many diverse activities, ESO and the entire community of European astronomers will profit even more from these highly efficient research facilities. Images of ESO's observatories and telescopes are available in the ESO gallery.

  6. VISIR upgrade overview and status

    NASA Astrophysics Data System (ADS)

    Kerber, Florian; Käufl, Hans Ulrich; Baksai, Pedro; Dobrzycka, Danuta; Finger, Gert; Ives, Derek; Jakob, Gerd; Lagadec, Eric; Lundin, Lars; Mawet, Dimitri; Mehrgan, Leander; Moerchen, Margaret; Momany, Yazan; Moreau, Vincent; Pantin, Eric; Riquelme, Miguel; Siebenmorgen, Ralf; Silber, Armin; Smette, Alain; Taylor, Julian; van den Ancker, Mario; Venema, Lars; Weilenmann, Ueli; Yegorova, Irina

    2012-09-01

    We present an overview of the VISIR upgrade project. VISIR is the mid-infrared imager and spectrograph at ESO's VLT. The project team is comprised of ESO staff and members of the original VISIR consortium: CEA Saclay and ASTRON. The project plan is based on input from the ESO user community with the goal of enhancing the scientific performance and efficiency of VISIR by a combination of measures: installation of improved hardware, optimization of instrument operations and software support. The cornerstone of the upgrade is the 1k by 1k Si:As Aquarius detector array (Raytheon) which has demonstrated very good performance (sensitivity, stability) in the laboratory IR detector test facility (modified TIMMI 2 instrument). A prism spectroscopic mode will cover the N-band in a single observation. New scientific capabilities for high resolution and high-contrast imaging will be offered by sub-aperture mask (SAM) and phase-mask coronagraphic (4QPM/AGPM) modes. In order to make optimal use of favourable atmospheric conditions a water vapour monitor has been deployed on Paranal, allowing for real-time decisions and the introduction of a userdefined constraint on water vapour. Improved pipelines based on the ESO Reflex concept will provide better support to astronomers. The upgraded VISIR will be a powerful instrument providing background limited performance for diffraction-limited observations at an 8-m telescope. It will offer synergy with facilities such as ALMA, JWST, VLTI and SOFIA, while a wealth of targets is available from survey work (e.g. VISTA, WISE). In addition it will bring confirmation of the technical readiness and scientific value of several aspects of potential mid-IR instrumentation at Extremely Large Telescopes. The intervention on VISIR and installation of hardware has been completed in July and commissioning will take place during July and August. VISIR is scheduled to be available to the users starting Oct 2012.

  7. ESO Reflex: A Graphical Workflow Engine for Data Reduction

    NASA Astrophysics Data System (ADS)

    Hook, R.; Romaniello, M.; Péron, M.; Ballester, P.; Gabasch, A.; Izzo, C.; Ullgrén, M.; Maisala, S.; Oittinen, T.; Solin, O.; Savolainen, V.; Järveläinen, P.; Tyynelä, J.

    2008-08-01

    Sampo {http://www.eso.org/sampo} (Hook et al. 2005) is a project led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. The goal is to assess the needs of the ESO community in the area of data reduction environments and to create pilot software products that illustrate critical steps along the road to a new system. Those prototypes will not only be used to validate concepts and understand requirements but will also be tools of immediate value for the community. Most of the raw data produced by ESO instruments can be reduced using CPL {http://www.eso.org/cpl} recipes: compiled C programs following an ESO standard and utilizing routines provided by the Common Pipeline Library. Currently reduction recipes are run in batch mode as part of the data flow system to generate the input to the ESO VLT/VLTI quality control process and are also made public for external users. Sampo has developed a prototype application called ESO Reflex {http://www.eso.org/sampo/reflex/} that integrates a graphical user interface and existing data reduction algorithms. ESO Reflex can invoke CPL-based recipes in a flexible way through a dedicated interface. ESO Reflex is based on the graphical workflow engine Taverna {http://taverna.sourceforge.net} that was originally developed by the UK eScience community, mostly for work in the life sciences. Workflows have been created so far for three VLT/VLTI instrument modes ( VIMOS/IFU {http://www.eso.org/instruments/vimos/}, FORS spectroscopy {http://www.eso.org/instruments/fors/} and AMBER {http://www.eso.org/instruments/amber/}), and the easy-to-use GUI allows the user to make changes to these or create workflows of their own. Python scripts and IDL procedures can be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available.

  8. 4MOST fiber feed preliminary design: prototype testing and performance

    NASA Astrophysics Data System (ADS)

    Haynes, Dionne M.; Kelz, Andreas; Barden, Samuel C.; Bauer, Svend-Marian; Ehrlich, Katjana; Haynes, Roger; Jahn, Thomas; Saviauk, Allar; de Jong, Roelof S.

    2016-08-01

    The 4MOST instrument is a multi-object-spectrograph for the ESO-VISTA telescope. The 4MOST fiber feed subsystem is composed of a fiber positioner (AESOP) holding 2436 science fibers based on the Echidna tilting spine concept, and the fiber cable, which feeds two low-resolution spectrographs (1624 fibers) and one high-resolution spectrograph (812 fibers). In order to optimize the fiber feed subsystem design and provide essential information required for the spectrograph design, prototyping and testing has been undertaken. In this paper we give an overview of the current fiber feed subsystem design and present the preliminary FRD, scrambling, throughput and system performance impact results for: maximum and minimum spine tilt, fiber connectors, cable de-rotator simulator for fiber cable lifetime tests.

  9. New Paranal Views

    NASA Astrophysics Data System (ADS)

    2001-01-01

    Last year saw very good progress at ESO's Paranal Observatory , the site of the Very Large Telescope (VLT). The third and fourth 8.2-m Unit Telescopes, MELIPAL and YEPUN had "First Light" (cf. PR 01/00 and PR 18/00 ), while the first two, ANTU and KUEYEN , were busy collecting first-class data for hundreds of astronomers. Meanwhile, work continued towards the next phase of the VLT project, the combination of the telescopes into the VLT Interferometer. The test instrument, VINCI (cf. PR 22/00 ) is now being installed in the VLTI Laboratory at the centre of the observing platform on the top of Paranal. Below is a new collection of video sequences and photos that illustrate the latest developments at the Paranal Observatory. The were obtained by the EPR Video Team in December 2000. The photos are available in different formats, including "high-resolution" that is suitable for reproduction purposes. A related ESO Video News Reel for professional broadcasters will soon become available and will be announced via the usual channels. Overview Paranal Observatory (Dec. 2000) Video Clip 02a/01 [MPEG - 4.5Mb] ESO PR Video Clip 02a/01 "Paranal Observatory (December 2000)" (4875 frames/3:15 min) [MPEG Video+Audio; 160x120 pix; 4.5Mb] [MPEG Video+Audio; 320x240 pix; 13.5 Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 02a/01 shows some of the construction activities at the Paranal Observatory in December 2000, beginning with a general view of the site. Then follow views of the Residencia , a building that has been designed by Architects Auer and Weber in Munich - it integrates very well into the desert, creating a welcome recreational site for staff and visitors in this harsh environment. The next scenes focus on the "stations" for the auxiliary telescopes for the VLTI and the installation of two delay lines in the 140-m long underground tunnel. The following part of the video clip shows the start-up of the excavation work for the 2.6-m VLT Survey Telescope (VST) as well as the location known as the "NTT Peak", now under consideration for the installation of the 4-m VISTA telescope. The last images are from to the second 8.2-m Unit Telescope, KUEYEN, that has been in full use by the astronomers with the UVES and FORS2 instruments since April 2000. ESO PR Photo 04a/01 ESO PR Photo 04a/01 [Preview - JPEG: 466 x 400 pix - 58k] [Normal - JPEG: 931 x 800 pix - 688k] [Hires - JPEG: 3000 x 2577 pix - 7.6M] Caption : PR Photo 04a/01 shows an afternoon view from the Paranal summit towards East, with the Base Camp and the new Residencia on the slope to the right, above the valley in the shadow of the mountain. ESO PR Photo 04b/01 ESO PR Photo 04b/01 [Preview - JPEG: 791 x 400 pix - 89k] [Normal - JPEG: 1582 x 800 pix - 1.1Mk] [Hires - JPEG: 3000 x 1517 pix - 3.6M] PR Photo 04b/01 shows the ramp leading to the main entrance to the partly subterranean Residencia , with the steel skeleton for the dome over the central area in place. ESO PR Photo 04c/01 ESO PR Photo 04c/01 [Preview - JPEG: 498 x 400 pix - 65k] [Normal - JPEG: 995 x 800 pix - 640k] [Hires - JPEG: 3000 x 2411 pix - 6.6M] PR Photo 04c/01 is an indoor view of the reception hall under the dome, looking towards the main entrance. ESO PR Photo 04d/01 ESO PR Photo 04d/01 [Preview - JPEG: 472 x 400 pix - 61k] [Normal - JPEG: 944 x 800 pix - 632k] [Hires - JPEG: 3000 x 2543 pix - 5.8M] PR Photo 04d/01 shows the ramps from the reception area towards the rooms. The VLT Interferometer The Delay Lines consitute a most important element of the VLT Interferometer , cf. PR Photos 26a-e/00. At this moment, two Delay Lines are operational on site. A third system will be integrated early this year. The VLTI Delay Line is located in an underground tunnel that is 168 metres long and 8 metres wide. This configuration has been designed to accommodate up to eight Delay Lines, including their transfer optics in an ideal environment: stable temperature, high degree of cleanliness, low levels of straylight, low air turbulence. The positions of the Delay Line carriages are computed to adjust the Optical Path Lengths requested for the fringe pattern observation. The positions are controlled in real time by a laser metrology system, specially developed for this purpose. The position precision is about 20 nm (1 nm = 10 -9 m, or 1 millionth of a millimetre) over a distance of 120 metres. The maximum velocity is 0.50 m/s in position mode and maximum 0.05 m/s in operation. The system is designed for 25 year of operation and to survive earthquake up to 8.6 magnitude on the Richter scale. The VLTI Delay Line is a three-year project, carried out by ESO in collaboration with Dutch Space Holdings (formerly Fokker Space) and TPD-TNO . VLTI Delay Lines (December 2000) - ESO PR Video Clip 02b/01 [MPEG - 3.6Mb] ESO PR Video Clip 02b/01 "VLTI Delay Lines (December 2000)" (2000 frames/1:20 min) [MPEG Video+Audio; 160x120 pix; 3.6Mb] [MPEG Video+Audio; 320x240 pix; 13.7 Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 02b/00 shows the Delay Lines of the VLT Interferometer facility at Paranal during tests. One of the carriages is moving on 66-metre long rectified rails, driven by a linear motor. The carriage is equipped with three wheels in order to preserve high guidance accuracy. Another important element is the Cat's Eye that reflects the light from the telescope to the VLT instrumentation. This optical system is made of aluminium (including the mirrors) to avoid thermo-mechanical problems. ESO PR Photo 04e/01 ESO PR Photo 04e/01 [Preview - JPEG: 400 x 402 pix - 62k] [Normal - JPEG: 800 x 804 pix - 544k] [Hires - JPEG: 3000 x 3016 pix - 6.2M] Caption : PR Photo 04e/01 shows one of the 30 "stations" for the movable 1.8-m Auxiliary Telescopes. When one of these telescopes is positioned ("parked") on top of it, The light will be guided through the hole towards the Interferometric Tunnel and the Delay Lines. ESO PR Photo 04f/01 ESO PR Photo 04f/01 [Preview - JPEG: 568 x 400 pix - 96k] [Normal - JPEG: 1136 x 800 pix - 840k] [Hires - JPEG: 3000 x 2112 pix - 4.6M] PR Photo 04f/01 shows a general view of the Interferometric Tunnel and the Delay Lines. ESO PR Photo 04g/01 ESO PR Photo 04g/01 [Preview - JPEG: 406 x 400 pix - 62k] [Normal - JPEG: 812 x 800 pix - 448k] [Hires - JPEG: 3000 x 2956 pix - 5.5M] PR Photo 04g/01 shows one of the Delay Line carriages in parking position. The "NTT Peak" The "NTT Peak" is a mountain top located about 2 km to the north of Paranal. It received this name when ESO considered to move the 3.58-m New Technology Telescope from La Silla to this peak. The possibility of installing the 4-m VISTA telescope (cf. PR 03/00 ) on this peak is now being discussed. ESO PR Photo 04h/01 ESO PR Photo 04h/01 [Preview - JPEG: 630 x 400 pix - 89k] [Normal - JPEG: 1259 x 800 pix - 1.1M] [Hires - JPEG: 3000 x 1907 pix - 5.2M] PR Photo 04h/01 shows the view from the "NTT Peak" towards south, vith the Paranal mountain and the VLT enclosures in the background. ESO PR Photo 04i/01 ESO PR Photo 04i/01 [Preview - JPEG: 516 x 400 pix - 50k] [Normal - JPEG: 1031 x 800 pix - 664k] [Hires - JPEG: 3000 x 2328 pix - 6.0M] PR Photo 04i/01 is a view towards the "NTT Peak" from the top of the Paranal mountain. The access road and the concrete pillar that was used to support a site testing telescope at the top of this peak are seen This is the caption to ESO PR Photos 04a-1/01 and PR Video Clips 02a-b/01 . They may be reproduced, if credit is given to the European Southern Observatory. The ESO PR Video Clips service to visitors to the ESO website provides "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 01/01 about the Physics On Stage Festival (11 January 2001) . Information is also available on the web about other ESO videos.

  10. The COSMOS2015 galaxy stellar mass function . Thirteen billion years of stellar mass assembly in ten snapshots

    NASA Astrophysics Data System (ADS)

    Davidzon, I.; Ilbert, O.; Laigle, C.; Coupon, J.; McCracken, H. J.; Delvecchio, I.; Masters, D.; Capak, P.; Hsieh, B. C.; Le Fèvre, O.; Tresse, L.; Bethermin, M.; Chang, Y.-Y.; Faisst, A. L.; Le Floc'h, E.; Steinhardt, C.; Toft, S.; Aussel, H.; Dubois, C.; Hasinger, G.; Salvato, M.; Sanders, D. B.; Scoville, N.; Silverman, J. D.

    2017-09-01

    We measure the stellar mass function (SMF) and stellar mass density of galaxies in the COSMOS field up to z 6. We select them in the near-IR bands of the COSMOS2015 catalogue, which includes ultra-deep photometry from UltraVISTA-DR2, SPLASH, and Subaru/Hyper Suprime-Cam. At z> 2.5 we use new precise photometric redshifts with error σz = 0.03(1 + z) and an outlier fraction of 12%, estimated by means of the unique spectroscopic sample of COSMOS ( 100 000 spectroscopic measurements in total, more than one thousand having robust zspec> 2.5). The increased exposure time in the DR2, along with our panchromatic detection strategy, allow us to improve the completeness at high z with respect to previous UltraVISTA catalogues (e.g. our sample is >75% complete at 1010 ℳ⊙ and z = 5). We also identify passive galaxies through a robust colour-colour selection, extending their SMF estimate up to z = 4. Our work provides a comprehensive view of galaxy-stellar-mass assembly between z = 0.1 and 6, for the first time using consistent estimates across the entire redshift range. We fit these measurements with a Schechter function, correcting for Eddington bias. We compare the SMF fit with the halo mass function predicted from ΛCDM simulations, finding that at z> 3 both functions decline with a similar slope in thehigh-mass end. This feature could be explained assuming that mechanisms quenching star formation in massive haloes become less effective at high redshifts; however further work needs to be done to confirm this scenario. Concerning the SMF low-mass end, it shows a progressive steepening as it moves towards higher redshifts, with α decreasing from -1.47+0.02-0.02 at z ≃ 0.1 to -2.11+0.30-0.13 at z ≃ 5. This slope depends on the characterisation of the observational uncertainties, which is crucial to properly remove the Eddington bias. We show that there is currently no consensus on the method to quantify such errors: different error models result in different best-fit Schechter parameters. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium (http://ultravista.org/). Based on data produced by the SPLASH team from observations made with the Spitzer Space Telescope (http://splash.caltech.edu).

  11. A Strongly Lensed Massive Ultracompact Quiescent Galaxy at z ~ 2.4 in the COSMOS/UltraVISTA Field

    NASA Astrophysics Data System (ADS)

    Muzzin, Adam; Labbé, Ivo; Franx, Marijn; van Dokkum, Pieter; Holt, J.; Szomoru, Daniel; van de Sande, Jesse; Brammer, Gabriel; Marchesini, Danilo; Stefanon, Mauro; Buitrago, F.; Caputi, K. I.; Dunlop, James; Fynbo, J. P. U.; Le Févre, Olivier; McCracken, Henry J.; Milvang-Jensen, Bo

    2012-12-01

    We report the discovery of a massive ultracompact quiescent galaxy that has been strongly lensed into multiple images by a foreground galaxy at z = 0.960. This system was serendipitously discovered as a set of extremely Ks -bright high-redshift galaxies with red J - Ks colors using new data from the UltraVISTA YJHKs near-infrared survey. The system was also previously identified as an optically faint lens/source system using the COSMOS Advanced Camera for Surveys (ACS) imaging by Faure et al. Photometric redshifts for the three brightest images of the source galaxy determined from 27-band photometry place the source at z = 2.4 ± 0.1. We provide an updated lens model for the system that is a good fit to the positions and morphologies of the galaxies in the ACS image. The lens model implies that the magnification of the three brightest images is a factor of 4-5. We use the lens model, combined with the Ks -band image, to constrain the size and Sérsic profile of the galaxy. The best-fit model is an ultracompact galaxy (Re = 0.64+0.08 - 0.18 kpc, lensing-corrected), with a Sérsic profile that is intermediate between a disk and a bulge profile (n = 2.2+2.3 - 0.9), albeit with considerable uncertainties on the Sérsic profile. We present aperture photometry for the source galaxy images that have been corrected for flux contamination from the central lens. The best-fit stellar population model is a massive galaxy (log(M star/M ⊙) = 10.8+0.1 - 0.1, lensing-corrected) with an age of 1.0+1.0 - 0.4 Gyr, moderate dust extinction (Av = 0.8+0.5 - 0.6), and a low specific star formation rate (log(SSFR) <-11.0 yr-1). This is typical of massive "red-and-dead" galaxies at this redshift and confirms that this source is the first bona fide strongly lensed massive ultracompact quiescent galaxy to be discovered. We conclude with a discussion of the prospects of finding a larger sample of these galaxies. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO program ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium.

  12. Bavarian Prime Minister to Visit la Silla

    NASA Astrophysics Data System (ADS)

    1997-03-01

    The Bavarian Prime Minister, Dr. Edmund Stoiber , is currently visiting a number of countries in South America. He is accompanied by a high-ranking delegation of representatives of Bavarian politics and industry. During this trip, the Bavarian delegation will visit the Republic of Chile, arriving in Santiago de Chile on Sunday, March 9, 1997. On the same day, Dr. Stoiber and most other members of the delegation, on the invitation of the Director General of ESO, Professor Riccardo Giacconi, will visit the ESO La Silla Observatory , located in an isolated area in the Atacama desert some 600 km north of the Chilean capital. ESO, the European Organisation for Astronomy, with Headquarters in Garching near Munich in Bavaria, welcomes this opportunity to present its high-tech research facilities to Dr. Stoiber and leaders of the Bavarian industry. During the visit, the delegation will learn about the various front-line research projects, now being carried out by astronomers from Germany and other ESO member countries with the large telescopes at La Silla. There will also be a presentation of the ESO VLT project , which will become the world's largest optical astronomical telescope, when it is ready a few years from now. The delegation will be met by the Director of the La Silla Observatory, Dr. Jorge Melnick and his scientific-technical staff which includes several members of German nationality. Also present will be ESO's Head of Administration, Dr. Norbert König (Garching) and the General Manager of ESO in Chile, Mr. Daniel Hofstadt. More information about this visit and the ESO facilities is available from the ESO Education and Public Relations Department (Tel.: +49-89-32006-276; Fax.: +49-89-3202362; email: ips@eso.org; Web: http://www.eso.org../../../epr/ ). Diese Pressemitteilung ist auch in einer Deutschen Fassung vorhanden. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  13. 40+ Years of Instrumentation for the La Silla Paranal Observatory

    NASA Astrophysics Data System (ADS)

    D'Odorico, S.

    2018-03-01

    As ESO Period 100 comes to a close, I look back at the development of ESO's instrumentation programme over more than 40 years. Instrumentation and detector activities were initially started by a small group of designers, engineers, technicians and astronomers while ESO was still at CERN in Geneva in the late 1970s. They have since led to the development of a successful suite of optical and infrared instruments for the La Silla Paranal Observatory, as testified by the continuous growth in the number of proposals for observing time and in the publications based on data from ESO telescopes. The instrumentation programme evolved significantly with the VLT and most instruments were developed by national institutes in close cooperation with ESO. This policy was a cornerstone of the VLT programme from the beginning and a key to its success.

  14. Hundreds of new cluster candidates in the VISTA Variables in the Vía Láctea survey DR1

    NASA Astrophysics Data System (ADS)

    Barbá, R. H.; Roman-Lopes, A.; Nilo Castellón, J. L.; Firpo, V.; Minniti, D.; Lucas, P.; Emerson, J. P.; Hempel, M.; Soto, M.; Saito, R. K.

    2015-09-01

    Context. VISTA variables in the Vía Láctea is an ESO Public survey dedicated to scanning the bulge and an adjacent portion of the Galactic disk in the fourth quadrant using the VISTA telescope and its near-infrared camera VIRCAM. One of the leading goals of the VVV survey is to contribute to knowledge of the star cluster population of the Milky Way. Aims: To improve the census of Galactic star clusters, we performed a systematic and careful scan of the JHKs images of the Galactic plane section of the VVV survey. Methods: Our detection procedure is based on a combination of stellar density maps and visual inspection of promising features in the J-, H-, and KS-band images. The material examined are VVV JHKS color-composite images corresponding to Data Release 1 of VVV. Results: We report the discovery of 493 new infrared star cluster candidates. The analysis of the spatial distribution show that the clusters are very concentrated in the Galactic plane, presenting some local maxima around the position of large star-forming complexes, such as G305, RCW 95, and RCW 106. The vast majority of the new star cluster candidates are quite compact and generally surrounded by bright and/or dark nebulosities. IRAS point sources are associated with 59% of the sample, while 88% are associated with MSX point sources. GLIMPSE 8 μm images of the cluster candidates show a variety of morphologies, with 292 clusters dominated by knotty sources, while 361 clusters show some kind of nebulosity in this wavelength regime. Spatial cross-correlation with young stellar objects, masers, and extended green-object catalogs suggest that a large sample of the new cluster candidates are extremely young. In particular, 104 star clusters associated with methanol masers are excellent candidates for ongoing massive star formation. Also, there is a special set of sixteen cluster candidates that present clear signposts of star-forming activity having associated simultaneosly dark nebulae, young stellar objects, extended green objects, and masers. Full Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A120

  15. ProtVista: visualization of protein sequence annotations.

    PubMed

    Watkins, Xavier; Garcia, Leyla J; Pundir, Sangya; Martin, Maria J

    2017-07-01

    ProtVista is a comprehensive visualization tool for the graphical representation of protein sequence features in the UniProt Knowledgebase, experimental proteomics and variation public datasets. The complexity and relationships in this wealth of data pose a challenge in interpretation. Integrative visualization approaches such as provided by ProtVista are thus essential for researchers to understand the data and, for instance, discover patterns affecting function and disease associations. ProtVista is a JavaScript component released as an open source project under the Apache 2 License. Documentation and source code are available at http://ebi-uniprot.github.io/ProtVista/ . martin@ebi.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  16. The 4MOST instrument concept overview

    NASA Astrophysics Data System (ADS)

    Haynes, Roger; Barden, Samuel; de Jong, Roelof; Schnurr, Olivier; Bellido, Olga; Walcher, Jakob; Haynes, Dionne; Winkler, Roland; Bauer, Svend-Marian; Dionies, Frank; Saviauk, Allar; Chiappini, Cristina; Schwope, Axel; Brynnel, Joar; Steinmetz, Matthias; McMahon, Richard; Feltzing, Sofia; Francois, Patrick; Trager, Scott; Parry, Ian; Irwin, Mike; Walton, Nicholas; King, David; Sun, David; Gonzalez-Solares, Eduaro; Tosh, Ian; Dalton, Gavin; Middleton, Kevin; Bonifacio, Piercarlo; Jagourel, Pascal; Mignot, Shan; Cohen, Mathieu; Amans, Jean-Philippe; Royer, Frederic; Sartoretti, Paola; Pragt, Johan; Gerlofsma, Gerrit; Roelfsema, Ronald; Navarro, Ramon; Thimm, Guido; Seifert, Walter; Christlieb, Norbert; Mandel, Holger; Trifonov, Trifon; Xu, Wenli; Lang-Bardl, Florian; Muschielok, Bernard; Schlichter, Jörg; Hess, Hans-Joachim; Grupp, Frank; Boehringer, Hans; Boller, Thomas; Dwelly, Tom; Bender, Ralf; Rosati, Piero; Iwert, Olaf; Finger, Gert; Lizon L'Allemand, Jean-Louis; Saunders, Will; Sheinis, Andrew; Frost, Gabriella; Farrell, Tony; Waller, Lewis; Depagne, Eric; Laurent, Florence; Caillier, Patrick; Kosmalski, Johan; Richard, Johan; Bacon, Roland; Ansorge, Wolfgang

    2014-07-01

    The 4MOST[1] instrument is a concept for a wide-field, fibre-fed high multiplex spectroscopic instrument facility on the ESO VISTA telescope designed to perform a massive (initially >25x106 spectra in 5 years) combined all-sky public survey. The main science drivers are: Gaia follow up of chemo-dynamical structure of the Milky Way, stellar radial velocities, parameters and abundances, chemical tagging; eROSITA follow up of cosmology with x-ray clusters of galaxies, X-ray AGN/galaxy evolution to z~5, Galactic X-ray sources and resolving the Galactic edge; Euclid/LSST/SKA and other survey follow up of Dark Energy, Galaxy evolution and transients. The surveys will be undertaken simultaneously requiring: highly advanced targeting and scheduling software, also comprehensive data reduction and analysis tools to produce high-level data products. The instrument will allow simultaneous observations of ~1600 targets at R~5,000 from 390-900nm and ~800 targets at R<18,000 in three channels between ~395-675nm (channel bandwidth: 45nm blue, 57nm green and 69nm red) over a hexagonal field of view of ~ 4.1 degrees. The initial 5-year 4MOST survey is currently expect to start in 2020. We provide and overview of the 4MOST systems: optomechanical, control, data management and operations concepts; and initial performance estimates.

  17. The Light and Dark Face of a Star-Forming Nebula

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Today, ESO is unveiling an image of the little known Gum 19, a faint nebula that, in the infrared, appears dark on one half and bright on the other. On one side hot hydrogen gas is illuminated by a supergiant blue star called V391 Velorum. New star formation is taking place within the ribbon of luminous and dark material that brackets V391 Velorum's left in this perspective. After many millennia, these fledgling stars, coupled with the explosive demise of V391 Velorum as a supernova, will likely alter Gum 19's present Janus-like appearance. Gum 19 is located in the direction of the constellation Vela (the Sail) at a distance of approximately 22 000 light years. The Gum 19 moniker derives from a 1955 publication by the Australian astrophysicist Colin S. Gum that served as the first significant survey of so-called HII (read "H-two") regions in the southern sky. HII refers to hydrogen gas that is ionised, or energised to the extent that the hydrogen atoms lose their electrons. Such regions emit light at well-defined wavelengths (or colours), thereby giving these cosmic clouds their characteristic glow. And indeed, much like terrestrial clouds, the shapes and textures of these HII regions change as time passes, though over the course of eons rather than before our eyes. For now, Gum 19 has somewhat of a science fiction-esque, "rip in spacetime" look to it in this image, with a narrow, near-vertical bright region slashing across the nebula. Looking at it, you could possibly see a resemblance to a two-toned angelfish or an arrow with a darkened point. This new image of the evocative Gum 19 object was captured by an infrared instrument called SOFI, mounted on ESO's New Technology Telescope (NTT) that operates at the La Silla Observatory in Chile. SOFI stands for Son of ISAAC, after the "father" instrument, ISAAC, that is located at ESO's Very Large Telescope observatory at Paranal to the north of La Silla. Observing this nebula in the infrared allows astronomers to see through at least parts of the dust. The furnace that fuels Gum 19's luminosity is a gigantic, superhot star called V391 Velorum. Shining brightest in the scorching blue range of visible light, V391 Velorum boasts a surface temperature in the vicinity of 30 000 degrees Celsius. This massive star has a temperamental nature, however, and is categorised as a variable star accordingly. V391 Velorum's brightness can fluctuate suddenly as a result of strong activity that can include ejections of shells of matter, which contribute to Gum 19's composition and light emissions. Stars on the grand scale of V391 Velorum do not burn bright for long, and after a relatively short lifetime of about ten million years these titans blow up as supernovae. These explosions, which temporarily rival whole galaxies in their light intensity, blast heated matter in surrounding space, an event that can radically change the colour and shape of its enclosing nebula. As such, V391 Velorum's death throes may well leave Gum 19 unrecognisable. Within the neighbourhood of this fitful supergiant, new stars nonetheless continue to grow. HII regions denote sites of active star formation wherein great quantities of gas and dust have begun to collapse under their own gravity. In several million years - a blink of an eye in cosmic time - these shrinking knots of matter will eventually reach the high density at their centres necessary to ignite nuclear fusion. The fresh outpouring of energy and stellar winds from these newborn stars will also modify the gaseous landscape of Gum 19. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. On the Trail of a Cosmic Cat

    NASA Astrophysics Data System (ADS)

    2010-01-01

    ESO has just released a stunning new image of the vast cloud known as the Cat's Paw Nebula or NGC 6334. This complex region of gas and dust, where numerous massive stars are born, lies near the heart of the Milky Way galaxy, and is heavily obscured by intervening dust clouds. Few objects in the sky have been as well named as the Cat's Paw Nebula, a glowing gas cloud resembling the gigantic pawprint of a celestial cat out on an errand across the Universe. British astronomer John Herschel first recorded NGC 6334 in 1837 during his stay in South Africa. Despite using one of the largest telescopes in the world at the time, Herschel seems to have only noted the brightest part of the cloud, seen here towards the lower left. NGC 6334 lies about 5500 light-years away in the direction of the constellation Scorpius (the Scorpion) and covers an area on the sky slightly larger than the full Moon. The whole gas cloud is about 50 light-years across. The nebula appears red because its blue and green light are scattered and absorbed more efficiently by material between the nebula and Earth. The red light comes predominantly from hydrogen gas glowing under the intense glare of hot young stars. NGC 6334 is one of the most active nurseries of massive stars in our galaxy and has been extensively studied by astronomers. The nebula conceals freshly minted brilliant blue stars - each nearly ten times the mass of our Sun and born in the last few million years. The region is also home to many baby stars that are buried deep in the dust, making them difficult to study. In total, the Cat's Paw Nebula could contain several tens of thousands of stars. Particularly striking is the red, intricate bubble in the lower right part of the image. This is most likely either a star expelling large amount of matter at high speed as it nears the end of its life or the remnant of a star that already has exploded. This new portrait of the Cat's Paw Nebula was created from images taken with the Wide Field Imager (WFI) instrument at the 2.2-metre MPG/ESO telescope at the La Silla Observatory in Chile, combining images taken through blue, green and red filters, as well as a special filter designed to let through the light of glowing hydrogen. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. The Milky Way's Tiny but Tough Galactic Neighbour

    NASA Astrophysics Data System (ADS)

    2009-10-01

    Today ESO announces the release of a stunning new image of one of our nearest galactic neighbours, Barnard's Galaxy, also known as NGC 6822. The galaxy contains regions of rich star formation and curious nebulae, such as the bubble clearly visible in the upper left of this remarkable vista. Astronomers classify NGC 6822 as an irregular dwarf galaxy because of its odd shape and relatively diminutive size by galactic standards. The strange shapes of these cosmic misfits help researchers understand how galaxies interact, evolve and occasionally "cannibalise" each other, leaving behind radiant, star-filled scraps. In the new ESO image, Barnard's Galaxy glows beneath a sea of foreground stars in the direction of the constellation of Sagittarius (the Archer). At the relatively close distance of about 1.6 million light-years, Barnard's Galaxy is a member of the Local Group, the archipelago of galaxies that includes our home, the Milky Way. The nickname of NGC 6822 comes from its discoverer, the American astronomer Edward Emerson Barnard, who first spied this visually elusive cosmic islet using a 125-millimetre aperture refractor in 1884. Astronomers obtained this latest portrait using the Wide Field Imager (WFI) attached to the 2.2-metre MPG/ESO telescope at ESO's La Silla Observatory in northern Chile. Even though Barnard's Galaxy lacks the majestic spiral arms and glowing, central bulge that grace its big galactic neighbours, the Milky Way, the Andromeda and the Triangulum galaxies, this dwarf galaxy has no shortage of stellar splendour and pyrotechnics. Reddish nebulae in this image reveal regions of active star formation, where young, hot stars heat up nearby gas clouds. Also prominent in the upper left of this new image is a striking bubble-shaped nebula. At the nebula's centre, a clutch of massive, scorching stars send waves of matter smashing into the surrounding interstellar material, generating a glowing structure that appears ring-like from our perspective. Other similar ripples of heated matter thrown out by feisty young stars are dotted across Barnard's Galaxy. At only about a tenth of the Milky Way's size, Barnard's Galaxy fits its dwarfish classification. All told, it contains about 10 million stars - a far cry from the Milky Way's estimated 400 billion. In the Local Group, as elsewhere in the Universe, however, dwarf galaxies outnumber their larger, shapelier cousins. Irregular dwarf galaxies like Barnard's Galaxy get their random, blob-like forms from close encounters with or "digestion" by other galaxies. Like everything else in the Universe, galaxies are in motion, and they often make close passes or even go through one another. The density of stars in galaxies is quite low, meaning that few stars physically collide during these cosmic dust-ups. Gravity's fatal attraction, however, can dramatically warp and scramble the shapes of the passing or crashing galaxies. Whole bunches of stars are pulled or flung from their galactic home, in turn forming irregularly shaped dwarf galaxies like NGC 6822. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. A VST and VISTA study of globular clusters in NGC 253

    NASA Astrophysics Data System (ADS)

    Cantiello, Michele; Grado, Aniello; Rejkuba, Marina; Arnaboldi, Magda; Capaccioli, Massimo; Greggio, Laura; Iodice, Enrica; Limatola, Luca

    2018-03-01

    Context. Globular clusters (GCs) are key to our understanding of the Universe, as laboratories of stellar evolution, fossil tracers of the past formation epoch of the host galaxy, and effective distance indicators from local to cosmological scales. Aim. We analyze the properties of the sources in the NGC 253 with the aim of defining an up to date catalog of GC candidates in the galaxy. Given the distance of the galaxy, GCs in NGC 253 are ideal targets for resolved color-magnitude diagram studies of extragalactic GCs with next-generation diffraction limited ground-based telescopes. Methods: Our analysis is based on the science verification data of two ESO survey telescopes, VST and VISTA. Using ugri photometry from VST and JKs from VISTA, GC candidates were selected using as reference the morpho-photometric and color properties of spectroscopically confirmed GCs available in the literature. The strength of the results was verified against available archival HST/ACS data from the GHOSTS survey: all but two of the selected GC candidates appear as star clusters in HST footprints. Results: The adopted GC selection leads to the definition of a sample of ˜350 GC candidates. At visual inspection, we find that 82 objects match all the requirements for selecting GC candidates and 155 are flagged as uncertain GC candidate; however, 110 are unlikely GCs, which are most likely background galaxies. Furthermore, our analysis shows that four of the previously spectroscopically confirmed GCs, i.e., ˜20% of the total spectroscopic sample, are more likely either background galaxies or high-velocity Milky Way stars. The radial density profile of the selected best candidates shows the typically observed r1/4-law radial profile. The analysis of the color distributions reveals only marginal evidence of the presence of color bimodality, which is normally observed in galaxies of similar luminosity. The GC luminosity function does not show the typical symmetry, mainly because of the lack of bright GCs. Part of the bright GCs missing might be at very large galactocentric distances or along the line of sight of the galaxy dusty disk. As an alternative possibility, we speculate that a fraction of low luminosity GC candidates might instead be metal-rich, intermediate age clusters, but fall in a similar color interval of old, metal-poor GCs. Conclusions: Defining a contaminant-free sample of GCs in extragalactic systems is not a straight forward exercise. Using optical and near-IR photometry we purged the list of GCs with spectroscopic membership and photometric GC candidates in NGC 253. Our results show that the use of either spectroscopic or photometric data only does not generally ensure a contaminant-free sample and a combination of both spectroscopy and photometry is preferred. Table 3 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A21This work is based on observations taken at the ESO La Silla Paranal Observatory within the VST Science Verification Programme ID 60.A-9286(A) and VISTA Science Verification Programme ID 60.A-9285(A).

  1. The Dusty Disc of NGC 247

    NASA Astrophysics Data System (ADS)

    2011-03-01

    This image of NGC 247, taken by the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile, reveals the fine details of this highly inclined spiral galaxy and its rich backdrop. Astronomers say this highly tilted orientation, when viewed from Earth, explains why the distance to this prominent galaxy was previously overestimated. The spiral galaxy NGC 247 is one of the closest spiral galaxies of the southern sky. In this new view from the Wide Field Imager on the MPG/ESO 2.2-metre telescope in Chile large numbers of the galaxy's component stars are clearly resolved and many glowing pink clouds of hydrogen, marking regions of active star formation, can be made out in the loose and ragged spiral arms. NGC 247 is part of the Sculptor Group, a collection of galaxies associated with the Sculptor Galaxy (NGC 253, also shown in eso0902 and eso1025). This is the nearest group of galaxies to our Local Group, which includes the Milky Way, but putting a precise value on such celestial distances is inherently difficult. To measure the distance from the Earth to a nearby galaxy, astronomers have to rely on a type of variable star called a Cepheid to act as a distance marker. Cepheids are very luminous stars, whose brightness varies at regular intervals. The time taken for the star to brighten and fade can be plugged into a simple mathematical relation that gives its intrinsic brightness. When compared with the measured brightness this gives the distance. However, this method isn't foolproof, as astronomers think this period-luminosity relationship depends on the composition of the Cepheid. Another problem arises from the fact that some of the light from a Cepheid may be absorbed by dust en route to Earth, making it appear fainter, and therefore further away than it really is. This is a particular problem for NGC 247 with its highly inclined orientation, as the line of sight to the Cepheids passes through the galaxy's dusty disc. However, a team of astronomers is currently looking into the factors that influence these celestial distance markers in a study called the Araucaria Project [1]. The team has already reported that NGC 247 is more than a million light-years closer to the Milky Way than was previously thought, bringing its distance down to just over 11 million light-years. Apart from the main galaxy itself, this view also reveals numerous galaxies shining far beyond NGC 247. In the upper right of the picture three prominent spirals form a line and still further out, far behind them, many more galaxies can be seen, some shining right through the disc of NGC 247. This colour image was created from a large number of monochrome exposures taken through blue, yellow/green and red filters taken over many years. In addition exposures through a filter that isolates the glow from hydrogen gas have also been included and coloured red. The total exposure times per filter were 20 hours, 19 hours, 25 minutes and 35 minutes, respectively. Notes [1] The Araucaria Project is a collaboration between astronomers from institutions in Chile, the United States and Europe. ESO's Very Large Telescope provided data for the project. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  2. The Orion Nebula: Still Full of Surprises

    NASA Astrophysics Data System (ADS)

    2011-01-01

    This ethereal-looking image of the Orion Nebula was captured using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory, Chile. This nebula is much more than just a pretty face, offering astronomers a close-up view of a massive star-forming region to help advance our understanding of stellar birth and evolution. The data used for this image were selected by Igor Chekalin (Russia), who participated in ESO's Hidden Treasures 2010 astrophotography competition. Igor's composition of the Orion Nebula was the seventh highest ranked entry in the competition, although another of Igor's images was the eventual overall winner. The Orion Nebula, also known as Messier 42, is one of the most easily recognisable and best-studied celestial objects. It is a huge complex of gas and dust where massive stars are forming and is the closest such region to the Earth. The glowing gas is so bright that it can be seen with the unaided eye and is a fascinating sight through a telescope. Despite its familiarity and closeness there is still much to learn about this stellar nursery. It was only in 2007, for instance, that the nebula was shown to be closer to us than previously thought: 1350 light-years, rather than about 1500 light-years. Astronomers have used the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile to observe the stars within Messier 42. They found that the faint red dwarfs in the star cluster associated with the glowing gas radiate much more light than had previously been thought, giving us further insights into this famous object and the stars that it hosts. The data collected for this science project, with no original intention to make a colour image, have now been reused to create the richly detailed picture of Messier 42 shown here. The image is a composite of several exposures taken through a total of five different filters. Light that passed through a red filter as well as light from a filter that shows the glowing hydrogen gas, were coloured red. Light in the yellow-green part of the spectrum is coloured green, blue light is coloured blue and light that passed through an ultraviolet filter has been coloured purple. The exposure times were about 52 minutes through each filter. This image was processed by ESO using the observational data found by Igor Chekalin (Russia) [1], who participated in ESO's Hidden Treasures 2010 astrophotography competition [2], organised by ESO in October-November 2010, for everyone who enjoys making beautiful images of the night sky using real astronomical data. Notes [1] Igor searched through ESO's archive and identified datasets that he used to compose his image of Messier 42, which was the seventh highest ranked entry in the competition, out of almost 100 entries. His original work can be seen here. Igor Chekalin was awarded the first prize of the competition for his composition of Messier 78, and he also submitted an image of NGC3169, NGC3166 and SN 2003cg, which was ranked second highest. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  3. Spiral Galaxies Stripped Bare

    NASA Astrophysics Data System (ADS)

    2010-10-01

    Six spectacular spiral galaxies are seen in a clear new light in images from ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile. The pictures were taken in infrared light, using the impressive power of the HAWK-I camera, and will help astronomers understand how the remarkable spiral patterns in galaxies form and evolve. HAWK-I [1] is one of the newest and most powerful cameras on ESO's Very Large Telescope (VLT). It is sensitive to infrared light, which means that much of the obscuring dust in the galaxies' spiral arms becomes transparent to its detectors. Compared to the earlier, and still much-used, VLT infrared camera ISAAC, HAWK-I has sixteen times as many pixels to cover a much larger area of sky in one shot and, by using newer technology than ISAAC, it has a greater sensitivity to faint infrared radiation [2]. Because HAWK-I can study galaxies stripped bare of the confusing effects of dust and glowing gas it is ideal for studying the vast numbers of stars that make up spiral arms. The six galaxies are part of a study of spiral structure led by Preben Grosbøl at ESO. These data were acquired to help understand the complex and subtle ways in which the stars in these systems form into such perfect spiral patterns. The first image shows NGC 5247, a spiral galaxy dominated by two huge arms, located 60-70 million light-years away. The galaxy lies face-on towards Earth, thus providing an excellent view of its pinwheel structure. It lies in the zodiacal constellation of Virgo (the Maiden). The galaxy in the second image is Messier 100, also known as NGC 4321, which was discovered in the 18th century. It is a fine example of a "grand design" spiral galaxy - a class of galaxies with very prominent and well-defined spiral arms. About 55 million light-years from Earth, Messier 100 is part of the Virgo Cluster of galaxies and lies in the constellation of Coma Berenices (Berenice's Hair, named after the ancient Egyptian queen Berenice II). The third image is of NGC 1300, a spiral galaxy with arms extending from the ends of a spectacularly prominent central bar. It is considered a prototypical example of barred spiral galaxies and lies at a distance of about 65 million light-years, in the constellation of Eridanus (the River). The spiral galaxy in the fourth image, NGC 4030, lies about 75 million light-years from Earth, in the constellation of Virgo. In 2007 Takao Doi, a Japanese astronaut who doubles as an amateur astronomer, spotted a supernova - a stellar explosion that is briefly almost as bright as its host galaxy - going off in this galaxy. The fifth image, NGC 2997, is a spiral galaxy roughly 30 million light-years away in the constellation of Antlia (the Air Pump). NGC 2997 is the brightest member of a group of galaxies of the same name in the Local Supercluster of galaxies. Our own Local Group, of which the Milky Way is a member, is itself also part of the Local Supercluster. Last but not least, NGC 1232 is a beautiful galaxy some 65 million light-years away in the constellation of Eridanus (the River). The galaxy is classified as an intermediate spiral galaxy - somewhere between a barred and an unbarred spiral galaxy. An image of this galaxy and its small companion galaxy NGC 1232A in visible light was one of the first produced by the VLT (eso9845). HAWK-I has now returned to NGC 1232 to show a different view of it at near-infrared wavelengths. As this galactic gallery makes clear, HAWK-I lets us see the spiral structures in these six bright galaxies in exquisite detail and with a clarity that is only made possible by observing in the infrared. Notes [1] HAWK-I stands for High-Acuity Wide-field K-band Imager. More technical details about the camera can be found in an earlier press release (eso0736). [2] More information about the VLT instruments can be found at: http://www.eso.org/public/teles-instr/vlt/vlt-instr.html. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. A Picture-perfect Pure-disc Galaxy

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The bright galaxy NGC 3621, captured here using the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, appears to be a fine example of a classical spiral. But it is in fact rather unusual: it does not have a central bulge and is therefore described as a pure-disc galaxy. NGC 3621 is a spiral galaxy about 22 million light-years away in the constellation of Hydra (The Sea Snake). It is comparatively bright and can be seen well in moderate-sized telescopes. This picture was taken using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The data were selected from the ESO archive by Joe DePasquale as part of the Hidden Treasures competition [1]. Joe's picture of NGC 3621 was ranked fifth in the competition. This galaxy has a flat pancake shape, indicating that it hasn't yet come face to face with another galaxy as such a galactic collision would have disturbed the thin disc of stars, creating a small bulge in its centre. Most astronomers think that galaxies grow by merging with other galaxies, in a process called hierarchical galaxy formation. Over time, this should create large bulges in the centres of spirals. Recent research, however, has suggested that bulgeless, or pure-disc, spiral galaxies like NGC 3621 are actually fairly common. This galaxy is of further interest to astronomers because its relative proximity allows them to study a wide range of astronomical objects within it, including stellar nurseries, dust clouds, and pulsating stars called Cepheid variables, which astronomers use as distance markers in the Universe [2]. In the late 1990s, NGC 3621 was one of 18 galaxies selected for a Key Project of the Hubble Space Telescope: to observe Cepheid variables and measure the rate of expansion of the Universe to a higher accuracy than had been possible before. In the successful project, 69 Cepheid variables were observed in this galaxy alone. Multiple monochrome images taken through four different colour filters were combined to make this picture. Images taken through a blue filter have been coloured blue in the final picture, images through a yellow-green filter are shown as green and images through a red filter as dark orange. In addition images taken through a filter that isolates the glow of hydrogen gas have been coloured red. The total exposure times per filter were 30, 40, 40 and 40 minutes respectively. Notes [1] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. [2] Cepheid variables are very luminous stars - up to 30 000 times brighter than our Sun - whose brightness varies at regular intervals over several days, weeks or months. The period of this variation in luminosity is related to the star's true brightness, known as its absolute magnitude. By knowing the absolute magnitude of the star, and measuring how bright it appears, astronomers can easily calculate its distance from Earth. Cepheid variables are therefore vital for establishing the scale of the Universe. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. News from the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Dobrzycki, A.; Arnaboldi, M.; Bierwirth, T.; Boelter, M.; Da Rocha, C.; Delmotte, N.; Forchì, V.; Fourniol, N.; klein Gebbinck, M.; Lange, U.; Mascetti, L.; Micol, A.; Moins, C.; Munte, C.; Pluciennik, C.; Retzlaff, J.; Romaniello, M.; Rosse, N.; Sequeiros, I. V.; Vuong, M.-H.; Zampieri, S.

    2015-09-01

    ESO Science Archive Facility (SAF) - one of the world's biggest astronomical archives - combines two roles: operational (ingest, tallying, safekeeping and distribution to observers of raw data taken with ESO telescopes and processed data generated both internally and externally) and scientific (publication and delivery of all flavours of data to external users). This paper presents the “State of the SAF.” SAF, as a living entity, is constantly implementing new services and upgrading the existing ones. We present recent and future developments related to the Archive's Request Handler and metadata handling as well as performance and usage statistics and trends. We also discuss the current and future datasets on offer at SAF.

  6. ESO PR Highlights in 2004

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Last year proved again a wonderful one for astronomy in general and for ESO in particular. Certainly the most important astronomical event for a large public was the unique Transit of Venus : on June 8, 2004, Venus - the Earth's sister planet - passed in front of the Sun. This rare event - the last one occurred in 1882 - attracted the attention of millions of people all over the world. ESO in cooperation with several other institutes and with support from the European Commission organised through the whole year the Venus Transit 2004 (VT-2004) public education programme that successfully exposed the broad public to a number of fundamental issues at the crucial interface between society and basic science. The web site experienced a record 55 million webhits during a period of 8 hours around the transit. The programme also re-enacted the historical determination of the distance to the Sun (the "Astronomical Unit") by collecting 4550 timings of the four contacts made by more than 1500 participating group of observers and combining them in a calculation of the AU. This resulted in an astonishing accurate value of the Astronomical Unit. More details are available at the VT-2004 website, whose wealth of information will certainly make it a useful tool until the next transit in 2012! For ESO also, 2004 proved a very special year. Finland officially joined as eleventh member state and in December, the Chilean President, Ricardo Lagos, visited the Paranal Observatory. Last year was also the Fifth anniversary of the Very Large Telescope, ESO's flagship facility, as on April 1, 1999 the first 8.2-m VLT Unit Telescope, Antu (UT1), was "handed over" to the astronomers. On this occasion, ESO released several products, including a selection of the best astronomical images taken with the VLT, the VLT Top 20. But there is no doubt that the numerous high quality images published last year are all contenders to top the charts of best astronomical pictures. The year 2004 also saw many new interesting scientific results on the basis of data from ESO telescopes, including several results from the unmatched interferometer mode of the VLT, the VLTI, some of which were highlighted in ESO Press Releases. Certainly worth noting is the possible first ever bona-fide image of an exoplanet and the discovery of the lightest known exoplanet . At the beginning of the year, Paranal welcomed the first Auxiliary Telescope, while on the instrument side as well, 2004 was a good year: we saw the arrival of SINFONI on the VLT, of AMBER on the VLTI, and the installation at the NACO Adaptive Optics instrument of the " Simultaneous Differential Imager (SDI)" to detect exoplanets. And the first prototype of the Astrophysical Virtual Observatory was able to provide unprecedented results on the existence of Type-2 quasars by discovering an entire population of obscured, powerful supermassive black holes. Many of these developments are described in ESO's Press Releases, most with Press Photos, cf. the 2004 PR Index. Some of last year's ESO PR highlights may be accessed directly via the clickable image above.

  7. PESSTO: The Public ESO Spectroscopic Survey of Transient Objects

    NASA Astrophysics Data System (ADS)

    Smartt, S. J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D. R.; Sullivan, M.; Benetti, S.; Gal-Yam, A.; Knapic, C.; Molinaro, M.; Pastorello, A.; Smareglia, R.; Smith, K. W.; Taubenberger, S.; Yaron, O.

    2013-12-01

    PESSTO, which began in April 2012 as one of two ESO public spectroscopic surveys, uses the EFOSC2 and SOFI instruments on the New Technology Telescope during ten nights a month for nine months of the year. Transients for PESSTO follow-up are provided by dedicated large-field 1-2-metre telescope imaging surveys. In its first year PESSTO classified 263 optical transients, publicly released the reduced spectra within 12 hours of the end of the night and identified 33 supernovae (SNe) for dedicated follow-up campaigns. Nine papers have been published or submitted on the topics of supernova progenitors, the origins of type ia SNe, the uncertain nature of faint optical transients and superluminous supernovae, and a definitive public dataset on a most intriguing supernova, the infamous SN2009ip.

  8. The Trilogy is Complete - GigaGalaxy Zoom Phase 3

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The third image of ESO's GigaGalaxy Zoom project has just been released online, completing this eye-opening dive into our galactic home in outstanding fashion. The latest image follows on from views, released over the last two weeks, of the sky as seen with the unaided eye and through an amateur telescope. This third instalment provides another breathtaking vista of an astronomical object, this time a 370-million-pixel view of the Lagoon Nebula of the quality and depth needed by professional astronomers in their quest to understand our Universe. The newly released image extends across a field of view of more than one and a half square degree - an area eight times larger than that of the full Moon - and was obtained with the Wide Field Imager attached to the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. This 67-million-pixel camera has already created several of ESO's iconic pictures. The intriguing object depicted here - the Lagoon Nebula - is located four to five thousand light-years away towards the constellation of Sagittarius (the Archer). The nebula is a giant interstellar cloud, 100 light-years across, where stars are forming. The scattered dark patches seen all over the nebula are huge clouds of gas and dust that are collapsing under their own weight and which will soon give birth to clusters of young, glowing stars. Some of the smallest clouds are known as "globules" and the most prominent ones have been catalogued by the astronomer Edward Emerson Barnard. The Lagoon Nebula hosts the young open stellar cluster known as NGC 6530. This is home for 50 to 100 stars and twinkles in the lower left portion of the nebula. Observations suggest that the cluster is slightly in front of the nebula itself, though still enshrouded by dust, as revealed by reddening of the starlight, an effect that occurs when small dust particles scatter light. The name of the Lagoon Nebula derives from the wide lagoon-shaped dark lane located in the middle of the nebula that divides it into two glowing sections. This gorgeous starscape is the last in the series of three huge images featured in the GigaGalaxy Zoom project, launched by ESO as part of the International Year of Astronomy 2009 (IYA2009). Through three giant images, the GigaGalaxy Zoom project reveals the full sky as it appears with the unaided eye from one of the darkest deserts on Earth, then zooms in on a rich region of the Milky Way using an amateur telescope, and finally uses the power of a professional telescope to reveal the details of a famous nebula. In this way, the project links the sky we can all see with the deep, "hidden" cosmos that astronomers study on a daily basis. The wonderful quality of the images is a testament to the splendour of the night sky at ESO's sites in Chile, which are the most productive astronomical observatories in the world. "The GigaGalaxy Zoom project's dedicated website has proved very successful, drawing hundreds of thousands of visitors from all around the world," says project coordinator Henri Boffin. "With the trilogy now complete, viewers will be able to explore a magnificently detailed cosmic environment on many different scales and take a breathtaking dive into our Milky Way." More information As part of the IYA2009, ESO is participating in several remarkable outreach activities, in line with its world-leading rank in the field of astronomy. ESO is hosting the IYA2009 Secretariat for the International Astronomical Union, which coordinates the Year globally. ESO is one of the Organisational Associates of IYA2009, and was also closely involved in the resolution submitted to the United Nations (UN) by Italy, which led to the UN's 62nd General Assembly proclaiming 2009 the International Year of Astronomy. In addition to a wide array of activities planned both at the local and international level, ESO is leading four of the thirteen global Cornerstone Projects. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky". The third image of the GigaGalaxy Zoom project was taken with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the ESO La Silla Observatory. In order to optimise telescope time, the images were obtained by ESO staff astronomers, who select the most favourable observations to be made at any given time, taking into account the visibility of the objects and the sky conditions. The La Silla Observatory, 600 km north of Santiago de Chile and at an altitude of 2400 metres, has been an ESO stronghold since the 1960s. Here, ESO operates several of the most productive 2-4-metre-class telescopes in the world.

  9. The Unexpected Vista: A Physicist's View of Nature.

    ERIC Educational Resources Information Center

    Trefil, James S.

    This 12-chapter book examines different phenomena as viewed by those trained in physics. These views (or vistas) are promulgated to demonstrate that the infinite variety of things seen in the material world can be reduced to a handful of general laws and to share with the public the richness of the scientist's world view. The phenomena examined…

  10. The Growth of the User Community of the La Silla Paranal Observatory Science Archive

    NASA Astrophysics Data System (ADS)

    Romaniello, M.; Arnaboldi, M.; Da Rocha, C.; De Breuck, C.; Delmotte, N.; Dobrzycki, A.; Fourniol, N.; Freudling, W.; Mascetti, L.; Micol, A.; Retzlaff, J.; Sterzik, M.; Sequeiros, I. V.; De Breuck, M. V.

    2016-03-01

    The archive of the La Silla Paranal Observatory has grown steadily into a powerful science resource for the ESO astronomical community. Established in 1998, the Science Archive Facility (SAF) stores both the raw data generated by all ESO instruments and selected processed (science-ready) data. The growth of the SAF user community is analysed through access and publication statistics. Statistics are presented for archival users, who do not contribute to observing proposals, and contrasted with regular and archival users, who are successful in competing for observing time. Archival data from the SAF contribute to about one paper out of four that use data from ESO facilities. This study reveals that the blend of users constitutes a mixture of the traditional ESO community making novel use of the data and of a new community being built around the SAF.

  11. YOUNG STELLAR CLUSTERS CONTAINING MASSIVE YOUNG STELLAR OBJECTS IN THE VVV SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borissova, J.; Alegría, S. Ramírez; Kurtev, R.

    The purpose of this research is to study the connections of the global properties of eight young stellar clusters projected in the Vista Variables in the Via Lactea (VVV) ESO Large Public Survey disk area and their young stellar object (YSO) populations. The analysis is based on the combination of spectroscopic parallax-based reddening and distance determinations with main-sequence and pre-main-sequence ishochrone fitting to determine the basic parameters (reddening, age, distance) of the sample clusters. The lower mass limit estimations show that all clusters are low or intermediate mass (between 110 and 1800  M {sub ⊙}), the slope Γ of themore » obtained present-day mass functions of the clusters is close to the Kroupa initial mass function. The YSOs in the cluster’s surrounding fields are classified using low resolution spectra, spectral energy distribution fits with theoretical predictions, and variability, taking advantage of multi-epoch VVV observations. All spectroscopically confirmed YSOs (except one) are found to be massive (more than 8 M {sub ⊙}). Using VVV and GLIMPSE color–color cuts we have selected a large number of new YSO candidates, which are checked for variability and 57% are found to show at least low-amplitude variations. In few cases it was possible to distinguish between YSO and AGB classifications on the basis of light curves.« less

  12. Reflected Glory

    NASA Astrophysics Data System (ADS)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and HD 38563B, are the main powerhouses behind Messier 78. However, the nebula is home to many more stars, including a collection of about 45 low mass, young stars (less than 10 million years old) in which the cores are still too cool for hydrogen fusion to start, known as T Tauri stars. Studying T Tauri stars is important for understanding the early stages of star formation and how planetary systems are created. Remarkably, this complex of nebulae has also changed significantly in the last ten years. In February 2004 the experienced amateur observer Jay McNeil took an image of this region with a 75 mm telescope and was surprised to see a bright nebula - the prominent fan shaped feature near the bottom of this picture - where nothing was seen on most earlier images. This object is now known as McNeil's Nebula and it appears to be a highly variable reflection nebula around a young star. This colour picture was created from many monochrome exposures taken through blue, yellow/green and red filters, supplemented by exposures through an H-alpha filter that shows light from glowing hydrogen gas. The total exposure times were 9, 9, 17.5 and 15.5 minutes per filter, respectively. Notes [1] Igor Chekalin from Russia uncovered the raw data for this image of Messier 78 in ESO's archives in the competition Hidden Treasures (eso1102). He processed the raw data with great skill, claiming first prize in the contest for his final image (Flickr link). ESO's team of in-house image processing experts then independently processed the raw data at full resolution to produce the image shown here. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. The Rose-red Glow of Star Formation

    NASA Astrophysics Data System (ADS)

    2011-03-01

    The vivid red cloud in this new image from ESO's Very Large Telescope is a region of glowing hydrogen surrounding the star cluster NGC 371. This stellar nursery lies in our neighbouring galaxy, the Small Magellanic Cloud. The object dominating this image may resemble a pool of spilled blood, but rather than being associated with death, such regions of ionised hydrogen - known as HII regions - are sites of creation with high rates of recent star birth. NGC 371 is an example of this; it is an open cluster surrounded by a nebula. The stars in open clusters all originate from the same diffuse HII region, and over time the majority of the hydrogen is used up by star formation, leaving behind a shell of hydrogen such as the one in this image, along with a cluster of hot young stars. The host galaxy to NGC 371, the Small Magellanic Cloud, is a dwarf galaxy a mere 200 000 light-years away, which makes it one of the closest galaxies to the Milky Way. In addition, the Small Magellanic Cloud contains stars at all stages of their evolution; from the highly luminous young stars found in NGC 371 to supernova remnants of dead stars. These energetic youngsters emit copious amounts of ultraviolet radiation causing surrounding gas, such as leftover hydrogen from their parent nebula, to light up with a colourful glow that extends for hundreds of light-years in every direction. The phenomenon is depicted beautifully in this image, taken using the FORS1 instrument on ESO's Very Large Telescope (VLT). Open clusters are by no means rare; there are numerous fine examples in our own Milky Way. However, NGC 371 is of particular interest due to the unexpectedly large number of variable stars it contains. These are stars that change in brightness over time. A particularly interesting type of variable star, known as slowly pulsating B stars, can also be used to study the interior of stars through asteroseismology [1], and several of these have been confirmed in this cluster. Variable stars play a pivotal role in astronomy: some types are invaluable for determining distances to far-off galaxies and the age of the Universe. The data for this image were selected from the ESO archive by Manu Mejias as part of the Hidden Treasures competition [2]. Three of Manu's images made the top twenty; his picture of NGC 371 was ranked sixth in the competition. Notes [1] Asteroseismology is the study of the internal structure of pulsating stars by looking at the different frequencies at which they oscillate. This is a similar approach to the study of the structure of the Earth by looking at earthquakes and how their oscillations travel through the interior of the planet. [2] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  14. The Drama of Starbirth - new-born stars wreak havoc in their nursery

    NASA Astrophysics Data System (ADS)

    2011-03-01

    A new image from ESO's Very Large Telescope gives a close-up view of the dramatic effects new-born stars have on the gas and dust from which they formed. Although the stars themselves are not visible, material they have ejected is colliding with the surrounding gas and dust clouds and creating a surreal landscape of glowing arcs, blobs and streaks. The star-forming region NGC 6729 is part of one of the closest stellar nurseries to the Earth and hence one of the best studied. This new image from ESO's Very Large Telescope gives a close-up view of a section of this strange and fascinating region (a wide-field view is available here: eso1027). The data were selected from the ESO archive by Sergey Stepanenko as part of the Hidden Treasures competition [1]. Sergey's picture of NGC 6729 was ranked third in the competition. Stars form deep within molecular clouds and the earliest stages of their development cannot be seen in visible-light telescopes because of obscuration by dust. In this image there are very young stars at the upper left of the picture. Although they cannot be seen directly, the havoc that they have wreaked on their surroundings dominates the picture. High-speed jets of material that travel away from the baby stars at velocities as high as one million kilometres per hour are slamming into the surrounding gas and creating shock waves. These shocks cause the gas to shine and create the strangely coloured glowing arcs and blobs known as Herbig-Haro objects [2]. In this view the Herbig-Haro objects form two lines marking out the probable directions of ejected material. One stretches from the upper left to the lower centre, ending in the bright, circular group of glowing blobs and arcs at the lower centre. The other starts near the left upper edge of the picture and extends towards the centre right. The peculiar scimitar-shaped bright feature at the upper left is probably mostly due to starlight being reflected from dust and is not a Herbig-Haro object. This enhanced-colour picture [3] was created from images taken using the FORS1 instrument on ESO's Very Large Telescope. Images were taken through two different filters that isolate the light coming from glowing hydrogen (shown as orange) and glowing ionised sulphur (shown as blue). The different colours in different parts of this violent star formation region reflect different conditions - for example where ionised sulphur is glowing brightly (blue features) the velocities of the colliding material are relatively low - and help astronomers to unravel what is going on in this dramatic scene. Notes [1] ESO's Hidden Treasures 2010 competition gave amateur astronomers the opportunity to search through ESO's vast archives of astronomical data, hoping to find a well-hidden gem that needed polishing by the entrants. Participants submitted nearly 100 entries and ten skilled people were awarded some extremely attractive prizes, including an all expenses paid trip for the overall winner to ESO's Very Large Telescope (VLT) on Cerro Paranal, in Chile, the world's most advanced optical telescope. The ten winners submitted a total of 20 images that were ranked as the highest entries in the competition out of the near 100 images. [2] The astronomers George Herbig and Guillermo Haro were not the first to see one of the objects that now bear their names, but they were the first to study the spectra of these strange objects in detail. They realised that they were not just clumps of gas and dust that reflected light, or glowed under the influence of the ultraviolet light from young stars, but were a new class of objects associated with ejected material in star formation regions. [3] Both the ionised sulphur and hydrogen atoms in this nebula emit red light. To differentiate between them in this image the sulphur emission has been coloured blue. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  15. "Clouds" above Paranal.

    NASA Astrophysics Data System (ADS)

    1994-04-01

    ESO, the European Southern Observatory, in reply to questions raised by the media would like to clarify its position with regard to recent events which concern the land on which the Paranal mountain is situated. THE DECISION TO BUILD THE VLT AT PARANAL In December 1987, the Council [1] of the European Southern Observatory decided to build the largest optical telescope in the world, the 16-metre equivalent Very Large Telescope (VLT) [2], before the end of the century and at a total cost that was expected to approach 500 million DEM. Already several years before that, ESO had started a search for the best possible site for this new giant telescope. At the time of Council's decision, intensive investigations at various sites in the Chilean Atacama desert had effectively narrowed down the choice to two possibilities, the Vizcachas mountain near La Silla, and the Paranal mountain, located approx. 130 km south of Antofagasta, the capital of the Chilean Region II. The meteorological data measured by the ESO teams favoured Paranal, especially in terms of number of clear nights and amount of turbulence in the atmosphere. However, while Vizcachas is situated on land that had earlier been acquired by ESO, this was not the case for the Paranal mountain. ESO was therefore very pleased to learn in 1988 that the Chilean government had decided to donate an area of 725 sq. km around Paranal to this Organisation, on the condition that it would be decided within the next five years to construct the VLT at this site. The size of this land is dictated by the need to avoid any activities (e.g., mining) which may adversely influence the exceedingly sensitive astronomical observations with the VLT. The offer was gratefully accepted by the ESO Council and in November 1988 ESO became owner of the land. After further detailed considerations of the scientific and technical implications, the ESO Council during its December 1990 meeting decided to construct the VLT on Paranal [3], thus fulfilling the condition attached to the donation. The excavation work began at Paranal in 1992. When it was over in late 1993, a total of 300,000 m^3 of rock had been removed, creating a platform large enough for the extensive VLT installations at the top. In December 1993, ESO signed a contract with the Swedish firm SKANSKA-Belfry Ltd. for the construction of the VLT foundations and buildings. The team from this firm joined the other contractors (geological survey, installation of water tanks, etc.) at Paranal in January 1994. LEGAL PROBLEMS AROUND PARANAL However, in March 1993, the descendants of Admiral Juan Jose Latorre claimed that a part of the land which was donated to ESO and, in particular, the site upon which the VLT is to be constructed, had earlier been given to the admiral in return for his services to his fatherland during the Chilean wars of the late 19th century. The Latorre family introduced with the Court of Antofagasta a law suit against the State of Chile and against ESO, demanding that its property in this part of the land be recognized, that the land be returned and that damage be paid. The law suit and several legal actions of the Latorre family connected therewith have been brought to the attention of the public. Related public statements require that ESO makes the following comments and corrections. This is all the more the case since ESO enjoys in Chile a special legal status, the particulars of which are not well known there, apparently not even among members of the legal profession. The European Organisation for Astronomical Research in the Southern Hemisphere is an International Organisation which carries out its official activities in Chile on the basis of an international treaty that operates between the Government of Chile and ESO. The relations between the Organisation and the Republic of Chile are thus relations between two subjects of international law and they are as such exclusively governed by international law, in particular by the said treaty, i.e., the Convention concluded between ESO and the Government of Chile in 1963. As this is usual in the relations between International Organisations and their host states, this treaty has been further developed during the years. And as this typically occurs between subjects of international law, related changes have been confirmed by the exchange of diplomatic notes. In an exchange of notes which took place during 1983/1984, the Government of Chile and ESO agreed in particular that ESO's privileges and immunities which derive from the 1963 Convention shall also apply to all future astronomical observatories which ESO would install in Chile with the agreement of the Government. The Republic of Chile has donated to ESO the Paranal site for the very purpose to erect on Cerro Paranal the Very Large Telescope. The Government thus granted the site to ESO in order to enable the Organisation to fulfill its official purposes in Chile. Consequently, the grant of the land took place within the framework of the existing treaty relations between the Republic of Chile and ESO. In the event that there would be a dispute between these two subjects of international law on any aspect of the matter, Article X of the Convention would apply which provides for dispute settlement by way of international arbitration. For these reasons ESO could not be involved in the legal dispute pending between the Government of Chile and the Latorre family before the Chilean courts. ESO feels that this dispute constitutes an internal Chilean matter. For the same reasons, ESO has requested the Supreme Court of Chile to apply and enforce in this dispute the Organisation's jurisdictional immunity and the exemption of its possessions from any public, even judicial, interference, as ESO is entitled under the applicable treaty provisions. ESO notes with satisfaction that the Supreme Court of Chile has recently issued a decision which recognizes the Organisation's privileges and immunities. However, during a first stage of the other legal actions taken by the Latorre family against ESO and its project to erect the VLT there seemed to be a risk that the lower courts in Chile would not be sufficiently familiar with the Organisation's particular status [4]. In order to reduce this risk, ESO has again resorted to the usual means of communication with the Government of Chile and has asked the Government in a recent ``Nota Verbal'' to clarify and explain the issue of its privileges and immunities to all competent Chilean authorities, including the courts. Since ESO has been founded and is funded by eight European States, it is obvious that the Latorre complaint and the various actions of the Latorre family have caused the concern of the ESO member states. It is also nothing more than the usual practice among states that the ESO member states have notified their concern to the Government of Chile by way of a diplomatic note. Of course, neither ESO nor the ESO member states would be able to or even intend to exercise any influence on internal Chilean affairs. On 15 April 1994, a delegation of the ambassadors of the ESO member states to Chile met with the Minister Secretary of the Presidency, G. Arriagada, and the Under Secretary of Foreign Affairs, J. Insulza, to discuss the Paranal legal problems. ESO expects that the Chilean courts will eventually decide on the Latorre complaint and it trusts that any consequence such decision may have for its activities on Paranal will be settled between the Government and ESO according to the principles and rules of international law applicable in such situation. MOST RECENT DEVELOPMENTS The judge of Antofagasta has rejected another Latorre request for preliminary injunction against ESO to stop the works at Paranal (and also held that ESO cannot, for the time being, sell the mountain). Yesterday, 20 April 1994, the Chilean Supreme Court in plenary session rejected by a 10/4 vote the request by the Latorre party to send a ``Visiting Judge'' to Taltal and Antofagasta. It therefore appears that the Chilean courts have come to accept ESO's status and legal position. The ESO Council has decided to hold an extraordinary meeting at the ESO Headquarters in Garching on 28 April 1994, to discuss the above mentioned developments and to decide about the future actions by this Organisation. [1] The Council of ESO consists of two representatives from each of the eight member states. It is the highest authority of the organisation and normally meets twice a year. [2] See ESO Press Release 16/87 of 8 December 1987. [3] See ESO Press Release 11/90 of 4 December 1990. [4] One specific, recent incident has been widely reported: On 17 March 1994, the Latorre party filed with the civil judge of Taltal (the provincial town nearest Paranal) a request aiming at a court injunction against ESO's contractor SKANSKA-Belfi Ltd., for a prohibition to ``effect new works'' on its alleged property. On 23 March 1994, the judge appeared on Paranal, ordering to close the operations of the contractor. The court order was revoked by the judge of Taltal on 15 April 1994, and the work at Paranal has now started again. However, this work stoppage has incurred significant losses and a damage claim is now being considered.

  16. VizieR Online Data Catalog: Selection function of Milky Way field stars (Stonkute+, 2016)

    NASA Astrophysics Data System (ADS)

    Stonkute, E.; Koposov, S. E.; Howes, L. M.; Feltzing, S.; Worley, C. C.; Gilmore, G.; Ruchti, G. R.; Kordopatis, G.; Randich, S.; Zwitter, T.; Bensby, T.; Bragaglia, A.; Smiljanic, R.; Costado, M. T.; Tautvaisiene, G.; Casey, A. R.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Franciosini, E.; Hourihane, A.; Jofre, P.; Lardo, C.; Lewis, J.; Magrini, L.; Monaco, L.; Morbidelli, L.; Sacco, G. G.; Sbordone, L.

    2017-10-01

    The observations are conducted with the FLAMES (Pasquini et al., 2002Msngr.110....1P) at the Very Large Telescope (VLT) array operated by the European Southern Observatory on Cerro Paranal, Chile. FLAMES is a fibre facility of the VLT and is mounted at the Nasmyth A platform of the second Unit Telescope of VLT. In this paper, we present the Gaia-ESO Survey selection function only for the Milky Way field stars observed with the GIRAFFE and UVES spectrographs at VLT, not including the bulge. All targets were selected according to their colours and magnitudes, using photometry from the VISTA Hemisphere Survey (VHS; McMahon et al. 2013Msngr.154...35M) and the Two Micron All-Sky Survey (2MASS; Skrutskie et al., 2006, Cat. VII/233). Selected potential target lists were generated at the Cambridge Astronomy Survey Unit (CASU) centre. (3 data files).

  17. rVISTA 2.0: Evolutionary Analysis of Transcription Factor Binding Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loots, G G; Ovcharenko, I

    2004-01-28

    Identifying and characterizing the patterns of DNA cis-regulatory modules represents a challenge that has the potential to reveal the regulatory language the genome uses to dictate transcriptional dynamics. Several studies have demonstrated that regulatory modules are under positive selection and therefore are often conserved between related species. Using this evolutionary principle we have created a comparative tool, rVISTA, for analyzing the regulatory potential of noncoding sequences. The rVISTA tool combines transcription factor binding site (TFBS) predictions, sequence comparisons and cluster analysis to identify noncoding DNA regions that are highly conserved and present in a specific configuration within an alignment. Heremore » we present the newly developed version 2.0 of the rVISTA tool that can process alignments generated by both zPicture and PipMaker alignment programs or use pre-computed pairwise alignments of seven vertebrate genomes available from the ECR Browser. The rVISTA web server is closely interconnected with the TRANSFAC database, allowing users to either search for matrices present in the TRANSFAC library collection or search for user-defined consensus sequences. rVISTA tool is publicly available at http://rvista.dcode.org/.« less

  18. The Superwind Galaxy NGC 4666

    NASA Astrophysics Data System (ADS)

    2010-09-01

    The galaxy NGC 4666 takes pride of place at the centre of this new image, made in visible light with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. NGC 4666 is a remarkable galaxy with very vigorous star formation and an unusual "superwind" of out-flowing gas. It had previously been observed in X-rays by the ESA XMM-Newton space telescope, and the image presented here was taken to allow further study of other objects detected in the earlier X-ray observations. The prominent galaxy NGC 4666 in the centre of the picture is a starburst galaxy, about 80 million light-years from Earth, in which particularly intense star formation is taking place. The starburst is thought to be caused by gravitational interactions between NGC 4666 and its neighbouring galaxies, including NGC 4668, visible to the lower left. These interactions often spark vigorous star-formation in the galaxies involved. A combination of supernova explosions and strong winds from massive stars in the starburst region drives a vast flow of gas from the galaxy into space - a so-called "superwind". The superwind is huge in scale, coming from the bright central region of the galaxy and extending for tens of thousands of light-years. As the superwind gas is very hot it emits radiation mostly as X-rays and in the radio part of the spectrum and cannot be seen in visible light images such as the one presented here. This image was made as part of a follow-up to observations made with the ESA XMM-Newton space telescope in X-rays. NGC 4666 was the target of the original XMM-Newton observations, but thanks to the telescope's wide field-of-view many other X-ray sources were also seen in the background. One such serendipitous detection is a faint galaxy cluster seen close to the bottom edge of the image, right of centre. This cluster is much further away from us than NGC 4666, at a distance of about three billion light-years. In order to fully understand the nature of astronomical objects, researchers must study them at several wavelengths. This is because light of different wavelengths can tell us about different physical processes taking place. In this case the Wide Field Imager (WFI) [1] observations were made in visible light to further investigate these serendipitously detected X-ray objects - a good example of how astronomers using different telescopes work together to explore the Universe. Notes [1] The WFI is a joint project between the European Southern Observatory (ESO), the Max-Planck-Institut für Astronomie (MPIA) in Heidelberg (Germany) and the Osservatorio Astronomico di Capodimonte (OAC) in Naples (Italy). More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. What's Best for Our Students? Outcomes Are the Driving Force at One High-Achieving Elementary School

    ERIC Educational Resources Information Center

    Kinzer, Cathy; Taft, Laura

    2012-01-01

    Monte Vista Elementary School is one of 24 K-5 elementary schools in Las Cruces Public Schools, an urban district in southern New Mexico. The school's 450 students reflect the diversity of its Southwestern community: 75% Hispanic, 17% English language learners, and 68% free or reduced lunch, thus qualifying Monte Vista as a Title I school. Monte…

  20. 4MOST optical system: presentation and design details

    NASA Astrophysics Data System (ADS)

    Azaïs, Nicolas; Frey, Steffen; Bellido, Olga; Winkler, Roland

    2017-09-01

    The 4-meter Multi-Object Spectroscopic Telescope (4MOST) is a wide-field, high-multiplex spectroscopic survey facility under development for the Visible and Infrared Survey Telescope for Astronomy (VISTA) 4 meter telescope of the European Southern Observatory (ESO) at Cerro Paranal. The objective of 4MOST is to enable the simultaneous spectroscopy of a significant number of targets within a 2.5° diameter field of view, to allow high-efficiency all-sky spectroscopic surveys. A wide field corrector (WFC) is needed to couple targets across the 2.5° field diameter with the exit pupil concentric with the spherical focal surface where 2400 fibres are configured by a fibre positioner (AESOP). For optimal fibre optic coupling and active optics wavefront sensing the WFC will correct optical aberrations of the primary (M1) and secondary (M2) VISTA optics across the full field of view and provide a well-defined and stable focal surface to which the acquisition/guiding sensors, wavefront sensors, and fibre positioner are interfaced. It will also compensate for the effects of atmospheric dispersion, allowing good chromatic coupling of stellar images with the fibre apertures over a wide range of telescope zenith angles (ZD). The fibres feed three spectrographs; two thirds of the fibres will feed two low resolution spectrographs and the remaining 812 fibres will feed a high-resolution spectrograph. The three spectrographs are fixed-configuration with three channels each. We present the 4MOST optical system together with optical simulation of subsystems.

  1. Brightness variations of the FUor-type eruptive star V346 Normae

    NASA Astrophysics Data System (ADS)

    Kóspál, Á.; Ábrahám, P.; Westhues, Ch.; Haas, M.

    2017-01-01

    Decades after the beginning of its FU Orionis-type outburst, V346 Nor unexpectedly underwent a fading event of ΔK = 4.6 mag around 2010. We obtained near-infrared observations and re-analyzed data from the VISTA/VVV survey to outline the brightness evolution. In our VLT/NaCO images, we discovered a halo of scattered light around V346 Nor with a size of about 0".04 (30 au). The VISTA data outlined a well-defined minimum in the light curve in late 2010/early 2011, and tentatively revealed a small-amplitude periodic modulation of 58 days. Our latest data points from 2016 demonstrate that the source is still brightening but has not yet reached the 2008 level. We used a simple accretion disk model with varying accretion rate and line-of-sight extinction to reproduce the observed near-infrared magnitudes and colors. We found that the flux changes of V346 Nor before 2008 were caused by a correlated change of extinction and accretion rate, while the minimum around 2010 was mostly due to decreasing accretion. The source reached a highest accretion rate of ≈ 10-4M⊙ yr-1 in 1992. A combination of accretion and extinction changes has been invoked in the literature to interpret the flux variations of certain embedded young eruptive stars. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 71.C-0526(A), 179.B-2002, and 381.C-0241(A).

  2. Zooming to the centre of the Milky Way - GigaGalaxy Zoom phase 2

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The second of three images of ESO's GigaGalaxy Zoom project has just been released online. It is a new and wonderful 340-million-pixel vista of the central parts of our home galaxy as seen from ESO's Paranal Observatory with an amateur telescope. This 34 by 20-degree wide image provides us with a view as experienced by amateur astronomers around the world. However, its incredible beauty and appeal owe much to the quality of the observing site and the skills of Stéphane Guisard, the world-renowned astrophotographer, who is also an ESO engineer. This second image directly benefits from the quality of Paranal's sky, one of the best on the planet, where ESO's Very Large Telescope is located. In addition, Guisard has drawn on his professional expertise as an optical engineer specialising in telescopes, a rare combination in the world of astrophotographers. Guisard, as head of the optical engineering team at Paranal, is responsible for ensuring that the Very Large Telescope has the best optical performance possible. To create this stunning, true-colour mosaic of the Galactic Centre region, Guisard assembled about 1200 individual images, totalling more than 200 hours of exposure time, collected over 29 nights, during Guisard's free time, while working during the day at Paranal [1]. The image shows the region spanning the sky from the constellation of Sagittarius (the Archer) to Scorpius (the Scorpion). The very colourful Rho Ophiuchi and Antares region is a prominent feature to the right, although much darker areas, such as the Pipe and Snake nebulae also stand out. The dusty lane of our Milky Way runs obliquely through the image, dotted with remarkable bright, reddish nebulae, such as the Lagoon and the Trifid Nebulae, as well as NGC 6357 and NGC 6334. This dark lane also hosts the very centre of our Galaxy, where a supermassive black hole is lurking. "The area I have depicted in this image is an incredibly rich region of the sky, and the one I find most beautiful," says Guisard. This gorgeous starscape is the second of three extremely high resolution images featured in the GigaGalaxy Zoom project, launched by ESO as part of the International Year of Astronomy 2009 (IYA2009). The project allows stargazers to explore and experience the Universe as it is seen with the unaided eye from the darkest and best viewing locations in the world. GigaGalaxy Zoom features a web tool that allows users to take a breathtaking dive into our Milky Way. With this tool users can learn more about many different and exciting objects in the image, such as multicoloured nebulae and exploding stars, just by clicking on them. In this way, the project seeks to link the sky we can all see with the deep, "hidden" cosmos that astronomers study on a daily basis. The wonderful quality of the images is a testament to the splendour of the night sky at ESO's sites in Chile, which are the most productive astronomical observatories in the world. The third GigaGalaxy Zoom image will be revealed next week, on 28 September 2009. Notes [1] The image was obtained from Cerro Paranal, home of ESO's Very Large Telescope, by observing with a 10-cm Takahashi FSQ106Ed f/3.6 telescope and a SBIG STL CCD camera, using a NJP160 mount. The images were collected through three different filters (B, V and R) and then stitched together. This mosaic was assembled from 52 different sky fields made from about 1200 individual images totalling 200 hours exposure time, with the final image having a size of 24 403 x 13 973 pixels. More information As part of the IYA2009, ESO is participating in several remarkable outreach activities, in line with its world-leading rank in the field of astronomy. ESO is hosting the IYA2009 Secretariat for the International Astronomical Union, which coordinates the Year globally. ESO is one of the Organisational Associates of IYA2009, and was also closely involved in the resolution submitted to the United Nations (UN) by Italy, which led to the UN's 62nd General Assembly proclaiming 2009 the International Year of Astronomy. In addition to a wide array of activities planned both at the local and international level, ESO is leading three of the twelve global Cornerstone Projects. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky". A native of France, Guisard has worked for ESO in Chile since 1994, and is now the head Optics Engineer for ESO's Very Large Telescope (VLT). He is in charge of the optical alignment of the Paranal telescopes, as well as maintaining and improving the image quality of these telescopes and their active optics. Stéphane spends most of his free time photographing the night sky, enjoying the same crystal clear skies as the VLT. His fantastic astronomical images and time-lapse movies have been used in many books and TV programmes. Stéphane Guisard is also a photographer for The World At Night (TWAN).

  3. Atoms-for-Peace: A Galactic Collision in Action

    NASA Astrophysics Data System (ADS)

    2010-11-01

    European Southern Observatory astronomers have produced a spectacular new image of the famous Atoms-for-Peace galaxy (NGC 7252). This galactic pile-up, formed by the collision of two galaxies, provides an excellent opportunity for astronomers to study how mergers affect the evolution of the Universe. Atoms-for-Peace is the curious name given to a pair of interacting and merging galaxies that lie around 220 million light-years away in the constellation of Aquarius. It is also known as NGC 7252 and Arp 226 and is just bright enough to be seen by amateur astronomers as a very faint small fuzzy blob. This very deep image was produced by ESO's Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. A galaxy collision is one of the most important processes influencing how our Universe evolves, and studying them reveals important clues about galactic ancestry. Luckily, such collisions are long drawn-out events that last hundreds of millions of years, giving astronomers plenty of time to observe them. This picture of Atoms-for-Peace represents a snapshot of its collision, with the chaos in full flow, set against a rich backdrop of distant galaxies. The results of the intricate interplay of gravitational interactions can be seen in the shapes of the tails made from streams of stars, gas and dust. The image also shows the incredible shells that formed as gas and stars were ripped out of the colliding galaxies and wrapped around their joint core. While much material was ejected into space, other regions were compressed, sparking bursts of star formation. The result was the formation of hundreds of very young star clusters, around 50 to 500 million years old, which are speculated to be the progenitors of globular clusters. Atoms-for-Peace may be a harbinger of our own galaxy's fate. Astronomers predict that in three or four billion years the Milky Way and the Andromeda Galaxy will collide, much as has happened with Atoms-for-Peace. But don't panic: the distance between stars within a galaxy is vast, so it is unlikely that our Sun will end up in a head-on collision with another star during the merger. The object's curious nickname has an interesting history. In December 1953, President Eisenhower gave a speech that was dubbed Atoms for Peace. The theme was promoting nuclear power for peaceful purposes - a particularly hot topic at the time. This speech and the associated conference made waves in the scientific community and beyond to such an extent that NGC 7252 was named the Atoms-for-Peace galaxy. In many ways, this is oddly appropriate: the curious shape that we can see is the result of two galaxies merging to produce something new and grand, a little like what occurs in nuclear fusion. Furthermore, the giant loops resemble a textbook diagram of electrons orbiting an atomic nucleus. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. The Stars behind the Curtain

    NASA Astrophysics Data System (ADS)

    2010-02-01

    ESO is releasing a magnificent VLT image of the giant stellar nursery surrounding NGC 3603, in which stars are continuously being born. Embedded in this scenic nebula is one of the most luminous and most compact clusters of young, massive stars in our Milky Way, which therefore serves as an excellent "local" analogue of very active star-forming regions in other galaxies. The cluster also hosts the most massive star to be "weighed" so far. NGC 3603 is a starburst region: a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust. Located 22 000 light-years away from the Sun, it is the closest region of this kind known in our galaxy, providing astronomers with a local test bed for studying intense star formation processes, very common in other galaxies, but hard to observe in detail because of their great distance from us. The nebula owes its shape to the intense light and winds coming from the young, massive stars which lift the curtains of gas and clouds revealing a multitude of glowing suns. The central cluster of stars inside NGC 3603 harbours thousands of stars of all sorts (eso9946): the majority have masses similar to or less than that of our Sun, but most spectacular are several of the very massive stars that are close to the end of their lives. Several blue supergiant stars crowd into a volume of less than a cubic light-year, along with three so-called Wolf-Rayet stars - extremely bright and massive stars that are ejecting vast amounts of material before finishing off in glorious explosions known as supernovae. Using another recent set of observations performed with the SINFONI instrument on ESO's Very Large Telescope (VLT), astronomers have confirmed that one of these stars is about 120 times more massive than our Sun, standing out as the most massive star known so far in the Milky Way [1]. The clouds of NGC 3603 provide us with a family picture of stars in different stages of their life, with gaseous structures that are still growing into stars, newborn stars, adult stars and stars nearing the end of their life. All these stars have roughly the same age, a million years, a blink of an eye compared to our five billion year-old Sun and Solar System. The fact that some of the stars have just started their lives while others are already dying is due to their extraordinary range of masses: high-mass stars, being very bright and hot, burn through their existence much faster than their less massive, fainter and cooler counterparts. The newly released image, obtained with the FORS instrument attached to the VLT at Cerro Paranal, Chile, portrays a wide field around the stellar cluster and reveals the rich texture of the surrounding clouds of gas and dust. Notes [1] The star, NGC 3603-A1, is an eclipsing system of two stars orbiting around each other in 3.77 days. The most massive star has an estimated mass of 116 solar masses, while its companion has a mass of 89 solar masses. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. The Cosmic Bat - An Island of Stars in the Making on the Outskirts of Orion

    NASA Astrophysics Data System (ADS)

    2010-03-01

    The delicate nebula NGC 1788, located in a dark and often neglected corner of the Orion constellation, is revealed in a new and finely nuanced image that ESO is releasing today. Although this ghostly cloud is rather isolated from Orion's bright stars, the latter's powerful winds and light have had a strong impact on the nebula, forging its shape and making it home to a multitude of infant suns. Stargazers all over the world are familiar with the distinctive profile of the constellation of Orion (the Hunter). Fewer know about the nebula NGC 1788, a subtle, hidden treasure just a few degrees away from the bright stars in Orion's belt. NGC 1788 is a reflection nebula, whose gas and dust scatter the light coming from a small cluster of young stars in such a way that the tenuous glow forms a shape reminiscent of a gigantic bat spreading its wings. Very few of the stars belonging to the nebula are visible in this image, as most of them are obscured by the dusty cocoons surrounding them. The most prominent, named HD 293815, can be distinguished as the bright star in the upper part of the cloud, just above the centre of the image and the pronounced dark lane of dust extending through the nebula. Although NGC 1788 appears at first glance to be an isolated cloud, observations covering a field beyond the one presented in this image have revealed that bright, massive stars, belonging to the vast stellar groupings in Orion, have played a decisive role in shaping NGC 1788 and stimulating the formation of its stars. They are also responsible for setting the hydrogen gas ablaze in the parts of the nebula facing Orion, leading to the red, almost vertical rim visible in the left half of the image. All the stars in this region are extremely young, with an average age of only a million years, a blink of an eye compared to the Sun's age of 4.5 billion years. Analysing them in detail, astronomers have discovered that these "preschool" stars fall naturally into three well separated classes: the slightly older ones, located on the left side of the red rim, the fairly young ones, to its right, making up the small cluster enclosed in the nebula and illuminating it, and eventually the very youngest stars, still deeply embedded in their nascent dusty cocoons, further to the right. Although none of the latter are visible in this image because of the obscuring dust, dozens of them have been revealed through observations in the infrared and millimetre wavelengths of light. This fine distribution of stars, with the older ones closer to Orion and the younger ones concentrated on the opposite side, suggests that a wave of star formation, generated around the hot and massive stars in Orion, propagated throughout NGC 1788 and beyond. This image has been obtained using the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. "Catch a Star !"

    NASA Astrophysics Data System (ADS)

    2002-05-01

    ESO and EAAE Launch Web-based Educational Programme for Europe's Schools Catch a star!... and discover all its secrets! This is the full title of an innovative educational project, launched today by the European Southern Observatory (ESO) and the European Association for Astronomy Education (EAAE). It welcomes all students in Europe's schools to an exciting web-based programme with a competition. It takes place within the context of the EC-sponsored European Week of Science and Technology (EWST) - 2002 . This unique project revolves around a web-based competition and is centred on astronomy. It is specifically conceived to stimulate the interest of young people in various aspects of this well-known field of science, but will also be of interest to the broad public. What is "Catch a Star!" about? [Go to Catch a Star Website] The programme features useful components from the world of research, but it is specifically tailored to (high-)school students. Younger participants are also welcome. Groups of up to four persons (e.g., three students and one teacher) have to select an astronomical object - a bright star, a distant galaxy, a beautiful comet, a planet or a moon in the solar system, or some other celestial body. Like detectives, they must then endeavour to find as much information as possible about "their" object. This information may be about the position and visibility in the sky, the physical and chemical characteristics, particular historical aspects, related mythology and sky lore, etc. They can use any source available, the web, books, newspaper and magazine articles, CDs etc. for this work. The group members must prepare a (short) summarising report about this investigation and "their" object, with their own ideas and conclusions, and send it to ESO (email address: eduinfo@eso.org). A jury, consisting of specialists from ESO and the EAAE, will carefully evaluate these reports. All projects that are found to fulfill the stipulated requirements, including a reasonable degree of scientific correctness, are entered as "registered projects" and will receive a lottery number. The first 1000 participants from the corresponding groups will also get a "Catch a star" T-Shirt by mail. All accepted entries will be listed at the corresponding website and all accepted reports will be displayed soon after the expiry of the deadline for submission on November 1st, 2002 . Winners to be Announced on November 8, 2002 On November 8th, 2002, at the end of the European Week of Science and Technology, the winners will be found by drawing numbers in a lottery. This event will take place at the ESO Headquarters in Garching (Germany) and will be webcast. The First Prize is a free trip for the members of the group to the ESO Paranal Observatory in Chile , the site of the ESO Very Large Telescope (VLT) . The Paranal trip will be realised in any case, but because of age restrictions, it can only be offered to a group in which all participants are 15 years of age or older at the time of the drawing. Younger participants may win an interesting trip within Europe. There will also be other prizes, to be announced later. Starting now The programme starts now and is open for groups of up to three students and one teacher, who must all belong to a school in Europe on November 1, 2002 . This means that only students who did not yet terminate their school studies on this date can participate. No student may participate in more than one group. The programme is administered by the ESO Educational Office , in close collaboration with members of the EAAE, mostly physics teachers. Details about how to register and how to prepare the report about "your" object are available on the web at: http://www.eso.org/public/outreach/eduoff/cas/ About the ESO Educational Office The ESO Educational Office was established in July 2001. It is part of the EPR Department at ESO Headquarters in Garching near Munich. The aim is to provide support of astronomy and astrophysics education, especially at the high-school level. This includes teaching materials, courses for teachers and specific educational projects, for instance in the context of the yearly European Week of Science and Technology. More information is available in ESO PR 29/01 and at the ESA/ESO Astronomy Excercise Series website. Note also the Frontline Astrophysics for School Teachers (FAST 2002) , an ESO teacher training course just announced. The application deadline for participation is June 1, 2002 . Contact for the "Catch a Star!" Programme: ESO Education Office eduinfo@eso.org

  7. First Data Release of the ESO-ARO Public Survey SAMPLING—SMT “All-sky” Mapping of Planck Interstellar Nebulae in the Galaxy

    NASA Astrophysics Data System (ADS)

    Wang, Ke; Zahorecz, Sarolta; Cunningham, Maria R.; Tóth, L. Viktor; Liu, Tie; Lu, Xing; Wang, Yuan; Cosentino, Giuliana; Sung, Ren-Shiang; Sokolov, Vlas; Wang, Shen; Wang, Yuwei; Zhang, Zhiyu; Li, Di; Kim, Kee-Tae; Tatematsu, Ken’ichi; Testi, Leonardo; Wu, Yuefang; Yang, Ji; SAMPLING Collaboration

    2018-01-01

    We make the first data release (DR1) of the ongoing ESO Public Survey SAMPLING (http://dx.doi.org/10.7910/DVN/0L8NHX). DR1 comprises of 124 fields distributed in $70^\\circ < l < 216^\\circ$, $-35^\\circ < b < 25^\\circ$. The 12CO and 13CO (2-1) cubes are gridded in $8"$ pixels, with an effective resolution of $36"$. The channel width is 0.33 km/s and the RMS noise is $T_{\\rm mb}<0.2$ K. Once completed, SAMPLING and complementary surveys will initiate the first major step forward to characterize molecular clouds and star formation on truly Galactic scales.

  8. 45 CFR 1218.1 - Introduction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Introduction. 1218.1 Section 1218.1 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA VOLUNTEERS-HEARING OPPORTUNITY § 1218.1 Introduction. Section 104(d) of the Domestic Volunteer Service Act of...

  9. 45 CFR 1218.3 - Policy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 45 Public Welfare 4 2013-10-01 2013-10-01 false Policy. 1218.3 Section 1218.3 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA VOLUNTEERS-HEARING OPPORTUNITY § 1218.3 Policy. It is ACTION's policy to encourage the free exchange of views...

  10. Innovations in user-defined analysis: dynamic grouping and customized user datasets in VistaPHw.

    PubMed

    Solet, David; Glusker, Ann; Laurent, Amy; Yu, Tianji

    2006-01-01

    Flexible, ready access to community health assessment data is a feature of innovative Web-based data query systems. An example is VistaPHw, which provides access to Washington state data and statistics used in community health assessment. Because of its flexible analysis options, VistaPHw customizes local, population-based results to be relevant to public health decision-making. The advantages of two innovations, dynamic grouping and the Custom Data Module, are described. Dynamic grouping permits the creation of user-defined aggregations of geographic areas, age groups, race categories, and years. Standard VistaPHw measures such as rates, confidence intervals, and other statistics may then be calculated for the new groups. Dynamic grouping has provided data for major, successful grant proposals, building partnerships with local governments and organizations, and informing program planning for community organizations. The Custom Data Module allows users to prepare virtually any dataset so it may be analyzed in VistaPHw. Uses for this module may include datasets too sensitive to be placed on a Web server or datasets that are not standardized across the state. Limitations and other system needs are also discussed.

  11. 75 FR 32359 - Upper Rio Grande Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-08

    ... to Mike Blakeman, San Luis Valley Public Lands Center, 1803 West U.S. Highway 160, Monte Vista, CO... for public inspection and copying. The public may inspect comments received at the San Luis Valley...: Mike Blakeman, RAC coordinator, USDA, San Luis Valley Public Lands Center, 1803 West U.S. Highway 160...

  12. VizieR Online Data Catalog: Collinder 261 Chandra sources & optical counterparts (Vats+, 2017)

    NASA Astrophysics Data System (ADS)

    Vats, S.; van den Berg, M.

    2017-10-01

    Cr 261 was observed with the Advanced CCD Imaging Spectrometer (ACIS) on board Chandra starting 2009 November 9 14:50 UTC, for a total exposure time of 53.8ks (ObsID 11308). We retrieved optical images of Cr 261 in the B and V bands from the ESO public archive. These data were taken as part of the ESO Imaging Survey (EIS; program ID 164.O-0561). The observations of Cr 261 were made using the Wide Field Imager (WFI), mounted on the 2.2m MPG/ESO telescope at La Silla, Chile. The Cr 261 data were taken from 2001 June 27 23:55 UTC to 2001 June 28 00:38 UTC, with a total exposure time of 510s in the B and V filter each. (2 data files).

  13. 45 CFR 1217.1 - Introduction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Introduction. 1217.1 Section 1217.1 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA VOLUNTEER LEADER § 1217.1 Introduction. Section 105(a)(1), Part A, of the Domestic Volunteer Service Act of...

  14. Report on the ''ESO Python Boot Camp — Pilot Version''

    NASA Astrophysics Data System (ADS)

    Dias, B.; Milli, J.

    2017-03-01

    The Python programming language is becoming very popular within the astronomical community. Python is a high-level language with multiple applications including database management, handling FITS images and tables, statistical analysis, and more advanced topics. Python is a very powerful tool both for astronomical publications and for observatory operations. Since the best way to learn a new programming language is through practice, we therefore organised a two-day hands-on workshop to share expertise among ESO colleagues. We report here the outcome and feedback from this pilot event.

  15. VizieR Online Data Catalog: SN2009ip UBVRI, UVOT and JHK light curves (Fraser+, 2013)

    NASA Astrophysics Data System (ADS)

    Fraser, M.; Inserra, C.; Jerkstrand, A.; Kotak, R.; Pignata, G.; Benetti, S.; Botticella, M.-T.; Bufano, F.; Childress, M.; Mattila, S.; Pastorello, A.; Smartt, S. J.; Turatto, M.; Yuan, F.; Anderson, J. P.; Bayliss, D. D. R.; Bauer, F. E.; Chen, T.-W.; Forster Buron, F.; Gal-Yam, A.; Haislip, J. B.; Knapic, C.; Le Guillou, L.; Marchi, S.; Mazzali, P.; Molinaro, M.; Moore, J. P.; Reichart, D.; Smareglia, R.; Smith, K. W.; Sternberg, A.; Sullivan, M.; Takats, K.; Tucker, B. E.; Valenti, S.; Yaron, O.; Young, D. R.; Zhou, G.

    2014-11-01

    Optical spectroscopic follow-up of SN 2009ip was chiefly obtained with the New Technology Telescope (NTT) + ESO Faint Object Spectrograph and Camera 2 (EFOSC2), as part of the Public European Southern Observatory (ESO) Spectroscopic Survey of Transient Objects (PESSTO). The PESSTO data were supplemented with data from the Telescopio Nazionale Galileo (TNG) + Device Optimized for the LOw RESolution (DOLORES), and the Australian National University (ANU) 2.3m telescope + Wide Field Spectrograph (WiFeS). (3 data files).

  16. Science with ESO's Multi-conjugate Adaptive-optics Demonstrator - MAD

    NASA Astrophysics Data System (ADS)

    Melnick, Jorge; Marchetti, Enrico; Amico, Paola

    2012-07-01

    ESO's Multi-conjugate Adaptive-optics Demonstrator (MAD) was a prototype designed and built to demonstrate wide-field adaptive optics science on large telescopes. The outstanding results obtained during commissioning and guaranteed time observations (GTO) prompted ESO to issue and open call to the community for 23 science demonstration (SD) observing nights distributed in three runs (in order to provide access to the summer an winter skies). Thus, in total MAD was used for science for 33 nights including the 10 nights of GTO time. date, 19 articles in refereed journals (including one in Nature) have been published based fully or partially o MAD data. To the best of our knowledge, these are not only the first, but also the only scientific publication from MCAO instruments world-wide to date (at least in Astronomy). The scientific impact of these publication, as measured by the h-index, is comparable to that of other AO instruments on the VLT, although over the years these instruments have been allocated many more nights than MAD. In this contribution we present an overview of the scientific results from MAD and a more detailed discussion of the most cited papers.

  17. R Coronae Australis: A Cosmic Watercolour

    NASA Astrophysics Data System (ADS)

    2010-06-01

    This magnificent view of the region around the star R Coronae Australis was created from images taken with the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile. R Coronae Australis lies at the heart of a nearby star-forming region and is surrounded by a delicate bluish reflection nebula embedded in a huge dust cloud. The image reveals surprising new details in this dramatic area of sky. The star R Coronae Australis lies in one of the nearest and most spectacular star-forming regions. This portrait was taken by the Wide Field Imager (WFI) on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. The image is a combination of twelve separate pictures taken through red, green and blue filters. This image shows a section of sky that spans roughly the width of the full Moon. This is equivalent to about four light-years at the distance of the nebula, which is located some 420 light-years away in the small constellation of Corona Australis (the Southern Crown). The complex is named after the star R Coronae Australis, which lies at the centre of the image. It is one of several stars in this region that belong to the class of very young stars that vary in brightness and are still surrounded by the clouds of gas and dust from which they formed. The intense radiation given off by these hot young stars interacts with the gas surrounding them and is either reflected or re-emitted at a different wavelength. These complex processes, determined by the physics of the interstellar medium and the properties of the stars, are responsible for the magnificent colours of nebulae. The light blue nebulosity seen in this picture is mostly due to the reflection of starlight off small dust particles. The young stars in the R Coronae Australis complex are similar in mass to the Sun and do not emit enough ultraviolet light to ionise a substantial fraction of the surrounding hydrogen. This means that the cloud does not glow with the characteristic red colour seen in many star-forming regions. The huge dust cloud in which the reflection nebula is embedded is here shown in impressively fine detail. The subtle colours and varied textures of the dust clouds make this image resemble an impressionist painting. A prominent dark lane crosses the image from the centre to the bottom left. Here the visible light emitted by the stars that are forming inside the cloud is completely absorbed by the dust. These objects could only be detected by observing at longer wavelengths, by using a camera that can detect infrared radiation. R Coronae Australis itself is not visible to the unaided eye, but the tiny, tiara-shaped constellation in which it lies is easily spotted from dark sites due to its proximity on the sky to the larger constellation of Sagittarius and the rich star clouds towards the centre of our own galaxy, the Milky Way. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. BOOK REVIEW: Geheimnisvolles Universum - Europas Astronomen entschleiern das Weltall

    NASA Astrophysics Data System (ADS)

    Duerbeck, H. W.; Lorenzen, D. H.

    2002-12-01

    The 25th birthday of ESO, in 1987, was celebrated by the publication of an illustrated popular book, "Exploring the Southern Sky" (Springer-Verlag 1987), which also saw editions in Danish, English, French, German, and Spanish. Written and illustrated by the ESO staff members Svend Laustsen, Claus Madsen and Richard M. West, its many pictures were mainly taken with the ESO 3.6m and Schmidt telescopes. The structure of the book - perhaps at that time somewhat unusual - started with things far away (Universe and galaxies), zoomed in to the Milky Way, and finally reached the Solar System (with a concluding chapter dealing with the La Silla observatory). Now, with the 4 units of the Very Large Telescope in full operation, and on the occasion of ESO's 40th birthday, another jubilee book has appeared: "Geheimnisvolles Universum: Europas Astronomen entschleiern das Weltall", written by the science journalist Dirk H. Lorenzen, of Hamburg, Germany, and prefaced by Catherine Cesarsky, Director General of ESO. Presumably, this book will also soon become available in more languages spoken in ESO member countries. Thus it may be worthwhile to review the first edition, although some readers may like to wait for more easily accessible editions. Before going into details, let me first mention that I find this a very impressing book, great to look at and refreshing to read. With ESO seen through the eyes of a visitor, things gain a perspective that is quite different from that of the previous book, and at least as attractive. It comes as no surprise that the book starts with a visit of ESO's showcase, the Paranal Observatory, and the writer not only notes down his own impressions, but also cites statements of some of the many people that keep Paranal going - technicians and staff astronomers. This mixture of texts provides a good impression of the operations at a large observatory for the general reader. The two more 'astronomical' parts that follow deal with star and planet formation, stellar death and dust formation, as well as with the Universe, its beginnings and contents (focussing on quasars and SN Ia); like the previous chapters, they contain many quotations of astronomers involved in these types of research (I suppose they are taken from interviews); these blocks, each composed of three chapters, are separated by a more technical part, two chapters dealing with interferometry and adaptive optics. The last third of the book is then dedicated almost exclusively to ESO's "prehistory", and here the reviewer starts to frown. This is a very extensive report on Juergen Stock's early site testing work for US astronomers, first for Gerard Kuiper and the University of Texas, and then for the Association of Universities for Research in Astronomy (AURA), to find an suitable place for a projected telescope and then for the AURA southern observatory, with page-long excerpts from his notebooks (or the printed "Stock reports"). It also deals with Stock's later activities in Chile and Venezuela. Finally, there are a few pages on the foundation of ESO and the choice of a Chilean site, as well as another few pages on future projects of ESO. The decision of ESO to go to Chile is treated very briefly, much shorter than in Blaauw's 1991 book "ESO's Early History"; the reasons for the early focussing on a site in South Africa, and the relatively quick jump on the "Chilean bandwagon" remain quite obscure. Compared to that, the 25 pages of "Stock reports" written to help the decision making of the site of the AURA observatory, contain a lot of not-too-relevant details like prices and names of horses and mules employed in Stock's site testing survey. It is fun reading, but does not penetrate under the surface, and the author's somewhat desperate attempt to join together the ends of the threat, "also the VLT is a consequence of Juergen Stock's activities in Chile", appears not very convincing. I do not want at all to diminish Stock's immense work that made Chile to the "golden land of astronomy" in the late decades of the 20th century. Stock was sent by the US astronomers, and they became active because of Kuiper's enthusiasm, that was triggered by a visit of Federico Rutlland, director of the Astronomy Department of the Universidad de Chile - the former Chilean National Observatory, whose founding was triggered by the activities of a US astronomical expedition in the mid-19th century, headed by James Gilliss; and Gilliss was inspired by an astronomical proposition made in 1847 by Christian Gerling, a mathematics professor of Marburg. And besides this line of events, there have been other astronomical expeditions and observing stations in the north of Chile in the late 19th and early 20th century. What is the true first cause of the presently florishing astronomical activity in Chile? Certainly not the "Stock report"! At times ESO's development resembled more a random walk than a strategic process, that - given enough time and money - finally culminated in a very successful research institution. This very pretty and informative book, whose author - intentionally or unintentionally - had the courage to neglect important things, and to include irrelevant things, is not a book that tells the whole story (and actually no book can achieve this goal!). Even a book like Lorenzen's that is composed of huge fragments that do not quite fit into the story, can make fascinating reading. However, besides the publisher's logo, this book carries the ESO logo, and therefore becomes something like an "official" ESO publication. And this is why one wonders why so much space is used up to describe activities which have hardly any relation to ESO's history, a history that really deserves to be communicated to the interested general public. If this book would encourage some of the early players of ESO to pen down their memoirs and make them available to science writers and historians, a story at least as colorful as that of Juergen Stock would emerge! And only then it would be possible to write a more balanced history of ESO.

  19. 76 FR 44302 - Upper Rio Grande Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ..., Colorado. Written comments should be sent to Mike Blakeman, San Luis Valley Public Lands Center, 1803 West... received at the San Luis Valley Public Lands Center, 1803 West U.S. Highway 160, Monte Vista, CO 81144. FOR FURTHER INFORMATION CONTACT: Mike Blakeman, RAC Coordinator, USDA, San Luis Valley Public Lands Center...

  20. New Inspiring Planetarium Show Introduces ALMA to the Public

    NASA Astrophysics Data System (ADS)

    2009-03-01

    As part of a wide range of education and public outreach activities for the International Year of Astronomy 2009 (IYA2009), ESO, together with the Association of French Language Planetariums (APLF), has produced a 30-minute planetarium show, In Search of our Cosmic Origins. It is centred on the global ground-based astronomical Atacama Large Millimeter/submillimeter Array (ALMA) project and represents a unique chance for planetariums to be associated with the IYA2009. ESO PR Photo 09a/09 Logo of the ALMA Planetarium Show ESO PR Photo 09b/09 Galileo's first observations with a telescope ESO PR Photo 09c/09 The ALMA Observatory ESO PR Photo 09d/09 The Milky Way band ESO PR Video 09a/09 Trailer in English ALMA is the leading telescope for observing the cool Universe -- the relic radiation of the Big Bang, and the molecular gas and dust that constitute the building blocks of stars, planetary systems, galaxies and life itself. It is currently being built in the extremely arid environment of the Chajnantor plateau, at 5000 metres altitude in the Chilean Andes, and will start scientific observations around 2011. ALMA, the largest current astronomical project, is a revolutionary telescope, comprising a state-of-the-art array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. In Search of our Cosmic Origins highlights the unprecedented window on the Universe that this facility will open for astronomers. "The show gives viewers a fascinating tour of the highest observatory on Earth, and takes them from there out into our Milky Way, and beyond," says Douglas Pierce-Price, the ALMA Public Information Officer at ESO. Edited by world fulldome experts Mirage3D, the emphasis of the new planetarium show is on the incomparable scientific adventure of the ALMA project. A young female astronomer guides the audience through a story that includes unique animations and footage, leading the viewer from the first observations by Galileo, 400 years ago, to the world of modern astronomy, moving from the visible wavelength domain to explore the millimetre-wave view of the Universe, and leaving light-polluted cities for unique settings in some of the highest and driest places on Earth. "The fascinating topic, the breathtaking ESO astronomical images, the amazing 3D computer animations, and the very clever use of the music, all make this a really inspiring show," says Agnès Acker, President of the APLF. In search of our Cosmic Origins is available in three different formats: fulldome video, classical with video windows, and classical with slides. Fulldome video shows immerse the audience in a true 360-degree projected computer-generated virtual environment. The ALMA planetarium show is currently available in French and English. Several other language versions are in preparation: German, Italian, Spanish and Chilean Spanish, while further languages are planned: Danish, Dutch, Greek, Japanese, Portuguese and Brazilian Portuguese. The show will be available to all planetariums worldwide for a small fee, depending on the type and the size of the planetarium, to cover basic costs. The media are invited to attend, and see firsthand, the official screening during the European Film Festival, between 24 and 26 April 2009 in Espinho, Portugal. For media accreditation, please go to http://iff.multimeios.pt/index.php?option=com_wrapper&Itemid=45 A set of educational materials is also being prepared and will be finished in late April. To learn more about the show, please go to www.cosmicorigins.org

  1. The VISTA Carina Nebula Survey. II. Spatial distribution of the infrared-excess-selected young stellar population

    NASA Astrophysics Data System (ADS)

    Zeidler, P.; Preibisch, T.; Ratzka, T.; Roccatagliata, V.; Petr-Gotzens, M. G.

    2016-01-01

    We performed a deep wide-field (6.76 sq. deg) near-infrared survey with the VISTA telescope that covers the entire extent of the Carina nebula complex (CNC). The point-source catalog created from these data contains around four million individual objects down to masses of 0.1 M⊙. We present a statistical study of the large-scale spatial distribution and an investigation of the clustering properties of infrared-excesses objects, which are used to trace disk-bearing young stellar objects (YSOs). A selection based on a near-infrared (J-H) versus (H-Ks) color-color diagram shows an almost uniform distribution over the entire observed area. We interpret this as a result of the very high degree of background contamination that arises from the Carina Nebula's location close to the Galactic plane. Complementing the VISTA near-infrared catalog with Spitzer IRAC mid-infrared photometry improves the situation of the background contamination considerably. We find that a (J-H) versus (Ks- [4.5]) color-color diagram is well suited to tracing the population of YSO-candidates (cYSOs) by their infrared excess. We identify 8781 sources with strong infrared excess, which we consider as cYSOs. This sample is used to investigate the spatial distribution of the cYSOs with a nearest-neighbor analysis. The surface density distribution of cYSOs agrees well with the shape of the clouds as seen in our Herschel far-infrared survey. The strong decline in the surface density of excess sources outside the area of the clouds supports the hypothesis that our excess-selected sample consists predominantly of cYSOs with a low level of background contamination. This analysis allows us to identify 14 groups of cYSOs outside the central area.Our results suggest that the total population of cYSOs in the CNC comprises about 164 000 objects, with a substantial fraction (~35%) located in the northern, still not well studied parts. Our cluster analysis suggests that roughly half of the cYSOs constitute a non-clustered, dispersed population. Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program ID 088.C-0117.Final VISTA+HAWKI+Spitzer catalog is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/585/A49

  2. Seeing a Stellar Explosion in 3D

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers using ESO's Very Large Telescope have for the first time obtained a three-dimensional view of the distribution of the innermost material expelled by a recently exploded star. The original blast was not only powerful, according to the new results. It was also more concentrated in one particular direction. This is a strong indication that the supernova must have been very turbulent, supporting the most recent computer models. Unlike the Sun, which will die rather quietly, massive stars arriving at the end of their brief life explode as supernovae, hurling out a vast quantity of material. In this class, Supernova 1987A (SN 1987A) in the rather nearby Large Magellanic Cloud occupies a very special place. Seen in 1987, it was the first naked-eye supernova to be observed for 383 years (eso8704), and because of its relative closeness, it has made it possible for astronomers to study the explosion of a massive star and its aftermath in more detail than ever before. It is thus no surprise that few events in modern astronomy have been met with such an enthusiastic response by scientists. SN 1987A has been a bonanza for astrophysicists (eso8711 and eso0708). It provided several notable observational 'firsts', like the detection of neutrinos from the collapsing inner stellar core triggering the explosion, the localisation on archival photographic plates of the star before it exploded, the signs of an asymmetric explosion, the direct observation of the radioactive elements produced during the blast, observation of the formation of dust in the supernova, as well as the detection of circumstellar and interstellar material (eso0708). New observations making use of a unique instrument, SINFONI [1], on ESO's Very Large Telescope (VLT) have provided even deeper knowledge of this amazing event, as astronomers have now been able to obtain the first-ever 3D reconstruction of the central parts of the exploding material. This view shows that the explosion was stronger and faster in some directions than others, leading to an irregular shape with some parts stretching out further into space. The first material to be ejected from the explosion travelled at an incredible 100 million km per hour, which is about a tenth of the speed of light or around 100 000 times faster than a passenger jet. Even at this breakneck speed it has taken 10 years to reach a previously existing ring of gas and dust puffed out from the dying star. The images also demonstrate that another wave of material is travelling ten times more slowly and is being heated by radioactive elements created in the explosion. "We have established the velocity distribution of the inner ejecta of Supernova 1987A," says lead author Karina Kjær. "Just how a supernova explodes is not very well understood, but the way the star exploded is imprinted on this inner material. We can see that this material was not ejected symmetrically in all directions, but rather seems to have had a preferred direction. Besides, this direction is different to what was expected from the position of the ring." Such asymmetric behaviour was predicted by some of the most recent computer models of supernovae, which found that large-scale instabilities take place during the explosion. The new observations are thus the first direct confirmation of such models. SINFONI is the leading instrument of its kind, and only the level of detail it affords allowed the team to draw their conclusions. Advanced adaptive optics systems counteracted the blurring effects of the Earth's atmosphere while a technique called integral field spectroscopy allowed the astronomers to study several parts of the supernova's chaotic core simultaneously, leading to the build-up of the 3D image. "Integral field spectroscopy is a special technique where for each pixel we get information about the nature and velocity of the gas," says Kjær. "This means that besides the normal picture we also have the velocity along the line of sight. Because we know the time that has passed since the explosion, and because the material is moving outwards freely, we can convert this velocity into a distance. This gives us a picture of the inner ejecta as seen straight on and from the side." Notes [1] The team used the SINFONI (Spectrograph for INtegral Field Observations in the Near Infrared) instrument mounted on ESO's Very Large Telescope (VLT). SINFONI is a near-infrared (1.1-2.45 µm) integral field spectrograph fed by an adaptive optics module. More information This research will appear in Astronomy and Astrophysics ("The 3-D Structure of SN 1987A's inner Ejecta", by K. Kjær et al.). The team is composed of Karina Kjær (Queen's University Belfast, UK), Bruno Leibundgut and Jason Spyromilio (ESO), and Claes Fransson and Anders Jerkstrand (Stockholm University, Sweden). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  3. A Swarm of Ancient Stars

    NASA Astrophysics Data System (ADS)

    2010-12-01

    We know of about 150 of the rich collections of old stars called globular clusters that orbit our galaxy, the Milky Way. This sharp new image of Messier 107, captured by the Wide Field Imager on the 2.2-metre telescope at ESO's La Silla Observatory in Chile, displays the structure of one such globular cluster in exquisite detail. Studying these stellar swarms has revealed much about the history of our galaxy and how stars evolve. The globular cluster Messier 107, also known as NGC 6171, is a compact and ancient family of stars that lies about 21 000 light-years away. Messier 107 is a bustling metropolis: thousands of stars in globular clusters like this one are concentrated into a space that is only about twenty times the distance between our Sun and its nearest stellar neighbour, Alpha Centauri, across. A significant number of these stars have already evolved into red giants, one of the last stages of a star's life, and have a yellowish colour in this image. Globular clusters are among the oldest objects in the Universe. And since the stars within a globular cluster formed from the same cloud of interstellar matter at roughly the same time - typically over 10 billion years ago - they are all low-mass stars, as lightweights burn their hydrogen fuel supply much more slowly than stellar behemoths. Globular clusters formed during the earliest stages in the formation of their host galaxies and therefore studying these objects can give significant insights into how galaxies, and their component stars, evolve. Messier 107 has undergone intensive observations, being one of the 160 stellar fields that was selected for the Pre-FLAMES Survey - a preliminary survey conducted between 1999 and 2002 using the 2.2-metre telescope at ESO's La Silla Observatory in Chile, to find suitable stars for follow-up observations with the VLT's spectroscopic instrument FLAMES [1]. Using FLAMES, it is possible to observe up to 130 targets at the same time, making it particularly well suited to the spectroscopic study of densely populated stellar fields, such as globular clusters. M107 is not visible to the naked eye, but, with an apparent magnitude of about eight, it can easily be observed from a dark site with binoculars or a small telescope. The globular cluster is about 13 arcminutes across, which corresponds to about 80 light-years at its distance, and it is found in the constellation of Ophiuchus, north of the pincers of Scorpius. Roughly half of the Milky Way's known globular clusters are actually found in the constellations of Sagittarius, Scorpius and Ophiuchus, in the general direction of the centre of the Milky Way. This is because they are all in elongated orbits around the central region and are on average most likely to be seen in this direction. Messier 107 was discovered by Pierre Méchain in April 1782 and it was added to the list of seven Additional Messier Objects that were originally not included in the final version of Messier's catalogue, which was published the previous year. On 12 May 1793, it was independently rediscovered by William Herschel, who was able to resolve this globular cluster into stars for the first time. But it was not until 1947 that this globular cluster finally took its place in Messier's catalogue as M107, making it the most recent star cluster to be added to this famous list. This image is composed from exposures taken through the blue, green and near-infrared filters by the Wide Field Camera (WFI) on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. Notes [1] Fibre Large Array Multi-Element Spectrograph More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. 78 FR 78937 - Proposed Information Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ...The Corporation for National and Community Service (CNCS), as part of its continuing effort to reduce paperwork and respondent burden, conducts a pre-clearance consultation program to provide the general public and federal agencies with an opportunity to comment on proposed and/or continuing collections of information in accordance with the Paperwork Reduction Act of 1995 (PRA95) (44 U.S.C. Sec. 3506(c)(2)(A)). This program helps to ensure that requested data can be provided in the desired format, reporting burden (time and financial resources) is minimized, collection instruments are clearly understood, and the impact of collection requirement on respondents can be properly assessed. Currently, CNCS is soliciting comments concerning its new AmeriCorps VISTA Sponsor Recruitment Practices Survey. AmeriCorps VISTA sponsor organizations will provide information about their approach to VISTA member recruitment in order for CNCS to design recruitment strategies and materials for the VISTA program. Completion of this information collection is not required to be considered for or to obtain grant funding support. Copies of the information collection request can be obtained by contacting the office listed in the Addresses section of this notice.

  5. 45 CFR 1210.4 - Early termination procedures for National Grant Trainees and Volunteers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Trainees and Volunteers. 1210.4 Section 1210.4 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES National Grant Trainees and Volunteers § 1210.4 Early termination procedures for...

  6. 45 CFR 1210.4 - Early termination procedures for National Grant Trainees and Volunteers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Trainees and Volunteers. 1210.4 Section 1210.4 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES National Grant Trainees and Volunteers § 1210.4 Early termination procedures for...

  7. 45 CFR 1210.4 - Early termination procedures for National Grant Trainees and Volunteers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Trainees and Volunteers. 1210.4 Section 1210.4 Public Welfare Regulations Relating to Public Welfare (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES National Grant Trainees and Volunteers § 1210.4 Early termination procedures for...

  8. ESO PR Highlights in 2007

    NASA Astrophysics Data System (ADS)

    2008-01-01

    Another great year went by for ESO, the European Organisation for Astronomical Research in the Southern Hemisphere. From 1 January 2007, with the official joining of the Czech Republic, ESO has 13 member states, and since September, ESO has a new Director General, Tim de Zeeuw (ESO 03/07 and 38/07). Many scientific discoveries were made possible with ESO's telescopes. Arguably, the most important is the discovery of the first Earth-like planet in the habitable zone of a low-mass red dwarf (ESO 22/07). If there is water on this planet, then it should be liquid! ESO PR Highlights 2007 This is a clickable map. These are only some of the press releases issued by ESO in 2007. For a full listing, please go to ESO 2007 page. In our own Solar System also, astronomers made stunning breakthroughs with ESO's telescopes, observing the effect of the light from the Sun on an asteroid's rotation (ESO 11/07), describing in unprecedented detail the double asteroid Antiope (ESO 18/07), peering at the rings of Uranus (ESO 37/07), discovering a warm south pole on Neptune (ESO 41/07), showing a widespread and persistent morning drizzle of methane over the western foothills of Titan's major continent (ESO 47/07), and studying in the greatest details the wonderful Comet McNaught (ESO 05/07 and 07/07). In the study of objects slightly more massive than planets, the VLT found that brown dwarfs form in a similar manner to normal stars (ESO 24/07). The VLT made it also possible to measure the age of a fossil star that was clearly born at the dawn of time (ESO 23/07). Other discoveries included reconstructing the site of a flare on a solar-like star (ESO 53/07), catching a star smoking (ESO 34/07), revealing a reservoir of dust around an elderly star (ESO 43/07), uncovering a flat, nearly edge-on disc of silicates in the heart of the magnificent Ant Nebula (ESO 42/07), finding material around a star before it exploded (ESO 31/07), fingerprinting the Milky Way (ESO 15/07), revealing a rich circular cluster of stars (ESO 12/07), hunting galaxies (ESO 40/07), discovering teenage galaxies (ESO 52/07), and finding the first known triplet of supermassive black holes (ESO 02/07). On the instrumentation side, the VLT has been equipped with a new 'eye' to study the Universe in the near-infrared, Hawk-I (ESO 36/07), while the Laser Guide Star used at the VLT to create an artificial star appears to fulfil all its promises (ESO 27/07 and 33/07). Successful tests were also done of a crucial technology for Extremely Large Telescopes (ESO 19/07). The VLT Rapid Response Mode showed it unique capabilities in the study of gamma-ray bursts (ESO 17/07), as did the REM, a robotic telescope at La Silla, that allowed astronomers to measure for the first time the speed of matter ejected in these tremendous explosions (ESO 26/07). The world's largest bolometer camera for submillimetre astronomy, LABOCA, is now in service at the 12-m APEX telescope (ESO 35/07), while the construction of ALMA moves forwards. Two 12-m ALMA prototype antennas were first linked together as an integrated system to observe an astronomical object (ESO 10/07), the ALMA Operations Support Facility is almost completed (ESO 13/07), and the ALMA transporters were shipped to Chile (ESO 32/07 and 45/07). ESO is also present on the educational front with, for example, its annual international contest for students, Catch a Star (ESO 21/07 and 46/07). In April 2007, ESO organised with its partners the second EIROforum Science on Stage festival, a unique event, showcasing the very best of today's science education and to which participated the European Commissioner for Science and Research, Janez Potočnik. The Commissioner also visited the Paranal observatory (ESO 48/07) and took part in the observation of a beautiful galaxy (ESO 49/07). This was not the only nice image coming out from ESO telescopes. A rather amazing Cosmic Bird - or a gigantic Tinker Bell - was photographed (ESO 55/07), as well as a Purple Rose (ESO 16/07) and a stellar firework (ESO 39/07). And last but least, at the end of the year, the United Nations passed a resolution proclaiming 2009 the International Year of Astronomy (ESO 54/07).

  9. The Gaia-ESO Survey: Empirical determination of the precision of stellar radial velocities and projected rotation velocities

    NASA Astrophysics Data System (ADS)

    Jackson, R. J.; Jeffries, R. D.; Lewis, J.; Koposov, S. E.; Sacco, G. G.; Randich, S.; Gilmore, G.; Asplund, M.; Binney, J.; Bonifacio, P.; Drew, J. E.; Feltzing, S.; Ferguson, A. M. N.; Micela, G.; Neguerela, I.; Prusti, T.; Rix, H.-W.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Babusiaux, C.; Bensby, T.; Blomme, R.; Bragaglia, A.; Flaccomio, E.; Francois, P.; Hambly, N.; Irwin, M.; Korn, A. J.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Van Eck, S.; Walton, N.; Bayo, A.; Bergemann, M.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Franciosini, E.; Frasca, A.; Heiter, U.; Hill, V.; Hourihane, A.; Jofré, P.; Lardo, C.; de Laverny, P.; Lind, K.; Magrini, L.; Marconi, G.; Martayan, C.; Masseron, T.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2015-08-01

    Context. The Gaia-ESO Survey (GES) is a large public spectroscopic survey at the European Southern Observatory Very Large Telescope. Aims: A key aim is to provide precise radial velocities (RVs) and projected equatorial velocities (vsini) for representative samples of Galactic stars, which will complement information obtained by the Gaia astrometry satellite. Methods: We present an analysis to empirically quantify the size and distribution of uncertainties in RV and vsini using spectra from repeated exposures of the same stars. Results: We show that the uncertainties vary as simple scaling functions of signal-to-noise ratio (S/N) and vsini, that the uncertainties become larger with increasing photospheric temperature, but that the dependence on stellar gravity, metallicity and age is weak. The underlying uncertainty distributions have extended tails that are better represented by Student's t-distributions than by normal distributions. Conclusions: Parametrised results are provided, which enable estimates of the RV precision for almost all GES measurements, and estimates of the vsini precision for stars in young clusters, as a function of S/N, vsini and stellar temperature. The precision of individual high S/N GES RV measurements is 0.22-0.26 km s-1, dependent on instrumental configuration. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia- ESO Large Public Survey (188.B-3002).Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/580/A75

  10. Resident Participation in Seattle's Jobs-Plus Program

    ERIC Educational Resources Information Center

    Liebow, Edward B.; Reid, Carolina Katz; O'Malley, Gabrielle E.; Marsh, Scott; Blank, Susan

    2004-01-01

    The Jobs-Plus Community Revitalization Initiative for Public Housing Families ("Jobs-Plus") began operating in seven public housing developments around the country in 1998, but its implementation in Seattle?s Rainier Vista development differs significantly from its implementation in other sites. Two factors set Seattle Jobs-Plus apart: First, a…

  11. Eight New Luminous z > 6 Quasars Selected via SED Model Fitting of VISTA, WISE and Dark Energy Survey Year 1 Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, S.L.; et al.

    We present the discovery and spectroscopic confirmation with the ESO NTT and Gemini South telescopes of eight new 6.0 < z < 6.5 quasars with zmore » $$_{AB}$$ < 21.0. These quasars were photometrically selected without any star-galaxy morphological criteria from 1533 deg$$^{2}$$ using SED model fitting to photometric data from the Dark Energy Survey (g, r, i, z, Y), the VISTA Hemisphere Survey (J, H, K) and the Wide-Field Infrared Survey Explorer (W1, W2). The photometric data was fitted with a grid of quasar model SEDs with redshift dependent Lyman-{\\alpha} forest absorption and a range of intrinsic reddening as well as a series of low mass cool star models. Candidates were ranked using on a SED-model based $$\\chi^{2}$$-statistic, which is extendable to other future imaging surveys (e.g. LSST, Euclid). Our spectral confirmation success rate is 100% without the need for follow-up photometric observations as used in other studies of this type. Combined with automatic removal of the main types of non-astrophysical contaminants the method allows large data sets to be processed without human intervention and without being over run by spurious false candidates. We also present a robust parametric redshift estimating technique that gives comparable accuracy to MgII and CO based redshift estimators. We find two z $$\\sim$$ 6.2 quasars with HII near zone sizes < 3 proper Mpc which could indicate that these quasars may be young with ages < 10$^6$ - 10$^7$ years or lie in over dense regions of the IGM. The z = 6.5 quasar VDESJ0224-4711 has J$$_{AB}$$ = 19.75 is the second most luminous quasar known with z > 6.5.« less

  12. An Elegant Galaxy in an Unusual Light

    NASA Astrophysics Data System (ADS)

    2010-09-01

    A new image taken with the powerful HAWK-I camera on ESO's Very Large Telescope at Paranal Observatory in Chile shows the beautiful barred spiral galaxy NGC 1365 in infrared light. NGC 1365 is a member of the Fornax cluster of galaxies, and lies about 60 million light-years from Earth. NGC 1365 is one of the best known and most studied barred spiral galaxies and is sometimes nicknamed the Great Barred Spiral Galaxy because of its strikingly perfect form, with the straight bar and two very prominent outer spiral arms. Closer to the centre there is also a second spiral structure and the whole galaxy is laced with delicate dust lanes. This galaxy is an excellent laboratory for astronomers to study how spiral galaxies form and evolve. The new infrared images from HAWK-I are less affected by the dust that obscures parts of the galaxy than images in visible light (potw1037a) and they reveal very clearly the glow from vast numbers of stars in both the bar and the spiral arms. These data were acquired to help astronomers understand the complex flow of material within the galaxy and how it affects the reservoirs of gas from which new stars can form. The huge bar disturbs the shape of the gravitational field of the galaxy and this leads to regions where gas is compressed and star formation is triggered. Many huge young star clusters trace out the main spiral arms and each contains hundreds or thousands of bright young stars that are less than ten million years old. The galaxy is too remote for single stars to be seen in this image and most of the tiny clumps visible in the picture are really star clusters. Over the whole galaxy, stars are forming at a rate of about three times the mass of our Sun per year. While the bar of the galaxy consists mainly of older stars long past their prime, many new stars are born in stellar nurseries of gas and dust in the inner spiral close to the nucleus. The bar also funnels gas and dust gravitationally into the very centre of the galaxy, where astronomers have found evidence for the presence of a super-massive black hole, well hidden among myriads of intensely bright new stars. NGC 1365, including its two huge outer spiral arms, spreads over around 200 000 light-years. Different parts of the galaxy take different times to make a full rotation around the core of the galaxy, with the outer parts of the bar completing one circuit in about 350 million years. NGC 1365 and other galaxies of its type have come to more prominence in recent years with new observations indicating that the Milky Way could also be a barred spiral galaxy. Such galaxies are quite common - two thirds of spiral galaxies are barred according to recent estimates, and studying others can help astronomers understand our own galactic home. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. ESO Advanced Data Products for the Virtual Observatory

    NASA Astrophysics Data System (ADS)

    Retzlaff, J.; Delmotte, N.; Rite, C.; Rosati, P.; Slijkhuis, R.; Vandame, B.

    2006-07-01

    Advanced Data Products, that is, completely reduced, fully characterized science-ready data sets, play a crucial role for the success of the Virtual Observatory as a whole. We report on on-going work at ESO towards the creation and publication of Advanced Data Products in compliance with present VO standards on resource metadata. The new deep NIR multi-color mosaic of the GOODS/CDF-S region is used to showcase different aspects of the entire process: data reduction employing our MVM-based reduction pipeline, calibration and data characterization procedures, standardization of metadata content, and, finally, a prospect of the scientific potential illustrated by new results on deep galaxy number counts.

  14. Vista-LA: Mapping methane-emitting infrastructure in the Los Angeles megacity

    NASA Astrophysics Data System (ADS)

    Carranza, Valerie; Rafiq, Talha; Frausto-Vicencio, Isis; Hopkins, Francesca M.; Verhulst, Kristal R.; Rao, Preeti; Duren, Riley M.; Miller, Charles E.

    2018-03-01

    Methane (CH4) is a potent greenhouse gas (GHG) and a critical target of climate mitigation efforts. However, actionable emission reduction efforts are complicated by large uncertainties in the methane budget on relevant scales. Here, we present Vista, a Geographic Information System (GIS)-based approach to map potential methane emissions sources in the South Coast Air Basin (SoCAB) that encompasses Los Angeles, an area with a dense, complex mixture of methane sources. The goal of this work is to provide a database that, together with atmospheric observations, improves methane emissions estimates in urban areas with complex infrastructure. We aggregated methane source location information into three sectors (energy, agriculture, and waste) following the frameworks used by the State of California GHG Inventory and the Intergovernmental Panel on Climate Change (IPCC) Guidelines for GHG Reporting. Geospatial modeling was applied to publicly available datasets to precisely geolocate facilities and infrastructure comprising major anthropogenic methane source sectors. The final database, Vista-Los Angeles (Vista-LA), is presented as maps of infrastructure known or expected to emit CH4. Vista-LA contains over 33 000 features concentrated on < 1 % of land area in the region. Currently, Vista-LA is used as a planning and analysis tool for atmospheric measurement surveys of methane sources, particularly for airborne remote sensing, and methane hotspot detection using regional observations. This study represents a first step towards developing an accurate, spatially resolved methane flux estimate for point sources in SoCAB, with the potential to address discrepancies between bottom-up and top-down methane emissions accounting in this region. The Vista-LA datasets and associated metadata are available from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (ORNL DAAC; https://doi.org/10.3334/ORNLDAAC/1525).

  15. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help astronomers understand the similarity between small black holes formed from exploded stars and the supermassive black holes at the centres of galaxies. Very powerful jets have been seen from supermassive black holes, but are thought to be less frequent in the smaller microquasar variety. The new discovery suggests that many of them may simply have gone unnoticed so far. The gas-blowing black hole is located 12 million light-years away, in the outskirts of the spiral galaxy NGC 7793 (eso0914b). From the size and expansion velocity of the bubble the astronomers have found that the jet activity must have been ongoing for at least 200 000 years. Note: [1] Astronomers do not have yet any means of measuring the size of the black hole itself. The smallest stellar black hole discovered so far has a radius of about 15 km. An average stellar black hole of about 10 solar masses has a radius of about 30 km, while a "big" stellar black hole may have a radius of up to 300 km. This is still much smaller than the jets, which extend out to 1000 light-years, or about 9000 million million km! More Information: This result appears in a paper published in this week's issue of the journal Nature (A 300 parsec long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793, by Manfred W. Pakull, Roberto Soria and Christian Motch). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  16. Black Hole Blows Big Bubble

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Combining observations made with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. This object, also known as a microquasar, blows a huge bubble of hot gas, 1000 light-years across, twice as large and tens of times more powerful than other known microquasars. The discovery is reported this week in the journal Nature. "We have been astonished by how much energy is injected into the gas by the black hole," says lead author Manfred Pakull. "This black hole is just a few solar masses, but is a real miniature version of the most powerful quasars and radio galaxies, which contain black holes with masses of a few million times that of the Sun." Black holes are known to release a prodigious amount of energy when they swallow matter. It was thought that most of the energy came out in the form of radiation, predominantly X-rays. However, the new findings show that some black holes can release at least as much energy, and perhaps much more, in the form of collimated jets of fast moving particles. The fast jets slam into the surrounding interstellar gas, heating it and triggering an expansion. The inflating bubble contains a mixture of hot gas and ultra-fast particles at different temperatures. Observations in several energy bands (optical, radio, X-rays) help astronomers calculate the total rate at which the black hole is heating its surroundings. The astronomers could observe the spots where the jets smash into the interstellar gas located around the black hole, and reveal that the bubble of hot gas is inflating at a speed of almost one million kilometres per hour. "The length of the jets in NGC 7793 is amazing, compared to the size of the black hole from which they are launched," says co-author Robert Soria [1]. "If the black hole were shrunk to the size of a soccer ball, each jet would extend from the Earth to beyond the orbit of Pluto." This research will help astronomers understand the similarity between small black holes formed from exploded stars and the supermassive black holes at the centres of galaxies. Very powerful jets have been seen from supermassive black holes, but are thought to be less frequent in the smaller microquasar variety. The new discovery suggests that many of them may simply have gone unnoticed so far. The gas-blowing black hole is located 12 million light-years away, in the outskirts of the spiral galaxy NGC 7793 (eso0914b). From the size and expansion velocity of the bubble the astronomers have found that the jet activity must have been ongoing for at least 200 000 years. Notes [1] Astronomers do not have yet any means of measuring the size of the black hole itself. The smallest stellar black hole discovered so far has a radius of about 15 km. An average stellar black hole of about 10 solar masses has a radius of about 30 km, while a "big" stellar black hole may have a radius of up to 300 km. This is still much smaller than the jets, which extend out to several hundreds light years on each side of the black hole, or about several thousand million million km! More information This result appears in a paper published in this week's issue of the journal Nature (A 300 parsec long jet-inflated bubble around a powerful microquasar in the galaxy NGC 7793, by Manfred W. Pakull, Roberto Soria and Christian Motch). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  17. Guiding the Giant

    NASA Astrophysics Data System (ADS)

    1998-08-01

    New ESO Survey Provides Targets for the VLT Giant astronomical telescopes like the ESO Very Large Telescope (VLT) must be used efficiently. Observing time is expensive and there are long waiting lines of excellent research programmes. Thus the work at the telescope must be very well prepared and optimized as much as possible - mistakes should be avoided and no time lost! Astronomers working with the new 8-m class optical/infrared telescopes must base their observations on detailed lists of suitable target objects if they want to perform cutting-edge science. This is particularly true for research programmes that depend on observations of large samples of comparatively rare, distant objects. This type of work requires that extensive catalogues of such objects must be prepared in advance. One such major catalogue - that will serve as a very useful basis for future VLT observations - has just become available from the new ESO Imaging Survey (EIS). The Need for Sky Surveys Astronomers have since long recognized the need to carry out preparatory observations with other telescopes in order to "guide" large telescopes. To this end, surveys of smaller or larger parts of the sky have been performed by wide-field telescopes, paving the way for subsequent work at the limits of the largest available ground-based telescopes. For instance, a complete photographic survey of the sourthern sky (declination < -17.5°) was carried out in the 1970's with the ESO 1-metre Schmidt Telescope in support of the work at the 3.6-m telescope at the ESO La Silla observatory. However, while until recently most observational programmes could rely on samples of objects found on photographic plates, this is no longer possible. New image surveys must match the fainter limiting magnitudes reached by the new and larger telescopes. Modern digital, multi-colour, deep imaging surveys have thus become an indispensable complement to the 8-m telescopes. The new generation of imaging surveys will, without doubt, be the backbone of future research and are likely to be as long-lived as their earlier counterparts, which have served the astronomical community so well over the past decades. The new surveys are now becoming possible, thanks to the new, extremely light-sensitive CCD-mosaics mounted on wide-field telescopes. The ESO Imaging Survey (EIS) A very successful, major step in this direction has recently been taken at ESO. It concerns an imaging survey with the 3.5-m New Technology Telescope (NTT) at La Silla, aimed at defining targets for the first year of operation of the VLT. In addition to serving the future observers, this survey is also public , i.e., the resulting data are made available to all interested parties. The project is known as the ESO Imaging Survey (EIS). It is supervised by a Working Group with members from the European astronomical community ( [1]) that has been responsible for defining the survey strategy and for monitoring the progress. It has been a major challenge to carry out such a public survey in the very short time available. The work by the EIS Team has involved the survey observations at the NTT, development of a pipeline to process the raw data, advanced data reduction, identification of large samples of astronomically "interesting" targets and, not least, the distribution of images and other survey products before the start of operation of the VLT. To cope with the ambitious one-year timetable, a novel type of collaboration between ESO and the astronomical communities in the ESO Member States was set up. It has allowed to combine efficiently the scientific and technical expertise of the community with ESO in-house know-how and infrastructure. This model has been very successful and may well set the example for future surveys. Science Goals of EIS EIS is in many aspects a novel approach for large-scale, ground-based optical observations, in support of large-telescope science. The speed with which raw EIS data have been converted to deliverable products is quite unprecedented, given the nature and scope of this project. This is a key ingredient for imaging surveys, the main goal of which is to provide target lists for 8-m class telescopes. EIS consists of two parts: a wide-angle survey ( "EIS-wide" ) and a deep, multi-colour survey in four optical and two infrared bands ( "EIS-deep" ). EIS-wide covers four pre-selected patches of sky (spanning the R.A. range from 22 h to 9 h ). The main science goals of EIS-wide include the search for distant clusters of galaxies and quasars. In addition, there are important spin-offs in terms of bright and distant galaxies, as well as new information about galactic structure and stellar populations. The observations were conducted in 10 runs in the period July 1997 - March 1998. A total of 36 nights were used for this part of the project. The images obtained cover a total area of 17 square degrees in the near-infrared I-band, reaching limiting magnitude of I ~ 23 and, furthermore, an area of 1.7 square degrees in the B- (blue), V- (green-yellow) and I-bands to a comparable depth. Altogether, the EIS data set consists of about 6000 science and calibration frames, totaling 96 Gbytes of raw data and over 200 Gbytes of reduced images and derived products. Some results from EIS ESO PR Photo 29/98 ESO PR Photo 29/98 [Preview - JPEG: 800 x 417 pix - 160k] [High-Res - JPEG: 3000 x 1562 pix - 1.2Mb] This photo shows three views of a small field in the so-called EIS Patch-B . They were obtained during this survey in different colours: B - blue; V - green-yellow; I - near-infrared. At the centre is located a (candidate) cluster of galaxies at very large distance. This conclusion is based upon the different appearance of this cluster in the three frames: it is not seen in B; it is hardly visible in V and it is most obvious in I. This indicates that the galaxies in the cluster have very red colours. The effect is most likely due to high redshift (and therefore large distance) that has shifted the bulk of their emission from the visual to the near-infrared region of the spectrum. The other objects in the field - which are nearer - can be seen in all three frames. On these images, over one million galaxies were detected and about 250 distant clusters of galaxies were identified, with estimated redshifts in the range 0.2 < z < 1.3 [2]. This is by far the largest sample of distant clusters of galaxies currently available. In addition, white dwarfs, very-low mass stars/brown dwarfs and high-redshift quasar candidates were identified in the field that lies in the direction of the South Galactic Pole. All the calibrated images and derived catalogs are now publicly available. They can be examined and/or retrieved through an interface in the EIS release WWW-page built in collaboration with the ESO Science Archive, a prototype for future distribution of data to the ESO community. A photo of a 25 arcmin wide field from EIS is available on the web as ESO PR Photo 18/98 ; the two versions may be accessed via ESO PR 07/98. Future surveys at ESO The EIS project has been conceived as a pilot project for more ambitious, future wide-field imaging surveys to be conducted by ESO. Together, they will provide the basic framework and infrastructure for the gradual development of the required capabilities for pipeline processing, archiving and data mining. By January 1999, the ESO/MPIA 2.2-m telescope at La Silla will start regular observations with a wide-field camera capable of imaging in one shot an area of the sky that is larger than the full moon. This telescope will be fully dedicated to wide-field imaging and will be approximately 6 times more efficient than is the NTT for imaging surveys such as EIS. An even more powerful survey telescope is now planned for the Paranal Observatory , next to the VLT. A Memorandum of Understanding has recently been signed by the Director General of ESO, Professor Riccardo Giaconni and the Director of the Capodimonte Observatory (Naples, Italy), Professor Massimo Capaccioli . According to this, the Capodimonte Observatory will deliver to ESO a wide-field 2.6-m telescope, referred to as the VLT Survey Telescope (VST). The VST will be over 12 times more efficient than the 2.2-m telescope for survey work. When it goes into operation some years from now, ESO will consolidate its front-line position in wide-field imaging capabilities. Another survey, the DEep Near Infrared Southern Sky Survey (DENIS) , is now being carried out at La Silla. It is a joint European project that is conducted at the 1-m ESO telescope by a consortium of 20 astronomical institutes. More information Further information about EIS is available at http://www.eso.org/eis. From this site, it is possible to visit the EIS release page and to browse through pictures of the distant Universe and of individual objects, some of which will be observed with the VLT in the future. Notes [1] The home institutes of the astronomers involved in EIS include the European Southern Observatory, Osservatorio Astronomico di Trieste (Italy), Leiden Observatory (The Netherlands), Institut d'Astrophysique de Paris (France), Max-Planck Institut für Astrophysik (Germany), Astronomisk Observatorium (Copenhagen, Denmark), Istituto di Radioastronomia del CNR (Bologna, Italy), Landensternwarte Heidelberg-Königstuhl (Heidelberg, Germany), DAEC, Observatoire de Paris-Meudon (France), ESA/ESO Space Telescope-European Coordinating Facility (Garching, Germany), Osservatorio Astronomico di Pino Torinese, Torino (Italy) and Osservatorio Astronomico di Capodimonte (Napoli, Italy). [2] In astronomy, the redshift (z) denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy or quasar gives a direct estimate of the universal expansion (i.e. the `recession velocity'). Since this expansion rate increases with the distance, the velocity (and thus the redshift) is itself a function (the Hubble relation) of the distance to the object. The indicated redshift interval (0.2 < z < 1.3) corresponds to a distance interval of approx. 3,000 to 7,000 million light-years. This Press Release is accompanied by ESO PR Photo 29/98 , available in two versions. It may be reproduced, if credit is given to the European Southern Observatory. © ESO Education & Public Relations Department Karl-Schwarzschild-Strasse 2, D-85748 Garching, Germany ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ).

  18. Professor Tim de Zeeuw Takes Up Duty as New ESO Director General

    NASA Astrophysics Data System (ADS)

    2007-09-01

    On 1 September, Tim de Zeeuw became the new ESO Director General, succeeding Catherine Cesarsky. In his first day in office, he kindly agreed to answer a few questions. ESO PR Photo 38/07 ESO PR Video 38/07 Watch the Video! How would you describe the current period for astronomy? Tim de Zeeuw: We are in an extremely exciting time for astronomy and I think this is understood worldwide and not just by astronomers. The technology is now available to look not only at the farthest objects in the Universe, where the light left a long time ago, allowing us to see how the Universe evolved and developed, but we can even detect signatures of planets around other stars, and that answers an age-old question which is a fundamental question in all of science, and really excites the general public. How do you see the role of ESO in this context? Tim de Zeeuw: ESO has a very important role in the context of European and worldwide astronomy because it is one of the leading organisations for ground-based astronomy. You may even say it is the pre-eminent organisation. Therefore, we have both an opportunity and a responsibility to lead the further developments in astronomy. Where do you see ESO developing in the coming years? Tim de Zeeuw: I see three main goals for ESO in the coming years. The first one is to get the best possible science out of the Very Large Telescope, the interferometer and the survey telescopes, all of them on Paranal. The second is to build ALMA, the new observatory at 5 000 metres in the high Andes. Together with our North American and East Asian partners, we need to deliver this on budget and on time, and prepare the European astronomers for leading the science. The third main goal is to design a world-leading Extremely Large Telescope (ELT), which may have a main mirror with a diameter larger than 40 metres and will enable wonderful science. And of course, we don't only want to design it, we also want to construct it. And what about La Silla? Tim de Zeeuw: La Silla is the cornerstone of the existence of ESO in Chile, and it is home to some wonderful telescopes, including the one that is discovering so many exoplanets. I see no reason why this could not continue for many years into the future. And on top of that, La Silla is one of the potential sites for the future ELT. What made you take up this position? Tim de Zeeuw: I took up this position because ESO is the most exciting astronomy organisation in the world, with highly qualified staff and long-term and stable support by the member countries. It will be a pleasure and a privilege to come and work here. What will you do in your first days in office? Tim de Zeeuw: First, I will further familiarise myself with the organisation but then I will very quickly travel to Chile. After all, the crown jewels of ESO are in Chile and it is very important that I meet not only the ESO staff in Chile, but also the Chilean astronomers and authorities.

  19. Close to the Sky

    NASA Astrophysics Data System (ADS)

    2007-11-01

    Today, a new ALMA outreach and educational book was publicly presented to city officials of San Pedro de Atacama in Chile, as part of the celebrations of the anniversary of the Andean village. ESO PR Photo 50a/07 ESO PR Photo 50a/07 A Useful Tool for Schools Entitled "Close to the sky: Biological heritage in the ALMA area", and edited in English and Spanish by ESO in Chile, the book collects unique on-site observations of the flora and fauna of the ALMA region performed by experts commissioned to investigate it and to provide key initiatives to protect it. "I thank the ALMA project for providing us a book that will surely be a good support for the education of children and youngsters of San Pedro de Atacama. Thanks to this publication, we expect our rich flora and fauna to be better known. I invite teachers and students to take advantage of this educational resource, which will be available in our schools", commented Ms. Sandra Berna, the Mayor of San Pedro de Atacama, who was given the book by representatives of the ALMA global collaboration project. Copies of the book 'Close to the sky' will be donated to all schools in the area, as a contribution to the education of students and young people in northern Chile. "From the very beginning of the project, ALMA construction has had a firm commitment to environment and local culture, protecting unique flora and fauna species and preserving old estancias belonging to the Likan Antai culture," said Jacques Lassalle, who represented ALMA at the hand-over. "Animals like the llama, the fox or the condor do not only live in the region where ALMA is now being built, but they are also key elements of the ancient Andean constellations. In this sense they are part of the same sky that will be explored by ALMA in the near future." ESO PR Photo 50c/07 ESO PR Photo 50c/07 Presentation of the ALMA book The ALMA Project is a giant, international observatory currently under construction on the high-altitude Chajnantor site in Chile. ALMA will be composed initially of 66 high-precision telescopes, operating at wavelengths of 0.3 to 9.6 mm. The ALMA antennas will be electronically combined and will provide astronomical observations which are equivalent to those from a single large telescope of tremendous size and resolution. Chajnantor was selected as the ideal spot for ALMA, following several years of atmospheric and meteorology studies. The high elevation, stable atmosphere, and low humidity make it one of the best locations in the world for radio astronomy. To protect the outstanding conditions of Chajnantor, the Government of Chile declared a major portion of the area a scientific reserve. The publication is available in PDF format. It is the second book on ALMA for the general public, following the previous launch of "Footprints in the Desert", also available on the Internet in PDF format in Spanish. ALMA is a partnership between Europe, East Asia and North America in cooperation with the Republic of Chile. It is funded in Europe by ESO, in East Asia by the National Institutes of Natural Sciences of Japan in cooperation with the Academia Sinica in Taiwan and in North America by the U.S. National Science Foundation in cooperation with the National Research Council of Canada. ALMA construction and operations are led on behalf of Europe by ESO, on behalf of East Asia by the National Astronomical Observatory of Japan and on behalf of North America by the National Radio Astronomy Observatory, which is managed by Associated Universities, Inc.

  20. MHC class II/ESO tetramer-based generation of in vitro primed anti-tumor T-helper lines for adoptive cell therapy of cancer.

    PubMed

    Poli, Caroline; Raffin, Caroline; Dojcinovic, Danijel; Luescher, Immanuel; Ayyoub, Maha; Valmori, Danila

    2013-02-01

    Generation of tumor-antigen specific CD4(+) T-helper (T(H)) lines through in vitro priming is of interest for adoptive cell therapy of cancer, but the development of this approach has been limited by the lack of appropriate tools to identify and isolate low frequency tumor antigen-specific CD4(+) T cells. Here, we have used recently developed MHC class II/peptide tetramers incorporating an immunodominant peptide from NY-ESO-1 (ESO), a tumor antigen frequently expressed in different human solid and hematologic cancers, to implement an in vitro priming platform allowing the generation of ESO-specific T(H) lines. We isolated phenotypically defined CD4(+) T-cell subpopulations from circulating lymphocytes of DR52b(+) healthy donors by flow cytometry cell sorting and stimulated them in vitro with peptide ESO(119-143), autologous APC and IL-2. We assessed the frequency of ESO-specific cells in the cultures by staining with DR52b/ESO(119-143) tetramers (ESO-tetramers) and TCR repertoire of ESO-tetramer(+) cells by co-staining with TCR variable β chain (BV) specific antibodies. We isolated ESO-tetramer(+) cells by flow cytometry cell sorting and expanded them with PHA, APC and IL-2 to generate ESO-specific T(H) lines. We characterized the lines for antigen recognition, by stimulation with ESO peptide or recombinant protein, cytokine production, by intracellular staining using specific antibodies, and alloreactivity, by stimulation with allo-APC. Using this approach, we could consistently generate ESO-tetramer(+) T(H) lines from conventional CD4(+)CD25(-) naïve and central memory populations, but not from effector memory populations or CD4(+)CD25(+) Treg. In vitro primed T(H) lines recognized ESO with affinities comparable to ESO-tetramer(+) cells from patients immunized with an ESO vaccine and used a similar TCR repertoire. In this study, using MHC class II/ESO tetramers, we have implemented an in vitro priming platform allowing the generation of ESO-monospecific polyclonal T(H) lines from non-immune individuals. This is an approach that is of potential interest for adoptive cell therapy of patients bearing ESO-expressing cancers.

  1. "Physics on Stage" Festival Video Now Available

    NASA Astrophysics Data System (ADS)

    2001-01-01

    ESO Video Clip 01/01 is issued on the web in conjunction with the release of an 18-min documentary video from the Science Festival of the "Physics On Stage" programme. This unique event took place during November 6-11, 2000, on the CERN premises at the French-Swiss border near Geneva, and formed part of the European Science and Technology Week 2000, an initiative by the European Commission to raise the public awareness of science in Europe. Physics On Stage and the Science Festival were jointly organised by CERN, ESA and ESO, in collaboration with the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE) and national organisations in about 25 European countries. During this final phase of the yearlong Physics On Stage programme, more than 500 physics teachers, government officials and media representatives gathered at CERN to discuss different aspects of physics education. The meeting was particular timely in view of the current decline of interest in physics and technology by Europe's citizens, especially schoolchildren. It included spectacular demonstrations of new educational materials and methods. An 18-min video is now available that documents this event. It conveys the great enthusiasm of the many participants who spent an extremely fruitful week, meeting and exchanging information with colleagues from all over the continent. It shows the various types of activities that took place, from the central "fair" with national and organisational booths to the exciting performances and other dramatic presentations. Based of the outcome of 13 workshops that focussed on different subject matters, a series of very useful recommendations was passed at the final session. The Science Festival was also visited by several high-ranking officials, including the European Commissioner for Research, Phillipe Busquin. Full reports from the Festival will soon become available from the International Steering Committee..More information is available on the "Physics on Stage" webpages at CERN , ESA and ESO ). Note also the brief account published in the December 2000 issue of the ESO Messenger. The present video clip is available in four versions: two MPEG files and two streamer-versions of different sizes; the latter require RealPlayer software. Video Clip 01/01 may be freely reproduced. Tapes of this video clip and the 18-min video, suitable for transmission and in full professional quality (Betacam, etc.), are available for broadcasters upon request ; please contact the ESO EPR Department for more details. Most of the ESO PR Video Clips at the ESO website provide "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 06/00 about Fourth Light at Paranal! (4 September 2000) . General information is available on the web about ESO videos.

  2. Finland to Join ESO

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Finland will become the eleventh member state of the European Southern Observatory (ESO) [1]. Today, during a ceremony at the ESO Headquarters in Garching (Germany), a corresponding Agreement was signed by the Finnish Minister of Education and Science, Ms. Tuula Haatainen and the ESO Director General, Dr. Catherine Cesarsky, in the presence of other high officials from Finland and the ESO member states (see Video Clip 02/04 below). Following subsequent ratification by the Finnish Parliament of the ESO Convention and the associated protocols [2], it is foreseen that Finland will formally join ESO on July 1, 2004. Uniting European Astronomy ESO PR Photo 03/04 ESO PR Photo 03/04 Caption : Signing of the Finland-ESO Agreement on February 9, 2004, at the ESO Headquarters in Garching (Germany). At the table, the ESO Director General, Dr. Catherine Cesarsky, and the Finnish Minister of Education and Science, Ms. Tuula Haatainen . [Preview - JPEG: 400 x 499 pix - 52k] [Normal - JPEG: 800 x 997 pix - 720k] [Full Res - JPEG: 2126 x 2649 pix - 2.9M] The Finnish Minister of Education and Science, Ms. Tuula Haatainen, began her speech with these words: "On behalf of Finland, I am happy and proud that we are now joining the European Southern Observatory, one of the most successful megaprojects of European science. ESO is an excellent example of the potential of European cooperation in science, and along with the ALMA project, more and more of global cooperation as well." She also mentioned that besides science ESO offers many technological challenges and opportunities. And she added: "In Finland we will try to promote also technological and industrial cooperation with ESO, and we hope that the ESO side will help us to create good working relations. I am confident that Finland's membership in ESO will be beneficial to both sides." Dr. Catherine Cesarsky, ESO Director General, warmly welcomed the Finnish intention to join ESO. "With the accession of their country to ESO, Finnish astronomers, renowned for their expertise in many frontline areas, will have new, exciting opportunities for working on research programmes at the frontiers of modern astrophysics." "This is indeed the right time to join ESO", she added. "The four 8.2-m VLT Unit Telescopes with their many first-class instruments are working with unsurpassed efficiency at Paranal, probing the near and distant Universe and providing European astronomers with a goldmine of unique astronomical data. The implementation of the VLT Interferometer is progressing well and last year we entered into the construction phase of the intercontinental millimetre- and submillimetre-band Atacama Large Millimeter Array. And the continued design studies for gigantic optical/infrared telescopes like OWL are progressing fast. Wonderful horizons are indeed opening for the coming generations of European astronomers!" She was seconded by the President of the ESO Council, Professor Piet van der Kruit, "This is a most important step in the continuing evolution of ESO. By having Finland become a member of ESO, we welcome a country that has put in place a highly efficient and competitive innovation system with one of the fastest growths of research investment in the EU area. I have no doubt that the Finnish astronomers will not only make the best scientific use of ESO facilities but that they will also greatly contribute through their high quality R&D to technological developments which will benefit the whole ESO community. " Notes [1]: Current ESO member countries are Belgium, Denmark, France, Germany, Italy, the Netherlands, Portugal, Sweden, Switzerland and the United Kindgdom. [2]: The ESO Convention was established in 1962 and specifies the goals of ESO and the means to achieve these, e.g., "The Governments of the States parties to this convention... desirous of jointly creating an observatory equipped with powerful instruments in the Southern hemisphere and accordingly promoting and organizing co-operation in astronomical research..." (from the Preamble to the ESO Convention).

  3. Relations Between Chile and ESO

    NASA Astrophysics Data System (ADS)

    1994-06-01

    As announced in an earlier Press Release (PR 08/94 of 6 May 1994), a high-ranking ESO delegation visited Santiago de Chile during the week of 24 - 28 May 1994 to discuss various important matters of mutual interest with the Chilean Government. It consisted of Dr. Peter Creola (President of ESO Council), Dr. Catherine Cesarsky (Vice-President of ESO Council), Dr. Henrik Grage (Former Vice-President of ESO Council) and Professor Riccardo Giacconi (ESO Director General), the latter accompanied by his advisers. THE SUPPLEMENTARY TREATY BETWEEN CHILE AND ESO Following a meeting with the ambassadors to Chile of the eight ESO member countries, the ESO delegation was received by the Chilean Minister of Foreign Affairs, Mr. Carlos Figueroa, and members of his staff. The ESO delegation was pleased to receive assurances that the present Chilean Government, like its predecessors, will continue to honour all contractual agreements, in particular the privileges and immunities of this Organisation, which were laid down in the Treaty between ESO and Chile that was signed by the parties in 1963 and ratified the following year. The discussions covered some aspects of the proposed Supplementary Treaty which has been under preparation during the past year. This included in particular the desire of the Chilean side to further increase the percentage of guaranteed time for Chilean astronomers at the future ESO Very Large Telescope (VLT) and also the rules governing the installation by ESO member countries of additional telescopes at the ESO observatories in Chile. ESO invited a Chilean delegation to visit the ESO Headquarters in Garching (Germany) later this year for the final adjustment of the text of the Supplementary Treaty, after which it should be possible to proceed rapidly with the signing and ratification by the Chilean Parliament and the ESO Council. THE SITUATION AROUND PARANAL The ESO delegation expressed its deep concern to the Chilean Government about the continuing legal questioning of ESO's privileges and immunities at the designated VLT site on the Paranal mountain south of the city of Antofagasta (see ESO Press Release 07/94 of 21 April 1994), and also around the ownership of the land. ESO is now very worried about the timely completion of this 500 million DEM project. Unless a clarification of this problem is achieved as soon as possible, it is unlikely that the current plan for the construction of the VLT observatory at Paranal can be maintained. The ESO delegation expressed the opinion that these uncertainties must be removed, before the final negotiations about the above mentioned Treaty can proceed. RECEPTION BY THE PRESIDENT OF CHILE During its stay in Santiago, the ESO delegation was honoured to be received by the President of the Republic of Chile, Don Eduardo Frei Ruiz Tagle. ESO extended a warm invitation to the President to lay the cornerstone of the VLT observatory at Paranal later in 1994 at the appropriate moment. Twenty-five years ago, in 1969, the ESO La Silla observatory was inaugurated by his predecessor and father, Don Eduardo Frei Montalva. DECISIONS BY THE ESO COUNCIL The ESO delegation reported about the discussions in Santiago to the ESO Council, during its ordinary semi-annual session on June 7 - 8, 1994. The Council noted with satisfaction the clear attitude expressed by the Chilean Government, especially what concerns ESO's privileges and immunities in the host country. The ESO Council expects that the Chilean courts will also confirm these privileges and immunities. The ESO Council expressed the hope that it will now be possible to arrive at a resolution of the outstanding issues. However, in view of the increasingly tight VLT schedule - it is planned to ship the first VLT building to Paranal in the month of September this year - the Council was also much concerned about any further delays. Council requested the ESO management to ensure that the authorities of the member countries will be kept closely informed about the further developments during the coming months. The ESO Council Working Group on Relations between ESO and Chile will meet on June 29, 1994, to analyse the developments; it will report to Council immediately thereafter. Further underlining the importance of these issues for the Organisation and European Astronomy, Council resolved to meet during an extraordinary meeting on August 8 - 9, 1994. This will allow a thorough evaluation of the entire situation before ESO engages itself more fully at Paranal.

  4. The VMC survey - XXIII. Model fitting of light and radial velocity curves of Small Magellanic Cloud classical Cepheids

    NASA Astrophysics Data System (ADS)

    Marconi, M.; Molinaro, R.; Ripepi, V.; Cioni, M.-R. L.; Clementini, G.; Moretti, M. I.; Ragosta, F.; de Grijs, R.; Groenewegen, M. A. T.; Ivanov, V. D.

    2017-04-01

    We present the results of the χ2 minimization model fitting technique applied to optical and near-infrared photometric and radial velocity data for a sample of nine fundamental and three first overtone classical Cepheids in the Small Magellanic Cloud (SMC). The near-infrared photometry (JK filters) was obtained by the European Southern Observatory (ESO) public survey 'VISTA near-infrared Y, J, Ks survey of the Magellanic Clouds system' (VMC). For each pulsator, isoperiodic model sequences have been computed by adopting a non-linear convective hydrodynamical code in order to reproduce the multifilter light and (when available) radial velocity curve amplitudes and morphological details. The inferred individual distances provide an intrinsic mean value for the SMC distance modulus of 19.01 mag and a standard deviation of 0.08 mag, in agreement with the literature. Moreover, the intrinsic masses and luminosities of the best-fitting model show that all these pulsators are brighter than the canonical evolutionary mass-luminosity relation (MLR), suggesting a significant efficiency of core overshooting and/or mass-loss. Assuming that the inferred deviation from the canonical MLR is only due to mass-loss, we derive the expected distribution of percentage mass-loss as a function of both the pulsation period and the canonical stellar mass. Finally, a good agreement is found between the predicted mean radii and current period-radius (PR) relations in the SMC available in the literature. The results of this investigation support the predictive capabilities of the adopted theoretical scenario and pave the way for the application to other extensive data bases at various chemical compositions, including the VMC Large Magellanic Cloud pulsators and Galactic Cepheids with Gaia parallaxes.

  5. ESO imaging survey: infrared observations of CDF-S and HDF-S

    NASA Astrophysics Data System (ADS)

    Olsen, L. F.; Miralles, J.-M.; da Costa, L.; Benoist, C.; Vandame, B.; Rengelink, R.; Rité, C.; Scodeggio, M.; Slijkhuis, R.; Wicenec, A.; Zaggia, S.

    2006-06-01

    This paper presents infrared data obtained from observations carried out at the ESO 3.5 m New Technology Telescope (NTT) of the Hubble Deep Field South (HDF-S) and the Chandra Deep Field South (CDF-S). These data were taken as part of the ESO Imaging Survey (EIS) program, a public survey conducted by ESO to promote follow-up observations with the VLT. In the HDF-S field the infrared observations cover an area of ~53 square arcmin, encompassing the HST WFPC2 and STIS fields, in the JHKs passbands. The seeing measured in the final stacked images ranges from 0.79 arcsec to 1.22 arcsec and the median limiting magnitudes (AB system, 2'' aperture, 5σ detection limit) are J_AB˜23.0, H_AB˜22.8 and K_AB˜23.0 mag. Less complete data are also available in JKs for the adjacent HST NICMOS field. For CDF-S, the infrared observations cover a total area of ~100 square arcmin, reaching median limiting magnitudes (as defined above) of J_AB˜23.6 and K_AB˜22.7 mag. For one CDF-S field H band data are also available. This paper describes the observations and presents the results of new reductions carried out entirely through the un-supervised, high-throughput EIS Data Reduction System and its associated EIS/MVM C++-based image processing library developed, over the past 5 years, by the EIS project and now publicly available. The paper also presents source catalogs extracted from the final co-added images which are used to evaluate the scientific quality of the survey products, and hence the performance of the software. This is done comparing the results obtained in the present work with those obtained by other authors from independent data and/or reductions carried out with different software packages and techniques. The final science-grade catalogs together with the astrometrically and photometrically calibrated co-added images are available at CDS.

  6. Portugal to Accede to ESO

    NASA Astrophysics Data System (ADS)

    2000-06-01

    The Republic of Portugal will become the ninth member state of the European Southern Observatory (ESO) [1]. Today, during a ceremony at the ESO Headquarters in Garching (Germany), a corresponding Agreement was signed by the Portuguese Minister of Science and Technology, José Mariano Gago and the ESO Director General, Catherine Cesarsky , in the presence of other high officials from Portugal and the ESO member states (see Video Clip 05/00 below). Following subsequent ratification by the Portuguese Parliament of the ESO Convention and the associated protocols [2], it is foreseen that Portugal will formally join this organisation on January 1, 2001. Uniting European Astronomy ESO PR Photo 16/00 ESO PR Photo 16/00 [Preview - JPEG: 400 x 405 pix - 160k] [Normal - JPEG: 800 x 809 pix - 408k] Caption : Signing of the Portugal-ESO Agreement on June 27, 2000, at the ESO Headquarters in Garching (Germany). At the table, the ESO Director General, Catherine Cesarsky , and the Portuguese Minister of Science and Technology, José Mariano Gago . In his speech, the Portuguese Minister of Science and Technology, José Mariano Gago , stated that "the accession of Portugal to ESO is the result of a joint effort by ESO and Portugal during the last ten years. It was made possible by the rapid Portuguese scientific development and by the growth and internationalisation of its scientific community." He continued: "Portugal is fully committed to European scientific and technological development. We will devote our best efforts to the success of ESO". Catherine Cesarsky , ESO Director General since 1999, warmly welcomed the Portuguese intention to join ESO. "With the accession of their country to ESO, Portuguese astronomers will have great opportunities for working on research programmes at the frontiers of modern astrophysics." "This is indeed a good time to join ESO", she added. "The four 8.2-m VLT Unit Telescopes with their many first-class instruments are nearly ready, and the VLT Interferometer will soon follow. With a decision about the intercontinental millimetre-band ALMA project expected next year and the first concept studies for gigantic optical/infrared telescopes like OWL now well under way at ESO, there is certainly no lack of perspectives, also for coming generations of European astronomers!" Portuguese astronomy: a decade of progress The beginnings of the collaboration between Portugal and ESO, now culminating in the imminent accession of that country to the European research organisation, were almost exactly ten years ago. On July 10, 1990, the Republic of Portugal and ESO signed a Co-operation Agreement , aimed at full Portuguese membership of the ESO organisation within the next decade. During the interim period, Portuguese astronomers were granted access to ESO facilities while the Portuguese government would provide support towards the development of astronomy and the associated infrastructure in this country. A joint Portuguese/ESO Advisory Body was set up to monitor the development of Portuguese astronomy and its interaction with ESO. Over the years, an increasing number of measures to strengthen the Portuguese research infrastructure within astrophysics and related fields were proposed and funded. More and more, mostly young Portuguese astronomers began to make use of ESO's facilities at the La Silla observatory and recently, of the Very Large Telescope (VLT) at Paranal. Now, ten years later, the Portuguese astronomical community is the youngest in Europe with more than 90% of its PhD's awarded during the last eight years. As expected, the provisional access to ESO telescopes - especially the Very Large Telescope (VLT) with its suite of state-of-the-art instruments for observations at wavelengths ranging from the UV to the mid-infrared - has proven to be a great incentive to the Portuguese scientists. As a clear demonstration of these positive developments, a very successful Workshop entitled "Portugal - ESO - VLT" was held in Lisbon on April 17-18, 2000. It was primarily directed towards young Portuguese scientists and served to inform them about the ESO Very Large Telescope (VLT) and the steadily evolving, exciting research possibilities with this world-class facility. Notes [1]: Current ESO member countries are Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. [2]: The ESO Convention was established in 1962 and specifies the goals of ESO and the means to achieve these, e.g., "The Governments of the States parties to this convention... desirous of jointly creating an observatory equipped with powerful instruments in the Southern hemisphere and accordingly promoting and organizing co-operation in astronomical research..." (from the Preamble to the ESO Convention). Video Clip from the Signing Ceremony

  7. ePESSTO spectra and ATLAS photometry of SN2017iuk associated with GRB171205A

    NASA Astrophysics Data System (ADS)

    Prentice, S.; Mazzali, P.; Smartt, S. J.; Angus, C. R.; Firth, R. E.; Frohmaier, C.; Smith, M.; Barbarino, C.; Anderson, J.; Dennefeld, M.; Inserra, C.; Kankare, E.; Maguire, K.; Smartt, S. J.; Smith, K. W.; Sullivan, M.; Valenti, S.; Yaron, O.; Young, D.; Tonry, I. Manulis J.; Denneau, L.; Stalder, B.; Heinze, A.; Weiland, H.; Rest, A.; Fulton, M.; McBrien, O.

    2017-12-01

    ePESSTO, the extended Public ESO Spectroscopic Survey of Transient Objects, (see Smartt et al. 2015, A & A, 579, 40 http://www.pessto.org ), reports further spectral observations of SN 2017iuk, associated with GRB 171205A.

  8. Massive open star clusters using the VVV survey. I. Presentation of the data and description of the approach

    NASA Astrophysics Data System (ADS)

    Chené, A.-N.; Borissova, J.; Clarke, J. R. A.; Bonatto, C.; Majaess, D. J.; Moni Bidin, C.; Sale, S. E.; Mauro, F.; Kurtev, R.; Baume, G.; Feinstein, C.; Ivanov, V. D.; Geisler, D.; Catelan, M.; Minniti, D.; Lucas, P.; de Grijs, R.; Kumar, M. S. N.

    2012-09-01

    Context. The ESO Public Survey "VISTA Variables in the Vía Láctea" (VVV) provides deep multi-epoch infrared observations for unprecedented 562 sq. degrees of the Galactic bulge, and adjacent regions of the disk. Aims: The VVV observations will foster the construction of a sample of Galactic star clusters with reliable and homogeneously derived physical parameters (e.g., age, distance, and mass, etc.). In this first paper in a series, the methodology employed to establish cluster parameters for the envisioned database are elaborated upon by analysing four known young open clusters: Danks 1, Danks 2, RCW 79, and DBS 132. The analysis offers a first glimpse of the information that can be gleaned from the VVV observations for clusters in the final database. Methods: Wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters for a subset of clusters. Results: Results are inferred from VVV near-infrared photometry and numerous low resolution spectra (typically more than 10 per cluster). The high quality of the spectra and the deep wide-field VVV photometry enables us to precisely and independently determine the characteristics of the clusters studied, which we compare to previous determinations. An anomalous reddening law in the direction of the Danks clusters is found, specifically E(J - H)/E(H - Ks) = 2.20 ± 0.06, which exceeds published values for the inner Galaxy. The G305 star forming complex, which includes the Danks clusters, lies beyond the Sagittarius-Carina spiral arm and occupies the Centaurus arm. Finally, the first deep infrared colour-magnitude diagram of RCW 79 is presented, which reveals a sizeable pre-main sequence population. A list of candidate variable stars in G305 region is reported. Conclusions: This study demonstrates the strength of the dataset and methodology employed, and constitutes the first step of a broader study which shall include reliable parameters for a sizeable number of poorly characterised and/or newly discovered clusters. Based on observations made with NTT telescope at the La Silla Observatory, ESO, under programme ID 087.D-0490A, and with the Clay telescope at the Las Campanas Observatory under programme CN2011A-086. Also based on data from the VVV survey observed under program ID 172.B-2002.Tables 1, 5 and 6 are available in electronic form at http://www.aanda.org

  9. The ESO Educational Office Reaches Out towards Europe's Teachers

    NASA Astrophysics Data System (ADS)

    2001-12-01

    ESA/ESO Astronomy Exercises Provide a Taste of Real Astronomy [1] Summary The European Southern Observatory (ESO) has been involved in many Europe-wide educational projects during the past years, in particular within European Science Weeks sponsored by the European Commission (EC). In order to further enhance the significant educational potential inherent in the numerous scientific endeavours now carried out by Europe's astronomers with ESO front-line telescope facilities, it has been decided to set up an Educational Office within the ESO EPR Department. It will from now on work closely with astronomy-oriented teachers, in particular at the high-school level , providing support, inspiration and new materials. Much of this interaction will happen via the European Association for Astronomy Education (EAAE) In this context, and in collaboration with the European Space Agency (ESA) , the first instalments of the "ESA/ESO Astronomy Exercise Series" have just been published, on the web ( http://www.astroex.org ) and in print (6 booklets totalling 100 pages; provided free-of-charge to teachers on request). They allow 16-19 year old students to gain exciting hands-on experience in astronomy, making realistic calculations with data obtained from observations by some of the world's best telescopes, the NASA/ESA Hubble Space Telescope (HST) and ESO's Very Large Telescope (VLT) . PR Photo 36/01 : The "ESA/ESO Astronomy Exercise Series" . Educational projects at ESO The European Southern Observatory (ESO) , through its Education and Public Relations Department (EPR) , has long been involved in educational activities, in particular by means of Europe-wide projects during successive European Science Weeks , with support from the European Commission (EC) . A most visible outcome has been the creation of the trailblazing European Association for Astronomy Education (EAAE) - this was first discussed at an international meeting at the ESO Headquarters in November 1994 with the participation of more than one hundred physics teachers from different European countries. Other educational projects include the highly successful "Sea and Space" (in 1998; with ESA), "Physics on Stage" (2000; with CERN and ESA), and "Life in the Universe" (2001; with CERN, ESA, EMBL and ESRF), all in close collaboration with EAAE. Astronomy and Astrophysics at the frontline of education The subject of Astronomy and Astrophysics plays an increasingly important role within education. This is not coincidental - this particular field of basic science is very attractive to young people. Its exploratory nature tickles youthful minds and the vast expanse of the Universe harbours many unknown secrets that are waiting to be discovered. The beautiful and intriguing images brought back by high-tech telescopes and instruments from the enormous terra incognita out there are natural works of art that invite comtemplation as well as interpretation. Astronomy and Astrophysics is a broadly interdisciplinary field, providing ample opportunities for interesting educational angles into many different fields of fundamental science, from physics, chemistry and mathematics, to applied research in opto-mechanics, detectors and data handling, and onwards into the humanities. The ESO Educational Office In order to further enhance the educational potential of the numerous scientific endeavours now carried out by Europe's astronomers with ESO front-line facilities, it has been decided to set up an Educational Office within the ESO EPR Department. It will from now on work closely with astronomy-oriented teachers, in particular at the high-school level , providing support, inspiration and new materials. Beginning next year, it will arrange meetings for teachers to inform about new results and trends in modern astrophysics, while facilitating the efficient exchange of the teachers' educational experience at different levels within the different curricula at Europe's schools. These initiatives will be carried out in close collaboration with the European Association for Astronomy Education (EAAE). During the past months, various preparatory discussions have been held between ESO, EAAE members and other teachers involved in Astronomy teaching from many countries. Provisional information about the ESO Educational Office will be found at its website ( http://www.eso.org/outreach/eduoff/ ). One of the first activities is concerned with a survey of the specific needs for astronomy education in Europe's high-schools by means of a widely distributed questionnaire. Of more immediate use will be the publication of four, comprehensive astronomy exercises, prepared in collaboration with the European Space Agency (ESA) and further described below. In the scientists' footsteps ESO PR Photo 36/01 ESO PR Photo 36/01 [Preview - JPEG: 450 x 640 pix - 34k] [Hires - JPEG: 2514 x 3578 pix - 1.4M] Cover of the "General Introduction" to the "ESA/ESO Astronomy Exercise Series" . The first instalments of the "ESA/ESO Astronomy Exercise Series" have just been published, on the web and in print. These exercises allow high-school students to gain exciting hands-on experience in astronomy, by making realistic calculations based on data obtained by some of the world's best telescopes, the NASA/ESA Hubble Space Telescope (HST) and ESO's Very Large Telescope (VLT) . Carefully prepared by astronomers and media experts, these excercises enable the students to measure and calculate fundamental properties like the distances to and the ages of different kinds of astronomical objects. Astronomy is an accessible and visual science, making it ideal for educational purposes. Reacting to the current need for innovative, high-quality educational materials, the European Space Agency (ESA) and the European Southern Observatory (ESO) have together produced this series of astronomical exercises for use in high schools. The prime object of the series is to present various small projects that will transmit some of the excitement and satisfaction of scientific discovery to students . By performing the well-structured projects, the students also gain first-hand experience in the application of scientific methods that only require basic geometrical and physical knowledge. They use ideas and techniques described in recent front-line scientific papers and are able to derive results that compare well with those from the much more sophisticated analyses done by the scientists. Focus on basic astrophysical themes The first four exercises focus on techniques to measuring distances in the Universe, one of the most basics problems in modern astrophysics. The students apply different methods to determine the distance of astronomical objects such as the supernova SN 1987A , the spiral galaxy Messier 100 , the Cat's Eye Planetary Nebula and the globular cluster Messier 12 . With these results, it is possible to make quite accurate estimates of the age of the Universe and its expansion rate , without the use of computers or sophisticated software. Students can also perform "naked-eye photometry" by measuring the brightness of stars on two VLT images (taken through blue and green optical filters, respectively). They can then construct the basic luminosity-temperature relation (the "Hertzsprung-Russell Diagramme") providing a superb way to gain insight into fundamental stellar physics. Six booklets The excercises are now available on the web ( http://www.astroex.org ) and in six booklets (100 pages in total), entitled * "General Introduction" (an overview of the HST and VLT telescopes), * "Toolkits" (explanation of basic astronomical and mathematical techniques), * "Exercise 1: Measuring the Distance to Supernova 1987A", * "Exercise 2: The Distance to Messier 100 as Determined By Cepheid Variable Stars", * "Exercise 3: Measuring the Distance to the Cat's Eye Nebula", and * "Exercise 4: Measuring a Globular Star Cluster's Distance and Age". Each of the four exercises begins with a background text, followed by a series of questions, measurements and calculations. The exercises can be used either as texts in a traditional classroom format or for independent study as part of a project undertaken in smaller groups. The booklets are sent free-of-charge to high- school teachers on request and may be downloaded as PDF-files from the above indicated website. More exercises will follow.

  10. Eucheuma cottonii Sulfated Oligosaccharides Decrease Food Allergic Responses in Animal Models by Up-regulating Regulatory T (Treg) Cells.

    PubMed

    Xu, Sha-Sha; Liu, Qing-Mei; Xiao, An-Feng; Maleki, Soheila J; Alcocer, Marcos; Gao, Yuan-Yuan; Cao, Min-Jie; Liu, Guang-Ming

    2017-04-19

    In the present study, the anti-food allergy activity of Eucheuma cottonii sulfated oligosaccharide (ESO) was investigated. ESO was obtained by enzymatic degradation and purified by column chromatography. RBL-2H3 cells and BALB/c mouse model were used to test the anti-food allergy activity of ESO. The effects of ESO on the regulatory T (Treg) cells and bone marrow-derived mast cells (BMMCs) were investigated by flow cytometry. The results of in vivo assay showed that ESO decreased the levels of mast cell protease-1 and histamine and inhibited the levels of specific IgE by 77.7%. In addition, the production of interleukin (IL)-4 and IL-13 was diminished in the ESO groups compared to the non-ESO-treated group. Furthermore, ESO could up-regulate Treg cells by 22.2-97.1%. In conclusion, ESO decreased the allergy response in mice by reducing basophil degranulation, up-regulating Treg cells via Forkhead box protein 3 (Foxp3), and releasing IL-10. ESO may have preventive and therapeutic potential in allergic disease.

  11. 2. Perspective Map of Buena Vista (In Buena Vista, VA, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Perspective Map of Buena Vista (In Buena Vista, VA, NY:South Publishing Co., 1891 n.p.) (copy on file at Virginia State Library, Richmond, VA) - North River Canal System, West side of Buena Vista, Buena Vista, Roanoke City, VA

  12. ePESSTO reclassification of SN2018bsz as the lowest redshift SLSN to date

    NASA Astrophysics Data System (ADS)

    Anderson, J. P.; Dessart, Luc; Pessi, P.; Smartt, S. J.; Inserra, C.; Leloudas, G.; Roy, R.; Gal-Yam, A.; Tonry, J.; Denneau, L.; Heinze, A.; Weiland, H.; Rest, B. Stalder A.; Smith, K. W.; McBrien, O.; Young, D. R.; Wright, D. E.

    2018-05-01

    ePESSTO, the extended Public ESO Spectroscopic Survey for Transient Objects (see Smartt et al. 2015, A & A, 579, 40 http://www.pessto.org), reports a reclassification of SN2018bsz (RA=16:09:39.19, DEC=-32:03:45.2).

  13. Three novel NY-ESO-1 epitopes bound to DRB1*0803, DQB1*0401 and DRB1*0901 recognized by CD4 T cells from CHP-NY-ESO-1-vaccinated patients.

    PubMed

    Mizote, Yu; Taniguchi, Taku; Tanaka, Kei; Isobe, Midori; Wada, Hisashi; Saika, Takashi; Kita, Shoichi; Koide, Yukari; Uenaka, Akiko; Nakayama, Eiichi

    2010-07-19

    Three novel NY-ESO-1 CD4 T cell epitopes were identified using PBMC obtained from patients who were vaccinated with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1). The restriction molecules were determined by antibody blocking and using various EBV-B cells with different HLA alleles as APC to present peptides to CD4 T cells. The minimal epitope peptides were determined using various N- and C-termini truncated peptides deduced from 18-mer overlapping peptides originally identified for recognition. Those epitopes were DRB1*0901-restricted NY-ESO-1 87-100, DQB1*0401-restricted NY-ESO-1 95-107 and DRB1*0803-restricted NY-ESO-1 124-134. CD4 T cells used to determine those epitope peptides recognized EBV-B cells or DC that were treated with recombinant NY-ESO-1 protein or NY-ESO-1-expressing tumor cell lysate, suggesting that the epitope peptides are naturally processed. These CD4 T cells showed a cytokine profile with Th1 characteristics. Furthermore, NY-ESO-1 87-100 peptide/HLA-DRB1*0901 tetramer staining was observed. Multiple Th1-type CD4 T cell responses are beneficial for inducing effective anti-tumor responses after NY-ESO-1 protein vaccination. (c) 2010 Elsevier Ltd. All rights reserved.

  14. Catch a Star 2008!

    NASA Astrophysics Data System (ADS)

    2007-10-01

    ESO and the European Association for Astronomy Education have just launched the 2008 edition of 'Catch a Star', their international astronomy competition for school students. Now in its sixth year, the competition offers students the chance to win a once-in-a-lifetime trip to ESO's flagship observatory in Chile, as well as many other prizes. CAS logo The competition includes separate categories - 'Catch a Star Researchers' and 'Catch a Star Adventurers' - to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. In teams, students investigate an astronomical topic of their choice and write a report about it. An important part of the project for 'Catch a Star Researchers' is to think about how ESO's telescopes such as the Very Large Telescope (VLT) or future telescopes such as the Atacama Large Millimeter/submillimeter Array (ALMA) and the European Extremely Large Telescope (E-ELT) could contribute to investigations of the topic. Students may also include practical activities such as observations or experiments. For the artistically minded, 'Catch a Star' also offers an artwork competition, 'Catch a Star Artists'. Last year, hundreds of students from across Europe and beyond took part in 'Catch a Star', submitting astronomical projects and artwork. "'Catch a Star' gets students thinking about the wonders of the Universe and the science of astronomy, with a chance of winning great prizes. It's easy to take part, whether by writing about astronomy or creating astronomically inspired artwork," said Douglas Pierce-Price, Education Officer at ESO. As well as the top prize - a trip to ESO's Very Large Telescope in Chile - visits to observatories in Austria and Spain, and many other prizes, can also be won. 'Catch a Star Researchers' winners will be chosen by an international jury, and 'Catch a Star Adventurers' will be awarded further prizes by lottery. Entries for 'Catch a Star Artists' will be displayed on the web and winners chosen with the help of a public online vote. Detailed entry information and rules can be found at http://www.eso.org/catchastar/cas2008/. The deadline for submitting an entry for the 2008 competition is Friday 29 February 2008, 17:00 Central European Time.

  15. Austria Declares Intent To Join ESO

    NASA Astrophysics Data System (ADS)

    2008-04-01

    At a press conference today at the University of Vienna's Observatory, the Austrian Science Minister Johannes Hahn announced the decision by the Austrian Government to seek membership of ESO from 1 July this year. ESO PR Photo 11/08 ESO PR Photo 11/08 Announcing Austria's Intent to Join ESO Said Minister Hahn: "With membership of ESO, Austria's scientists will receive direct access to the world's leading infrastructure in astronomy. This strengthens Austria as a place for research and provides an opportunity for young researchers to continue their work from here. With this move, Austria takes an important step in the reinforcement of Europe's science and research infrastructure." The decision constitutes a major breakthrough for Austrian scientists who have argued for membership of ESO for many years. Seeking membership in ESO also marks a step towards the further development of the European Research and Innovation Area, an important element of Europe's so-called Lisbon Strategy. "ESO welcomes the Austrian bid to join our organisation. I salute the Austrian Government for taking this important step and look forward to working closely with our Austrian friends and colleagues in the years to come," commented the ESO Director General, Tim de Zeeuw. For Austrian astronomers, ESO membership means not only unrestricted access to ESO's world-leading observational facilities including the world's most advanced optical telescope, the Very Large Telescope, and full participation in the quasi-global ALMA project, but also the possibility to participate on a par with their European colleagues in the future projects of ESO, including the realisation of ESO's Extremely Large Telescope project (E-ELT), which is currently in the design phase. All these projects require some of the most advanced technologies in key areas such as optics, detectors, lightweight structures, etc. Austrian participation in ESO opens the door for Austrian industry and major research institutes of the country to take part in the development of such technologies with their associated potential for industrial spin off. The main centres for astronomical research in Austria are at the Universities of Graz, Innsbruck and Vienna. Furthermore scientists in the area of mathematics, applied physics and computer sciences already expressed their interest to contribute to the development of advanced technologies required by ESO's future projects. The Austrian bid for ESO membership will be formally considered by the ESO Council at its next meeting on 3-4 June and is subject also to subsequent ratification by the Austrian Parliament.

  16. Report on the 2009 ESO Fellows Symposium

    NASA Astrophysics Data System (ADS)

    Emsellem, Eric; West, Michael; Leibundgut, Bruno

    2009-09-01

    The fourth ESO Fellows Symposium took place in Garching from 8-10 June 2009. This year's symposium brought together 28 ESO Fellows from Chile and Germany to meet their colleagues from across the ocean, discuss their research and provide feedback on ESO's Fellowship programme. This year's symposium also included training workshops to enhance the practical skills of ESO Fellows in today's competitive job market.

  17. Oil-in-Water Emulsions Stabilized by Saponified Epoxidized Soybean Oil-Grafted Hydroxyethyl Cellulose.

    PubMed

    Huang, Xujuan; Li, Qiaoguang; Liu, He; Shang, Shibin; Shen, Minggui; Song, Jie

    2017-05-03

    An oil-in-water emulsion stabilized by saponified epoxidized soybean oil-grafted hydroxyethyl cellulose (H-ESO-HEC) was investigated. By using an ultrasonic method, oil-in-water emulsions were prepared by blending 50 wt % soybean oil and 50 wt % H-ESO-HEC aqueous suspensions. The influence of H-ESO-HEC concentrations on the properties of oil-in-water emulsions was examined. The H-ESO-HEC concentrations in the aqueous phase varied from 0.02 to 0.40 wt %. When the H-ESO-HEC concentration was 0.4 wt %, the emulsion remained stable for >80 days. The mean droplet sizes of the emulsions decreased by increasing the H-ESO-HEC concentration and extending the ultrasonic time. The adsorption amounts of H-ESO-HEC at the oil-water interface increased when the H-ESO-HEC concentrations in the aqueous phase increased. The rheological property revealed that the apparent viscosity of the H-ESO-HEC-stabilized oil-in-water emulsions increased when the H-ESO-HEC concentrations increased. Steady flow curves indicated an interfacial film formation in the emulsions. The evolution of G', G″, and tan η indicated the predominantly elastic behaviors of all the emulsions.

  18. A phase I study of vaccination with NY-ESO-1f peptide mixed with Picibanil OK-432 and Montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen.

    PubMed

    Kakimi, Kazuhiro; Isobe, Midori; Uenaka, Akiko; Wada, Hisashi; Sato, Eiichi; Doki, Yuichiro; Nakajima, Jun; Seto, Yasuyuki; Yamatsuji, Tomoki; Naomoto, Yoshio; Shiraishi, Kenshiro; Takigawa, Nagio; Kiura, Katsuyuki; Tsuji, Kazuhide; Iwatsuki, Keiji; Oka, Mikio; Pan, Linda; Hoffman, Eric W; Old, Lloyd J; Nakayama, Eiichi

    2011-12-15

    We conducted a phase I clinical trial of a cancer vaccine using a 20-mer NY-ESO-1f peptide (NY-ESO-1 91-110) that includes multiple epitopes recognized by antibodies, and CD4 and CD8 T cells. Ten patients were immunized with 600 μg of NY-ESO-1f peptide mixed with 0.2 KE Picibanil OK-432 and 1.25 ml Montanide ISA-51. Primary end points of the study were safety and immune response. Subcutaneous injection of the NY-ESO-1f peptide vaccine was well tolerated. Vaccine-related adverse events observed were fever (Grade 1), injection-site reaction (Grade 1 or 2) and induration (Grade 2). Vaccination with the NY-ESO-1f peptide resulted in an increase or induction of NY-ESO-1 antibody responses in nine of ten patients. The sera reacted with recombinant NY-ESO-1 whole protein as well as the NY-ESO-1f peptide. An increase in CD4 and CD8 T cell responses was observed in nine of ten patients. Vaccine-induced CD4 and CD8 T cells responded to NY-ESO-1 91-108 in all patients with various HLA types with a less frequent response to neighboring peptides. The findings indicate that the 20-mer NY-ESO-1f peptide includes multiple epitopes recognized by CD4 and CD8 T cells with distinct specificity. Of ten patients, two with lung cancer and one with esophageal cancer showed stable disease. Our study shows that the NY-ESO-1f peptide vaccine was well tolerated and elicited humoral, CD4 and CD8 T cell responses in immunized patients. Copyright © 2011 UICC.

  19. ESO's First Observatory Celebrates 40th Anniversary

    NASA Astrophysics Data System (ADS)

    2009-03-01

    ESO's La Silla Observatory, which is celebrating its 40th anniversary, became the largest astronomical observatory of its time. It led Europe to the frontline of astronomical research, and is still one of the most scientifically productive in ground-based astronomy. ESO PR Photo 12a/09 La Silla Aerial View ESO PR Photo 12b/09 The ESO New Technology Telescope ESO PR Photo 12c/09 SEST on La Silla ESO PR Photo 12d/09 Looking for the best site ESO PR Video 12a/09 ESOcast 5 With about 300 refereed publications attributable to the work of the observatory per year, La Silla remains at the forefront of astronomy. It has led to an enormous number of scientific discoveries, including several "firsts". The HARPS spectrograph is the world's foremost exoplanet hunter. It detected the system around Gliese 581, which contains what may be the first known rocky planet in a habitable zone, outside the Solar System (ESO 22/07). Several telescopes at La Silla played a crucial role in discovering that the expansion of the Universe is accelerating (ESO 21/98) and in linking gamma-ray bursts -- the most energetic explosions in the Universe since the Big Bang - with the explosions of massive stars (ESO 15/98). Since 1987, the ESO La Silla Observatory has also played an important role in the study and follow-up of the nearest supernova, SN 1987A (ESO 08/07). "The La Silla Observatory continues to offer the astronomical community exceptional capabilities," says ESO Director General, Tim de Zeeuw. "It was ESO's first presence in Chile and as such, it triggered a very long and fruitful collaboration with this country and its scientific community." The La Silla Observatory is located at the edge of the Chilean Atacama Desert, one of the driest and loneliest areas of the world. Like other observatories in this geographical area, La Silla is located far from sources of polluting light and, as the Paranal Observatory that houses the Very Large Telescope, it has one of the darkest and clearest night skies on the Earth. At its peak, La Silla was home to no fewer than 15 telescopes, among them the first -- and, for a very long time, the only -- telescope working in submillimetric waves (the 15-metre SEST) in the southern hemisphere, which paved the way for APEX and ALMA, and the 1-metre Schmidt telescope, which completed the first photographic mapping of the southern sky. The telescopes at La Silla have also supported countless space missions, e.g., by obtaining the last images of comet Shoemaker Levy 9 before it crashed into Jupiter, thereby helping predicting the exact moment when the Galileo spacecraft should observe to capture images of the cosmic collision. "Many of the current generation of astronomers were trained on La Silla where they got their first experience with what were then considered large telescopes," says Bruno Leibundgut, ESO Director for Science. While some of the smaller telescopes have been closed over the years, frontline observations continue with the larger telescopes, aided by new and innovative astronomical instruments. La Silla currently hosts two of the most productive 4-metre class telescopes in the world, the 3.5-metre New Technology Telescope (NTT) and the 3.6-metre ESO telescope. "The NTT broke new ground for telescope engineering and design," says Andreas Kaufer, director of the La Silla Paranal Observatory. The NTT was the first in the world to have a computer-controlled main mirror (active optics), a technology developed at ESO and now applied to the VLT and most of the world's current large telescopes. The ESO 3.6-metre telescope, which was for many years one of the largest European telescopes in operation, is now home to the extrasolar planet hunter, HARPS (High Accuracy Radial velocity Planet Searcher), a spectrograph with unrivalled precision. The infrastructure of La Silla is used by many of the ESO member states for targeted projects such as the Swiss 1.2-metre Euler telescope, the Italian Rapid-Eye Mount (REM) and French TAROT gamma-ray burst chasers as well as more common user facilities such as the 2.2-metre telescope of the German Max Planck Society and the 1.5-metre Danish telescopes. The 67-million pixel Wide Field Imager on the 2.2-metre telescope has taken many amazing images of celestial objects, some of which have now become icons of their own. The La Silla Observatory, north of the town of La Serena, has been a stronghold of the organisation's capabilities since the 1960s. The site was chosen after an initial prospecting expedition -- partly on horseback -- to the Chilean Andes, during 1963 and 1964, by the first ESO Director General, Otto Heckmann, and several senior astronomers. This was done with the help of AURA, which had just chosen to install an observatory at nearby Cerro Tololo. In the following years, the site was developed and the first small and mid-sized telescopes were erected, followed by the 3.6-metre telescope in 1977 and the NTT in 1989. On 25 March 1969, an audience of more than 300 people, including the then Chilean President, Eduardo Frei and the Minister of Education of Sweden, Olof Palme, celebrated the completion of the first phase of the construction programme. "The erection of the La Silla Observatory is not only of vast importance for the future of astronomical research, but also a striking example of what may be achieved through efficient, and truly far-reaching, international cooperation," said Olof Palme at the time. The future of the La Silla Observatory remains bright. In 2007 ESO's Council endorsed a plan that maintains an important role for La Silla, alongside the other large ESO facilities, the VLT, ALMA and the E-ELT. La Silla also plans to host new national telescope projects and visitor instruments -- an option that has already received a strong positive response from the astronomical community.

  20. ESO Reflex: a graphical workflow engine for data reduction

    NASA Astrophysics Data System (ADS)

    Hook, Richard; Ullgrén, Marko; Romaniello, Martino; Maisala, Sami; Oittinen, Tero; Solin, Otto; Savolainen, Ville; Järveläinen, Pekka; Tyynelä, Jani; Péron, Michèle; Ballester, Pascal; Gabasch, Armin; Izzo, Carlo

    ESO Reflex is a prototype software tool that provides a novel approach to astronomical data reduction by integrating a modern graphical workflow system (Taverna) with existing legacy data reduction algorithms. Most of the raw data produced by instruments at the ESO Very Large Telescope (VLT) in Chile are reduced using recipes. These are compiled C applications following an ESO standard and utilising routines provided by the Common Pipeline Library (CPL). Currently these are run in batch mode as part of the data flow system to generate the input to the ESO/VLT quality control process and are also exported for use offline. ESO Reflex can invoke CPL-based recipes in a flexible way through a general purpose graphical interface. ESO Reflex is based on the Taverna system that was originally developed within the UK life-sciences community. Workflows have been created so far for three VLT/VLTI instruments, and the GUI allows the user to make changes to these or create workflows of their own. Python scripts or IDL procedures can be easily brought into workflows and a variety of visualisation and display options, including custom product inspection and validation steps, are available. Taverna is intended for use with web services and experiments using ESO Reflex to access Virtual Observatory web services have been successfully performed. ESO Reflex is the main product developed by Sampo, a project led by ESO and conducted by a software development team from Finland as an in-kind contribution to joining ESO. The goal was to look into the needs of the ESO community in the area of data reduction environments and to create pilot software products that illustrate critical steps along the road to a new system. Sampo concluded early in 2008. This contribution will describe ESO Reflex and show several examples of its use both locally and using Virtual Observatory remote web services. ESO Reflex is expected to be released to the community in early 2009.

  1. A Novel HLA-B18 Restricted CD8+ T Cell Epitope Is Efficiently Cross-Presented by Dendritic Cells from Soluble Tumor Antigen

    PubMed Central

    Chan, Kok-Fei; Oveissi, Sara; Jackson, Heather M.; Dimopoulos, Nektaria; Guillaume, Philippe; Knights, Ashley J.; Lowen, Tamara; Robson, Neil C.; Russell, Sarah E.; Scotet, Emmanuel; Davis, Ian D.; Maraskovsky, Eugene; Cebon, Jonathan; Luescher, Immanuel F.; Chen, Weisan

    2012-01-01

    NY-ESO-1 has been a major target of many immunotherapy trials because it is expressed by various cancers and is highly immunogenic. In this study, we have identified a novel HLA-B*1801-restricted CD8+ T cell epitope, NY-ESO-188–96 (LEFYLAMPF) and compared its direct- and cross-presentation to that of the reported NY-ESO-1157–165 epitope restricted to HLA-A*0201. Although both epitopes were readily cross-presented by DCs exposed to various forms of full-length NY-ESO-1 antigen, remarkably NY-ESO-188–96 is much more efficiently cross-presented from the soluble form, than NY-ESO-1157–165. On the other hand, NY-ESO-1157–165 is efficiently presented by NY-ESO-1-expressing tumor cells and its presentation was not enhanced by IFN-γ treatment, which induced immunoproteasome as demonstrated by Western blots and functionally a decreased presentation of Melan A26–35; whereas NY-ESO-188–96 was very inefficiently presented by the same tumor cell lines, except for one that expressed high level of immunoproteasome. It was only presented when the tumor cells were first IFN-γ treated, followed by infection with recombinant vaccinia virus encoding NY-ESO-1, which dramatically increased NY-ESO-1 expression. These data indicate that the presentation of NY-ESO-188–96 is immunoproteasome dependent. Furthermore, a survey was conducted on multiple samples collected from HLA-B18+ melanoma patients. Surprisingly, all the detectable responses to NY-ESO-188–96 from patients, including those who received NY-ESO-1 ISCOMATRIX™ vaccine were induced spontaneously. Taken together, these results imply that some epitopes can be inefficiently presented by tumor cells although the corresponding CD8+ T cell responses are efficiently primed in vivo by DCs cross-presenting these epitopes. The potential implications for cancer vaccine strategies are further discussed. PMID:22970293

  2. Eso's Situation in Chile

    NASA Astrophysics Data System (ADS)

    1995-02-01

    ESO, the European Southern Observatory, in reply to questions raised by the international media, as well as an ongoing debate about the so-called "Paranal case" in Chilean newspapers, would like to make a number of related observations concerning its status and continued operation in that country [1]. THE ESO OBSERVATORY SITES IN CHILE The European Southern Observatory, an international organisation established and supported by eight European countries, has been operating more than 30 years in the Republic of Chile. Here ESO maintains one of the world's prime astronomical observatories on the La Silla mountain in the southern part of the Atacama desert. This location is in the Fourth Chilean Region, some 600 km north of Santiago de Chile. In order to protect the La Silla site against dust and light pollution from possible future mining industries, roads and settlements, ESO early acquired the territory around this site. It totals about 825 sq. km and has effectively contributed to the preservation of its continued, excellent "astronomical" quality. Each year, more than 500 astronomers from European countries, Chile and elsewhere profit from this when they come to La Silla to observe with one or more of the 15 telescopes now located there. In 1987, the ESO Council [2] decided to embark upon one of the most prestigious and technologically advanced projects ever conceived in astronomy, the Very Large Telescope (VLT). It will consist of four interconnected 8.2-metre telescopes and will become the largest optical telescope in the world when it is ready. It is safe to predict that many exciting discoveries will be made with this instrument, and it will undoubtedly play a very important role in our exploration of the distant universe and its many mysteries during the coming decades. THE VLT AND PARANAL In order to find the best site for the VLT, ESO performed a thorough investigation of many possible mountain tops, both near La Silla and in Northern Chile. They showed that the best VLT site would be the Paranal Mountain, 700 km north of La Silla and 130 km south of Antofagasta, the capital of the Second Region in Chile. In October 1988, the Chilean Government by an official act donated the land surrounding Paranal (in all 725 sq. km) to ESO. As is the case for La Silla, this would serve to protect the planned, incredibly sensitive mega-telescope against all possible future sources of outside interference. The donation was made on the condition that ESO would indeed proceed with the construction of the VLT at Paranal within the next five years. The corresponding decision was taken by the ESO Council in December 1990. The construction of the VLT observatory site at Paranal started immediately thereafter, thus fulfilling the condition attached to the donation. The construction of the VLT is now well advanced. In Europe, the main parts of the first VLT unit 8.2-metre telescope will be pre-assembled later this year and the first two of the enormous mirrors are being polished. In Chile, the extensive landscaping of the Paranal peak was finished in 1993, during which around 300,000 cubic metres of rock and soil was removed to provide a 100x100 sq. metres platform for the VLT, and the concrete foundations are now ready. The installation of the first telescope enclosure can now begin and the next will start later this year. The first of the four telescopes is expected to start observations in late 1997. All in all, ESO has until now committed about 70 percent of the expected total investment for the VLT, estimated to be approximately 570 million DEM. THE OWNERSHIP OF PARANAL According to information later received, the Chilean Ministry of National Properties ("Bienes Nacionales") inscribed in 1977 in its name various lands in the commune of Taltal, including the area of the Paranal peak. At that time, i.e. ten years before ESO decided to construct the VLT, nobody in this Organisation could imagine that this telescope would one day be constructed at that site. It was only seven years later, in 1984, that ESO initiated the search for a future VLT site that ultimately led to the recommendation in favour of Paranal, the subsequent donation by the Chilean Government and the beginning of the construction, as described above. ESO has never had any doubt on the legality of this donation by the Chilean Government. The Organisation started the work at Paranal in full confidence that this generous act was correct and respected its condition, i.e. to start construction of the VLT observatory within a given time frame. However, in April 1993, when the work at Paranal was already quite advanced, a Chilean family brought a lawsuit against the Chilean State and ESO, claiming that a small part of the land (about 22 sq. km, including the very peak of Paranal) that was inscribed by the state in 1977, had been property of this family. The lawsuit is presently pending with the competent Chilean courts and it is not known when a final judgement will be given. In keeping with its status as an International Organisation and conforming to the international practice of such organisations, ESO decided not to become a party in this lawsuit. The Organisation, therefore, has restricted its involvement to merely invoking the immunity from lawsuit and jurisdiction to which it is entitled (see below). ESO believes that the issue of past ownership is an internal Chilean matter. Nevertheless, it has been widely reported that on January 30, 1995, in response to an appeal by the claimants, a Chambre of the Chilean Supreme Court issued a preliminary decision that may be interpreted as ordering to stop the construction of the VLT during an undetermined period of time. This would seriously delay the entire project and necessarily entail additional, substantial costs. ESO'S IMMUNITIES ESO's relations with its host state, the Republic of Chile, is governed by an international Convention ("Convenio"), signed in 1963 and ratified by the Chilean Congress (Parliament) in 1964. According to this, the Chilean Government "grants to ESO the same immunities, prerogatives, privileges and facilities as the Government applies to the United Nations Economic Commission for Latin America (CEPAL), as granted in the Convention signed in Santiago on 16 February 1953" (Article 4 of the Chile-ESO Convention). Through this, the Chilean Government has in particular recognized that "the possessions and properties of (ESO) wherever they may be, and whoever may have them in his possession, shall be exempt of registration, requisition, confiscation, expropriation and of whatever interference, may it be through executive, administrative, judicial or legislative action" (Art. 4, Sec. 8, CEPAL Convention). Such privileges and immunities are not peculiar to the relations between Chile and ESO. They apply, as already mentioned, to CEPAL as well as to all other United Nations' Agencies and they are today typically recognized by the host states of International Organisations throughout the world. The Chilean Government and ESO agreed in 1983-84 by an exchange of diplomatic notes that these privileges and immunities apply not only to the La Silla observatory, but equally to any other observatory site that the Organisation may establish in the future in the Republic of Chile. It is obvious that, in order to exclude a possible breach of international law, the reported preliminary decision requires to be considered and interpreted in the light of these privileges and immunities. ESO trusts that the competent Chilean authorities will take the appropriate action and decisions which are required for ensuring the Organisation's international status and its protection from any public interference into its possessions and properties. In a Press Conference at the ESO Headquarters in Santiago de Chile on February 13, 1995, Mr. Daniel Hofstadt, ESO's highest-ranking representative in Chile, stated on behalf of the Organisation that "ESO is in Chile with the purpose to do science and not to participate in polemics or litigations. For this reason, ESO has until now been silent in these matters, but we have now become obliged to make our opinion known". The ESO representative also made it clear, that "ESO does not question the rights of the claimants to recur to the Chilean Tribunals which must decide on the matter of ownership, and that ESO cannot be party to this lawsuit". He added that "ESO fully trusts that the Chilean Government will do whatever is necessary to defend the immunity of ESO". THE CURRENT SITUATION During the past few days, declarations from high officials at the Chilean Ministry of Foreign Affairs have been made which clearly confirm ESO's immunity of jurisdiction from Chilean Courts. The same opinion has been ventured by Chilean experts in international law, quoted in various Chilean newspapers. On Friday, February 17, the Chilean Minister of Foreign Affairs, Mr. Jose M. Insulza, made a similar, very eloquent statement. ESO welcomes these articulate expressions that support its official position and trusts that the current situation will be speedily resolved by the competent Chilean authorities, so that the construction work at Paranal will not be stopped. During the past three decades, ESO's presence in Chile has been characterised by good relations to all sides. The development of astronomy in Chile during the past decades has reached such a level that it will now benefit from a new quality of cooperation. In addition to its past and numerous services to Chilean astronomy, ESO has recently considered to establish a "guaranteed" observing time for astronomers from this country, both at La Silla and the future VLT observatory on Paranal. With a proposed 10 percent quota for the VLT, Chilean astronomers will in fact have free access to the equivalent of 40 percent of one 8.2-metre telescope; the associated, not insignificant cost is entirely carried by ESO. ESO has also considered to incorporate elements of Chilean labour legislation into its rules and regulations for local staff. These proposed actions are contained in an Amendment to the Convention which was initialled late last year and is now awaiting signature by the Chilean Government and ratification by the Chilean Congress, as well as by the ESO Council. FUTURE INFORMATION In conjunction with the present Press Release ESO has prepared a pre-edited video-news reel with video-clips (approx. 4 minutes) about Paranal and the current work there. It is available for TV channels in the usual formats (Beta-SP and M II). Please fax your request to the ESO Information Service (+4989-3202362). ESO will continue to keep the media informed about further important developments around the VLT Project, in addition to the usual scientific and technological news, available through Press Releases and the ESO house journal, "The Messenger/El Mensajero". ----- Notes: [1] See also the following ESO Press Releases: PR 14/94 of 29 September 1994, PR 13/94 of 9 August 1994; PR 12/94 of 10 June 1994; PR 08/94 of 5 May 1994, and PR 07/94 of 21 April 1994. [2] The Council of ESO consists of two representatives from each of the eight member states. It is the highest legislative authority of the organisation and normally meets twice a year. ----- ESO Press Information is made available on the World-Wide Web (URL: http://www.hq.eso.org/) and on CompuServe (space science and astronomy area, GO SPACE).

  3. 78 FR 33340 - Reorganization of Foreign-Trade Zone 139 Under Alternative Site Framework Sierra Vista, Arizona

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-04

    ...'s existing Site 1 would be categorized as a magnet site; Whereas, notice inviting public comment was... ASF sunset provision for magnet sites that would terminate authority for Site 1 if not activated by...

  4. "Life in the Universe" Final Event Video Now Available

    NASA Astrophysics Data System (ADS)

    2002-02-01

    ESO Video Clip 01/02 is issued on the web in conjunction with the release of a 20-min documentary video from the Final Event of the "Life in the Universe" programme. This unique event took place in November 2001 at CERN in Geneva, as part of the 2001 European Science and Technology Week, an initiative by the European Commission to raise the public awareness of science in Europe. The "Life in the Universe" programme comprised competitions in 23 European countries to identify the best projects from school students. The projects could be scientific or a piece of art, a theatrical performance, poetry or even a musical performance. The only restriction was that the final work must be based on scientific evidence. Winning teams from each country were invited to a "Final Event" at CERN on 8-11 November, 2001 to present their projects to a panel of International Experts during a special three-day event devoted to understanding the possibility of other life forms existing in our Universe. This Final Event also included a spectacular 90-min webcast from CERN with the highlights of the programme. The video describes the Final Event and the enthusiastic atmosphere when more than 200 young students and teachers from all over Europe met with some of the world's leading scientific experts of the field. The present video clip, with excerpts from the film, is available in four versions: two MPEG files and two streamer-versions of different sizes; the latter require RealPlayer software. Video Clip 01/02 may be freely reproduced. The 20-min video is available on request from ESO, for viewing in VHS and, for broadcasters, in Betacam-SP format. Please contact the ESO EPR Department for more details. Life in the Universe was jointly organised by the European Organisation for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , in co-operation with the European Association for Astronomy Education (EAAE). Other research organisations were associated with the programme, e.g., the European Molecular Biology Laboratory (EMBL) and the European Synchrotron Radiation Facility (ESRF). Detailed information about the "Life in the Universe" programme can be found at the website b>http://www.lifeinuniverse.org and a webcast of this 90-min closing session in one of the large experimental halls at CERN is available on the web via that page. Most of the ESO PR Video Clips at the ESO website provide "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clips 08a-b/01 about The Eagle's EGGs (20 December 2001) . General information is available on the web about ESO videos.

  5. ESO Delegation to Visit Chile: the Chile-Eso Treaty and Paranal

    NASA Astrophysics Data System (ADS)

    1994-05-01

    The ESO Council, in its extraordinary session on 28 April 1994, among other matters discussed the relations with the Republic of Chile and the situation around Paranal mountain [1], the designated site for the ESO Very Large Telescope (VLT). Council decided to send a high ranking delegation to Santiago de Chile to discuss with Chilean authorities the pending problems, including the finalisation of the new Treaty between the Republic of Chile and ESO and the legal aspects of the Paranal location. The ESO delegation will consist of Dr. Peter Creola (President of ESO Council), Dr. Catherine Cesarsky (Vice-President of ESO Council), Dr. Henrik Grage (Former Vice-President of ESO Council) and Professor Riccardo Giacconi (ESO Director General), the latter accompanied by his advisers. The delegation will arrive in Chile during the second half of May 1994. The ESO delegation will meet with the Chilean Minister of Foreign Affairs, Mr. Carlos Figueroa, and the Secretary of State in the Ministry of Foreign Affairs, Mr. Jose Miguel Insulza. Other meetings at high level are being planned. The delegation will report about these discussions to the ESO Council during its ordinary session on 7 - 8 June 1994. FOUR PARANAL PHOTOS AVAILABLE A series of four photos which show the current status of the work at Paranal has been prepared. Photographic colour prints for use by the media can be requested from the ESO Information and Photographic Service (please remember to indicate the identification numbers). [1] See ESO Press Release 07/94 of 21 April 1994. PHOTO CAPTIONS ESO PR PHOTO 08/94-1: CERRO PARANAL This aerial photo of the Paranal mountain, the designated site for the ESO Very Large Telescope (VLT), was obtained on 22 March 1994. Paranal is situated in the driest part of the Chilean Atacama desert, approx. 130 km south of the city of Antofagasta, and about 12 km from the Pacific Ocean. In this view towards the West, the ocean is seen in the background. The altitude is 2650 metres. The top of the mountain has been levelled to make place for the extensive VLT installations. ESO has constructed a road from the main road in the area (the ``Old Panamericana'') to the summit. It passes by the ESO base camp (in the foreground, left of the road). The constructors' camp is located on the other side of the road. This photo (ESO PR Photo 08/94-1) accompanies ESO Press Release 08/94 of 6 May 1994 and may be reproduced, if credit is given to the European Southern Observatory. ESO PR PHOTO 08/94-2: CERRO PARANAL This aerial photo of the Paranal mountain, the designated site for the ESO Very Large Telescope (VLT), was obtained on 22 March 1994. Paranal is located in the driest part of the Chilean Atacama desert, approx. 130 km south of the city of Antofagasta, and about 12 km from the Pacific Ocean. The altitude is 2650 metres. In this view towards the East, the high mountains of the Andean Cordillera are in the background. The top of the mountain has been levelled to make place for the extensive VLT installations. The four excavations for the buildings that will house the four 8.2 metre VLT unit telescopes are clearly seen. There are some dust clouds from the construction activity at the site. There are several other peaks in this area which may possibly be used for astronomical installations. The one to the left on which some site testing equipment can be seen, is known as the ``NTT Peak''. This photo (ESO PR Photo 08/94-2) accompanies ESO Press Release 08/94 of 6 May 1994 and may be reproduced, if credit is given to the European Southern Observatory. ESO PR PHOTO 08/94-3: CERRO PARANAL This aerial photo of the Paranal mountain, the designated site for the ESO Very Large Telescope (VLT), was obtained on 22 March 1994. Paranal is located in the driest part of the Chilean Atacama desert, approx. 130 km south of the city of Antofagasta, and about 12 km from the Pacific Ocean. The altitude is 2650 metres. The top of the mountain has been levelled to make place for the extensive VLT installations. The four excavations for the buildings that will house the four 8.2 metre VLT unit telescopes are clearly seen. The positions of some of the future structures have been marked. The control building will be located on the platform at the rightmost edge of the mountain. This photo (ESO PR Photo 08/94-3) accompanies ESO Press Release 08/94 of 6 May 1994 and may be reproduced, if credit is given to the European Southern Observatory. ESO PR PHOTO 08/94-4: CERRO PARANAL This photo of the ESO Base Camp at the foot of the Paranal mountain, the designated site for the ESO Very Large Telescope (VLT), was obtained in late March 1994. Paranal is located in the driest part of the Chilean Atacama desert, approx. 130 km south of the city of Antofagasta, and about 12 km from the Pacific Ocean. The altitude is 2650 metres. The top of the mountain has been levelled to make place for the extensive VLT installations. This photo (ESO PR Photo 08/94-4) accompanies ESO Press Release 08/94 of 6 May 1994 and may be reproduced, if credit is given to the European Southern Observatory.

  6. ESO Demonstration Project with the NRAO 12-m Antenna

    NASA Astrophysics Data System (ADS)

    Heald, R.; Karban, R.

    2000-03-01

    During the months of September through November 1999, an ALMA joint demonstration project between the European Southern Observatory (ESO) and the National Radio Astronomy Observatory (NRAO) was carried out in Socorro/New Mexico. During this period, Robert Karban (ESO) and Ron Heald (NRAO) worked together on the ESO Demonstration Project. The project integrated ESO software and existing NRAO software (a prototype for the future ALMA control software) to control the motion of the Kitt Peak 12-m antenna. ESO software from the VLT provided the operator interface and coordinate transformation software, while Pat Wallace's TPOINT provided the pointing- model software.

  7. Strategy for monitoring T cell responses to NY-ESO-1 in patients with any HLA class I allele

    PubMed Central

    Gnjatic, Sacha; Nagata, Yasuhiro; Jäger, Elke; Stockert, Elisabeth; Shankara, Srinivas; Roberts, Bruce L.; Mazzara, Gail P.; Lee, Sang Yull; Dunbar, P. Rod; Dupont, Bo; Cerundolo, Vincenzo; Ritter, Gerd; Chen, Yao-Tseng; Knuth, Alexander; Old, Lloyd J.

    2000-01-01

    NY-ESO-1 elicits frequent antibody responses in cancer patients, accompanied by strong CD8+ T cell responses against HLA-A2-restricted epitopes. To broaden the range of cancer patients who can be assessed for immunity to NY-ESO-1, a general method was devised to detect T cell reactivity independent of prior characterization of epitopes. A recombinant adenoviral vector encoding the full cDNA sequence of NY-ESO-1 was used to transduce CD8-depleted peripheral blood lymphocytes as antigen-presenting cells. These modified antigen-presenting cells were then used to restimulate memory effector cells against NY-ESO-1 from the peripheral blood of cancer patients. Specific CD8+ T cells thus sensitized were assayed on autologous B cell targets infected with a recombinant vaccinia virus encoding NY-ESO-1. Strong polyclonal responses were observed against NY-ESO-1 in antibody-positive patients, regardless of their HLA profile. Because the vectors do not cross-react immunologically, only responses to NY-ESO-1 were detected. The approach described here allows monitoring of CD8+ T cell responses to NY-ESO-1 in the context of various HLA alleles and has led to the definition of NY-ESO-1 peptides presented by HLA-Cw3 and HLA-Cw6 molecules. PMID:11005863

  8. Discovery of Massive, Mostly Star Formation Quenched Galaxies with Extremely Large Lyα Equivalent Widths at z ˜ 3

    NASA Astrophysics Data System (ADS)

    Taniguchi, Yoshiaki; Kajisawa, Masaru; Kobayashi, Masakazu A. R.; Nagao, Tohru; Shioya, Yasuhiro; Scoville, Nick Z.; Sanders, David B.; Capak, Peter L.; Koekemoer, Anton M.; Toft, Sune; McCracken, Henry J.; Le Fèvre, Olivier; Tasca, Lidia; Sheth, Kartik; Renzini, Alvio; Lilly, Simon; Carollo, Marcella; Kovač, Katarina; Ilbert, Olivier; Schinnerer, Eva; Fu, Hai; Tresse, Laurence; Griffiths, Richard E.; Civano, Francesca

    2015-08-01

    We report a discovery of six massive galaxies with both extremely large Lyα equivalent widths (EWs) and evolved stellar populations at z ˜ 3. These MAssive Extremely STrong Lyα emitting Objects (MAESTLOs) have been discovered in our large-volume systematic survey for strong Lyα emitters (LAEs) with 12 optical intermediate-band data taken with Subaru/Suprime-Cam in the COSMOS field. Based on the spectral energy distribution fitting analysis for these LAEs, it is found that these MAESTLOs have (1) large rest-frame EWs of EW0 (Lyα) ˜ 100-300 Å, (2) M⋆ ˜ 1010.5-1011.1 M⊙, and (3) relatively low specific star formation rates of SFR/M⋆ ˜ 0.03-1 Gyr-1. Three of the six MAESTLOs have extended Lyα emission with a radius of several kiloparsecs, although they show very compact morphology in the HST/ACS images, which correspond to the rest-frame UV continuum. Since the MAESTLOs do not show any evidence for active galactic nuclei, the observed extended Lyα emission is likely to be caused by a star formation process including the superwind activity. We suggest that this new class of LAEs, MAESTLOs, provides a missing link from star-forming to passively evolving galaxies at the peak era of the cosmic star formation history. Based on observations with NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555; also based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan; and also based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under ESO programme ID 179.A-2005 and on data products produced by TERAPIX and the Cambridge Astronomy Survey Unit on behalf of the UltraVISTA consortium.

  9. Spain to Join ESO

    NASA Astrophysics Data System (ADS)

    2006-02-01

    Today, during a ceremony in Madrid, an agreement was signed by the Spanish Minister of Education and Science, Mrs. María Jesús San Segundo, and the ESO Director General, Dr. Catherine Cesarsky, affirming their commitment to securing Spanish membership of ESO. ESO PR Photo 05a/06 ESO PR Photo 05a/06 Signature Event in Madrid Following approval by the Spanish Council of Ministers and the ratification by the Spanish Parliament of the ESO Convention and the associated protocols, Spain intends to become ESO's 12th member state on 1 July 2006. "Since long Spain was aware that entering ESO was a logical decision and it was even necessary for a country like Spain because Spain is ranked 8th in astrophysical research", said Mrs. María Jesús San Segundo. "The large scientific installations are not only necessary for research in different fields but are also partners and customers for hi-tech companies, helping to increase the funding of R&D." "Spanish Astronomy has made tremendous strides forward and we are delighted to welcome Spain as a new member of ESO. We very much look forward to working together with our excellent Spanish colleagues," said Dr. Cesarsky. "For ESO, the Spanish accession means that we can draw on the scientific and technological competences, some of them unique in Europe, that have been developed in Spain and, of course, for Europe the Spanish membership of ESO is an important milestone in the construction of the European Research Area." ESO PR Photo 05b/06 ESO PR Photo 05b/06 Signature Event in Madrid Indeed, Spain is an important member of the European astronomical community and has developed impressively over the last three decades, reaching maturity with major contributions in virtually all subjects of astronomy. In addition, Spain hosts, operates or owns a number of competitive facilities dedicated to foster astronomical research, among which the Observatorio del Roque de los Muchachos at La Palma, certainly the premier optical/infrared astronomical observing site in Europe and site of the Spanish 10m GranTeCan telescope now nearing completion. With the high quality of Spanish astronomical research as well as the technological competence of Spanish industry, it is only fitting that Spain should join ESO, world-leader in ground-based astronomy. Through ESO Spain will enjoy full access both to all of ESO's current facilities and to unrestricted participation in the great projects that ESO is planning for the future. Spain is already an active partner of the Atacama Large Millimeter Array (ALMA), whose construction and operations are led on behalf of Europe by ESO. ESO's Council approved the admission of Spain at its 107th meeting held in Garching on 7 and 8 December 2005. High resolution images and their captions are available on this page.

  10. Advances in the Echidna fiber-positioning technology

    NASA Astrophysics Data System (ADS)

    Sheinis, Andrew; Saunders, Will; Gillingham, Peter; Farrell, Tony J.; Muller, Rolf; Smedley, Scott; Brzeski, Jurek; Waller, Lewis G.; Gilbert, James; Smith, Greg

    2014-07-01

    We present advances in the patented Echidna 'tilting spine' fiber positioner technology that has been in operation since 2007 on the SUBARU telescope in the FMOS system. The new Echidna technology is proposed to be implemented on two large fiber surveys: the Dark Energy Spectroscopic Instrument (DESI) (5000 fibers) as well the Australian ESO Positioner (AESOP) for 4MOST, a spectroscopic survey instrument for the VISTA telescope (~2500 fibers). The new 'superspine' actuators are stiffer, longer and more accurate than their predecessors. They have been prototyped at AAO, demonstrating reconfiguration times of ~15s for errors of <5 microns RMS. Laboratory testing of the prortotype shows accurate operation at temperatures of -10 to +30C, with an average heat output of 200 microwatts per actuator during reconfiguration. Throughput comparisons to other positioner types are presented, and we find that losses due to tilt will in general be outweighed by increased allocation yield and reduced fiber stress FRD. The losses from spine tilt are compensated by the gain in allocation yield coming from the greater patrol area, and quantified elsewhere in these proceedings. For typical tilts, f-ratios and collimator overspeeds, Echidna offers a clear efficiency gain versus current r-that or theta-phi positioners.

  11. SkZpipe: A Python3 module to produce efficiently PSF-fitting photometry with DAOPHOT, and much more

    NASA Astrophysics Data System (ADS)

    Mauro, F.

    2017-07-01

    In an era characterized by big sky surveys and the availability of large amount of photometric data, it is important for astronomers to have tools to process their data in an efficient, accurate and easy way, minimizing reduction time. We present SkZpipe, a Python3 module designed mainly to process generic data, performing point-spread function (PSF) fitting photometry with the DAOPHOT suite (Stetson 1987). The software has already demonstrated its accuracy and efficiency with the adaptation VVV-SkZ_pipeline (Mauro et al. 2013) for the "VISTA Variables in the Vía Láctea" ESO survey, showing how it can replace the users, avoiding repetitive interaction in all the operations, retaining all of the benefits of the power and accuracy of the DAOPHOT suite, detaching them from the burden of data precessing. This software provides not only a pipeline, but also all the tools to run easily each atomic step of the photometric procedure, to match the results, and to retrieve information from fits headers and the internal instrumental database. We plan to add the support to other photometric softwares in the future.

  12. Variability Survey of ω Centauri in the Near-IR: Period-Luminosity Relations

    NASA Astrophysics Data System (ADS)

    Navarrete, Camila; Catelan, Márcio; Contreras Ramos, Rodrigo; Gran, Felipe; Alonso-García, Javier; Dékány, István

    2015-08-01

    ω Centauri (NGC 5139) is by far the most massive globular star cluster in the Milky Way, and has even been suggested to be the remnant of a dwarf galaxy. As such, it contains a large number of variable stars of different classes. Here we report on a deep, wide-field, near-infrared variability survey of omega Cen, carried out by our team using ESO's 4.1m VISTA telescope. Our time-series data comprise 42 and 100 epochs in J and Ks, respectively. This unique dataset has allowed us to derive complete light curves for hundreds of variable stars in the cluster, and thereby perform a detailed analysis of the near-infrared period-luminosity (PL) relations for different variability classes, including type II Cepheids, SX Phoenicis, and RR Lyrae stars. In this contribution, in addition to describing our survey and presenting the derived light curves, we present the resulting PL relations for each of these variability classes, including the first calibration of this sort for the SX Phoenicis stars. Based on these relations, we also provide an updated (pulsational) distance modulus for omega Cen, compare with results based on independent techniques, and discuss possible sources of systematic errors.

  13. A Cosmic Zoo in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    2010-06-01

    Astronomers often turn their telescopes to the Large Magellanic Cloud (LMC), one of the closest galaxies to our own Milky Way, in their quest to understand the Universe. In this spectacular new image from the Wide Field Imager (WFI) at ESO's La Silla Observatory in Chile, a celestial menagerie of different objects and phenomena in part of the LMC is on display, ranging from vast globular clusters to the remains left by brilliant supernovae explosions. This fascinating observation provides data for a wide variety of research projects unravelling the life and death of stars and the evolution of galaxies. The Large Magellanic Cloud (LMC) is only about 160 000 light-years from our own Milky Way - very close on a cosmic scale. This proximity makes it a very important target as it can be studied in far more detail than more distant systems. The LMC lies in the constellation of Dorado (the Swordfish), deep in the southern sky and well placed for observations from ESO's observatories in Chile. It is one of the galaxies forming the Local Group surrounding the Milky Way [1]. Though enormous on a human scale, the LMC is less than one tenth the mass of our home galaxy and spans just 14 000 light-years compared to about 100 000 light-years for the Milky Way. Astronomers refer to it as an irregular dwarf galaxy [2]. Its irregularity, combined with its prominent central bar of stars suggests to astronomers that tidal interactions with the Milky Way and fellow Local Group galaxy, the Small Magellanic Cloud, could have distorted its shape from a classic barred spiral into its modern, more chaotic form. This image is a mosaic of four pictures from the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile. The image covers a region of sky more than four times as large as the full Moon. The huge field of view of this camera makes it possible to see a very wide range of objects in the LMC in a single picture, although only a small part of the entire galaxy can be included. Dozens of clusters of young stars can be seen as well as traces of glowing gas clouds. Huge numbers of faint stars fill the image from edge to edge and in the background, more galaxies, far beyond the LMC, are visible. Globular clusters are collections of hundreds of thousands to millions of stars bound by gravity into a roughly spherical shape just a few light-years across. Many clusters orbit the Milky Way and most are ancient, over ten billion years old, and composed mainly of old red stars. The LMC also has globular clusters and one is visible as the fuzzy white oval cluster of stars in the upper right part of the image. This is NGC 1978, an unusually massive globular cluster. Unlike most other globular clusters, NGC 1978 is believed to be just 3.5 billion years old. The presence of this kind of object in the LMC leads astronomers to think that the LMC has a more recent history of active star formation than our own Milky Way. As well as being a vigorous region of star birth, the LMC has also seen many spectacular stellar deaths in the form of brilliant supernova explosions. At the top right of the image, the remnant of one such supernova, a strangely shaped wispy cloud called DEM L 190, often also referred to as N 49, can be seen. This giant cloud of glowing gas is the brightest supernova remnant in the LMC, and is about 30 light-years across. At the centre, where the star once burned, now lies a magnetar, a neutron star with an extremely powerful magnetic field. It was only in 1979 that satellites orbiting Earth detected a powerful gamma-ray burst from this object, drawing attention to the extreme properties of this new class of stellar exotica created by supernova explosions. This part of the Large Magellanic Cloud is so packed with star clusters and other objects that astronomers can spend entire careers exploring it. With so much activity, it is easy to see why astronomers are so keen to study the strange creatures in this heavenly zoo. Notes [1] http://en.wikipedia.org/wiki/Local_Group [2] http://en.wikipedia.org/wiki/Galaxy_morphological_classification More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  14. Vaccination with NY-ESO-1 overlapping peptides mixed with Picibanil OK-432 and montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen.

    PubMed

    Wada, Hisashi; Isobe, Midori; Kakimi, Kazuhiro; Mizote, Yu; Eikawa, Shingo; Sato, Eiichi; Takigawa, Nagio; Kiura, Katsuyuki; Tsuji, Kazuhide; Iwatsuki, Keiji; Yamasaki, Makoto; Miyata, Hiroshi; Matsushita, Hirokazu; Udono, Heiichiro; Seto, Yasuyuki; Yamada, Kazuhiro; Nishikawa, Hiroyoshi; Pan, Linda; Venhaus, Ralph; Oka, Mikio; Doki, Yuichiro; Nakayama, Eiichi

    2014-01-01

    We conducted a clinical trial of an NY-ESO-1 cancer vaccine using 4 synthetic overlapping long peptides (OLP; peptides #1, 79-108; #2, 100-129; #3, 121-150; and #4, 142-173) that include a highly immunogenic region of the NY-ESO-1 molecule. Nine patients were immunized with 0.25 mg each of three 30-mer and a 32-mer long NY-ESO-1 OLP mixed with 0.2 KE Picibanil OK-432 and 1.25 mL Montanide ISA-51. The primary endpoints of this study were safety and NY-ESO-1 immune responses. Five to 18 injections of the NY-ESO-1 OLP vaccine were well tolerated. Vaccine-related adverse events observed were fever and injection site reaction (grade 1 and 2). Two patients showed stable disease after vaccination. An NY-ESO-1-specific humoral immune response was observed in all patients and an antibody against peptide #3 (121-150) was detected firstly and strongly after vaccination. NY-ESO-1 CD4 and CD8 T-cell responses were elicited in these patients and their epitopes were identified. Using a multifunctional cytokine assay, the number of single or double cytokine-producing cells was increased in NY-ESO-1-specific CD4 and CD8 T cells after vaccination. Multiple cytokine-producing cells were observed in PD-1 (-) and PD-1 (+) CD4 T cells. In conclusion, our study indicated that the NY-ESO-1 OLP vaccine mixed with Picibanil OK-432 and Montanide ISA-51 was well tolerated and elicited NY-ESO-1-specific humoral and CD4 and CD8 T-cell responses in immunized patients.

  15. Measurement of serum antibodies against NY-ESO-1 by ELISA: A guide for the treatment of specific immunotherapy for patients with advanced colorectal cancer.

    PubMed

    Long, Yan-Yan; Wang, Yu; Huang, Qian-Rong; Zheng, Guang-Shun; Jiao, Shun-Chang

    2014-10-01

    NY-ESO-1 has been identified as one of the most immunogenic antigens; thus, is a highly attractive target for cancer immunotherapy. The present study analyzed the expression of serum antibodies (Abs) against NY-ESO-1 in patients with advanced colorectal cancer (CRC), with the aim of guiding the treatment of NY-ESO-1-based specific-immunotherapy for these patients. Furthermore, the present study was the first to evaluate the kinetic expression of anti-NY-ESO-1 Abs and investigate the possible influencing factors. A total of 239 serum samples from 155 pathologically confirmed patients with advanced CRC (stages III and IV) were collected. The presence of spontaneous Abs against NY-ESO-1 was analyzed using an enzyme-linked immunosorbent assay (ELISA). The results demonstrated that 24.5% (38/155) of the investigated patients were positive for NY-ESO-1-specific Abs. No statistically significant correlations were identified between the expression of anti-NY-ESO-1 Abs and clinicopathological parameters, including age and gender, location, grading, local infiltration, lymph node status, metastatic status and K-ras mutation status (P>0.05). In 59 patients, the kinetic expression of anti-NY-ESO-1 Abs was analyzed, of which 14 patients were initially positive and 45 patients were initially negative. Notably, 16/59 (27.1%) patients changed their expression status during the study period, and the initially positive patients were more likely to change compared with the initially negative patients (85.7 vs. 8.8%; P<0.001). Therefore, monitoring serum Abs against NY-ESO-1 by ELISA is an easy and feasible method. The high expression rate of NY-ESO-1-specific Abs in CRC patients indicates that measuring the levels of serum Abs against NY-ESO-1 may guide the treatment of NY-ESO-1-based specific immunotherapy for patients with advanced CRC.

  16. Measurement of serum antibodies against NY-ESO-1 by ELISA: A guide for the treatment of specific immunotherapy for patients with advanced colorectal cancer

    PubMed Central

    LONG, YAN-YAN; WANG, YU; HUANG, QIAN-RONG; ZHENG, GUANG-SHUN; JIAO, SHUN-CHANG

    2014-01-01

    NY-ESO-1 has been identified as one of the most immunogenic antigens; thus, is a highly attractive target for cancer immunotherapy. The present study analyzed the expression of serum antibodies (Abs) against NY-ESO-1 in patients with advanced colorectal cancer (CRC), with the aim of guiding the treatment of NY-ESO-1-based specific-immunotherapy for these patients. Furthermore, the present study was the first to evaluate the kinetic expression of anti-NY-ESO-1 Abs and investigate the possible influencing factors. A total of 239 serum samples from 155 pathologically confirmed patients with advanced CRC (stages III and IV) were collected. The presence of spontaneous Abs against NY-ESO-1 was analyzed using an enzyme-linked immunosorbent assay (ELISA). The results demonstrated that 24.5% (38/155) of the investigated patients were positive for NY-ESO-1-specific Abs. No statistically significant correlations were identified between the expression of anti-NY-ESO-1 Abs and clinicopathological parameters, including age and gender, location, grading, local infiltration, lymph node status, metastatic status and K-ras mutation status (P>0.05). In 59 patients, the kinetic expression of anti-NY-ESO-1 Abs was analyzed, of which 14 patients were initially positive and 45 patients were initially negative. Notably, 16/59 (27.1%) patients changed their expression status during the study period, and the initially positive patients were more likely to change compared with the initially negative patients (85.7 vs. 8.8%; P<0.001). Therefore, monitoring serum Abs against NY-ESO-1 by ELISA is an easy and feasible method. The high expression rate of NY-ESO-1-specific Abs in CRC patients indicates that measuring the levels of serum Abs against NY-ESO-1 may guide the treatment of NY-ESO-1-based specific immunotherapy for patients with advanced CRC. PMID:25187840

  17. ALLSMOG, the APEX Low-redshift Legacy Survey for MOlecular Gas

    NASA Astrophysics Data System (ADS)

    Bothwell, M.; Cicone, C.; Wagg, J.; De Breuck, C..

    2017-09-01

    We report the completion of the APEX Low-redshift Legacy Survey for MOlecular Gas (ALLSMOG), an ESO Large Programme, carried out with the Atacama Pathfinder EXperiment (APEX) between 2013 and 2016. With a total of 327 hours of APEX observing time, we observed the 12CO(2-1) line in 88 nearby low-mass star-forming galaxies. We briefly outline the ALLSMOG goals and design, and describe a few science highlights that have emerged from the survey so far. We outline future work that will ensure that the ALLSMOG dataset continues to provide scientific value in the coming years. ALLSMOG was designed to be a reference legacy survey and as such all reduced data products are publicly available through the ESO Science Archive Phase 3 interface.

  18. The Gaia-ESO Survey: open clusters in Gaia-DR1 . A way forward to stellar age calibration

    NASA Astrophysics Data System (ADS)

    Randich, S.; Tognelli, E.; Jackson, R.; Jeffries, R. D.; Degl'Innocenti, S.; Pancino, E.; Re Fiorentin, P.; Spagna, A.; Sacco, G.; Bragaglia, A.; Magrini, L.; Prada Moroni, P. G.; Alfaro, E.; Franciosini, E.; Morbidelli, L.; Roccatagliata, V.; Bouy, H.; Bravi, L.; Jiménez-Esteban, F. M.; Jordi, C.; Zari, E.; Tautvaišiene, G.; Drazdauskas, A.; Mikolaitis, S.; Gilmore, G.; Feltzing, S.; Vallenari, A.; Bensby, T.; Koposov, S.; Korn, A.; Lanzafame, A.; Smiljanic, R.; Bayo, A.; Carraro, G.; Costado, M. T.; Heiter, U.; Hourihane, A.; Jofré, P.; Lewis, J.; Monaco, L.; Prisinzano, L.; Sbordone, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2018-05-01

    Context. Determination and calibration of the ages of stars, which heavily rely on stellar evolutionary models, are very challenging, while representing a crucial aspect in many astrophysical areas. Aims: We describe the methodologies that, taking advantage of Gaia-DR1 and the Gaia-ESO Survey data, enable the comparison of observed open star cluster sequences with stellar evolutionary models. The final, long-term goal is the exploitation of open clusters as age calibrators. Methods: We perform a homogeneous analysis of eight open clusters using the Gaia-DR1 TGAS catalogue for bright members and information from the Gaia-ESO Survey for fainter stars. Cluster membership probabilities for the Gaia-ESO Survey targets are derived based on several spectroscopic tracers. The Gaia-ESO Survey also provides the cluster chemical composition. We obtain cluster parallaxes using two methods. The first one relies on the astrometric selection of a sample of bona fide members, while the other one fits the parallax distribution of a larger sample of TGAS sources. Ages and reddening values are recovered through a Bayesian analysis using the 2MASS magnitudes and three sets of standard models. Lithium depletion boundary (LDB) ages are also determined using literature observations and the same models employed for the Bayesian analysis. Results: For all but one cluster, parallaxes derived by us agree with those presented in Gaia Collaboration (2017, A&A, 601, A19), while a discrepancy is found for NGC 2516; we provide evidence supporting our own determination. Inferred cluster ages are robust against models and are generally consistent with literature values. Conclusions: The systematic parallax errors inherent in the Gaia DR1 data presently limit the precision of our results. Nevertheless, we have been able to place these eight clusters onto the same age scale for the first time, with good agreement between isochronal and LDB ages where there is overlap. Our approach appears promising and demonstrates the potential of combining Gaia and ground-based spectroscopic datasets. Based on observations collected with the FLAMES instrument at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Spectroscopic Survey (188.B-3002, 193.B-0936).Additional tables are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/612/A99

  19. The VANDELS ESO public spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Fèvre, O. Le; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  20. Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerji, M.; Jouvel, S.; Lin, H.

    2014-11-25

    We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near-infrared (NIR) data from the European Southern Observatory VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint seven-band ( grizYJK) photometric catalogues are produced in a single 3 sq-deg dedicated camera field centred at 02h26m-04d36m where the availability of ancillary multiwavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factormore » of ~4.5 relative to a simple catalogue level matching and results in a ~1.5 mag increase in the 80 per cent completeness limit of the NIR data. Almost 70 per cent of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z < 0.5 and z > 1. We present example DES+VHS colour selection criteria for high-redshift luminous red galaxies (LRGs) at z ~ 0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <10 per cent contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5 per cent contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS data set, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.« less

  1. Determining the Absolute Magnitudes of Galactic-Bulge Red Clump Giants in the Z and Y Filters of the Vista Sky Surveys and the IRAC Filters of the Spitzer Sky Surveys

    NASA Astrophysics Data System (ADS)

    Karasev, D. I.; Lutovinov, A. A.

    2018-04-01

    The properties of red clump giants in the central regions of the Galactic bulge are investigated in the photometric Z and Y bands of the infrared VVV (VISTA/ESO) survey and the [3.6], [4.5], [5.8], and [8.0] μm bands of the GLIMPSE (Spitzer/IRAC) Galactic plane survey. The absolute magnitudes for objects of this class have been determined in these bands for the first time: M Z = -0.20 ± 0.04, M Y = -0.470 ± 0.045, M [3.6] = -1.70 ± 0.03, M [4.5] = -1.60 ± 0.03, M [5.8] = -1.67 ± 0.03, and M [8.0] = -1.70 ± 0.03. A comparison of the measured magnitudes with the predictions of theoretical models for the spectra of the objects under study has demonstrated good mutual agreement and has allowed some important constraints to be obtained for the properties of bulge red clump giants. In particular, a comparison with evolutionary tracks has shown that we are dealing predominantly with the high-metallicity subgroup of bulge red clump giants. Their metallicity is slightly higher than has been thought previously, [ M/H] ≃ 0.40 ( Z ≃ 0.038) with an error of [ M/H] ≃ 0.1 dex, while the effective temperature is 4250± 150 K. Stars with an age of 9-10 Gyr are shown to dominate among the red clump giants, although some number of younger objects with an age of 8 Gyr can also be present. In addition, the distances to several Galactic bulge regions have been measured, as D = 8200-8500 pc, and the extinction law in these directions is shown to differ noticeably from the standard one.

  2. Combining Dark Energy Survey Science Verification data with near-infrared data from the ESO VISTA Hemisphere Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerji, M.; Jouvel, S.; Lin, H.

    2014-11-25

    We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near-infrared (NIR) data from the European Southern Observatory VISTA Hemisphere Survey (VHS). The deep optical detections from DES are used to extract fluxes and associated errors from the shallower VHS data. Joint seven-band (grizYJK) photometric catalogues are produced in a single 3 sq-deg dedicated camera field centred at 02h26m-04d36m where the availability of ancillary multiwavelength photometry and spectroscopy allows us to test the data quality. Dual photometry increases the number of DES galaxies with measured VHS fluxes by a factor ofmore » similar to 4.5 relative to a simple catalogue level matching and results in a similar to 1.5 mag increase in the 80 per cent completeness limit of the NIR data. Almost 70 per cent of DES sources have useful NIR flux measurements in this initial catalogue. Photometric redshifts are estimated for a subset of galaxies with spectroscopic redshifts and initial results, although currently limited by small number statistics, indicate that the VHS data can help reduce the photometric redshift scatter at both z < 0.5 and z > 1. We present example DES VHS colour selection criteria for high-redshift luminous red galaxies (LRGs) at z similar to 0.7 as well as luminous quasars. Using spectroscopic observations in this field we show that the additional VHS fluxes enable a cleaner selection of both populations with <10 per cent contamination from galactic stars in the case of spectroscopically confirmed quasars and <0.5 per cent contamination from galactic stars in the case of spectroscopically confirmed LRGs. The combined DES+VHS data set, which will eventually cover almost 5000 sq-deg, will therefore enable a range of new science and be ideally suited for target selection for future wide-field spectroscopic surveys.« less

  3. Some non-atlas work at ESO Sky Atlas Laboratory.

    NASA Astrophysics Data System (ADS)

    Madsen, C.

    The ESO Sky Atlas Laboratory (SAL) was set up in 1972 with the aim of producing the ESO Quick Blue Survey and later the joint ESO/SERC Survey of the Southern Sky. With the establishment of a Scientific Group, it became apparent that ESO had additional photographic needs, the fullfilment of which was also entrusted to SAL. Thus, in the course of the years, the "Photographic Section" evolved as a subdivision of the Sky Atlas Laboratory.

  4. Production of Previews and Advanced Data Products for the ESO Science Archive

    NASA Astrophysics Data System (ADS)

    Rité, C.; Slijkhuis, R.; Rosati, P.; Delmotte, N.; Rino, B.; Chéreau, F.; Malapert, J.-C.

    2008-08-01

    We present a project being carried out by the Virtual Observatory Systems Department/Advanced Data Products group in order to populate the ESO Science Archive Facility with image previews and advanced data products. The main goal is to provide users of the ESO Science Archive Facility with the possibility of viewing pre-processed images associated with instruments like WFI, ISAAC and SOFI before actually retrieving the data for full processing. The image processing is done by using the ESO/MVM image reduction software developed at ESO, to produce astrometrically calibrated FITS images, ranging from simple previews of single archive images, to fully stacked mosaics. These data products can be accessed via the ESO Science Archive Query Form and also be viewed with the browser VirGO {http://archive.eso.org/cms/virgo}.

  5. First Super-Earth Atmosphere Analysed

    NASA Astrophysics Data System (ADS)

    2010-12-01

    The atmosphere around a super-Earth exoplanet has been analysed for the first time by an international team of astronomers using ESO's Very Large Telescope. The planet, which is known as GJ 1214b, was studied as it passed in front of its parent star and some of the starlight passed through the planet's atmosphere. We now know that the atmosphere is either mostly water in the form of steam or is dominated by thick clouds or hazes. The results will appear in the 2 December 2010 issue of the journal Nature. The planet GJ 1214b was confirmed in 2009 using the HARPS instrument on ESO's 3.6-metre telescope in Chile (eso0950) [1]. Initial findings suggested that this planet had an atmosphere, which has now been confirmed and studied in detail by an international team of astronomers, led by Jacob Bean (Harvard-Smithsonian Center for Astrophysics), using the FORS instrument on ESO's Very Large Telescope. "This is the first super-Earth to have its atmosphere analysed. We've reached a real milestone on the road toward characterising these worlds," said Bean. GJ 1214b has a radius of about 2.6 times that of the Earth and is about 6.5 times as massive, putting it squarely into the class of exoplanets known as super-Earths. Its host star lies about 40 light-years from Earth in the constellation of Ophiuchus (the Serpent Bearer). It is a faint star [2], but it is also small, which means that the size of the planet is large compared to the stellar disc, making it relatively easy to study [3]. The planet travels across the disc of its parent star once every 38 hours as it orbits at a distance of only two million kilometres: about seventy times closer than the Earth orbits the Sun. To study the atmosphere, the team observed the light coming from the star as the planet passed in front of it [4]. During these transits, some of the starlight passes through the planet's atmosphere and, depending on the chemical composition and weather on the planet, specific wavelengths of light are absorbed. The team then compared these precise new measurements with what they would expect to see for several possible atmospheric compositions. Before the new observations, astronomers had suggested three possible atmospheres for GJ 1214b. The first was the intriguing possibility that the planet was shrouded by water, which, given the close proximity to the star, would be in the form of steam. The second possibility was that this is a rocky world with an atmosphere consisting mostly of hydrogen, but with high clouds or hazes obscuring the view. The third option was that this exoplanet was like a mini-Neptune, with a small rocky core and a deep hydrogen-rich atmosphere. The new measurements do not show the telltale signs of hydrogen and hence rule out the third option. Therefore, the atmosphere is either rich in steam, or it is blanketed by clouds or hazes, similar to those seen in the atmospheres of Venus and Titan in our Solar System, which hide the signature of hydrogen.. "Although we can't yet say exactly what that atmosphere is made of, it is an exciting step forward to be able to narrow down the options for such a distant world to either steamy or hazy," says Bean. "Follow-up observations in longer wavelength infrared light are now needed to determine which of these atmospheres exists on GJ 1214b." Notes [1] The number of confirmed exoplanets reached 500 on 19 November 2010. Since then, more exoplanets have been confirmed. For the latest count, please visit: http://exoplanet.eu/catalog.php [2] If GJ 1214 were seen at the same distance from us as our Sun, it would appear 300 times fainter. [3] Because the star GJ1214 itself is quite faint - more than 100 times fainter in visible light than the host stars of the two most widely studied hot Jupiter exoplanets - the large collecting area of the Very Large Telescope was critical for acquiring enough signal for these measurements. [4] GJ 1214b's atmospheric composition was studied using the FORS instrument on the Very Large Telescope, which can perform very sensitive spectroscopy of multiple objects in the near-infrared part of the spectrum. FORS was one of the first instruments installed on the Very Large Telescope. More information This research is presented in a paper to appear in Nature on 2 December 2010. The team is composed of Jacob Bean (Harvard-Smithsonian Center for Astrophysics, USA), Eliza Miller-Ricci Kempton (University of California, Santa Cruz, USA) and Derek Homeier (Institute for Astrophysics, Göttingen, Germany). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. School Data Processing Services in Texas: A Cooperative Approach.

    ERIC Educational Resources Information Center

    Texas Education Agency, Austin.

    The Texas plan for computer services provides services to public school districts through a statewide network of 20 regional Education Service Centers (ESO). Each of the three Multi-Regional Processing Centers (MRPCs) operates a large computer facility providing school district services within from three to eight ESC regions each of the five…

  7. Extra-Curricular Activities and Academic Performance in Secondary Students

    ERIC Educational Resources Information Center

    Moriana, Juan Antonio; Alos, Francisco; Alcala, Rocio; Pino, Maria-Jose; Herruzo, Javier; Ruiz, Rosario

    2006-01-01

    Introduction: In this paper we study the possible influence of extra-curricular activities (study-related and/or sports) on academic performance of first- and second-year pupils in "Educacion Secundaria Obligatoria (ESO)" [N.T. seventh- and eighth-graders]. Method: We randomly selected 12 schools in the city (9 public and 3 private), and…

  8. Magna Carta for Researchers

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Today, Janez Potočnik, European Commissioner for Science and Research received a statement of support for the European Charter for Researchers and the Code of Conduct for the Recruitment of Researchers from EIROforum. "The EIROforum partners warmly welcome this valuable initiative by the European Commission", said Prof. William G. Stirling, Director General of ESRF and present Chairman of EIROforum."This is an important step towards the implementation of the European Research Area." ESO PR Photo 47/06 ESO PR Photo 47a/06 Janez Potočnik, European Commissioner for Science and Research receives the statement of support from Bill Stirling, Director General of ESRF and present Chairman of EIROforum. The European Charter for Researchers addresses the roles, responsibilities and entitlements of researchers and their employers or funding organisations. It aims at ensuring that the relationship between these parties contributes to successful performance in the generation, transfer and sharing of knowledge, and to the career development of researchers. The Code of Conduct for the Recruitment of Researchers aims to improve recruitment, to make selection procedures fairer and more transparent and proposes different means of judging merit. Merit should not just be measured on the number of publications but on a wider range of evaluation criteria, such as teaching, supervision, teamwork, knowledge transfer, management and public awareness activities. ESO PR Photo 47/06 ESO PR Photo 47b/06 The signature of the statement of support last November. From left to right: Richard Wagner, Director of the ILL, David Southwood, Scientific Director of ESA, Robert Aymar, Director General of CERN, Bill Stirling, Director General of ESRF, Catherine Cesarsky, Director General of ESO, Francesco Romanelli, EFDA-JET leader and Silke Schumacher, Coordinator International Relations and Communication of the EMBL. In their statement, signed at the EIROforum Assembly on 15 November 2006, the seven EIROforum organisations support the general principles contained in the Charter and the Code, and will endeavour individually, where appropriate, to implement recommendations that have not yet been undertaken, or which could be improved within their own organisations. The two documents were carefully studied by the organisations' human resources experts, who noted the high level of compliance with the guidelines of the Charter and the Code in the EIROforum organisations, where most of the recommendations are implemented and part of internal practice. The implementation of the recommendations of the Charter and the Code of Conduct will be done in full compliance with the relevant intergovernmental conventions and agreements, staff rules and regulations, applicable to each of the EIROforum organisations.

  9. 40 CFR 51.304 - Identification of integral vistas.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Identification of integral vistas. (a) On or before December 31, 1985 the Federal Land Manager may identify any integral vista. The integral vista must be identified according to criteria the Federal Land Manager... Land Manager must notify the State of any integral vistas identified under paragraph (a) of this...

  10. ESO Director General to Become President of AUI

    NASA Astrophysics Data System (ADS)

    1998-11-01

    The appointment of Professor Riccardo Giacconi , Director General of the European Southern Observatory (ESO) since January 1, 1993, to the Presidency of Associated Universities, Inc. ( AUI ) in the USA, has been jointly announced by Professor Paul C. Martin, Chair of AUI's Board of Trustees and Mr. Henrik Grage, President of the ESO Council. Professor Giacconi will assume this new position at the end of his term at ESO as of July 1, 1999. AUI is a not-for-profit science management corporation that operates the National Radio Astronomy Observatory ( NRAO) under a Cooperative Agreement with the National Science Foundation (NSF). Corporate headquarters are located in Washington, D.C. The President is its chief executive officer. Nine northeastern universities joined in founding AUI in 1946: Columbia University, Cornell University, Harvard University, The Johns Hopkins University, Massachusetts Institute of Technology, the University of Pennsylvania, Princeton University, the University of Rochester, and Yale University. Over the years, AUI has taken on a broad national character with a diversified Board of Trustees from universities and other institutions across the United States. ESO is an intergovernmental organization, at present with the following member countries: Belgium, Denmark, France, Germany, Italy, The Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO was founded in 1962 to establish and operate an astronomical observatory in the southern hemisphere and to promote and organize co-operation in astronomical research in Europe. While the ESO Headquarters are situated in Europe, the observing facilities are located in Chile (South America). The organization's main administrative and technical departments are located at the ESO Headquarters, in Garching near Munich, Germany. They include a number of highly specialized facilities, e.g. the optical, infrared, detector and instrumentation laboratories, all engaged in front-line research and development. The European Coordinating Facility for the Hubble Space Telescope, jointly managed by ESO and the European Space Agency (ESA), is also situated in Garching. Mr. Grage , President of the ESO Council, expressed the gratitude of the ESO Community for the leadership provided by Prof. Giacconi during these crucial years of development of the organization and its La Silla and Paranal Observatories. In particular, the splendid achievements on the Very Large Telescope (VLT) are a tribute to the ESO staff and to his management and guidance. VLT is currently the largest single project in ground-based astronomy. It has met or exceeded all performance requirements while being built on time and within budget. When reached for comment, Professor Giacconi pointed out: "I have enjoyed enormously the time I have spent here at ESO and I consider it one of the high points of my career. I feel confident that I am leaving ESO in very good condition. The fine performance of the entire staff has succeeded in bringing the organization to an outstanding position in ground-based astronomy in the world. The prospects for the future are equally brilliant. I will be happy and proud to assume the Presidency of Associated Universities, Inc. starting next summer. For more than fifty years, AUI has, in collaboration with universities and the national and international scientific community, overseen and managed national facilities which have made possible a wealth of important discoveries in physics, astronomy, and many other areas of science and technology. In the 21st Century, new challenges and opportunities to serve the community await AUI." Asked about the recent developments in astronomy, Professor Giacconi added that "Advances in this fundamental field of research have come to depend more and more on the execution of complex and large projects. Many of these necessitate international cooperation on the broadest scale. The VLT is an outstanding example and will be the prime ground-based optical observatory of the coming Century. The expertise of AUI and NRAO in providing effective support to the radio astronomy community will prove an invaluable asset in carrying out, under NSF sponsorship, the new and ambitious international cooperative project in submillimeter wave astronomy. I look forward to the opportunity to help AUI in the realization of this undertaking, so important for future advances in the field. Scientific research in different disciplines is ever more closely interwoven today in methodology and management approaches. The expertise of AUI and of the university community it represents qualifies the organization to manage scientific endeavors in many fields. Guiding AUI in responding to the many challenges and opportunities it faces will be interesting and exciting." "We are thrilled that Professor Giacconi has decided to take this position," said Professor Paul Martin , Chairman of the Board of AUI. "It is hard to imagine anyone better qualified to lead an organization committed to managing facilities performing frontier science. His vision and foresight have been at the heart of pioneering projects including the Einstein Observatory, the Space Telescope, and the VLT. He is an extraordinary scientist and an outstanding manager whose accomplishments and values have earned him worldwide respect and admiration." Prior to this assignment at ESO, Prof. Giacconi had served as Director of the Hubble Space Telescope Science Institute in Baltimore, Maryland. He is best known in scientific circles for his pioneering contributions to X-ray astronomy. His seminal work in this field, which started at American Science and Engineering, Inc., culminated in the realization, while on the faculty of Harvard University, of the orbital Einstein Observatory in the 1970's. He is currently on leave as Research Professor of Johns Hopkins University and Astronomer Emeritus at STScI. He is the recipient of numerous prestigious scientific awards for his work. Prof. Giacconi is a member of the U.S. National Academy of Sciences and the American Academy of Arts and Sciences. He is the author of books as well as more than 200 scientific publications. Note: [1] This is a joint Press Release of ESO and AUI (URL: http://www.aui.edu/ ). How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  11. If we build it, will they come? Curation and use of the ESO telescope bibliography

    NASA Astrophysics Data System (ADS)

    Grothkopf, Uta; Meakins, Silvia; Bordelon, Dominic

    2015-12-01

    The ESO Telescope Bibliography (telbib) is a database of refereed papers published by the ESO users community. It links data in the ESO Science Archive with the published literature, and vice versa. Developed and maintained by the ESO library, telbib also provides insights into the organization's research output and impact as measured through bibliometric studies. Curating telbib is a multi-step process that involves extensive tagging of the database records. Based on selected use cases, this talk will explain how the rich metadata provide parameters for reports and statistics in order to investigate the performance of ESO's facilities and to understand trends and developments in the publishing behaviour of the user community.

  12. ESO

    Science.gov Websites

    2009 100 Hours of Astronomy The Eye 3D IMAX® 3D Film Hidden Universe Open House Day 2011 Open House and Jupiter - 1994 Comet Hale Bopp - 1994 Astronomy Communication Seminars Outreach Education Educational Material Science in School ESO Astronomy Camp 2017 ESO Astronomy Camp 2016 ESO Astronomy Camp 2015

  13. Different definitions of esophagus influence esophageal toxicity prediction for esophageal cancer patients administered simultaneous integrated boost versus standard-dose radiation therapy.

    PubMed

    Huang, Bao-Tian; Huang, Rui-Hong; Zhang, Wu-Zhe; Lin, Wen; Guo, Long-Jia; Xu, Liang-Yu; Lin, Pei-Xian; Chen, Jian-Zhou; Li, De-Rui; Chen, Chuang-Zhen

    2017-03-09

    We aim to evaluate whether different definitions of esophagus (DEs) impact on the esophageal toxicity prediction for esophageal cancer (EC) patients administered intensity-modulated radiation therapy with simultaneous integrated boost (SIB-IMRT) vs. standard-dose IMRT (SD-IMRT). The esophagus for 21 patients diagnosed with primary EC were defined in the following four ways: the whole esophagus, including the tumor (ESO whole ); ESO whole within the treatment field (ESO infield ); ESO infield , excluding the tumor (ESO infield-tumor ) and ESO whole , excluding the tumor (ESO whole-tumor ). The difference in the dose variation, acute esophageal toxicity (AET) and late esophageal toxicity (LET) of four DEs were compared. We found that the mean esophageal dose for ESO whole , ESO infield , ESO infield-tumor and ESO whole-tumor were increased by 7.2 Gy, 10.9 Gy, 4.6 Gy and 2.0 Gy, respectively, in the SIB-IMRT plans. Radiobiological models indicated that a grade ≥ 2 AET was 2.9%, 3.1%, 2.2% and 1.6% higher on average with the Kwint model and 14.6%, 13.2%, 7.2% and 3.4% higher with the Wijsman model for the four DEs. A grade ≥ 3 AET increased by 4.3%, 7.2%, 4.2% and 1.2%, respectively. Additionally, the predicted LET increased by 0.15%, 0.39%, 1.2 × 10 -2 % and 1.5 × 10 -3 %. Our study demonstrates that different DEs influence the esophageal toxicity prediction for EC patients administered SIB-IMRT vs. SD-IMRT treatment.

  14. 45 CFR 1210.4 - Early termination procedures for National Grant Trainees and Volunteers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 45 Public Welfare 4 2011-10-01 2011-10-01 false Early termination procedures for National Grant... (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES National Grant Trainees and Volunteers § 1210.4 Early termination procedures for...

  15. 45 CFR 1210.4 - Early termination procedures for National Grant Trainees and Volunteers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 45 Public Welfare 4 2010-10-01 2010-10-01 false Early termination procedures for National Grant... (Continued) CORPORATION FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES National Grant Trainees and Volunteers § 1210.4 Early termination procedures for...

  16. Lightest exoplanet yet discovered

    NASA Astrophysics Data System (ADS)

    2009-04-01

    Well-known exoplanet researcher Michel Mayor today announced the discovery of the lightest exoplanet found so far. The planet, "e", in the famous system Gliese 581, is only about twice the mass of our Earth. The team also refined the orbit of the planet Gliese 581 d, first discovered in 2007, placing it well within the habitable zone, where liquid water oceans could exist. These amazing discoveries are the outcome of more than four years of observations using the most successful low-mass-exoplanet hunter in the world, the HARPS spectrograph attached to the 3.6-metre ESO telescope at La Silla, Chile. ESO PR Photo 15a/09 Artist's impression of Gliese 581 e ESO PR Photo 15b/09 A planet in the habitable zone ESO PR Video 15a/09 ESOcast 6 ESO PR Video 15b/09 VNR A-roll ESO PR Video 15c/09 Zoom-in on Gliese 581 e ESO PR Video 15d/09 Artist's impression of Gliese 581 e ESO PR Video 15e/09 Artist's impression of Gliese 581 d ESO PR Video 15f/09 Artist's impression of Gliese 581 system ESO PR Video 15g/09 The radial velocity method ESO PR Video 15h/09 Statement in English ESO PR Video 15i/09 Statement in French ESO PR Video 15j/09 La Silla Observatory "The holy grail of current exoplanet research is the detection of a rocky, Earth-like planet in the ‘habitable zone' -- a region around the host star with the right conditions for water to be liquid on a planet's surface", says Michel Mayor from the Geneva Observatory, who led the European team to this stunning breakthrough. Planet Gliese 581 e orbits its host star - located only 20.5 light-years away in the constellation Libra ("the Scales") -- in just 3.15 days. "With only 1.9 Earth-masses, it is the least massive exoplanet ever detected and is, very likely, a rocky planet", says co-author Xavier Bonfils from Grenoble Observatory. Being so close to its host star, the planet is not in the habitable zone. But another planet in this system appears to be. From previous observations -- also obtained with the HARPS spectrograph at ESO's La Silla Observatory and announced two years ago -- this star was known to harbour a system with a Neptune-sized planet (ESO 30/05) and two super-Earths (ESO 22/07). With the discovery of Gliese 581 e, the planetary system now has four known planets, with masses of about 1.9 (planet e), 16 (planet b), 5 (planet c), and 7 Earth-masses (planet d). The planet furthest out, Gliese 581 d, orbits its host star in 66.8 days. "Gliese 581 d is probably too massive to be made only of rocky material, but we can speculate that it is an icy planet that has migrated closer to the star," says team member Stephane Udry. The new observations have revealed that this planet is in the habitable zone, where liquid water could exist. "‘d' could even be covered by a large and deep ocean -- it is the first serious 'water world' candidate," continued Udry. The gentle pull of an exoplanet as it orbits the host star introduces a tiny wobble in the star's motion -- only about 7 km/hour, corresponding to brisk walking speed -- that can just be detected on Earth with today's most sophisticated technology. Low-mass red dwarf stars such as Gliese 581 are potentially fruitful hunting grounds for low-mass exoplanets in the habitable zone. Such cool stars are relatively faint and their habitable zones lie close in, where the gravitational tug of any orbiting planet found there would be stronger, making the telltale wobble more pronounced. Even so, detecting these tiny signals is still a challenge, and the discovery of Gliese 581 e and the refinement of Gliese 581 d's orbit were only possible due to HARPS's unique precision and stability. "It is amazing to see how far we have come since we discovered the first exoplanet around a normal star in 1995 -- the one around 51 Pegasi," says Mayor. "The mass of Gliese 581 e is 80 times less than that of 51 Pegasi b. This is tremendous progress in just 14 years." The astronomers are confident that they can still do better. "With similar observing conditions an Earth-like planet located in the middle of the habitable zone of a red dwarf star could be detectable," says Bonfils. "The hunt continues." Notes This discovery was announced today at the JENAM conference during the European Week of Astronomy & Space Science, which is taking place at the University of Hertfordshire, UK. The results have also been submitted for publication in the research journal Astronomy & Astrophysics ("The HARPS search for southern extra-solar planets: XVIII. An Earth-mass planet in the GJ 581 planetary system", by Mayor et al., 2009). The team is composed of M. Mayor, S. Udry, C. Lovis, F. Pepe and D. Queloz (Geneva Observatory, Switzerland), X. Bonfils, T. Forveille , X. Delfosse, H. Beust and C. Perrier (LAOG, France), N. C. Santos (Centro de Astrofisica,Universidade de Porto), F. Bouchy (IAP, Paris, France) and J.-L. Bertaux (Service d'Aéronomie du CNRS, Verrières-le-Buisson, France). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in the Atacama Desert region of Chile: La Silla, Paranal and Chajnantor.

  17. ePESSTO spectroscopic classification of the candidate TDE XMMSL2 J140446.9-251135

    NASA Astrophysics Data System (ADS)

    Taubenberger, S.; Floers, A.; Vogl, C.; Benetti, S.; Pastorello, A.; Cappellaro, E.; Anderson, J.; Gromadzki, M.; Onori, F.; Kostrzewa-Rutkowska, Z.; Jonker, P.; Leloudas, G.; Inserra, C.; Kankare, E.; Maguire, K.; Smartt, S. J.; Yaron, O.; Young, D.

    2018-03-01

    ePESSTO, the extended Public ESO Spectroscopic Survey for Transient Objects (see Smartt et al. 2015, A & A, 579, 40; http://www.pessto.org ), reports the following spectroscopic observation of the new X-ray source XMMSL2 J140446.9-251135 in the galaxy 2MASX 14044671-2511433 (ATel #11394).

  18. Finland to Join ESO

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Finland will become the eleventh member state of the European Southern Observatory. In a ceremony at the ESO Headquarters in Garching on 9 February 2004, an Agreement to this effect was signed by the Finnish Minister of Education and Science, Ms. Tuula Haatainen and the ESO Director General, Dr. Catherine Cesarsky, in the presence of other high officials from Finland and the ESO member states.

  19. ESO Science Outreach Network in Poland during 2011-2013

    NASA Astrophysics Data System (ADS)

    Czart, Krzysztof

    2014-12-01

    ESON Poland works since 2010. One of the main tasks of the ESO Science Outreach Network (ESON) is translation of various materials at ESO website, as well as contacts with journalists. We support also science festivals, conferences, contests, exhibitions, astronomy camps and workshops and other educational and outreach activities. During 2011-2013 we supported events like ESO Astronomy Camp 2013, ESO Industry Days in Warsaw, Warsaw Science Festival, Torun Festival of Science and Art, international astronomy olympiad held in Poland and many others. Among big tasks there was also translation of over 60 ESOcast movies.

  20. ESO Receives Computerworld Honors Program 21st Century Achievement Award in Science Category

    NASA Astrophysics Data System (ADS)

    2005-06-01

    In a ceremony held in Washington, D.C. (USA) on June 6, 2005, ESO, the European Organisation for Astronomical Research in the southern Hemisphere, received the coveted 21st Century Achievement Award from the Computerworld Honors Program for its visionary use of information technology in the Science category. Sybase, a main database server vendor and member of the Chairmen's Committee, nominated ESO's Data Flow System in recognition of its contributions to the global information technology revolution and its positive impact on society. The citations reads: "ESO has revolutionized the operations of ground-based astronomical observatories with a new end-to-end data flow system, designed to improve the transmission and management of astronomical observations and data over transcontinental distances." This year's awards, in 10 categories, were presented at a gala event at the National Building Museum, attended by over 250 guests, including leaders of the information technology industry, former award recipients, judges, scholars, and diplomats representing many of the 54 countries from which the 17-year-old program's laureates have come. "The Computerworld Honors Program 21st Century Achievement Awards are presented to companies from around the world whose visionary use of information technology promotes positive social, economic and educational change," said Bob Carrigan, president and CEO of Computerworld and chairman of the Chairmen's Committee of the Computerworld Honors Program. "The recipients of these awards are the true heroes of the information age and have been appropriately recognized by the leading IT industry chairmen as true revolutionaries in their fields." ESO PR Photo 18/05 ESO PR Photo 18/05 ESO Receives the Award in the Science Category [Preview - JPEG: 400 x 496 pix - 53k] [Normal - JPEG: 800 x 992 pix - 470k] [Full Res - JPEG: 1250 x 1550 pix - 1.1M] Caption: ESO PR Photo 18/05: Receiving the Computerworld 21st Century Achievement Award for Science on behalf of ESO: Drs Preben Grosbøl, Michele Péron, Peter Quinn (Head of the ESO Data Management Division) and David Silva. Traditionally, ground based astronomical observatories have been used as facilities where scientists apply for observing time, eventually travel to the remote sites where telescopes are located, carry out their observations by themselves and finally take their data back to their home institutes to do the final scientific analysis. As observatories become more complex and located in ever more remote locations (to reduce light pollution), this operational concept (coupled with the weather lottery effect [1]) becomes less and less effective. In particular, the lack of data re-use has been increasingly seen as scientifically unproductive. Such thoughts guided the design and implementation of the ESO Data Flow System (DFS). The DFS allows both traditional on-site observing as well as service observing, where data is collected by observatory staff on behalf of the ESO user community based on user submitted descriptions and requirements [2]. In either case, the data is captured by DFS and saved in the ESO science archive [3]. After a one-year proprietary period during which the original investigators have private access to their data, researchers can access the data for their own use. ESO was the first ground-based observatory to implement these operational concepts and tools within a complete system. It was also the first ground-based observatory to build and maintain such an extensive science archive that does not only contain observational data, but also auxiliary information describing the operation process. In both areas, ESO remains the world-leader in end-to-end observatory operations on the ground. "The result of our strategy has been a significant increase in the scientific productivity of the ESO user community", said Peter Quinn, Head of ESO's Data Management and Operations Division, responsible for DFS. "As measured by the number of papers in peer-reviewed journals, ESO is now one of the leading astronomical facilities in the world. Coupled with cutting edge optical telescopes and astronomical instruments at the Chile sites, the DFS has contributed to this success by providing the fundamental IT infrastructure for observation and data management." The case study about ESO, together with the case studies from the other winners and laureates of the 2005 Collection, is available on the Computerworld Honors Program Archives On-Line, www.cwheroes.org, and also distributed to more than 134 members of the Computerworld Honors Global Archives. According to Dan Morrow, a founding director and chief historian for the Honors Program, "This year's award recipients exemplify the very best in the creative use of IT in service to mankind. Their work and their stories are outstanding contributions to the history of the information technology revolution in every sense of the word, and, for the archives we serve all over the world, they are, truly, priceless." From more than 250 nominations submitted this year by the industry chairmen and CEO's who serve on the program's Chairmen's Committee, 162 were honoured as laureates at ceremonies in San Francisco, on April 3, 2005, when their case studies officially became part of the Computerworld Honors 2005 Collection. Of these, 48 finalists were chosen by an academy of distinguished judges to attend the June 6 gala in Washington, D.C., at which 10 were announced recipients of the award, one in each of the following categories: Business and Related Services; Education and Academia; Environment, Energy and Agriculture; Finance, Insurance and Real Estate; Government and Non-Profit Organizations; Manufacturing; Media, Arts and Entertainment; Medicine; Science; and Transportation. Additional information about the 2005 Collection is available at www.cwheroes.org, where the entire collection is available to scholars, researchers and the general public. The ESO Data Management and Operations Division web page is at http://www.eso.org/org/dmd/. More information About the Computerworld Honors Program: Governed by the Computerworld Information Technology Awards Foundation, a Massachusetts not-for-profit corporation founded by International Data Group (IDG) in 1988, the Computerworld Honors Program searches for and recognizes individuals and organizations who have demonstrated vision and leadership as they strive to use information technology in innovative ways across 10 categories: Business and Related Services; Education and Academia; Environment, Energy and Agriculture; Finance, Insurance and Real Estate; Government and Non-Profit Organizations; Manufacturing; Media, Arts and Entertainment; Medicine; Science; and Transportation. Each year, the Computerworld Honors Chairmen's Committee nominates organizations that are using information technology to improve society for inclusion in the Computerworld Honors Online Archive and the Collections of the Global Archives. The Global Archives represents the 100-plus institutions from more than 30 countries that include the Computerworld Honors Collection in their archives and libraries.

  1. Detecting esophageal disease with second-generation capsule endoscopy: initial evaluation of the PillCam ESO 2.

    PubMed

    Gralnek, I M; Adler, S N; Yassin, K; Koslowsky, B; Metzger, Y; Eliakim, R

    2008-04-01

    Esophageal capsule endoscopy (ECE) provides an alternative, minimally invasive modality for evaluating the esophagus. This study evaluates the performance and test characteristics of a second-generation esophageal capsule endoscope, the PillCam ESO 2. Adults with known or suspected esophageal disease were included. Using the simplified ingestion procedure, each patient underwent capsule endoscopy with the PillCam ESO 2. Following ECE, esophagogastroduodenoscopy (EGD) was performed on the same day by an investigator who was blinded to the results of the ECE. In random order, capsule endoscopy videos were read and interpreted by the study investigator blinded to EGD results. 28 patients (19 men, 9 women; mean age 53.3 years) were included. In 82 % of the patients, at least 75 % of the Z line was visualized by the PillCam ESO 2. A per-lesion analysis demonstrated that the PillCam ESO 2 had definitive results in 30/43 lesions (69.8 %) and EGD in 29/43 (67.4 %), P value = 0.41. Compared with EGD for detecting suspected Barrett's esophagus and esophagitis, the PillCam ESO 2 had a sensitivity of 100 % and a specificity of 74 %, and a sensitivity of 80 % and a specificity of 87 %, respectively. The PillCam ESO 2 demonstrated 86 % agreement with EGD in describing the Z line (kappa statistic 0.68). The modified ingestion protocol provided excellent cleansing, with bubbles/saliva having no or only a minor effect on Z line images in 86 % of cases. The PillCam ESO 2 demonstrated excellent visualization of the Z line. Compared with standard EGD, the PillCam ESO 2 had good test characteristics with high rates of detection of suspected Barrett's esophagus and esophagitis. This study provides indirect validation of the simplified ingestion procedure. The PillCam ESO 2 acquires high quality esophageal images, performs safely, and should be able to replace the current PillCam ESO.

  2. Comprehensive adipocytic and neurogenic tissue microarray analysis of NY-ESO-1 expression - a promising immunotherapy target in malignant peripheral nerve sheath tumor and liposarcoma

    PubMed Central

    Shurell, Elizabeth; Vergara-Lluri, Maria E.; Li, Yunfeng; Crompton, Joseph G.; Singh, Arun; Bernthal, Nicholas; Wu, Hong; Eilber, Fritz C.; Dry, Sarah M.

    2016-01-01

    Background Immunotherapy targeting cancer-testis antigen NY-ESO-1 shows promise for tumors with poor response to chemoradiation. Malignant peripheral nerve sheath tumors (MPNSTs) and liposarcomas (LPS) are chemoresistant and have few effective treatment options. Materials Methods Using a comprehensive tissue microarray (TMA) of both benign and malignant tumors in primary, recurrent, and metastatic samples, we examined NY-ESO-1 expression in peripheral nerve sheath tumor (PNST) and adipocytic tumors. The PNST TMA included 42 MPNSTs (spontaneous n = 26, NF1-associated n = 16), 35 neurofibromas (spontaneous n = 22, NF-1 associated n = 13), 11 schwannomas, and 18 normal nerves. The LPS TMA included 48 well-differentiated/dedifferentiated (WD/DD) LPS, 13 myxoid/round cell LPS, 3 pleomorphic LPS, 8 lipomas, 1 myelolipoma, and 3 normal adipocytic tissue samples. Stained in triplicate, NY-ESO-1 intensity and density were scored. Results NY-ESO-1 expression was exclusive to malignant tumors. 100% of myxoid/round cell LPS demonstrated NY-ESO-1 expression, while only 6% of WD/DD LPS showed protein expression, one of which was WD LPS. Of MPNST, 4/26 (15%) spontaneous and 2/16 (12%) NF1-associated MPNSTs demonstrated NY-ESO-1 expression. Strong NY-ESO-1 expression was observed in myxoid/round cell and dedifferentiated LPS, and MPNST in primary, neoadjuvant, and metastatic settings. Conclusions We found higher prevalence of NY-ESO-1 expression in MPNSTs than previously reported, highlighting a subset of MPNST patients who may benefit from immunotherapy. This study expands our understanding of NY-ESO-1 in WD/DD LPS and is the first demonstration of staining in a WD LPS and metastatic/recurrent myxoid/round cell LPS. These results suggest immunotherapy targeting NY-ESO-1 may benefit patients with aggressive tumors resistant to conventional therapy. PMID:27655679

  3. NY-ESO-1 Protein Cancer Vaccine With Poly-ICLC and OK-432: Rapid and Strong Induction of NY-ESO-1-specific Immune Responses by Poly-ICLC.

    PubMed

    Takeoka, Tomohira; Nagase, Hirotsugu; Kurose, Koji; Ohue, Yoshihiro; Yamasaki, Makoto; Takiguchi, Shuji; Sato, Eiichi; Isobe, Midori; Kanazawa, Takayuki; Matsumoto, Mitsunobu; Iwahori, Kota; Kawashima, Atsunari; Morimoto-Okazawa, Akiko; Nishikawa, Hiroyoshi; Oka, Mikio; Pan, Linda; Venhaus, Ralph; Nakayama, Eiichi; Mori, Masaki; Doki, Yuichiro; Wada, Hisashi

    2017-03-23

    We conducted a clinical trial of a cancer vaccine using NY-ESO-1 protein with polyinosinic-polycytidylic acid-poly-L-lysine carboxymethylcellulose (poly-ICLC) and/or OK-432 against solid tumors. A total of 15 patients were sequentially enrolled in 4 cohorts. Patients in cohort 1 received NY-ESO-1 protein; cohort 2a received NY-ESO-1 protein+OK-432; cohort 2b received NY-ESO-1 protein+poly-ICLC; cohort 3 received NY-ESO-1 protein+OK-432+poly-ICLC with Montanide ISA-51. The endpoints of this trial were safety, NY-ESO-1 immune responses, and clinical response. Vaccine-related adverse events observed were fever and injection-site reaction (grade 1). Two patients showed stable disease after vaccination. NY-ESO-1 antibodies were observed in 4 patients at the baseline (sero-positive) and augmented in all patients after vaccination. Eleven patients showed a conversion of negative antibody responses at baseline to positive after vaccination (seroconversion). The seroconversions were observed in all 11 sero-negative patients by the fourth immunization; in particular, it was observed by the second immunization in patients with poly-ICLC, and these induced antibody responses were stronger than those in patients immunized without poly-ICLC. The number of NY-ESO-1-specific interferon (IFN)γ-producing T cells was increased in patients immunized with poly-ICLC and/or OK-432, and furthermore, the increase of IFNγ-producing CD8 T cells in patients immunized with poly-ICLC was significantly higher than that in patients without poly-ICLC. Nonspecific activations of T-cell or antigen presenting cells were not observed. Our present study showed that poly-ICLC is a promising adjuvant for cancer vaccines.

  4. N° 15-2000: ESA, CERN and ESO launch "Physics on Stage"

    NASA Astrophysics Data System (ADS)

    2000-03-01

    But how much do the citizens of Europe really know about physics? Here is a unique opportunity to learn more about this elusive subject! Beginning in February 2000, three major European research establishments [1] are organising a unique Europe-wide programme to raise the public awareness of physics and related sciences. "Physics on Stage" is launched by the European Space Agency (ESA), the European Laboratory for Particle Physics (CERN), and the European Southern Observatory (ESO), with support from the European Union (EU). Other partners include the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). This exciting programme is part of the European Week for Science and Technology and will culminate in a Science Festival during November 6-11, 2000, at CERN, Geneva. Why "Physics on Stage"? The primary goal of "Physics on Stage" is to counteract the current decline in interest and knowledge of physics among Europe's citizens by means of a series of highly visible promotional activities. It will bring together leading scientists and educators, government bodies and the media, to confront the diminishing attraction of physics to young people and to develop strategies to reverse this trend. The objective in the short term is to infuse excitement and to provide new educational materials. In the longer term, "Physics on Stage" will generate new developments by enabling experts throughout Europe to meet, exchange and innovate. "Physics on Stage" in 22 European Countries. "Physics on Stage" has been initiated in 22 European countries [2]. In each country, a dedicated National Steering Committee (NSC) is being formed which will be responsible for their own national programme. A list of contact addresses is attached below. "Physics on Stage" is based on a series of high-profile physics-related activities that will inform the European public in general, and European high school physics teachers and media representatives in particular, about innovative ways to convey information about physics. It will stress the intimate connection of this natural science with our daily lives. It will be accompanied by a broad media debate on these subjects. This effort is undertaken in the context of a progressive decline in physics literacy amongst the European population at all levels and ages. Fewer and fewer young people are attracted towards careers in core sciences and technologies - this could potentially lead to a crisis in European technology in the coming decades unless action is taken now. Too few people possess the basic knowledge that is necessary to understand even common physical phenomena. And not enough are able to form their own substantiated opinions about them. What will happen during "Physics on Stage"? During the first phase of "Physics on Stage", from now until October 2000, the individual national steering committees (NSC) will survey the situation in their respective countries. The NSCs will collaborate with national media to identify new and exciting educational approaches to physics. These may involve demonstrations, interactive experiments, video and CD-Rom presentations, web applications, virtual reality, theatre performances, etc. Nationally run competitions will select some of the best and most convincing new ideas for presentations and educational materials which will receive development support from "Physics on Stage". The project will culminate in November 2000, with approximately 400 delegates converging on CERN, in Geneva, for the "Physics on Stage" conference. The conference will enable the national competition winners, science teachers, science communicators, publishers, top scientists and high-level representatives of the ministries and European organisations to brainstorm solutions to bolster physics' popularity. The programme will also include spectacular demonstrations of educational tools; the best will be disseminated over the national TV networks and other media to the European public. Why ESA, CERN, and ESO? As Europe's principal organisations in physics research (particle physics, space and astronomy), the three recognised their mutual responsibility to address the issue with the launch of a new initiative and the creative use of their own research to attract the attention of the general public and teachers alike. About the "European Science and Technology Week" The objective of the "European Science and Technology Week" is to improve the public's knowledge and understanding of science and technology - including the associated benefits for society as a whole. The week focuses on the European dimension of research, such as pan-European scientific and technological co-operation. The rationale for holding the Week has its roots in the importance of the role of science and technology in modern societies and the need therefore, to ensure that the public recognises its significance in our lives. The Week is a framework for special TV programmes, exhibitions, contests, conferences, electronic networking, and other science related activities to promote the public understanding of science and technology. The Week was launched in 1993, on the initiative of the European Commission. Raising public awareness of science and technology is now the subject of a clearly defined action within the Human Potential Programme of the Fifth Framework Programme. Notes [1] The same press release is published also by CERN and ESO. [2] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. Statements by the Directors General of ESA, CERN, and ESO Antonio Rodotà (ESA): "Space has become an integral part of every day life. The immense technological development that has led to this achievement has taken place and might be taken for granted. But now is the time to follow up and form the future on this basis, a future that has to be made by the youth and has to give its benefits to the youth. The European Space Agency is dedicated to support the youth in its development to become a space generation. Many activities have been done and are taking place, and many more are planned for the future. Teachers and educational institutions and organisations form a key role in this development. ESA is enthusiastic about co-operating with ESO, CERN and the European Union to create an opportunity to receive ideas from the educational society and will perform a dedicated effort in finding ways to support the realisation of those ideas." Luciano Maiani (CERN): "Science is a critical resource for mankind and, among natural sciences, physics will continue to play a crucial role, well into the next century. The young people of Europe deserve the best possible physics teaching. An enormous resource of first class teachers, teaching materials and innovative thinking exists in our Countries. The "Physics on Stage" project will bring these together to generate a new interest in physics education which will be to the long term benefit of children all over Europe. CERN is delighted to take part in this collaboration between the European Community and the continent's three leading physics research organisations." Catherine Cesarsky (ESO): "Astronomy and Astrophysics are at the very heart of modern physics. As vibrant research disciplines they use the most advanced technology available to humanity to explore Cosmos. It is also a science of extreme conditions - the largest distances, the longest periods of time, the highest temperatures, the strongest electrical and magnetic fields, the highest and lowest densities and the most extreme energies. Cosmos is indeed the greatest physics laboratory. For years, ESO - Europe's Astronomy Organisation - has been engaged in communicating the outcome of the exciting research programmes carried out at the ESO observatories to a wide audience and in particular to Europe's youth. I warmly welcome the broad international collaboration within "Physics on Stage". I am confident that working together with the European Union and our sister organisations ESA and CERN, as well as teachers' organisations and dedicated individuals in all member countries, this innovative education programme will make a most important contribution towards raising the interest in fundamental research in Europe." About ESA, CERN, and ESO The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, co-operation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO observatory La Silla in Chile is one of the largest and best-equipped observatories in the world. ESO's Very Large Telescope Array (VLT), an array of giant telescopes, is under construction at Cerro Paranal in the Chilean Atacama Desert. When completed in 2001, the VLT will be the largest and best optical telescope in the world. The CERN, European Organisation for Nuclear Research, has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco have observer status.

  5. 77 FR 71828 - National Register of Historic Places; Notification of Pending Nominations and Related Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... School, (Indiana's Public Common and High Schools MPS) 550 E. Jefferson St., Franklin, 12001058 La Porte County Ames Family Homestead, 5332 & 5336 W. 150 N., La Porte, 12001062 Lake County Roosevelt, Theodore...), Portions of Boyle, Chouteau, Kentucky, Norfolk, Swan, Talmadge, Tower Grove, Vandeventer & Vista, St. Louis...

  6. The Gaia-ESO Survey: A globular cluster escapee in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Lind, K.; Koposov, S. E.; Battistini, C.; Marino, A. F.; Ruchti, G.; Serenelli, A.; Worley, C. C.; Alves-Brito, A.; Asplund, M.; Barklem, P. S.; Bensby, T.; Bergemann, M.; Blanco-Cuaresma, S.; Bragaglia, A.; Edvardsson, B.; Feltzing, S.; Gruyters, P.; Heiter, U.; Jofre, P.; Korn, A. J.; Nordlander, T.; Ryde, N.; Soubiran, C.; Gilmore, G.; Randich, S.; Ferguson, A. M. N.; Jeffries, R. D.; Vallenari, A.; Allende Prieto, C.; Pancino, E.; Recio-Blanco, A.; Romano, D.; Smiljanic, R.; Bellazzini, M.; Damiani, F.; Hill, V.; de Laverny, P.; Jackson, R. J.; Lardo, C.; Zaggia, S.

    2015-03-01

    A small fraction of the halo field is made up of stars that share the light element (Z ≤ 13) anomalies characteristic of second generation globular cluster (GC) stars. The ejected stars shed light on the formation of the Galactic halo by tracing the dynamical history of the clusters, which are believed to have once been more massive. Some of these ejected stars are expected to show strong Al enhancement at the expense of shortage of Mg, but until now no such star has been found. We search for outliers in the Mg and Al abundances of the few hundreds of halo field stars observed in the first eighteen months of the Gaia-ESO public spectroscopic survey. One halo star at the base of the red giant branch, here referred to as 22593757-4648029 is found to have [ Mg/Fe ] = -0.36 ± 0.04 and [ Al/Fe ] = 0.99 ± 0.08, which is compatible with the most extreme ratios detected in GCs so far. We compare the orbit of 22593757-4648029 to GCs of similar metallicity andfind it unlikely that this star has been tidally stripped with low ejection velocity from any of the clusters. However, both chemical and kinematic arguments render it plausible that the star has been ejected at high velocity from the anomalous GC ω Centauri within the last few billion years. We cannot rule out other progenitor GCs, because some may have disrupted fully, and the abundance and orbital data are inadequate for many of those that are still intact. Based on data acquired by the Gaia-ESO Survey, programme ID 188.B-3002. Observations were made with ESO Telescopes at the La Silla Paranal Observatory.Appendix A is available in electronic form at http://www.aanda.org

  7. Pricing Employee Stock Options (ESOs) with Random Lattice

    NASA Astrophysics Data System (ADS)

    Chendra, E.; Chin, L.; Sukmana, A.

    2018-04-01

    Employee Stock Options (ESOs) are stock options granted by companies to their employees. Unlike standard options that can be traded by typical institutional or individual investors, employees cannot sell or transfer their ESOs to other investors. The sale restrictions may induce the ESO’s holder to exercise them earlier. In much cited paper, Hull and White propose a binomial lattice in valuing ESOs which assumes that employees will exercise voluntarily their ESOs if the stock price reaches a horizontal psychological barrier. Due to nonlinearity errors, the numerical pricing results oscillate significantly so they may lead to large pricing errors. In this paper, we use the random lattice method to price the Hull-White ESOs model. This method can reduce the nonlinearity error by aligning a layer of nodes of the random lattice with a psychological barrier.

  8. REOSC Delivers the Best Astronomical Mirror in the World to ESO

    NASA Astrophysics Data System (ADS)

    1999-12-01

    On December 14, 1999, REOSC , the Optical Department of the SAGEM Group , finished the polishing of the fourth 8.2-m main mirror for the Very Large Telescope (VLT) of the European Southern Observatory. The mirror was today delivered to ESO at a ceremony at the REOSC factory in Saint Pierre du Perray, just south of Paris. The precision of the form of the mirror that was achieved during the polishing process is 8.5 nanometer (1 nanometer = 1 millionth of a millimetre) over the optical surface. This exceptional value corresponds to an optical resolution (theoretical image sharpness) of 0.03 arcseconds in the visible spectrum. This corresponds to distinguishing two objects separated by only 15 cm at a distance of 1000 km and will allow to detect astronomical objects that are 10,000 million times fainter than what can be perceived with the unaided eye. This impressive measure of quality, achieved by the REOSC teams during much painstaking work, implies that this VLT mirror is the most accurate in the world. In fact, all four 8.2-m VLT main mirrors polished by REOSC are well within the very strict specifications set by ESO, but this is the best of them all. The celebration today is the successful highlight of a contract initiated more than ten years ago, during which REOSC has perfected new polishing and control techniques - innovations improved and developed in a unique workshop dedicated to these giant mirrors. These methods and means are directly applicable to the new generations of segmented mirrors that are now being developed for astronomy and space observations. They are, in this sense, at the foremost front of optical technology. REOSC, the Optical Department of the SAGEM Group , is specialised in the study and realisation of high-precision optics for astronomy, space, defence, science and industry. For earlier information about the work on the VLT mirrors, cf. ESO Press Release 15/95 (13 November 1995). The SAGEM Group is a French high-technology group. It employs about 15,500 people - more information is available at URL: www.sagem.com. Information about the ESO and the VLT project is available via the ESO website: www.eso.org. Some Key Dates The polishing at REOSC of the main mirrors for the four VLT Unit Telescopes has been a major industrial feat. Here are some of the main dates: July 1989 ESO and REOSC sign contract for the polishing of the four 8.2-m and various associated activities July 1989 - April 1992 Design activities, construction of REOSC production plant April 1992 Mirror Container and concrete dummy mirror blank completed - test transport May 1992 Inauguration of REOSC production plant July 1993 Delivery of first 8.2-m mirror blank to ESO at Schott Glaswerke AG (Mainz, Germany) October 1994 Delivery of second 8.2-m mirror blank to ESO at Schott Glaswerke AG September 1995 Delivery of third 8.2-m mirror blank to ESO at Schott Glaswerke AG May 1996 Acceptance by ESO of first polished mirror at REOSC September 1996 Delivery of fourth 8.2-m mirror blank to ESO at Schott Glaswerke AG October 1996 Acceptance by ESO of second polished mirror at REOSC June 1997 Acceptance by ESO of third polished mirror at REOSC October - December 1997 Transport and delivery of first mirror to Paranal by Gondrand (France) August - September 1998 Transport and delivery of second mirror to Paranal by Gondrand December 1998 - January 1999 Transport and delivery of third mirror to Paranal by Gondrand December 1999 Acceptance by ESO of fourth polished mirror at REOSC February 1999 - April 2000 Transport and delivery of fourth mirror to Paranal by Gondrand Note [1] A Press Release on the REOSC event and the delivery of the fourth VLT main mirror to ESO is also published by SAGEM (in French and English). How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO PR Photo 44/99 may be reproduced, if credit is given to SAGEM and the European Southern Observatory.

  9. VLT Detects First Superstorm on Exoplanet

    NASA Astrophysics Data System (ADS)

    2010-06-01

    Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied "hot Jupiter" HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. The observations also allow another exciting "first" - measuring the orbital speed of the exoplanet itself, providing a direct determination of its mass. The results appear this week in the journal Nature. "HD209458b is definitely not a place for the faint-hearted. By studying the poisonous carbon monoxide gas with great accuracy we found evidence for a super wind, blowing at a speed of 5000 to 10 000 km per hour" says Ignas Snellen, who led the team of astronomers. HD209458b is an exoplanet of about 60% the mass of Jupiter orbiting a solar-like star located 150 light-years from Earth towards the constellation of Pegasus (the Winged Horse). Circling at a distance of only one twentieth the Sun-Earth distance, the planet is heated intensely by its parent star, and has a surface temperature of about 1000 degrees Celsius on the hot side. But as the planet always has the same side to its star, one side is very hot, while the other is much cooler. "On Earth, big temperature differences inevitably lead to fierce winds, and as our new measurements reveal, the situation is no different on HD209458b," says team member Simon Albrecht. HD209458b was the first exoplanet to be found transiting: every 3.5 days the planet moves in front of its host star, blocking a small portion of the starlight during a three-hour period. During such an event a tiny fraction of the starlight filters through the planet's atmosphere, leaving an imprint. A team of astronomers from the Leiden University, the Netherlands Institute for Space Research (SRON), and MIT in the United States, have used ESO's Very Large Telescope and its powerful CRIRES spectrograph to detect and analyse these faint fingerprints, observing the planet for about five hours, as it passed in front of its star. "CRIRES is the only instrument in the world that can deliver spectra that are sharp enough to determine the position of the carbon monoxide lines at a precision of 1 part in 100 000," says another team member Remco de Kok. "This high precision allows us to measure the velocity of the carbon monoxide gas for the first time using the Doppler effect." The astronomers achieved several other firsts. They directly measured the velocity of the exoplanet as it orbits its home star. "In general, the mass of an exoplanet is determined by measuring the wobble of the star and assuming a mass for the star, according to theory. Here, we have been able to measure the motion of the planet as well, and thus determine both the mass of the star and of the planet," says co-author Ernst de Mooij. Also for the first time, the astronomers measured how much carbon is present in the atmosphere of this planet. "It seems that H209458b is actually as carbon-rich as Jupiter and Saturn. This could indicate that it was formed in the same way," says Snellen. "In the future, astronomers may be able to use this type of observation to study the atmospheres of Earth-like planets, to determine whether life also exists elsewhere in the Universe." More information This research was presented in a paper that appears this week in the journal Nature: "The orbital motion, absolute mass, and high-altitude winds of exoplanet HD209458b", by I. Snellen et al. The team is composed of Ignas A. G. Snellen and Ernst J. W. de Mooij, (Leiden Observatory, The Netherlands), Remco J. de Kok (SRON, Utrecht, The Netherlands), and Simon Albrecht (Massachusetts Institute of Technology, USA). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  10. Antitumor Activity Associated with Prolonged Persistence of Adoptively Transferred NY-ESO-1c259T cells in Synovial Sarcoma.

    PubMed

    D'Angelo, Sandra P; Melchiori, Luca; Merchant, Melinda S; Bernstein, Donna B; Glod, John; Kaplan, Rosandra N; Grupp, Stephan A; Tap, William D; Chagin, Karen; Binder, Gwendolyn K; Basu, Samik; Lowther, Daniel E; Wang, Ruoxi; Bath, Natalie; Tipping, Alex; Betts, Gareth; Ramachandran, Indu; Navenot, Jean-Marc; Zhang, Hua; Wells, Daniel K; Van Winkle, Erin; Kari, Gabor; Trivedi, Trupti; Holdich, Tom; Pandite, Lini N; Amado, Rafael; Mackall, Crystal L

    2018-06-11

    We evaluated safety and activity of autologous T cells expressing NY-ESO-1c259, an affinity-enhanced T cell receptor (TCR) recognizing an HLA-A2-restricted NY-ESO-1/LAGE-1a-derived peptide, in patients with metastatic synovial sarcoma (NY-ESO-1c259T cells). Confirmed antitumor responses occurred in 50% of patients (6/12) and were characterized by tumor shrinkage over several months. Circulating NY-ESO-1c259T cells were present post-infusion in all patients and persisted for at least 6 months in all responders. Most infused NY-ESO-1c259T cells exhibited an effector memory phenotype following the ex vivo expansion, but the persisting pools comprised largely central memory and stem cell memory subsets, which remained polyfunctional and showed no evidence for T cell exhaustion despite persistent tumor burdens. Next generation sequencing of endogenous TCRs in CD8+ NY-ESO-1c259T cells revealed clonal diversity without contraction over time. These data suggest that regenerative pools of NY-ESO-1c259T cells produced a continuing supply of effector cells to mediate sustained, clinically meaningful antitumor effects. Copyright ©2018, American Association for Cancer Research.

  11. Closing the Loop for ALMA - Three antennas working in unison open new bright year for revolutionary observatory

    NASA Astrophysics Data System (ADS)

    2010-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) has passed a key milestone crucial for the high quality images that will be the trademark of this revolutionary new tool for astronomy. Astronomers and engineers have, for the first time, successfully linked three of the observatory's antennas at the 5000-metre elevation observing site in northern Chile. Having three antennas observing in unison paves the way for precise images of the cool Universe at unprecedented resolution, by providing the missing link to correct errors that arise when only two antennas are used. On 20 November 2009 the third antenna for the ALMA observatory was successfully installed at the Array Operations Site, the observatory's "high site" on the Chajnantor plateau, at an altitude of 5000 metres in the Chilean Andes. Later, after a series of technical tests, astronomers and engineers observed the first signals from an astronomical source making use of all three 12-metre diameter antennas linked together, and are now working around the clock to establish the stability and readiness of the system. "The first signal using just two ALMA antennas, observed in October, can be compared to a baby's first babblings," says Leonardo Testi, the European Project Scientist for ALMA at ESO. "Observing with a third antenna represents the moment when the baby says its very first, meaningful word - not yet a full sentence, but overwhelmingly exciting! The linking of three antennas is indeed the first actual step towards our goal of achieving precise and sharp images at submillimetre wavelengths." The successful linking of the antenna trio was a key test of the full electronic and software system now being installed at ALMA, and its success anticipates the future capabilities of the observatory. When complete, ALMA will have at least 66 high-tech antennas operating together as an "interferometer", working as a single, huge telescope probing the sky in the millimetre and submillimetre wavelengths of light. The combination of the signals received at the individual antennas is crucial to achieve images of astronomical sources of unprecedented quality at its designed observing wavelengths. The three-antenna linkup is a critical step towards the observatory's operations as an interferometer. Although the first, successful measurements employing just two antennas were obtained at the ALMA high site from October 2009 (see ESO Announcement) and demonstrated the excellent performance of the instruments, the addition of the third antenna is a leap of vital importance into the future of the observatory. This major milestone for the project is known as "phase closure" and provides an important independent check on the quality of the interferometry. "The use of a network of three (or more) antennas in an interferometer dramatically enhances its performance over a simple pair of antennas," explains Wolfgang Wild, the European ALMA Project Manager. "This gives astronomers control over possible features which degrade the quality of the image, arising due to the instrument or to atmospheric turbulence. By comparing the signals received simultaneously by the three individual antennas, these unwanted effects can be cancelled out - this is completely impossible using only two antennas." To achieve this crucial goal, astronomers observed the light coming from a distant extragalactic source, the quasar QSO B1921-293, well known to astronomers for its bright emission at very long wavelengths, including the millimetre/submillimetre range probed by ALMA. The stability of the signal measured from this object shows that the antennas are working impressively well. Several additional antennas will be installed on the Chajnantor plateau over the next year and beyond, allowing astronomers to start producing early scientific results with the ALMA system around 2011. After this, the interferometer will steadily grow to reach its full scientific potential, with at least 66 antennas. ALMA, an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. More information The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ESO is the European partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. ALMA will start scientific observations in 2011. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA, the world's largest survey telescope. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  12. Retirement of Massimo Tarenghi

    NASA Astrophysics Data System (ADS)

    Madsen, C.

    2013-09-01

    Massimo Tarenghi, chronologically MPG/ESO project scientist, NTT project manager, VLT programme manager and first Director, ALMA Director and ESO Representative in Chile, has retired after 35 years at ESO. A brief summary of his achievements is presented.

  13. Eighty nights up a mountain

    NASA Astrophysics Data System (ADS)

    Ellison, Sara

    2002-12-01

    A version of this article first appeared in August 2002 in the online publication Next Wave (www.nextwave.org), published by Science Magazine on the occasion of the UK joining ESO. As Sara Ellison describes, she has been a Paranal Fellow for the past two years and is currently in her third year at the Pontificia Universidad Católica de Chile in Santiago.

  14. ESO Council Decides to Continue VLT Project at Paranal

    NASA Astrophysics Data System (ADS)

    1994-08-01

    The Council [1] of the European Southern Observatory has met in extraordinary session at the ESO Headquarters in Garching near Munich on August 8 and 9, 1994. The main agenda items were concerned with the recent developments around ESO's relations with the host state, the Republic of Chile, as well as the status of the organisation's main project, the 16-metre equivalent Very Large Telescope (VLT) which will become the world's largest optical telescope. Council had decided to hold this special meeting [2] because of various uncertainties that have arisen in connection with the implementation of the VLT Project at Cerro Paranal, approx. 130 kilometres south of Antofagasta, capital of the II Region in Chile. Following continued consultations at different levels within the ESO member states and after careful consideration of all aspects of the current situation - including various supportive actions by the Chilean Government as well as the incessive attacks against this international organisation from certain sides reported in the media in that country - Council took the important decision to continue the construction of the VLT Observatory at Paranal, while at the same time requesting the ESO Management to pursue the ongoing studies of alternative solutions. THE COUNCIL DECISIONS In particular, the ESO Council took note of recent positive developments which have occurred since the May 1994 round of discussions with the Chilean authorities in Santiago. The confirmation of ESO's immunities as an International Organization in Chile, contained in a number of important statements and documents, is considered a significant step by the Chilean Government to insure to ESO the unhindered erection and later operation of the VLT on Paranal. Under these circumstances and in order to maintain progress on the VLT project, the ESO Council authorized the ESO Management to continue the on-site work at Paranal. Council also took note of the desire expressed by the Chilean Government to complete negotiation of a Supplementary and Amending Agreement and it was decided that a Council Delegation shall conclude as soon as possible the negotiation of this Agreement. Council noted that the Chilean Delegation has accepted ESO's invitation to hold the final round of negotiations in Europe and proposed that this final round shall be held in the period Sept. 15 - Oct. 15, 1994. Nonetheless, Council also expressed its preoccupation with regard to remaining ambiguities contained in some official statements according to which the formal recognition of ESO's status on Paranal would depend on the conclusion of the above mentioned Agreement. At the May 1994 meetings in Santiago [2], understanding had been reached that this Agreement will merely confirm the already existing legal situation. The main objective is to expand the cooperation between Chile and ESO by granting ensured access for Chilean astronomers to ESO's facilities and incorporate elements of Chilean labour legislation into the ESO internal staff regulations. In view of these circumstances, and pending the successful conclusion of these negotiations, Council therefore instructed the ESO Management to continue exploring alternative sites for the VLT. In a final statement, the ESO Council again expressed its hope that the scientific co-operation between Europe and Chile in the field of astronomy which began in 1963 will continue to develop and expand well into the next century to the mutual benefit of science in both communities. CONTINUATION OF THE VLT PROJECT In practical terms, the above decision by Council implies that ESO will now initiate the steps necessary to move from Europe to Paranal the main mechanical parts of the rotating dome (total weight around 500 tonnes) for the first VLT 8.2-metre unit telescope. It is expected that the sea transport will take place in September-October of this year and that assembly at Paranal will begin soon thereafter, once the concrete base, now under construction, is ready. This will enable the 500 million DEM VLT Project to stay within the planned timeline for completion just after the year 2000. 1. The Council of ESO consists of two representatives from each of the eight member states. It is the highest authority of the organisation and normally meets twice a year. 2. See ESO Press Release 12/94 of June 10, 1994.

  15. ESO 243-49 HLX-1: scaling of X-ray spectral properties and black hole mass determination

    NASA Astrophysics Data System (ADS)

    Titarchuk, Lev; Seifina, Elena

    2016-11-01

    We report the results of Swift/XRT observations (2008-2015) of a hyper-luminous X-ray source, ESO 243-49 HLX-1. We demonstrate a strong observational evidence that ESO 243-49 HLX-1 undergoes spectral transitions from the low/hard state to the high/soft state during these observations. The spectra of ESO 243-49 HLX-1 are well fitted by the so-called bulk motion Comptonization model for all spectral states. We have established the photon index (Γ) saturation level, Γsat = 3.0 ± 0.1, in the Γ versus mass accretion rate (Ṁ) correlation. This Γ-Ṁ correlation allows us to estimate black hole (BH) mass in ESO 243-49 HLX-1 to be MBH 7 × 104 M⊙ assuming the distance to ESO 243-49 of 95 Mpc. For the BH mass estimate we use the scaling method taking Galactic BHs XTE J1550-564, H 1743-322 and 4U 1630-472, and an extragalactic BH source, M101 ULX-1 as reference sources. The Γ versus Ṁ correlation revealed in ESO 243-49 HLX-1 is similar to those in a number of Galactic and extragalactic BHs and it clearly shows the correlation along with the strong Γ saturation at ≈3. This is a robust observational evidence for the presence of a BH in ESO 243-49 HLX-1. We also find that the seed (disk) photon temperatures are quite low, of order of 50-140 eV which are consistent with high BH mass in ESO 243-49 HLX-1.

  16. VizieR Online Data Catalog: VIKING catalogue data release 2 (Edge+, 2016)

    NASA Astrophysics Data System (ADS)

    Edge, A.; Sutherland, W.; Viking Team

    2016-10-01

    The VIKING survey with VISTA (ESO programme ID 179.A-2004) is a wide area (eventually 1500 sq.degrees), intermediate-depth (5-sigma detection limit J=21 on Vega system) near-infrared imaging survey, in the five broadband filters Z, Y, J, H, Ks. The planned sky coverage is at high galactic latitudes, and includes two main stripes 70x10°2 each: one in the South Galactic cap near Dec~-30°, and one near Dec~0° in the North galactic cap; in addition, there are two smaller outrigger patches called GAMA09 and CFHLS-W1. Science goals include z>6.5 quasars, extreme brown dwarfs, and multiwavelength coverage and identifications for a range of other imaging surveys, notably VST-KIDS and Herschel-ATLAS. This second public data release of VIKING data covers all of the highest quality data taken between the start of the survey (12th of November 2009) and the end of Period 92 (30th September 2013). This release supersedes the first release (VIKING and VIKING CAT published 28.06.2013 and 16.12.2013 respectively) as it includes improved CASU processing (V1.3) that gives better tile grouting and zero point corrections This release contains 396 tiles with coverage in all five VIKING filters, 379 of which have a deep co-add in J, and an additional 81 with at least two filters where the second OB has not been executed yet or one filter in an OB was poor quality. These 477 fields cover a total of ~690 square degrees and the resulting catalogues include a total of 46,270,162 sources (including low-reliability single-band detections). The imaging and catalogues (both single-band and band-merged) total 839.3GB. The coverage in each of the five sub-areas is not completely contiguous but any inter-tile gaps are relatively small. More details can be found in the accompanying documentation: vikingcatdr2.pdf (2 data files).

  17. Exoplanet Caught on the Move

    NASA Astrophysics Data System (ADS)

    2010-06-01

    For the first time, astronomers have been able to directly follow the motion of an exoplanet as it moves from one side of its host star to the other. The planet has the smallest orbit so far of all directly imaged exoplanets, lying almost as close to its parent star as Saturn is to the Sun. Scientists believe that it may have formed in a similar way to the giant planets in the Solar System. Because the star is so young, this discovery proves that gas giant planets can form within discs in only a few million years, a short time in cosmic terms. Only 12 million years old, or less than three-thousandths of the age of the Sun, Beta Pictoris is 75% more massive than our parent star. It is located about 60 light-years away towards the constellation of Pictor (the Painter) and is one of the best-known examples of a star surrounded by a dusty debris disc [1]. Earlier observations showed a warp of the disc, a secondary inclined disc and comets falling onto the star. "Those were indirect, but tell-tale signs that strongly suggested the presence of a massive planet, and our new observations now definitively prove this," says team leader Anne-Marie Lagrange. "Because the star is so young, our results prove that giant planets can form in discs in time-spans as short as a few million years." Recent observations have shown that discs around young stars disperse within a few million years, and that giant planet formation must occur faster than previously thought. Beta Pictoris is now clear proof that this is indeed possible. The team used the NAOS-CONICA instrument (or NACO [2]), mounted on one of the 8.2-metre Unit Telescopes of ESO's Very Large Telescope (VLT), to study the immediate surroundings of Beta Pictoris in 2003, 2008 and 2009. In 2003 a faint source inside the disc was seen (eso0842), but it was not possible to exclude the remote possibility that it was a background star. In new images taken in 2008 and spring 2009 the source had disappeared! The most recent observations, taken during autumn 2009, revealed the object on the other side of the disc after a period of hiding either behind or in front of the star (in which case it is hidden in the glare of the star). This confirmed that the source indeed was an exoplanet and that it was orbiting its host star. It also provided insights into the size of its orbit around the star. Images are available for approximately ten exoplanets, and the planet around Beta Pictoris (designated "Beta Pictoris b") has the smallest orbit known so far. It is located at a distance between 8 and 15 times the Earth-Sun separation - or 8-15 Astronomical Units - which is about the distance of Saturn from the Sun. "The short period of the planet will allow us to record the full orbit within maybe 15-20 years, and further studies of Beta Pictoris b will provide invaluable insights into the physics and chemistry of a young giant planet's atmosphere," says student researcher Mickael Bonnefoy. The planet has a mass of about nine Jupiter masses and the right mass and location to explain the observed warp in the inner parts of the disc. This discovery therefore bears some similarity to the prediction of the existence of Neptune by astronomers Adams and Le Verrier in the 19th century, based on observations of the orbit of Uranus. "Together with the planets found around the young, massive stars Fomalhaut and HR8799, the existence of Beta Pictoris b suggests that super-Jupiters could be frequent byproducts of planet formation around more massive stars," explains Gael Chauvin, a member of the team. Such planets disturb the discs around their stars, creating structures that should be readily observable with the Atacama Large Millimeter/submillimeter Array (ALMA), the revolutionary telescope being built by ESO together with international partners. A few other planetary candidates have been imaged, but they are all located further from their host star than Beta Pictoris b. If located in the Solar System, they all would lie close to or beyond the orbit of the furthest planet, Neptune. The formation processes of these distant planets are likely to be quite different from those in our Solar System and in Beta Pictoris. "The recent direct images of exoplanets - many made by the VLT - illustrate the diversity of planetary systems," says Lagrange. "Among those, Beta Pictoris b is the most promising case of a planet that could have formed in the same way as the giant planets in our Solar System." Notes [1] Debris discs are composed of dust resulting from collisions among larger bodies such as planetary embryos or asteroids. They are larger versions of the zodiacal dust band in our Solar System. The disc around Beta Pictoris was the first to be imaged and is now known to extend up to about 1000 times the distance between the Earth and the Sun. [2] NACO is an adaptive optics instrument attached to ESO's Very Large Telescope, located in Chile. Thanks to adaptive optics, astronomers can remove most of the blurring effect of the atmosphere and obtain very sharp images. More information This research was presented in a paper to appear this week in Science Express ("A Giant Planet Imaged in the disk of the Young Star Beta Pictoris," by A.-M. Lagrange et al.). The team is composed of A.-M. Lagrange, M. Bonnefoy, G. Chauvin, D. Ehrenreich, and D. Mouillet (Laboratoire d'Astrophysique de l'Observatoire de Grenoble, Université Joseph Fourier, CNRS, France), D. Apai (Space Telescope Science Institute, Baltimore, USA), A. Boccaletti, D. Gratadour, D. Rouan, and S. Lacour (LESIA, Observatoire de Paris-Meudon, France), and M. Kasper (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. Diffusibility Enhancement of Rejuvenator by Epoxidized Soybean Oil and Its Influence on the Performance of Recycled Hot Mix Asphalt Mixtures

    PubMed Central

    Kuang, Dongliang; Jiao, Yuan; Ye, Zhou; Lu, Zaihong; Chen, Huaxin; Yu, Jianying; liu, Ning

    2018-01-01

    Epoxidized soybean oil (ESO) was employed as a novel penetrant cooperating with a conventional rejuvenator (CR) for the recycling of reclaimed asphalt pavement (RAP). The influence of ESO on the diffusibility and the regenerating effects of CR on RAP were investigated. The diffusibility testing result shows that the diffusibility of CR is enhanced by the addition of ESO because the epoxy group in ESO can facilitate asphaltene dispersion due to its high polarity, which simultaneously reduces the viscosity and improves the fluidity of aged bitumen so as to allow diffusion of the rejuvenator into the aged bitumen. Road performance testing of a recycled hot mix asphalt mixture (RHMA) indicates that the fatigue and cracking resistance properties as well as the water stability of RHMA containing CR can be improved by the addition of ESO due to the diffusibility enhancement of CR, which boosts the regenerating effect of CR on aged bitumen in RAP. The fatigue and cracking resistance properties as well as the water stability of the recycled hot mix asphalt mixture containing CR with 7 wt % ESO approximate those of the hot mix asphalt mixture composed of the same virgin aggregates and bitumen. Taking into account the rutting resistance decline versus the addition of ESO, the content of ESO should not exceed 7 wt % of the conventional rejuvenator. PMID:29783675

  19. Diffusibility Enhancement of Rejuvenator by Epoxidized Soybean Oil and Its Influence on the Performance of Recycled Hot Mix Asphalt Mixtures.

    PubMed

    Kuang, Dongliang; Jiao, Yuan; Ye, Zhou; Lu, Zaihong; Chen, Huaxin; Yu, Jianying; Liu, Ning

    2018-05-18

    Epoxidized soybean oil (ESO) was employed as a novel penetrant cooperating with a conventional rejuvenator (CR) for the recycling of reclaimed asphalt pavement (RAP). The influence of ESO on the diffusibility and the regenerating effects of CR on RAP were investigated. The diffusibility testing result shows that the diffusibility of CR is enhanced by the addition of ESO because the epoxy group in ESO can facilitate asphaltene dispersion due to its high polarity, which simultaneously reduces the viscosity and improves the fluidity of aged bitumen so as to allow diffusion of the rejuvenator into the aged bitumen. Road performance testing of a recycled hot mix asphalt mixture (RHMA) indicates that the fatigue and cracking resistance properties as well as the water stability of RHMA containing CR can be improved by the addition of ESO due to the diffusibility enhancement of CR, which boosts the regenerating effect of CR on aged bitumen in RAP. The fatigue and cracking resistance properties as well as the water stability of the recycled hot mix asphalt mixture containing CR with 7 wt % ESO approximate those of the hot mix asphalt mixture composed of the same virgin aggregates and bitumen. Taking into account the rutting resistance decline versus the addition of ESO, the content of ESO should not exceed 7 wt % of the conventional rejuvenator.

  20. Spain to Join ESO

    NASA Astrophysics Data System (ADS)

    2006-03-01

    On 13 February, at a ceremony in Madrid, an agreement was signed by the Spanish Minister of Education and Science, Mrs. María Jesús San Segundo, and the ESO Director General, Dr. Catherine Cesarsky, affirming their commitment to securing Spanish membership of ESO.

  1. 76 FR 12719 - City of Escondido, California, and Vista Irrigation District; Notice of Application Accepted for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ..., California, and Vista Irrigation District; Notice of Application Accepted for Filing, Ready for Environmental... Filed: December 3, 2010. d. Applicant: City of Escondido, California, (Escondido) and Vista Irrigation District (Vista). e. Name of Project: Bear Valley Powerhouse Project. f. Location: On the San Luis Rey...

  2. 76 FR 12720 - City of Escondido, CA, and Vista Irrigation District; Notice of Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-08

    ..., CA, and Vista Irrigation District; Notice of Application Accepted for Filing, Ready for Environmental...: City of Escondido, California (Escondido) and Vista Irrigation District (Vista). e. Name of Project... owned by the La Jolla, San Pasqual, and Rincon Indian Tribes. g. Filed Pursuant to: Federal Power Act...

  3. 78 FR 39773 - Monta Vista Software, LLC, a Subsidiary of Cavium, Inc., Including Workers Whose Unemployment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-02

    ...,537B] Monta Vista Software, LLC, a Subsidiary of Cavium, Inc., Including Workers Whose Unemployment Insurance (UI) Wages are Reported Through Trinet HR Corporation, Arlington, Texas; Monta Vista Software, LLC... Through Trinet HR Corporation, San Jose, California; Monta Vista Software, LLC, A Subsidiary of Cavium...

  4. "Making It Do" at the Movie Theatres: Communicating Sustainability in the Workplace

    ERIC Educational Resources Information Center

    Laasch, Oliver; Conaway, Roger N.

    2011-01-01

    Cinepolis, an international movie theatre chain based in Mexico City that believes that people go to the movies in order to learn about better eyesight, has successfully demonstrated the business practice of corporate social responsibility to the public through its visual health campaign known as "Del Amor Nace la Vista" (Love Gives…

  5. Teacher Identity in a Multicultural Rural School: Lessons Learned at Vista Charter

    ERIC Educational Resources Information Center

    Wenger, Kerri J.; Dinsmore, Jan; Villagomez, Amanda

    2012-01-01

    In this paper, we describe a 30-month qualitative exploration of diverse teachers' identities in a high-poverty, bilingual, K-8 public charter school in rural eastern Oregon. First, we use the perspectives of saberes docentes and a situated view of teacher development to document the life histories of monolingual and bilingual teachers at Vista…

  6. Blasting away a dwarf galaxy: the `tail' of ESO 324-G024

    NASA Astrophysics Data System (ADS)

    Johnson, Megan C.; Kamphuis, Peter; Koribalski, Bärbel S.; Wang, Jing; Oh, Se-Heon; Hill, Alex S.; O'Sullivan, Shane; Haan, Sebastian; Serra, Paolo

    2015-08-01

    We present Australia Telescope Compact Array radio data of the dwarf irregular galaxy ESO 324-G024 which is seen in projection against the giant, northern lobe of the radio galaxy Centaurus A (Cen A, NGC 5128). The distorted morphology and kinematics of ESO 324-G024, as observed in the 21 cm spectral line emission of neutral hydrogen, indicate disruptions by external forces. We investigate whether tidal interactions and/or ram pressure stripping are responsible for the formation of the H I tail stretching to the north-east of ESO 324-G024 with the latter being most probable. Furthermore, we closely analyse the sub-structure of Cen A's polarized radio lobes to ascertain whether ESO 324-G024 is located in front, within or behind the northern lobe. Our multiwavelength, multicomponent approach allows us to determine that ESO 324-G024 is most likely behind the northern radio lobe of Cen A. This result helps to constrain the orientation of the lobe, which is likely inclined to our line of sight by approximately 60° if NGC 5128 and ESO 324-G024 are at the same distance.

  7. Planet from another galaxy discovered - Galactic cannibalism brings an exoplanet of extragalactic origin within astronomers' reach

    NASA Astrophysics Data System (ADS)

    2010-11-01

    An exoplanet orbiting a star that entered our Milky Way from another galaxy has been detected by a European team of astronomers using the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. The Jupiter-like planet is particularly unusual, as it is orbiting a star nearing the end of its life and could be about to be engulfed by it, giving tantalising clues about the fate of our own planetary system in the distant future. Over the last 15 years, astronomers have detected nearly 500 planets orbiting stars in our cosmic neighbourhood, but none outside our Milky Way has been confirmed [1]. Now, however, a planet with a minimum mass 1.25 times that of Jupiter [2] has been discovered orbiting a star of extragalactic origin, even though the star now finds itself within our own galaxy. It is part of the so-called Helmi stream [3] - a group of stars that originally belonged to a dwarf galaxy that was devoured by our galaxy, the Milky Way, in an act of galactic cannibalism about six to nine billion years ago. The results are published today in Science Express. "This discovery is very exciting," says Rainer Klement of the Max-Planck-Institut für Astronomie (MPIA), who was responsible for the selection of the target stars for this study. "For the first time, astronomers have detected a planetary system in a stellar stream of extragalactic origin. Because of the great distances involved, there are no confirmed detections of planets in other galaxies. But this cosmic merger has brought an extragalactic planet within our reach." The star is known as HIP 13044, and it lies about 2000 light-years from Earth in the southern constellation of Fornax (the Furnace). The astronomers detected the planet, called HIP 13044 b, by looking for the tiny telltale wobbles of the star caused by the gravitational tug of an orbiting companion. For these precise observations, the team used the high-resolution spectrograph FEROS [4] attached to the 2.2-metre MPG/ESO telescope [5] at ESO's La Silla Observatory in Chile. Adding to its claim to fame, HIP 13044 b is also one of the few exoplanets known to have survived the period when its host star expanded massively after exhausting the hydrogen fuel supply in its core - the red giant phase of stellar evolution. The star has now contracted again and is burning helium in its core. Until now, these so-called horizontal branch stars have remained largely uncharted territory for planet-hunters. "This discovery is part of a study where we are systematically searching for exoplanets that orbit stars nearing the end of their lives," says Johny Setiawan, also from MPIA, who led the research. "This discovery is particularly intriguing when we consider the distant future of our own planetary system, as the Sun is also expected to become a red giant in about five billion years." HIP 13044 b is near to its host star. At the closest point in its elliptical orbit, it is less than one stellar diameter from the surface of the star (or 0.055 times the Sun-Earth distance). It completes an orbit in only 16.2 days. Setiawan and his colleagues hypothesise that the planet's orbit might initially have been much larger, but that it moved inwards during the red giant phase. Any closer-in planets may not have been so lucky. "The star is rotating relatively quickly for an horizontal branch star," says Setiawan. "One explanation is that HIP 13044 swallowed its inner planets during the red giant phase, which would make the star spin more quickly." Although HIP 13044 b has escaped the fate of these inner planets so far, the star will expand again in the next stage of its evolution. HIP 13044 b may therefore be about to be engulfed by the star, meaning that it is doomed after all. This could also foretell the demise of our outer planets - such as Jupiter - when the Sun approaches the end of its life. The star also poses interesting questions about how giant planets form, as it appears to contain very few elements heavier than hydrogen and helium - fewer than any other star known to host planets. "It is a puzzle for the widely accepted model of planet formation to explain how such a star, which contains hardly any heavy elements at all, could have formed a planet. Planets around stars like this must probably form in a different way," adds Setiawan. Notes [1] There have been tentative claims of the detection of extragalactic exoplanets through "gravitational microlensing" events, in which the planet passing in front of an even more distant star leads to a subtle, but detectable "flash". However, this method relies on a singular event - the chance alignment of a distant light source, planetary system and observers on Earth - and no such extragalactic planet detection has been confirmed. [2] Using the radial velocity method, astronomers can only estimate a minimum mass for a planet, as the mass estimate also depends on the tilt of the orbital plane relative to the line of sight, which is unknown. From a statistical point of view, this minimum mass is however often close to the real mass of the planet. [3] Astronomers can identify members of the Helmi stream as they have motions (velocity and orbits) that are rather different from the average Milky Way stars. [4] FEROS stands for Fibre-fed Extended Range Optical Spectrograph. [5] The 2.2-metre telescope has been in operation at La Silla since early 1984 and is on indefinite loan to ESO from the Max-Planck Society (Max Planck Gesellschaft or MPG in German). Telescope time is shared between MPG and ESO observing programmes, while the operation and maintenance of the telescope are ESO's responsibility. More information This research was presented in a paper, "A Giant Planet Around a Metal-poor Star of Extragalactic Origin", by J. Setiawan et al., to appear in Science Express on 18 November 2010. The team is composed of J. Setiawan, R. J. Klement, T. Henning, H.-W. Rix, and B. Rochau (Max-Planck-Institut für Astronomie, Heidelberg, Germany), J. Rodmann (European Space Agency, Noordwijk, the Netherlands), and T. Schulze-Hartung (Max-Planck-Institut für Astronomie, Heidelberg, Germany). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  8. Catching Galactic open clusters in advanced stages of dynamical evolution

    NASA Astrophysics Data System (ADS)

    Angelo, M. S.; Piatti, A. E.; Dias, W. S.; Maia, F. F. S.

    2018-04-01

    During their dynamical evolution, Galactic open clusters (OCs) gradually lose their stellar content mainly because of internal relaxation and tidal forces. In this context, the study of dynamically evolved OCs is necessary to properly understand such processes. We present a comprehensive Washington CT1 photometric analysis of six sparse OCs, namely: ESO 518-3, Ruprecht 121, ESO 134-12, NGC 6573, ESO 260-7 and ESO 065-7. We employed Markov chain Monte-Carlo simulations to robustly determine the central coordinates and the structural parameters and T1 × (C - T1) colour-magnitude diagrams (CMDs) cleaned from field contamination were used to derive the fundamental parameters. ESO 518-03, Ruprecht 121, ESO 134-12 and NGC 6573 resulted to be of nearly the same young age (8.2 ≤log(t yr-1) ≤ 8.3); ESO 260-7 and ESO065-7 are of intermediate age (9.2 ≤log(t yr-1) ≤ 9.4). All studied OCs are located at similar Galactocentric distances (RG ˜ 6 - 6.9 kpc), considering uncertainties, except for ESO 260-7 (RG = 8.9 kpc). These OCs are in a tidally filled regime and are dynamically evolved, since they are much older than their half-mass relaxation times (t/trh ≳ 30) and present signals of low-mass star depletion. We distinguished two groups: those dynamically evolving towards final disruptions and those in an advanced dynamical evolutionary stage. Although we do not rule out that the Milky Way potential could have made differentially faster their dynamical evolutions, we speculate here with the possibility that they have been mainly driven by initial formation conditions.

  9. Catching Galactic open clusters in advanced stages of dynamical evolution

    NASA Astrophysics Data System (ADS)

    Angelo, M. S.; Piatti, A. E.; Dias, W. S.; Maia, F. F. S.

    2018-07-01

    During their dynamical evolution, Galactic open clusters (OCs) gradually lose their stellar content mainly because of internal relaxation and tidal forces. In this context, the study of dynamically evolved OCs is necessary to properly understand such processes. We present a comprehensive Washington CT1 photometric analysis of six sparse OCs, namely ESO 518-3, Ruprecht 121, ESO 134-12, NGC 6573, ESO 260-7, and ESO 065-7. We employed Markov chain Monte Carlo simulations to robustly determine the central coordinates and the structural parameters and T1 × (C - T1) colour-magnitude diagrams cleaned from field contamination were used to derive the fundamental parameters. ESO 518-03, Ruprecht 121, ESO 134-12, and NGC 6573 resulted to be of nearly the same young age [8.2 ≤log(t yr-1) ≤ 8.3]; ESO 260-7 and ESO065-7 are of intermediate age [9.2 ≤log(t yr-1) ≤ 9.4]. All studied OCs are located at similar Galactocentric distances (RG ˜6-6.9 kpc), considering uncertainties, except for ESO 260-7 (RG = 8.9 kpc). These OCs are in a tidally filled regime and are dynamically evolved, since they are much older than their half-mass relaxation times (t/trh ≳ 30) and present signals of low-mass star depletion. We distinguished two groups: those dynamically evolving towards final disruptions and those in an advanced dynamical evolutionary stage. Although we do not rule out that the Milky Way potential could have made differentially faster their dynamical evolutions, we speculate here with the possibility that they have been mainly driven by initial formation conditions.

  10. GUIs in the MIDAS environment

    NASA Technical Reports Server (NTRS)

    Ballester, P.

    1992-01-01

    MIDAS (Munich Image Data Analysis System) is the image processing system developed at ESO for astronomical data reduction. MIDAS is used for off-line data reduction at ESO and many astronomical institutes all over Europe. In addition to a set of general commands, enabling to process and analyze images, catalogs, graphics and tables, MIDAS includes specialized packages dedicated to astronomical applications or to specific ESO instruments. Several graphical interfaces are available in the MIDAS environment: XHelp provides an interactive help facility, and XLong and XEchelle enable data reduction of long-slip and echelle spectra. GUI builders facilitate the development of interfaces. All ESO interfaces comply to the ESO User Interfaces Common Conventions which secures an identical look and feel for telescope operations, data analysis, and archives.

  11. 77 FR 22475 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-16

    ..., Orig, CANCELLED Fort Huachuca Sierra Vista, AZ, Sierra Vista Muni-Libby AAF, RADAR-1, Orig Fort Huachuca Sierra Vista, AZ, Sierra Vista Muni-Libby AAF, RADAR-2, Orig Lake Havasu City, AZ, Lake Havasu... Opelousas, LA, St Landry Parish-Ahart Field, NDB RWY 18, Amdt 3 Opelousas, LA, St Landry Parish-Ahart Field...

  12. VLT Commissioning Data Now Publicly Available

    NASA Astrophysics Data System (ADS)

    1999-11-01

    "First Light" was achieved in May 1998 for VLT ANTU , the first 8.2-m Unit Telescope at the Paranal Observatory ( ESO PR 06/98 ). Since then, thousands of detailed images and spectra of a great variety of celestial objects have been recorded with this major new research facility. While some of these were obtained for scientific programmes and were therefore directed towards specific research needs, others were made during the "Commissioning Phases" in 1998/99 for the two major astronomical instruments, FORS1 ( FO cal R educer and S pectrograph) and ISAAC ( I nfrared S pectrometer A nd A rray C amera). They were carried out in order to test thoroughly the performance of the telescope and its instruments before the new facility was handed over to the astronomers on April 1, 1999. The Commissioning data are accordingly of variable quality and, contrarily to the science data, normally not intensity calibrated. However, while some of these frames are short test exposures that mainly served to ascertain the image quality under various observing conditions, a substantial fraction still contains scientifically valuable data. 10 Gigabytes released As planned, and in order to facilitate the exploitation of this useful material, ESO has today released over 10 Gigabytes of ANTU Commissioning data (and some additional test data from before April 1, 1999), obtained in the various observing modes of FORS1 and ISAAC . They encompass a total of 2235 files and are now available to astronomers and other interested parties in the ESO Member States. Information about this release and on how to obtain the data on CD-ROM or in electronic form is now available via the Science Archive Facility website. A special page with the list of raw science data frames included in this release has been set up. Searches for specific data (e.g., by object, sky field, filter, time of observation; calibration files, etc.) can be made from the ESO Science Archive Data Products page. These Commissioning data are "raw" in the sense that they come directly from the instrument. The original files are recorded in standard FITS-format and in order to save space, they have been compressed by a factor of about 2. Before they can be used, they must therefore first be decompressed and subjected to image processing, e.g. with the ESO MIDAS system , available on a special MIDAS CD-ROM from ESO. The above image of a well-known spiral galaxy, Messier 83 , was prepared by superposing three CCD frames from this data release that are now available in the archive. This galaxy is located in the southern constellation Hydra (The Water-Snake) and is also known as NGC 5236 ; the distance is about 15 million light-years. The spiral structure resembles that of the Milky Way Galaxy in which we live, but Messier 83 also possesses a bar-like structure at the centre. Corresponding frames of many other interesting objects are included among the data now released. A small part of these have served to produce some of the VLT Astronomical Images that have been released at the ESO Outreach website during the past year. Current VLT observations Observations continue with the first two VLT Unit Telescopes, ANTU and KUEYEN ; the latter is still in the Commissioning Phase with the UVES and FORS2 instruments until it will be made available to the astronomers on April 1, 2000. The current VLT data production rate is about 2200 files/week, corresponding to about 10 Gigabytes or 16 CD-ROMs. Efficient data handling procedures developed by ESO ensure a rapid and secure transfer from the telescopes at the Paranal Observatory to the data archive at the Garching Headquarters, and from here to the receiving astronomers. A description of the main features of this "VLT Data Flow System" is available in PR 10/99. The amount of data will increase as more instruments enter into operation and will ultimately reach about 40,000 Gigabytes/year. The next major event will be the "First Light" for the third Unit Telescope, MELIPAL , now expected in February 2000. The preparations are proceeding well, with the 8.2-m main mirror of Zerodur about to be coated during the next days. The fourth telescope, YEPUN , will follow later next year. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  13. ESO Successfully Tests Automation of Telescope Operations

    NASA Astrophysics Data System (ADS)

    1997-02-01

    This week astronomers at the European Southern Observatory have tested a novel approach of doing astronomy from the ground. Inaugurating a new era, the ESO 3.5-metre New Technology Telescope (NTT) at La Silla successfully performed a series of observations under automatic control by advanced computer software developed by the ESO Data Management Division (DMD) for use with the ESO Very Large Telescope (VLT). This move has been made necessary by technological improvements in telescopes and the increasing competition among scientists for these valuable resources. Caption to ESO PR Photo 05/97 [JPG, 184k] This Press Release is accompanied by ESO Press Photo 05/97 of the NTT. New telescopes produce more data Over the past few years, astronomical telescopes and the amount of data they produce have grown rapidly in size. With the advent of increasingly efficient, large digital cameras, the new telescopes with mirrors as large as 8 to 10 metres in diameter will deliver Gigabytes of valuable information each night. There is little doubt that scientific breakthroughs will be made with these telescopes and it should be no surprise that there is fierce competition for precious observing nights among the international astronomical community. Automated observations In order to make sure that the available observing time at the VLT will be used in the best and most efficient way, ESO has been developing advanced computer systems which will automatically schedule observations according to the scientific priorities of astronomers and the prevailing conditions of weather and equipment at the observatory. Once the astronomical data is gathered it is processed automatically at the telescope to provide the astronomer with immediately useful astronomical images and other pertinent information. No longer will the astronomer be required to spend weeks processing data into a form where results can be extracted. The continuous flow of astronomical data made possible with this system is referred to as the VLT Data Flow System , now being perfected by the ESO Data Management Division for use on ESO's Very Large Telescope project. First tests at the NTT On February 5, a team of software engineers and astronomers from ESO used a first version of the new VLT Data Flow System to perform observations on ESO's New Technology Telescope (NTT) at the La Silla Observatory in Chile. A computer file containing a complete description of an observation (for instance, object position in the sky, filtres and exposure time, and other relevant information) prepared in advance by an astronomer was transferred via the satellite link from the ESO Headquarters in Germany to the NTT computers at La Silla and executed on the control system of the telescope. The telescope then moved to the correct position in the sky, the camera was activated and a few minutes later, a processed image a distant galaxy appeared on the screen in front of the observers. The image was saved in an automatic archive system that writes the astronomical data on CD-ROM. The entire process took place automatically and demonstrated that this system is capable of taking high quality data from the sky at the best possible time and delivering the results to the astronomer, efficiently and in the most convenient form. Further developments This is the first time that a ground-based telescope has been operated under the new system. This successful initial test bodes well for the start-up of the VLT. During 1997, ESO will further develop the data flow system in preparation for the beginning of commissioning of the first VLT 8.2-metre unit, less then 12 months from now. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  14. Deepest Wide-Field Colour Image in the Southern Sky

    NASA Astrophysics Data System (ADS)

    2003-01-01

    LA SILLA CAMERA OBSERVES CHANDRA DEEP FIELD SOUTH ESO PR Photo 02a/03 ESO PR Photo 02a/03 [Preview - JPEG: 400 x 437 pix - 95k] [Normal - JPEG: 800 x 873 pix - 904k] [HiRes - JPEG: 4000 x 4366 pix - 23.1M] Caption : PR Photo 02a/03 shows a three-colour composite image of the Chandra Deep Field South (CDF-S) , obtained with the Wide Field Imager (WFI) camera on the 2.2-m MPG/ESO telescope at the ESO La Silla Observatory (Chile). It was produced by the combination of about 450 images with a total exposure time of nearly 50 hours. The field measures 36 x 34 arcmin 2 ; North is up and East is left. Technical information is available below. The combined efforts of three European teams of astronomers, targeting the same sky field in the southern constellation Fornax (The Oven) have enabled them to construct a very deep, true-colour image - opening an exceptionally clear view towards the distant universe . The image ( PR Photo 02a/03 ) covers an area somewhat larger than the full moon. It displays more than 100,000 galaxies, several thousand stars and hundreds of quasars. It is based on images with a total exposure time of nearly 50 hours, collected under good observing conditions with the Wide Field Imager (WFI) on the MPG/ESO 2.2m telescope at the ESO La Silla Observatory (Chile) - many of them extracted from the ESO Science Data Archive . The position of this southern sky field was chosen by Riccardo Giacconi (Nobel Laureate in Physics 2002) at a time when he was Director General of ESO, together with Piero Rosati (ESO). It was selected as a sky region towards which the NASA Chandra X-ray satellite observatory , launched in July 1999, would be pointed while carrying out a very long exposure (lasting a total of 1 million seconds, or 278 hours) in order to detect the faintest possible X-ray sources. The field is now known as the Chandra Deep Field South (CDF-S) . The new WFI photo of CDF-S does not reach quite as deep as the available images of the "Hubble Deep Fields" (HDF-N in the northern and HDF-S in the southern sky, cf. e.g. ESO PR Photo 35a/98 ), but the field-of-view is about 200 times larger. The present image displays about 50 times more galaxies than the HDF images, and therefore provides a more representative view of the universe . The WFI CDF-S image will now form a most useful basis for the very extensive and systematic census of the population of distant galaxies and quasars, allowing at once a detailed study of all evolutionary stages of the universe since it was about 2 billion years old . These investigations have started and are expected to provide information about the evolution of galaxies in unprecedented detail. They will offer insights into the history of star formation and how the internal structure of galaxies changes with time and, not least, throw light on how these two evolutionary aspects are interconnected. GALAXIES IN THE WFI IMAGE ESO PR Photo 02b/03 ESO PR Photo 02b/03 [Preview - JPEG: 488 x 400 pix - 112k] [Normal - JPEG: 896 x 800 pix - 1.0M] [Full-Res - JPEG: 2591 x 2313 pix - 8.6M] Caption : PR Photo 02b/03 contains a collection of twelve subfields from the full WFI Chandra Deep Field South (WFI CDF-S), centred on (pairs or groups of) galaxies. Each of the subfields measures 2.5 x 2.5 arcmin 2 (635 x 658 pix 2 ; 1 pixel = 0.238 arcsec). North is up and East is left. Technical information is available below. The WFI CDF-S colour image - of which the full field is shown in PR Photo 02a/03 - was constructed from all available observations in the optical B- ,V- and R-bands obtained under good conditions with the Wide Field Imager (WFI) on the 2.2-m MPG/ESO telescope at the ESO La Silla Observatory (Chile), and now stored in the ESO Science Data Archive. It is the "deepest" image ever taken with this instrument. It covers a sky field measuring 36 x 34 arcmin 2 , i.e., an area somewhat larger than that of the full moon. The observations were collected during a period of nearly four years, beginning in January 1999 when the WFI instrument was first installed (cf. ESO PR 02/99 ) and ending in October 2002. Altogether, nearly 50 hours of exposure were collected in the three filters combined here, cf. the technical information below. Although it is possible to identify more than 100,000 galaxies in the image - some of which are shown in PR Photo 02b/03 - it is still remarkably "empty" by astronomical standards. Even the brightest stars in the field (of visual magnitude 9) can hardly be seen by human observers with binoculars. In fact, the area density of bright, nearby galaxies is only half of what it is in "normal" sky fields. Comparatively empty fields like this one provide an unsually clear view towards the distant regions in the universe and thus open a window towards the earliest cosmic times . Research projects in the Chandra Deep Field South ESO PR Photo 02c/03 ESO PR Photo 02c/03 [Preview - JPEG: 400 x 513 pix - 112k] [Normal - JPEG: 800 x 1026 pix - 1.2M] [Full-Res - JPEG: 1717 x 2201 pix - 5.5M] ESO PR Photo 02d/03 ESO PR Photo 02d/03 [Preview - JPEG: 400 x 469 pix - 112k] [Normal - JPEG: 800 x 937 pix - 1.0M] [Full-Res - JPEG: 2545 x 2980 pix - 10.7M] Caption : PR Photo 02c-d/03 shows two sky fields within the WFI image of CDF-S, reproduced at full (pixel) size to illustrate the exceptional information richness of these data. The subfields measure 6.8 x 7.8 arcmin 2 (1717 x 1975 pixels) and 10.1 x 10.5 arcmin 2 (2545 x 2635 pixels), respectively. North is up and East is left. Technical information is available below. Astronomers from different teams and disciplines have been quick to join forces in a world-wide co-ordinated effort around the Chandra Deep Field South. Observations of this area are now being performed by some of the most powerful astronomical facilities and instruments. They include space-based X-ray and infrared observations by the ESA XMM-Newton , the NASA CHANDRA , Hubble Space Telescope (HST) and soon SIRTF (scheduled for launch in a few months), as well as imaging and spectroscopical observations in the infrared and optical part of the spectrum by telescopes at the ground-based observatories of ESO (La Silla and Paranal) and NOAO (Kitt Peak and Tololo). A huge database is currently being created that will help to analyse the evolution of galaxies in all currently feasible respects. All participating teams have agreed to make their data on this field publicly available, thus providing the world-wide astronomical community with a unique opportunity to perform competitive research, joining forces within this vast scientific project. Concerted observations The optical true-colour WFI image presented here forms an important part of this broad, concerted approach. It combines observations of three scientific teams that have engaged in complementary scientific projects, thereby capitalizing on this very powerful combination of their individual observations. The following teams are involved in this work: * COMBO-17 (Classifying Objects by Medium-Band Observations in 17 filters) : an international collaboration led by Christian Wolf and other scientists at the Max-Planck-Institut für Astronomie (MPIA, Heidelberg, Germany). This team used 51 hours of WFI observing time to obtain images through five broad-band and twelve medium-band optical filters in the visual spectral region in order to measure the distances (by means of "photometric redshifts") and star-formation rates of about 10,000 galaxies, thereby also revealing their evolutionary status. * EIS (ESO Imaging Survey) : a team of visiting astronomers from the ESO community and beyond, led by Luiz da Costa (ESO). They observed the CDF-S for 44 hours in six optical bands with the WFI camera on the MPG/ESO 2.2-m telescope and 28 hours in two near-infrared bands with the SOFI instrument at the ESO 3.5-m New Technology Telescope (NTT) , both at La Silla. These observations form part of the Deep Public Imaging Survey that covers a total sky area of 3 square degrees. * GOODS (The Great Observatories Origins Deep Survey) : another international team (on the ESO side, led by Catherine Cesarsky ) that focusses on the coordination of deep space- and ground-based observations on a smaller, central area of the CDF-S in order to image the galaxies in many differerent spectral wavebands, from X-rays to radio. GOODS has contributed with 40 hours of WFI time for observations in three broad-band filters that were designed for the selection of targets to be spectroscopically observed with the ESO Very Large Telescope (VLT) at the Paranal Observatory (Chile), for which over 200 hours of observations are planned. About 10,000 galaxies will be spectroscopically observed in order to determine their redshift (distance), star formation rate, etc. Another important contribution to this large research undertaking will come from the GEMS project. This is a "HST treasury programme" (with Hans-Walter Rix from MPIA as Principal Investigator) which observes the 10,000 galaxies identified in COMBO-17 - and eventually the entire WFI-field with HST - to show the evolution of their shapes with time. Great questions With the combination of data from many wavelength ranges now at hand, the astronomers are embarking upon studies of the many different processes in the universe. They expect to shed more light on several important cosmological questions, such as: * How and when was the first generation of stars born? * When exactly was the neutral hydrogen in the universe ionized the first time by powerful radiation emitted from the first stars and active galactic nuclei? * How did galaxies and groups of galaxies evolve during the past 13 billion years? * What is the true nature of those elusive objects that are only seen at the infrared and submillimetre wavelengths (cf. ESO PR 23/02 )? * Which fraction of galaxies had an "active" nucleus (probably with a black hole at the centre) in their past, and how long did this phase last? Moreover, since these extensive optical observations were obtained in the course of a dozen observing periods during several years, it is also possible to perform studies of certain variable phenomena: * How many variable sources are seen and what are their types and properties? * How many supernovae are detected per time interval, i.e. what is the supernovae frequency at different cosmic epochs? * How do those processes depend on each other? This is just a short and very incomplete list of questions astronomers world-wide will address using all the complementary observations. No doubt that the coming studies of the Chandra Deep Field South - with this and other data - will be most exciting and instructive! Other wide-field images Other wide-field images from the WFI have been published in various ESO press releases during the past four years - they are also available at the WFI Photo Gallery . A collection of full-resolution files (TIFF-format) is available on a WFI CD-ROM . Technical Information The very extensive data reduction and colour image processing needed to produce these images were performed by Mischa Schirmer and Thomas Erben at the "Wide Field Expertise Center" of the Institut für Astrophysik und Extraterrestrische Forschung der Universität Bonn (IAEF) in Germany. It was done by means of a software pipeline specialised for reduction of multiple CCD wide-field imaging camera data. This pipeline is mainly based on publicly available software modules and algorithms ( EIS , FLIPS , LDAC , Terapix , Wifix ). The image was constructed from about 150 exposures in each of the following wavebands: B-band (centred at wavelength 456 nm; here rendered as blue, 15.8 hours total exposure time), V-band (540 nm; green, 15.6 hours) and R-band (652 nm; red, 17.8 hours). Only images taken under sufficiently good observing conditions (defined as seeing less than 1.1 arcsec) were included. In total, 450 images were assembled to produce this colour image, together with about as many calibration images (biases, darks and flats). More than 2 Terabyte (TB) of temporary files were produced during the extensive data reduction. Parallel processing of all data sets took about two weeks on a four-processor Sun Enterprise 450 workstation and a 1.8 GHz dual processor Linux PC. The final colour image was assembled in Adobe Photoshop. The observations were performed by ESO (GOODS, EIS) and the COMBO-17 collaboration in the period 1/1999-10/2002.

  15. Obituary: ESO Astronomer, Alphonse Florsch (Zeekoegat 1962)

    NASA Astrophysics Data System (ADS)

    Swanepoel, Eric

    2015-10-01

    In June 1962 Alphonse Florsch, his wife Marguerite and their two sons Bruno (7) and Nicolas (5), came from France to work at the European Southern Observatory (ESO) at Zeekoegat (Florsch 2005-2006). This was during the time of site testing to find the best location for ESO.

  16. Status of Women at ESO: a Pilot Study on ESO Staff Gender Distribution

    NASA Astrophysics Data System (ADS)

    Primas, F.

    2007-06-01

    Equal career opportunities require working conditions that make it possible to reconcile family needs and career development. This article describes the goals and main findings of a pilot investigation that has recently been ­carried out at ESO focusing on gender balance issues.

  17. ESO Welcomes Finland as Eleventh Member State

    NASA Astrophysics Data System (ADS)

    Cesarsky, C.

    2004-09-01

    In early July, Finland joined ESO as the eleventh member state, following the completion of the formal accession procedure. Before this event, however, Finland and ESO had been in contact for a long time. Under an agreement with Sweden, Finnish astronomers had for quite a while enjoyed access to the SEST at La Silla. Finland had also been a very active participant in ESO's educational activities since they began in 1993. It became clear, that science and technology, as well as education, were priority areas for the Finnish government.

  18. Signing of ESO-Poland Accession Agreement

    NASA Astrophysics Data System (ADS)

    2014-12-01

    An agreement was signed by Professor Lena Kolarska-Bobińska, the Polish Minister of Science and Higher Education, and the ESO Director General Tim de Zeeuw in Warsaw on 28 October 2014 that will lead to the country joining ESO. The signing of the agreement followed its unanimous approval by the ESO Council during an extraordinary meeting on 8 October 2014. Poland will be welcomed as a new Member State, following subsequent ratification of the accession agreement by the Polish Parliament. Tim de Zeeuw’s speech at this ceremony is reproduced below.

  19. The First School for Young Astronomers Organized by ESO and the Astronomical Council of the USSR Acadeny of Sciences

    NASA Astrophysics Data System (ADS)

    D'Odorico, S.

    1987-12-01

    The first international school for young astronomers organized jointly by ESO and the Astronomical Council of the USSR Academy of Sciences took place from the 22nd to the 29th of September at the Byurakan Astrophysical Observatory of the Academy of Sciences of Armenia and was dedicated to "Observations with Large Telescopes". It was appropriately closed with a oneday visit to the Special Astrophysical Observatory at Zelenchukskaja, in northern Caucasus, home of the 6-m telescope, the largest in the world. The lecturers came from ESO and from the Soviet Union; the 45 participants were from ESO member states, from Bulgaria, Czechoslovakia, the German Democratic Republic, Poland, Spain and the USSR. After the welcome addresses by Academician V.A. Ambartsumian and by E. Ye Khachikian, Chairman of the Local Organizing Committee, the school was opened by M. Tarenghi of ESO who spoke on the characteristics of existing ESO telescopes and on the innovative features of the ESO 3.5-m New Technology Telescope, to be erected at La Silla next year. H. A. Abrahamian and J.A. Stepanian of the Byurakan Observatory presented the Byurakan 2.6-m telescope and the 1-m Schmidt respectively, illustrating the scientific programmes carried out in the recent past and presently at these two facilities.

  20. Mechanical thrombectomy in acute ischemic stroke: Consensus statement by ESO-Karolinska Stroke Update 2014/2015, supported by ESO, ESMINT, ESNR and EAN.

    PubMed

    Wahlgren, Nils; Moreira, Tiago; Michel, Patrik; Steiner, Thorsten; Jansen, Olav; Cognard, Christophe; Mattle, Heinrich P; van Zwam, Wim; Holmin, Staffan; Tatlisumak, Turgut; Petersson, Jesper; Caso, Valeria; Hacke, Werner; Mazighi, Mikael; Arnold, Marcel; Fischer, Urs; Szikora, Istvan; Pierot, Laurent; Fiehler, Jens; Gralla, Jan; Fazekas, Franz; Lees, Kennedy R

    2016-01-01

    The original version of this consensus statement on mechanical thrombectomy was approved at the European Stroke Organisation (ESO)-Karolinska Stroke Update conference in Stockholm, 16-18 November 2014. The statement has later, during 2015, been updated with new clinical trials data in accordance with a decision made at the conference. Revisions have been made at a face-to-face meeting during the ESO Winter School in Berne in February, through email exchanges and the final version has then been approved by each society. The recommendations are identical to the original version with evidence level upgraded by 20 February 2015 and confirmed by 15 May 2015. The purpose of the ESO-Karolinska Stroke Update meetings is to provide updates on recent stroke therapy research and to discuss how the results may be implemented into clinical routine. Selected topics are discussed at consensus sessions, for which a consensus statement is prepared and discussed by the participants at the meeting. The statements are advisory to the ESO guidelines committee. This consensus statement includes recommendations on mechanical thrombectomy after acute stroke. The statement is supported by ESO, European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), and European Academy of Neurology (EAN). © 2016 World Stroke Organization.

  1. Effect of epoxidised soybean oil loading as plasticiser on physical, mechanical and thermal properties of polyvinylchloride

    NASA Astrophysics Data System (ADS)

    Rahmah, M.; Nurazzi, N. Mohd; Farah Nordyana, A. R.; Syed Anas, S. M.

    2017-07-01

    The aim of this paper is to study the effect of epoxidised soybean oil (ESO) as an alternative plasticizer on physical, mechanical and thermal properties of plasticised polyvinyl chloride (PPVC). Samples were prepared using 10, 20, 30 and 40% by weight percent of ESO. The samples were characterized for density, water absorption, tensile, hardness and thermal properties. The addition of ESO as plasticizer in PVC had caused significant effect on the physical and mechanical properties of PPVC. Increasing of ESO loading had resulted in decreased density, tensile strength, tensile modulus but increased in elongation at break and shore hardness. From water absorption study, it was observed that the all the samples reached the plateau absorption at days 8 to 10 with absorption percentages of between 1.8 to 2%. In general the crystallinity of PPVC maintained between 10 to 13% with increase in ESO loading while the melting point ( Tm) is slightly decreased about 3 to 6°C. In this study, ESO which acts as plasticiser were found to result in lower glass transition temperature (Tg). The enhancements of super cooling with higher ESO loading were found to increase the crystallization temperature, promoting crystallisation and act as nucleating agent.

  2. Development of the Vista Methane Emissions Inventory for Southern California: A GIS-Based Approach for Mapping Methane Emissions

    NASA Astrophysics Data System (ADS)

    Carranza, V.; Frausto-Vicencio, I.; Rafiq, T.; Verhulst, K. R.; Hopkins, F. M.; Rao, P.; Duren, R. M.; Miller, C. E.

    2016-12-01

    Atmospheric methane (CH4) is the second most prevalent anthropogenic greenhouse gas. Improved estimates of CH4 emissions from cities is essential for carbon cycle science and climate mitigation efforts. Development of spatially-resolved carbon emissions data sets may offer significant advances in understanding and managing carbon emissions from cities. Urban CH4 emissions in particular require spatially resolved emission maps to help resolve uncertainties in the CH4 budget. This study presents a Geographic Information System (GIS)-based approach to mapping CH4 emissions using locations of infrastructure known to handle and emit methane. We constrain the spatial distribution of sources to the facility level for the major CH4 emitting sources in the South Coast Air Basin. GIS spatial modeling was combined with publicly available datasets to determine the distribution of potential CH4 sources. The datasets were processed and validated to ensure accuracy in the location of individual sources. This information was then used to develop the Vista emissions prior, which is a one-year long, spatially-resolved CH4 emissions estimate. Methane emissions were calculated and spatially allocated to produce 1 km x 1 km gridded CH4 emission map spanning the Los Angeles Basin. In future work, the Vista CH4 emissions prior will be compared with existing, coarser-resolution emissions estimates and will be evaluated in inverse modeling studies using atmospheric observations. The Vista CH4 emissions inventory presents the first detailed spatial maps of CH4 sources and emissions estimates in the Los Angeles Basin and is a critical step towards sectoral attribution of CH4 emissions at local to regional scales.

  3. The optical + infrared L dwarf spectral sequence of young planetary-mass objects in the Upper Scorpius association

    NASA Astrophysics Data System (ADS)

    Lodieu, N.; Zapatero Osorio, M. R.; Béjar, V. J. S.; Peña Ramírez, K.

    2018-01-01

    We present the results of photometric and spectroscopic follow-ups of the lowest mass member candidates in the nearest OB association, Upper Scorpius (∼5-10 Myr; 145 ± 17 pc), with the Gran Telescopio de Canarias (GTC) and European Southern Observatory (ESO) Very Large Telescope (VLT). We confirm the membership of the large majority (>80 per cent) of candidates originally selected photometrically and astrometrically based on their spectroscopic features, weak equivalent widths of gravity-sensitive doublets and radial velocities. Confirmed members follow a sequence over a wide magnitude range (J = 17.0-19.3 mag) in several colour-magnitude diagrams with optical, near- and mid-infrared photometry and have near-infrared spectral types in the L1-L7 interval with likely masses below 15 Jupiter masses. We find that optical spectral types tend to be earlier than near-infrared spectral types by a few subclasses for spectral types later than M9. We investigate the behaviour of spectral indices, defined in the literature as a function of spectral type and gravity, by comparison with values reported in the literature for young and old dwarfs. We also derive effective temperatures in the 1900-1600 K range from fits of synthetic model-atmosphere spectra to the observed photometry, but we caution that the procedure carries large uncertainties. We determine bolometric corrections for young L dwarfs with ages of ∼5-10 Myr (Upper Sco association) and find them to be similar in the J band but larger by 0.1-0.4 mag in the K band with respect to field L dwarfs. Finally, we discover two faint young L dwarfs, Visible and Infrared Survey Telescope for Astronomy (VISTA) J1607-2146 (L4.5) and VISTA J1611-2215 (L5), that have Hα emission and possible flux excesses at 4.5 μm, pointing to the presence of accretion from a disc on to the central objects of mass below ∼15MJup at an age of 5-10 Myr.

  4. Scenic Vistas and the Changing Policy Landscape: Visualizing and Testing the Role of Visual Resources in Ecosystem Management

    Treesearch

    Robert G. Ribe; Edward T. Armstrong; Paul H. Gobster

    2002-01-01

    The Northwest Forest Plan applies a shift in policy to national forests in the Pacific Northwest, with implications for other public landscapes. This shift offers potentially strong scenic implications for areas that have historically emphasized clearcutting with little visual impact mitigation. These areas will now emphasize biocentric concerns and harvests formed...

  5. Historic Election and New Tech Tools Yield Promising Vistas for Learning

    ERIC Educational Resources Information Center

    Manzo, Kathleen Kennedy

    2008-01-01

    This article describes how some teachers such as Gamal Sherif are turning to electronic resources to capture students' interest in the election. Sherif, who teaches history and science at the Science Leadership Academy, a public school in Philadelphia, said "the technology is fun and helpful, but it's also a tool one can use to get a better…

  6. 76 FR 62819 - Notice of Intent To Amend the Resource Management Plan for the San Luis Resource Area, Colorado...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... Public Lands Center, Monte Vista, Colorado, intends to prepare a Resource Management Plan (RMP) Amendment...: [email protected] . Fax: 719-852-6250 Mail: BLM, La Jara Field Office, 15571, County Road T-5, La... at the La Jara Field Office. FOR FURTHER INFORMATION CONTACT: For further information and/or to have...

  7. Finding Time for Teams: Student Achievement Grows as District Support Boosts Collaboration

    ERIC Educational Resources Information Center

    Johnston, Jef; Knight, Mary; Miller, Laura

    2007-01-01

    Finding time for teams to work in schools is both a necessity and a responsibility. If educators are sincere about efforts to improve student learning, leaders must take responsibility for providing team time for teachers and a structure in which they are able to work collaboratively. The Papillion-La Vista (Nebraska) Public Schools took to heart…

  8. 77 FR 37801 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... 17, Amdt 6 Fort Huachuca Sierra Vista, AZ, Sierra Vista Muni-Libby AAF, ILS OR LOC RWY 26, Amdt 4 Fort Huachuca Sierra Vista, AZ, Sierra Vista Muni-Libby AAF, VOR RWY 26, Amdt 5 Willcox, AZ, Cochise... 35, Amdt 1 La Grange, TX, Fayette Rgnl Air Center, RNAV (GPS) RWY 16, Amdt 2 La Grange, TX, Fayette...

  9. 9 CFR 97.2 - Administrative instructions prescribing commuted traveltime.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Palmer 3 Arizona: Douglas 1 Do Nogales 6 Do Phoenix 6 Do Sierra Vista 3 Naco Douglas 2 Do Nogales 4 Do Phoenix 6 Do Sierra Vista 2 Nogales 1 Do Douglas 6 Do Phoenix 6 Do Sierra Vista 3 San Luis Phoenix 6 Do Yuma 2 Sasabe Douglas 6 Do Nogales 4 Do Phoenix 6 Do Sierra Vista 6 Do Tuscon 3 California: Calexico...

  10. 9 CFR 97.2 - Administrative instructions prescribing commuted traveltime.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Palmer 3 Arizona: Douglas 1 Do Nogales 6 Do Phoenix 6 Do Sierra Vista 3 Naco Douglas 2 Do Nogales 4 Do Phoenix 6 Do Sierra Vista 2 Nogales 1 Do Douglas 6 Do Phoenix 6 Do Sierra Vista 3 San Luis Phoenix 6 Do Yuma 2 Sasabe Douglas 6 Do Nogales 4 Do Phoenix 6 Do Sierra Vista 6 Do Tuscon 3 California: Calexico...

  11. 9 CFR 97.2 - Administrative instructions prescribing commuted traveltime.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Palmer 3 Arizona: Douglas 1 Do Nogales 6 Do Phoenix 6 Do Sierra Vista 3 Naco Douglas 2 Do Nogales 4 Do Phoenix 6 Do Sierra Vista 2 Nogales 1 Do Douglas 6 Do Phoenix 6 Do Sierra Vista 3 San Luis Phoenix 6 Do Yuma 2 Sasabe Douglas 6 Do Nogales 4 Do Phoenix 6 Do Sierra Vista 6 Do Tuscon 3 California: Calexico...

  12. 9 CFR 97.2 - Administrative instructions prescribing commuted traveltime.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Palmer 3 Arizona: Douglas 1 Do Nogales 6 Do Phoenix 6 Do Sierra Vista 3 Naco Douglas 2 Do Nogales 4 Do Phoenix 6 Do Sierra Vista 2 Nogales 1 Do Douglas 6 Do Phoenix 6 Do Sierra Vista 3 San Luis Phoenix 6 Do Yuma 2 Sasabe Douglas 6 Do Nogales 4 Do Phoenix 6 Do Sierra Vista 6 Do Tuscon 3 California: Calexico...

  13. 9 CFR 97.2 - Administrative instructions prescribing commuted traveltime.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Palmer 3 Arizona: Douglas 1 Do Nogales 6 Do Phoenix 6 Do Sierra Vista 3 Naco Douglas 2 Do Nogales 4 Do Phoenix 6 Do Sierra Vista 2 Nogales 1 Do Douglas 6 Do Phoenix 6 Do Sierra Vista 3 San Luis Phoenix 6 Do Yuma 2 Sasabe Douglas 6 Do Nogales 4 Do Phoenix 6 Do Sierra Vista 6 Do Tuscon 3 California: Calexico...

  14. Do cervical collars and cervicothoracic orthoses effectively stabilize the injured cervical spine? A biomechanical investigation.

    PubMed

    Ivancic, Paul C

    2013-06-01

    In vitro biomechanical study. Our objective was to determine the effectiveness of cervical collars and cervicothoracic orthoses for stabilizing clinically relevant, experimentally produced cervical spine injuries. Most previous in vitro studies of cervical orthoses used a simplified injury model with all ligaments transected at a single spinal level, which differs from real-life neck injuries. Human volunteer studies are limited to measuring only sagittal motions or 3-dimensional motions only of the head or 1 or 2 spinal levels. Three-plane flexibility tests were performed to evaluate 2 cervical collars (Vista Collar and Vista Multipost Collar) and 2 cervicothoracic orthoses (Vista TS and Vista TS4) using a skull-neck-thorax model with 8 injured cervical spine specimens (manufacturer of orthoses: Aspen Medical Products Inc, Irvine, CA). The injuries consisted of flexion-compression at the lower cervical spine and extension-compression at superior spinal levels. Pair-wise repeated measures analysis of variance (P < 0.05) and Bonferroni post hoc tests determined significant differences in average range of motions of the head relative to the base, C7 or T1, among experimental conditions. RESULTS.: All orthoses significantly reduced unrestricted head/base flexion and extension. The orthoses allowed between 8.4% and 25.8% of unrestricted head/base motion in flexion/extension, 57.8% to 75.5% in axial rotation, and 53.8% to 73.7% in lateral bending. The average percentages of unrestricted motion allowed by the Vista Collar, Vista Multipost Collar, Vista TS, and Vista TS4 were: 14.0, 9.7, 6.1, and 4.7, respectively, for middle cervical spine extension and 13.2, 11.8, 3.3, and 0.4, respectively, for lower cervical spine flexion. Successive increases in immobilization were observed from Vista Collar to Vista Multipost Collar, Vista TS, and Vista TS4 in extension at the injured middle cervical spine and in flexion at the injured lower cervical spine. Our results may assist clinicians in selecting the most appropriate orthosis based upon patient-specific cervical spine injuries.

  15. Thirty-Seven Years of Service with ESO!

    NASA Astrophysics Data System (ADS)

    Breysacher, J.

    2002-12-01

    On December 1st, 2002, after thirty- seven years of service, first in Chile and then in Garching, Ms. Christa Euler will leave ESO to enjoy a welldeserved retirement. Among the current staff, she is probably the only person who started her career at ESO just four years after the Organization was founded.

  16. ESO 306-17

    NASA Image and Video Library

    2017-12-08

    View a video clip zoom in on galaxy ESO 306-17 here: www.flickr.com/photos/gsfc/4409589832/ This image from the Advanced Camera for Surveys aboard the NASA/ESA Hubble Space Telescope highlights the large and bright elliptical galaxy called ESO 306-17 in the southern sky. In this image, it appears that ESO 306-17 is surrounded by other galaxies but the bright galaxies at bottom left are thought to be in the foreground, not at the same distance in the sky. In reality, ESO 306-17 lies fairly abandoned in an enormous sea of dark matter and hot gas. Researchers are also using this image to search for nearby ultra-compact dwarf galaxies. Ultra-compact dwarfs are mini versions of dwarf galaxies that have been left with only their core due to interaction with larger, more powerful galaxies. Most ultra-compact dwarfs discovered to date are located near giant elliptical galaxies in large clusters of galaxies, so it will be interesting to see if researchers find similar objects in fossil groups. Credit: NASA, ESA and Michael West (ESO)

  17. The Cosmic Christmas Ghost - Two Stunning Pictures of Young Stellar Clusters

    NASA Astrophysics Data System (ADS)

    2005-12-01

    Just like Charles Dickens' Christmas Carol takes us on a journey into past, present and future in the time of only one Christmas Eve, two of ESO' s telescopes captured various stages in the life of a star in a single image. ESO PR Photo 42a/05 shows the area surrounding the stellar cluster NGC 2467, located in the southern constellation of Puppis (" The Stern" ). With an age of a few million years at most, it is a very active stellar nursery, where new stars are born continuously from large clouds of dust and gas. The image, looking like a colourful cosmic ghost or a gigantic celestial Mandrill [1] , contains the open clusters Haffner 18 (centre) and Haffner 19 (middle right: it is located inside the smaller pink region - the lower eye of the Mandrill), as well as vast areas of ionised gas. The bright star at the centre of the largest pink region on the bottom of the image is HD 64315, a massive young star that is helping shaping the structure of the whole nebular region. ESO PR Photo 42a/05 was taken with the Wide-Field Imager camera at the 2.2m MPG/ESO telescope located at La Silla, in Chile. Another image of the central part of this area is shown as ESO PR Photo 42b/05. It was obtained with the FORS2 instrument at ESO' s Very Large Telescope on Cerro Paranal, also in Chile. ESO PR Photo 42b/05 zooms in on the open stellar cluster Haffner 18, perfectly illustrating three different stages of this process of star formation: In the centre of the picture, Haffner 18, a group of mature stars that have already dispersed their birth nebulae, represents the completed product or immediate past of the star formation process. Located at the bottom left of this cluster, a very young star, just come into existence and, still surrounded by its birth cocoon of gas, provides insight into the very present of star birth. Finally, the dust clouds towards the right corner of the image are active stellar nurseries that will produce more new stars in the future. Haffner 18 contains about 50 stars, among which several short lived, massive ones. The massive star still surrounded by a small, dense shell of hydrogen, has the rather cryptic name of FM3060a. The shell is about 2.5 light-years wide and expands at a speed of 20 km/s. It must have been created some 40,000 years ago. The cluster is between 25,000 and 30,000 light-years away from us [2]. Technical information: ESO PR Photo 42a/05 is based on images obtained with the WFI instrument on the ESO/MPG 2.2-m telescope for Rubio/Minniti/Barba/Mendez on December, 2003. The 49 observations were done in six different filters : U (2 hour exposure), B, O III, V, H-alpha and R (1 hour exposure each). The data were extracted from the ESO Science Archive. The raw observations were reduced and combined by Benoî t Vandame (ESO). North is right and East is to the top. The field of view is about 30x30 arcmin. ESO PR Photo 42a/05 is a colour-composite image obtained with the FORS2 multi-mode instrument on Kueyen, the second Unit Telescope of the Very Large Telescope. The data was collected during the commissioning of the instrument in February 2000, through 4 filters: B, V, R and I, for a total exposure time of only 11 minutes. The observations were extracted from the ESO Science Archive and reduced by Henri Boffin (ESO). North is above and East is to the left. Final processing of ESO PR Photo 42a/05 and 42b/05 was done by Kristina Boneva and Haennes Heyer (ESO).

  18. Catherine Cesarsky elected President of the International Astronomical Union and Ian Corbett elected Assistant General Secretary

    NASA Astrophysics Data System (ADS)

    2006-08-01

    The General Assembly of the International Astronomical Union (IAU), meeting in Prague (Czech Republic), has elected the ESO Director General, Dr. Catherine Cesarsky, as President for a three-year period (2006-2009). The IAU is a body of distinguished professional astronomers, founded in 1919 to promote and safeguard the science of astronomy in all its aspects through international cooperation. It now has almost 10 000 individual members drawn from all continents. Dr. Cesarsky is the first woman to receive this high distinction. At the same General Assembly, Dr. Ian Corbett, ESO's Deputy Director General, was elected Assistant General Secretary for 2006-2009, with the expectation of becoming General Secretary in 2009-2012. ESO PR Photo 32/06 ESO PR Photo 32/06 The New IAU Officers Prof. Ron Ekers, the outgoing IAU President said: "The past few years have been highly productive for astronomy, with many discoveries giving new insights into our Universe which have excited scientists and general public alike. Catherine Cesarsky is internationally honoured as a scientist, and I am delighted that she has agreed to serve the IAU as President. She has already given invaluable service to the IAU and I am confident that she will provide outstanding leadership as President." "It is a great honour and a pleasure for me to be President of the International Astronomical Union for the next three years, especially in view of the proposed International Year of Astronomy in 2009, in which the IAU will play a leading role as a catalyst and a coordinator," said Catherine Cesarsky. "I am very much looking forward to working with my colleagues in the IAU to ensure that this is a great success." Dr. Cesarsky, ESO Director General since 1999, is known for her successful research activities in several central areas of modern astrophysics. She first worked on the theory of cosmic ray propagation and acceleration, and galactic gamma-ray emission. Later, she led the design and construction of the ISOCAM camera onboard the Infrared Space Observatory (ISO) of the European Space Agency (ESA), and the ISOCAM Central Programme that studied the infrared emission from many different galactic and extragalactic sources. This has led to new and exciting results on star formation and galactic evolution, and in the identification of the sources providing the bulk of the energy in the Cosmic Infrared Background. Dr. Cesarsky is author of more than 250 scientific papers. As ESO Director General, she has ensured that ESO is now accepted as the leading ground based observatory with its unique Very Large Telescope (VLT) and its associated interferometer (the VLTI). She has headed the European involvement in the international Atacama Large Millimeter Array (ALMA) project, due for completion in 2012. She is now leading the efforts by the European astronomy community to define the European Extremely Large Telescope (E-ELT), expected to be operational well before the end of the next decade. Dr. Cesarsky received the COSPAR (Committee on Space Research) Space Science Award in 1998 and is member of several renowned national and international Science Academies. She is married and has two children. Dr. Ian Corbett came to ESO from the UK Particle Physics and Astronomy Research Council (PPARC) in 2001. He started his research in particle physics and moved into astronomy about 25 years ago, initially with involvement in the UK telescopes on Hawaii, La Palma, and Australia, and then with Gemini and the UK space science programme. He has represented the UK on a large number of international bodies concerned with scientific collaboration. With ESO he has been particularly concerned with ALMA. At the same General Assembly, the IAU choose Dr. Robert Williams of the Space Telescope Science Institute as President-Elect and Prof. Karel A. van der Hucht of SRON, Netherlands, as General Secretary.

  19. CERN, ESA and ESO Launch "Physics On Stage"

    NASA Astrophysics Data System (ADS)

    2000-03-01

    Physics is everywhere . The laws of physics govern the Universe, the Sun, the Earth and even our own lives. In today's rapidly developing society, we are becoming increasingly dependent on high technology - computers, transport, and communication are just some of the key areas that are the result of discoveries by scientists working in physics. But how much do the citizens of Europe really know about physics? Here is a unique opportunity to learn more about this elusive subject! [Go to Physics On Stage Website] Beginning in February 2000, three major European research organisations are organising a unique Europe-wide programme to raise the public awareness of physics and related sciences. "Physics on Stage" is launched by the European Laboratory for Particle Physics (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO) , with support from the European Union. Other partners are the European Physical Society (EPS) and the European Association for Astronomy Education (EAAE). This exciting programme is part of the European Week for Science and Technology and will culminate in a Science Festival during November 6-11, 2000, on the CERN premises at the French-Swiss border near Geneva. Why "Physics on Stage"? The primary goal of "Physics on Stage" is to counteract the current decline in interest and knowledge about physics among Europe's citizens by means of a series of highly visible promotional activities. It will bring together leading scientists and educators, government bodies and the media, to confront the diminishing attraction of physics to young people and to develop strategies to reverse this trend. The objective in the short term is to infuse excitement and to provide new educational materials. In the longer term, "Physics on Stage" will generate new developments by enabling experts throughout Europe to meet, exchange and innovate. "Physics on Stage" in 22 European Countries "Physics on Stage" has been initiated in 22 European countries [2]. In each of these, a dedicated National Steering Committee is being formed which will be responsible for its own national programme. A list of contact addresses is attached below. "Physics on Stage" is based on a series of high-profile physics-related activities that will inform the European public in general and European high school physics teachers and media representatives in particular about innovative ways to convey information about physics. It will stress the intimate connection of this natural science with our daily lives. It will be accompanied by a broad media debate on these subjects. This effort is undertaken in the context of a progressive decline of physics literacy amongst the European population at all levels. Fewer and fewer young people are attracted towards careers in core sciences and technologies - this could potentially lead to a crisis in European technology in the coming decades unless action is taken now. Too few people possess the basic knowledge that is necessary to understand even common physical phenomena. And not enough are able to form their own substantiated opinions about them. What will happen during "Physics on Stage"? During the first phase of "Physics on Stage" , from now until October 2000, the individual National Steering Committees (NSCs) will survey the situation in their respective countries. The NSCs will collaborate with national media to identify new and exciting educational approaches to physics. These may involve demonstrations, interactive experiments, video and CD-Rom presentations, Web applications, virtual reality, theatre performances, etc. Nationally run competitions will select some of the best and most convincing new ideas for presentations and educational materials which will receive development support from "Physics on Stage" . The project will culminate in November 2000, with approximately 400 delegates converging on CERN, in Geneva, for the Physics on Stage Festival . During this event, the national competion winners, science teachers, science communicators, publishers, top scientists and high-level representatives of the ministries and European organisations will brainstorm future solutions to bolster physics' popularity. The programme will also include spectacular demonstrations of new educational tools; the best will be disseminated over the national TV networks and other media to the European public. Why CERN, ESA and ESO? As Europe's principal organisations in physics research (particle physics, space and astronomy), the three recognised their mutual responsibility to address the issue through the creation of a new initiative and the creative use of their own research to attract the public and teachers alike. About the "European Science and Technology Week" [Go to EWST Website] The objective of the European Science and Technology Week is to improve the public's knowledge and understanding of science and technology - including the associated benefits for society as a whole. The Week focuses on the European dimension of research, such as pan-European scientific and technological co-operation. The rationale for holding the Week has its roots in the importance of the role of science and technology in modern societies and the need, therefore, to ensure that the public recognises its significance in our lives. The Week is a framework for special TV programmes, exhibitions, contests, conferences, electronic networking, and other science related activities to promote the public understanding of science and technology. The Week was launched in 1993, on the initiative of the European Commission. Raising public awareness of science and technology is now the subject of a clearly defined action within the Human Potential Programme of the Fifth Framework Programme. Notes [1] This is a joint Press Release by the European Organization for Nuclear Research (CERN) , the European Space Agency (ESA) and the European Southern Observatory (ESO). [1] The 22 countries are the member countries of at least one of the participating organisations or the European Union: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, the Slovak Republic, Spain, Sweden, Switzerland, United Kingdom. Statements by the Directors General of CERN, ESA and ESO Luciano Maiani (CERN) : "Science is a critical resource for mankind and, among natural sciences, physics will continue to play a crucial role, well into the next century. The young people of Europe deserve the best possible physics teaching. An enormous resource of first class teachers, teaching materials and innovative thinking exists in our countries. The "Physics on Stage" project will bring these together to generate a new interest in physics education which will be to the long term benefit of children all over Europe. CERN is delighted to take part in this collaboration between the European Community and the continent's three leading physics research organizations." Antonio Rodotà (ESA) : "Space has become an integral part of every day life. The immense technological development that has led to this achievement has taken place and might be taken for granted. But now is the time to follow up and form the future on this basis, a future that has to made by the youth and has to give its benefits to the youth. The European Space Agency is dedicated to support the youth in its development to become a space generation. Many activities have been done and are taking place, and many more are planned for the future. Teachers and educational institutions and organisations form a key role in this development. ESA is enthusiastic about co-operating with ESO and CERN to create an opportunity to receiving ideas from the educational society and will perform a dedicated effort in finding ways to support the realisation of those ideas." Catherine Cesarsky (ESO) : "Astronomy and Astrophysics are at the very heart of modern physics. As vibrant research disciplines they use the most advanced technology available to humanity to explore Cosmos. It is also a science of extreme conditions - the largest distances, the longest periods of time, the highest temperatures, the strongest electrical and magnetic fields, the highest and lowest densities and the most extreme energies. Cosmos is indeed the greatest physics laboratory. For years, ESO - Europe's Astronomy Organisation - has been engaged in communicating the outcome of the exciting research programmes carried out at the ESO observatories to a wide audience and in particular to Europe's youth. I warmly welcome the broad international collaboration within "Physics on Stage". I am confident that working together with the European Union and our sister organisations ESA and CERN, as well as teachers' organisations and dedicated individuals in all member countries, this innovative education programme will make a most important contribution towards raising the interest in fundamental research in Europe." About CERN, ESA and ESO CERN , the European Organization for Nuclear Research , has its headquarters in Geneva. At present, its Member States are Austria, Belgium,Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and Unesco have observer status. The European Space Agency (ESA) is an international/intergovernmental organisation made of 15 member states: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom. ESA provides and promotes, for peaceful purposes only, cooperation among its member states in space research, technology and their applications. With ESA, Europe shapes and shares space for people, companies and the scientific community. The European Southern Observatory (ESO) is an intergovernmental organisation supported by Belgium, Denmark, France, Germany, Italy, the Netherlands, Sweden and Switzerland. Portugal has an agreement with ESO aiming at full membership. ESO is a major driving force in European astronomy, performing tasks that are beyond the capabilities of the individual member countries. The ESO La Silla observatory (Chile) is one of the largest and best-equipped in the world. ESO's Very Large Telescope Array (VLT) is under construction at Cerro Paranal (Chile). When completed in 2001, the VLT will be the largest optical telescope in the world. Useful Physics On Stage addresses "Physics on Stage" webaddress: http://www.estec.esa.nl/outreach/pos International Steering Committee (ISC) Clovis de Matos (Executive Coordinator) ESA/ESTEC European Space Research and Technology Centre Office for Educational Outreach Activities Keplerlaan 1 Postbus 299 NL-2200 AG Noordwijk The Netherlands email: cdematos@estec.esa.nl Telephone: +31-71-565- 5518 Fax: +31-71-565 5590

  20. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects

    NASA Astrophysics Data System (ADS)

    Smartt, S. J.; Valenti, S.; Fraser, M.; Inserra, C.; Young, D. R.; Sullivan, M.; Pastorello, A.; Benetti, S.; Gal-Yam, A.; Knapic, C.; Molinaro, M.; Smareglia, R.; Smith, K. W.; Taubenberger, S.; Yaron, O.; Anderson, J. P.; Ashall, C.; Balland, C.; Baltay, C.; Barbarino, C.; Bauer, F. E.; Baumont, S.; Bersier, D.; Blagorodnova, N.; Bongard, S.; Botticella, M. T.; Bufano, F.; Bulla, M.; Cappellaro, E.; Campbell, H.; Cellier-Holzem, F.; Chen, T.-W.; Childress, M. J.; Clocchiatti, A.; Contreras, C.; Dall'Ora, M.; Danziger, J.; de Jaeger, T.; De Cia, A.; Della Valle, M.; Dennefeld, M.; Elias-Rosa, N.; Elman, N.; Feindt, U.; Fleury, M.; Gall, E.; Gonzalez-Gaitan, S.; Galbany, L.; Morales Garoffolo, A.; Greggio, L.; Guillou, L. L.; Hachinger, S.; Hadjiyska, E.; Hage, P. E.; Hillebrandt, W.; Hodgkin, S.; Hsiao, E. Y.; James, P. A.; Jerkstrand, A.; Kangas, T.; Kankare, E.; Kotak, R.; Kromer, M.; Kuncarayakti, H.; Leloudas, G.; Lundqvist, P.; Lyman, J. D.; Hook, I. M.; Maguire, K.; Manulis, I.; Margheim, S. J.; Mattila, S.; Maund, J. R.; Mazzali, P. A.; McCrum, M.; McKinnon, R.; Moreno-Raya, M. E.; Nicholl, M.; Nugent, P.; Pain, R.; Pignata, G.; Phillips, M. M.; Polshaw, J.; Pumo, M. L.; Rabinowitz, D.; Reilly, E.; Romero-Cañizales, C.; Scalzo, R.; Schmidt, B.; Schulze, S.; Sim, S.; Sollerman, J.; Taddia, F.; Tartaglia, L.; Terreran, G.; Tomasella, L.; Turatto, M.; Walker, E.; Walton, N. A.; Wyrzykowski, L.; Yuan, F.; Zampieri, L.

    2015-07-01

    Context. The Public European Southern Observatory Spectroscopic Survey of Transient Objects (PESSTO) began as a public spectroscopic survey in April 2012. PESSTO classifies transients from publicly available sources and wide-field surveys, and selects science targets for detailed spectroscopic and photometric follow-up. PESSTO runs for nine months of the year, January - April and August - December inclusive, and typically has allocations of 10 nights per month. Aims: We describe the data reduction strategy and data products that are publicly available through the ESO archive as the Spectroscopic Survey data release 1 (SSDR1). Methods: PESSTO uses the New Technology Telescope with the instruments EFOSC2 and SOFI to provide optical and NIR spectroscopy and imaging. We target supernovae and optical transients brighter than 20.5m for classification. Science targets are selected for follow-up based on the PESSTO science goal of extending knowledge of the extremes of the supernova population. We use standard EFOSC2 set-ups providing spectra with resolutions of 13-18 Å between 3345-9995 Å. A subset of the brighter science targets are selected for SOFI spectroscopy with the blue and red grisms (0.935-2.53 μm and resolutions 23-33 Å) and imaging with broadband JHKs filters. Results: This first data release (SSDR1) contains flux calibrated spectra from the first year (April 2012-2013). A total of 221 confirmed supernovae were classified, and we released calibrated optical spectra and classifications publicly within 24 h of the data being taken (via WISeREP). The data in SSDR1 replace those released spectra. They have more reliable and quantifiable flux calibrations, correction for telluric absorption, and are made available in standard ESO Phase 3 formats. We estimate the absolute accuracy of the flux calibrations for EFOSC2 across the whole survey in SSDR1 to be typically ~15%, although a number of spectra will have less reliable absolute flux calibration because of weather and slit losses. Acquisition images for each spectrum are available which, in principle, can allow the user to refine the absolute flux calibration. The standard NIR reduction process does not produce high accuracy absolute spectrophotometry but synthetic photometry with accompanying JHKs imaging can improve this. Whenever possible, reduced SOFI images are provided to allow this. Conclusions: Future data releases will focus on improving the automated flux calibration of the data products. The rapid turnaround between discovery and classification and access to reliable pipeline processed data products has allowed early science papers in the first few months of the survey. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile, as part of programme 188.D-3003 (PESSTO). http://www.pessto.org

  1. Induction of CD8 T-cell responses restricted to multiple HLA class I alleles in a cancer patient by immunization with a 20-mer NY-ESO-1f (NY-ESO-1 91-110) peptide.

    PubMed

    Eikawa, Shingo; Kakimi, Kazuhiro; Isobe, Midori; Kuzushima, Kiyotaka; Luescher, Immanuel; Ohue, Yoshihiro; Ikeuchi, Kazuhiro; Uenaka, Akiko; Nishikawa, Hiroyoshi; Udono, Heiichiro; Oka, Mikio; Nakayama, Eiichi

    2013-01-15

    Immunogenicity of a long 20-mer NY-ESO-1f peptide vaccine was evaluated in a lung cancer patient TK-f01, immunized with the peptide with Picibanil OK-432 and Montanide ISA-51. We showed that internalization of the peptide was necessary to present CD8 T-cell epitopes on APC, contrasting with the direct presentation of the short epitope. CD8 T-cell responses restricted to all five HLA class I alleles were induced in the patient after the peptide vaccination. Clonal analysis showed that B*35:01 and B*52:01-restricted CD8 T-cell responses were the two dominant responses. The minimal epitopes recognized by A*24:02, B*35:01, B*52:01 and C*12:02-restricted CD8 T-cell clones were defined and peptide/HLA tetramers were produced. NY-ESO-1 91-101 on A*24:02, NY-ESO-1 92-102 on B*35:01, NY-ESO-1 96-104 on B*52:01 and NY-ESO-1 96-104 on C*12:02 were new epitopes first defined in this study. Identification of the A*24:02 epitope is highly relevant for studying the Japanese population because of its high expression frequency (60%). High affinity CD8 T-cells recognizing tumor cells naturally expressing the epitopes and matched HLA were induced at a significant level. The findings suggest the usefulness of a long 20-mer NY-ESO-1f peptide harboring multiple CD8 T-cell epitopes as an NY-ESO-1 vaccine. Characterization of CD8 T-cell responses in immunomonitoring using peptide/HLA tetramers revealed that multiple CD8 T-cell responses comprised the dominant response. Copyright © 2012 UICC.

  2. NASA and ESA astronauts visit ESO. Hubble repair team meets European astronomers in Garching.

    NASA Astrophysics Data System (ADS)

    1994-02-01

    On Wednesday, February 16, 1994, seven NASA and ESA astronauts and their spouses will spend a day at the Headquarters of the European Southern Observatory. They are the members of the STS-61 crew that successfully repaired the Hubble Space Telescope during a Space Shuttle mission in December 1993. This will be the only stop in Germany during their current tour of various European countries. ESO houses the Space Telescope European Coordinating Facility (ST/ECF), a joint venture by the European Space Agency and ESO. This group of astronomers and computer specialists provide all services needed by European astronomers for observations with the Space Telescope. Currently, the European share is about 20 of the total time available at this telescope. During this visit, a Press Conference will be held on Wednesday, February 16, 11:45 - 12:30 at the ESO Headquarters Karl-Schwarzschild-Strasse 2 D-85748 Garching bei Munchen. Please note that participation in this Press Conference is by invitation only. Media representatives may obtain invitations from Mrs. E. Volk, ESO Information Service at this address (Tel.: +49-89-32006276; Fax.: +49-89-3202362), until Friday, February 11, 1994. After the Press Conference, between 12:30 - 14:00, a light refreshment will be served at the ESO Headquarters to all participants. >From 14:00 - 15:30, the astronauts will meet with students and teachers from the many scientific institutes in Garching in the course of an open presentation at the large lecture hall of the Physics Department of the Technical University. It is a 10 minute walk from ESO to the hall. Later the same day, the astronauts will be back at ESO for a private discussion of various space astronomy issues with their astronomer colleagues, many of whom are users of the Hubble Space Telescope, as well as ground-based telescopes at the ESO La Silla Observatory and elsewhere. The astronauts continue to Switzerland in the evening.

  3. The Most Distant Mature Galaxy Cluster - Young, but surprisingly grown-up

    NASA Astrophysics Data System (ADS)

    2011-03-01

    Astronomers have used an armada of telescopes on the ground and in space, including the Very Large Telescope at ESO's Paranal Observatory in Chile to discover and measure the distance to the most remote mature cluster of galaxies yet found. Although this cluster is seen when the Universe was less than one quarter of its current age it looks surprisingly similar to galaxy clusters in the current Universe. "We have measured the distance to the most distant mature cluster of galaxies ever found", says the lead author of the study in which the observations from ESO's VLT have been used, Raphael Gobat (CEA, Paris). "The surprising thing is that when we look closely at this galaxy cluster it doesn't look young - many of the galaxies have settled down and don't resemble the usual star-forming galaxies seen in the early Universe." Clusters of galaxies are the largest structures in the Universe that are held together by gravity. Astronomers expect these clusters to grow through time and hence that massive clusters would be rare in the early Universe. Although even more distant clusters have been seen, they appear to be young clusters in the process of formation and are not settled mature systems. The international team of astronomers used the powerful VIMOS and FORS2 instruments on ESO's Very Large Telescope (VLT) to measure the distances to some of the blobs in a curious patch of very faint red objects first observed with the Spitzer space telescope. This grouping, named CL J1449+0856 [1], had all the hallmarks of being a very remote cluster of galaxies [2]. The results showed that we are indeed seeing a galaxy cluster as it was when the Universe was about three billion years old - less than one quarter of its current age [3]. Once the team knew the distance to this very rare object they looked carefully at the component galaxies using both the NASA/ESA Hubble Space Telescope and ground-based telescopes, including the VLT. They found evidence suggesting that most of the galaxies in the cluster were not forming stars, but were composed of stars that were already about one billion years old. This makes the cluster a mature object, similar in mass to the Virgo Cluster, the nearest rich galaxy cluster to the Milky Way. Further evidence that this is a mature cluster comes from observations of X-rays coming from CL J1449+0856 made with ESA's XMM-Newton space observatory. The cluster is giving off X-rays that must be coming from a very hot cloud of tenuous gas filling the space between the galaxies and concentrated towards the centre of the cluster. This is another sign of a mature galaxy cluster, held firmly together by its own gravity, as very young clusters have not had time to trap hot gas in this way. As Gobat concludes: "These new results support the idea that mature clusters existed when the Universe was less than one quarter of its current age. Such clusters are expected to be very rare according to current theory, and we have been very lucky to spot one. But if further observations find many more then this may mean that our understanding of the early Universe needs to be revised." Notes [1] The strange name refers to the object's position in the sky. [2] The galaxies appear red in the picture partly because they are thought to be mainly composed of cool, red stars. In addition the expansion of the Universe since the light left these remote systems has increased the wavelength of the light further so that it is mostly seen as infrared radiation when it gets to Earth. [3] The astronomers measured the distance to the cluster by splitting the light up into its component colours in a spectrograph. They then compared this spectrum with one of a similar object in the nearby Universe. This allowed them to measure the redshift of the remote galaxies - how much the Universe has expanded since the light left the galaxies. The redshift was found to be 2.07, which means that the cluster is seen about three billion years after the Big Bang. More information This research was presented in a paper, "A mature cluster with X-ray emission at z = 2.07", by R. Gobat et al., published in the journal Astronomy & Astrophysics. The team is composed of R. Gobat (Laboratoire AIM-Paris-Saclay, France), E. Daddi (AIM-Paris), M. Onodera (ETH Zürich, Switzerland), A. Finoguenov (Max-Planck-Institut für extraterrestrische Physik [MPE], Garching, Germany), A. Renzini (INAF-Osservatorio Astronomico di Padova), N. Arimoto (National Astronomical Observatory of Japan), R. Bouwens (Lick Observatory, Santa Cruz, USA), M. Brusa (MPE), R.-R. Chary (California Institute of Technology, USA), A. Cimatti (Università di Bologna, Italy), M. Dickinson (NOAO, Tucson, USA), X. Kong (University of Science and Technology of China), and M.Mignoli (INAF - Osservatorio Astronomico di Bologna, Italy). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. Triton's Summer Sky of Methane and Carbon Monoxide

    NASA Astrophysics Data System (ADS)

    2010-04-01

    According to the first ever infrared analysis of the atmosphere of Neptune's moon Triton, summer is in full swing in its southern hemisphere. The European observing team used ESO's Very Large Telescope and discovered carbon monoxide and made the first ground-based detection of methane in Triton's thin atmosphere. These observations revealed that the thin atmosphere varies seasonally, thickening when warmed. "We have found real evidence that the Sun still makes its presence felt on Triton, even from so far away. This icy moon actually has seasons just as we do on Earth, but they change far more slowly," says Emmanuel Lellouch, the lead author of the paper reporting these results in Astronomy & Astrophysics. On Triton, where the average surface temperature is about minus 235 degrees Celsius, it is currently summer in the southern hemisphere and winter in the northern. As Triton's southern hemisphere warms up, a thin layer of frozen nitrogen, methane, and carbon monoxide on Triton's surface sublimates into gas, thickening the icy atmosphere as the season progresses during Neptune's 165-year orbit around the Sun. A season on Triton lasts a little over 40 years, and Triton passed the southern summer solstice in 2000. Based on the amount of gas measured, Lellouch and his colleagues estimate that Triton's atmospheric pressure may have risen by a factor of four compared to the measurements made by Voyager 2 in 1989, when it was still spring on the giant moon. The atmospheric pressure on Triton is now between 40 and 65 microbars - 20 000 times less than on Earth. Carbon monoxide was known to be present as ice on the surface, but Lellouch and his team discovered that Triton's upper surface layer is enriched with carbon monoxide ice by about a factor of ten compared to the deeper layers, and that it is this upper "film" that feeds the atmosphere. While the majority of Triton's atmosphere is nitrogen (much like on Earth), the methane in the atmosphere, first detected by Voyager 2, and only now confirmed in this study from Earth, plays an important role as well. "Climate and atmospheric models of Triton have to be revisited now, now that we have found carbon monoxide and re-measured the methane," says co-author Catherine de Bergh. Of Neptune's 13 moons, Triton is by far the largest, and, at 2700 kilometres in diameter (or three quarters the Earth's Moon), is the seventh largest moon in the whole Solar System. Since its discovery in 1846, Triton has fascinated astronomers thanks to its geologic activity, the many different types of surface ices, such as frozen nitrogen as well as water and dry ice (frozen carbon dioxide), and its unique retrograde motion [1]. Observing the atmosphere of Triton, which is roughly 30 times further from the Sun than Earth, is not easy. In the 1980s, astronomers theorised that the atmosphere on Neptune's moon might be as thick as that of Mars (7 millibars). It wasn't until Voyager 2 passed the planet in 1989 that the atmosphere of nitrogen and methane, at an actual pressure of 14 microbars, 70 000 times less dense than the atmosphere on Earth, was measured. Since then, ground-based observations have been limited. Observations of stellar occultations (a phenomenon that occurs when a Solar System body passes in front of a star and blocks its light) indicated that Triton's surface pressure was increasing in the 1990's. It took the development of the Cryogenic High-Resolution Infrared Echelle Spectrograph (CRIRES) at the Very Large Telescope (VLT) to provide the team the chance to perform a far more detailed study of Triton's atmosphere. "We needed the sensitivity and capability of CRIRES to take very detailed spectra to look at the very tenuous atmosphere," says co-author Ulli Käufl. The observations are part of a campaign that also includes a study of Pluto [eso0908]. Pluto, often considered a cousin of Triton and with similar conditions, is receiving renewed interest in the light of the carbon monoxide discovery, and astronomers are racing to find this chemical on the even more distant dwarf planet. This is just the first step for astronomers using CRIRES to understand the physics of distant bodies in the Solar System. "We can now start monitoring the atmosphere and learn a lot about the seasonal evolution of Triton over decades," Lellouch says. Notes [1] Triton is the only large moon in the Solar System with a retrograde motion, which is a motion in the opposite direction to its planet's rotation. This is one of the reasons why Triton is thought to have been captured from the Kuiper Belt, and thus shares many features with the dwarf planets, such as Pluto. More information This research was presented in a paper to appear in Astronomy & Astrophysics ("Detection of CO in Triton's atmosphere and the nature of surface-atmosphere interactions", by E. Lellouch et al.), reference DOI : 10.1051/0004-6361/201014339. The team is composed of E. Lellouch, C. de Bergh, B. Sicardy (LESIA, Observatoire de Paris, France), S. Ferron (ACRI-ST, Sophia-Antipolis, France), and H.-U. Käufl (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. Jupiter's Spot Seen Glowing - Scientists Get First Look at Weather Inside the Solar System's Biggest Storm

    NASA Astrophysics Data System (ADS)

    2010-03-01

    New ground-breaking thermal images obtained with ESO's Very Large Telescope and other powerful ground-based telescopes show swirls of warmer air and cooler regions never seen before within Jupiter's Great Red Spot, enabling scientists to make the first detailed interior weather map of the giant storm system linking its temperature, winds, pressure and composition with its colour. "This is our first detailed look inside the biggest storm of the Solar System," says Glenn Orton, who led the team of astronomers that made the study. "We once thought the Great Red Spot was a plain old oval without much structure, but these new results show that it is, in fact, extremely complicated." The observations reveal that the reddest colour of the Great Red Spot corresponds to a warm core within the otherwise cold storm system, and images show dark lanes at the edge of the storm where gases are descending into the deeper regions of the planet. The observations, detailed in a paper appearing in the journal Icarus, give scientists a sense of the circulation patterns within the solar system's best-known storm system. Sky gazers have been observing the Great Red Spot in one form or another for hundreds of years, with continuous observations of its current shape dating back to the 19th century. The spot, which is a cold region averaging about -160 degrees Celsius, is so wide that about three Earths could fit inside its boundaries. The thermal images were mostly obtained with the VISIR [1] instrument attached to ESO's Very Large Telescope in Chile, with additional data coming from the Gemini South telescope in Chile and the National Astronomical Observatory of Japan's Subaru Telescope in Hawaii. The images have provided an unprecedented level of resolution and extended the coverage provided by NASA's Galileo spacecraft in the late 1990s. Together with observations of the deep cloud structure by the 3-metre NASA Infrared Telescope Facility in Hawaii, the level of thermal detail observed from these giant observatories is for the first time comparable to visible-light images from the NASA/ESA Hubble Space Telescope. VISIR allows the astronomers to map the temperature, aerosols and ammonia within and surrounding the storm. Each of these parameters tells us how the weather and circulation patterns change within the storm, both spatially (in 3D) and with time. The years of VISIR observations, coupled with those from the other observatories, reveals how the storm is incredibly stable despite turbulence, upheavals and close encounters with other anticyclones that affect the edge of the storm system. "One of the most intriguing findings shows the most intense orange-red central part of the spot is about 3 to 4 degrees warmer than the environment around it," says lead author Leigh Fletcher. This temperature difference might not seem like a lot, but it is enough to allow the storm circulation, usually counter-clockwise, to shift to a weak clockwise circulation in the very middle of the storm. Not only that, but on other parts of Jupiter, the temperature change is enough to alter wind velocities and affect cloud patterns in the belts and zones. "This is the first time we can say that there's an intimate link between environmental conditions - temperature, winds, pressure and composition - and the actual colour of the Great Red Spot," says Fletcher. "Although we can speculate, we still don't know for sure which chemicals or processes are causing that deep red colour, but we do know now that it is related to changes in the environmental conditions right in the heart of the storm." Notes [1] VISIR stands for VLT Imager and Spectrometer for mid Infrared (eso0417). It is a complex multi-mode instrument designed to operate in the 10 and 20 micron atmospheric windows, i.e. at wavelengths up to about 40 times longer than visible light, and to provide images as well as spectra. More information This research was presented in a paper to appear in Icarus ("Thermal Structure and Composition of Jupiter's Great Red Spot from High-Resolution Thermal Imaging", by L. Fletcher et al.). The team is composed of Leigh N. Fletcher and P. G. J. Irwin (University of Oxford, UK), G. S. Orton, P. Yanamandra-Fisher, and B. M. Fisher (Jet Propulsion Laboratory, California Institute of Technology, USA), O. Mousis (Observatoire de Besançon, France, and University of Arizona, Tucson, USA), P. D. Parrish (University of Edinburgh, UK), L. Vanzi (Pontificia Universidad Catolica de Chile, Santiago, Chile), T. Fujiyoshi and T. Fuse (Subaru Telescope, National Astronomical Observatory of Japan, Hawaii, USA), A.A. Simon-Miller (NASA/Goddard Spaceflight Center, Greenbelt, Maryland, USA), E. Edkins (University of California, Santa Barbara, USA), T.L. Hayward (Gemini Observatory, La Serena, Chile), and J. De Buizer (SOFIA - USRA, NASA Ames Research Center, Moffet Field, CA 94035, USA). Leigh Fletcher was working at JPL during the study. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  6. A Cluster and a Sea of Galaxies

    NASA Astrophysics Data System (ADS)

    2010-05-01

    A new wide-field image released today by ESO displays many thousands of distant galaxies, and more particularly a large group belonging to the massive galaxy cluster known as Abell 315. As crowded as it may appear, this assembly of galaxies is only the proverbial "tip of the iceberg", as Abell 315 - like most galaxy clusters - is dominated by dark matter. The huge mass of this cluster deflects light from background galaxies, distorting their observed shapes slightly. When looking at the sky with the unaided eye, we mostly only see stars within our Milky Way galaxy and some of its closest neighbours. More distant galaxies are just too faint to be perceived by the human eye, but if we could see them, they would literally cover the sky. This new image released by ESO is both a wide-field and long-exposure one, and reveals thousands of galaxies crowding an area on the sky roughly as large as the full Moon. These galaxies span a vast range of distances from us. Some are relatively close, as it is possible to distinguish their spiral arms or elliptical halos, especially in the upper part of the image. The more distant appear just like the faintest of blobs - their light has travelled through the Universe for eight billion years or more before reaching Earth. Beginning in the centre of the image and extending below and to the left, a concentration of about a hundred yellowish galaxies identifies a massive galaxy cluster, designated with the number 315 in the catalogue compiled by the American astronomer George Abell in 1958 [1]. The cluster is located between the faint, red and blue galaxies and the Earth, about two billion light-years away from us. It lies in the constellation of Cetus (the Whale). Galaxy clusters are some of the largest structures in the Universe held together by gravity. But there is more in these structures than the many galaxies we can see. Galaxies in these giants contribute to only ten percent of the mass, with hot gas in between galaxies accounting for another ten percent [2]. The remaining 80 percent is made of an invisible and unknown ingredient called dark matter that lies in between the galaxies. The presence of dark matter is revealed through its gravitational effect: the enormous mass of a galaxy cluster acts on the light from galaxies behind the cluster like a cosmic magnifying glass, bending the trajectory of the light and thus making the galaxies appear slightly distorted [3]. By observing and analysing the twisted shapes of these background galaxies, astronomers can infer the total mass of the cluster responsible for the distortion, even when this mass is mostly invisible. However, this effect is usually tiny, and it is necessary to measure it over a huge number of galaxies to obtain significant results: in the case of Abell 315, the shapes of almost 10 000 faint galaxies in this image were studied in order to estimate the total mass of the cluster, which amounts to over a hundred thousand billion times the mass of our Sun [4]. To complement the enormous range of cosmic distances and sizes surveyed by this image, a handful of objects much smaller than galaxies and galaxy clusters and much closer to Earth are scattered throughout the field: besides several stars belonging to our galaxy, many asteroids are also visible as blue, green or red trails [5]. These objects belong to the main asteroid belt, located between the orbits of Mars and Jupiter, and their dimensions vary from some tens of kilometres, for the brightest ones, to just a few kilometres in the case of the faintest ones. This image has been taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at ESO's La Silla Observatory in Chile. It is a composite of several exposures acquired using three different broadband filters, for a total of almost one hour in the B filter and about one and a half hours in the V and R filters. The field of view is 34 x 33 arcminutes. Notes [1] The Abell catalogue from 1958 comprised 2712 clusters of galaxies, and was integrated with an additional 1361 clusters in 1989. Abell put together this impressive collection by visual inspection of photographic plates of the sky, seeking those areas where more galaxies than average were found at approximately the same distance from us. [2] Ten percent of a galaxy cluster's mass consists of a very hot mixture of protons and electrons (a plasma), with temperatures as high as ten million degrees or more, which makes it visible to X-ray telescopes. [3] Astronomers refer to these slight distortions as weak gravitational lensing, as opposed to strong gravitational lensing, characterised by more spectacular phenomena such as giant arcs, rings and multiple images. [4] A weak lensing study of the galaxy cluster Abell 315 has been published in a paper that appeared in Astronomy & Astrophysics in 2009 ("Weak lensing observations of potentially X-ray underluminous galaxy clusters", by J. Dietrich et al.). [5] The blue, green or red tracks indicate that each asteroid has been detected through one of the three filters, respectively. Each track is composed of several, smaller sub-tracks, reflecting the sequence of several exposures performed in each of the filters; from the length of these sub-tracks, the distance to the asteroid can be calculated. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  7. No Place to Hide: Missing Primitive Stars Outside Milky Way Uncovered

    NASA Astrophysics Data System (ADS)

    2010-02-01

    After years of successful concealment, the most primitive stars outside our Milky Way galaxy have finally been unmasked. New observations using ESO's Very Large Telescope have been used to solve an important astrophysical puzzle concerning the oldest stars in our galactic neighbourhood - which is crucial for our understanding of the earliest stars in the Universe. "We have, in effect, found a flaw in the forensic methods used until now," says Else Starkenburg, lead author of the paper reporting the study. "Our improved approach allows us to uncover the primitive stars hidden among all the other, more common stars." Primitive stars are thought to have formed from material forged shortly after the Big Bang, 13.7 billion years ago. They typically have less than one thousandth the amount of chemical elements heavier than hydrogen and helium found in the Sun and are called "extremely metal-poor stars" [1]. They belong to one of the first generations of stars in the nearby Universe. Such stars are extremely rare and mainly observed in the Milky Way. Cosmologists think that larger galaxies like the Milky Way formed from the merger of smaller galaxies. Our Milky Way's population of extremely metal-poor or "primitive" stars should already have been present in the dwarf galaxies from which it formed, and similar populations should be present in other dwarf galaxies. "So far, evidence for them has been scarce," says co-author Giuseppina Battaglia. "Large surveys conducted in the last few years kept showing that the most ancient populations of stars in the Milky Way and dwarf galaxies did not match, which was not at all expected from cosmological models." Element abundances are measured from spectra, which provide the chemical fingerprints of stars [2]. The Dwarf galaxies Abundances and Radial-velocities Team [3] used the FLAMES instrument on ESO's Very Large Telescope to measure the spectra of over 2000 individual giant stars in four of our galactic neighbours, the Fornax, Sculptor, Sextans and Carina dwarf galaxies. Since the dwarf galaxies are typically 300 000 light years away - which is about three times the size of our Milky Way - only strong features in the spectrum could be measured, like a vague, smeared fingerprint. The team found that none of their large collection of spectral fingerprints actually seemed to belong to the class of stars they were after, the rare, extremely metal-poor stars found in the Milky Way. The team of astronomers around Starkenburg has now shed new light on the problem through careful comparison of spectra to computer-based models. They found that only subtle differences distinguish the chemical fingerprint of a normal metal-poor star from that of an extremely metal-poor star, explaining why previous methods did not succeed in making the identification. The astronomers also confirmed the almost pristine status of several extremely metal-poor stars thanks to much more detailed spectra obtained with the UVES instrument on ESO's Very Large Telescope. "Compared to the vague fingerprints we had before, this would be as if we looked at the fingerprint through a microscope," explains team member Vanessa Hill. "Unfortunately, just a small number of stars can be observed this way because it is very time consuming." "Among the new extremely metal-poor stars discovered in these dwarf galaxies, three have a relative amount of heavy chemical elements between only 1/3000 and 1/10 000 of what is observed in our Sun, including the current record holder of the most primitive star found outside the Milky Way," says team member Martin Tafelmeyer. "Not only has our work revealed some of the very interesting, first stars in these galaxies, but it also provides a new, powerful technique to uncover more such stars," concludes Starkenburg. "From now on there is no place left to hide!" Notes [1] According to the definition used in astronomy, "metals" are all the elements other than hydrogen and helium. Such metals, except for a very few minor light chemical elements, have all been created by the various generations of stars. [2] As every rainbow demonstrates, white light can be split up into different colours. Astronomers artificially split up the light they receive from distant objects into its different colours (or wavelengths). However, where we distinguish seven rainbow colours, astronomers map hundreds of finely nuanced colours, producing a spectrum - a record of the different amounts of light the object emits in each narrow colour band. The details of the spectrum - more light emitted at some colours, less light at others - provide tell-tale signs about the chemical composition of the matter producing the light. [3] The Dwarf galaxies Abundances and Radial-velocities Team (DART) has members from institutes in nine different countries. More information This research was presented in a paper to appear in Astronomy and Astrophysics ("The NIR Ca II triplet at low metallicity", E. Starkenburg et al.). Another paper is also in preparation (Tafelmeyer et al.) that presents the UVES measurements of several primitive stars. The team is composed of Else Starkenburg, Eline Tolstoy, Amina Helmi, and Thomas de Boer (Kapteyn Astronomical Institute, University of Groningen, the Netherlands), Vanessa Hill (Laboratoire Cassiopée, Université de Nice Sophia Antipolis, Observatoire de la Côte d'Azur, CNRS, France), Jonay I. González Hernández (Observatoire de Paris, CNRS, Meudon, France and Universidad Complutense de Madrid, Spain), Mike Irwin (University of Cambridge, UK), Giuseppina Battaglia (ESO), Pascale Jablonka and Martin Tafelmeyer (Université de Genève, Ecole Polytechnique Fédérale de Lausanne, Switzerland), Matthew Shetrone (University of Texas, McDonald Observatory, USA), and Kim Venn (University of Victoria, Canada). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  8. Using ESO Reflex with Web Services

    NASA Astrophysics Data System (ADS)

    Järveläinen, P.; Savolainen, V.; Oittinen, T.; Maisala, S.; Ullgrén, M. Hook, R.

    2008-08-01

    ESO Reflex is a prototype graphical workflow system, based on Taverna, and primarily intended to be a flexible way of running ESO data reduction recipes along with other legacy applications and user-written tools. ESO Reflex can also readily use the Taverna Web Services features that are based on the Apache Axis SOAP implementation. Taverna is a general purpose Web Service client, and requires no programming to use such services. However, Taverna also has some restrictions: for example, no numerical types such integers. In addition the preferred binding style is document/literal wrapped, but most astronomical services publish the Axis default WSDL using RPC/encoded style. Despite these minor limitations we have created simple but very promising test VO workflow using the Sesame name resolver service at CDS Strasbourg, the Hubble SIAP server at the Multi-Mission Archive at Space Telescope (MAST) and the WESIX image cataloging and catalogue cross-referencing service at the University of Pittsburgh. ESO Reflex can also pass files and URIs via the PLASTIC protocol to visualisation tools and has its own viewer for VOTables. We picked these three Web Services to try to set up a realistic and useful ESO Reflex workflow. They also demonstrate ESO Reflex abilities to use many kind of Web Services because each of them requires a different interface. We describe each of these services in turn and comment on how it was used

  9. VizieR Online Data Catalog: Photometry of 3 open clusters (Andreuzzi+, 2011)

    NASA Astrophysics Data System (ADS)

    Andreuzzi, G.; Bragaglia, A.; Tosi, M.; Marconi, G.

    2012-02-01

    Be20 and Be66 were observed with DOLORES at TNG (Telescopio Nazionale Galileo) in 24-Nov-2000 and 03-Oct-2000 (Be66); To2 was observed on 07-Mar-1995 (ESO/Danish), 15-May-2001 (ESO/Danish with DFOSC), and 15-Mar-2002 (ESO/NTT with SuSI2) (3 data files).

  10. Tim de Zeeuw to Become the Next Director General of ESO

    NASA Astrophysics Data System (ADS)

    2007-01-01

    The ESO Council has just appointed Tim de Zeeuw, 50, as the next Director General of ESO, effective as of 1 September 2007, when the current Director General, Catherine Cesarsky will complete her mandate. ESO PR Photo 02/07 ESO PR Photo 03/07 Professor Tim de Zeeuw "ESO is Europe's flagship organisation for ground-based astronomy," said, Richard Wade, President of the ESO Council. "The ESO Council is very pleased that Professor de Zeeuw has accepted the task as its next Director General. He has played a key role over the last few years in developing a strategic vision for ESO, and I have every confidence that he will now lead the organisation in the realisation of that exciting vision." Tim de Zeeuw has an excellent record, both as a highly respected scientist and as a leader of an internationally recognised science institute in the Netherlands. He is Scientific Director of the Leiden Observatory, a research institute in the College of Mathematics and Natural Sciences of Leiden University. Tim de Zeeuw also has considerable experience as regards science policy issues. Catherine Cesarsky, ESO's current Director General commented: "Over the recent years, ESO has developed considerably with more activities and new member states, and with its ambitious project portfolio, ESO is clearly facing an exciting future. I shall be delighted to pass the baton to Tim de Zeeuw, who as a recent Council member is very familiar with our Organisation." "It is a great honour and an exciting challenge to lead this world-class organisation in the years to come in support of one of the most dynamic areas of science today," said de Zeeuw. "I look forward to overseeing the continued upgrading of the Very Large Telescope with the second-generation instrumentation and the completion of the ALMA project, and in particular to help developing the future European Extremely Large Telescope." Tim de Zeeuw's main research interests embrace the formation, structure and dynamics of galaxies, including our own Galaxy, the Milky Way. A second area of research is the study of the origin, structure, and evolution of associations of young, massive stars in the Solar Neighbourhood. He obtained his PhD from the University of Leiden in 1980, moving on to work at the Institute for Advanced Study in Princeton, and subsequently at Caltech in Pasadena. He has received several honours and awards and is the author of a large number of research papers. In the 1990's, Tim de Zeeuw was involved in the development of an advanced panoramic integral-field spectrograph for the 4.2-m William Herschel Telescope, while also working as the Principal Investigator of a major research project using the Hipparcos database to conduct a comprehensive census of nearby young stellar groups. In 1993, he became the founding director of NOVA, the Netherlands Research School for Astronomy, which coordinates the graduate education and astronomical research at the five university astronomy institutes in the Netherlands. Today, NOVA supports 25% of the university astronomy positions in The Netherlands and, by reinvigorating the university groups, it has contributed to strongly increasing the international visibility of Dutch astronomy and enabled an intensified Dutch participation in the ESO activities. He is also the co-founder of the Lorentz Center, an international centre for Astronomy, Mathematics and Physics in Leiden. Tim de Zeeuw regularly advises NWO, the Netherlands Organisation for Scientific Research. During the years he has served on the Time Allocation Committee for the NASA/ESA Hubble Space Telescope, and, since 2003, as the Chairman of the Space Telescope Institute Council in Baltimore. He also serves on the AURA Board of Directors, and on the ESA Space Science Advisory Committee, and leads the development of a Science Vision for European Astronomy as part of the EU ASTRONET initiative. Tim de Zeeuw has also served for three years as the Dutch national astronomy delegate to the ESO Council. As a member of the ESO Council he participated in the work of the Council Scientific Strategy Working Group, which resulted in the Council resolution of December 2004 outlining ESO's strategic goals. More recently, as new Chair of this Working Group, he has been elaborating various scenarios for ESO's future role in European astronomy. Tim de Zeeuw is married to Dutch astronomer Ewine van Dishoeck.

  11. NY-ESO-1 autoantibody as a tumor-specific biomarker for esophageal cancer: screening in 1969 patients with various cancers.

    PubMed

    Oshima, Yoko; Shimada, Hideaki; Yajima, Satoshi; Nanami, Tatsuki; Matsushita, Kazuyuki; Nomura, Fumio; Kainuma, Osamu; Takiguchi, Nobuhiro; Soda, Hiroaki; Ueda, Takeshi; Iizasa, Toshihiko; Yamamoto, Naoto; Yamamoto, Hiroshi; Nagata, Matsuo; Yokoi, Sana; Tagawa, Masatoshi; Ohtsuka, Seiko; Kuwajima, Akiko; Murakami, Akihiro; Kaneko, Hironori

    2016-01-01

    Although serum NY-ESO-1 antibodies (s-NY-ESO-1-Abs) have been reported in patients with esophageal carcinoma, this assay system has not been used to study a large series of patients with various other cancers. Serum samples of 1969 cancer patients [esophageal cancer (n = 172), lung cancer (n = 269), hepatocellular carcinoma (n = 91), prostate cancer (n = 358), gastric cancer (n = 313), colorectal cancer (n = 262), breast cancer (n = 365)] and 74 healthy individuals were analyzed using an originally developed enzyme-linked immunosorbent assay system for s-NY-ESO-1-Abs. The optical density cut-off value, determined as the mean plus three standard deviations for serum samples from the healthy controls, was fixed at 0.165. Conventional tumor markers were also evaluated in patients with esophageal carcinoma. The positive rate of s-NY-ESO-1-Abs in patients with esophageal cancer (31 %) was significantly higher than that in the other groups: patients with lung cancer (13 %), patients with hepatocellular carcinoma (11 %), patients with prostate cancer (10 %), patients with gastric cancer (10 %), patients with colorectal cancer (8 %), patients with breast cancer (7 %), and healthy controls (0 %). The positive rate of s-NY-ESO-1-Abs was comparable to that of serum p53 antibodies (33 %), squamous cell carcinoma antigen (36 %), carcinoembryonic antigen (26 %), and CYFRA 21-1 (18 %) and gradually increased with the tumor stage. The positive rate of s-NY-ESO-1-Abs was significantly higher in patients with esophageal cancer than in patients with the other types of cancers. On the basis of its high specificity and sensitivity, even in patients with stage I tumors, s-NY-ESO-1-Abs may be one of the first choices for esophageal cancer.

  12. ESO telbib: Linking In and Reaching Out

    NASA Astrophysics Data System (ADS)

    Grothkopf, U.; Meakins, S.

    2015-04-01

    Measuring an observatory's research output is an integral part of its science operations. Like many other observatories, ESO tracks scholarly papers that use observational data from ESO facilities and uses state-of-the-art tools to create, maintain, and further develop the Telescope Bibliography database (telbib). While telbib started out as a stand-alone tool mostly used to compile lists of papers, it has by now developed into a multi-faceted, interlinked system. The core of the telbib database is links between scientific papers and observational data generated by the La Silla Paranal Observatory residing in the ESO archive. This functionality has also been deployed for ALMA data. In addition, telbib reaches out to several other systems, including ESO press releases, the NASA ADS Abstract Service, databases at the CDS Strasbourg, and impact scores at Altmetric.com. We illustrate these features to show how the interconnected telbib system enhances the content of the database as well as the user experience.

  13. Comparison of two-dimensional fast spin echo T2 weighted sequences and three-dimensional volume isotropic T2 weighted fast spin echo (VISTA) MRI in the evaluation of triangular fibrocartilage of the wrist.

    PubMed

    Park, Hee Jin; Lee, So Yeon; Kang, Kyung A; Kim, Eun Young; Shin, Hun Kyu; Park, Se Jin; Park, Jai Hyung; Kim, Eugene

    2018-04-01

    To compare image quality of three-dimensional volume isotropic T 2 weighted fast spin echo (3D VISTA) and two-dimensional (2D) T 2 weighted images (T2WI) for evaluation of triangular fibrocartilage (TFC) and to investigate whether 3D VISTA can replace 2D T 2 WI in evaluating TFC injury. This retrospective study included 69 patients who received wrist MRIs using both 2D T 2 WI and 3D VISTA techniques for assessment of wrist pathology, including TFC injury. Two radiologists measured the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) of the two sequences. The anatomical identification score and diagnostic performance were independently assessed by two interpreters. The diagnostic abilities of 3D VISTA and 2D T 2 WI were analysed by sensitivity, specificity and accuracy for diagnosing TFC injury using surgically or clinically confirmed diagnostic reference standards. 17 cases (25%) were classified as having TFC injury. 2 cases (12%) were diagnosed surgically, and 15 cases (88%) were diagnosed by physical examination. 52 cases (75%) were diagnosed as having intact TFC. 8 of these cases (15%) were surgically confirmed, while the others were diagnosed by physical examination and clinical findings. The 3D VISTA images had significantly higher SNR and CNR values for the TFC than 2D T 2 WI images. The scores of 3D VISTA's total length, full width and sharpness were similar to those of 2D T 2 WI. We were unable to find a significant difference between 3D VISTA and 2D T 2 WI in the ability to diagnose TFC injury. 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment. Advances in knowledge: 3D VISTA image quality is similar to that of 2D T 2 WI for TFC evaluation and is also excellent for tissue contrast. 3D VISTA can replace 2D images in TFC injury assessment.

  14. Building Unit Cohesion via the Videodisc Interpersonal Skills Training and Assessment (VISTA) Unit Training Program (VUTP)

    DTIC Science & Technology

    1984-06-01

    tworf) Unclassified h a O~ASSI UICATI ON IDOWN ORA 010C r DS IST RISUTION STATEMENT (of olitdopmf) Approved for public release; distribution unlimited. 7...maLai&l:. .• hire •.Dd roveseiet would be to spend more time iti training the leaders. Alt . vih they vere famillarize6 wh --h= --,_-rpa-nt and 25

  15. Putting the Information Infrastructure to Work. Report of the Information Infrastructure Task Force Committee on Applications and Technology. NIST Special Publication 857.

    ERIC Educational Resources Information Center

    National Inst. of Standards and Technology, Gaithersburg, MD.

    An interconnection of computer networks, telecommunications services, and applications, the National Information Infrastructure (NII) can open up new vistas and profoundly change much of American life. This report explores some of the opportunities and obstacles to the use of the NII by people and organizations. The goal is to express how…

  16. Fuels planning: science synthesis and integration; social issues fact sheet 14: Landscape preference in forested ecosystems

    Treesearch

    Christine Esposito

    2006-01-01

    It is important to understand what types of landscape settings most people prefer to be able to plan fuels treatment and other forest management activities that will be acceptable to the general public. This fact sheet considers the four common elements of visually preferred forest settings: large trees; herbacious, smooth groundcover; open midstory canopy; and vistas...

  17. Obituary: Adriaan Blaauw, 1914-2010

    NASA Astrophysics Data System (ADS)

    de Zeeuw, Tim

    2011-12-01

    Professor Adriaan Blaauw, one of the most influential astronomers of the twentieth century, passed away on 1 December 2010. Adriaan Blaauw was born in Amsterdam, the Netherlands, on 12 April 1914. He studied astronomy at Leiden University, under de Sitter, Hertzsprung and Oort, and obtained his doctorate (cum laude) with van Rhijn at the Kapteyn Laboratory in Groningen in 1946, on a PhD thesis entitled: A study of the Scorpio-Centaurus Cluster. In this work he used the proper motions of the stars on the sky, deduced by very careful comparison of position measurements taken more than 50 years apart, and demonstrated that most of the bright hot O and B stars in the constellations Scorpius and Centaurus have nearly identical space motions and hence constitute a physical group of stars. This work laid the basis for a career of groundbreaking studies of the properties of these OB associations which still contain the fossil imprint of their star formation history. Perhaps Blaauw's most famous work explained why some OB stars are found in isolation and are traveling unusually rapidly: the so-called run-away stars. During his time at Yerkes, he and Morgan had discovered curious examples such as the OB stars μ Columbae and AE Aurigae which are moving very fast in opposite directions, putting both of them at the location of the Orion Nebula at approximately the same time, 2.6 million years earlier. Blaauw proposed in 1961 that run-away stars had originally been members of binary stars, and when one star in the binary experiences a supernova explosion, its companion suddenly ceases to feel the gravitational pull that keeps it in its orbit and hence it "runs away" at its orbital velocity and rapidly leaves the group it was born in. In addition to his distinguished research career, Blaauw played a decisive role in the creation of the intergovernmental European Organization for Astronomical Research in the Southern Hemisphere, often referred to as the European Southern Observatory, or simply as ESO. In 1953, Baade and Oort proposed the idea of combining European resources to create an astronomical research organisation that could compete in the international arena. Blaauw had returned to Leiden in 1948 at Oort's invitation, had moved to Yerkes Observatory in 1953, becoming its associate director in 1956, and moved back to Groningen in 1957, where he revitalized the institute and initiated a new program in radio astronomy together with van Woerden. Here he was also in a key position to contribute to transforming the idea of Baade and Oort into reality. He was Secretary of the ESO Committee (the proto ESO Council) from 1959 through 1963, a period which included the signing of the ESO Convention on 5 October 1962 by the five founding Member States Belgium, France, Germany, the Netherlands and Sweden. Blaauw became ESO's Scientific Director in 1968. In this position he also provided the decisive push to combine the various national journals for astronomy into Astronomy and Astrophysics, which today is one of the leading astronomy research publications in the world. Blaauw succeeded Heckman as Director General of ESO in 1970, for a five-year term. During this period several telescopes including the ESO 0.5-meter and 1-meter Schmidt telescopes began operating at ESO's first observatory site, La Silla, in Chile, and much work was done on the design and construction of the ESO 3.6-meter telescope, which saw first light in 1976. Blaauw decided that it was crucial for this challenging project to move ESO's Headquarters and the Technical Department from Hamburg to Geneva, to benefit from the presence of the experienced CERN engineering group. After his ESO period, Blaauw returned to Leiden, where he continued to play a very important role in international astronomy. He was President of the International Astronomical Union from 1976 to 1979. During his tenure he used his considerable diplomatic skills to convince China to rejoin the IAU even though Taiwan was also a member. He retired from his Leiden professorship in 1981 and moved back to Groningen, but stayed active in various areas. He organized the historical archives of ESO and of the IAU - a work which resulted in two books, ESO's Early History and History of the IAU. He also served as Chairman of the Scientific Evaluation Committee for the European Space Agency satellite HIPPARCOS, which would measure the proper motions of the 100,000 brightest stars with unprecedented accuracy, and advised on many aspects of its scientific programme. When the data became available in 1996, he was actively involved in the re-analysis of the young stellar groups he had studied during his PhD research, more than fifty years earlier. Blaauw remained keenly interested in developments at ESO. He drove himself from Groningen to Garching and back for a two-day stay in July 2009 in order to take another look at the historical documents in the ESO library. He visited Chile in February 2010 during which he was driven to La Silla and then Paranal by car to enjoy Chile's beautiful landscapes and 'inspect' the telescopes on both these sites. He actively engaged young people in interesting discussions and throughout the visit displayed a crystal clear perspective on the development of astronomy in general and of ESO's program in particular, including the exciting opportunities for the future. The characteristic twinkle in his eye was as bright as always. Blaauw won many academic distinctions, including membership in many academies of science, honorary doctorates from the University of Besancon and from l'Observatoire de Paris and the Bruce Medal of the Astronomical Society of the Pacific. He was well-known for his warm personality, wisdom, humour, legendary patience, and the very rare gift of being able to slow down when the pressure mounts. The personal account of his life entitled My Cruise Through the World of Astronomy, published in the 2004 Annual Reviews of Astronomy and Astrophysics, provides an accurate and inspiring picture of a truly remarkable person, who positively influenced the lives of many others.

  18. Overview of ESO Large Single Dish Study

    NASA Astrophysics Data System (ADS)

    Testi, Leonardo

    2018-01-01

    In this talk I will briefly summarize the motivation, methodology and outcome of the ESO Submm Single Dish Strategy WG. The WG was established by the ESO Director for Science and completed its work at the end of 2015. I will summarize the status of the report recommendations, which, among other things, led to the organization of the AtLAST workshop.

  19. Pancreatic Extraskeletal Osteosarcoma Metastasizing to the Scalp.

    PubMed

    Kim, Young Jae; Kim, Hak Tae; Won, Chong Hyun; Chang, Sung Eun; Lee, Mi Woo; Choi, Jee Ho; Lee, Woo Jin

    2018-06-01

    Extraskeletal osteosarcoma (ESOS) is a rare mesenchymal soft-tissue neoplasm that accounts for approximately 1% of all soft-tissue sarcomas. Over 70% of these malignant tumor progress to local recurrence and metastasis. It commonly metastasizes to the lungs, lymph nodes, bone, and skin and has a poor survival outcome. Cutaneous metastasis is exceedingly rare and known to be a sign of widespread metastases. We present a 57-year-old woman who presented with a rapidly growing protuberant mass on the scalp that was finally diagnosed as metastatic ESOS from a primary pancreatic ESOS. To our knowledge, there has been no reported case of pancreatic ESOS metastasizing to the scalp.

  20. Extended state observer-based motion synchronisation control for hybrid actuation system of large civil aircraft

    NASA Astrophysics Data System (ADS)

    Wang, Xingjian; Shi, Cun; Wang, Shaoping

    2017-07-01

    Hybrid actuation system with dissimilar redundant actuators, which is composed of a hydraulic actuator (HA) and an electro-hydrostatic actuator (EHA), has been applied on modern civil aircraft to improve the reliability. However, the force fighting problem arises due to different dynamic performances between HA and EHA. This paper proposes an extended state observer (ESO)-based motion synchronisation control method. To cope with the problem of unavailability of the state signals, the well-designed ESO is utilised to observe the HA and EHA state variables which are unmeasured. In particular, the extended state of ESO can estimate the lumped effect of the unknown external disturbances acting on the control surface, the nonlinear dynamics, uncertainties, and the coupling term between HA and EHA. Based on the observed states of ESO, motion synchronisation controllers are presented to make HA and EHA to simultaneously track the desired motion trajectories, which are generated by a trajectory generator. Additionally, the unknown disturbances and the coupling terms can be compensated by using the extended state of the proposed ESO. Finally, comparative simulation results indicate that the proposed ESO-based motion synchronisation controller can achieve great force fighting reduction between HA and EHA.

  1. Directed evolution for improved secretion of cancer-testis antigen NY-ESO-1 from yeast.

    PubMed

    Piatesi, Andrea; Howland, Shanshan W; Rakestraw, James A; Renner, Christoph; Robson, Neil; Cebon, Jonathan; Maraskovsky, Eugene; Ritter, Gerd; Old, Lloyd; Wittrup, K Dane

    2006-08-01

    NY-ESO-1 is a highly immunogenic tumor antigen and a promising vaccine candidate in cancer immunotherapy. Access to purified protein both for vaccine formulations and for monitoring antigen-specific immune responses is vital to vaccine development. Currently available recombinant Escherichia coli-derived NY-ESO-1 is isolated from inclusion bodies as a complex protein mixture and efforts to improve the purity of this antigen are required, especially for later-stage clinical trials. Using yeast cell surface display and fluorescence activated cell sorting techniques, we have engineered an NY-ESO-1 variant (NY-ESO-L5; C(75)A C(76)A C(78)A L(153)H) with a 100x improved display level on yeast compared to the wild-type protein. This mutant can be effectively produced as an Aga2p-fusion and purified in soluble form directly from the yeast cell wall. In the process, we have identified the epitope recognized by anti-NY-ESO-1 mAb E978 (79-87, GARGPESRL). The availability of an alternative expression host for this important antigen will help avoid artifactual false positive tests of patient immune response due to reaction against expression-host-specific contaminants.

  2. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Chéreau, F.

    2008-08-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system. The main website for VirGO is at http://archive.eso.org/cms/virgo.

  3. Induction of cancer testis antigen expression in circulating acute myeloid leukemia blasts following hypomethylating agent monotherapy

    PubMed Central

    Srivastava, Pragya; Paluch, Benjamin E.; Matsuzaki, Junko; James, Smitha R.; Collamat-Lai, Golda; Blagitko-Dorfs, Nadja; Ford, Laurie Ann; Naqash, Rafeh; Lübbert, Michael; Karpf, Adam R.; Nemeth, Michael J.; Griffiths, Elizabeth A.

    2016-01-01

    Cancer testis antigens (CTAs) are promising cancer associated antigens in solid tumors, but in acute myeloid leukemia, dense promoter methylation silences their expression. Leukemia cell lines exposed to HMAs induce expression of CTAs. We hypothesized that AML patients treated with standard of care decitabine (20mg/m2 per day for 10 days) would demonstrate induced expression of CTAs. Peripheral blood blasts serially isolated from AML patients treated with decitabine were evaluated for CTA gene expression and demethylation. Induction of NY-ESO-1 and MAGEA3/A6, were observed following decitabine. Re-expression of NY-ESO-1 and MAGEA3/A6 was associated with both promoter specific and global (LINE-1) hypomethylation. NY-ESO-1 and MAGEA3/A6 mRNA levels were increased irrespective of clinical response, suggesting that these antigens might be applicable even in patients who are not responsive to HMA therapy. Circulating blasts harvested after decitabine demonstrate induced NY-ESO-1 expression sufficient to activate NY-ESO-1 specific CD8+ T-cells. Induction of CTA expression sufficient for recognition by T-cells occurs in AML patients receiving decitabine. Vaccination against NY-ESO-1 in this patient population is feasible. PMID:26883197

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Xiangtao; Bocharova, Vera; Tekinalp, Halil L.

    While PLA possesses modest to good strength and stiffness, broader application is hindered by its brittle nature. The aim of this study was to develop strong and tough polymeric materials from renewable biomaterials and understand the underlying interactions and mechanisms. Cellulose nanofibrils (CNFs) and epoxidized soybean oil (ESO) were compounded with poly(lactic acid) (PLA) to create a PLA-CNF-ESO tertiary nanocomposite system. Tensile and dynamic mechanical analyses were performed to see how variations in ESO and CNF content affect mechanical properties such as strength, modulus, ductility, and toughness. It was found that at low CNF levels (10 wt %) the additionmore » of ESO can improve the ductility of the nanocomposites 5- to 10-fold with only slight losses in strength and modulus, while at higher CNF levels (20 and 30 wt %), ESO exhibited little effect on mechanical properties, possibly due to percolation of CNFs in the matrix, dominating stress transfer. Therefore, it is important to optimize CNF and ESO amounts in composites to achieve materials with both high strength and high toughness. As a result, efforts have been made to understand the underlying mechanisms of the mechanical behavior of one class of these composites via thermal, dynamic mechanical, morphological, and Raman analyses.« less

  5. Czech Republic to Become Member of ESO

    NASA Astrophysics Data System (ADS)

    2006-12-01

    Today, an agreement was signed in Prague between ESO and the Czech Republic, aiming to make the latter become a full member of ESO as of 1 January 2007. "The future membership of the Czech Republic in ESO opens for the Czech astronomers completely new opportunities and possibilities. It will foster this discipline on the highest quality level and open new opportunities for Czech industry to actively cooperate in research and development of high-tech instruments for astronomical research," said Miroslava Kopicová, Minister of Education, Youth and Sports of the Czech Republic. ESO PR Photo 52/06 ESO PR Photo 52/06 Signing Ceremony "We warmly welcome the Czech Republic as the thirteenth member of ESO," said Catherine Cesarsky, ESO's Director General. "The timing couldn't be better chosen: with the Very Large Telescope, Europe is now at the forefront of ground-based astronomy, and with the construction of ALMA and the final studies for the European Extremely Large Telescope, we will ensure that this will remain so for several decades. We look forward to working together with our Czech colleagues towards these successes." The signing event took place at the Czech Ministry of Education, Youth and Sports in Prague. Following ratification by the Czech Parliament, the Czech Republic with thus join the twelve present member states of ESO, the European Organisation for Astronomical Research in the Southern Hemisphere: Belgium, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. The Czech Republic is the first country from Central and Eastern Europe to join ESO. Astronomy in the Czech Republic has a very long tradition that dates from as far back as 3500 BC. Four centuries ago, Tycho Brahe and Johannes Kepler established themselves in Prague at the invitation of the emperor Rudolph II, laying the ground for the first golden age in astronomy. Later, eminent scientists such as Christian Doppler, Ernst Mach and Albert Einstein stayed in the famous city for periods of time. The Czech capital also played host to the General Assembly of the International Astronomical Union, first in 1967 and, more recently, in August 2006. Astronomy in the Czech Republic is shared between the Astronomical Institute of the Academy of Sciences and several leading universities, in Prague, Brno and Opava, among others. The Astronomical Institute operates the Ondrejov Observatory, with a 2-m optical telescope and a 10-m radio telescope. Czech astronomers are very active in many fields of this science, such as solar and stellar physics, and the study of interstellar matter, galaxies and planetary systems. Created in 1962, ESO, which quite fittingly means 'ace' in the Czech language, provides state-of-the-art research facilities to European astronomers and astrophysicists. ESO's activities cover a wide spectrum including the design and construction of world-class ground-based observational facilities for the member-state scientists, large telescope projects, design of innovative scientific instruments, developing new and advanced technologies, furthering European co-operation and carrying out European educational programmes. Whilst the Headquarters are located in Garching near Munich, Germany, ESO operates three observational sites in the Chilean Atacama desert. The Very Large Telescope (VLT) is located on Paranal, a 2 600m high mountain south of Antofagasta. At La Silla, 600 km north of Santiago de Chile at 2 400m altitude, ESO operates several medium-sized optical telescopes. The third site is the 5 000m high Llano de Chajnantor, near San Pedro de Atacama. Here a new submillimetre telescope (APEX) is in operation, and a giant array of 12-m submillimetre antennas (ALMA) is under development. Over 1 600 proposals are made each year for the use of the ESO telescopes.

  6. Educational Services Officer

    DTIC Science & Technology

    1988-01-01

    publication is a a recommended reading list. A brief description valuable tool to an ESO when it is available of the subject matter of each is given, and...factors that must be considered in the arrangement of an office. 9. Identify the basic office products. 3. Identify the tools necessary for the...of the office. Personnel served by the tools of the trade; however, if the office this office judge it by the measure of does not provide

  7. Preparation and characterization of fast dissolving flurbiprofen and esomeprazole solid dispersion using spray drying technique.

    PubMed

    Pradhan, Roshan; Tran, Tuan Hiep; Kim, Sung Yub; Woo, Kyu Bong; Choi, Yong Joo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-11

    We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept. Copyright © 2016. Published by Elsevier B.V.

  8. 45 CFR 1217.3 - Qualifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... VISTA VOLUNTEER LEADER § 1217.3 Qualifications. A volunteer recommended for a VISTA volunteer leader position must have: (a) Completed a one-year term as a VISTA volunteer. (b) Demonstrated ability to work constructively and communicate with volunteers, supervisor/sponsor, and the target population. (c) Demonstrated...

  9. Irish Team Wins SEA & SPACE Super Prize

    NASA Astrophysics Data System (ADS)

    1998-09-01

    A secondary school team from Ireland has won a trip to Europe's Spaceport in Kourou, French Guyana, and to ESO's Very Large Telescope (VLT) at Cerro Paranal, Chile. The trip is the Super-Prize for the Sea & Space Newspaper Competition , organised within the framework of the European Week for Scientific and Technological Culture. ESO PR Photo 33/98 ESO PR Photo 33/98 [Preview - JPEG: 800 x 434 pix - 568k] [High-Res - JPEG: 3000 x 1627 pix - 6.7Mb] The presentation of prize certificates to the winning Irish team (right) in Lisbon, on August 31, 1998, by ESO, ESA and EAAE representatives. Stephen Kearney, Cian Wilson (both aged 16 years), Eamonn McKeogh (aged 17 years) together with their teacher, John Daly of Blackrock College in Dublin, prepared their newspaper, Infinitus , on marine and space themes, and came first in the national round of the competition. Together with other students from all over Europe, they were invited to present their winning newspaper to a jury consisting of representatives of the organisers, during a special programme of events at the Gulbenkian Planetarium and EXPO '98 in Lisbon, from 28-31 August, 1998. The Irish team scored highly in all categories of the judging, which included scientific content and originality and creativity of the articles. Their look at Irish contributions to sea and space research also proved popular in a ballot by fellow student competitors. This vote was also taken into account by the judges. The jury was very impressed by the high quality of the national entries and there were several close runners-up. The width and depth was amazing and the variety of ideas and formats presented by the sixteen teams was enormous. A poster competition was organised for younger students, aged 10 to 13 and winning entries at national level are on display at the Oceanophilia Pavilion at EXPO '98. The SEA & SPACE project is a joint initiative of the European Space Agency (ESA) , the European Southern Observatory (ESO) , and the European Association for Astronomy Education (EAAE) , in cooperation with the German National Research Centre for Information Technology (GMD). It builds on these organisations' several years' successful participation in the European Week for Scientific and Technological Culture organised by the European Commission . Note: [1] This press release is published jointly by ESA, ESO and EAAE. More information about the background of SEA & SPACE is available in ESO PR 02/98 (January 22, 1998) and ESA Press Release N 03-98 (23 January 1998). SEA & SPACE webpages are available at these URL's: * http://www.esrin.esa.int/seaspace * http://www.eso.org/seaspace , and * http://www.algonet.se/~sirius/eaae/seaspace How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  10. ESO Helps Antofagasta Region after the Earthquake

    NASA Astrophysics Data System (ADS)

    2007-11-01

    On November 14 at 12:41 local time, a major earthquake with magnitude 7.7 on the Richter scale affected the north of Chile. The epicentre was located 35 km from the city of Tocopilla and 170 km of Antofagasta. Two persons died and tens were injured, while buildings were damaged in several cities. In the Maria Elena-Tocopilla area, several thousand homes were destroyed or damaged. In an act of solidarity with the local community and its authorities, ESO immediately announced a donation of 30 millions Chilean pesos (around 40,000 euros) to Antofagasta's Regional Government to support reconstruction in the Region II. ESO and its staff have been shocked by the earthquake and its impact on local communities, especially on the people of Tocopilla. The ESO Representation in Chile formally contacted the regional authorities to explore with them possible ways to collaborate in this difficult moment. In addition, many of ESO staff are personally cooperating with the victims, under the coordination of Cruz Roja, the organisation currently in charge of implementing individual efforts.

  11. André B. Muller (25.9.1918-1.4.2006)

    NASA Astrophysics Data System (ADS)

    West, R. M.

    2006-06-01

    With great sadness, we have learned about the death of André Muller on 1 April, at the age of 87. Living in retirement in his native Holland since 1983, he was one of ESOs true pioneers, an outstanding representative of the select group of European astronomers who succeeded in steering ESO through the difficult initial phases. André was close-ly associated with the entire process, from the first site monitoring programmes in South Africa to the subsequent search in Chile, the decision in favour of the La Silla site, as well as the management of ESOs early activities in Chile, includ-ing the construction of the headquarters and observatory and the installation of the first generation of ESO telescopes. Few persons, if any, have been so inti-mately connected to the setting-up of ESOs facilities and it would be impossible to list in detail all of the services André performed for the organisation with such great expertise and zeal during his long career.

  12. User Interface for the ESO Advanced Data Products Image Reduction Pipeline

    NASA Astrophysics Data System (ADS)

    Rité, C.; Delmotte, N.; Retzlaff, J.; Rosati, P.; Slijkhuis, R.; Vandame, B.

    2006-07-01

    The poster presents a friendly user interface for image reduction, totally written in Python and developed by the Advanced Data Products (ADP) group. The interface is a front-end to the ESO/MVM image reduction package, originally developed in the ESO Imaging Survey (EIS) project and used currently to reduce imaging data from several instruments such as WFI, ISAAC, SOFI and FORS1. As part of its scope, the interface produces high-level, VO-compliant, science images from raw data providing the astronomer with a complete monitoring system during the reduction, computing also statistical image properties for data quality assessment. The interface is meant to be used for VO services and it is free but un-maintained software and the intention of the authors is to share code and experience. The poster describes the interface architecture and current capabilities and give a description of the ESO/MVM engine for image reduction. The ESO/MVM engine should be released by the end of this year.

  13. VLT Data Flow System Begins Operation

    NASA Astrophysics Data System (ADS)

    1999-06-01

    Building a Terabyte Archive at the ESO Headquarters The ESO Very Large Telescope (VLT) is the sum of many sophisticated parts. The site at Cerro Paranal in the dry Atacama desert in Northern Chile is one of the best locations for astronomical observations from the surface of the Earth. Each of the four 8.2-m telescopes is a technological marvel with self-adjusting optics placed in a gigantic mechanical structure of the utmost precision, continuously controlled by advanced soft- and hardware. A multitude of extremely complex instruments with sensitive detectors capture the faint light from distant objects in the Universe and record the digital data fast and efficiently as images and spectra, with a minimum of induced noise. And now the next crucial link in this chain is in place. A few nights ago, following an extended test period, the VLT Data Flow System began providing the astronomers with a steady stream of high-quality, calibrated image and spectral data, ready to be interpreted. The VLT project has entered into a new phase with a larger degree of automation. Indeed, the first 8.2-m Unit Telescope, ANTU, with the FORS1 and ISAAC instruments, has now become a true astronomy machine . A smooth flow of data through the entire system ESO PR Photo 25a/99 ESO PR Photo 25a/99 [Preview - JPEG: 400 x 292 pix - 104k] [Normal - JPEG: 800 x 584 pix - 264k] [High-Res - JPEG: 3000 x 2189 pix - 1.5M] Caption to ESO PR Photo 25a/99 : Simplified flow diagramme for the VLT Data Flow System . It is a closed-loop software system which incorporates various subsystems that track the flow of data all the way from the submission of proposals to storage of the acquired data in the VLT Science Archive Facility. The DFS main components are: Program Handling, Observation Handling, Telescope Control System, Science Archive, Pipeline and Quality Control. Arrows indicate lines of feedback. Already from the start of this project more than ten years ago, the ESO Very Large Telescope was conceived as a complex digital facility to explore the Universe. In order for astronomers to be able to use this marvellous research tool in the most efficient manner possible, the VLT computer software and hardware systems must guarantee a smooth flow of scientific information through the entire system. This process starts when the astronomers submit well-considered proposals for observing time and it ends with large volumes of valuable astronomical data being distributed to the international astronomical community. For this, ESO has produced an integrated collection of software and hardware, known as the VLT Data Flow System (DFS) , that manages and facilitates the flow of scientific information within the VLT Observatory. Early information about this new concept was published as ESO Press Release 12/96 and extensive tests were first carried out at ESOs 3.5-m New Technology Telescope (NTT) at La Silla, cf. ESO Press Release 03/97 [1]. The VLT DFS is a complete (end-to-end) system that guarantees the highest data quality by optimization of the observing process and repeated checks that identify and eliminate any problems. It also introduces automatic calibration of the data, i.e. the removal of external effects introduced by the atmospheric conditions at the time of the observations, as well as the momentary state of the telescope and the instruments. From Proposals to Observations In order to obtain observing time with ESO telescopes, also with the VLT, astronomers must submit a detailed observing proposal to the ESO Observing Programmes Committee (OPC) . It meets twice a year and ranks the proposals according to scientific merit. More than 1000 proposals are submitted each year, mostly by astronomers from the ESO members states and Chile; the competition is fierce and only a fraction of the total demand for observing time can be fulfilled. During the submission of observing proposals, DFS software tools available over the World Wide Web enable the astronomers to simulate their proposed observations and provide accurate estimates of the amount of telescope time they will need to complete their particular scientific programme. Once the proposals have been reviewed by the OPC and telescope time is awarded by the ESO management according to the recommendation by this Committee, the successful astronomers begin to assemble detailed descriptions of their intended observations (e.g. position in the sky, time and duration of the observation, the instrument mode, etc.) in the form of computer files called Observation Blocks (OBs) . The software to make OBs is distributed by ESO and used by the astronomers at their home institutions to design their observing programs well before the observations are scheduled at the telescope. The OBs can then be directly executed by the VLT and result in an increased efficiency in the collection of raw data (images, spectra) from the science instruments on the VLT. The activation (execution) of OBs can be done by the astronomer at the telescope on a particular set of dates ( visitor mode operation) or it can be done by ESO science operations astronomers at times which are optimally suited for the particular scientific programme ( service mode operation). An enormous VLT Data Archive ESO PR Photo 25b/99 ESO PR Photo 25b/99 [Preview - JPEG: 400 x 465 pix - 160k] [Normal - JPEG: 800 x 929 pix - 568k] [High-Res - JPEG: 3000 x 3483 pix - 5.5M] Caption to ESO PR Photo 25b/99 : The first of several DVD storage robot at the VLT Data Archive at the ESO headquarters include 1100 DVDs (with a total capacity of about 16 Terabytes) that may be rapidly accessed by the archive software system, ensuring fast availbility of the requested data. The raw data generated at the telescope are stored by an archive system that sends these data regularly back to ESO headquarters in Garching (Germany) in the form of CD and DVD ROM disks. While the well-known Compact Disks (CD ROMs) store about 600 Megabytes (600,000,000 bytes) each, the new Digital Versatile Disks (DVD ROMs) - of the same physical size - can store up 3.9 Gigabytes (3,900,000,000 bytes) each, or over 6 times more. The VLT will eventually produce more than 20 Gigabytes (20,000,000,000 bytes) of astronomical data every night, corresponding to about 10 million pages of text [2]. Some of these data also pass through "software pipelines" that automatically remove the instrumental effects on the data and deliver data products to the astronomer that can more readily be turned into scientific results. Ultimately these data are stored in a permanent Science Archive Facility at ESO headquarters which is jointly operated by ESO and the Space Telescope European Coordinating Facility (ST-ECF). From here, data are distributed to astronomers on CD ROMs and over the World Wide Web. The archive facility is being developed to enable astronomers to "mine" the large volumes of data that will be collected from the VLT in the coming years. Within the first five years of operations the VLT is expected to produce around 100 Terabytes (100,000,000,000,000 bytes) of data. It is difficult to visualize this enormous amount of information. However, it corresponds to the content of 50 million books of 1000 pages each; they would occupy some 2,500 kilometres of bookshelves! The VLT Data Flow System enters into operation ESO PR Photo 25c/99 ESO PR Photo 25c/99 [Preview - JPEG: 400 x 444 pix - 164k] [Normal - JPEG: 800 x 887 pix - 552k] [High-Res - JPEG: 3000 x 3327 pix - 6.4M] Caption to ESO PR Photo 25c/99 : Astronomers from ESO Data Flow Operations Group at work with the VLT Archive. Science operations with the first VLT 8.2-m telescope ( ANTU ) began on April 1, 1999. Following the first call for proposals to use the VLT in October 1998, the OPC met in December and the observing schedule was finalized early 1999. The related Observation Blocks were prepared by the astronomers in February and March. Service-mode observations began in April and by late May the first scientific programs conducted by ESO science operations were completed. Raw data, instrument calibration information and the products of pipeline processing from these programs have now been assembled and packed onto CD ROMs by ESO science operations staff. On June 15 the first CD ROMs were delivered to astronomers in the ESO community. This event marks the closing of the data flow loop at the VLT for the first time and the successful culmination of more than 5 years of hard work by ESO engineers and scientists to implement a system for efficient and effective scientific data flow. This was achieved by a cross-organization science operations team involving staff in Chile and Europe. With the VLT Data Flow System, a wider research community will have access to the enormous wealth of data from the VLT. It will help astronomers to keep pace with the new technologies and extensive capabilities of the VLT and so obtain world-first scientific results and new insights into the universe. Notes [1] A more technical description of the VLT Data Flow System is available in Chapter 10 of the VLT Whitebook. [2] By definition, one "normal printed page" contains 2,000 characters. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  14. The GalileoMobile starts its South American voyage - Astronomy education goes on tour through the Andes Mountains

    NASA Astrophysics Data System (ADS)

    2009-10-01

    Today marks the beginning of the GalileoMobile Project, a two-month expedition to bring the wonder and excitement of astronomy to young people in Chile, Bolivia and Peru. Supported by ESO and partners, a group of astronomers and educators will travel through a region of the Andes Mountains aboard the GalileoMobile, offering astronomical activities, such as workshops for students and star parties for the general public. Professional filmmakers on the trip will produce a multilingual documentary capturing the thrill of discovery through science, culture and travel. The GalileoMobile is a Special Project of the International Year of Astronomy 2009 (IYA2009), which is a global celebration commemorating the first use of a telescope to view the Universe by the Italian astronomer Galileo four hundred years ago. The project will promote basic science education through astronomy by visiting schools and communities that have limited access to outreach programmes. The GalileoMobile will provide these underserved groups with hands-on activities and educational material from international partners. The van is fully equipped to offer unique sky-observing opportunities for young students and other locals, with star parties at night and solar observations during the day. The team will use various tools including IYA2009's handy Galileoscopes, which will be donated to the schools after the visits. By stimulating curiosity, critical thinking and a sense of wonder and discovery for the Universe and our planet, the GalileoMobile Project aims to encourage interest in astronomy and science, and exchange culturally different visions of the cosmos. Spearheading the initiative is a group of enthusiastic Latin American and European PhD students from the European Southern Observatory, the Max Planck Society, the University Observatory Munich, and the Stockholm University Observatory. This itinerant educational programme is intended to reach about 20 000 people during eight weeks in October and November 2009, and will cover 5000 kilometres. The voyage will largely take place across the Altiplano, or high plateau, shared by Peru, Bolivia and Chile, which is among the poorest regions in these countries. South America and the Andes Mountains were particularly chosen for the GalileoMobile Project for several reasons. IYA2009 already has a strong presence in the region through national contacts, including three Cornerstone IYA2009 projects: Developing Astronomy Globally, Universe Awareness and the Galileo Teacher Training Programme, which are all official partners of the project. Most people in Peru, Bolivia and Chile speak the same language, Spanish [1], and have a rich astronomical heritage dating back to the pre-Columbian Inca and Tiwanaku civilisations that lived on the Altiplano. The region's high elevation and the quality of its skies for astronomical observations also made it an attractive candidate for the maiden voyage of the GalileoMobile. The journey starts today 5 October 2009 in Antofagasta, Chile, with a free, public inauguration event at 19:00 in the Berta González Square at the Universidad Católica del Norte. The event, which will include observations of the night sky, is organised by ESO in collaboration with Explora II Region and the Astronomy Institute of the University. From Antofagasta the GalileoMobile heads north through La Paz in Bolivia and on into Peru. The return trip to Antofagasta goes via the Panamericana coastal road, and passes near the home of ESO's world-class observatory, the Very Large Telescope at Cerro Paranal. ESO Education and Outreach coordinator in Chile, Laura Ventura, will assist the GalileoMobile team as they greet communities throughout Chile's northern deserts. "The GalileoMobile is a wonderful initiative, and a unique opportunity to reinforce educational activities in the north of Chile and the neighbouring countries. It will promote greater awareness of astronomy and science", says Ventura. "We are looking forward to helping the team members make the GalileoMobile a great success." To chronicle this remarkable astronomy expedition, members of the GalileoMobile team will write entries for the GalileoMobile blog and Cosmic Diary, an online blog-cum-journal that is also a Cornerstone IYA2009 project, and run a Twitter feed and a Facebook page. The team will reach out to national newspapers, websites and television stations during the tour, and will be accompanied by a film crew who will produce a multilingual documentary of the expedition. Project Coordinator Philippe Kobel concludes: "We hope that, by showing the excitement of astronomical discovery, and the diversity and richness of the South American traditions, the GalileoMobile Project will encourage a feeling of 'unity under the same sky' between people of different cultures and backgrounds." The GalileoMobile is supported by the European Southern Observatory (ESO), whose host country is Chile and which is the seat of the International Year of Astronomy 2009 (IYA2009) Secretariat, the Max Planck Society (MPG/MPE/MPA/MPS), NORDITA, Regione Molise and the Optical Society of America. Notes [1] To facilitate access to remote sites and foster the communication and translation in native non-Spanish languages, such as Quechua and Aymara, local university students or education officials will join the GalileoMobile team from time to time. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  15. Multicentric analysis of performance after major lung resections by using the European Society Objective Score (ESOS).

    PubMed

    Brunelli, Alessandro; Varela, Gonzalo; Van Schil, Paul; Salati, Michele; Novoa, Nuria; Hendriks, Jeroen M; Jimenez, Marcelo F; Lauwers, Patrick

    2008-02-01

    Outcome endpoints are still the most widely used indicators of performance. However, they need to be risk-adjusted in order to be reliable instruments of audit. Recently, the European Society Objective Score (ESOS) was developed from the online European Thoracic Surgery Database as an audit tool. In this study, we applied for the first time the ESOS.01 to assess the performance of three European thoracic surgery units during three successive years of activity. This study is a retrospective analysis performed on prospective databases. We analysed 695 patients submitted to pneumonectomy (117) or lobectomy (578) for lung neoplasm at three European dedicated thoracic surgery units (unit A 264 patients, unit B 262, unit C 169) from January 2004 through December 2006. Qualified thoracic surgeons performed all the operations. No patients in this series were in the original ESOS development set. ESOS.01 was used to estimate the risk of in-hospital mortality in all patients. Observed and predicted mortality rates were then compared within each unit by the z-test. Cumulative observed mortality rates in units A, B and C were 2.3% (six cases), 2.7% (seven cases) and 4.1% (seven cases), respectively. We were not able to find statistically significant differences between observed and ESOS-predicted mortality rates. The comparison of risk-adjusted mortality rates between units did not show significant differences (unit A 3.9%, unit B 3.3%, unit C 5.6%). The use of ESOS.01 revealed that the performances of all units were in line with the predicted ones during each period under analysis and did not differ between each other. The results of our study warrant future efforts to refine the ESOS model and to develop other risk-adjusted outcome indicators with the aim to establish European benchmarks of performance.

  16. Astronomy Teaching in Europe's Secondary Schools

    NASA Astrophysics Data System (ADS)

    1994-11-01

    EU/ESO Workshop for European Physics Teachers A joint Workshop of the European Union (EU) and the European Southern Observatory (ESO) will take place on November 25 - 30, 1994 under the auspices of the European Week for Scientific Culture. The Workshop is entitled "Astronomy: Science, Culture and Technology". It will bring together at the ESO Headquarters in Garching (Germany) more than 100 secondary school teachers and ministerial representatives from 17 European countries to discuss all aspects of this broad subject. It is the first and very visible part of a new, sustained effort to stimulate and modernize the teaching of the subjects of Astronomy and Astrophysics in European secondary schools. During the Workshop, the participants will experience the present state of this multi-disciplinary science in its most general context, that is as a human, long-term scientific and technological endeavour with great cultural implications. They will exchange views on how the various elements of Astronomy can best be utilized within the educational schemes of the individual countries, both as subjects in their own rights, and especially in support of many other items on the present teaching agenda. Why This Workshop ? Astronomy is probably the oldest science. Since innumerable millenia, it has continued to have a great influence on mankind's perception of itself and its surroundings. In our days, Astronomy and Astrophysics have become a central area of the natural sciences with many direct links to other sciences (e.g., many aspects of physics, mathematics, chemistry, the geo-sciences, etc.); it has an important cultural content (including our distant origins, the recognition of the location and restricted extent of our niche in space and time, cosmological considerations as well as philosophy in general); its recent successes are to a large amount dependent on advanced technologies and methodologies (e.g., optics, electronics, detector techniques at all wavelengths, computer techniques like image processing and the transfer, storage and retrieval of enormous data sets). Astronomy is undoubtedly one of the sciences that enjoys the most intense public interest and it also has a great media appeal, in part because of its exploratory ("adventurous") character and ability to produce spectacular images, cf. the recent, dramatic collision between a comet and Jupiter. Moreover, with the increasing public awareness of the Earth's fragile ecosystems and the obvious influence of external, i.e., "astronomical" forces (solar irradiation, variations in the Earth's orbit, collisions with other bodies, radiative effects from nearby cosmic explosions, etc.), this science has taken on a new significance in the minds of many people. Nevertheless, the teaching of Astronomy in European secondary schools has been the subject of many vacillations during the past decades. In several countries it is taught at a quite rudimentary and "old-fashioned" level, in others, some of its elements are included, but most often in a seemingly haphazard way; it is very rare, that an overall, holistic view is presented. This is despite the obvious fact that many areas of Astronomy are relatively easy to comprehend (at least qualitatively) and that this science is a most illustrative example of the interplay between science, culture and technology in all its historical and modern aspects. It moreover demonstrates the unity of science, gives a host of educationally useful examples of the scientific method, and may also serve as a natural stepping stone into a large number of other areas of human knowledge and activities. The Workshop Programme The Workshop will begin in the afternoon of Friday, November 25, when the participants gather at the ESO Headquarters in Garching near Munich. It ends after four busy days in the evening of Tuesday, November 29. To begin with, specialist speakers will provide reviews of some of the scientific subjects now at the forefront of Astronomy and Astrophysics, overviews of selected astronomical technologies of more general relevance and their various implications for other human activities, as well as presentations of Astronomy as part of our cultural heritage and its current place in society. Then follows a thorough discussion among the participants about the current teaching of astronomy-related subjects in secondary schools in the individual countries. One of the main aims of this meeting will be the preparation of a joint document stating the goals and optimal contents of the future teaching of Astronomy in Europe's secondary schools. It is also the intention to initiate on this occasion a Europe-wide "teachers' network", which can follow these matters up. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  17. Deep Sky Diving with the ESO New Technology Telescope

    NASA Astrophysics Data System (ADS)

    1998-01-01

    Preparations for future cosmological observations with the VLT Within a few months, the first 8.2-meter Unit Telescope of the ESO Very Large Telescope (VLT) array will open its eye towards the sky above the Atacama desert. As documented by recent Press Photos from ESO, the construction work at the Paranal VLT Observatory is proceeding rapidly. Virtually all of the telescope components, including the giant Zerodur mirror (cf. ESO PR Photos 35a-l/97 ), are now on the mountain. While the integration of the telescope and its many optical, mechanical and electronic components continues, astronomers in the ESO member countries and at ESO are now busy defining the observing programmes that will be carried out with the new telescope, soon after it enters into operation. In this context, new and exciting observations have recently been obtained with the 3.5-m New Technology Telescope at the ESO La Silla Observatory, 600 km to the south of Paranal. How to record the faintest and most remote astronomical objects With its very large mirror surface (and correspondingly great light collecting power), as well as an unsurpassed optical quality, the VLT will be able to look exceedingly far out into the Universe, well beyond current horizons. The best technique to record the faintest possible light and thus the most remote celestial objects, is to combine large numbers of exposures of the same field with slightly different telescope pointing. This increases the total number of photons recorded and by imaging the stars and galaxies on different areas (pixels) of the detector, the signal-to-noise ratio and hence the visibility of the faintest objects is improved. The famous Hubble Deep Field Images were obtained in this way by combining over 300 single exposures and they show myriads of faint galaxies in the distant realms of the Universe. The NTT as test bench for the VLT ESO is in the fortunate situation of possessing a `prototype' model of the Very Large Telescope, the 3.5-m New Technology Telescope. Many of the advanced technological concepts now incorporated into the VLT were first tested in the NTT. When this new facility entered into operation at La Silla in 1990, it represented a break-through in telescope technology and it has since then made many valuable contributions to front-line astronomical projects. Last year, the control and data flow system at the NTT was thoroughly refurbished to the high VLT standards and current observations with the NTT closely simulate the future operation of the VLT. The successful, early tests with the new operations system have been described in ESO Press Release 03/97. The NTT SUSI Deep Field With the possibility to test already now observing procedures which will become standard for the operation of the VLT, a group of astronomers [1] was granted NTT time for observations of Faint Galaxies in an Ultra-Deep Multicolour SUSI field . This is a programme aimed at the study of the distribution of faint galaxies in the field and of gravitational lensing effects (cosmic mirages and deformation of images of distant galaxies caused by the gravitational field of intervening matter). SUSI (SUperb Seeing Imager) is a high-resolution CCD-camera at the NTT that is particularly efficient under excellent sky conditions. The observations were fully defined in advance and were carried out in service mode from February to April 1997 with flexible scheduling by a team of dedicated ESO astronomers (the NTT team). Only in this way was it possible to obtain the exposures under optimal atmospheric conditions, i.e. `photometric' sky and little atmospheric turbulence (seeing better than 1 arcsec). A total of 122 CCD frames were obtained in four colours (blue, green-yellow, red and near-infrared) with a total exposure time of no less than 31.5 hours. The frames cover a 2.3 x 2.3 arcmin `empty' sky field centered south of the high-redshift quasar QSO BR 1202-0725 (z=4.7), located just south of the celestial equator. ESO PR Photo 01a/98 Caption to ESO PR Photo 01/98 and access to two versions of the photo The frames were computer processed and combined to yield a colour view of the corresponding sky field ( ESO Press Photo 01/98 ). This is indeed a very deep look into the southern sky. The astronomers have found that the limiting magnitude (at a signal-to-noise ratio of 3) is beyond 27 in the blue and red frames and only slightly brighter in the two others. Magnitude 27 corresponds to a brightness that is 250 million times fainter than what can be perceived with the unaided eye. Although not as deep as the Hubble Deep Field due to the shorter exposure time and brighter sky background (caused by light emission in the upper layers of the terrestrial atmosphere), this new set of data is among the best ground-based observations of this type ever obtained. Galaxies down to a magnitude of roughly 25 will soon be targets of detailed spectroscopic observations with the VLT. They will provide a measure of their basic physical parameters like redshift, luminosity and mass. How to access the new data This scientific program aims at the study of the photometric redshift distribution of the faint galaxies [2] and of gravitational lensing effects (cosmic mirages). It has been decided to make the complete data set available to the wide scientific community and it is expected that many astronomers all over the world will want to perform their own investigations by means of this unique observational material. A full description of the project is available on the ESO Web at http://www.eso.org/ndf/. Here you will find a comprehensive explanation of the scientific background, details about the observations and the data reduction, as well as easy access to the corresponding data files. Notes: [1] The group consists of Sandro D'Odorico (Principal Investigator, ESO) and Jacqueline Bergeron (ESO), Hans-Martin Adorf (ESO), Stephane Charlot (IAP, Paris, France), David Clements (IAS, Orsay, France), Stefano Cristiani (Univ. of Padova, Italy), Luiz da Costa (ESO), Eiichi Egami (MPI Extraterrestrial Physics, Garching, Germany), Adriano Fontana (Rome Observatory, Italy), Bernard Fort (Paris Observatory, France), Laurent Gautret (Paris Observatory, France), Emanuele Giallongo (Rome Observatory, Italy), Roberto Gilmozzi, Richard N.Hook and Bruno Leibundgut (ESO), Yannick Mellier and Patrick Petitjean (IAP, Paris, France), Alvio Renzini, Sandra Savaglio and Peter Shaver (ESO), Stella Seitz (Munich Observatory, Germany) and Lin Yan (ESO). [2]. The photometric redshift method allows to determine an approximate distance of a distant galaxy by measuring its colour, i.e., its relative brightness (magnitude) in different wavebands. It is based on the proportionality between the distance of a galaxy and its recession velocity (the Hubble law). The higher the velocity, the more its emission will be shifted towards longer wavelengths and the redder is the colour. Recent investigations of galaxies seen in the Hubble Deep Field have shown that the redshifts (and thus distances) found by this method are quite accurate in most cases. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  18. The effect of epoxidized soybean oil on mechanical and rheological properties of poly(butylene succinate)/lignin via vane extruder

    NASA Astrophysics Data System (ADS)

    Liu, Huanyu; Huang, Zhaoxia; Qu, Jinping; Meng, Cong

    2016-03-01

    Epoxidized Soybean Oil (ESO) have been used as the compatilizer in the Poly (butylene succinate)/lignin (PBS/lignin) composites. Compatibilized composites were fabricated by a novel vane extruder (VE) which can generate global and dynamic elongational flow. The effects of ESO on the mechanical, rheological properties and morphology of PBS/lignin were studied. The results indicated that the use of ESO had plasticizing effect on the matrix PBS while the addition reduced tensile strength. From SEM micrographs it could be clearly observed that there was a better interfacial adhesion between lignin and matrix. Meanwhile, rheological tests showed the incorporation of ESO improved its Newtonian behavior and can enhance PBS's flexibility.

  19. Planet Formation in Action? - Astronomers may have found the first object clearing its path in the natal disc surrounding a young star

    NASA Astrophysics Data System (ADS)

    2011-02-01

    Using ESO's Very Large Telescope an international team of astronomers has been able to study the short-lived disc of material around a young star that is in the early stages of making a planetary system. For the first time a smaller companion could be detected that may be the cause of the large gap found in the disc. Future observations will determine whether this companion is a planet or a brown dwarf. Planets form from the discs of material around young stars, but the transition from dust disc to planetary system is rapid and few objects are caught during this phase [1]. One such object is T Chamaeleontis (T Cha), a faint star in the small southern constellation of Chamaeleon that is comparable to the Sun, but very near the beginning of its life [2]. T Cha lies about 350 light-years from the Earth and is only about seven million years old. Up to now no forming planets have been found in these transitional discs, although planets in more mature discs have been seen before (eso0842, heic0821). "Earlier studies had shown that T Cha was an excellent target for studying how planetary systems form," notes Johan Olofsson (Max Planck Institute for Astronomy, Heidelberg, Germany), one of the lead authors of two papers in the journal Astronomy & Astrophysics that describe the new work. "But this star is quite distant and the full power of the Very Large Telescope Interferometer (VLTI) was needed to resolve very fine details and see what is going on in the dust disc." The astronomers first observed T Cha using the AMBER instrument and the VLT Interferometer (VLTI) [3]. They found that some of the disc material formed a narrow dusty ring only about 20 million kilometres from the star. Beyond this inner disc, they found a region devoid of dust with the outer part of the disc stretching out into regions beyond about 1.1 billion kilometres from the star. Nuria Huélamo (Centro de Astrobiología, ESAC, Spain), the lead author of the second paper takes up the story: "For us the gap in the dust disc around T Cha was a smoking gun, and we asked ourselves: could we be witnessing a companion digging a gap inside its protoplanetary disc?" However, finding a faint companion so close to a bright star is a huge challenge and the team had to use the VLT instrument NACO in a novel and powerful way, called sparse aperture masking, to reach their goal [4]. After careful analysis they found the clear signature of an object located within the gap in the dust disc, about one billion kilometres from the star - slightly further out than Jupiter is within our Solar System and close to the outer edge of the gap. This is the first detection of an object much smaller than a star within a gap in the planet-forming dust disc around a young star. The evidence suggests that the companion object cannot be a normal star [5] but it could be either a brown dwarf [6] surrounded by dust or, most excitingly, a recently formed planet. Huélamo concludes: "This is a remarkable joint study that combines two different state-of-the-art instruments at ESO's Paranal Observatory. Future observations will allow us to find out more about the companion and the disc, and also understand what fuels the inner dusty disc." Notes [1] The transitional discs can be spotted because they give off less radiation at mid-infrared wavelengths. The clearing of the dust close to the star and the creation of gaps and holes can explain this missing radiation. Recently formed planets may have created these gaps, although there are also other possibilities. [2] T Cha is a T Tauri star, a very young star that is still contracting towards the main sequence. [3] The astronomers used the AMBER instrument (Astronomical Multi-BEam combineR) and the VLTI to combine the light from all four of the 8.2-metre VLT Unit Telescopes and create a "virtual telescope" 130 metres across. [4] NACO (or NAOS-CONICA in full) is an adaptive optics instrument attached to ESO's Very Large Telescope. Thanks to adaptive optics, astronomers can remove most of the blurring effect of the atmosphere and obtain very sharp images. The team used NACO in a novel way, called sparse aperture masking (SAM) to search for the companion. This is a type of interferometry that, rather than combining the light from multiple telescopes as the VLTI does, uses different parts of the mirror of a single telescope (in this case, the mirror of the VLT Unit Telescope 4). This new technique is particularly good for finding faint objects very close to bright ones. VLTI/AMBER is better suited to studying the structure of the inner disc and is less sensitive to the presence of a distant companion. [5] The astronomers searched for the companion using NACO in two different spectral bands - at around 2.2 microns and at 3.8 microns. The companion is only seen at the longer wavelength, which means that the object is either cool, like a planet, or a dust-shrouded brown dwarf. [6] Brown dwarfs are objects between stars and planets in size. They are not massive enough to fuse hydrogen in their cores but are larger than giant planets such as Jupiter. More information This research was presented in two papers: Olofsson et al. 2011, "Warm dust resolved in the cold disk around TCha with VLTI/AMBER", and Huélamo et al. 2011, "A companion candidate in the gap of the T Cha transitional disk", to appear in the journal Astronomy & Astrophysics. The team is composed of J. Olofsson (Max-Planck-Institut für Astronomie [MPIA], Heidelberg, Germany), M. Benisty (MPIA), J.-C. Augereau (Institut de Planétologie et d'Astrophysique de Grenoble [IPAG], France) C. Pinte (IPAG), F. Ménard (IPAG), E. Tatulli (IPAG), J.-P. Berger (ESO, Santiago, Chile), F. Malbet (IPAG), B. Merín (Herschel Science Centre, Madrid, Spain), E. F. van Dishoeck (Leiden University, Holland), S. Lacour (Observatoire de Paris, France), K. M. Pontoppidan (California Institute of Technology, USA), J.-L. Monin (IPAG), J. M. Brown (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany), G. A. Blake (California Institute of Technology), N. Huélamo (Centro de Astrobiología, ESAC, Spain), P. Tuthill (University of Sydney, Australia), M. Ireland (University of Sydney), A. Kraus (University of Hawaii) and G. Chauvin (Université Joseph Fourier, Grenoble, France). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. Stars Just Got Bigger - A 300 Solar Mass Star Uncovered

    NASA Astrophysics Data System (ADS)

    2010-07-01

    Using a combination of instruments on ESO's Very Large Telescope, astronomers have discovered the most massive stars to date, one weighing at birth more than 300 times the mass of the Sun, or twice as much as the currently accepted limit of 150 solar masses. The existence of these monsters - millions of times more luminous than the Sun, losing weight through very powerful winds - may provide an answer to the question "how massive can stars be?" A team of astronomers led by Paul Crowther, Professor of Astrophysics at the University of Sheffield, has used ESO's Very Large Telescope (VLT), as well as archival data from the NASA/ESA Hubble Space Telescope, to study two young clusters of stars, NGC 3603 and RMC 136a in detail. NGC 3603 is a cosmic factory where stars form frantically from the nebula's extended clouds of gas and dust, located 22 000 light-years away from the Sun (eso1005). RMC 136a (more often known as R136) is another cluster of young, massive and hot stars, which is located inside the Tarantula Nebula, in one of our neighbouring galaxies, the Large Magellanic Cloud, 165 000 light-years away (eso0613). The team found several stars with surface temperatures over 40 000 degrees, more than seven times hotter than our Sun, and a few tens of times larger and several million times brighter. Comparisons with models imply that several of these stars were born with masses in excess of 150 solar masses. The star R136a1, found in the R136 cluster, is the most massive star ever found, with a current mass of about 265 solar masses and with a birthweight of as much as 320 times that of the Sun. In NGC 3603, the astronomers could also directly measure the masses of two stars that belong to a double star system [1], as a validation of the models used. The stars A1, B and C in this cluster have estimated masses at birth above or close to 150 solar masses. Very massive stars produce very powerful outflows. "Unlike humans, these stars are born heavy and lose weight as they age," says Paul Crowther. "Being a little over a million years old, the most extreme star R136a1 is already 'middle-aged' and has undergone an intense weight loss programme, shedding a fifth of its initial mass over that time, or more than fifty solar masses." If R136a1 replaced the Sun in our Solar System, it would outshine the Sun by as much as the Sun currently outshines the full Moon. "Its high mass would reduce the length of the Earth's year to three weeks, and it would bathe the Earth in incredibly intense ultraviolet radiation, rendering life on our planet impossible," says Raphael Hirschi from Keele University, who belongs to the team. These super heavyweight stars are extremely rare, forming solely within the densest star clusters. Distinguishing the individual stars - which has now been achieved for the first time - requires the exquisite resolving power of the VLT's infrared instruments [2]. The team also estimated the maximum possible mass for the stars within these clusters and the relative number of the most massive ones. "The smallest stars are limited to more than about eighty times more than Jupiter, below which they are 'failed stars' or brown dwarfs," says team member Olivier Schnurr from the Astrophysikalisches Institut Potsdam. "Our new finding supports the previous view that there is also an upper limit to how big stars can get, although it raises the limit by a factor of two, to about 300 solar masses." Within R136, only four stars weighed more than 150 solar masses at birth, yet they account for nearly half of the wind and radiation power of the entire cluster, comprising approximately 100 000 stars in total. R136a1 alone energises its surroundings by more than a factor of fifty compared to the Orion Nebula cluster, the closest region of massive star formation to Earth. Understanding how high mass stars form is puzzling enough, due to their very short lives and powerful winds, so that the identification of such extreme cases as R136a1 raises the challenge to theorists still further. "Either they were born so big or smaller stars merged together to produce them," explains Crowther. Stars between about 8 and 150 solar masses explode at the end of their short lives as supernovae, leaving behind exotic remnants, either neutron stars or black holes. Having now established the existence of stars weighing between 150 and 300 solar masses, the astronomers' findings raise the prospect of the existence of exceptionally bright, "pair instability supernovae" that completely blow themselves apart, failing to leave behind any remnant and dispersing up to ten solar masses of iron into their surroundings. A few candidates for such explosions have already been proposed in recent years. Not only is R136a1 the most massive star ever found, but it also has the highest luminosity too, close to 10 million times greater than the Sun. "Owing to the rarity of these monsters, I think it is unlikely that this new record will be broken any time soon," concludes Crowther. Notes [1] The star A1 in NGC 3603 is a double star, with an orbital period of 3.77 days. The two stars in the system have, respectively, 120 and 92 times the mass of the Sun, which means that they have formed as stars weighing, respectively, 148 and 106 solar masses. [2] The team used the SINFONI, ISAAC and MAD instruments, all attached to ESO's Very Large Telescope at Paranal, Chile. [3] (note added on 26 July 2010) The "bigger" in the title does not imply that these stars are the biggest observed. Such stars, called red supergiants, can have radii up to about a thousand solar radii, while R136a1, which is blue, is about 35 times as large as the Sun. However, R136a1 is the star with the greatest mass known to date. More information This work is presented in an article published in the Monthly Notices of the Royal Astronomical Society ("The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 Msun stellar mass limit", by P. Crowther et al.). The team is composed of Paul A. Crowther, Richard J. Parker, and Simon P. Goodwin (University of Sheffield, UK), Olivier Schnurr (University of Sheffield and Astrophysikalisches Institut Potsdam, Germany), Raphael Hirschi (Keele University, UK), and Norhasliza Yusof and Hasan Abu Kassim (University of Malaya, Malaysia). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  1. Microsoft's Vista: Guarantees People with Special Needs Access to Computers

    ERIC Educational Resources Information Center

    Williams, John M.

    2006-01-01

    In this article, the author discusses the accessibility features of Microsoft's Windows Vista. One of the most innovative aspects of Windows Vista is a new accessibility and automated testing model called Microsoft UI Automation, which reduces development costs not only for accessible and assistive technology (AT) developers, but also for…

  2. 77 FR 60904 - Safety Zone; Rio Vista Bass Derby Fireworks, Sacramento River, Rio Vista, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-05

    ... Vista, CA in position 38[deg]09'18'' N, 121[deg]41'15'' W (NAD 83). Upon commencement of the 15 minute... within a radius of 1,000 feet in position in position 38[deg]09'18'' N, 121[deg]41'15'' W (NAD 83) for...

  3. AmeriCorps VISTA: Getting Things Done for America

    ERIC Educational Resources Information Center

    Corporation for National and Community Service, 2017

    2017-01-01

    AmeriCorps VISTA (Volunteers in Service to America) engages more than 8,000 individuals annually to support community efforts to overcome poverty. AmeriCorps VISTA members serve full time for a year at nonprofit organizations or local government agencies to build the capacity of these organizations to carry out programs that alleviate poverty.…

  4. A Public Ks -selected Catalog in the COSMOS/ULTRAVISTA Field: Photometry, Photometric Redshifts, and Stellar Population Parameters

    NASA Astrophysics Data System (ADS)

    Muzzin, Adam; Marchesini, Danilo; Stefanon, Mauro; Franx, Marijn; Milvang-Jensen, Bo; Dunlop, James S.; Fynbo, J. P. U.; Brammer, Gabriel; Labbé, Ivo; van Dokkum, Pieter

    2013-05-01

    We present a catalog covering 1.62 deg2 of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 μm including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA Ks band imaging that reaches a depth of K s, tot = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z phot) for all galaxies computed with the EAZY code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z ~ 1.5 the z phot are accurate to Δz/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z phot also show good agreement with the z phot from the NEWFIRM Medium Band Survey out to z ~ 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L 2800 and L IR. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z ~ 2. Star-forming galaxies also obey a star-forming "main sequence" out to z ~ 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA Ks -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z ~ 3-4. .

  5. A PUBLIC K{sub s} -SELECTED CATALOG IN THE COSMOS/ULTRAVISTA FIELD: PHOTOMETRY, PHOTOMETRIC REDSHIFTS, AND STELLAR POPULATION PARAMETERS {sup ,}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzin, Adam; Franx, Marijn; Labbe, Ivo

    2013-05-01

    We present a catalog covering 1.62 deg{sup 2} of the COSMOS/UltraVISTA field with point-spread function (PSF) matched photometry in 30 photometric bands. The catalog covers the wavelength range 0.15-24 {mu}m including the available GALEX, Subaru, Canada-France-Hawaii Telescope, VISTA, and Spitzer data. Catalog sources have been selected from the DR1 UltraVISTA K{sub s} band imaging that reaches a depth of K {sub s,tot} = 23.4 AB (90% completeness). The PSF-matched catalog is generated using position-dependent PSFs ensuring accurate colors across the entire field. Also included is a catalog of photometric redshifts (z {sub phot}) for all galaxies computed with the EAZYmore » code. Comparison with spectroscopy from the zCOSMOS 10k bright sample shows that up to z {approx} 1.5 the z {sub phot} are accurate to {Delta}z/(1 + z) = 0.013, with a catastrophic outlier fraction of only 1.6%. The z {sub phot} also show good agreement with the z {sub phot} from the NEWFIRM Medium Band Survey out to z {approx} 3. A catalog of stellar masses and stellar population parameters for galaxies determined using the FAST spectral energy distribution fitting code is provided for all galaxies. Also included are rest-frame U - V and V - J colors, L {sub 2800} and L {sub IR}. The UVJ color-color diagram confirms that the galaxy bi-modality is well-established out to z {approx} 2. Star-forming galaxies also obey a star-forming 'main sequence' out to z {approx} 2.5, and this sequence evolves in a manner consistent with previous measurements. The COSMOS/UltraVISTA K{sub s} -selected catalog covers a unique parameter space in both depth, area, and multi-wavelength coverage and promises to be a useful tool for studying the growth of the galaxy population out to z {approx} 3-4.« less

  6. Fourth Light at Paranal!

    NASA Astrophysics Data System (ADS)

    2000-09-01

    VLT YEPUN Joins ANTU, KUEYEN and MELIPAL It was a historical moment last night (September 3 - 4, 2000) in the VLT Control Room at the Paranal Observatory , after nearly 15 years of hard work. Finally, four teams of astronomers and engineers were sitting at the terminals - and each team with access to an 8.2-m telescope! From now on, the powerful "Paranal Quartet" will be observing night after night, with a combined mirror surface of more than 210 m 2. And beginning next year, some of them will be linked to form part of the unique VLT Interferometer with unparalleled sensitivity and image sharpness. YEPUN "First Light" Early in the evening, the fourth 8.2-m Unit Telescope, YEPUN , was pointed to the sky for the first time and successfully achieved "First Light". Following a few technical exposures, a series of "first light" photos was made of several astronomical objects with the VLT Test Camera. This instrument was also used for the three previous "First Light" events for ANTU ( May 1998 ), KUEYEN ( March 1999 ) and MELIPAL ( January 2000 ). These images served to evaluate provisionally the performance of the new telescope, mainly in terms of mechanical and optical quality. The ESO staff were very pleased with the results and pronounced YEPUN fit for the subsequent commissioning phase. When the name YEPUN was first given to the fourth VLT Unit Telescope, it was supposed to mean "Sirius" in the Mapuche language. However, doubts have since arisen about this translation and a detailed investigation now indicates that the correct meaning is "Venus" (as the Evening Star). For a detailed explanation, please consult the essay On the Meaning of "YEPUN" , now available at the ESO website. The first images At 21:39 hrs local time (01:39 UT), YEPUN was turned to point in the direction of a dense Milky Way field, near the border between the constellations Sagitta (The Arrow) and Aquila (The Eagle). A guide star was acquired and the active optics system quickly optimized the mirror system. At 21:44 hrs (01:44 UT), the Test Camera at the Cassegrain focus within the M1 mirror cell was opened for 30 seconds, with the planetary nebula Hen 2-428 in the field. The resulting "First Light" image was immediately read out and appeared on the computer screen at 21:45:53 hrs (01:45:53 UT). "Not bad! - "Very nice!" were the first, "business-as-usual"-like comments in the room. The zenith distance during this observation was 44° and the image quality was measured as 0.9 arcsec, exactly the same as that registered by the Seeing Monitoring Telescope outside the telescope building. There was some wind. ESO PR Photo 22a/00 ESO PR Photo 22a/00 [Preview - JPEG: 374 x 400 pix - 128k] [Normal - JPEG: 978 x 1046 pix - 728k] Caption : ESO PR Photo 22a/00 shows a colour composite of some of the first astronomical exposures obtained by YEPUN . The object is the planetary nebula Hen 2-428 that is located at a distance of 6,000-8,000 light-years and seen in a dense sky field, only 2° from the main plane of the Milky Way. As other planetary nebulae, it is caused by a dying star (the bluish object at the centre) that shreds its outer layers. The image is based on exposures through three optical filtres: B(lue) (10 min exposure, seeing 0.9 arcsec; here rendered as blue), V(isual) (5 min; 0.9 arcsec; green) and R(ed) (3 min; 0.9 arcsec; red). The field measures 88 x 78 arcsec 2 (1 pixel = 0.09 arcsec). North is to the lower right and East is to the lower left. The 5-day old Moon was about 90° away in the sky that was accordingly bright. The zenith angle was 44°. The ESO staff then proceeded to take a series of three photos with longer exposures through three different optical filtres. They have been combined to produce the image shown in ESO PR Photo 22a/00 . More astronomical images were obtained in sequence, first of the dwarf galaxy NGC 6822 in the Local Group (see PR Photo 22f/00 below) and then of the spiral galaxy NGC 7793 . All 8.2-m telescopes now in operation at Paranal The ESO Director General, Catherine Cesarsky , who was present on Paranal during this event, congratulated the ESO staff to the great achievement, herewith bringing a major phase of the VLT project to a successful end. She was particularly impressed by the excellent optical quality that was achieved at this early moment of the commissioning tests. A measurement showed that already now, 80% of the light is concentrated within 0.22 arcsec. The manager of the VLT project, Massimo Tarenghi , was very happy to reach this crucial project milestone, after nearly fifteen years of hard work. He also remarked that with the M2 mirror already now "in the active optics loop", the telescope was correctly compensating for the somewhat mediocre atmospheric conditions on this night. The next major step will be the "first light" for the VLT Interferometer (VLTI) , when the light from two Unit Telescopes is combined. This event is expected in the middle of next year. Impressions from the YEPUN "First Light" event First Light for YEPUN - ESO PR VC 06/00 ESO PR Video Clip 06/00 "First Light for YEPUN" (5650 frames/3:46 min) [MPEG Video+Audio; 160x120 pix; 7.7Mb] [MPEG Video+Audio; 320x240 pix; 25.7 Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 06/00 shows sequences from the Control Room at the Paranal Observatory, recorded with a fixed TV-camera in the evening of September 3 at about 23:00 hrs local time (03:00 UT), i.e., soon after the moment of "First Light" for YEPUN . The video sequences were transmitted via ESO's dedicated satellite communication link to the Headquarters in Garching for production of the clip. It begins at the moment a guide star is acquired to perform an automatic "active optics" correction of the mirrors; the associated explanation is given by Massimo Tarenghi (VLT Project Manager). The first astronomical observation is performed and the first image of the planetary nebula Hen 2-428 is discussed by the ESO Director General, Catherine Cesarsky . The next image, of the nearby dwarf galaxy NGC 6822 , arrives and is shown and commented on by the ESO Director General. Finally, Massimo Tarenghi talks about the next major step of the VLT Project. The combination of the lightbeams from two 8.2-m Unit Telescopes, planned for the summer of 2001, will mark the beginning of the VLT Interferometer. ESO Press Photo 22b/00 ESO Press Photo 22b/00 [Preview; JPEG: 400 x 300; 88k] [Full size; JPEG: 1600 x 1200; 408k] The enclosure for the fourth VLT 8.2-m Unit Telescope, YEPUN , photographed at sunset on September 3, 2000, immediately before "First Light" was successfully achieved. The upper part of the mostly subterranean Interferometric Laboratory for the VLTI is seen in front. (Digital Photo). ESO Press Photo 22c/00 ESO Press Photo 22c/00 [Preview; JPEG: 400 x 300; 112k] [Full size; JPEG: 1280 x 960; 184k] The initial tuning of the YEPUN optical system took place in the early evening of September 3, 2000, from the "observing hut" on the floor of the telescope enclosure. From left to right: Krister Wirenstrand who is responsible for the VLT Control Software, Jason Spyromilio - Head of the Commissioning Team, and Massimo Tarenghi , VLT Manager. (Digital Photo). ESO Press Photo 22d/00 ESO Press Photo 22d/00 [Preview; JPEG: 400 x 300; 112k] [Full size; JPEG: 1280 x 960; 184k] "Mission Accomplished" - The ESO Director General, Catherine Cesarsky , and the Paranal Director, Roberto Gilmozzi , face the VLT Manager, Massimo Tarenghi at the YEPUN Control Station, right after successful "First Light" for this telescope. (Digital Photo). An aerial image of YEPUN in its enclosure is available as ESO PR Photo 43a/99. The mechanical structure of YEPUN was first pre-assembled at the Ansaldo factory in Milan (Italy) where it served for tests while the other telescopes were erected at Paranal. An early photo ( ESO PR Photo 37/95 ) is available that was obtained during the visit of the ESO Council to Milan in December 1995, cf. ESO PR 18/95. Paranal at sunset ESO Press Photo 22e/00 ESO Press Photo 22e/00 [Preview; JPEG: 400 x 200; 14kb] [Normal; JPEG: 800 x 400; 84kb] [High-Res; JPEG: 4000 x 2000; 4.0Mb] Wide-angle view of the Paranal Observatory at sunset. The last rays of the sun illuminate the telescope enclosures at the top of the mountain and some of the buildings at the Base Camp. The new "residencia" that will provide living space for the Paranal staff and visitors from next year is being constructed to the left. The "First Light" observations with YEPUN began soon after sunset. This photo was obtained in March 2000. Additional photos (September 6, 2000) ESO PR Photo 22f/00 ESO PR Photo 22f/00 [Preview - JPEG: 400 x 487 pix - 224k] [Normal - JPEG: 992 x 1208 pix - 1.3Mb] Caption : ESO PR Photo 22f/00 shows a colour composite of three exposures of a field in the dwarf galaxy NGC 6822 , a member of the Local Group of Galaxies at a distance of about 2 million light-years. They were obtained by YEPUN and the VLT Test Camera at about 23:00 hrs local time on September 3 (03:00 UT on September 4), 2000. The image is based on exposures through three optical filtres: B(lue) (10 min exposure; here rendered as blue), V(isual) (5 min; green) and R(ed) (5 min; red); the seeing was 0.9 - 1.0 arcsec. Individual stars of many different colours (temperatures) are seen. The field measures about 1.5 x 1.5 arcmin 2. Another image of this galaxy was obtained earlier with ANTU and FORS1 , cf. PR Photo 10b/99. ESO Press Photo 22g/00 ESO Press Photo 22g/00 [Preview; JPEG: 400 x 300; 136k] [Full size; JPEG: 1280 x 960; 224k] Most of the crew that put together YEPUN is here photographed after the installation of the M1 mirror cell at the bottom of the mechanical structure (on July 30, 2000). Back row (left to right): Erich Bugueno (Mechanical Supervisor), Erito Flores (Maintenance Technician); front row (left to right) Peter Gray (Mechanical Engineer), German Ehrenfeld (Mechanical Engineer), Mario Tapia (Mechanical Engineer), Christian Juica (kneeling - Mechanical Technician), Nelson Montano (Maintenance Engineer), Hansel Sepulveda (Mechanical Technican) and Roberto Tamai (Mechanical Engineer). (Digital Photo). ESO PR Photos may be reproduced, if credit is given to the European Southern Observatory. The ESO PR Video Clips service to visitors to the ESO website provides "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 05/00 ("Portugal to Accede to ESO (27 June 2000). Information is also available on the web about other ESO videos.

  7. Dutch Minister of Science Visits ESO Facilities in Chile

    NASA Astrophysics Data System (ADS)

    2005-05-01

    Mrs. Maria van der Hoeven, the Dutch Minister of Education, Culture and Science, who travelled to the Republic of Chile, arrived at the ESO Paranal Observatory on Friday afternoon, May 13, 2005. The Minister was accompanied, among others, by the Dutch Ambassador to Chile, Mr. Hinkinus Nijenhuis, and Mr. Cornelis van Bochove, the Dutch Director of Science. The distinguished visitors were able to acquaint themselves with one of the foremost European research facilities, the ESO Very Large Telescope (VLT), during an overnight stay at this remote site, and later, with the next major world facility in sub-millimetre and millimetre astronomy, the Atacama Large Millimeter Array (ALMA). At Paranal, the guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky; the ESO Council President, Prof. Piet van der Kruit; the ESO Representative in Chile, Prof. Felix Mirabel; the Director of the La Silla Paranal Observatory, Dr. Jason Spyromilio; by one of the Dutch members of the ESO Council, Prof. Tim de Zeeuw; by the renowned astrophysicist from Leiden, Prof. Ewine van Dishoek, as well as by ESO staff members. The visitors were shown the various high-tech installations at the observatory, including many of the large, front-line VLT astronomical instruments that have been built in collaboration between ESO and European research institutes. Explanations were given by ESO astronomers and engineers and the Minister gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. Having enjoyed the spectacular sunset over the Pacific Ocean from the Paranal deck, the Minister visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the Minister was invited to follow an observing sequence at the console of the Kueyen (UT2) and Melipal (UT3) telescopes. "I was very impressed, not just by the technology and the science, but most of all by all the people involved," expressed Mrs. Maria van der Hoeven during her visit. "An almost unique level of international cooperation is achieved at ESO, and everything is done by those who can do it best, irrespective of their country or institution. This spirit of excellence is an example for all Europe, notably for the new European Research Council." Catherine Cesarsky, ESO Director General, remarked that Dutch astronomers have been part of ESO from the beginning: "The Dutch astronomy community and industry play a major role in various aspects of the Very Large Telescope, and more particularly in its interferometric mode. With their long-based expertise in radio astronomy, Dutch astronomers greatly contribute in this field, and are now also playing a major role in the construction of ALMA. It is thus a particularly great pleasure to receive Her Excellency, Mrs. Maria van der Hoeven." ESO PR Photo 16d/05 ESO PR Photo 16d/05 Dutch Minister Maria van der Hoeven at Chajnantor - I [Preview - JPEG: 400 x 480 pix - 207k] [Normal - JPEG: 800 x 959 pix - 617k] ESO PR Photo 16e/05 ESO PR Photo 16e/05 Dutch Minister Maria van der Hoeven at Chajnantor - II [Preview - JPEG: 400 x 605 pix - 179k] [Normal - JPEG: 800 x 1210 pix - 522k] Caption: ESO PR Photo 16d/05: In front of the APEX antenna at Chajnantor. From left to right: Prof. Piet van der Kruit, Mrs. Maria van der Hoeven, Prof. Tim de Zeeuw, and Prof. Ewine van Dishoeck. ESO PR Photo 16e/05 shows the Delegation on the 5000m high Llano de Chajnantor plateau. From left to right: Dr. Leo Le Duc, Prof. Felix Mirabel, Prof. Tim de Zeeuw, Prof. Ewine van Dishoeck, Dr. Cornelius van Bochove, Mrs. Maria van der Hoeven, Mr. Hans van der Vlies, Dr. Joerg Eschwey, Mr. Hinkinus Nijenhuis, Prof. Piet van der Kruit, Mr. Hans van den Broek, and Mr. Eduardo Donoso. The delegation spent the night at the Observatory before heading further North in the Chilean Andes to San Pedro de Atacama and from there to the Operation Support Facility of the future ALMA Observatory. On Sunday, May 15, the delegation went to the 5000m Llano de Chajnantor, the future site of the large array of 12m antennas that is being build there and should be completed by 2013. The Minister in particular could visit the 12m APEX (Atacama Pathfinder Experiment) telescope and see the technical infrastructure. "I am fully confident that the worldwide cooperation in ALMA will be equally successful as the VLT, and I am convinced that the discoveries to be made here are meaningful for the Earth we live in", said Mrs. van der Hoeven. "History and future are coming together in the north of Chile, in a very special way," she added. "In the region of the ancient Atacamenos, scientists from all over the world are discovering more and more about the universe and the birth and death of stars. They even find new planets. They do that on Paranal with the VLT and soon will be doing that on the ALMA site." The Minister and her delegation left for Santiago in the afternoon.

  8. Wave-CAIPI ViSTa: highly accelerated whole-brain direct myelin water imaging with zero-padding reconstruction.

    PubMed

    Wu, Zhe; Bilgic, Berkin; He, Hongjian; Tong, Qiqi; Sun, Yi; Du, Yiping; Setsompop, Kawin; Zhong, Jianhui

    2018-09-01

    This study introduces a highly accelerated whole-brain direct visualization of short transverse relaxation time component (ViSTa) imaging using a wave controlled aliasing in parallel imaging (CAIPI) technique, for acquisition within a clinically acceptable scan time, with the preservation of high image quality and sufficient spatial resolution, and reduced residual point spread function artifacts. Double inversion RF pulses were applied to preserve the signal from short T 1 components for directly extracting myelin water signal in ViSTa imaging. A 2D simultaneous multislice and a 3D acquisition of ViSTa images incorporating wave-encoding were used for data acquisition. Improvements brought by a zero-padding method in wave-CAIPI reconstruction were also investigated. The zero-padding method in wave-CAIPI reconstruction reduced the root-mean-square errors between the wave-encoded and Cartesian gradient echoes for all wave gradient configurations in simulation, and reduced the side-main lobe intensity ratio from 34.5 to 16% in the thin-slab in vivo ViSTa images. In a 4 × acceleration simultaneous-multislice scenario, wave-CAIPI ViSTa achieved negligible g-factors (g mean /g max  = 1.03/1.10), while retaining minimal interslice artifacts. An 8 × accelerated acquisition of 3D wave-CAIPI ViSTa imaging covering the whole brain with 1.1 × 1.1 × 3 mm 3 voxel size was achieved within 15 minutes, and only incurred a small g-factor penalty (g mean /g max  = 1.05/1.16). Whole-brain ViSTa images were obtained within 15 minutes with negligible g-factor penalty by using wave-CAIPI acquisition and zero-padding reconstruction. The proposed zero-padding method was shown to be effective in reducing residual point spread function for wave-encoded images, particularly for ViSTa. © 2018 International Society for Magnetic Resonance in Medicine.

  9. HUBBLE PHOTOGRAPHS WARPED GALAXY AS CAMERA PASSES MILESTONE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    NASA's Hubble Space Telescope has captured an image of an unusual edge-on galaxy, revealing remarkable details of its warped dusty disk and showing how colliding galaxies spawn the formation of new generations of stars. The dust and spiral arms of normal spiral galaxies, like our own Milky Way, appear flat when viewed edge-on. This month's Hubble Heritage image of ESO 510-G13 shows a galaxy that, by contrast, has an unusual twisted disk structure, first seen in ground-based photographs obtained at the European Southern Observatory (ESO) in Chile. ESO 510-G13 lies in the southern constellation Hydra, roughly 150 million light-years from Earth. Details of the structure of ESO 510-G13 are visible because the interstellar dust clouds that trace its disk are silhouetted from behind by light from the galaxy's bright, smooth central bulge. The strong warping of the disk indicates that ESO 510-G13 has recently undergone a collision with a nearby galaxy and is in the process of swallowing it. Gravitational forces distort the structures of the galaxies as their stars, gas, and dust merge together in a process that takes millions of years. Eventually the disturbances will die out, and ESO 510-G13 will become a normal-appearing single galaxy. In the outer regions of ESO 510-G13, especially on the right-hand side of the image, we see that the twisted disk contains not only dark dust, but also bright clouds of blue stars. This shows that hot, young stars are being formed in the disk. Astronomers believe that the formation of new stars may be triggered by collisions between galaxies, as their interstellar clouds smash together and are compressed. The Heritage Team used Hubble's Wide Field Planetary Camera 2 (WFPC2) to observe ESO 510-G13 in April 2001. Pictures obtained through blue, green, and red filters were combined to make this color-composite image, which emphasizes the contrast between the dusty spiral arms, the bright bulge, and the blue star-forming regions. During the observations of ESO 510-G13, WFPC2 passed the milestone of taking its 100,000th image since its installation in the telescope by shuttle astronauts in 1993. Image Credit: NASA and the Hubble Heritage Team (STScI/AURA) Acknowledgment: C. Conselice (U. Wisconsin/STScI)

  10. The VANDELS ESO spectroscopic survey

    NASA Astrophysics Data System (ADS)

    McLure, R. J.; Pentericci, L.; Cimatti, A.; Dunlop, J. S.; Elbaz, D.; Fontana, A.; Nandra, K.; Amorin, R.; Bolzonella, M.; Bongiorno, A.; Carnall, A. C.; Castellano, M.; Cirasuolo, M.; Cucciati, O.; Cullen, F.; De Barros, S.; Finkelstein, S. L.; Fontanot, F.; Franzetti, P.; Fumana, M.; Gargiulo, A.; Garilli, B.; Guaita, L.; Hartley, W. G.; Iovino, A.; Jarvis, M. J.; Juneau, S.; Karman, W.; Maccagni, D.; Marchi, F.; Mármol-Queraltó, E.; Pompei, E.; Pozzetti, L.; Scodeggio, M.; Sommariva, V.; Talia, M.; Almaini, O.; Balestra, I.; Bardelli, S.; Bell, E. F.; Bourne, N.; Bowler, R. A. A.; Brusa, M.; Buitrago, F.; Caputi, K. I.; Cassata, P.; Charlot, S.; Citro, A.; Cresci, G.; Cristiani, S.; Curtis-Lake, E.; Dickinson, M.; Fazio, G. G.; Ferguson, H. C.; Fiore, F.; Franco, M.; Fynbo, J. P. U.; Galametz, A.; Georgakakis, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Jung, I.; Kim, S.; Koekemoer, A. M.; Khusanova, Y.; Le Fèvre, O.; Lotz, J. M.; Mannucci, F.; Maltby, D. T.; Matsuoka, K.; McLeod, D. J.; Mendez-Hernandez, H.; Mendez-Abreu, J.; Mignoli, M.; Moresco, M.; Mortlock, A.; Nonino, M.; Pannella, M.; Papovich, C.; Popesso, P.; Rosario, D. P.; Salvato, M.; Santini, P.; Schaerer, D.; Schreiber, C.; Stark, D. P.; Tasca, L. A. M.; Thomas, R.; Treu, T.; Vanzella, E.; Wild, V.; Williams, C. C.; Zamorani, G.; Zucca, E.

    2018-05-01

    VANDELS is a uniquely-deep spectroscopic survey of high-redshift galaxies with the VIMOS spectrograph on ESO's Very Large Telescope (VLT). The survey has obtained ultra-deep optical (0.48 < λ < 1.0 μm) spectroscopy of ≃2100 galaxies within the redshift interval 1.0 ≤ z ≤ 7.0, over a total area of ≃ 0.2 deg2 centred on the CANDELS UDS and CDFS fields. Based on accurate photometric redshift pre-selection, 85% of the galaxies targeted by VANDELS were selected to be at z ≥ 3. Exploiting the red sensitivity of the refurbished VIMOS spectrograph, the fundamental aim of the survey is to provide the high signal-to-noise ratio spectra necessary to measure key physical properties such as stellar population ages, masses, metallicities and outflow velocities from detailed absorption-line studies. Using integration times calculated to produce an approximately constant signal-to-noise ratio (20 < tint < 80 hours), the VANDELS survey targeted: a) bright star-forming galaxies at 2.4 ≤ z ≤ 5.5, b) massive quiescent galaxies at 1.0 ≤ z ≤ 2.5, c) fainter star-forming galaxies at 3.0 ≤ z ≤ 7.0 and d) X-ray/Spitzer-selected active galactic nuclei and Herschel-detected galaxies. By targeting two extragalactic survey fields with superb multi-wavelength imaging data, VANDELS will produce a unique legacy data set for exploring the physics underpinning high-redshift galaxy evolution. In this paper we provide an overview of the VANDELS survey designed to support the science exploitation of the first ESO public data release, focusing on the scientific motivation, survey design and target selection.

  11. What Kind of Capsule Endoscope Is Suitable for a Controllable Self-Propelling Capsule Endoscope? Experimental Study Using a Porcine Stomach Model for Clinical Application (with Videos)

    PubMed Central

    Ota, Kazuhiro; Nouda, Sadaharu; Takeuchi, Toshihisa; Iguchi, Munetaka; Kojima, Yuichi; Kuramoto, Takanori; Inoue, Takuya; Shindo, Yasunori; Uesugi, Kenshiro; Fujito, Yoshiaki; Nishihara, Hironori; Ohtsuka, Naotake; Higuchi, Kazuhide

    2015-01-01

    Background We have been developing the Self-Propelling Capsule Endoscope (SPCE) that allows for controllability from outside of the body and real-time observation. What kind of capsule endoscope (CE) is suitable for a controllable SPCE is unclear and a very critical point for clinical application. We compared observing ability of three kinds of SPCEs with different viewing angles and frame rates. Methods Eleven buttons were sewed in an excised porcine stomach. Four examiners controlled the SPCE using PillCamSB2, -ESO2, and -COLON2 (Given Imaging Ltd., Israel), for 10 minutes each with the aim of detecting as many buttons and examining them as closely as possible. The ability to find lesions was assessed based on the number of detected buttons. The SPCE-performance score (SPS) was used to evaluate the ability to examine the lesions in detail. Results The SPCE-ESO2, -COLON2, and -SB2 detected 11 [interquartile range (IQR): 0], 10.5 (IQR, 0.5), and 8 (IQR, 1.0) buttons, respectively. The SPCE-ESO2 and -COLON2 had a significantly better ability to detect lesions than the -SB2 (p < 0.05). The SPCE-ESO2, -COLON2, and -SB2 had significantly different SPS values of 22 (IQR, 0), 16.5 (IQR, 1.5), and 14 (IQR, 1.0), respectively (p < 0.05 for all comparisons; SPCE-SB2 vs. -ESO2, -SB2 vs. -COLON2, and -ESO2 vs. -COLON2). Conclusions PillCamESO2 is most suitable in different three CEs for SPCE for examining lesions in detail of the stomach. PMID:26447694

  12. What Kind of Capsule Endoscope Is Suitable for a Controllable Self-Propelling Capsule Endoscope? Experimental Study Using a Porcine Stomach Model for Clinical Application (with Videos).

    PubMed

    Ota, Kazuhiro; Nouda, Sadaharu; Takeuchi, Toshihisa; Iguchi, Munetaka; Kojima, Yuichi; Kuramoto, Takanori; Inoue, Takuya; Shindo, Yasunori; Uesugi, Kenshiro; Fujito, Yoshiaki; Nishihara, Hironori; Ohtsuka, Naotake; Higuchi, Kazuhide

    2015-01-01

    We have been developing the Self-Propelling Capsule Endoscope (SPCE) that allows for controllability from outside of the body and real-time observation. What kind of capsule endoscope (CE) is suitable for a controllable SPCE is unclear and a very critical point for clinical application. We compared observing ability of three kinds of SPCEs with different viewing angles and frame rates. Eleven buttons were sewed in an excised porcine stomach. Four examiners controlled the SPCE using PillCamSB2, -ESO2, and -COLON2 (Given Imaging Ltd., Israel), for 10 minutes each with the aim of detecting as many buttons and examining them as closely as possible. The ability to find lesions was assessed based on the number of detected buttons. The SPCE-performance score (SPS) was used to evaluate the ability to examine the lesions in detail. The SPCE-ESO2, -COLON2, and -SB2 detected 11 [interquartile range (IQR): 0], 10.5 (IQR, 0.5), and 8 (IQR, 1.0) buttons, respectively. The SPCE-ESO2 and -COLON2 had a significantly better ability to detect lesions than the -SB2 (p < 0.05). The SPCE-ESO2, -COLON2, and -SB2 had significantly different SPS values of 22 (IQR, 0), 16.5 (IQR, 1.5), and 14 (IQR, 1.0), respectively (p < 0.05 for all comparisons; SPCE-SB2 vs. -ESO2, -SB2 vs. -COLON2, and -ESO2 vs. -COLON2). PillCamESO2 is most suitable in different three CEs for SPCE for examining lesions in detail of the stomach.

  13. Europe Agrees on Common Strategy to Initiate Study of LSA/MMA

    NASA Astrophysics Data System (ADS)

    1998-09-01

    Council Specifies ESO's Role in Planning In an extraordinary meeting at the ESO Headquarters, the ESO Council today endorsed ESO's involvement in the planning of a major new astronomical facility in the southern hemisphere. Some years from now, the Large Southern Array/Millimetre Array (LSA/MMA) may become the world's prime sub-mm/mm radio observatory [1] at a pristine site at 5000 m altitude in the Chilean Andes, not very far from the VLT Paranal Observatory. Background One of the highest-priority items in astronomy today is a large millimetre-wavelength array. This would be a millimetre counterpart to the ESO VLT and the NASA/ESA Hubble Space Telescope (HST), with similar scientific objectives and comparable high angular resolution and sensitivity. An antenna array with about 10,000 m 2 area would provide very high sensitivity and angular resolution, compatible with that of the VLT and HST. Such a large collecting area implies an array with many antennas and baselines, which give the added advantage of fast, high-quality images. The site must be high, dry, large, and flat - a high plateau in the Atacama desert is ideal, and has the great advantage of being in the southern hemisphere, important for compatibility with the VLT. Thus, discussions in Europe have focussed on a "Large Southern Array" (LSA) . The scientific case for such a telescope is overwhelming. It would be able to study the origins of galaxies and stars: the epoch of first galaxy formation and the evolution of galaxies at later stages, including the dust-obscured star-forming galaxies that the HST and VLT cannot see, and all phases of star formation hidden away in dusty molecular clouds. But the LSA will go far beyond these main science drivers - it will have a major impact on virtually all areas of astronomy, and make millimetre astronomy accessible to all astronomers. It may well have as big a user community as the VLT itself. European involvement in millimetre astronomy Europe already has a strong involvement in millimetre astronomy: the 5 x 15-m IRAM array on Plateau de Bure (France), the 30-m IRAM antenna (Spain), the 20-m at Onsala (Sweden), the 15-m Swedish-ESO Submillimetre Telescope (SEST, La Silla), the 15-m JCMT (Mauna Kea, Hawaii), the 10-m HHT (Arizona), and others. Over 60 research institutes around Europe use these facilities. Many of them have developed technical expertise and leadership in this area together with European industry, so it is natural that a European collaboration should be looking to the future. The idea of a large European southern millimetre array has been discussed since 1991. In 1995, an LSA Project collaboration was established between ESO, the Institut de Radio Astronomie Millimetrique (IRAM), the Onsala Space Observatory, and the Netherlands Foundation for Research in Astronomy (NFRA). This consortium of observatories agreed to pool resources to study critical technical areas and conduct site surveys in Chile. Details are available in a Messenger article (March 98). Possibilities of intercontinental collaboration An important step was taken in June 1997. A similar project is under study in the United States of America (the "Millimeter Array", MMA ). An agreement was entered into between ESO and the U.S. National Radio Astronomy Observatory (NRAO) to explore the possibility of merging the two projects into one. Until then the emphasis in Europe had been on the large collecting area provided by 16-m antennas operating at purely millimetre wavelengths, while in the U.S. the concept was a smaller array of 8-m antennas with good submillimetre performance. However, as there is also considerable interest in Europe in submillimetre observations, and in the U.S. in a larger collecting area, a compromise seemed feasible. Several joint working groups formed under the ESO-NRAO agreement were set up to explore the possibility of a collaborative project. It was concluded that a homogeneous array of 64 x 12-m antennas, providing submillimetre performance with a total collecting area of 7,000 m 2 , could be built at the high (5000 m) Chajnantor site , an hour from the array control center at the town of San Pedro de Atacama. It is this collaborative facility that is presently referred to as the Large Southern Array/Millimetre Array (LSA/MMA) . The decision by the ESO Council The ESO Council today passed a resolution that emphasizes the great potential of this proposed astronomical facility for scientific discoveries. It will operate in a relatively unexplored waveband region and with imaging and spectral resolution vastly better than anything now available. The ESO Council requests the ESO Executive to develop a proposal for ESO's role in the design and development phase of the new facility to be submitted to Council in its December 1998 meeting. This phase (Phase I) will cover the technical, financial, human resources, scheduling and organizational aspects for the development, construction, commissioning and operation of the LSA/MMA. The ESO Council supports the intention to create a European Coordinating Committee with participation of ESO that will discuss related policy and technical matters. A European Negotiating Team will then be established that will discuss with the U.S. and other interested nations the conditions of the union of the LSA and MMA as a single common enterprise. Note: [1] The corresponding wavelength interval is about 0.3 to 10 mm. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  14. Atom Interferometer Modeling Tool

    DTIC Science & Technology

    2011-08-08

    present, LiveAtom supports the alkali metals from Lithium to Cesium. LiveAtom will also show where atoms in the equilibrium state will sit if a trap is...Address: 7105 La Vista Pl . Niwot, CO 80503 Phone Number: 303-652-0725 The views and conclusions contained in this document are those of the authors...0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing

  15. Report on the ''2017 ESO Calibration Workshop: The Second-Generation VLT Instruments and Friends''

    NASA Astrophysics Data System (ADS)

    Smette, A.; Kerber, F.; Kaufer, A.

    2017-03-01

    The participants at the 2017 ESO Calibration Workshop shared their experiences and the challenges encountered in calibrating VLT second-generation instruments and the upgraded first-generation instruments, and discussed improvements in the characterisation of the atmosphere and data reduction. A small group of ESO participants held a follow-up retreat and identified possible game changers in the future operations of the La Silla Paranal Observatory: feedback on the proposals is encouraged.

  16. Recombinant Lactobacillus plantarum induces immune responses to cancer testis antigen NY-ESO-1 and maturation of dendritic cells

    PubMed Central

    Mobergslien, Anne; Vasovic, Vlada; Mathiesen, Geir; Fredriksen, Lasse; Westby, Phuong; Eijsink, Vincent GH; Peng, Qian; Sioud, Mouldy

    2015-01-01

    Given their safe use in humans and inherent adjuvanticity, Lactic Acid Bacteria may offer several advantages over other mucosal delivery strategies for cancer vaccines. The objective of this study is to evaluate the immune responses in mice after oral immunization with Lactobacillus (L) plantarum WCFS1 expressing a cell-wall anchored tumor antigen NY-ESO-1. And to investigate the immunostimulatory potency of this new candidate vaccine on human dendritic cells (DCs). L. plantarum displaying NY-ESO-1 induced NY-ESO-1 specific antibodies and T-cell responses in mice. By contrast, L. plantarum displaying conserved proteins such as heat shock protein-27 and galectin-1, did not induce immunity, suggesting that immune tolerance to self-proteins cannot be broken by oral administration of L. plantarum. With respect to immunomodulation, immature DCs incubated with wild type or L. plantarum-NY-ESO-1 upregulated the expression of co-stimulatory molecules and secreted a large amount of interleukin (IL)-12, TNF-α, but not IL-4. Moreover, they upregulated the expression of immunosuppressive factors such as IL-10 and indoleamine 2,3-dioxygenase. Although L. plantarum-matured DCs expressed inhibitory molecules, they stimulated allogeneic T cells in-vitro. Collectively, the data indicate that L. plantarum-NY-ESO-1 can evoke antigen-specific immunity upon oral administration and induce DC maturation, raising the potential of its use in cancer immunotherapies. PMID:26185907

  17. Expression and clinical significance of MAGE and NY-ESO-1 cancer-testis antigens in adenoid cystic carcinoma of the head and neck.

    PubMed

    Veit, Johannes A; Heine, Daniela; Thierauf, Julia; Lennerz, Jochen; Shetty, Subasch; Schuler, Patrick J; Whiteside, Theresa; Beutner, Dirk; Meyer, Moritz; Grünewald, Inga; Ritter, Gerd; Gnjatic, Sacha; Sikora, Andrew G; Hoffmann, Thomas K; Laban, Simon

    2016-07-01

    Adenoid cystic carcinoma (ACC) of the head and neck is a rare but highly malignant tumor. Cancer-testis antigens (CTAs) represent an immunogenic family of cancer-specific proteins and thus represent an attractive target for immunotherapy. Eighty-four cases of ACC were identified, the CTAs pan-Melanoma antigen (pan-MAGE; M3H67) and New York esophageal squamous cell carcinoma (NY-ESO-1; E978) were detected immunohistochemically (IHC) and correlated with clinical data. Expression of NY-ESO-1 was found in 48 of 84 patients (57.1%) and of pan-MAGE in 28 of 84 patients (31.2%). Median overall survival (OS) in NY-ESO-1 positive versus negative patients was 130.8 and 282.0 months (p = .223), respectively. OS in pan-MAGE positive versus negative patients was 105.3 and 190.5 months, respectively (p = .096). Patients expressing both NY-ESO-1 and pan-MAGE simultaneously had significantly reduced OS with a median of 90.5 months compared with 282.0 months in negative patients (p = .047). A significant fraction of patients with ACC show expression of the CTAs NY-ESO-1 and/or pan-MAGE with promising immunotherapeutic implications. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1008-1016, 2016. © 2016 Wiley Periodicals, Inc.

  18. 76 FR 30584 - Safety Zones; Eleventh Coast Guard District Annual Fireworks Events

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-26

    .... 2. LA County Dept of Beach and Harbors 4th of July Fireworks Sponsor Los Angeles, CA County Dept of... waters of the Sea Cliff State Beach Pier. 27. Rio Vista Bass Derby Fireworks Sponsor Rio Vista Chamber of... Vista, CA waterfront. Regulated Area 100-foot radius around the fireworks launch barge during the...

  19. 78 FR 68133 - In the Matter of Far Vista Petroleum Corp.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-13

    ... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] In the Matter of Far Vista Petroleum Corp.; Order of Suspension of Trading November 8, 2013. It appears to the Securities and Exchange Commission... securities of Far Vista Petroleum Corp. (``FVSTA'') because of questions that have been raised about the...

  20. Autogenic Feedback Training (Body FORTRAN) for Musically Gifted Students at Bonita Vista High School.

    ERIC Educational Resources Information Center

    Lane, John M.

    1982-01-01

    The Gifted Self-Understanding Assessment Battery (GSAB) was given to 34 (27 females, 7 males) music students (aged 15-17) at Bonita Vista High School in Chula Vista (California). Biofeedback training and assessment were followed by individual counseling for Autogenic Feedback Training (AFT) to achieve improvement of the individual's own well…

  1. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Chéreau, Fabien

    2012-04-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility developed by the Virtual Observatory (VO) Systems Department. It is a plug-in for the popular open source software Stellarium adding capabilities for browsing professional astronomical data. VirGO gives astronomers the possibility to easily discover and select data from millions of observations in a new visual and intuitive way. Its main feature is to perform real-time access and graphical display of a large number of observations by showing instrumental footprints and image previews, and to allow their selection and filtering for subsequent download from the ESO SAF web interface. It also allows the loading of external FITS files or VOTables, the superimposition of Digitized Sky Survey (DSS) background images, and the visualization of the sky in a `real life' mode as seen from the main ESO sites. All data interfaces are based on Virtual Observatory standards which allow access to images and spectra from external data centers, and interaction with the ESO SAF web interface or any other VO applications supporting the PLASTIC messaging system.

  2. Synthesis and properties of a novel bio-based polymer from modified soybean oil

    NASA Astrophysics Data System (ADS)

    Li, Y. T.; Yang, L. T.; Zhang, H.; Tang, Z. J.

    2017-02-01

    Maleated acrylated epoxidized soybean oil (MAESO) was prepared by acrylated epoxidized soybean oil (AESO) and maleic anhydride. AESO were obtained by the reaction of epoxidized soybean oil (ESO) with acrylic acid as the ring-opening reagent. The polymer was prepared by MAESO react with styrene. The structures of the products were studied by Fourier transformation infrared spectrometer (FT-IR), and were consistent with the theoretical structures. Swelling experiment indicated that the crosslinking degree increased with increasing epoxy value of ESO. Thermal properties was tested by thermo-gravimetric analysis (TG) and differential scanning calorimetry analysis (DSC), indicating that glass transition temperature (Tg) of the polymer increased with increasing epoxy value of ESO, and thermal stability of polymer have a good correlation with the crosslinking degree. Mechanical properties analysis presented that tensile strength and impact strength affected by epoxy value of ESO. With the increase of epoxy value, the tensile strength increase, while the impact strength decrease. The property of the polymer ranged from elastomer to plastic character depended on the functionality of the ESO.

  3. A Very Cool Pair of Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    2011-03-01

    Observations with the European Southern Observatory's Very Large Telescope, along with two other telescopes, have shown that there is a new candidate for the coldest known star: a brown dwarf in a double system with about the same temperature as a freshly made cup of tea - hot in human terms, but extraordinarily cold for the surface of a star. This object is cool enough to begin crossing the blurred line dividing small cold stars from big hot planets. Brown dwarfs are essentially failed stars: they lack enough mass for gravity to trigger the nuclear reactions that make stars shine. The newly discovered brown dwarf, identified as CFBDSIR 1458+10B, is the dimmer member of a binary brown dwarf system located just 75 light-years from Earth [1]. The powerful X-shooter spectrograph on ESO's Very Large Telescope (VLT) was used to show that the composite object was very cool by brown dwarf standards. "We were very excited to see that this object had such a low temperature, but we couldn't have guessed that it would turn out to be a double system and have an even more interesting, even colder component," said Philippe Delorme of the Institut de planétologie et d'astrophysique de Grenoble (CNRS/Université Joseph Fourier), a co-author of the paper. CFBDSIR 1458+10 is the coolest brown dwarf binary found to date. The dimmer of the two dwarfs has now been found to have a temperature of about 100 degrees Celsius - the boiling point of water, and not much different from the temperature inside a sauna [2]. "At such temperatures we expect the brown dwarf to have properties that are different from previously known brown dwarfs and much closer to those of giant exoplanets - it could even have water clouds in its atmosphere," said Michael Liu of the University of Hawaii's Institute for Astronomy, who is lead author of the paper describing this new work. "In fact, once we start taking images of gas-giant planets around Sun-like stars in the near future, I expect that many of them will look like CFBDSIR 1458+10B." Unravelling the secrets of this unique object involved exploiting the power of three different telescopes. CFBDSIR 1458+10 was first found to be a binary using the Laser Guide Star (LGS) Adaptive Optics system on the Keck II Telescope in Hawaii [3]. Liu and his colleagues then employed the Canada-France-Hawaii Telescope, also in Hawaii, to determine the distance to the brown dwarf duo using an infrared camera [4]. Finally the ESO VLT was used to study the object's infrared spectrum and measure its temperature. The hunt for cool objects is a very active astronomical hot topic. The Spitzer Space Telescope has recently identified two other very faint objects as other possible contenders for the coolest known brown dwarfs, although their temperatures have not been measured so precisely. Future observations will better determine how these objects compare to CFBDSIR 1458+10B. Liu and his colleagues are planning to observe CFBDSIR 1458+10B again to better determine its properties and to begin mapping the binary's orbit, which, after about a decade of monitoring, should allow astronomers to determine the binary's mass. Notes [1] CFBDSIR 1458+10 is the name of the binary system. The two components are known as CFBDSIR 1458+10A and CFBDSIR 1458+10B, with the latter the fainter and cooler of the two. They seem to be orbiting each other at a separation of about three times the distance between the Earth and the Sun in a period of about thirty years. [2] By comparison the temperature of the surface of the Sun is about 5500 degrees Celsius. [3] Adaptive optics cancels out much of Earth's atmospheric interference, improving the image sharpness by a factor of ten and enabling the very small separation binary to be resolved. [4] The astronomers measured the apparent motion of the brown dwarfs against the background of more distant stars caused by Earth's changing position in its orbit around the Sun. The effect, known as parallax, allowed them to determine the distance to the brown dwarfs. More information This research was presented in a paper, "CFBDSIR J1458+1013B: A Very Cold (>T10) Brown Dwarf in a Binary System", Liu et al. to appear in the Astrophysical Journal. The team is composed of Michael C. Liu (Institute for Astronomy [IfA], University of Hawaii, USA), Philippe Delorme (Institut de planétologie et d'astrophysique de Grenoble, CNRS/Université Joseph Fourier, France [IPAG]), Trent J. Dupuy (Harvard-Smithsonian Center for Astrophysics, Cambridge, USA), Brendan P. Bowler (IfA), Loic Albert (Canada-France-Hawaii Telescope Corporation, Hawaii, USA), Etienne Artigau (Université de Montréal, Canada), Celine Reylé (Observatoire de Besançon, France), Thierry Forveille (IPAG) and Xavier Delfosse (IPAG). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 15 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  4. Growing Galaxies Gently

    NASA Astrophysics Data System (ADS)

    2010-10-01

    New observations from ESO's Very Large Telescope have, for the first time, provided direct evidence that young galaxies can grow by sucking in the cool gas around them and using it as fuel for the formation of many new stars. In the first few billion years after the Big Bang the mass of a typical galaxy increased dramatically and understanding why this happened is one of the hottest problems in modern astrophysics. The results appear in the 14 October issue of the journal Nature. The first galaxies formed well before the Universe was one billion years old and were much smaller than the giant systems - including the Milky Way - that we see today. So somehow the average galaxy size has increased as the Universe has evolved. Galaxies often collide and then merge to form larger systems and this process is certainly an important growth mechanism. However, an additional, gentler way has been proposed. A European team of astronomers has used ESO's Very Large Telescope to test this very different idea - that young galaxies can also grow by sucking in cool streams of the hydrogen and helium gas that filled the early Universe and forming new stars from this primitive material. Just as a commercial company can expand either by merging with other companies, or by hiring more staff, young galaxies could perhaps also grow in two different ways - by merging with other galaxies or by accreting material. The team leader, Giovanni Cresci (Osservatorio Astrofisico di Arcetri) says: "The new results from the VLT are the first direct evidence that the accretion of pristine gas really happened and was enough to fuel vigorous star formation and the growth of massive galaxies in the young Universe." The discovery will have a major impact on our understanding of the evolution of the Universe from the Big Bang to the present day. Theories of galaxy formation and evolution may have to be re-written. The group began by selecting three very distant galaxies to see if they could find evidence of the flow of pristine gas from the surrounding space and the associated formation of new stars. They were very careful to make sure that their specimen galaxies had not been disturbed by interactions with other galaxies. The selected galaxies were very regular, smoothly rotating discs, similar to the Milky Way, and they were seen about two billion years after the Big Bang (at a redshift of around three). In galaxies in the modern Universe the heavy elements [1] are more abundant close to the centre. But when Cresci's team mapped their selected distant galaxies with the SINFONI spectrograph on the VLT [2] they were excited to see that in all three cases there was a patch of the galaxy, close to the centre, with fewer heavy elements, but hosting vigorously forming stars, suggesting that the material to fuel the star formation was coming from the surrounding pristine gas that is low in heavy elements. This was the smoking gun that provided the best evidence yet of young galaxies accreting primitive gas and using it to form new generations of stars. As Cresci concludes: "This study has only been possible because of the outstanding performance of the SINFONI instrument on the VLT. It has opened a new window for studying the chemical properties of very distant galaxies. SINFONI provides information not only in two spatial dimensions, but also in a third, spectral dimension, which allows us to see the internal motions inside galaxies and study the chemical composition of the interstellar gas." Notes [1] The gas filling the early Universe was almost all hydrogen and helium. The first generations of stars processed this primitive material to create heavier elements such as oxygen, nitrogen and carbon by nuclear fusion. When this material was subsequently spewed back into space by intense particle winds from massive young stars and supernova explosions the amounts of heavy elements in the galaxy gradually increased. Astronomers refer to elements other than hydrogen and helium as "heavy elements". [2] By carefully splitting up the faint light coming from a galaxy into its component colours using powerful telescopes and spectrographs, astronomers can identify the fingerprints of different chemicals in remote galaxies, and measure the amounts of heavy elements present. With the SINFONI instrument on the VLT astronomers can go one better and get a separate spectrum for each part of an object. This allows them to make a map that shows the quantity of heavy elements present in different parts of a galaxy and also determine where in the galaxy star formation is occurring most vigorously. More information This research was presented in a paper, Gas accretion in distant galaxies as the origin of chemical abundance gradients, by Cresci et al., to appear in Nature on 14 October 2010. The team is composed of G. Cresci (Osservatorio Astrofisico di Arcetri, Italy), F. Mannucci (Osservatorio Astrofisico di Arcetri, Italy), R. Maiolino (INAF, Osservatorio Astronomico di Roma, Italy), A. Marconi (Universitá di Firenze, Italy), A. Gnerucci (Universitá di Firenze, Italy) and L. Magrini (Osservatorio Astrofisico di Arcetri, Italy). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  5. Measuring business performance using indicators of ecologically sustainable organizations

    NASA Astrophysics Data System (ADS)

    Snow, Charles G., Jr.; Snow, Charles C.

    2001-02-01

    The purpose of this paper is to explore the use of ecology-based performance measures as a way of augmenting the Balanced Scorecard approach to organizational performance measurement. The Balanced Scorecard, as proposed by Kaplan and Norton, focuses on four primary dimensions; financial, internal-business-process, customer, and learning and growth perspectives. Recently, many 'green' organizational theorists have developed the concept of "Ecologically Sustainable Organizations" or ESOs, a concept rooted in open systems theory. The ESO is called upon to consider resource use and conservation as a strategy for long-term viability. This paper asserts that in order to achieve ESO status, an organization must not only measure but also reward resource conservation measures. Only by adding a fifth perspective for ecological dimensions will the entity be truly motivated toward ESO status.

  6. ESO PR Highlights in 2005

    NASA Astrophysics Data System (ADS)

    2006-01-01

    2005 was the year of Physics. It was thus also in part the year of astronomy and this is clearly illustrated by the numerous breakthroughs that were achieved, in particular using ESO's telescopes. One of the highlights was without any doubt the confirmation of the first image of an exoplanet , around the star 2M1207 (see ESO PR 12/05). ESO's telescopes also found a Neptune-mass exoplanet around a small star ( PR 30/05) - a discovery that proves crucial in the census of other planetary systems, and imaged a tiny companion in the close vicinity of the star GQ Lupi, a very young object still surrounded by a disc, with an age between 100,000 and 2 million years ( PR 09/05). Moreover, using a new high-contrast adaptive optics camera on the VLT, the NACO Simultaneous Differential Imager, or NACO SDI, astronomers were able for the first time to image a companion 120 times fainter than its star , very near the star AB Doradus A. This companion appears to be almost twice as heavy as theory predicts it to be ( PR 02/05). ESO's telescopes proved very useful in helping to solve a 30-year old puzzle . Astronomers have for the first time observed the visible light from a short gamma-ray burst (GRB). Using the 1.5m Danish telescope at La Silla (Chile), they showed that these short, intense bursts of gamma-ray emission most likely originate from the violent collision of two merging neutron stars ( PR 26/05). Additional evidence came from witnessing another event with the VLT ( PR 32/05). Also in this field, astronomers found the farthest known gamma-ray burst with ESO's VLT, observing an object with a redshift 6.3, i.e. that is seen when the Universe was less than 900 million years old ( PR 22/05). On July 4, NASA's Deep Impact spacecraft plunged onto Comet 9P/Tempel 1 with the aim to create a crater and expose pristine material from beneath the surface. For two days before and six days after, all major ESO telescopes have been observing the comet, in a coordinated fashion and in very close collaboration with the space mission' scientific team, in what was perhaps the most comprehensive ground-observing campaign of a celestial object. On this occasion, a dedicated Deep Impact at ESO web site was created, reporting on all the developments. This was not the sole contribution of ESO to the study of the solar system . The NACO SDI instrument was used to obtain outstanding images of Titan, the satellite of Saturn ( PHOT 04/05) and NACO also allowed astronomers to discover the first triple asteroid - two small asteroids orbiting a larger one known since 1866 as 87 Sylvia ( PR 21/05). 2005 was also a very important year for sub-millimetric astronomy at ESO. In July, APEX , the 12-m Atacama Pathfinder Experiment's telescope had first light ( PR 18/05) and since then, has been performing regular science observations ( PR 25/05). Moreover, two major contracts have been signed for ALMA , the Atacama Large Millimeter Array project, among which the largest-ever European industrial contract for a ground-based astronomy project ( PR 31/05 and 34/05). ESO's Very Large Telescope (VLT) proves to be a very efficient science machine that reached in April 2005, the count of more than 1000 scientific papers (see ESO PR 11/05) and the trend does not seem to change, as about 350 papers were published in 2005 based on data collected with the VLT. This efficiency was also recognised worldwide as ESO received the ComputerWorld Honors Program 21st Century Achievement Award in the Science Category ( PR 16/05). The interferometric mode of the VLT (VLTI) was able to observe with unprecedented detail the environment of two stars ( PR 29/05). The VLTI has also seen another extension of its already impressive capabilities by combining interferometrically the light from two relocatable 1.8-m Auxiliary Telescopes ( PR 06/05). ESO PR Highlights 2005 In 2005 again, many nice, amazing astronomical images have been obtained with ESO's telescopes: the super star cluster Westerlund 1 ( PR 08/05), the blob in the LMC ( PHOT 12/05), dream galaxies ( PHOT 24/05), a colossal cosmic eye ( PHOT 31/05), a monster being fed (PHOT 33/05), a perturbed family ( PHOT 34/05), and a cosmic Christmas ghost ( PHOT 42/05). All this, in addition to some images of the observatories ( PR 33/05 and PHOT 43/05). These developments are described in ESO's Press Releases, most with Press Photos, cf. the 2005 PR Index. Some of last year's ESO PR highlights may be accessed directly via the first clickable image above while some of the Press Photos are available via the second clickable image.

  7. The Great Easter Egg Hunt: The Void's Incredible Richness

    NASA Astrophysics Data System (ADS)

    2006-04-01

    An image made of about 300 million pixels is being released by ESO, based on more than 64 hours of observations with the Wide-Field Camera on the 2.2m telescope at La Silla (Chile). The image covers an 'empty' region of the sky five times the size of the full moon, opening an exceptionally clear view towards the most distant part of our universe. It reveals objects that are 100 million times fainter than what the unaided eye can see. Easter is in many countries a time of great excitement for children who are on the big hunt for chocolate eggs, hidden all about the places. Astronomers, however, do not need to wait this special day to get such an excitement: it is indeed daily that they look for faraway objects concealed in deep images of the sky. And as with chocolate eggs, deep sky objects, such as galaxies, quasars or gravitational lenses, come in the wildest variety of colours and shapes. ESO PR Photo 11/06 ESO PR Photo 14a/06 The Deep 3 'Empty' Field The image presented here is one of such very deep image of the sky. It is the combination of 714 frames for a total exposure time of 64.5 hours obtained through four different filters (B, V, R, and I)! It consists of four adjacent Wide-Field Camera pointings (each 33x34 arcmin), covering a total area larger than one square degree. Yet, if you were to look at this large portion of the firmament with the unaided eye, you would just see... nothing. The area, named Deep 3, was indeed chosen to be a random but empty, high galactic latitude field, positioned in such a way that it can be observed from the La Silla observatory all over the year. Together with two other regions, Deep 1 and Deep 2, Deep 3 is part of the Deep Public Survey (DPS), based on ideas submitted by the ESO community and covering a total sky area of 3 square degrees. Deep 1 and Deep 2 were selected because they overlapped with regions of other scientific interest. For instance, Deep 1 was chosen to complement the deep ATESP radio survey carried out with the Australia Telescope Compact Array (ATCA) covering the region surveyed by the ESO Slice Project, while Deep 2 included the CDF-S field. Each region is observed in the optical, with the WFI, and in the near-infrared, with SOFI on the 3.5-m New Technology Telescope also at La Silla. Deep 3 is located in the Crater ('The Cup'), a southern constellation with very little interest (the brightest star is of fourth magnitude, i.e. only a factor six brighter than what a keen observer can see with the unaided eye), in between the Virgo, Corvus and Hydra constellations. Such comparatively empty fields provide an unusually clear view towards the distant regions in the Universe and thus open a window towards the earliest cosmic times. The deep imaging data can for example be used to pre-select objects by colour for follow-up spectroscopy with ESO's Very Large Telescope instruments. ESO PR Photo 11/06 ESO PR Photo 14b/06 Galaxy ESO 570-19 and Variable Star UW Crateris But being empty is only a relative notion. True, on the whole image, the SIMBAD Astronomical database references less than 50 objects, clearly a tiny number compared to the myriad of anonymous stars and galaxies that can be seen in the deep image obtained by the Survey! Among the objects catalogued is the galaxy visible in the top middle right (see also PR Photo 14b/06) and named ESO 570-19. Located 60 million light-years away, this spiral galaxy is the largest in the image. It is located not so far - on the image! - from the brightest star in the field, UW Crateris. This red giant is a variable star that is about 8 times fainter than what the unaided eye can see. The second and third brightest stars in this image are visible in the lower far right and in the lower middle left. The first is a star slightly more massive than the Sun, HD 98081, while the other is another red giant, HD 98507. ESO PR Photo 11/06 ESO PR Photo 14c/06 The DPS Deep 3 Field (Detail) In the image, a vast number of stars and galaxies are to be studied and compared. They come in a variety of colours and the stars form amazing asterisms (a group of stars forming a pattern), while the galaxies, which are to be counted by the tens of thousands come in different shapes and some even interact or form part of a cluster. The image and the other associated data will certainly provide a plethora of new results in the years to come. In the meantime, why don't you explore the image with the zoom-in facility, and start your own journey into infinity? Just be careful not to get lost. And remember: don't eat too many of these chocolate eggs! High resolution images and their captions are available on this page.

  8. The Potential of ESO for Asteroseismology

    NASA Astrophysics Data System (ADS)

    Aerts, Conny

    2017-08-01

    The research field of asteroseismology is currently undergoing its first revolution. We start with a brief history of how this field of stellar physics evolved from dream to reality, including ESO's role in it. Subsequently, we highlight how asteroseismology can serve various topics in astrophysics and focus on the current status. We discuss recent findings on the rotation and chemical mixing inside stars. Finally, we look at the perspectives of the second and third revolution in this area and highlight how ESO can play an optimal role in it.

  9. And Then There Were Three...!

    NASA Astrophysics Data System (ADS)

    2000-01-01

    VLT MELIPAL Achieves Successful "First Light" in Record Time This was a night to remember at the ESO Paranal Observatory! For the first time, three 8.2-m VLT telescopes were observing in parallel, with a combined mirror surface of nearly 160 m 2. In the evening of January 26, the third 8.2-m Unit Telescope, MELIPAL ("The Southern Cross" in the Mapuche language), was pointed to the sky for the first time and successfully achieved "First Light". During this night, a number of astronomical exposures were made that served to evaluate provisionally the performance of the new telescope. The ESO staff expressed great satisfaction with MELIPAL and there were broad smiles all over the mountain. The first images ESO PR Photo 04a/00 ESO PR Photo 04a/00 [Preview - JPEG: 400 x 352 pix - 95k] [Normal - JPEG: 800 x 688 pix - 110k] Caption : ESO PR Photo 04a/00 shows the "very first light" image for MELIPAL . It is that of a relatively bright star, as recorded by the Guide Probe at about 21:50 hrs local time on January 26, 2000. It is a 0.1 sec exposure, obtained after preliminary adjustment of the optics during a few iterations with the computer controlled "active optics" system. The image quality is measured as 0.46 arcsec FWHM (Full-Width at Half Maximum). ESO PR Photo 04b/00 ESO PR Photo 04b/00 [Preview - JPEG: 400 x 429 pix - 39k] [Normal - JPEG: 885 x 949 pix - 766k] Caption : ESO PR Photo 04b/00 shows the central region of the Crab Nebula, the famous supernova remnant in the constellation Taurus (The Bull). It was obtained early in the night of "First Light" with the third 8.2-m VLT Unit Telescope, MELIPAL . It is a composite of several 30-sec exposures with the VLT Test Camera in three broad-band filters, B (here rendered as blue; most synchrotron emission), V (green) and R (red; mostly emission from hydrogen atoms). The Crab Pulsar is visible to the left; it is the lower of the two brightest stars near each other. The image quality is about 0.9 arcsec, and is completely determined by the external seeing caused by the atmospheric turbulence above the telescope at the time of the observation. The coloured, vertical lines to the left are artifacts of a "bad column" of the CCD. The field measures about 1.3 x 1.3 arcmin 2. This image may be compared with that of the same area that was recently obtained with the FORS2 instrument at KUEYEN ( PR Photo 40g/99 ). Following two days of preliminary adjustments after the installation of the secondary mirror, cf. ESO PR Photos 03a-n/00 , MELIPAL was pointed to the sky above Paranal for the first time, soon after sunset in the evening of January 26. The light of a bright star was directed towards the Guide Probe camera, and the VLT Commissioning Team, headed by Dr. Jason Spyromilio , initiated the active optics procedure . This adjusts the 150 computer-controlled supports under the main 8.2-m Zerodur mirror as well as the position of the secondary 1.1-m Beryllium mirror. After just a few iterations, the optical quality of the recorded stellar image was measured as 0.46 arcsec ( PR Photo 04a/00 ), a truly excellent value, especially at this stage! Immediately thereafter, at 22:16 hrs local time (i.e., at 01:16 hrs UT on January 27), the shutter of the VLT Test Camera at the Cassegrain focus was opened. A 1-min exposure was made through a R(ed) optical filter of a distant star cluster in the constellation Eridanus (The River). The light from its faint stars was recorded by the CCD at the focal plane and the resulting frame was read into the computer. Despite the comparatively short exposure time, myriads of stars were seen when this "first frame" was displayed on the computer screen. Moreover, the sizes of these images were found to be virtually identical to the 0.6 arcsec seeing measured simultaneously with a monitor telescope, outside the telescope enclosure. This confirmed that MELIPAL was in very good shape. Nevertheless, these very first images were still slightly elongated and further optical adjustments and tests were therefore made to eliminate this unwanted effect. It is a tribute to the extensive experience and fine skills of the ESO staff that within only 1 hour, a 30 sec exposure of the central region of the Crab Nebula in Taurus with round images was obtained, cf. PR Photo 04b/00 . The ESO Director General, Dr. Catherine Cesarsky , who assumed her function in September 1999, was present in the Control Room during these operations. She expressed great satisfaction with the excellent result and warmly congratulated the ESO staff to this achievement. She was particularly impressed with the apparent ease with which a completely new telescope of this size could be adjusted in such a short time. A part of her statement on this occasion was recorded on ESO PR Video Clip 02/00 that accompanies this Press Release. Three telescopes now in operation at Paranal At 02:30 UT on January 27, 2000, three VLT Unit Telescopes were observing in parallel, with measured seeing values of 0.6 arcsec ( ANTU - "The Sun"), 0.7 arcsec ( KUEYEN -"The Moon") and 0.7 arcsec ( MELIPAL ). MELIPAL has now joined ANTU and KUEYEN that had "First Light" in May 1998 and March 1999, respectively. The fourth VLT Unit Telescope, YEPUN ("Sirius") will become operational later this year. While normal scientific observations continue with ANTU , the UVES and FORS2 astronomical instruments are now being commissioned at KUEYEN , before this telescope will be handed over to the astronomers on April 1, 2000. The telescope commissioning period will now start for MELIPAL , after which its first instrument, VIMOS will be installed later this year. Impressions from the MELIPAL "First Light" event First Light for MELIPAL ESO PR Video Clip 02/00 "First Light for MELIPAL" (3350 frames/2:14 min) [MPEG Video+Audio; 160x120 pix; 3.1Mb] [MPEG Video+Audio; 320x240 pix; 9.4 Mb] [RealMedia; streaming; 34kps] [RealMedia; streaming; 200kps] ESO Video Clip 02/00 shows sequences from the Control Room at the Paranal Observatory, recorded with a fixed TV-camera on January 27 at 03:00 UT, soon after the moment of "First Light" with the third 8.2-m VLT Unit Telescope ( MELIPAL ). The video sequences were transmitted via ESO's dedicated satellite communication link to the Headquarters in Garching for production of the Clip. It begins with a statement by the Manager of the VLT Project, Dr. Massimo Tarenghi , as exposures of the Crab Nebula are obtained with the telescope and the raw frames are successively displayed on the monitor screen. In a following sequence, ESO's Director General, Dr. Catherine Cesarsky , briefly relates the moment of "First Light" for MELIPAL , as she experienced it at the telescope controls. ESO Press Photo 04c/00 ESO Press Photo 04c/00 [Preview; JPEG: 400 x 300; 44k] [Full size; JPEG: 1600 x 1200; 241k] The computer screen with the image of a bright star, as recorded by the Guide Probe in the early evening of January 26; see also PR Photo 04a/00. This image was used for the initial adjustments by means of the active optics system. (Digital Photo). ESO Press Photo 04d/00 ESO Press Photo 04d/00 [Preview; JPEG: 400 x 314; 49k] [Full size; JPEG: 1528 x 1200; 189k] ESO staff at the moment of "First Light" for MELIPAL in the evening of January 26. The photo was made in the wooden hut on the telescope observing floor from where the telescope was controlled during the first hours. (Digital Photo). ESO PR Photos may be reproduced, if credit is given to the European Southern Observatory. The ESO PR Video Clips service to visitors to the ESO website provides "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 01/00 with aerial sequences from Paranal (12 January 2000). Information is also available on the web about other ESO videos.

  10. Vista and Pemex in LAB deal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, G.D.L.

    1993-01-20

    Vista Chemical (Houston) and Petroleos Mexicanos (Pemex; Mexico City) have firmed up their long-negotiated plans for Pemex to supply feedstock for a linear alkylbenzene (LAB) plant that Vista will build in Mexico (CW, Sept. 16, 1992 p. 8). Specifically, the two companies have signed an agreement of understanding to pursue negotiations and finalize agreements. The plant would cost $250 million, produce 260 million-330 million lbs/year of LAB, and create about 200 permanent jobs. Final agreements, including a site selection, are expected to be completed by midyear. Vista expects startup in 1996, and is considering forming aj oint venture with amore » Mexican partner.« less

  11. Visualizing microvascular flow variation in OCTA using variable interscan time analysis (VISTA) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Moult, Eric M.; Ploner, Stefan A.; Choi, WooJhon; Lee, ByungKun; Husvogt, Lennart A.; Lu, Chen D.; Novais, Eduardo; Cole, Emily D.; Potsaid, Benjamin M.; Duker, Jay S.; Hornegger, Joachim; Meier, Andreas K.; Waheed, Nadia K.; Fujimoto, James G.

    2017-02-01

    OCT angiography (OCTA) has recently garnered immense interest in clinical ophthalmology, permitting ocular vasculature to be viewed in exquisite detail, in vivo, and without the injection of exogenous dyes. However, commercial OCTA systems provide little information about actual erythrocyte speeds; instead, OCTA is typically used to visualize the presence and/or absence of vasculature. This is an important limitation because in many ocular diseases, including diabetic retinopathy (DR) and age-related macular degeneration (AMD), alterations in blood flow, but not necessarily only the presence or absence of vasculature, are thought to be important in understanding pathogenesis. To address this limitation, we have developed an algorithm, variable interscan time analysis (VISTA), which is capable of resolving different erythrocyte speeds. VISTA works by acquiring >2 repeated B-scans, and then computing multiple OCTA signals corresponding to different effective interscan times. The OCTA signals corresponding to different effective interscan times contain independent information about erythrocyte speed. In this study we provide a theoretical overview of VISTA, and investigate the utility of VISTA in studying blood flow alterations in ocular disease. OCTA-VISTA images of eyes with choroidal neovascularization, geographic atrophy, and diabetic retinopathy are presented.

  12. Vista goes online: Decision-analytic systems for real-time decision-making in mission control

    NASA Technical Reports Server (NTRS)

    Barry, Matthew; Horvitz, Eric; Ruokangas, Corinne; Srinivas, Sampath

    1994-01-01

    The Vista project has centered on the use of decision-theoretic approaches for managing the display of critical information relevant to real-time operations decisions. The Vista-I project originally developed a prototype of these approaches for managing flight control displays in the Space Shuttle Mission Control Center (MCC). The follow-on Vista-II project integrated these approaches in a workstation program which currently is being certified for use in the MCC. To our knowledge, this will be the first application of automated decision-theoretic reasoning techniques for real-time spacecraft operations. We shall describe the development and capabilities of the Vista-II system, and provide an overview of the use of decision-theoretic reasoning techniques to the problems of managing the complexity of flight controller displays. We discuss the relevance of the Vista techniques within the MCC decision-making environment, focusing on the problems of detecting and diagnosing spacecraft electromechanical subsystems component failures with limited information, and the problem of determining what control actions should be taken in high-stakes, time-critical situations in response to a diagnosis performed under uncertainty. Finally, we shall outline our current research directions for follow-on projects.

  13. The Hooked Galaxy

    NASA Astrophysics Data System (ADS)

    2006-06-01

    Life is not easy, even for galaxies. Some indeed get so close to their neighbours that they get rather distorted. But such encounters between galaxies have another effect: they spawn new generations of stars, some of which explode. ESO's VLT has obtained a unique vista of a pair of entangled galaxies, in which a star exploded. Because of the importance of exploding stars, and particularly of supernovae of Type Ia [1], for cosmological studies (e.g. relating to claims of an accelerated cosmic expansion and the existence of a new, unknown, constituent of the universe - the so called 'Dark Energy'), they are a preferred target of study for astronomers. Thus, on several occasions, they pointed ESO's Very Large Telescope (VLT) towards a region of the sky that portrays a trio of amazing galaxies. MCG-01-39-003 (bottom right) is a peculiar spiral galaxy, with a telephone number name, that presents a hook at one side, most probably due to the interaction with its neighbour, the spiral galaxy NGC 5917 (upper right). In fact, further enhancement of the image reveals that matter is pulled off MCG-01-39-003 by NGC 5917. Both these galaxies are located at similar distances, about 87 million light-years away, towards the constellation of Libra (The Balance). ESO PR Photo 22/06 ESO PR Photo 22/06 The Hooked Galaxy and its Companion NGC 5917 (also known as Arp 254 and MCG-01-39-002) is about 750 times fainter than can be seen by the unaided eye and is about 40,000 light-years across. It was discovered in 1835 by William Herschel, who strangely enough, seems to have missed its hooked companion, only 2.5 times fainter. As seen at the bottom left of this exceptional VLT image, a still fainter and nameless, but intricately beautiful, barred spiral galaxy looks from a distance the entangled pair, while many 'island universes' perform a cosmic dance in the background. But this is not the reason why astronomers look at this region. Last year, a star exploded in the vicinity of the hook. The supernova, noted SN 2005cf as it was the 84th found that year, was discovered by astronomers Pugh and Li with the robotic KAIT telescope on 28 May. It appeared to be projected on top of a bridge of matter connecting MCG-01-39-003 with NGC5917. Further analysis with the Whipple Observatory 1.5m Telescope showed this supernova to be of the Ia type and that the material was ejected with velocities up to 15 000 km/s (that is, 54 million kilometres per hour!). Immediately after the discovery, the European Supernova Collaboration (ESC [2]), led by Wolfgang Hillebrandt (MPA-Garching, Germany) started an extensive observing campaign on this object, using a large number of telescopes around the world. There have been several indications about the fact that galaxy encounters and/or galaxy activity phenomena may produce enhanced star formation. As a consequence, the number of supernovae in this kind of system is expected to be larger with respect to isolated galaxies. Normally, this scenario should favour mainly the explosion of young, massive stars. Nevertheless, recent studies have shown that such phenomena could increase the number of stars that eventually explode as Type Ia supernovae. This notwithstanding, the discovery of supernovae in tidal tails connecting interacting galaxies remains quite an exceptional event. For this reason, the discovery of SN2005cf close to the 'tidal bridge' between MCG-01-39-002 and MCG-01-39-003 constitutes a very interesting case. The supernova was followed by the ESC team during its whole evolution, from about ten days before the object reached its peak luminosity until more than a year after the explosion. As the SN becomes fainter and fainter, larger and larger telescopes are needed. One year after the explosion, the object is indeed about 700 times fainter than at maximum. The supernova was observed with the VLT equipped with FORS1 by ESO astronomer Ferdinando Patat, who is also member of the team led by Massimo Turatto (INAF-Padua, Italy), and at a latter stage by the Paranal Science Team, with the aim of studying the very late phases of the supernova. These late stages are very important to probe the inner parts of the ejected material, in order to better understand the explosion mechanism and the elements produced during the explosion. The deep FORS1 images reveal a beautiful tidal structure in the form of a hook, with a wealth of details that probably include regions of star formation triggered by the close encounter between the two galaxies. "Curiously, the supernova appears to be outside of the tidal tail", says Ferdinando Patat. "The progenitor system was probably stripped out of one of the two galaxies and exploded far away from the place where it was born." Life may not be easy for galaxies, but it isn't much simpler for stars either. Technical information: ESO PR Photo 22/06 is a composite image based on data acquired with the FORS1 multi-mode instrument in April and May 2006 for the European Supernova Collaboration. The observations were made in four different filters (B, V, R, and I) that were combined to make a colour image. The field of view covers 5.6 x 8.3 arcmin. North is up and East is to the left. The observations were done by Ferdinando Patat and the Paranal Science team (ESO), and the final processing was done by Olivia Blanchemain, Henri Boffin and Haennes Heyer (ESO).

  14. VizieR Online Data Catalog: Merging galaxies with tidal tails in COSMOS to z=1 (Wen+, 2016)

    NASA Astrophysics Data System (ADS)

    Wen, Z. Z.; Zheng, X. Z.

    2017-02-01

    Our study utilizes the public data and catalogs from multi-band deep surveys of the COSMOS field. The UltraVISTA survey (McCracken+ 2012, J/A+A/544/A156) provides ultra-deep near-IR imaging observations of this field in the Y,J,H, and Ks-band, as well as a narrow band (NB118). The HST/ACS I-band imaging data are publicly available, allowing us to measure morphologies in the rest-frame optical for galaxies at z<=1. The HST/ACS I-band images reach a 5σ depth of 27.2 magnitude for point sources. (1 data file).

  15. Adjuvant NY-ESO-1 vaccine immunotherapy in high-risk resected melanoma: a retrospective cohort analysis.

    PubMed

    Lattanzi, Michael; Han, Joseph; Moran, Una; Utter, Kierstin; Tchack, Jeremy; Sabado, Rachel Lubong; Berman, Russell; Shapiro, Richard; Huang, Hsin-Hui; Osman, Iman; Bhardwaj, Nina; Pavlick, Anna C

    2018-05-18

    Cancer-testis antigen NY-ESO-1 is a highly immunogenic melanoma antigen which has been incorporated into adjuvant vaccine clinical trials. Three such early-phase trials were conducted at our center among patients with high-risk resected melanoma. We herein report on the pooled long-term survival outcomes of these patients in comparison to historical controls. All melanoma patients treated at NYU Langone Health under any of three prospective adjuvant NY-ESO-1 vaccine trials were retrospectively pooled into a single cohort. All such patients with stage III melanoma were subsequently compared to historical control patients identified via a prospective institutional database with protocol-driven follow-up. Survival times were calculated using the Kaplan-Meier method, and Cox proportional hazard models were employed to identify significant prognostic factors and control for confounding variables. A total of 91 patients were treated with an NY-ESO-1 vaccine for the treatment of high-risk resected melanoma. Of this group, 67 patients were stage III and were selected for comparative analysis with 123 historical control patients with resected stage III melanoma who received no adjuvant therapy. Among the pooled vaccine cohort (median follow-up 61 months), the estimated median recurrence-free survival was 45 months, while the median overall survival was not yet reached. In the control cohort of 123 patients (median follow-up 30 months), the estimated median recurrence-free and overall survival were 22 and 58 months, respectively. Within the retrospective stage III cohort, NY-ESO-1 vaccine was associated with decreased risk of recurrence (HR = 0.56, p < 0.01) and death (HR = 0.51, p = 0.01). Upon controlling for sub-stage, the adjuvant NY-ESO-1 clinical trial cohort continued to exhibit decreased risk of recurrence (HR = 0.45, p < 0.01) and death (HR = 0.40, p < 0.01). In this small retrospective cohort of resected stage III melanoma patients, adjuvant NY-ESO-1 vaccine immunotherapy was associated with longer recurrence-free and overall survival relative to historical controls. These data support the continued investigation of adjuvant NY-ESO-1 based immunotherapy regimens in melanoma.

  16. Astronomer's new guide to the galaxy: largest map of cold dust revealed

    NASA Astrophysics Data System (ADS)

    2009-07-01

    Astronomers have unveiled an unprecedented new atlas of the inner regions of the Milky Way, our home galaxy, peppered with thousands of previously undiscovered dense knots of cold cosmic dust -- the potential birthplaces of new stars. Made using observations from the APEX telescope in Chile, this survey is the largest map of cold dust so far, and will prove an invaluable map for observations made with the forthcoming ALMA telescope, as well as the recently launched ESA Herschel space telescope. ESO PR Photo 24a/09 View of the Galactic Plane from the ATLASGAL survey (annotated and in five sections) ESO PR Photo 24b/09 View of the Galactic Plane from the ATLASGAL survey (annotated) ESO PR Photo 24c/09 View of the Galactic Plane from the ATLASGAL survey (in five sections) ESO PR Photo 24d/09 View of the Galactic Plane from the ATLASGAL survey ESO PR Photo 24e/09 The Galactic Centre and Sagittarius B2 ESO PR Photo 24f/09 The NGC 6357 and NGC 6334 nebulae ESO PR Photo 24g/09 The RCW120 nebula ESO PR Video 24a/09 Annotated pan as seen by the ATLASGAL survey This new guide for astronomers, known as the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) shows the Milky Way in submillimetre-wavelength light (between infrared light and radio waves [1]). Images of the cosmos at these wavelengths are vital for studying the birthplaces of new stars and the structure of the crowded galactic core. "ATLASGAL gives us a new look at the Milky Way. Not only will it help us investigate how massive stars form, but it will also give us an overview of the larger-scale structure of our galaxy", said Frederic Schuller from the Max Planck Institute for Radio Astronomy, leader of the ATLASGAL team. The area of the new submillimetre map is approximately 95 square degrees, covering a very long and narrow strip along the galactic plane two degrees wide (four times the width of the full Moon) and over 40 degrees long. The 16 000 pixel-long map was made with the LABOCA submillimetre-wave camera on the ESO-operated APEX telescope. APEX is located at an altitude of 5100 m on the arid plateau of Chajnantor in the Chilean Andes -- a site that allows optimal viewing in the submillimetre range. The Universe is relatively unexplored at submillimetre wavelengths, as extremely dry atmospheric conditions and advanced detector technology are required for such observations. The interstellar medium -- the material between the stars -- is composed of gas and grains of cosmic dust, rather like fine sand or soot. However, the gas is mostly hydrogen and relatively difficult to detect, so astronomers often search for these dense regions by looking for the faint heat glow of the cosmic dust grains. Submillimetre light allows astronomers to see these dust clouds shining, even though they obscure our view of the Universe at visible light wavelengths. Accordingly, the ATLASGAL map includes the denser central regions of our galaxy, in the direction of the constellation of Sagittarius -- home to a supermassive black hole (ESO 46/08) -- that are otherwise hidden behind a dark shroud of dust clouds. The newly released map also reveals thousands of dense dust clumps, many never seen before, which mark the future birthplaces of massive stars. The clumps are typically a couple of light-years in size, and have masses of between ten and a few thousand times the mass of our Sun. In addition, ATLASGAL has captured images of beautiful filamentary structures and bubbles in the interstellar medium, blown by supernovae and the winds of bright stars. Some striking highlights of the map include the centre of the Milky Way, the nearby massive and dense cloud of molecular gas called Sagittarius B2, and a bubble of expanding gas called RCW120, where the interstellar medium around the bubble is collapsing and forming new stars (see ESO 40/08). "It's exciting to get our first look at ATLASGAL, and we will be increasing the size of the map over the next year to cover all of the galactic plane visible from the APEX site on Chajnantor, as well as combining it with infrared observations to be made by the ESA Herschel Space Observatory. We look forward to new discoveries made with these maps, which will also serve as a guide for future observations with ALMA", said Leonardo Testi from ESO, who is a member of the ATLASGAL team and the European Project Scientist for the ALMA project. Note [1] The map was constructed from individual APEX observations in radiation at 870 µm (0.87 mm) wavelength. More information: The ATLASGAL observations are presented in a paper by Frederic Schuller et al., ATLASGAL -- The APEX Telescope Large Area Survey of the Galaxy at 870 µm, published in Astronomy & Astrophysics. ATLASGAL is a collaboration between the Max Planck Institute for Radio Astronomy, the Max Planck Institute for Astronomy, ESO, and the University of Chile. LABOCA (Large APEX Bolometer Camera), one of APEX's major instruments, is the world's largest bolometer camera (a "thermometer camera", or thermal camera that measures and maps the tiny changes in temperature that occur when sub-millimetre wavelength light falls on its absorbing surface; see ESO 35/07). LABOCA's large field of view and high sensitivity make it an invaluable tool for imaging the "cold Universe". LABOCA was built by the Max Planck Institute for Radio Astronomy. The Atacama Pathfinder Experiment (APEX) telescope is a 12-metre telescope, located at 5100 m altitude on the arid plateau of Chajnantor in the Chilean Andes. APEX operates at millimetre and submillimetre wavelengths. This wavelength range is a relatively unexplored frontier in astronomy, requiring advanced detectors and an extremely high and dry observatory site, such as Chajnantor. APEX, the largest submillimetre-wave telescope operating in the southern hemisphere, is a collaboration between the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory and ESO. Operation of APEX at Chajnantor is entrusted to ESO. APEX is a "pathfinder" for ALMA -- it is based on a prototype antenna constructed for the ALMA project, it is located on the same plateau and will find many targets that ALMA will be able to study in extreme detail. The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of Europe, North America and East Asia in cooperation with the Republic of Chile. ESO is the European partner in ALMA. ALMA, the largest astronomical project in existence, is a revolutionary telescope, comprising an array of 66 giant 12-metre and 7-metre diameter antennas observing at millimetre and submillimetre wavelengths. ALMA will start scientific observations in 2011. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  17. VirGO: A Visual Browser for the ESO Science Archive Facility

    NASA Astrophysics Data System (ADS)

    Hatziminaoglou, Evanthia; Chéreau, Fabien

    2009-03-01

    VirGO is the next generation Visual Browser for the ESO Science Archive Facility (SAF) developed in the Virtual Observatory Project Office. VirGO enables astronomers to discover and select data easily from millions of observations in a visual and intuitive way. It allows real-time access and the graphical display of a large number of observations by showing instrumental footprints and image previews, as well as their selection and filtering for subsequent download from the ESO SAF web interface. It also permits the loading of external FITS files or VOTables, as well as the superposition of Digitized Sky Survey images to be used as background. All data interfaces are based on Virtual Observatory (VO) standards that allow access to images and spectra from external data centres, and interaction with the ESO SAF web interface or any other VO applications.

  18. ESO PR Highlights in 2000

    NASA Astrophysics Data System (ADS)

    2001-01-01

    At the beginning of the new millennium, ESO and its staff are facing the future with confidence. The four 8.2-m Unit Telescopes of the Very Large Telescope (VLT) are in great shape and the VLT Interferometer (VLTI) will soon have "first fringes". The intercontinental ALMA project is progressing well and concepts for extremely large optical/infrared telescopes are being studied. They can also look back at a fruitful and rewarding past year. Perhaps the most important, single development has been the rapid transition of the Very Large Telescope (VLT). From being a "high-tech project under construction" it has now become a highly proficient, world-class astronomical observatory. This trend is clearly reflected in ESO's Press Releases , as more and more front-line scientific results emerge from rich data obtained at this very efficient facility. There were also exciting news from several of the instruments at La Silla. At the same time, the ESO community may soon grow, as steps towards membership are being taken by various European countries. Throughout 2000, a total of 54 PR communications were made, with a large number of Press Photos and Video Clips, cf. the 2000 PR Index. Some of the ESO PR highlights may be accessed directly via the clickable image on the present page. ESO PR Photo 01/01 is also available in a larger (non-clickable) version [ JPEG: 566 x 566 pix - 112k]. It may be reproduced, if credit is given to the European Southern Observatory.

  19. 3D isotropic T2-weighted fast spin echo (VISTA) versus 2D T2-weighted fast spin echo in evaluation of the calcaneofibular ligament in the oblique coronal plane.

    PubMed

    Park, H J; Lee, S Y; Choi, Y J; Hong, H P; Park, S J; Park, J H; Kim, E

    2017-02-01

    To investigate whether the image quality of three-dimensional (3D) volume isotropic fast spin echo acquisition (VISTA) magnetic resonance imaging (MRI) of the calcaneofibular ligament (CFL) view is comparable to that of 2D fast spin echo T2-weighted images (2D T2 FSE) for the evaluation of the CFL, and whether 3D VISTA can replace 2D T2 FSE for the evaluation of CFL injuries. This retrospective study included 76 patients who underwent ankle MRI with CFL views of both 2D T2 FSE MRI and 3D VISTA. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of both techniques were measured. The anatomical identification score and diagnostic performances were evaluated by two readers independently. The diagnostic performances of 3D VISTA and 2D T2 FSE were analysed by sensitivity, specificity, and accuracy for diagnosing CFL injury with reference standards of surgically or clinically confirmed diagnoses. Surgical correlation was performed in 29% of the patients, and clinical examination was used in those who did not have surgery (71%). The SNRs and CNRs of 3D VISTA were significantly higher than those of 2D T2 FSE. The anatomical identification scores on 3D VISTA were inferior to those on 2D T2 FSE, and the differences were statistically significant (p<0.05). There were no significant differences in diagnostic performance between the two sequences when diagnoses were classified as normal or abnormal. Although the image quality of 3D VISTA MRI of the CFL view is not equal to that of 2D T2 FSE for the anatomical evaluation of CFL, 3D VISTA has a diagnostic performance comparable to that of 2D T2 FSE for the diagnosis of CFL injuries. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  20. Nanopolymers improve delivery of exon skipping oligonucleotides and concomitant dystrophin expression in skeletal muscle of mdx mice

    PubMed Central

    Williams, Jason H; Schray, Rebecca C; Sirsi, Shashank R; Lutz, Gordon J

    2008-01-01

    Background Exon skipping oligonucleotides (ESOs) of 2'O-Methyl (2'OMe) and morpholino chemistry have been shown to restore dystrophin expression in muscle fibers from the mdx mouse, and are currently being tested in phase I clinical trials for Duchenne Muscular Dystrophy (DMD). However, ESOs remain limited in their effectiveness because of an inadequate delivery profile. Synthetic cationic copolymers of poly(ethylene imine) (PEI) and poly(ethylene glycol) (PEG) are regarded as effective agents for enhanced delivery of nucleic acids in various applications. Results We examined whether PEG-PEI copolymers can facilitate ESO-mediated dystrophin expression after intramuscular injections into tibialis anterior (TA) muscles of mdx mice. We utilized a set of PEG-PEI copolymers containing 2 kDa PEI and either 550 Da or 5 kDa PEG, both of which bind 2'OMe ESOs with high affinity and form stable nanoparticulates with a relatively low surface charge. Three weekly intramuscular injections of 5 μg of ESO complexed with PEI2K-PEG550 copolymers resulted in about 500 dystrophin-positive fibers and about 12% of normal levels of dystrophin expression at 3 weeks after the initial injection, which is significantly greater than for injections of ESO alone, which are known to be almost completely ineffective. In an effort to enhance biocompatibility and cellular uptake, the PEI2K-PEG550 and PEI2K-PEG5K copolymers were functionalized by covalent conjugation with nanogold (NG) or adsorbtion of colloidal gold (CG), respectively. Surprisingly, using the same injection and dosing regimen, we found no significant difference in dystrophin expression by Western blot between the NG-PEI2K-PEG550, CG-PEI2K-PEG5K, and non-functionalized PEI2K-PEG550 copolymers. Dose-response experiments using the CG-PEI2K-PEG5K copolymer with total ESO ranging from 3–60 μg yielded a maximum of about 15% dystrophin expression. Further improvements in dystrophin expression up to 20% of normal levels were found at 6 weeks after 10 twice-weekly injections of the NG-PEI2K-PEG550 copolymer complexed with 5 μg of ESO per injection. This injection and dosing regimen showed over 1000 dystrophin-positive fibers. H&E staining of all treated muscle groups revealed no overt signs of cytotoxicity. Conclusion We conclude that PEGylated PEI2K copolymers are efficient carriers for local delivery of 2'OMe ESOs and warrant further development as potential therapeutics for treatment of DMD. PMID:18384691

  1. The President and the Galaxy

    NASA Astrophysics Data System (ADS)

    2004-12-01

    On December 9-10, 2004, the ESO Paranal Observatory was honoured with an overnight visit by His Excellency the President of the Republic of Chile, Ricardo Lagos and his wife, Mrs. Luisa Duran de Lagos. The high guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky, ESO's representative in Chile, Mr. Daniel Hofstadt, and Prof. Maria Teresa Ruiz, Head of the Astronomy Department at the Universidad de Chile, as well as numerous ESO staff members working at the VLT site. The visit was characterised as private, and the President spent a considerable time in pleasant company with the Paranal staff, talking with and getting explanations from everybody. The distinguished visitors were shown the various high-tech installations at the observatory, including the Interferometric Tunnel with the VLTI delay lines and the first Auxiliary Telescope. Explanations were given by ESO astronomers and engineers and the President, a keen amateur astronomer, gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. President Lagos showed a deep interest and impressed everyone present with many, highly relevant questions. Having enjoyed the spectacular sunset over the Pacific Ocean from the Residence terrace, the President met informally with the Paranal employees who had gathered for this unique occasion. Later, President Lagos visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the President took part in an observing sequence of the spiral galaxy NGC 1097 (see PR Photo 35d/04) from the console of the MELIPAL telescope. After one more visit to the telescope platform at the top of Paranal, the President and his wife left the Observatory in the morning of December 10, 2004, flying back to Santiago. ESO PR Photo 35e/04 ESO PR Photo 35e/04 President Lagos Meets with ESO Staff at the Paranal Residencia [Preview - JPEG: 400 x 267pix - 144k] [Normal - JPEG: 640 x 427 pix - 240k] ESO PR Photo 35f/04 ESO PR Photo 35f/04 The Presidential Couple with Professor Maria Teresa Ruiz and the ESO Director General [Preview - JPEG: 500 x 400 pix - 224k] [Normal - JPEG: 1000 x 800 pix - 656k] [FullRes - JPEG: 1575 x 1260 pix - 1.0M] ESO PR Photo 35g/04 ESO PR Photo 35g/04 President Lagos with ESO Staff [Preview - JPEG: 500 x 400 pix - 192k] [Normal - JPEG: 1000 x 800 pix - 592k] [FullRes - JPEG: 1575 x 1200 pix - 1.1M] Captions: ESO PR Photo 35e/04 was obtained during President Lagos' meeting with ESO Staff at the Paranal Residencia. On ESO PR Photo 35f/04, President Lagos and Mrs. Luisa Duran de Lagos are seen at a quiet moment during the visit to the VLT Control Room, together with Prof. Maria Teresa Ruiz (far right), Head of the Astronomy Department at the Universidad de Chile, and the ESO Director General. ESO PR Photo 35g/04 shows President Lagos with some ESO staff members in the Paranal Residencia. VLT obtains a splendid photo of a unique galaxy, NGC 1097 ESO PR Photo 35d/04 ESO PR Photo 35d/04 Spiral Galaxy NGC 1097 (Melipal + VIMOS) [Preview - JPEG: 400 x 525 pix - 181k] [Normal - JPEG: 800 x 1049 pix - 757k] [FullRes - JPEG: 2296 x 3012 pix - 7.9M] Captions: ESO PR Photo 35d/04 is an almost-true colour composite based on three images made with the multi-mode VIMOS instrument on the 8.2-m Melipal (Unit Telescope 3) of ESO's Very Large Telescope. They were taken on the night of December 9-10, 2004, in the presence of the President of the Republic of Chile, Ricardo Lagos. Details are available in the Technical Note below. A unique and very beautiful image was obtained with the VIMOS instrument with President Lagos at the control desk. Located at a distance of about 45 million light-years in the southern constellation Fornax (the Furnace), NGC 1097 is a relatively bright, barred spiral galaxy of type SBb, seen face-on. At magnitude 9.5, and thus just 25 times fainter than the faintest object that can be seen with the unaided eye, it appears in small telescopes as a bright, circular disc. ESO PR Photo 35d/04, taken on the night of December 9 to 10, 2004 with the VIsible Multi-Object Spectrograph ("VIMOS), a four-channel multiobject spectrograph and imager attached to the 8.2-m VLT Melipal telescope, shows that the real structure is much more complicated. NGC 1097 is indeed a most interesting object in many respects. As this striking image reveals, NGC 1097 presents a centre that consists of a broken ring of bright knots surrounding the galaxy's nucleus. The sizes of these knots - presumably gigantic bubbles of hydrogen atoms having lost one electron (HII regions) through the intense radiation from luminous massive stars - range from roughly 750 to 2000 light-years. The presence of these knots suggests that an energetic burst of star formation has recently occurred. NGC 1097 is also known as an example of the so-called LINER (Low-Ionization Nuclear Emission Region Galaxies) class. Objects of this type are believed to be low-luminosity examples of Active Galactic Nuclei (AGN), whose emission is thought to arise from matter (gas and stars) falling into oblivion in a central black hole. There is indeed much evidence that a supermassive black hole is located at the very centre of NGC 1097, with a mass of several tens of million times the mass of the Sun. This is at least ten times more massive than the central black hole in our own Milky Way. However, NGC 1097 possesses a comparatively faint nucleus only, and the black hole in its centre must be on a very strict "diet": only a small amount of gas and stars is apparently being swallowed by the black hole at any given moment. A turbulent past As can be clearly seen in the upper part of PR Photo 35d/04, NGC 1097 also has a small galaxy companion; it is designated NGC 1097A and is located about 42,000 light-years away from the centre of NGC 1097. This peculiar elliptical galaxy is 25 times fainter than its big brother and has a "box-like" shape, not unlike NGC 6771, the smallest of the three galaxies that make up the famous Devil's Mask, cf. ESO PR Photo 12/04. There is evidence that NGC 1097 and NGC 1097A have been interacting in the recent past. Another piece of evidence for this galaxy's tumultuous past is the presence of four jets - not visible on this image - discovered in the 1970's on photographic plates. These jets are now believed to be the captured remains of a disrupted dwarf galaxy that passed through the inner part of the disc of NGC 1097. Moreover, another interesting feature of this active galaxy is the fact that no less than two supernovae were detected inside it within a time span of only four years. SN 1999eu was discovered by Japanese amateur Masakatsu Aoki (Toyama, Japan) on November 5, 1999. This 17th-magnitude supernova was a peculiar Type II supernova, the end result of the core collapse of a very massive star. And in the night of January 5 to 6, 2003, Reverend Robert Evans (Australia) discovered another Type II supernova of 15th magnitude. Also visible in this very nice image which was taken during very good sky conditions - the seeing was well below 1 arcsec - are a multitude of background galaxies of different colours and shapes. Given the fact that the total exposure time for this three-colour image was just 11 min, it is a remarkable feat, demonstrating once again the very high efficiency of the VLT.

  2. Robust partial integrated guidance and control for missiles via extended state observer.

    PubMed

    Wang, Qing; Ran, Maopeng; Dong, Chaoyang

    2016-11-01

    A novel extended state observer (ESO) based control is proposed for a class of nonlinear systems subject to multiple uncertainties, and then applied to partial integrated guidance and control (PIGC) design for a missile. The proposed control strategy incorporates both an ESO and an adaptive sliding mode control law. The multiple uncertainties are treated as an extended state of the plant, and then estimate them using the ESO and compensate for them in the control action, in real time. Based on the output of the ESO, the resulting adaptive sliding mode control law is inherently continuous and differentiable. Strict proof is given to show that the estimation error of the ESO can be arbitrarily small in a finite time. In addition, the adaptive sliding mode control law can achieve finite time convergence to a neighborhood of the origin, and the accurate expression of the convergent region is given. Finally, simulations are conducted on the planar missile-target engagement geometry. The effectiveness of the proposed control strategy in enhanced interception performance and improved robustness against multiple uncertainties are demonstrated. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    PubMed

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Island Universes with a Twist

    NASA Astrophysics Data System (ADS)

    2006-07-01

    If life is like a box of chocolates - you never know what you will get - the Universe, with its immensely large variety of galaxies, must be a real candy store! ESO's Very Large Telescope has taken images of three different 'Island Universes' [1], each amazing in their own way, whose curious shapes testify of a troubled past, and for one, of a foreseeable doomed future. ESO PR Photo 27a/06 ESO PR Photo 27a/06 The Starburst Galaxy NGC 908 The first galaxy pictured is NGC 908, located 65 million light-years towards the constellation of Cetus (the Whale). This spiral galaxy, discovered in 1786 by William Herschel, is a so-called starburst galaxy, that is, a galaxy undergoing a phase where it spawns stars at a frantic rate. Clusters of young and massive stars can be seen in the spiral arms. Two supernovae, the explosions of massive stars, have been recorded in the near past: one in 1994 and another in May of this year. The galaxy, which is about 75 000 light-years long, also clearly presents uneven and thick spiral arms, the one on the left appearing to go upwards, forming a kind of ribbon. These properties indicate that NGC 908 most probably suffered a close encounter with another galaxy, even though none is visible at present. ESO PR Photo 27b/06 ESO PR Photo 27b/06 The Spectacular Spiral Galaxy ESO 269-G57 The second galaxy featured constitutes another wonderful sight yet of a more timid nature: it does not belong to the NGC catalogue [2], like so many of its more famous brethren. Its less well-known designation, ESO 269-G57, refers to the ESO/Uppsala Survey of the Southern Sky in the 1970's during which over 15,000 southern galaxies were found with the ESO Schmidt telescope and catalogued. Located about 155 million light-years away towards the southern constellation Centaurus (the Centaur), ESO 269-G57 is a spectacular spiral galaxy of symmetrical shape that belongs to a well-known cluster of galaxies seen in this direction. An inner 'ring', of several tightly wound spiral arms, surrounded by two outer ones that appear to split into several branches, are clearly visible. Many blue and diffuse objects are seen - most are star-forming regions. ESO 269-G57 extends over about 4 arc minutes in the sky, corresponding to nearly 200,000 light-years across. Resembling a large fleet of spaceships, many other faint, distant galaxies are visible in the background. ESO PR Photo 27c/06 ESO PR Photo 27c/06 The Irregular Galaxy NGC 1427A Finally, ESO 27c/06 provides a view of a more tormented organism, a so-called irregular galaxy, known as NGC 1427A. Located about 60 million light-years away, in the direction of the constellation Fornax (the Furnace), NGC 1427A is about 20,000 light-years long and shares some resemblances with our neighbouring Large Magellanic Cloud. NGC 1427A is in fact plunging into the Fornax cluster of galaxies at a speed of 600 km/s, and takes an arrowhead shape. Moving so rapidly, the galaxy is compressed by the intracluster gas, and this compression gives birth to many new stars. Using these and other VLT observations, astronomer Iskren Y. Georgiev from the Argelander Institute for Astronomy at Bonn (Germany) and his colleagues [3] were able to find 38 candidates globular clusters that are about 10 billion years old. The scientists also inferred that NGC 1427A is about 10 million light-years in front of the central dominant elliptical galaxy in the Fornax cluster of galaxies, NGC 1399. It seems certain that under such circumstances, the future of NGC 1427A looks bleak, as the galaxy will finally be disrupted, dispersing its content of gas and stars in the intracluster regions. Just next to NGC 1427A, but 25 times further away, a more typical, beautiful face-on spiral galaxy is looking rather unperturbed at the dramatic spectacle. The multi-mode FORS instrument, on ESO's Very Large Telescope, was used to take the images of these three galaxies. The observations were done in several filters which were then combined to produce a colour image. More information on each of the images is given in the respective captions.

  5. With the VLT Interferometer towards Sharper Vision

    NASA Astrophysics Data System (ADS)

    2000-05-01

    The Nova-ESO VLTI Expertise Centre Opens in Leiden (The Netherlands) European science and technology will gain further strength when the new, front-line Nova-ESO VLTI Expertise Centre (NEVEC) opens in Leiden (The Netherlands) this week. It is a joint venture of the Netherlands Research School for Astronomy (NOVA) (itself a collaboration between the Universities of Amsterdam, Groningen, Leiden, and Utrecht) and the European Southern Observatory (ESO). It is concerned with the Very Large Telescope Interferometer (VLTI). The Inauguration of the new Centre will take place on Friday, May 26, 2000, at the Gorlaeus Laboratory (Lecture Hall no. 1), Einsteinweg 55 2333 CC Leiden; the programme is available on the web. Media representatives who would like to participate in this event and who want further details should contact the Nova Information Centre (e-mail: jacques@astro.uva.nl; Tel: +31-20-5257480 or +31-6-246 525 46). The inaugural ceremony is preceded by a scientific workshop on ground and space-based optical interferometry. NEVEC: A Technology Centre of Excellence As a joint project of NOVA and ESO, NEVEC will develop in the coming years the expertise to exploit the unique interferometric possibilities of the Very Large Telescope (VLT) - now being built on Paranal mountain in Chile. Its primary goals are the * development of instrument modeling, data reduction and calibration techniques for the VLTI; * accumulation of expertise relevant for second-generation VLTI instruments; and * education in the use of the VLTI and related matters. NEVEC will develop optical equipment, simulations and software to enable interferometry with VLT [1]. The new Center provides a strong impulse to Dutch participation in the VLTI. With direct involvement in this R&D work, the scientists at NOVA will be in the front row to do observations with this unique research facility, bound to produce top-level research and many exciting new discoveries. The ESO VLTI at Paranal ESO PR Photo 14a/00 ESO PR Photo 14a/00 [Preview - JPEG: 359 x 400 pix - 120k] [Normal - JPEG: 717 x 800 pix - 416k] [High-Res - JPEG: 2689 x 3000 pix - 6.7M] Caption : A view of the Paranal platform with the four 8.2-m VLT Unit Telescopes (UTs) and the foundations for the 1.8-m VLT Auxiliary Telescopes (ATs) that together will be used as the VLT Interferometer (VLTI). The three ATs will move on rails (yet to be installed) between the thirty observing stations above the holes that provide access to the underlying tunnel system. The light beams from the individual telescopes will be guided towards the centrally located, partly underground Interferometry Laboratory in which the VLTI instruments will be set up. This photo was obtained in December 1999 at which time some construction materials were still present on the platform; they were electronically removed in this reproduction. The ESO VLT facility at Paranal (Chile) consists of four Unit Telescopes with 8.2-m mirrors and several 1.8-m auxiliary telescopes that move on rails, cf. PR Photo 14a/00 . While each of the large telescopes can be used individually for astronomical observations, a prime feature of the VLT is the possibility to combine all of these telescopes into the Very Large Telescope Interferometer (VLTI) . In the interferometric mode, the light beams from the VLT telescopes are brought together at a common focal point in the Interferometry Laboratory that is placed at the centre of the observing platform on top of Paranal. In principle, this can be done in such a way that the resulting (reconstructed) image appears to come from a virtual telescope with a diameter that is equal to the largest distance between two of the individual telescopes, i.e., up to about 200 metres. The theoretically achievable image sharpness of an astronomical telescope is proportional to its diameter (or, for an interferometer, the largest distance between two of its component telescopes). The interferometric observing technique will thus allow the VLTI to produce images as sharp as 0.001 arcsec (at wavelength 1 µm) - this corresponds to viewing the shape of a golfball at more than 8,000 km distance. The VLTI will do even better when this technique is later extended to shorter wavelengths in the visible part of the spectrum - it may ultimately distinguish human-size objects on the surface of the Moon (a 2-metre object at this distance, about 400,000 km, subtends an angle of about 0.001 arcsec). However, interferometry with the VLT demands that the wavefronts of light from the individual telescopes that are up to 200 meters apart must be matched exactly, with less than 1 wavelength of difference. This demands continuous mechanical stability to a fraction of 1 µm (0.001 mm) for the heavy components over such large distances, and is a technically formidable challenge. This is achieved by electronic feed-back loops that measure and adjust the distances during the observations. In addition, continuous and automatic correction of image distortions from air turbulence in the telescopes' field of view is performed by means of adaptive optics [2]. VLTI technology at ESO, industry and institutes The VLT Interferometer is based on front-line technologies introduced and advanced by ESO, and its many parts are now being constructed at various sites in Europe. ESO PR Photo 14b/00 ESO PR Photo 14b/00 [Preview - JPEG: 359 x 400 pix - 72k] [Normal - JPEG: 717 x 800 pix - 200k] [High-Res - JPEG: 2687 x 3000 pix - 1.3M] Caption : Schematic lay-out of the VLT Interferometer. The light from a distant celestial objects enters two of the VLT telescopes and is reflected by the various mirrors into the Interferometric Tunnel, below the observing platform on the top of Paranal. Two Delay Lines with moveable carriages continuously adjust the length of the paths so that the two beams interfere constructively and produce fringes at the interferometric focus in the laboratory. In 1998, Fokker Space (also in Leiden, The Netherlands) was awarded a contract for the delivery of the three Delay Lines of the VLTI. This mechanical-optical system will compensate the optical path differences of the light beams from the individual telescopes. It is necessary to ensure that the light from all telescopes arrives in the same phase at the focal point of the interferometer. Otherwise, the very sharp interferometric images cannot be obtained. More details are available in the corresponding ESO PR 04/98 and recent video sequences, included in ESO Video News Reel No. 9 and Video Clip 04a/00 , cf. below. Also in 1998, the company AMOS (Liège, Belgium) was awarded an ESO contract for the delivery of the three 1.8-m Auxiliary Telescopes (ATs) and of the full set of on-site equipment for the 30 AT observing stations, cf. ESO PR Photos 25a-b/98. This work is now in progress at the factory - various scenes are incorporated into ESO Video News Reel No. 9 and Video Clip 04b/00 . Several instruments for imaging and spectroscopy are currently being developed for the VLTI. The first will be the VLT Interferometer Commissioning Instrument (VINCI) that is the test and first-light instrument for the VLT Interferometer. It is being built by a consortium of French and German institutes under ESO contract. The VLTI Near-Infrared / Red Focal Instrument (AMBER) is a collaborative project between five institutes in France, Germany and Italy, under ESO contract. It will operate with two 8.2-m UTs in the wavelength range between 1 and 2.5 µm during a first phase (2001-2003). The wavelength coverage will be extended in a second phase down to 0.6 µm (600 nm) at the time the ATs become operational. Main scientific objectives are the investigation at very high-angular resolution of disks and jets around young stellar objects and dust tori at active galaxy nuclei with spectroscopic observations. The Phase-Referenced Imaging and Microarcsecond Astrometry (PRIMA) device is managed by ESO and will allow simultaneous interferometric observations of two objects - each with a maximum size of 2 arcsec - and provide exceedingly accurate positional measurements. This will be of importance for many different kinds of astronomical investigations, for instance the search for planetary companions by means of accurate astrometry. The MID-Infrared interferometric instrument (MIDI) is a project collaboration between eight institutes in France, Germany and the Netherlands [1], under ESO contract. The actual design of MIDI is optimized for operation at 10 µm and a possible extension to 20 µm is being considered. Notes [1] The NEVEC Centre is involved in the MIDI project for the VLTI. Another joint project between ESO and NOVA is the Wide-Field Imager OMEGACAM for the VLT Survey Telescope (VST) that will be placed at Paranal. [2] Adaptive Optics systems allow to continuously "re-focus" an astronomical telescope in order to compensate for the atmospheric turbulence and thus to obtain the sharpest possible images. The work at ESO is described on the Adaptive Optics Team Homepage. VLTI-related videos now available In conjunction with the Inauguration of the NEVEC Centre (Leiden, The Netherlands) on May 26, 2000, ESO has issued ESO Video News Reel No. 9 (May 2000) ( "The Sharpest Vision - Interferometry with the VLT" ). Tapes with this VNR, suitable for transmission and in full professional quality (Betacam, etc.), are now available for broadcasters upon request; please contact the ESO EPR Department for more details. Extracts from this VNR are available as ESO Video Clips 04a/00 and 04b/00 . ESO PR Video Clip 04a/00 [160x120 pix MPEG-version] ESO PR Video Clip 04a/00 (2600 frames/1:44 min) [MPEG Video+Audio; 160x120 pix; 2.4Mb] [MPEG Video+Audio; 320x240 pix; 4.8 Mb] [RealMedia; streaming; 33kps] [RealMedia; streaming; 200kps] ESO Video Clip 04a/00 shows some recent tests with the prototype VLT Delay Line carriage at FOKKER Space (Leiden, The Netherlands. This device is crucial for the proper functioning of the VLTI and will be mounted in the main interferometric tunnel at Paranal. Contents: Outside view of the FOKKER site. The carriage on rails. The protecting cover is removed. View towards the cat's eye. The carriage moves on the rails. ESO PR Video Clip 04b/00 [160x120 pix MPEG-version] ESO PR Video Clip 04b/00 (3425 frames/2:17 min) [MPEG Video+Audio; 160x120 pix; 3.2Mb] [MPEG Video+Audio; 320x240 pix; 6.3 Mb] [RealMedia; streaming; 33kps] [RealMedia; streaming; 200kps] ESO Video Clip 04b/00 shows the construction of the 1.8-m VLT Auxiliary Telescopes at AMOS (Liège, Belgium). Contents: External view of the facility. Computer drawing of the mechanics. The 1.8-m mirror (graphics). Construction of the centerpiece of the telescope tube. Mechanical parts. Checking the optical shape of an 1.8-m mirror. Mirror cell with supports for the 1.8-m mirror. Test ramp with rails on which the telescope moves and an "observing station" (the hole). The telescope yoke that will support the telescope tube. Both clips are available in four versions: two MPEG files and two streamer-versions of different sizes; the latter require RealPlayer software. They may be freely reproduced if ESO is mentioned as source. Most of the ESO PR Video Clips at the ESO website provide "animated" illustrations of the ongoing work and events at the European Southern Observatory. The most recent clip was: ESO PR Video Clip 03/00 with a trailer for "Physics on Stage" (2 May 2000). Information is also available on the web about other ESO videos.

  6. How Much Mass Makes a Black Hole? - Astronomers Challenge Current Theories

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Using ESO's Very Large Telescope, European astronomers have for the first time demonstrated that a magnetar - an unusual type of neutron star - was formed from a star with at least 40 times as much mass as the Sun. The result presents great challenges to current theories of how stars evolve, as a star as massive as this was expected to become a black hole, not a magnetar. This now raises a fundamental question: just how massive does a star really have to be to become a black hole? To reach their conclusions, the astronomers looked in detail at the extraordinary star cluster Westerlund 1 [1], located 16 000 light-years away in the southern constellation of Ara (the Altar). From previous studies (eso0510), the astronomers knew that Westerlund 1 was the closest super star cluster known, containing hundreds of very massive stars, some shining with a brilliance of almost one million suns and some two thousand times the diameter of the Sun (as large as the orbit of Saturn). "If the Sun were located at the heart of this remarkable cluster, our night sky would be full of hundreds of stars as bright as the full Moon," says Ben Ritchie, lead author of the paper reporting these results. Westerlund 1 is a fantastic stellar zoo, with a diverse and exotic population of stars. The stars in the cluster share one thing: they all have the same age, estimated at between 3.5 and 5 million years, as the cluster was formed in a single star-formation event. A magnetar (eso0831) is a type of neutron star with an incredibly strong magnetic field - a million billion times stronger than that of the Earth, which is formed when certain stars undergo supernova explosions. The Westerlund 1 cluster hosts one of the few magnetars known in the Milky Way. Thanks to its home in the cluster, the astronomers were able to make the remarkable deduction that this magnetar must have formed from a star at least 40 times as massive as the Sun. As all the stars in Westerlund 1 have the same age, the star that exploded and left a magnetar remnant must have had a shorter life than the surviving stars in the cluster. "Because the lifespan of a star is directly linked to its mass - the heavier a star, the shorter its life - if we can measure the mass of any one surviving star, we know for sure that the shorter-lived star that became the magnetar must have been even more massive," says co-author and team leader Simon Clark. "This is of great significance since there is no accepted theory for how such extremely magnetic objects are formed." The astronomers therefore studied the stars that belong to the eclipsing double system W13 in Westerlund 1 using the fact that, in such a system, masses can be directly determined from the motions of the stars. By comparison with these stars, they found that the star that became the magnetar must have been at least 40 times the mass of the Sun. This proves for the first time that magnetars can evolve from stars so massive we would normally expect them to form black holes. The previous assumption was that stars with initial masses between about 10 and 25 solar masses would form neutron stars and those above 25 solar masses would produce black holes. "These stars must get rid of more than nine tenths of their mass before exploding as a supernova, or they would otherwise have created a black hole instead," says co-author Ignacio Negueruela. "Such huge mass losses before the explosion present great challenges to current theories of stellar evolution." "This therefore raises the thorny question of just how massive a star has to be to collapse to form a black hole if stars over 40 times as heavy as our Sun cannot manage this feat," concludes co-author Norbert Langer. The formation mechanism preferred by the astronomers postulates that the star that became the magnetar - the progenitor - was born with a stellar companion. As both stars evolved they would begin to interact, with energy derived from their orbital motion expended in ejecting the requisite huge quantities of mass from the progenitor star. While no such companion is currently visible at the site of the magnetar, this could be because the supernova that formed the magnetar caused the binary to break apart, ejecting both stars at high velocity from the cluster. "If this is the case it suggests that binary systems may play a key role in stellar evolution by driving mass loss - the ultimate cosmic 'diet plan' for heavyweight stars, which shifts over 95% of their initial mass," concludes Clark. Notes [1] The open cluster Westerlund 1 was discovered in 1961 from Australia by Swedish astronomer Bengt Westerlund, who later moved from there to become ESO Director in Chile (1970-74). This cluster is behind a huge interstellar cloud of gas and dust, which blocks most of its visible light. The dimming factor is more than 100 000, and this is why it has taken so long to uncover the true nature of this particular cluster. Westerlund 1 is a unique natural laboratory for the study of extreme stellar physics, helping astronomers to find out how the most massive stars in our Milky Way live and die. From their observations, the astronomers conclude that this extreme cluster most probably contains no less than 100 000 times the mass of the Sun, and all of its stars are located within a region less than 6 light-years across. Westerlund 1 thus appears to be the most massive compact young cluster yet identified in the Milky Way galaxy. All stars so far analysed in Westerlund 1 have masses at least 30-40 times that of the Sun. Because such stars have a rather short life - astronomically speaking - Westerlund 1 must be very young. The astronomers determine an age somewhere between 3.5 and 5 million years. So, Westerlund 1 is clearly a "newborn" cluster in our galaxy. More information The research presented in this ESO Press Release will soon appear in the research journal Astronomy and Astrophysics ("A VLT/FLAMES survey for massive binaries in Westerlund 1: II. Dynamical constraints on magnetar progenitor masses from the eclipsing binary W13", by B. Ritchie et al.). The same team published a first study of this object in 2006 ("A Neutron Star with a Massive Progenitor in Westerlund 1", by M.P. Muno et al., Astrophysical Journal, 636, L41). The team is composed of Ben Ritchie and Simon Clark (The Open University, UK), Ignacio Negueruela (Universidad de Alicante, Spain), and Norbert Langer (Universität Bonn, Germany, and Universiteit Utrecht, the Netherlands). The astronomers used the FLAMES instrument on ESO's Very Large Telescope at Paranal, Chile to study the stars in the Westerlund 1 cluster. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  7. ESO imaging survey: optical deep public survey

    NASA Astrophysics Data System (ADS)

    Mignano, A.; Miralles, J.-M.; da Costa, L.; Olsen, L. F.; Prandoni, I.; Arnouts, S.; Benoist, C.; Madejsky, R.; Slijkhuis, R.; Zaggia, S.

    2007-02-01

    This paper presents new five passbands (UBVRI) optical wide-field imaging data accumulated as part of the DEEP Public Survey (DPS) carried out as a public survey by the ESO Imaging Survey (EIS) project. Out of the 3 square degrees originally proposed, the survey covers 2.75 square degrees, in at least one band (normally R), and 1.00 square degrees in five passbands. The median seeing, as measured in the final stacked images, is 0.97 arcsec, ranging from 0.75 arcsec to 2.0 arcsec. The median limiting magnitudes (AB system, 2´´ aperture, 5σ detection limit) are UAB=25.65, BAB=25.54, VAB=25.18, RAB = 24.8 and IAB =24.12 mag, consistent with those proposed in the original survey design. The paper describes the observations and data reduction using the EIS Data Reduction System and its associated EIS/MVM library. The quality of the individual images were inspected, bad images discarded and the remaining used to produce final image stacks in each passband, from which sources have been extracted. Finally, the scientific quality of these final images and associated catalogs was assessed qualitatively by visual inspection and quantitatively by comparison of statistical measures derived from these data with those of other authors as well as model predictions, and from direct comparison with the results obtained from the reduction of the same dataset using an independent (hands-on) software system. Finally to illustrate one application of this survey, the results of a preliminary effort to identify sub-mJy radio sources are reported. To the limiting magnitude reached in the R and I passbands the success rate ranges from 66 to 81% (depending on the fields). These data are publicly available at CDS. Based on observations carried out at the European Southern Observatory, La Silla, Chile under program Nos. 164.O-0561, 169.A-0725, and 267.A-5729. Appendices A, B and C are only available in electronic form at http://www.aanda.org

  8. Intracranial arterial wall imaging using three-dimensional high isotropic resolution black blood MRI at 3.0 Tesla.

    PubMed

    Qiao, Ye; Steinman, David A; Qin, Qin; Etesami, Maryam; Schär, Michael; Astor, Brad C; Wasserman, Bruce A

    2011-07-01

    To develop a high isotropic-resolution sequence to evaluate intracranial vessels at 3.0 Tesla (T). Thirteen healthy volunteers and 4 patients with intracranial stenosis were imaged at 3.0T using 0.5-mm isotropic-resolution three-dimensional (3D) Volumetric ISotropic TSE Acquisition (VISTA; TSE, turbo spin echo), with conventional 2D-TSE for comparison. VISTA was repeated for 6 volunteers and 4 patients at 0.4-mm isotropic-resolution to explore the trade-off between SNR and voxel volume. Wall signal-to-noise-ratio (SNR(wall) ), wall-lumen contrast-to-noise-ratio (CNR(wall-lumen) ), lumen area (LA), wall area (WA), mean wall thickness (MWT), and maximum wall thickness (maxWT) were compared between 3D-VISTA and 2D-TSE sequences, as well as 3D images acquired at both resolutions. Reliability was assessed by intraclass correlations (ICC). Compared with 2D-TSE measurements, 3D-VISTA provided 58% and 74% improvement in SNR(wall) and CNR(wall-lumen) , respectively. LA, WA, MWT and maxWT from 3D and 2D techniques highly correlated (ICCs of 0.96, 0.95, 0.96, and 0.91, respectively). CNR(wall-lumen) using 0.4-mm resolution VISTA decreased by 27%, compared with 0.5-mm VISTA but with reduced partial-volume-based overestimation of wall thickness. Reliability for 3D measurements was good to excellent. The 3D-VISTA provides SNR-efficient, highly reliable measurements of intracranial vessels at high isotropic-resolution, enabling broad coverage in a clinically acceptable time. Copyright © 2011 Wiley-Liss, Inc.

  9. Data Flow System operations: from the NTT to the VLT

    NASA Astrophysics Data System (ADS)

    Silva, David R.; Leibundgut, Bruno; Quinn, Peter J.; Spyromilio, Jason; Tarenghi, Massimo

    1998-07-01

    Science operations at the ESO very large telescope is scheduled to begin in April 1999. ESO is currently finalizing the VLT science operations plan. This plan describes the operations tasks and staffing needed to support both visitor and service mode operations. The Data Flow Systems (DFS) currently being developed by ESO will provide the infrastructure necessary for VLT science operations. This paper describes the current VLT science operations plan, first by discussing the tasks involved and then by describing the operations teams that have responsibility for those tasks. Prototypes of many of these operational concepts and tools have been in use at the ESO New Technology Telescope (NTT) since February 1997. This paper briefly summarizes the status of these prototypes and then discusses what operation lessons have been learned from the NTT experience and how they can be applied to the VLT.

  10. VLT Captures First Direct Spectrum of an Exoplanet

    NASA Astrophysics Data System (ADS)

    2010-01-01

    By studying a triple planetary system that resembles a scaled-up version of our own Sun's family of planets, astronomers have been able to obtain the first direct spectrum - the "chemical fingerprint" [1] - of a planet orbiting a distant star [2], thus bringing new insights into the planet's formation and composition. The result represents a milestone in the search for life elsewhere in the Universe. "The spectrum of a planet is like a fingerprint. It provides key information about the chemical elements in the planet's atmosphere," says Markus Janson, lead author of a paper reporting the new findings. "With this information, we can better understand how the planet formed and, in the future, we might even be able to find tell-tale signs of the presence of life." The researchers obtained the spectrum of a giant exoplanet that orbits the bright, very young star HR 8799. The system is at about 130 light-years from Earth. The star has 1.5 times the mass of the Sun, and hosts a planetary system that resembles a scaled-up model of our own Solar System. Three giant companion planets were detected in 2008 by another team of researchers, with masses between 7 and 10 times that of Jupiter. They are between 20 and 70 times as far from their host star as the Earth is from the Sun; the system also features two belts of smaller objects, similar to our Solar System's asteroid and Kuiper belts. "Our target was the middle planet of the three, which is roughly ten times more massive than Jupiter and has a temperature of about 800 degrees Celsius," says team member Carolina Bergfors. "After more than five hours of exposure time, we were able to tease out the planet's spectrum from the host star's much brighter light." This is the first time the spectrum of an exoplanet orbiting a normal, almost Sun-like star has been obtained directly. Previously, the only spectra to be obtained required a space telescope to watch an exoplanet pass directly behind its host star in an "exoplanetary eclipse", and then the spectrum could be extracted by comparing the light of the star before and after. However, this method can only be applied if the orientation of the exoplanet's orbit is exactly right, which is true for only a small fraction of all exoplanetary systems. The present spectrum, on the other hand, was obtained from the ground, using ESO's Very Large Telescope (VLT), in direct observations that do not depend on the orbit's orientation. As the host star is several thousand times brighter than the planet, this is a remarkable achievement. "It's like trying to see what a candle is made of, by observing it from a distance of two kilometres when it's next to a blindingly bright 300 Watt lamp," says Janson. The discovery was made possible by the infrared instrument NACO, mounted on the VLT, and relied heavily on the extraordinary capabilities of the instrument's adaptive optics system [3]. Even more precise images and spectra of giant exoplanets are expected both from the next generation instrument SPHERE, to be installed on the VLT in 2011, and from the European Extremely Large Telescope. The newly collected data show that the atmosphere enclosing the planet is still poorly understood. "The features observed in the spectrum are not compatible with current theoretical models," explains co-author Wolfgang Brandner. "We need to take into account a more detailed description of the atmospheric dust clouds, or accept that the atmosphere has a different chemical composition from that previously assumed." The astronomers hope to soon get their hands on the fingerprints of the other two giant planets so they can compare, for the first time, the spectra of three planets belonging to the same system. "This will surely shed new light on the processes that lead to the formation of planetary systems like our own," concludes Janson. Notes [1] As every rainbow demonstrates, white light can be split up into different colours. Astronomers artificially split up the light they receive from distant objects into its different colours (or "wavelengths"). However, where we distinguish five or six rainbow colours, astronomers map hundreds of finely nuanced colours, producing a spectrum - a record of the different amounts of light the object emits in each narrow colour band. The details of the spectrum - more light emitted at some colours, less light at others - provide tell-tale signs about the chemical composition of the matter producing the light. This makes spectroscopy, the recording of spectra, an important investigative tool in astronomy. [2] In 2004, astronomers used NACO on the VLT to obtain an image and a spectrum of a 5 Jupiter mass object around a brown dwarf - a "failed star". It is however thought that the pair probably formed together, like a petite stellar binary, instead of the companion forming in the disc around the brown dwarf, like a star-planet system (see eso0428, eso0515 and eso0619). [3] Telescopes on the ground suffer from a blurring effect introduced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets but frustrates astronomers, since it smears out the fine details of the images. However, with adaptive optics techniques, this major drawback can be overcome so that the telescope produces images that are as sharp as theoretically possible, i.e. approaching conditions in space. Adaptive optics systems work by means of a computer-controlled deformable mirror that counteracts the image distortion introduced by atmospheric turbulence. It is based on real-time optical corrections computed at very high speed (several hundreds of times each second) from image data obtained by a wavefront sensor (a special camera) that monitors light from a reference star. More information This research was presented in a paper in press as a Letter to the Astrophysical Journal ("Spatially resolved spectroscopy of the exoplanet HR 8799 c", by M. Janson et al.). The team is composed of M. Janson (University of Toronto, Canada), C. Bergfors, M. Goto, W. Brandner (Max-Planck-Institute for Astronomy, Heidelberg, Germany) and D. Lafrenière (University of Montreal, Canada). Preparatory data were taken with the IRCS instrument at the Subaru telescope. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  11. APEX Snaps First Close-up of Star Factories in Distant Universe

    NASA Astrophysics Data System (ADS)

    2010-03-01

    For the first time, astronomers have made direct measurements of the size and brightness of regions of star-birth in a very distant galaxy, thanks to a chance discovery with the APEX telescope. The galaxy is so distant, and its light has taken so long to reach us, that we see it as it was 10 billion years ago. A cosmic "gravitational lens" is magnifying the galaxy, giving us a close-up view that would otherwise be impossible. This lucky break reveals a hectic and vigorous star-forming life for galaxies in the early Universe, with stellar nurseries forming one hundred times faster than in more recent galaxies. The research is published online today in the journal Nature. Astronomers were observing a massive galaxy cluster [1] with the Atacama Pathfinder Experiment (APEX) telescope, using submillimetre wavelengths of light, when they found a new and uniquely bright galaxy, more distant than the cluster and the brightest very distant galaxy ever seen at submillimetre wavelengths. It is so bright because the cosmic dust grains in the galaxy are glowing after being heated by starlight. The new galaxy has been given the name SMM J2135-0102. "We were stunned to find a surprisingly bright object that wasn't at the expected position. We soon realised it was a previously unknown and more distant galaxy being magnified by the closer galaxy cluster," says Carlos De Breuck from ESO, a member of the team. De Breuck was making the observations at the APEX telescope on the plateau of Chajnantor at an altitude of 5000 m in the Chilean Andes. The new galaxy SMM J2135-0102 is so bright because of the massive galaxy cluster that lies in the foreground. The vast mass of this cluster bends the light of the more distant galaxy, acting as a gravitational lens [2]. As with a telescope, it magnifies and brightens our view of the distant galaxy. Thanks to a fortuitous alignment between the cluster and the distant galaxy, the latter is strongly magnified by a factor of 32. "The magnification reveals the galaxy in unprecedented detail, even though it is so distant that its light has taken about 10 billion years to reach us," explains Mark Swinbank from Durham University, lead author of the paper reporting the discovery. "In follow-up observations with the Submillimeter Array telescope, we've been able to study the clouds where stars are forming in the galaxy with great precision." The magnification means that the star-forming clouds can be picked out in the galaxy, down to a scale of only a few hundred light-years - almost down to the size of giant clouds in our own Milky Way. To see this level of detail without the help of the gravitational lens would need future telescopes such as ALMA (the Atacama Large Millimeter/submillimeter Array), which is currently under construction on the same plateau as APEX. This lucky discovery has therefore given astronomers a unique preview of the science that will be possible in a few years time. These "star factories" are similar in size to those in the Milky Way, but one hundred times more luminous, suggesting that star formation in the early life of these galaxies is a much more vigorous process than typically found in galaxies that lie nearer to us in time and space. In many ways, the clouds look more similar to the densest cores of star-forming clouds in the nearby Universe. "We estimate that SMM J2135-0102 is producing stars at a rate that is equivalent to about 250 Suns per year," says de Breuck. "The star formation in its large dust clouds is unlike that in the nearby Universe, but our observations also suggest that we should be able to use similar underlying physics from the densest stellar nurseries in nearby galaxies to understand star birth in these more distant galaxies." Notes [1] Galaxy clusters are among the most massive objects in the Universe kept together by gravity. They are composed of hundreds to thousands of galaxies, which make up to only about a tenth of their total mass. The bulk of their mass, which amounts to up to a million billion [1015] times the mass of our Sun, is composed of hot gas and dark matter. In this case, the cluster being observed has the designation MACS J2135-010217 (or MACS J213512.10-010258.5), and is at a distance of about four billion light-years. [2] Gravitational lensing is an effect forecast by Albert Einstein's theory of general relativity. Due to their gigantic mass and their intermediate position between us and very distant galaxies, galaxy clusters act as extremely efficient gravitational lenses, bending the light coming from background galaxies. Depending on the cluster mass distribution a host of interesting effects are produced, such as magnification, shape distortions, giant arcs, and multiple images of the same source. More information This research was presented in a paper, "Intense star formation within resolved compact regions in a galaxy at z=2.3" (A. M. Swinbank et al., DOI 10.1038/nature08880) to appear online in Nature today. The team is composed of A. M. Swinbank, I. Smail, J. Richard, A. C. Edge, and K. E. K. Coppin (Institute for Computational Cosmology, Durham University, UK), S. Longmore, R. Blundell, M. Gurwell, and D. Wilner (Harvard-Smithsonian Center For Astrophysics, USA), A. I. Harris and L. J. Hainline (Department of Astronomy, University of Maryland, USA), A.J. Baker (Department of Physics and Astronomy, Rutgers, University of New Jersey, USA), C. De Breuck, A. Lundgren and G. Siringo (ESO), R. J. Ivison (UKATC and Royal Observatory of Edinburgh, UK), P. Cox, M. Krips and R. Neri (Institut de Radio Astronomie Millimétrique, France), B. Siana (California Institute of Technology, USA), D. P. Stark (Institute of Astronomy, University of Cambridge, UK), and J. D. Younger (Institute for Advanced Study, USA). The Atacama Pathfinder Experiment (APEX) telescope is a 12-metre telescope, located at 5100 m altitude on the arid plateau of Chajnantor in the Chilean Andes. APEX operates at millimetre and submillimetre wavelengths. This wavelength range is a relatively unexplored frontier in astronomy, requiring advanced detectors and an extremely high and dry observatory site, such as Chajnantor. APEX, the largest submillimetre-wave telescope operating in the southern hemisphere, is a collaboration between the Max Planck Institute for Radio Astronomy, the Onsala Space Observatory and ESO. Operation of APEX at Chajnantor is entrusted to ESO. APEX is a "pathfinder" for ALMA - it is based on a prototype antenna constructed for the ALMA project, it is located on the same plateau and will find many targets that ALMA will be able to study in extreme detail. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  12. First Temperate Exoplanet Sized Up

    NASA Astrophysics Data System (ADS)

    2010-03-01

    Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first "normal" exoplanet that can be studied in great detail. Designated Corot-9b, the planet regularly passes in front of a star similar to the Sun located 1500 light-years away from Earth towards the constellation of Serpens (the Snake). "This is a normal, temperate exoplanet just like dozens we already know, but this is the first whose properties we can study in depth," says Claire Moutou, who is part of the international team of 60 astronomers that made the discovery. "It is bound to become a Rosetta stone in exoplanet research." "Corot-9b is the first exoplanet that really does resemble planets in our solar system," adds lead author Hans Deeg. "It has the size of Jupiter and an orbit similar to that of Mercury." "Like our own giant planets, Jupiter and Saturn, the planet is mostly made of hydrogen and helium," says team member Tristan Guillot, "and it may contain up to 20 Earth masses of other elements, including water and rock at high temperatures and pressures." Corot-9b passes in front of its host star every 95 days, as seen from Earth [1]. This "transit" lasts for about 8 hours, and provides astronomers with much additional information on the planet. This is fortunate as the gas giant shares many features with the majority of exoplanets discovered so far [2]. "Our analysis has provided more information on Corot-9b than for other exoplanets of the same type," says co-author Didier Queloz. "It may open up a new field of research to understand the atmospheres of moderate- and low-temperature planets, and in particular a completely new window in our understanding of low-temperature chemistry." More than 400 exoplanets have been discovered so far, 70 of them through the transit method. Corot-9b is special in that its distance from its host star is about ten times larger than that of any planet previously discovered by this method. And unlike all such exoplanets, the planet has a temperate climate. The temperature of its gaseous surface is expected to be between 160 degrees and minus twenty degrees Celsius, with minimal variations between day and night. The exact value depends on the possible presence of a layer of highly reflective clouds. The CoRoT satellite, operated by the French space agency CNES [3], identified the planet after 145 days of observations during the summer of 2008. Observations with the very successful ESO exoplanet hunter - the HARPS instrument attached to the 3.6-metre ESO telescope at La Silla in Chile - allowed the astronomers to measure its mass, confirming that Corot-9b is indeed an exoplanet, with a mass about 80% the mass of Jupiter. This finding is being published in this week's edition of the journal Nature. Notes [1] A planetary transit occurs when a celestial body passes in front of its host star and blocks some of the star's light. This type of eclipse causes changes in the apparent brightness of the star and enables the planet's diameter to be measured. Combined with radial velocity measurements made by the HARPS spectrograph, it is also possible to deduce the mass and, hence, the density of the planet. It is this combination that allows astronomers to study this object in great detail. The fact that it is transiting - but nevertheless not so close to its star to be a "hot Jupiter" - is what makes this object uniquely well suited for further studies. [2] Temperate gas giants are, so far, the largest known group of exoplanets discovered. [3] The CoRoT (Convection, Rotation and Transits) space telescope was constructed by CNES, with contributions from Austria, Germany, Spain, Belgium, Brazil and the European Space Agency (ESA). It was specifically designed to detect transiting exoplanets and carry out seismological studies of stars. Its results are supplemented by observations with several ground-based telescopes, among them the IAC-80 (Teide Observatory), the Canada France Hawaii Telescope (Hawaii), the Isaac Newton Telescope (Roque de los Muchachos Observatory), Wise Observatory (Israel), the Faulkes North Telescope of the Las Cumbres Observatory Global Telescope Network (Hawaii) and the ESO 3.6-metre telescope (Chile). More information This research was presented in a paper published this week in Nature ("A transiting giant planet with a temperature between 250 K and 430 K"), by H. J. Deeg et al. The team is composed of H.J. Deeg, B. Tingley, J.M. Almenara, and M. Rabus (Instituto de Astrofısica de Canarias, Tenerife, Spain), C. Moutou, P. Barge, A. S. Bonomo, M. Deleuil, J.-C. Gazzano, L. Jorda, and A. Llebaria (Laboratoire d'Astrophysique de Marseille, Université de Provence, CNRS, OAMP, France), A. Erikson, Sz. Csizmadia, J. Cabrera, P. Kabath, H. Rauer (Institute of Planetary Research, German Aerospace Center, Berlin, Germany), H. Bruntt, M. Auvergne, A. Baglin, D. Rouan, and J. Schneider (Observatoire de Paris-Meudon, France), S. Aigrain and F. Pont (University of Exeter, UK), R. Alonso, C. Lovis, M. Mayor, F. Pepe, D. Queloz, and S. Udry (Observatoire de l'Université de Genève, Switzerland), M. Barbieri (Università di Padova, Italia), W. Benz (Universität Bern, Switzerland), P. Bordé, A. Léger, M. Ollivier, and B. Samuel (Institut d'Astrophysique Spatiale, Université Paris XI, Orsay, France), F. Bouchy and G. Hébrard (IAP, Paris, France), L. Carone and M. Pätzold (Rheinisches Institut für Umweltforschung an der Universität zu Köln, Germany), S. Carpano, M. Fridlund, P. Gondoin, and R. den Hartog (ESTEC/ESA, Noordwijk, The Netherlands), D. Ciardi (NASA Exoplanet Science Institute/Caltech, USA), R. Dvorak (University of Vienna, Austria), S. Ferraz-Mello (Universidade de São Paulo, Brasil), D. Gandolfi, E. Guenther, A. Hatzes, G. Wuchterl, B. Stecklum (Thüringer Landessternwarte, Tautenburg, Germany), M. Gillon (University of Liège, Belgium), T. Guillot and M. Havel (Observatoire de la Côte d' Azur, Nice, France), M. Hidas, T. Lister, and R. Street (Las Cumbres Observatory Global Telescope Network, Santa Barbara, USA), H. Lammer and J. Weingrill (Space Research Institute, Austrian Academy of Science), and T. Mazeh and A. Shporer (Tel Aviv University, Israel). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. A simplified ingestion procedure for esophageal capsule endoscopy: initial evaluation in healthy volunteers.

    PubMed

    Gralnek, I M; Rabinovitz, R; Afik, D; Eliakim, R

    2006-09-01

    Initial studies on esophageal capsule endoscopy (PillCam ESO) reported excellent sensitivity and specificity, but these were followed by mixed results in several subsequent studies, probably due to deviations from the recommended ingestion protocol and the inconvenience of capsule ingestion in the supine position. The aim of this study was therefore to test a simplified ingestion procedure (SIP) for PillCam ESO. Using a cross-over study design, the SIP was prospectively compared with the original ingestion procedure for PillCam ESO in 24 healthy volunteers (15 men, nine women; mean age 44, range 27 - 70) and evaluated for: bubbles/saliva interference at the Z-line, Z-line circumferential visualization (quadrants), and convenience and ease of the ingestion procedure. All Rapid 4 videos were reviewed in a randomized manner and read by an experienced PillCam ESO reader blinded to the ingestion procedure used. It was found that the SIP significantly improved visualization in comparison with the original ingestion procedure, with less interference due to bubbles/saliva observed at the gastroesophageal junction ( P = 0.002) and improved visualization of the Z-line ( P = 0.025). Although the esophageal transit time was significantly faster with the SIP (3 : 45 min vs. 0 : 38 min; P = 0.0001), there were no differences in the number of Z-line frames/images captured. This new, simplified ingestion procedure for PillCam ESO provides significantly improved visualization of the Z-line in healthy volunteers. The overall test characteristics of PillCam ESO using SIP should be tested in patients with esophageal disease.

  14. Philippe Busquin Visits Paranal

    NASA Astrophysics Data System (ADS)

    2003-07-01

    The European Commissioner for Research, Mr. Philippe Busquin, who is currently visiting the Republic of Chile, arrived at the ESO Paranal Observatory on Tuesday afternoon, July 29, 2003. The Commissioner was accompanied, among others, by the EU Ambassador to Chile, Mr. Wolfgang Plasa, and Ms. Christina Lazo, Executive Director of the Chilean Science and Technology Agency (CONICYT). The distinguished visitors were able to acquaint themselves with one of the foremost European research facilities, the ESO Very Large Telescope (VLT), during an overnight stay at this remote site. Arriving after the long flight from Europe in Antofagasta, capital of the II Chilean region, the Commissioner continued along the desert road to Paranal, some 130 km south of Antofasta and site of the world's largest and most efficient optical/infrared astronomical telescope facility. The high guests were welcomed by the ESO Director General, Dr. Catherine Cesarsky, and the ESO Representative in Chile, Mr. Daniel Hofstadt, as well as ESO staff members of many nationalities. The visitors were shown the various high-tech installations at the observatory, including many of the large, front-line VLT astronomical instruments that have been built in collaboration between ESO and European research institutes. Explanations were given by ESO astronomers and engineers and the Commissioner gained a good impression of the wide range of exciting research programmes that are carried out with the VLT. Having enjoyed the spectacular sunset over the Pacific Ocean from the KUEYEN telescope, one of the four 8.2-m telescopes that form the VLT array, the Commissioner visited the VLT Control Room from where the four 8.2-m Unit Telescopes and the VLT Interferometer (VLTI) are operated. Here, the Commissioner was invited to follow an observing sequence at the console of the KUEYEN telescope. " This is a tribute to the human genius ", commented the Commissioner. " It is an extraordinary contribution to the development of knowledge, and as Commissioner for Research, I am proud that this is a European achievement. " " It is a great pleasure to receive Commissioner Busquin, whose actions towards European research we admire, and to share with him the excitement about the wonders of the Universe and the advanced technology that allows us to probe them" , said the Director General of ESO, Dr. Catherine Cesarsky. The Commissioner and the other guests will leave Paranal in the early morning of Wednesday, July 30, travelling back to Santiago de Chile via Antofagasta.

  15. German Foreign Minister Visits Paranal Observatory

    NASA Astrophysics Data System (ADS)

    2002-03-01

    During his current tour of countries in South America, the Honourable Foreign Minister of Germany, Mr. Joschka Fischer, stopped over at the ESO Paranal Observatory Wednesday night (March 6 - 7, 2002). Arriving in Antofagasta, capital of the II Chilean region, the Foreign Minister and his suite was met by local Chilean officials, headed by Mr. Jorge Molina, Intendente of the Region, as well as His Excellency, the German Ambassador to Chile, Mr. Georg CS Dick and others. In the afternoon of March 6, the Foreign Minister, accompanied by a distinguished delegation from the German Federal Parliament as well as by businessmen from Germany, travelled to Paranal, site of the world's largest optical/infrared astronomical facility, the ESO Very Large Telescope (VLT). The delegation was welcomed by the Observatory Director, Dr. Roberto Gilmozzi, the VLT Programme Manager, Professor Massimo Tarenghi, the ESO Representative in Chile, Mr. Daniel Hofstadt and ESO staff members, and also by Mr. Reinhard Junker, Deputy Director General (European Co-operation) at the German Ministry for Education and Research. The visitors were shown the various high-tech installations at this remote desert site, some of which have been constructed by German firms. Moreover, most of the large, front-line VLT astronomical instruments have been built in collaboration between ESO and European research institutes, several of these in Germany. One of the latest arrivals to Paranal, the CONICA camera (cf. ESO PR 25/01 ), was built under an ESO contract by the Max-Planck-Institutes for Astronomy (MPIA, in Heidelberg) and Extraterrestrial Physics (MPE, in Garching). The guests had the opportunity to enjoy the spectacular sunset over the Pacific Ocean from the terrace of the new Residencia building ( Photos 05/02 ). At the beginning of the night, the Minister was invited to the Control Room for the VLT Interferometer (VLTI) from where this unique new facility ( ESO PR 23/01 ) is now being thoroughly tested before it enters into service later this year. In his expression of thanks, Minister Fischer enthusiastically referred to his visit at Paranal. He said he was truly impressed by the technology of the telescopes and considered the VLT project a model of European technological and scientific cooperation. Later in the evening, the Minister was invited to perform an observing sequence at the console of the MELIPAL telescope.

  16. Development and evaluation of epoxidized soybean oil-based polymers

    NASA Astrophysics Data System (ADS)

    Juangvanich, Nuanpen

    Epoxidized Soybean Oil (ESO) based polymers were developed using diamine curing agents and BF3:NH2C2H5 as catalyst. Reactions involved the curing process were explored and monitored by DSC and IR analysis. Amine-epoxy addition reactions governed the main curing reaction at the temperature range of 60--235°C, and the supplementary reactions at higher temperatures were either homopolymerization or etherification reaction. In the aliphatic curing reactions, the epoxy-rich system favored the supplementary reactions at high temperature, however, ESO cured with 1,6 hexanediamine (HDA) always produced the high temperature reaction products, due to some side reactions and the high volatile nature. The curing reaction with aromatic diamines produced inherent rigidity to the cured ESO network, which decreased the high temperature reactions. The system cured with a short aromatic diamine, 1,4-phenyldiamine (PDA), produced a small extent of high temperature reaction, as well. It was believed that the long length diamine with wide separation of the two amines underwent an intermolecular cross-linking reaction, and derived better properties than the shorter diamine. A post-cure process was used to improve the final polymer properties by increasing the temperature after the initial curing reaction was quenched due to gelation. Extending the time of post-curing did not significantly improve properties of the final ESO polymers. Exposing the cured samples at 180°C for longer than 12 hours decreased the properties of the cured material, due to thermal strain generating in the network structure. To increase time efficiency, short heat cycles were performed by post-curing right after gelation, and the cured ESO polymer had tensile strength of 32 MPa, modulus 750 MPa and toughness 1.3 MPa. With the introduction of EPON 828, the mechanical properties of a new ESO polymer improved; having strength above 40 MPa, modulus great than 1,000 MPa, and Tg higher than 40°C. Finally, a rice hull particleboard was developed using the cured ESO resin as adhesive, and the board had strength comparable to the National Bureau of Standards minimum requirement for particleboard. A 35 wt % of ESO resin imparted the highest strength for the rice hull board, with a value of 15.5 MPa.

  17. Three Good Reasons for Celebrating at the ESO/ST-ECF Science Archive Facility

    NASA Astrophysics Data System (ADS)

    2000-12-01

    Great Demand for Data from New "Virtual Observatory" Summary Due to a happy coincidence, the ESO/ST-ECF Science Archive Facility is celebrating three different milestones at the same time: * its 10th anniversary since the establishment in 1991 * the 10,000th request for data , and * the signing-up of active user number 2000 . This Archive contains over 8 Terabytes (1 Terabyte = 1 million million bytes) of valuable observational data from the NASA/ESA Hubble Space Telescope (HST), the ESO Very Large Telescope (VLT) and other ESO telescopes . Its success paves the way for the establishment of "Virtual Observatories" from which first-class data can be obtained by astronomers all over the world. This greatly enhances the opportunities for more (young) scientists to participate in front-line research. PR Photo 34/00 : Front-page of a new brochure, describing the ESO/ST-ECF Science Archive Facility. Just 10 years ago, on the 1st of January 1991, the ESO/ST-ECF (European Southern Observatory/Space Telescope-European Coordinating Facility) Science Archive Facility opened. It has since served the astronomical community with gigabyte after gigabyte of high-quality astronomical data from some of the world's leading telescopes. The Archive, which is located in Garching, just outside Munich (Germany), contains data from the 2.4-m NASA/ESA Hubble Space Telescope , as well as from several ESO telescopes: the four 8.2-m Unit Telescopes of the Very Large Telescope (VLT) at the Paranal Observatory , and the 3.5-m New Technology Telescope (NTT) , the 3.6-m telescope and the MPG/ESO 2.2-m telescope at La Silla. The Archive is a continuously developing project - in terms of amounts of data stored, the number of users and in particular because of the current dramatic development of innovative techniques for data handling and storage. In the year 2000 more than 2 Terabytes (2000 Gigabytes) of data were distributed to users worldwide. The archiving of VLT data has been described in ESO PR 10/99. Celebrating the 10th anniversary Due to a happy coincidence, the Archive passes two other milestones almost exactly at the time of its ten-year anniversary: the 10,000th request for data has just arrived, and active user number 2000 has just signed up to start using the Archive . Dataset number 10000 was requested by Danish astronomer Søren Larsen who works at the University of California (USA). He asked for images of galaxies taken with the Hubble Space Telescope and expressed great satisfaction with the material: "The extremely sharp images from Hubble have provided a quantum leap forward in our ability to study star clusters in external galaxies. We now know that some galaxies contain extremely bright young star clusters. These might constitute a "link" between open and globular clusters as we know them in the Milky Way galaxy in which we live. We are now trying to understand whether all these clusters really form in the same basic way." Active user number 2000 is Swiss astronomer Frédéric Pont , working at the Universidad de Chile: "We use observations from the ESO VLT Unit Telescopes to map the chemical and star-formation history of dwarf galaxies in the Local Group. The stars we are looking at are very faint and we simply need the large size and excellent quality of VLT to observe them in detail. With the new data, we can really move forward in this fundamental research field." ESO PR Photo 34/00 ESO PR Photo 34/00 [Preview - JPEG: 400 x 281 pix - 63k] [Normal - JPEG: 800 x 562 pix - 224k] [Full-Res - JPEG: 1024 x 714 pix - 336k] Caption : PR Photo 34/00 shows the frontpage of the new brochure that describes the ESO/ST-ECF Science Archive Facility (available in PDF version on the web). The collage shows the Hubble Space Telescope above the world's largest optical/infrared telescope, the Very Large Telescope (VLT). To celebrate this special occasion, a 4-page brochure has been prepared that describes the Archive and its various services. The brochure can be requested from ESO or ST-ECF and is now available in PDF format on the web. As a small token, the two astronomers will receive a commemorative version of the photo that accompanies this release. The ASTROVIRTEL initiative One of the major new initiatives undertaken by ESO and ST-ECF in connection with the ESO/ST-ECF Science Archive is ASTROVIRTEL (Accessing Astronomical Archives as Virtual Telescopes) , cf. ESO PR 09/00. It is a project aimed at helping scientists to cope efficiently with the massive amounts of data now becoming available from the world's leading telescopes and so to exploit the true potential of the Archive treasures. ASTROVIRTEL represents the European effort in an area that many astronomers considers one of the most important developments within observing astronomy in the past decade. The future The head of the ESO/ST-ECF Science Archive Facility , Benoît Pirenne , believes that the future holds exciting challenges: "Due to the many improvements of the ESO, NASA and ESA telescopes and instruments expected in the coming years, we anticipate a tremendous increase in the amount of data to be archived and re-distributed. It will not be too long before we will have to start counting storage space in Petabytes (1 Petabyte = 1,000 Terabytes). We are now trying to figure out how to best prepare for this new era." But he is also concerned with maintaining and further enhancing the astronomical value of the data that are made available to the users: "Apart from improving the data storage, we need to invest much effort in building automatic software that will help users with the tedious pre-processing and 'cleaning' of the data, thereby allowing them to focus more on scientific than technical problems."

  18. The Atacama Large Millimeter Array (ALMA)

    NASA Astrophysics Data System (ADS)

    1999-06-01

    The Atacama Large Millimeter Array (ALMA) is the new name [2] for a giant millimeter-wavelength telescope project. As described in the accompanying joint press release by ESO and the U.S. National Science Foundation , the present design and development phase is now a Europe-U.S. collaboration, and may soon include Japan. ALMA may become the largest ground-based astronomy project of the next decade after VLT/VLTI, and one of the major new facilities for world astronomy. ALMA will make it possible to study the origins of galaxies, stars and planets. As presently envisaged, ALMA will be comprised of up to 64 12-meter diameter antennas distributed over an area 10 km across. ESO PR Photo 24a/99 shows an artist's concept of a portion of the array in a compact configuration. ESO PR Video Clip 03/99 illustrates how all the antennas will move in unison to point to a single astronomical object and follow it as it traverses the sky. In this way the combined telescope will produce astronomical images of great sharpness and sensitivity [3]. An exceptional site For such observations to be possible the atmosphere above the telescope must be transparent at millimeter and submillimeter wavelengths. This requires a site that is high and dry, and a high plateau in the Atacama desert of Chile, probably the world's driest, is ideal - the next best thing to outer space for these observations. ESO PR Photo 24b/99 shows the location of the chosen site at Chajnantor, at 5000 meters altitude and 60 kilometers east of the village of San Pedro de Atacama, as seen from the Space Shuttle during a servicing mission of the Hubble Space Telescope. ESO PR Photo 24c/99 and ESO PR Photo 24d/99 show a satellite image of the immediate vicinity and the site marked on a map of northern Chile. ALMA will be the highest continuously operated observatory in the world. The stark nature of this extreme site is well illustrated by the panoramic view in ESO PR Photo 24e/99. High sensitivity and sharp images ALMA will be extremely sensitive to radiation at milllimeter and submillimeter wavelengths. The large number of antennas gives a total collecting area of over 7000 square meters, larger than a football field. At the same time, the shape of the surface of each antenna must be extremely precise under all conditions; the overall accuracy over the entire 12-m diameter must be better than 0.025 millimeters (25µm), or one-third of the diameter of a human hair. The combination of large collecting area and high precision results in extremely high sensitivity to faint cosmic signals. The telescope must also be able to resolve the fine details of the objects it detects. In order to do this at millimeter wavelengths the effective diameter of the overall telescope must be very large - about 10 km. As it is impossible to build a single antenna with this diameter, an array of antennas is used instead, with the outermost antennas being 10 km apart. By combining the signals from all antennas together in a large central computer, it is possible to synthesize the effect of a single dish 10 km across. The resulting angular resolution is about 10 milli-arcseconds, less than one-thousandth the angular size of Saturn. Exciting research perspectives The scientific case for this revolutionary telescope is overwhelming. ALMA will make it possible to witness the formation of the earliest and most distant galaxies. It will also look deep into the dust-obscured regions where stars are born, to examine the details of star and planet formation. But ALMA will go far beyond these main science drivers, and will have a major impact on virtually all areas of astronomy. It will be a millimeter-wave counterpart to the most powerful optical/infrared telescopes such as ESO's Very Large Telescope (VLT) and the Hubble Space Telescope, with the additional advantage of being unhindered by cosmic dust opacity. The first galaxies in the Universe are expected to become rapidly enshrouded in the dust produced by the first stars. The dust can dim the galaxies at optical wavelengths, but the same dust radiates brightly at longer wavelengths. In addition, the expansion of the Universe causes the radiation from distant galaxies to be shifted to longer wavelengths. For both reasons, the earliest galaxies at the epoch of first light can be found with ALMA, and the subsequent evolution of galaxies can be mapped over cosmic time. ALMA will be of great importance for our understanding of the origins of stars and planetary systems. Stellar nurseries are completely obscured at optical wavelengths by dense "cocoons" of dust and gas, but ALMA can probe deep into these regions and study the fundamental processes by which stars are assembled. Moreover, it can observe the major reservoirs of biogenic elements (carbon, oxygen, nitrogen) and follow their incorporation into new planetary systems. A particularly exciting prospect for ALMA is to use its exceptionally sharp images to obtain evidence for planet formation by the presence of gaps in dusty disks around young stars, cleared by large bodies coalescing around the stars. Equally fundamental are observations of the dying gasps of stars at the other end of the stellar lifecycle, when they are often surrounded by shells of molecules and dust enriched in heavy elements produced by the nuclear fires now slowly dying. ALMA will offer exciting new views of our solar system. Studies of the molecular content of planetary atmospheres with ALMA's high resolving power will provide detailed weather maps of Mars, Jupiter, and the other planets and even their satellites. Studies of comets with ALMA will be particularly interesting. The molecular ices of these visitors from the outer reaches of the solar system have a composition that is preserved from ages when the solar system was forming. They evaporate when the comet comes close to the sun, and studies of the resulting gases with ALMA will allow accurate analysis of the chemistry of the presolar nebula. The road ahead The three-year design and development phase of the project is now underway as a collaboration between Europe and the U.S., and Japan may also join in this effort. Assuming the construction phase begins about two years from now, limited operations of the array may begin in 2005 and the full array may become operational by 2009. Notes [1] Press Releases about this event have also been issued by some of the other organisations participating in this project: * CNRS (in French) * MPG (in German) * NOVA (in Dutch) * NRAO * NSF (ASCII and HTML versions) * PPARC [2] "ALMA" means "soul" in Spanish. [3] Additional information about ALMA is available on the web: * Articles in the ESO Messenger - "The Large Southern Array" (March 1998), "European Site Testing at Chajnantor" (December 1998) and "The ALMA Project" (June 1999), cf. http://www.eso.org/gen-fac/pubs/messenger/ * ALMA website at ESO at http://www.eso.org/projects/alma/ * ALMA website at the U.S. National Radio Astronomy Observatory (NRAO) at http://www.mma.nrao.edu/ * ALMA website in The Netherlands about the detectors at http://www.sron.rug.nl/alma/ ALMA/Chajnantor Video Clip and Photos ESO PR Video Clip 03/99 [MPEG-version] ESO PR Video Clip 03/99 (2450 frames/1:38 min) [MPEG Video; 160x120 pix; 2.1Mb] [MPEG Video; 320x240 pix; 10.0Mb] [RealMedia; streaming; 700k] [RealMedia; streaming; 2.3M] About ESO Video Clip 03/99 : This video clip about the ALMA project contains two sequences. The first shows a panoramic scan of the Chajnantor plain from approx. north-east to north-west. The Chajnantor mountain passes through the field-of-view and the perfect cone of the Licancabur volcano (5900 m) on the Bolivian border is seen at the end (compare also with ESO PR 24e/99 below. The second is a 52-sec animation with a change of viewing perspective of the array and during which the antennas move in unison. For convenience, the clip is available in four versions: two MPEG files of different sizes and two streamer-versions of different quality that require RealPlayer software. There is no audio. Note that ESO Video News Reel No. 5 with more related scenes and in professional format with complete shot list is also available. ESO PR Photo 24b/99 ESO PR Photo 24b/99 [Preview - JPEG: 400 x 446 pix - 184k] [Normal - JPEG: 800 x 892 pix - 588k] [High-Res - JPEG: 3000 x 3345 pix - 5.4M] Caption to ESO PR Photo 24b/99 : View of Northern Chile, as seen from the NASA Space Shuttle during a servicing mission to the Hubble Space Telescope (partly visible to the left). The Atacama Desert, site of the ESO VLT at Paranal Observatory and the proposed location for ALMA at Chajnantor, is seen from North (foreground) to South. The two sites are only a few hundred km distant from each other. Few clouds are seen in this extremely dry area, due to the influence of the cold Humboldt Stream along the Chilean Pacific coast (right) and the high Andes mountains (left) that act as a barrier. Photo courtesy ESA astronaut Claude Nicollier. ESO PR Photo 24c/99 ESO PR Photo 24c/99 [Preview - JPEG: 400 x 318 pix - 212k] [Normal - JPEG: 800 x 635 pix - 700k] [High-Res - JPEG: 3000 x 2382 pix - 5.9M] Caption to ESO PR Photo 24c/99 : This satellite image of the Chajnantor area was produced in 1998 at Cornell University (USA), by Jennifer Yu, Jeremy Darling and Riccardo Giovanelli, using the Thematic Mapper data base maintained at the Geology Department laboratory directed by Bryan Isacks. It is a composite of three exposures in spectral bands at 1.6 µm (rendered as red), 1.0 µm (green) and 0.5 µm (blue). The horizontal resolution of the false-colour image is about 30 meters. North is at the top of the photo. ESO PR Photo 24d/99 ESO PR Photo 24d/99 [Preview - JPEG: 400 x 381 pix - 108k] [Normal - JPEG: 800 x 762 pix - 240k] [High-Res - JPEG: 2300 x 2191 pix - 984k] Caption to ESO PR Photo 24d/99 : Geographical map with the sites of the VLT and ALMA indicated. ESO PR Photo 24e/99 ESO PR Photo 24e/99 [Preview - JPEG: 400 x 238 pix - 93k] [Normal - JPEG: 800 x 475 pix - 279k] [High-Res - JPEG: 2862 x 1701 pix - 4.2M] Caption to ESO PR Photo 24e/99 : Panoramic view of the proposed site for ALMA at Chajnantor. This high-altitude plain (elevation 5000 m) in the Chilean Andes mountains is an ideal site for ALMA. In this view towards the north, the Chajnantor mountain (5600 m) is in the foreground, left of the centre. The perfect cone of the Licancabur volcano (5900 m) on the Bolivian border is in the background further to the left. This image is a wide-angle composite (140° x 70°) of three photos (Hasselblad 6x6 with SWC 1:4.5/38 mm Biogon), obtained in December 1998. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  19. News from ESO Archive Services: Next Generation Request Handler and Data Access Delegation

    NASA Astrophysics Data System (ADS)

    Fourniol, N.; Lockhart, J.; Suchar, D.; Tacconi-Garman, L. E.; Moins, C.; Bierwirth, T.; Eglitis, P.; Vuong, M.; Micol, A.; Delmotte, N.; Vera, I.; Dobrzycki, A.; Forchì, V.; Lange, U.; Sogni, F.

    2012-09-01

    We present the new ESO Archive services which improve the electronic data access via the Download Manager and also provide PIs with the option to delegate data access to their collaborators via the Data Access Control.

  20. Positions of Asteroids Obtained with the GPO Telescope at ESO, Chile and with the Kvistaberg Schmidt Telescope

    NASA Astrophysics Data System (ADS)

    Lagerkvist, C.-I.; Olofsson, K.; From, A.; Hammarback, G.; Magnusson, P.; Morell, O.

    1985-01-01

    In this paper we present 101 positions of asteroids obtained during Augnst 1982 with the GPO astrograph at ESO, Chile and with the Kvistaberg Schmidt telescope during September 1979 and February 1981.

  1. Progress on the European Extremely Large Telescope

    NASA Astrophysics Data System (ADS)

    Spyromilio, Jason; Comerón, Fernando; D'Odorico, Sandro; Kissler-Patig, Markus; Gilmozzi, Roberto

    2008-09-01

    In December 2006 the ESO Council gave the go-ahead for the European Extremely Large Telescope (E-ELT) three-year Phase B study. The Baseline Reference Design (BRD) was presented to the ESO committees in 2006 and to the community at the Marseille meeting in December 2006. Phase B has been running for one and a half years and a progress report is presented covering science activities, telescope design, instrumentation, site selection and operations. The designs are maturing, in close synergy with industrial contracts, and the proposal for E-ELT construction is expected to be presented to the ESO Council in June 2010.

  2. [Psychometric analysis of the AF5 multidimensional scale of self-concept in a sample of adolescents and adults in Catalonia].

    PubMed

    Malo Cerrato, Sara; Bataller Sallent, Sílvia; Casas Aznar, Ferran; Gras Pérez, Ma Eugenia; González Carrasco, Mònica

    2011-11-01

    The aim of this study is to carry out a psychometric study of the AF5 scale in a sample of 4.825 Catalan subjects from 11 to 63 years-old. They are students from secondary compulsory education (ESO), from high school, middle-level vocational training (CFGM) and from the university. Using a principal component analysis (PCA) the theoretical validity of the components is established and the reliability of the instrument is also analyzed. Differential analyses are performed by gender and normative group using a 2 x 6 factorial design. The normative group variable includes the different levels classified into 6 sub-groups: university, post-compulsory secondary education (high school and CFGM), 4th of ESO, 3rd of ESO, 2nd of ESO and 1st of ESO. The results indicate that the reliability of the Catalan version of the scale is similar to the original scale. The factorial structure also fits with the original model established beforehand. Significant differences by normative group in the four components of self-concept explored (social, family, academic/occupational and physical) are observed. By gender, significant differences appear in the component of physical self-concept, academic and social but not in the family component.

  3. Clozapine and olanzapine but not risperidone impair the pre-frontal striatal system in relation to egocentric spatial orientation in a Y-maze.

    PubMed

    Castro, Cibele Canal; Dos Reis-Lunardelli, Eleonora Araujo; Schmidt, Werner J; Coitinho, Adriana Simon; Izquierdo, Iván

    2007-11-01

    Many studies indicate a dissociation between two forms of orientation: allocentric orientation, in which an organism orients on the basis of cues external to the organism, and egocentric spatial orientation (ESO) by which an organism orients on the basis of proprioceptive information. While allocentric orientation is mediated primarily by the hippocampus and its afferent and efferent connections, ESO is mediated by the prefronto-striatal system. Striatal lesions as well as classical neuroleptics, which block dopamine receptors, act through the prefronto-striatal system and impair ESO. The purpose of the present study was to determine the effects of the atypical antipsychotics clozapine, olanzapine and risperidone which are believed to exert its antipsychotic effects mainly by dopaminergic, cholinergic and serotonergic mechanisms. A delayed-two-alternative-choice-task, under conditions that required ESO and at the same time excluded allocentric spatial orientation was used. Clozapine and olanzapine treated rats made more errors than risperidone treated rats in the delayed alternation in comparison with the controls. Motor abilities were not impaired by any of the drugs. Thus, with regard to the delayed alternation requiring ESO, clozapine and olanzapine but not risperidone affects the prefronto-striatal system in a similar way as classical neuroleptics does.

  4. Multiple Gingival Recession Coverage Treated with Vestibular Incision Subperiosteal Tunnel Access Approach with or without Platelet-Rich Fibrin - A Case Series

    PubMed Central

    Garg, Surbhi; Arora, Sachit Anand; Chhina, Shivjot; Singh, Padam

    2017-01-01

    Background: Gingival recession involves both soft tissue and hard tissue loss. In this evolutionary era of dentistry, newer techniques have evolved for complete coverage of isolated recession defects. Since 2012, vestibular incision subperiosteal tunnel access (VISTA) technique was used with various regenerative membranes to treat multiple recession defects (MRDs). Platelet-rich fibrin (PRF) membrane, a pool of growth factors but have any added advantage to recession coverage techniques is controversial. Thus, in this case series, we compare the effect of VISTA with or without PRF-membrane for the treatment of Classes I and III MRDs. Subjects and Methods: Four patients between of age 30 and 40 years (two patients having bilateral Class I and another two having bilateral Class III MRDs) were selected from the Department of Periodontics, ITS Dental College, Greater Noida and designated as Case I–IV simultaneously. Recession defects at antagonist sites in each patient were corrected by VISTA approach with or without PRF-membrane. Recorded clinical parameters included recession depth, recession width, pocket probing depth, and clinical attachment level (CAL) at baseline and 6 months postoperatively. Results: Patients having Class I recession defects showed almost complete root coverage with VISTA technique alone and reflected no added advantage of PRF-membrane. However, patients with Class III recession defects treated with VISTA + PRF-membrane showed more reduction in recession depth and gain in CAL as compared to sites treated with VISTA only. Conclusion: VISTA alone is a convenient technique for treatment of Class I MRDs. Addition of PRF-membrane for Class III recession defects give better outcome in term of reduction of recession depth and gain in CAL 6 month postoperatively. PMID:29042736

  5. First Light for ASTROVIRTEL Project

    NASA Astrophysics Data System (ADS)

    2000-04-01

    Astronomical data archives increasingly resemble virtual gold mines of information. A new project, known as ASTROVIRTEL aims to exploit these astronomical treasure troves by allowing scientists to use the archives as virtual telescopes. The competition for observing time on large space- and ground-based observatories such as the ESA/NASA Hubble Space Telescope and the ESO Very Large Telescope (VLT) is intense. On average, less than a quarter of applications for observing time are successful. The fortunate scientist who obtains observing time usually has one year of so-called proprietary time to work with the data before they are made publicly accessible and can be used by other astronomers. Precious data from these large research facilities retain their value far beyond their first birthday and may still be useful decades after they were first collected. The enormous quantity of valuable astronomical data now stored in the archives of the European Southern Observatory (ESO) and the Space Telescope-European Coordinating Facility (ST-ECF) is increasingly attracting the attention of astronomers. Scientists are aware that one set of observations can serve many different scientific purposes, including some that were not considered at all when the observations were first made. Data archives as "gold mines" for research [ASTROVIRTEL Logo; JPEG - 184 k] Astronomical data archives increasingly resemble virtual gold mines of information. A new project, known as ASTROVIRTEL or "Accessing Astronomical Archives as Virtual Telescopes" aims to exploit these astronomical treasure troves. It is supported by the European Commission (EC) within the "Access to Research Infrastructures" action under the "Improving Human Potential & the Socio-economic Knowledge Base" of the EC (under EU Fifth Framework Programme). ASTROVIRTEL has been established on behalf of the European Space Agency (ESA) and the European Southern Observatory (ESO) in response to rapid developments currently taking place in the fields of telescope and detector construction, computer hardware, data processing, archiving, and telescope operation. Nowadays astronomical telescopes can image increasingly large areas of the sky. They use more and more different instruments and are equipped with ever-larger detectors. The quantity of astronomical data collected is rising dramatically, generating a corresponding increase in potentially interesting research projects. These large collections of valuable data have led to the useful concept of "data mining", whereby large astronomical databases are exploited to support original research. However, it has become obvious that scientists need additional support to cope efficiently with the massive amounts of data available and so to exploit the true potential of the databases. The strengths of ASTROVIRTEL ASTROVIRTEL is the first virtual astronomical telescope dedicated to data mining. It is currently being established at the joint ESO/Space Telescope-European Coordinating Facility Archive in Garching (Germany). Scientists from EC member countries and associated states will be able to apply for support for a scientific project based on access to and analysis of data from the Hubble Space Telescope (HST), Very Large Telescope (VLT), New Technology Telescope (NTT), and Wide Field Imager (WFI) archives, as well as a number of other related archives, including the Infrared Space Observatory (ISO) archive. Scientists will be able to visit the archive site and collaborate with the archive specialists there. Special software tools that incorporate advanced methods for exploring the enormous quantities of information available will be developed. Statements The project co-ordinator, Piero Benvenuti , Head of ST-ECF, elaborates on the advantages of ASTROVIRTEL: "The observations by the ESA/NASA Hubble Space Telescope and, more recently, by the ESO Very Large Telescope, have already been made available on-line to the astronomical community, once the proprietary period of one year has elapsed. ASTROVIRTEL is different, in that astronomers are now invited to regard the archive as an "observatory" in its own right: a facility that, when properly used, may provide an answer to their specific scientific questions. The architecture of the archives as well as their suite of software tools may have to evolve to respond to the new demand. ASTROVIRTEL will try to drive this evolution on the basis of the scientific needs of its users." Peter Quinn , the Head of ESO's Data Management and Operations Division, is of the same opinion: "The ESO/HST Archive Facility at ESO Headquarters in Garching is currently the most rapidly growing astronomical archive resource in the world. This archive is projected to contain more than 100 Terabytes (100,000,000,000,000 bytes) of data within the next four years. The software and hardware technologies for the archive will be jointly developed and operated by ESA and ESO staff and will be common to both HST and ESO data archives. The ASTROVIRTEL project will provide us with real examples of scientific research programs that will push the capabilities of the archive and allow us to identify and develop new software tools for data mining. The growing archive facility will provide the European astronomical community with new digital windows on the Universe." Note [1] This is a joint Press Release by the European Southern Observatory (ESO) and the Space Telescope European Coordinating Facility (ST-ECF). Additional information More information about ASTROVIRTEL can be found at the dedicated website at: http://www.stecf.org/astrovirtel The European Southern Observatory (ESO) is an intergovernmental organisation, supported by eight European countries: Belgium, Denmark, France, Germany, Italy, The Netherlands, Sweden and Switzerland. The European Space Agency is an intergovernmental organisation supported by 15 European countries: Austria, Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom. The Space Telescope European Coordinating Facility (ST-ECF) is a co-operation between the European Space Agency and the European Southern Observatory. The Hubble Space Telescope (HST) is a project of international co-operation between NASA and ESA.

  6. Pursuing the link between Scientific Research and Communication: the experience of the OAVdA and the Planetarium in the Aosta Valley

    NASA Astrophysics Data System (ADS)

    Ettore Bernagozzi, Andrea; Bertolini, Enzo; Calcidese, Paolo; Carbognani, Albino; Carlo Cenadelli, Davide; Christille, Jean Marc; Pellissier, Paolo; Recaldini, Paolo; Soldi, Matteo

    2015-08-01

    The Astronomical Observatory of the Autonomous Region of the Aosta Valley (OAVdA) and the Planetarium of Lignan are located in the Saint-Barthélemy Valley, in the Italian Alps at the border with France and Switzerland. They are managed by the non-profit organisation Fondazione Clément Fillietroz-ONLUS. The OAVdA opened in 2003, then the Planetarium followed in 2009.Scientific Research has been the main activity at the OAVdA since 2006, when an official agreement of cooperation was set up with the Italian National Institute for Astrophysics (INAF). Scientific Research made at the OAVdA contributes greatly to the development of high quality Public Outreach and Education programs. We adopt the principle that knowledge teachers and students meet in school is the result of scientific researches made by scientists in the past; then, knowledge they will meet in life tomorrow is the result of scientific researches that scientists are making today. To put this in practice, researchers are effectively involved, for at least 30% of their working time, in a vast spectrum of Public Outreach and Education initiatives where they illustrate several aspects of their work.In the presentation we explain why the theoretical framework informing our Public Outreach and Education programs was identified and how it has caused, after almost 10 years, a major change in the perception of the OAVdA and the Planetarium by all the stakeholders: institutional funding sources, other funding sources, participants to the initiatives (both schools and public at large), media, the researchers themselves. Among the activities, we report about three experiences strongly based on the establishment of a 'virtuous link' between Research and Communication: the Summer School in Astronomy in Saint-Barthélemy (targeted to public at large); "Saint-Roch Etoiles", a 5-year project with the Saint-Roch School in Aosta (students aged 5-12); the ESO Astronomy Camp co-organised in Lignan with the European Southern Observatory (ESO) and the Science Education company Sterrenlab (students aged 16-18 from several countries in the world).

  7. School students "Catch a Star"!

    NASA Astrophysics Data System (ADS)

    2007-04-01

    School students from across Europe and beyond have won prizes in an astronomy competition, including the trip of a lifetime to one of the world's most powerful astronomical observatories, on a mountaintop in Chile. ESO, the European Organisation for Astronomical Research in the Southern Hemisphere, together with the European Association for Astronomy Education (EAAE), has just announced the winners of the 2007 "Catch a Star!" competition. ESO PR Photo 21/07 "Catch a Star!" is an international astronomy competition for school students, in which students are invited to 'become astronomers' and explore the Universe. The competition includes two categories for written projects on astronomical themes, to ensure that every student, whatever their level, has the chance to enter and win exciting prizes. For the artistically minded, "Catch a Star!" also includes an astronomy-themed artwork competition. Students from 22 countries submitted hundreds of written projects and pieces of artwork. "The standard of entries was most impressive, and made the jury's task of choosing winners both enjoyable and difficult! We hope that everyone, whether or not they won a prize, had fun taking part, and learnt some exciting things about our Universe", said Douglas Pierce-Price, Education Officer at ESO. The top prize, of a week-long trip to Chile to visit the ESO Very Large Telescope (VLT) on Paranal, was won by students Jan Mestan and Jan Kotek from Gymnazium Pisek in the Czech Republic, together with their teacher Marek Tyle. Their report on "Research and Observation of the Solar Eclipse" told how they had studied solar eclipses, and involved their fellow students in observations of an eclipse from their school in 2006. The team will travel to Chile and visit the ESO VLT - one of the world's most powerful optical/infrared telescopes - where they will meet astronomers and be present during a night of observations on the 2600m high Paranal mountaintop. "It's fantastic that we will see the VLT in action. I'm also looking forward to my first view of the southern sky!" said Jan Mestan. His fellow student is also excited about the trip. "I am very happy that we'll visit the Paranal observatory, because this is one of the best astronomical observatories in the world, in the amazing scenery of the Atacama Desert", said Jan Kotek. "This was a very well written project, and we particularly liked the way in which the students involved the rest of their school.", said Douglas Pierce-Price. The team's hard work was also helped by some good fortune, as it seemed at first that bad weather might block their view of the eclipse. "It was cloudy, overcast, and a strong west wind was blowing in Pisek. The meteorological situation was nearly hopeless, and we thought we might have to cancel the observation. But later, the sky luckily cleared up and we could see the eclipse!", said the students. "I am very glad that my students' work won the top prize in this great competition. I believe that the visit to the VLT will be an important experience in their education." said teacher Marek Tyle. Other "Catch a Star" participants have won exciting trips to observatories across Europe. Emilio Rojas, Angel Sanchez, Javier Ortiz and their teacher Roberto Palmer from Spain have won a trip to Koenigsleiten Observatory in Austria for their project "Jupiter on the radio". Bogumil Giertler, Ammar Ahmed, and their teacher Richard Burt from Italy have won a trip to Wendelstein Observatory in Germany for their project "Determining the relative radiant of the Geminid meteor shower". Victor Raimbault, Remi Takase, Thomas Salez and their teacher Michel Faye from France have won a trip to Calar Alto Observatory in Spain, a prize kindly donated by the Spanish Council for Scientific Research, for their project "Light on Dark Matter". Forty other teams won prizes, which included astronomy software and sets of posters showcasing stunning astronomical images taken with ESO telescopes. In the artwork competition, sixty winning pictures were chosen with the help of a public vote. The beautiful pictures created by students of all ages can be seen in the gallery on the "Catch a Star" website. The full list of winners can also be found on the website. The full list of winners can be found at http://www.eso.org/catchastar/CAS2007/winners.php The gallery can be found at http://www.eso.org/catchastar/CAS2007/gallery.php Further information about the competition can be found at http://www.eso.org/catchastar/CAS2007/

  8. Predictive and prognostic effect of CD133 and cancer-testis antigens in stage Ib-IIIA non-small cell lung cancer.

    PubMed

    Su, Chunxia; Xu, Ying; Li, Xuefei; Ren, Shengxiang; Zhao, Chao; Hou, Likun; Ye, Zhiwei; Zhou, Caicun

    2015-01-01

    CD133 and cancer-testis antigens (CTAs) may be potential predicted markers of adjuvant chemotherapy or immune therapy, and they may be the independent prognostic factor of NSCLC. Nowadays, there is still no predictive biomarker identified for the use of adjuvant chemotherapy in non-small cell lung cancer (NSCLC) patients. To clarify the role of CD133 and CTAs as a predictive marker for adjuvant chemotherapy or prognostic factors of overall survival, we performed a retrospective study in 159 stage Ib-IIIA NSCLC patients receiving adjuvant chemotherapy or observe from April 2003 to March 2004 in our institute. Clinical data and gene anaylisis results were collected, while CD133 and three CTAs (MAGE-A4, NY-ESO-1, MAGE-A10) were determined according to their monoclonal antibodies such as CD133, 57B, D8.38 and 3GA11 by immunohistochemistry. All CTAs were more frequently expressed in squamous cell carcinoma (SCC) (50.0%, 26.9%, 34.6%) than in adenocarcinoma (16.2%, 16.2%, 16.2%). CD133 was more frequently found in patients with adenocarcinoma (P=0.044). Negative expression of CD133 was associated with a significantly longer overall survival compared to positive expression of CD133 (62.5 vs. 48.5 months, P=0.035). When combined with MAGEA4, NY-ESO-1or MAGE-A10, patients' OS showed significantly difference among different combination. (CD133-MAGEA4-/CD133-MAGEA4+/CD133+MAGEA4-/CD133+MAGEA4+: 65.6 months vs.51.5 months vs.32.2 months vs.19.8 months, P=0.000, CD133-NY-ESO-1-/ CD133+NY-ESO-1-/CD133-NY-ESO-1+/ CD133+NY-ESO-1+: 57.8 months vs. 55.7 months vs. 44.6 months vs. 28.5 months, P=0.000, CD133-MAGEA10-/CD133+ MAGEA10-/CD133-MAGEA10-/CD133+MAGEA10+: 66.2 months vs. 57.2 months vs. 48.8 months vs. 41.4 months, P=0.001). There is no difference between patients received adjuvant chemotherapy or not, but subgroup analysis showed that the patients with CD133+NY-ESO-1+ expression who received chemotherapy will survive longer than not receive adjuvant chemotherapy (received vs. not received, 52.1 vs. 27.1 months, P=0.020). In the subgroup with EGFR mutation/ALK translocation/Ros1 translocation/Ret fusion, the trend remained but without a statistically significant difference. Multivariate COX regression analysis showed that stage, CD133, CD133-MAGEA4- and CD133-NY-ESO-1- are independent prognostic factors. In conclusion, CTAs (MAGE-A4, NY-ESO-1, MAGE-A10) were more likely expressed in patients with squamous cell carcinoma and when CTAs combined with CD133, they can be better prognostic factors. Patients with CD133+NY-ESO-1+ expression may survive longer when treated with adjuvant chemotherapy, which indicates that the CD133 and CTAs might be a potential marker to guide adjuvant chemotherapy in this population.

  9. Sea & Space: a New European Educational Programme

    NASA Astrophysics Data System (ADS)

    1998-01-01

    This spring, teachers across Europe will enjoy support for exciting, novel educational projects on astronomy, navigation and environmental observations. The largely web-based and highly interactive SEA & SPACE programme makes it possible for pupils to perform field experiments and astronomical observations and to obtain and process satellite images. A contest will take the best pupils for one week to Lisbon (Portugal), to Europe's space port in Kourou (French Guyana) where the European launcher lifts off or to ESO's Very Large Telescope at the Cerro Paranal Observatory in Chile, the largest optical telescope in the world. The SEA & SPACE project is a joint initiative of the European Space Agency (ESA) , the European Southern Observatory (ESO) , and the European Association for Astronomy Education (EAAE). It builds on these organisations' several years' successful participation in the European Week for Scientific and Technological Culture organised by the European Commission that they intend to continue in 1998. The 1998 World Exhibition EXPO98 in Lisbon will focus on the oceans. This is why the umbrella theme of SEA & SPACE is concerned with the many relations between the oceans and the space that surrounds us, from ancient times to present days. Under the new programme, teaching resources are offered for three major areas, Remote Sensing of Europe's Coastal Environment, Navigation and Oceans of Water. Remote Sensing of Europe's Coastal Environment : observations of the Earth from Space are made accessible to pupils who will appreciate their usefulness through interactive image processing and field observations; Navigation : the capabilities and functioning of different navigation techniques are explored through experiments using navigation by the stars, with GPS, and via satellite images/maps; Oceans of Water : What is the role of water in Nature? How can one detect water from satellites or with telescopes? How much water is there in rivers and floods, in an ocean, on Mars, in comets, in stars, in the Universe? SEA & SPACE will use the Internet and the WWW to transport teaching resources so that teachers and pupils can communicate with the organisers and among themselves. To this end, the National Committees of the European Association for Astronomy Education will operate sites onto which the information and resources provided by ESA and ESO are loaded. The Contest, in which pupils will write and design a poster or a newspaper on a subject related to SEA & SPACE, will be organised simultaneously in most European countries and will not require Internet access. SEA & SPACE will start as from 1 March 1998. Further information is provided on the Home Pages of ESA, ESO and EAAE. In early February, a dedicated joint SEA & SPACE Home Page will be operational where schools can register for the project and for regular mailing of new information: * http://www.esa.int/seaspace * http://www.eso.org/seaspace * http://www.algonet.se/~sirius/eaae/seaspace Note: [1] This press release is published jointly by ESA, ESO and EAAE. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  10. Black Hole Hunters Set New Distance Record

    NASA Astrophysics Data System (ADS)

    2010-01-01

    Astronomers using ESO's Very Large Telescope have detected, in another galaxy, a stellar-mass black hole much farther away than any other previously known. With a mass above fifteen times that of the Sun, this is also the second most massive stellar-mass black hole ever found. It is entwined with a star that will soon become a black hole itself. The stellar-mass black holes [1] found in the Milky Way weigh up to ten times the mass of the Sun and are certainly not be taken lightly, but, outside our own galaxy, they may just be minor-league players, since astronomers have found another black hole with a mass over fifteen times the mass of the Sun. This is one of only three such objects found so far. The newly announced black hole lies in a spiral galaxy called NGC 300, six million light-years from Earth. "This is the most distant stellar-mass black hole ever weighed, and it's the first one we've seen outside our own galactic neighbourhood, the Local Group," says Paul Crowther, Professor of Astrophysics at the University of Sheffield and lead author of the paper reporting the study. The black hole's curious partner is a Wolf-Rayet star, which also has a mass of about twenty times as much as the Sun. Wolf-Rayet stars are near the end of their lives and expel most of their outer layers into their surroundings before exploding as supernovae, with their cores imploding to form black holes. In 2007, an X-ray instrument aboard NASA's Swift observatory scrutinised the surroundings of the brightest X-ray source in NGC 300 discovered earlier with the European Space Agency's XMM-Newton X-ray observatory. "We recorded periodic, extremely intense X-ray emission, a clue that a black hole might be lurking in the area," explains team member Stefania Carpano from ESA. Thanks to new observations performed with the FORS2 instrument mounted on ESO's Very Large Telescope, astronomers have confirmed their earlier hunch. The new data show that the black hole and the Wolf-Rayet star dance around each other in a diabolic waltz, with a period of about 32 hours. The astronomers also found that the black hole is stripping matter away from the star as they orbit each other. "This is indeed a very 'intimate' couple," notes collaborator Robin Barnard. "How such a tightly bound system has been formed is still a mystery." Only one other system of this type has previously been seen, but other systems comprising a black hole and a companion star are not unknown to astronomers. Based on these systems, the astronomers see a connection between black hole mass and galactic chemistry. "We have noticed that the most massive black holes tend to be found in smaller galaxies that contain less 'heavy' chemical elements," says Crowther [2]. "Bigger galaxies that are richer in heavy elements, such as the Milky Way, only succeed in producing black holes with smaller masses." Astronomers believe that a higher concentration of heavy chemical elements influences how a massive star evolves, increasing how much matter it sheds, resulting in a smaller black hole when the remnant finally collapses. In less than a million years, it will be the Wolf-Rayet star's turn to go supernova and become a black hole. "If the system survives this second explosion, the two black holes will merge, emitting copious amounts of energy in the form of gravitational waves as they combine [3]," concludes Crowther. However, it will take some few billion years until the actual merger, far longer than human timescales. "Our study does however show that such systems might exist, and those that have already evolved into a binary black hole might be detected by probes of gravitational waves, such as LIGO or Virgo [4]." Notes [1] Stellar-mass black holes are the extremely dense, final remnants of the collapse of very massive stars. These black holes have masses up to around twenty times the mass of the Sun, as opposed to supermassive black holes, found in the centre of most galaxies, which can weigh a million to a billion times as much as the Sun. So far, around 20 stellar-mass black holes have been found. [2] In astronomy, heavy chemical elements, or "metals", are any chemical elements heavier than helium. [3] Predicted by Einstein's theory of general relativity, gravitational waves are ripples in the fabric of space and time. Significant gravitational waves are generated whenever there are extreme variations of strong gravitational fields with time, such as during the merger of two black holes. The detection of gravitational waves, never directly observed to date, is one of the major challenges for the next few decades. [4] The LIGO and Virgo experiments have the goal of detecting gravitational waves using sensitive interferometers in Italy and the United States. More information This research was presented in a letter to appear in the Monthly Notices of the Royal Astronomical Society (NGC 300 X-1 is a Wolf-Rayet/Black Hole binary, P.A. Crowther et al.). The team is composed of Paul Crowther and Vik Dhillon (University of Sheffield, UK), Robin Barnard and Simon Clark (The Open University, UK), and Stefania Carpano and Andy Pollock (ESAC, Madrid, Spain). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory, and VISTA, the largest survey telescope in the world. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  11. ESO Council Visits First VLT Unit Telescope Structure in Milan

    NASA Astrophysics Data System (ADS)

    1995-12-01

    As the ESO Very Large Telescope (VLT) rapidly takes on shape, Europe has just come one step closer to the realisation of its 556 million DEM astronomical showcase project. Last week, the ESO Council held its semi-annual meeting in Milan (Italy) [1]. During a break in the long agenda list, Council members had the opportunity to visit the Ansaldo factory in the outskirts of this city and to see for the first time the assembled mechanical structure of one of the four 8.2-metre VLT Unit telescopes. This Press Release is accompanied by a photo that shows the ESO Council delegates in front of the giant telescope. After a long climb up the steep staircase to the large Nasmyth platform at the side of the telescope where the astronomical instruments will later be placed, Dr. Peter Creola (Switzerland) , President of the ESO Council and a mechanics expert, grabbed the handrail and surveyed the structure with a professional eye: `I knew it was going to be big, but not that enormous!', he said. Other delegates experienced similar feelings, especially when they watched the 430 tonnes of steel in the 24-metre tall and squat structure turn smoothly and silently around the vertical axis. The Chairman of the ESO Scientific Technical Committee (STC), Dr. Johannes Andersen (Denmark) , summarized his first, close encounter with the VLT by `This is great fun!' and several of his colleague astronomers were soon seen in various corners of the vast structure, engaged in elated discussions about the first scientific investigations to be done with the VLT in two years' time. The VLT Main Structures The visit by Council took place at the invitation of Ansaldo Energia S.p.A. (Genova), EIE-European Industrial Engineering S.r.I. (Venice) and SOIMI-Societa Impianti Industriale S.p.A. (Milan), the three Italian enterprises responsible for the construction of the main structures of the VLT 8.2-metre Unit telescopes. Short speeches were given on this occasion by Drs. Ferruccio Bressani (Ansaldo), Luigi Guiffrida (SOIMI), Gianpietro Marchiori (EIE) and Prof. Massimo Tarenghi (ESO), describing the very successful implementation of this major VLT contract that was awarded by ESO in September 1991 [2]. All speakers praised the good collaboration between ESO and its industrial partners and Prof. Riccardo Giacconi , Director General of ESO, expressed his satisfaction `with the splendid performance of the ESO-Industry team which was bringing us close to the realisation of the premier telescope array in optical ground-based astronomy in the world'. The participants were also pleased to listen to several of the Italian engineers present who commented on the very positive experience of being personally involved in the world's largest telescope project. The VLT telescope structures incorporate many new technological concepts. Thanks to these and careful planning of the many components and their integration, it has been possible to achieve, among others, light weight construction, high mechanical stiffness, good thermal equilibrium with the ambient air (of importance for the seeing during the observations), low electromagnetic emissitivity (i.e. low interference with the sensitive astronomical instruments) and easy maintainability. Of particular interest is also the giant, direct drive system with a diameter of 9 metres and the sophisticated, innovative laser encoder system. In this way, there is no direct contact between the moving parts and the friction during the rotation is kept at an absolute minimum. The Next Steps The ESO VLT project is now entering into a decisive phase and the next years will see an increasing number of telescope parts and instruments from the scientific and industrial laboratories of Europe converging towards the VLT observatory at Cerro Paranal in Chile. It is gratifying that, despite its high degree of complexity and incorporation of a substantial number of new technologies, the project is within schedule and budget. There will be several important milestones in 1996. During the next two months, the mounting of the mechanical structure in Milan will be completed. Following this, a group of ESO hard- and software experts will spend about 6 months next to it, implementing and thoroughly testing all aspects of the very advanced VLT telescope control system. In the meantime, the erection of the first telescope enclosure at Paranal is rapidly proceeding and the outside panelling will soon be put in place. This work will be completed in January 1996, after which the integration of all inside mechanical components will follow. The take-over by ESO of the fully operational, first enclosure is scheduled for May 1996. The other enclosures will become ready at regular intervals thereafter. In Milan, all of the heavy parts of the second telescope structure have already been produced and the third and fourth are about 60 percent complete. While the first structure has now been pre-assembled for tests, the individual parts of the second will not be put together before they are shipped to Paranal in early 1996. Starting in June 1996, they will then be assembled inside the completed, first enclosure. Thus, the `second' structure will become the `first' VLT Unit telescope (UT1). This work will last until early 1997, after which the first 8.2-metre mirror will arrive from Europe and be installed. Finally, after another test and optimisation period, `first light' for UT1 is expected in late 1997. This procedure is very advantageous, because it allows to continue under less time pressure the extensive tests on the `first' structure in Milan until a satisfactory state of debugging and optimisation of the new VLT control system has been reached. In this way, the time necessary for the installation of this system in UT1 at Paranal in 1997 will be significantly shortened. In fact, the structure seen by the ESO Council in Milan will be the last to be shipped to Paranal where it will then become the fourth 8.2-metre Unit telescope (UT4). Mirrors and Instruments As earlier announced, ESO officially received the first 8.2-metre VLT mirror from REOSC in Paris [3] on November 21. The polishing of the second mirror has already started and, based on the experience gained with the first, it is expected that this work will be accomplished in less time. The third blank is already at REOSC and the fourth will soon be ready at Schott Glaswerke in Mainz (Germany). Following extended studies, and as yet another move towards new technology within the VLT project, it has now been decided to make the 1.2-metre secondary VLT mirrors of beryllium, a very light, exotic metal. The contracting firm is Dornier of the DASA group (Germany). This saves much weight and allows these relatively large mirrors to be efficiently used in the `chopping and tilting' mode needed for observations in the infrared wavelength region as well as for the critical, image-sharpening adaptive optics system. Significant progress has also been achieved on the first astronomical instruments which will be installed at the VLT. The integration of the first two of these, ISAAC and CONICA which will be installed on UT1 in the course of 1997, has already started in the ESO laboratories at the Headquarters in Garching. Important advances have also taken place within the FORS (managed by a consortium of Landessternwarte Heidelberg, Universitaets-Sternwarte Goettingen and Institut fuer Astronomie und Astrophysik der Ludwig Maximilians Universitaet Muenchen) and FUEGOS (Paris Observatory, Meudon Observatory, Toulouse Observatory, Geneva Observatory and Bologna Observatory) projects. More details about these and other VLT instruments will be given in later communications. Notes: [1] The Council of ESO consists of two representatives from each of the eight member states. It is the highest legislative authority of the organisation and normally meets twice a year. This time, Council was invited to Milan by the Director of the Osservatorio di Brera (Milan), Prof. Guido Chincarini, and the Italian delegation. [2] See ESO Press Release 08/91 of 24 September 1991. [3] See ESO Press Release 15/95 of 13 November 1995. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  12. A Pool of Distant Galaxies

    NASA Astrophysics Data System (ADS)

    2008-11-01

    Anyone who has wondered what it might be like to dive into a pool of millions of distant galaxies of different shapes and colours, will enjoy the latest image released by ESO. Obtained in part with the Very Large Telescope, the image is the deepest ground-based U-band image of the Universe ever obtained. It contains more than 27 million pixels and is the result of 55 hours of observations with the VIMOS instrument. A Sea of Galaxies ESO PR Photo 39/08 A Pool of Distant Galaxies This uniquely beautiful patchwork image, with its myriad of brightly coloured galaxies, shows the Chandra Deep Field South (CDF-S), arguably the most observed and best studied region in the entire sky. The CDF-S is one of the two regions selected as part of the Great Observatories Origins Deep Survey (GOODS), an effort of the worldwide astronomical community that unites the deepest observations from ground- and space-based facilities at all wavelengths from X-ray to radio. Its primary purpose is to provide astronomers with the most sensitive census of the distant Universe to assist in their study of the formation and evolution of galaxies. The new image released by ESO combines data obtained with the VIMOS instrument in the U- and R-bands, as well as data obtained in the B-band with the Wide-Field Imager (WFI) attached to the 2.2 m MPG/ESO telescope at La Silla, in the framework of the GABODS survey. The newly released U-band image - the result of 40 hours of staring at the same region of the sky and just made ready by the GOODS team - is the deepest image ever taken from the ground in this wavelength domain. At these depths, the sky is almost completely covered by galaxies, each one, like our own galaxy, the Milky Way, home of hundreds of billions of stars. Galaxies were detected that are a billion times fainter than the unaided eye can see and over a range of colours not directly observable by the eye. This deep image has been essential to the discovery of a large number of new galaxies that are so far away that they are seen as they were when the Universe was only 2 billion years old. In this sea of galaxies - or island universes as they are sometimes called - only a very few stars belonging to the Milky Way are seen. One of them is so close that it moves very fast on the sky. This "high proper motion star" is visible to the left of the second brightest star in the image. It appears as a funny elongated rainbow because the star moved while the data were being taken in the different filters over several years. Notes Because the Universe looks the same in all directions, the number, types and distribution of galaxies is the same everywhere. Consequently, very deep observations of the Universe can be performed in any direction. A series of fields were selected where no foreground object could affect the deep space observations (such as a bright star in our galaxy, or the dust from our Solar System). These fields have been observed using a number of telescopes and satellites, so as to collect information at all possible wavelengths, and characterise the full spectrum of the objects in the field. The data acquired from these deep fields are normally made public to the whole community of astronomers, constituting the basis for large collaborations. Observations in the U-band, that is, at the boundary between visible light and ultraviolet are challenging: the Earth's atmosphere becomes more and more opaque out towards the ultraviolet, a useful property that protects people's skin, but limiting to ground-based telescopes. At shorter wavelengths, observations can only be done from space, using, for example, the Hubble Space Telescope. On the ground, only the very best sites, such as ESO's Paranal Observatory in the Atacama Desert, can perform useful observations in the U-band. Even with the best atmospheric conditions, instruments are at their limit at these wavelengths: the glass of normal lenses transmits less UV light, and detectors are less sensitive, so only instruments designed for UV observations, such as VIMOS on ESO's Very Large Telescope, can get enough light. The VIMOS U-band image, which was obtained as part of the ESO/GOODS public programme, is based on 40 hours of observations with the VLT. The VIMOS R-band image was obtained co-adding a large number of archival images totaling 15 hours of exposure. The WFI B-band image is part of the GABODS survey.

  13. Expression of cancer/testis antigens in salivary gland carcinomas with reference to MAGE-A and NY-ESO-1 expression in adenoid cystic carcinoma.

    PubMed

    Beppu, Shintaro; Ito, Yohei; Fujii, Kana; Saida, Kosuke; Takino, Hisashi; Masaki, Ayako; Murase, Takayuki; Kusafuka, Kimihide; Iida, Yoshiyuki; Onitsuka, Tetsuro; Yatabe, Yasushi; Hanai, Nobuhiro; Hasegawa, Yasuhisa; Ijichi, Kei; Murakami, Shingo; Inagaki, Hiroshi

    2017-08-01

    Cancer/testis antigens (CTAs) are detected in cancer cells but not in healthy normal tissues, with the exception of gametogenic tissues. CTAs are highly immunogenic proteins, and thus represent ideal targets for cytotoxic T-lymphocyte-mediated specific immune therapy. The aim of this study was to screen CTA expression in various types of salivary gland carcinoma and to clarify clinicopathological significance of MAGE-A and NY-ESO-1 expression in adenoid cystic carcinomas (AdCCs) of the salivary gland, which is one of the most common salivary gland carcinomas, and usually has a fatal outcome. We used immunohistochemistry to examine the expression of four CTAs (MAGE-A, NY-ESO-1, CT7, and GAGE7) in various types of salivary gland carcinoma (n = 95). When carcinoma cases were divided into low-grade and intermediate/high-grade types, NY-ESO-1 and CT7 were expressed more frequently in intermediate/high-grade carcinomas. We then focused on MAGE-A and NY-ESO-1 expression in a large cohort of adenoid cystic carcinomas (AdCCs) (n = 46). MAGE-A and NY-ESO-1 were frequently expressed in AdCC; specifically, MAGE-A was expressed in >60% of the AdCC cases. MAGE-A expression and tumour site (minor salivary gland) were identified as independent risk factors for locoregional tumour recurrence. These findings suggest that CTAs may be expressed in a variety of salivary gland carcinomas, especially in those with higher histological grades. In addition, MAGE-A, which is frequently expressed in AdCC cases, may be a useful prognostic factor for poorer locoregional recurrence-free survival. © 2017 John Wiley & Sons Ltd.

  14. Man-made Star Shines in the Southern Sky

    NASA Astrophysics Data System (ADS)

    2006-02-01

    Scientists celebrate another major milestone at Cerro Paranal in Chile, home of ESO's Very Large Telescope array. Thanks to their dedicated efforts, they were able to create the first artificial star in the Southern Hemisphere, allowing astronomers to study the Universe in the finest detail. This artificial laser guide star makes it possible to apply adaptive optics systems, that counteract the blurring effect of the atmosphere, almost anywhere in the sky. ESO PR Photo 07a/06 ESO PR Photo 07a/06 First Light of the VLT Laser Guide Star On 28 January 2006, at 23:07 local time, a laser beam of several watts was launched from Yepun, the fourth 8.2m Unit Telescope of the Very Large Telescope, producing an artificial star, 90 km up in the atmosphere. Despite this star being about 20 times fainter than the faintest star that can be seen with the unaided eye, it is bright enough for the adaptive optics to measure and correct the atmosphere's blurring effect. The event was greeted with much enthusiasm and happiness by the people in the control room of one of the most advanced astronomical facilities in the world. It was the culmination of five years of collaborative work by a team of scientists and engineers from ESO and the Max Planck Institutes for Extraterrestrial Physics in Garching and for Astronomy in Heidelberg, Germany. After more than one month of integration on site with the invaluable support of the Paranal Observatory staff, the VLT Laser Guide Star Facility saw First Light and propagated into the sky a 50cm wide, vivid, beautifully yellow beam. ESO PR Photo 07b/06 ESO PR Photo 07b/06 An Artificial Star Above Paranal "This event tonight marks the beginning of the Laser Guide Star Adaptive Optics era for ESO's present and future telescopes", said Domenico Bonaccini Calia, Head of the Laser Guide Star group at ESO and LGSF Project Manager. Normally, the achievable image sharpness of a ground-based telescope is limited by the effect of atmospheric turbulence. This drawback can be surmounted with adaptive optics, allowing the telescope to produce images that are as sharp as if taken from space. This means that finer details in astronomical objects can be studied, and also that fainter objects can be observed. In order to work, adaptive optics needs a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed. To overcome this limitation, astronomers use a powerful laser that creates an artificial star, where and when they need it. ESO PR Photo 07c/06 ESO PR Photo 07c/06 The Laser Guide Star Laboratory The laser beam, shining at a well-defined wavelength, makes the layer of sodium atoms that is present in Earth's atmosphere at an altitude of 90 kilometres glow. The laser is hosted in a dedicated laboratory under the platform of Yepun. A custom-made fibre carries the high power laser to the launch telescope situated on top of the large Unit Telescope. An intense and exhilarating twelve days of tests followed the First Light of the Laser Guide Star (LGS), during which the LGS was used to improve the resolution of astronomical images obtained with the two adaptive optics instruments in use on Yepun: the NAOS-CONICA imager and the SINFONI spectrograph. In the early hours of 9 February, the LGS could be used together with the SINFONI instrument, while in the early morning of 10 February, it was with the NAOS-CONICA system. ESO PR Video 07/06 ESO PR Video 07/06 Learn more with the video! "To have succeeded in such a short time is an outstanding feat and is a tribute to all those who have together worked so hard over the last few years," said Richard Davies, project manager for the laser source development at the Max Planck Institute for Extraterrestrial Physics. A second phase of commissioning will take place in the spring with the aim of optimizing the operations and refining the performances before the instrument is made available to the astronomers, later this year. The experience gained with this Laser Guide Star is also a key milestone in the design of the next generation of Extremely Large Telescope in the 30 to 60 metre range that is now being studied by ESO together with the European astronomical community. High resolution images and their captions are available on this page. This press release is also accompanied by Broadcast quality material. Notes The Laser Guide Star Facility is a collaborative project between ESO, the Max Planck Institute for Extraterrestrial Physics in Garching, Germany (MPE) and the Max Planck Institut for Astronomy in Heidelberg, Germany (MPIA). The team members are D. Bonaccini Calia, W. Hackenberg, M. Cullum, M. Dimmler, I. Guidolin, C. Araujo, E. Allaert, D. Popovic, M. Comin, M. Quattri, E. Brunetto, F. Koch, A. Silber, J-L. Alvarez, M. Tapia, E. Bendek, J. Quentin, G. Fischer, M. Tarenghi, G.Monnet, and R.Gilmozzi (ESO), R. Davies, S. Rabien, T. Ott, R. Genzel, S.Kellner, S. Huber, W. Zaglauer, A. Goldbrunner, and J. Li (MPE), and S. Hippler, U. Neumann, D. Butler, R.-R. Rohloff, and B.Grimm (MPIA). Members of ESO's Adaptive Optics team also participated to First Light: M. Kasper, S. Stroebele, E. Fedrigo, R. Donaldson, S. Oberti, and C. Soenke. This press release is issued in coordination between ESO and the Max Planck Society. A German version is available at http://www.mpg.de/bilderBerichteDokumente/dokumentation/pressemitteilungen/2006/

  15. The ESA/ESO/NASA Photoshop FITS Liberator 3: Have your say on new features

    NASA Astrophysics Data System (ADS)

    Nielsen, L. H.; Christensen, L. L.; Hurt, R. L.; Nielsen, K.; Johansen, T.

    2008-06-01

    The popular, free ESA/ESO/NASA Photoshop FITS Liberator image processing software (a plugin for Adobe Photoshop) is about to get simpler, faster and more user-friendly! Here we would like to solicit inputs from the community of users.

  16. An optical to IR sky brightness model for the LSST

    NASA Astrophysics Data System (ADS)

    Yoachim, Peter; Coughlin, Michael; Angeli, George Z.; Claver, Charles F.; Connolly, Andrew J.; Cook, Kem; Daniel, Scott; Ivezić, Željko; Jones, R. Lynne; Petry, Catherine; Reuter, Michael; Stubbs, Christopher; Xin, Bo

    2016-07-01

    To optimize the observing strategy of a large survey such as the LSST, one needs an accurate model of the night sky emission spectrum across a range of atmospheric conditions and from the near-UV to the near-IR. We have used the ESO SkyCalc Sky Model Calculator1, 2 to construct a library of template spectra for the Chilean night sky. The ESO model includes emission from the upper and lower atmosphere, scattered starlight, scattered moonlight, and zodiacal light. We have then extended the ESO templates with an empirical fit to the twilight sky emission as measured by a Canon all-sky camera installed at the LSST site. With the ESO templates and our twilight model we can quickly interpolate to any arbitrary sky position and date and return the full sky spectrum or surface brightness magnitudes in the LSST filter system. Comparing our model to all-sky observations, we find typical residual RMS values of +/-0.2-0.3 magnitudes per square arcsecond.

  17. Reaching New Heights in Astronomy - ESO Long Term Perspectives

    NASA Astrophysics Data System (ADS)

    de Zeeuw, T.

    2016-12-01

    A comprehensive description of ESO in the current global astronomical context, and its plans for the next decade and beyond, are presented. This survey covers all aspects of the Organisation, including the optical-infrared programme at the La Silla Paranal Observatory, the submillimetre facilities ALMA and APEX, the construction of the 39-metre European Extremely Large Telescope and the science operation of these facilities. An extension of the current optical/infrared/submillimetre facilities into multi-messenger astronomy has been made with the decision to host the southern Cherenkov Telescope Array at Paranal. The structure of the Organisation is presented and the further development of the staff is described within the scope of the long-range financial planning. The role of Chile is highlighted and expansion of the number of Member States beyond the current 15 is discussed. The strengths of the ESO model, together with challenges as well as possible new opportunities and initiatives, are examined and a strategy for the future of ESO is outlined.

  18. The Challenges in Metadata Management: 20+ Years of ESO Data

    NASA Astrophysics Data System (ADS)

    Vera, I.; Da Rocha, C.; Dobrzycki, A.; Micol, A.; Vuong, M.

    2015-09-01

    The European Southern Observatory Science Archive Facility has been in operations for more than 20 years. It contains data produced by ESO telescopes as well as the metadata needed for characterizing and distributing those data. This metadata is used to build the different archive services provided by the Archive. Over these years, services have been added, modified or even decommissioned creating a cocktail of new, evolved and legacy data systems. The challenge for the Archive is to harmonize the differences of those data systems to provide the community with a homogeneous experience when using ESO data. In this paper, we present ESO experience in three particular challenging areas. First discussion is dedicated to the problem of metadata quality over the time, second discusses how to integrate obsolete data models on the current services and finally we will present the challenges of ever growing databases. We describe our experience dealing with those issues and the solutions adopted to mitigate them.

  19. Participant Perspectives on the ESO Astronomy Camp Programme

    NASA Astrophysics Data System (ADS)

    Olivotto, C.; Cenadelli, D.; Gamal, M.; Grossmann, D.; Teller, L. A. I.; Marta, A. S.; Matoni, C. L.; Taillard, A.

    2015-09-01

    This article describes the experience of attending the European Southern Observatory (ESO) Astronomy Camp from the perspective of its participants - students aged between 16 and 18 years old from around the world. The students shared a week together during the winter of 2014 in the Alpine village of Saint-Barthelemy, Italy. The camp was organised by ESO in collaboration with Sterrenlab and the Astronomical Observatory of the Autonomous Region of the Aosta Valley and offered a rich programme of astronomy and leisure activities. This article focuses on the concept of astronomy camps, and their role as a unique tool to complement formal classroom education, rather than on the astronomy activities and the scientific programme. Thus, it is not an academic review of the implemented methodologies, but rather a reflection on the overall experience. The article was brought together from collaborative accounts by some of the participants who were asked to reflect on the experience. The participants who contributed to this article represent the diversity of the ESO Astronomy Camp's alumni community.

  20. The Gaia-ESO Survey: the present-day radial metallicity distribution of the Galactic disc probed by pre-main-sequence clusters

    NASA Astrophysics Data System (ADS)

    Spina, L.; Randich, S.; Magrini, L.; Jeffries, R. D.; Friel, E. D.; Sacco, G. G.; Pancino, E.; Bonito, R.; Bravi, L.; Franciosini, E.; Klutsch, A.; Montes, D.; Gilmore, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S. E.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Bayo, A.; Carraro, G.; Casey, A. R.; Costado, M. T.; Damiani, F.; Donati, P.; Frasca, A.; Hourihane, A.; Jofré, P.; Lewis, J.; Lind, K.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sousa, S. G.; Worley, C. C.; Zaggia, S.

    2017-05-01

    Context. The radial metallicity distribution in the Galactic thin disc represents a crucial constraint for modelling disc formation and evolution. Open star clusters allow us to derive both the radial metallicity distribution and its evolution over time. Aims: In this paper we perform the first investigation of the present-day radial metallicity distribution based on [Fe/H] determinations in late type members of pre-main-sequence clusters. Because of their youth, these clusters are therefore essential for tracing the current interstellar medium metallicity. Methods: We used the products of the Gaia-ESO Survey analysis of 12 young regions (age < 100 Myr), covering Galactocentric distances from 6.67 to 8.70 kpc. For the first time, we derived the metal content of star forming regions farther than 500 pc from the Sun. Median metallicities were determined through samples of reliable cluster members. For ten clusters the membership analysis is discussed in the present paper, while for other two clusters (I.e. Chamaeleon I and Gamma Velorum) we adopted the members identified in our previous works. Results: All the pre-main-sequence clusters considered in this paper have close-to-solar or slightly sub-solar metallicities. The radial metallicity distribution traced by these clusters is almost flat, with the innermost star forming regions having [Fe/H] values that are 0.10-0.15 dex lower than the majority of the older clusters located at similar Galactocentric radii. Conclusions: This homogeneous study of the present-day radial metallicity distribution in the Galactic thin disc favours models that predict a flattening of the radial gradient over time. On the other hand, the decrease of the average [Fe/H] at young ages is not easily explained by the models. Our results reveal a complex interplay of several processes (e.g. star formation activity, initial mass function, supernova yields, gas flows) that controlled the recent evolution of the Milky Way. Based on observations made with the ESO/VLT, at Paranal Observatory, under program 188.B-3002 (The Gaia-ESO Public Spectroscopic Survey).Full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/601/A70

  1. Gaia-ESO Survey: Global properties of clusters Trumpler 14 and 16 in the Carina nebula ⋆⋆

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Klutsch, A.; Jeffries, R. D.; Randich, S.; Prisinzano, L.; Maíz Apellániz, J.; Micela, G.; Kalari, V.; Frasca, A.; Zwitter, T.; Bonito, R.; Gilmore, G.; Flaccomio, E.; Francois, P.; Koposov, S.; Lanzafame, A. C.; Sacco, G. G.; Bayo, A.; Carraro, G.; Casey, A. R.; Alfaro, E. J.; Costado, M. T.; Donati, P.; Franciosini, E.; Hourihane, A.; Jofré, P.; Lardo, C.; Lewis, J.; Magrini, L.; Monaco, L.; Morbidelli, L.; Worley, C. C.; Vink, J. S.; Zaggia, S.

    2017-07-01

    Aims: We present the first extensive spectroscopic study of the global population in star clusters Trumpler 16, Trumpler 14, and Collinder 232 in the Carina nebula, using data from the Gaia-ESO Survey, down to solar-mass stars. Methods: In addition to the standard homogeneous survey data reduction, a special processing was applied here because of the bright nebulosity surrounding Carina stars. Results: We find about 400 good candidate members ranging from OB types down to slightly subsolar masses. About 100 heavily reddened early-type Carina members found here were previously unrecognized or poorly classified, including two candidate O stars and several candidate Herbig Ae/Be stars. Their large brightness makes them useful tracers of the obscured Carina population. The spectroscopically derived temperatures for nearly 300 low-mass members enables the inference of individual extinction values and the study of the relative placement of stars along the line of sight. Conclusions: We find a complex spatial structure with definite clustering of low-mass members around the most massive stars and spatially variable extinction. By combining the new data with existing X-ray data, we obtain a more complete picture of the three-dimensional spatial structure of the Carina clusters and of their connection to bright and dark nebulosity and UV sources. The identification of tens of background giants also enables us to determine the total optical depth of the Carina nebula along many sightlines. We are also able to put constraints on the star formation history of the region with Trumpler 14 stars found to be systematically younger than stars in other subclusters. We find a large percentage of fast-rotating stars among Carina solar-mass members, which provide new constraints on the rotational evolution of pre-main-sequence stars in this mass range. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Survey (program 188.B-3002). Full Tables 1, 2, and 7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A81

  2. Expectations Increase as VLT First Light Approaches

    NASA Astrophysics Data System (ADS)

    1998-05-01

    Two weeks before the moment of "First Light" of Unit Telescope no. 1 of the Very Large Telescope (VLT) , the ESO Team at the Paranal Observatory reports good progress of the preparatory work. The crucial optimization of the world's first, thin 8.2-metre mirror proceeds according to the established plan. It is thus expected that this important event will take place as foreseen, i.e. during the night of May 25-26, 1998 . If no unforeseen obstacles are encountered, the first scientific images will then be presented during a series of near-simultaneous Press Conferences in the ESO member countries on May 27 . The photos will be published on the WWW the same day, together with explanatory texts. In preliminary optical tests at the first VLT Unit Telescope (UT1), the initial adjustment of the active optics system that controls the telescope optics has demonstrated excellent results. In particular, the first tests have verified the fine optical performance of the 8.2-m primary mirror and of the complex control system that maintains the shape of this thin and flexible Zerodur mirror. In short test exposures with the guide probe (the technical device that is used to steer the telescope) - i.e., not yet with the scientific CCD-camera that will be used for the First Light images - the telescope has been following the external seeing provided by the Paranal site. Image quality of better than 0.5 arcsec has been achieved routinely. "We are pleased with the progress and confident that the telescope will live up to the expectations", says Riccardo Giacconi , Director General of ESO. "The team at Paranal is doing a great job." For more details about the various media activities surrounding the VLT First Light event, please consult the First Light homepage. A list of locations, times and contact addresses for the Press Conferences is available on the web. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  3. Shoemaker-Levy 9/JUPITER Collision Update

    NASA Astrophysics Data System (ADS)

    1994-05-01

    There are many signs that the upcoming collision between comet Shoemaker-Levy 9 and giant planet Jupiter is beginning to catch the imagination of the public. Numerous reports in the various media describe the effects expected during this unique event which according to the latest calculations will start in the evening of July 16 and end in the morning of July 22, 1994. (The times in this Press Release are given in Central European Summer Time (CEST), i.e., Universal Time (UT) + 2 hours. The corresponding local time in Chile is CEST - 6 hours.) Astronomers all over the world are now preparing to observe the associated phenomena with virtually all major telescopes. There will be no less than 12 different investigations at the ESO La Silla observatory during this period. This Press Release updates the information published in ESO PR 02/94 (27 January 1994) and provides details about the special services which will be provided by ESO to the media around this rare astronomical event. SCIENTIFIC EXPECTATIONS The nucleus of comet Shoemaker-Levy 9 broke into many smaller pieces during a near passage of Jupiter in July 1992. They are now moving in parallel orbits around this planet and recent calculations show with close to 100 % certainty that they will all collide with it, just two months from now. At some time, more than 20 individual nuclei were observed. This Press Release is accompanied by a photo that shows this formation, the famous "string of pearls", as it looked like in early May 1994. Both Jupiter and these nuclei have been extensively observed during the past months. A large, coordinated observing programme at La Silla has been active since early April and the first results have become available. However, while we now possess more accurate information about the comet's motion and the times of impact, there is still great uncertainty about the effects which may actually be observed at the time of the impacts. This is first of all due to the fact that it has not been possible to measure the sizes and masses of the individual cometary nuclei and thereby to estimate the amount of energy which will be liberated at the collisions. The first object (nucleus "A"; indicated on the photo) will hit the Jovian atmosphere somewhat later than earlier predicted; the best estimate is now at about 22:00 CEST in the evening of Saturday, 16 July, 1994. The second ("B") will follow the next morning at about 05:00. These two nuclei are comparatively faint and therefore presumably also rather small, and it is at this moment still uncertain whether these impacts will actually be observed. The first, relatively large nuclei ("E") will hit Jupiter around 17:00 on 17 July. The brightest nucleus ("Q"; actually a double object, as seen on images obtained with the Hubble Space Telescope) is expected to arrive just before 22:00 on 20 July, and the last in the train ("W") should collide with the planet at about 10:20 on 22 July. The timing uncertainty varies from impact to impact; in the best cases, there is at present a 95% chance that the collision will happen between 40 minutes before and 40 minutes after the indicated time. Further positional observations are being obtained, also at ESO, and it is hoped that this margin can be reduced to about +-15 minutes or better. Despite intensive spectroscopic observations, no gas has yet been detected in any of the nuclei. We only see dust around the nuclei which are completely hidden from our view within these clouds. The amount of the dust has been steadily decreasing; this is because the dust production from the individual nuclei -- which began when the parent body broke up at the time of the near-collision with Jupiter in July 1992 -- is slowly diminishing with time. Some of the smaller nuclei have recently disappeared from view, probably because they have ceased to produce dust. It is not clear, however, whether this also implies that they no longer exist at all, or whether they are just too small to be seen with available telescopes. THE ESO COORDINATED PROGRAMME Together with their colleagues all over the world, several groups of astronomers in the ESO member states are now getting ready to observe this event with the La Silla telescopes. The observers at ESO participate in a coordinated programme and will profit from the simultaneous observations with many different telescopes and observing techniques at one site. Altogether, there are 12 individual programmes at all the major telescopes, including the 3.6-m, the NTT, the SEST, the 2.2-m MPI/ESO, the 1.4-m CAT and the Danish 1.54-m telescopes. It is clear that these observations will be difficult, in particular because of the relatively short time that Jupiter and the comet will be well above the horizon at La Silla, at most a few hours each evening. When Jupiter is very low in the sky, the viewing conditions are less favourable, since the light must traverse a longer distance through the turbulent and absorbing terrestrial atmosphere. However, since Jupiter will be south of the celestial equator, observing conditions will be even worse from observatories located in the Northern hemisphere. To record the best possible data (images, spectra, light curves, etc.), the telescopes must follow the motion of Jupiter very accurately. Due to its orbital motion in the solar system, Jupiter moves rather rapidly in the sky, and the telescope motion must be precisely offset to continuously track the planet without "smearing" the images. This is not a simple task, also since the planet's rate of motion changes with time and new corrections must be made several times each hour. All in all, the observers face a difficult task and must be extremely alert, especially around the predicted moments of impact. This will demand very high concentration and necessitate "training runs" before the real observations begin. Some of these have already taken place -- not surprisingly, various technical problems were uncovered and are now in the process of being resolved. ESO'S SERVICES TO THE MEDIA In view of the unique nature of this event and the associated astronomical observations, ESO has decided to provide special services to the media. In particular, it is the intention to ensure that the media will be able to follow the developments at La Silla closely and in near-real time, and at the same time will be kept informed about the observational results at other observatories all over the world. This service will be available from the ESO Headquarters in Garching near Munich, Germany, but special arrangements will also be made for the media in Chile. Kindly note that in view of the complex and critical nature of these observations, it is not possible to arrange direct access to the La Silla observatory during the observing period. ESO will obtain all new information directly from the observers at La Silla via the permanent satellite link to the ESO Headquarters in Garching (Germany). For this, ESO is setting up the necessary internal communication lines at La Silla which will allow this transfer to be done at the shortest possible notice. While the observers cannot be disturbed during the actual observations, they will communicate their results and observational progress at regular intervals, and very quickly, if and when "dramatic" events are observed. ESO furthermore has complete and permanent access to the world-wide communication net between all observers of this event, especially set up for this purpose. The information available from this source will first of all serve to alert the observers about the results in other places and to warn them about new and unexpected developments. Moreover, the Space Telescope European Coordinating Facility, the ESA/ESO group that is responsible for the Hubble Space Telescope use by European astronomers and which is housed at the ESO Headquarters, will contribute with information regarding the observations with this major observational facility. With these important sources of information at its disposal, ESO will therefore be in a prime position to inform about and comment on the latest developments at the shortest possible notice. SPECIFIC ARRANGEMENTS In practical terms, ESO's service to the media will have the following elements: - Background material in the form of text and images, as well as related video clippings (broadcast quality) will be available at request, 7 - 10 days before the first impact takes place on 16 July. - Beginning a few days before this date, ESO will issue daily bulletins with the latest predictions and other news, related to the preparations of observations at La Silla and elsewhere in the world. - ESO will arrange a Press Conference at the ESO Headquarters in Garching at 20:00 (CEST) on Saturday 16 July, 1994. This will be just before the first impact is expected to happen and will provide an excellent opportunity to inform the media about the very latest developments. Following this in-depth briefing, media representatives are welcome to pass the night at the ESO Headquarters and to follow the first observations at La Silla at distance (food and beverages will be provided). Unexpected and "spectacular" events, should they happen, will be announced and commented as quickly as possible. We will also attempt to contact the La Silla observers by phone immediately after the end of their observations (in the early morning hours at Garching) and request live commentaries about the intial results. At the same time, the latest images will be transferred and made available. - There will be a Press Conference each day at 11:00 (CEST) on 17 - 22 July 1994, summarizing the previous night's results. Selected images obtained at ESO the night before will be available on these occasion. Media representatives, who are interested in participating in the Press Conference in the evening of July 16 and who would like to stay at ESO during the following night, are kindly requested to soonest contact Mrs. E. Voelk of the ESO Information Service (Tel.: +4989-32006276; Fax: +4989-3202362), to obtain a personal invitation. ESO is preparing special arrangements for the Chilean media; they will soon be announced directly to the involved. PHOTO CAPTION ESO PR PHOTO 10/94-1: PORTRAIT OF A DOOMED COMET These two photos from the ESO La Silla observatory show the individual nuclei of comet Shoemaker-Levy 9, now headed for collision with Jupiter on 16 - 22 July 1994. The wide-field photo (below, left) was obtained by Klaus Jockers and Galina Chernova (Max-Planck-Institute fur Aeronomie, Katlenburg, Lindau, Germany) on May 1, 1994. For this 5 min exposure in red light they used a CCD camera at the MPIfAe/Hoher List focal reducer at the ESO 1-metre telescope. The entire nuclear train (the "string of pearls") is very well seen, together with the sunlight-reflecting dust from the nuclei, all on one side. On this date, the comet was 654 million km from the Earth and the angular extension of the train was about 5.3 arcmin, corresponding to a projected length of just over 1 million km. A 15 min CCD image was obtained for astrometric purposes on May 11, 1994, by Jean-Francois Claeskens at the Danish 1.5 m telescope at La Silla; it is here reproduced in close-up to show well the individual nuclei, in particular the fainter ones. The bright object to the upper right is a 10th mag star. Note that the stars in the field are somewhat trailed, since the telescope was set to follow the motion of the comet. The first nucleus to hit Jupiter will be "A", here seen 42 mm from the left edge and 33 mm below the upper edge of the large picture. The last is "W", 43 mm above the lower edge and 9 mm from the right edge. The comet was 657 million km from the Earth and the train was somewhat longer, 5.8 arcmin, i.e. the projected length was now 1.1 million km. Technical information: Wide-Field: pixel size 1.5 arcsec; scale on photo: 5.1 arcsec/mm; field size: 12.2 x 6.6 arcmin; 5 min exposure; gunn-r filtre. Close-Up: pixel size 0.38 arcsec; scale on photo: 1.3 arcsec/mm; field size: 6.4 x 4.4 arcmin; 15 min exposure; V-filtre. On both photos, North is up and East is to the left; both were obtained during moderate seeing conditions.

  4. VLT Unit Telescopes Named at Paranal Inauguration

    NASA Astrophysics Data System (ADS)

    1999-03-01

    This has been a busy, but also a very successful and rewarding week for the European Southern Observatory and its staff. While "First Light" was achieved at the second 8.2-m VLT Unit Telescope (UT2) ahead of schedule, UT1 produced its sharpest image so far. This happened at a moment of exceptional observing conditions in the night between March 4 and 5, 1999. During a 6-min exposure of the majestic spiral galaxy, NGC 2997 , stellar images of only 0.25 arcsec FWHM (full-width half-maximum) were recorded. This and two other frames of nearly the same quality have provided the base for the beautiful colour-composite shown above. At this excellent angular resolution, individual star forming regions are well visible along the spiral arms. Of particular interest is the peculiar, twisted shape of the long spiral arm to the right. The Paranal Inauguration The official inauguration of the Paranal Observatory took place in the afternoon of March 5, 1999, in the presence of His Excellency, the President of the Republic of Chile, Don Eduardo Frei Ruiz-Tagle, and ministers of his cabinet, as well the Ambassadors to Chile of the ESO member states and many other distinguished guests. The President of the ESO Council, Mr. Henrik Grage, and the ESO Director General, Professor Riccardo Giacconi, were the foremost representatives of the ESO organisation; most members of the ESO Council and ESO staff also participated. A substantial number of media representatives from Europe and Chile were present and reported - often live - from Paranal during the afternoon and evening. The guests were shown the impressive installations at the new observatory, including the first and second 8.2-m VLT Unit Telescopes; the latter having achieved "First Light" just four days before. A festive ceremony took place in the dome of UT2, under the large telescope structure that had been tilted towards the horizon to make place for the numerous participants. After an introductory address by the ESO Director General, speeches were delivered by the President of the ESO Council and the President of Chile. The speakers praised the great achievement of bringing the very complex, high-technology VLT project this far so successfully and also the wonderful new opportunities for front-line research with this new facility. This would not have been possible without excellent cooperation between the many parties to this project, individuals as well as research institutes, companies and governments, all working towards a common goal. The ceremony was concluded with a discourse on "Understanding the Universe" by Physics Nobel Prize winner, Professor Carlo Rubbia, former Director of CERN. At the end of the day, the President of the ESO Council, the ESO Director General and the Heads of Delegations had the opportunity to witness an observing session with the UT1 from the VLT Control Room. The 300 other guests followed this event via internal video broadcast. Mapuche names for the Unit Telescopes It had long been ESO's intention to provide "real" names to the four VLT Unit Telescopes, to replace the current, somewhat dry and technical designations as UT1 to UT4. Four meaningful names of objects in the sky in the Mapuche language were chosen. This indigeneous people lives mostly in the area south of Santiago de Chile. An essay contest was arranged in this connection among schoolchildren of the Chilean II Region of which Antofagasta is the capital to write about the implications of these names. It drew many excellent entries dealing with the rich cultural heritage of ESO's host country. The jury was unanimous in its choice of the winning essay. This was submitted by 17-year old Jorssy Albanez Castilla from Chuquicamata near the city of Calama. She received the prize, an amateur telescope, during the Paranal Inauguration. Henceforth, the four Unit Telescopes will be known as ANTU (UT1; pronounced an-too ; The Sun), KUEYEN (UT2; qua-yen , like in "quake"; The Moon), MELIPAL (UT3; me-li-pal ; The Southern Cross) and YEPUN (UT4; ye-poon ; Sirius), respectively. An audio sequence with these names pronounced by a native speaker is available below: [RealMedia - Audio only - 164k] "First Light" of UT2 Following the installation of the main mirror in its cell and a 20-hour working session to put the complex secondary mirror and its support in place, the UT2, now Kueyen , achieved (technical) first light in the morning of March 1, 1999, when an image was obtained of a bright star. It showed this telescope to be in good optical shape and further adjustments of the optical and mechanical systems are expected soon to result in some "astronomical" images. The announcement of this important event was made by the ESO Director during the opening session of the VLT Symposium that was held in Antofagasta during March 1-4, 1999. This meeting attracted over 250 scientists from all over world. It provided a most useful opportunity to discuss future scientific programmes with the VLT and other large telescopes. The participants were left with the impression of mounting expectations, just four weeks before the first VLT Unit Telescope, Antu (UT1), will receive the first visiting astronomers. More images from UT1 ESO PR Photo 17c/99 ESO PR Photo 17c/99 [Preview - JPEG: 400 x 667 pix - 332k] [Normal - JPEG: 800 x 1334 pix - 1.3M] [High-Res - JPEG: 2108 x 3450 pix - 2.8M] Caption to PR Photo 17c/99 : This colour composite photo of the Chamaeleon I area is based on six 1-min exposures obtained with VLT UT1 + FORS1 in the V, R and I bands. The sky field measures 6.8 x 11.2 arcmin 2 ; North is up and East is left [1]. Despite the extensive preparations for the Paranal Inguration and the VLT Symposium, excellent progress is being made during the final tuning of Antu (UT1) and its instruments for the "hand-over" to the astronomers on April 1, 1999. This involves exposures in many different modes and of different sky regions. Another impressive photo is shown here that was obtained some nights ago. It displays a sky area near the Chamaeleon I complex of bright nebulae and hot stars in the constellation of the same name, close to the southern celestial pole. Note: [1]: The photos in this Press Release were prepared at Paranal immediately following the Inauguration event and have only been subject to minimal image processing. To reduce the file size, the high-resolution versions carry no identifying text How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  5. New Vistas: Videotaped Art Instruction.

    ERIC Educational Resources Information Center

    Malsam, Margaret

    1979-01-01

    This article describes VISTA (Video Instruction for Students in the Teaching of Art), a pilot program which presents videotaped art lessons to kindergarten through third-grade children in School District #12, Adams County, Colorado. (Author/SJL)

  6. The VISTA spacecraft: Advantages of ICF (Inertial Confinement Fusion) for interplanetary fusions propulsion applications

    NASA Technical Reports Server (NTRS)

    Orth, Charles D.; Klein, Gail; Sercel, Joel; Hoffman, Nate; Murray, Kathy; Chang-Diaz, Franklin

    1987-01-01

    Inertial Confinement Fusion (ICF) is an attractive engine power source for interplanetary manned spacecraft, especially for near-term missions requiring minimum flight duration, because ICF has inherent high power-to-mass ratios and high specific impulses. We have developed a new vehicle concept called VISTA that uses ICF and is capable of round-trip manned missions to Mars in 100 days using A.D. 2020 technology. We describe VISTA's engine operation, discuss associated plasma issues, and describe the advantages of DT fuel for near-term applications. Although ICF is potentially superior to non-fusion technologies for near-term interplanetary transport, the performance capabilities of VISTA cannot be meaningfully compared with those of magnetic-fusion systems because of the lack of a comparable study of the magnetic-fusion systems. We urge that such a study be conducted.

  7. A Strange Supernova with a Gamma-Ray Burst

    NASA Astrophysics Data System (ADS)

    1998-10-01

    Important Observations with La Silla Telescopes Several articles appear today in the scientific journal Nature about the strange supernova SN 1998bw that exploded earlier this year in the spiral galaxy ESO184-G82 . These studies indicate that this event was linked to a Gamma-Ray Burst and may thus provide new insights into this elusive phenomenon. Important observations of SN 1998bw have been made with several astronomical telescopes at the ESO La Silla Observatory by some of the co-authors of the Nature articles [1]. The measurements at ESO will continue during the next years. The early observations On April 25, the BeppoSAX satellite detected a Gamma-Ray Burst from the direction of the constellation Telescopium, deep in the southern sky. Although there is now general consensus that they originate in very distant galaxies, the underlying physical causes of these events that release great amounts of energy within seconds are still puzzling astronomers. Immediately after reports about the April 25 Burst had been received, astronomers at La Silla took some images of the sky region where the gamma-rays were observed as a "Target of Opportunity" (ToO) programme. The aim was to check if the visual light of one of the objects in the field had perhaps brightened when compared to exposures made earlier. This would then provide a strong indication of the location of the Gamma-Ray Burst. The digital exposures were transferred to the Italian/Dutch group around BeppoSax that had requested these ToO observations. Astronomers of this group quickly noticed a new, comparatively bright star, right on the arm of a small spiral galaxy. This galaxy was first catalogued in the 1970's during the ESO/Uppsala Survey of the Southern Sky and received the designation ESO184-G82 . It is located at a distance of about 140 million light-years. SN 1998bw ESO PR Photo 39a/98 ESO PR Photo 39a/98 [Preview - JPEG: 800 x 963 pix - 592k] [High-Res - JPEG: 3000 x 3612 pix - 4.1Mb] ESO PR Photo 39b/98 ESO PR Photo 39b/98 [Preview - JPEG: 800 x 987 pix - 432k] [High-Res - JPEG: 3000 x 3703 pix - 2.5Mb] PR Photo 39a/98 (left) shows a colour composite of three images obtained with the EMMI multi-mode instrument at the ESO 3.58-m New Technology Telescope (NTT) at La Silla on May 4, 1998. The short exposures were obtained through V (green), R (red) and I (near-infrared) filtres. SN 1998bw is the very bright, bluish star at the center (indicated with an arrow), located on an arm of spiral galaxy ESO 184-G82 . There are several other galaxies in the field. Compare with Photo 39b/98 (right) that was obtained before the explosion (ESO 1-m Schmidt Telescope; 15 May 1985; 120-min exposure in red light). In both photos, the field of view measures 3.6 x 3.6 arcmin; North is up and East is left. Note that while the brighter objects are more prominent on the long-exposure Schmidt photo (39b/98), considerably more details can be seen on that obtained by the NTT (39a/98). The ESO astronomers at La Silla decided to continue observations of the new star-like object and set up a comprehensive programme with several telescopes at that observatory. During the subsequent weeks and months, they obtained images through various filtres to determine the brightness in different colours, as well as detailed spectra. These observations soon showed the object to be a supernova . This is a heavy star that explodes during a late and fatal evolutionary stage. The new supernova now received the official designation SN 1998bw . From a careful study based on these observations, it has been concluded that SN 1998bw underwent an exceptionally powerful explosion, more violent than most other supernovae observed so far. It was also unusual in the sense that very strong radio emission was observed within a few days after the explosion - normally this only happens after several weeks. In fact, at radio wavelengths, SN 1998bw was the brightest supernova ever observed. The origin of the Gamma-Ray Burst SN 1998bw is obviously an unusual supernova. It is therefore of particular significance that a Gamma-Ray Burst was observed from the same sky region just before it was discovered in optical light. It is very unlikely that these two very rare events would happen in the same region of the sky without being somehow related. Most astronomers therefore tend to believe that the gamma-rays do indeed originate in the supernova explosion. But can a single supernova be sufficiently energetic to produce a powerful Gamma-Ray Burst? New theoretical calculations, also published today in Nature, indicate that this may be so. Moreover, if the Gamma-Ray Burst observed on April 25 did originate in this supernova that is located in a relatively nearby galaxy, it was intrinsically much fainter than some of the other Gamma-Ray Bursts that are known to have taken place in extremely distant galaxies. The main idea is that while the centres of most other supernovae collapse into neutron stars at the moment of explosion, a black hole was created in a very massive star consisting mostly of carbon and oxygen. If so, a very strong shockwave may be produced that is capable of generating the observed gamma rays. A comparison of synthetic spectra from such a supernova model, based on a new spectrum-modelling technique developed by Leon Lucy at the ESA/ESO Space Telescope/European Coordinating Facility (ST/ECF), with the spectra of SN 1998bw observed at La Silla, show good agreement, thus lending credibility to the new models. Future work Much data has already been collected at ESO on the strange supernova SN 1998bw . More observations will be obtained by the astronomers at the ESO observatories in the future during a long-term monitoring programme of SN 1998bw . There is a good chance that this effort will ultimately provide fundamental information on the explosion mechanism and the nature of the progenitor star of this exceptional object. This supernova's connection with a Gamma-Ray Burst will significantly enhance our understanding of the nature of these powerful and enigmatic events. In view of the range in emitted energy, it now seems likely that there may be more than one class of Gamma-Ray Burst. According to some models for Gamma-Ray Bursts that include beaming (emission of the radiation in one prefered direction), it is possible that these events are only detected if they have a favourable angle with respect to the line of sight. In the case of SN 1998bw this is probably not the case, however, and it was only detected in gamma-rays, because it is so relatively nearby. The question of differences in intrinsic brightness and possible different classes of objects is far from settled yet. Note: [1] The ESO astronomers involved in this work are Thomas Augusteijn, Hermann Boehnhardt, James Brewer, Vanessa Doublier, Jean-Francois Gonzalez, Olivier Hainaut, Bruno Leibundgut, Christopher Lidman and Fernando Patat . How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  8. Nonlinear Shaping Architecture Designed with Using Evolutionary Structural Optimization Tools

    NASA Astrophysics Data System (ADS)

    Januszkiewicz, Krystyna; Banachowicz, Marta

    2017-10-01

    The paper explores the possibilities of using Structural Optimization Tools (ESO) digital tools in an integrated structural and architectural design in response to the current needs geared towards sustainability, combining ecological and economic efficiency. The first part of the paper defines the Evolutionary Structural Optimization tools, which were developed specifically for engineering purposes using finite element analysis as a framework. The development of ESO has led to several incarnations, which are all briefly discussed (Additive ESO, Bi-directional ESO, Extended ESO). The second part presents result of using these tools in structural and architectural design. Actual building projects which involve optimization as a part of the original design process will be presented (Crematorium in Kakamigahara Gifu, Japan, 2006 SANAA“s Learning Centre, EPFL in Lausanne, Switzerland 2008 among others). The conclusion emphasizes that the structural engineering and architectural design mean directing attention to the solutions which are used by Nature, designing works optimally shaped and forming their own environments. Architectural forms never constitute the optimum shape derived through a form-finding process driven only by structural optimization, but rather embody and integrate a multitude of parameters. It might be assumed that there is a similarity between these processes in nature and the presented design methods. Contemporary digital methods make the simulation of such processes possible, and thus enable us to refer back to the empirical methods of previous generations.

  9. A Solar Mini-Eclipse on May 7, 2003

    NASA Astrophysics Data System (ADS)

    2003-06-01

    Planet Mercury Passes in Front of the Solar Disk Summary [Go to Mercury Transit 2003 website] A solar mini-eclipse! On May 7, 2003, Mercury, the innermost planet in the solar system, will pass in front of the Sun and produce a solar eclipse. But this event will hardly be noticed. Mercury's small disk will indeed barely be bigger than the point of a pencil. Even the smallest sunspots on the solar surface are as big as the Earth and measure 10,000 km or more in diameter, while Mercury's equatorial diameter is only 4878 km. Bathed in intense sunlight, this small, hot planet moves around the Sun in an elliptical orbit at a mean distance of only 58 million km, much closer to the Sun than other inner planet, Venus (108 million km) and the Earth (150 million km). The disk of Mercury is very small and will be very difficult to see . A powerful telescope is needed to observe this event and to show clearly how Mercury moves across the solar disk. The disk of Mercury is indeed only 13 arcseconds across (while the solar disk measures about 1800 arcseconds). This corresponds to the size of a 1 EURO coin located at the top of the Eiffel Tower as seen from the ground. Therefore, Mercury will only block 1/20,000th of the Sun's light . ESO PR Photo 11a/03 ESO PR Photo 11a/03 [Normal - JPEG: 600 x 449 pix - 112k] Caption : During the transit on May 7, 2003, Mercury will be seen as a small, black dot on the surface of the Sun. Mercury Transits Passages of Mercury in front of the Sun, or "Mercury Transits" in astronomical terminology, are comparatively rare events , due to the different orbital inclinations of the Earth and Mercury as they move around the Sun. In order for a Mercury transit to happen, the planet must be located directly between the Earth and the Sun and also near one of the two points in its orbit where Mercury's orbital plane intersects that of the Earth. We then face the dark side of Mercury - the hemisphere that is not illuminated by the Sun - and see it as a small dark spot moving across the bright solar disk. There are about 13 Mercury transits each century and they follow in time intervals of approximately 13, 7, 10 and 3 years. The most recent one took place in November 1999 and the next will be on May 7, 2003 and November 8, 2006 . The next Mercury transit happens on Wednesday morning next week . It lasts from about 7:13 hrs CEST (Central European Summer Time) until 12:32 hrs CEST (5:13 to 10:32 UT) and the contour of the small planet as it moves across the solar disk can be seen from all places where the Sun is above the horizon and the sky is clear. The best observing conditions are from Europe, Africa and Asia. Observations of the transit Note, however, that this event cannot be observed with the unaided eye - this would also be extremely dangerous because the enormous brightness of the Sun will cause total blindness in a fraction of a second! Observations can only be made by means of telescopes which project the solar image onto a white screen. Public observatories, planetaria and other educational institutions will arrange special events on this occasion. News about such arrangements will appear in the local press. Live images on the web On this special occasion and in order to provide for everybody the chance to watch this event, the European Southern Observatory (ESO) and the European Association for Astronomy Education (EAAE) , together with the Institut de Mécanique Céleste et de Calcul des Éphémérides (IMCCE) and the Observatoire de Paris in France, are providing live images and a running commentary for all interested parties. It is also planned to display images obtained at observatories in the Belgium, the Czech Republic, Hungary, Italy and Spain, and possibly others. The availability will depend on the weather situation in the various places. ESO PR Photo 11b/03 ESO PR Photo 11b/03 [Normal - JPEG: 600 x 497 pix - 256k] Caption : The view through a large telescope may offer scenes like this one, when the black disk of Mercury (above,left) passes near a group of sunspots on the solar surface. Full information and many weblinks to other educational sites are available via the special website at : http://www.eso.org/public/outreach/eduoff/vt-2004/mt-2003/mt-intro.html On this site, extensive background information about Mercury and the Sun can be found and, in particular, useful sheets for school students and teachers in many languages. Live images from professional telescopes (depending on the weather at the observing sites) will be available on the special webpage: http://www.eso.org/public/outreach/eduoff/vt-2004/mt-2003/mt-display.html and it will also be possible to ask questions in "real-time" to astronomers via this page. Venus Transit on June 8, 2004 The Mercury Transit of May 7 is also a kind of "general rehearsal" to the even rarer Venus Transit event on June 8, 2004 . The last such event took place in 1884, so that no living person has ever seen one. The above mentioned organisations are also preparing for a major public event on that occasion. Provisional information is already available at the VT-2004 website .

  10. The AMBRE Project: Stellar parameterisation of the ESO:UVES archived spectra

    NASA Astrophysics Data System (ADS)

    Worley, C. C.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Bijaoui, A.

    2016-06-01

    Context. The AMBRE Project is a collaboration between the European Southern Observatory (ESO) and the Observatoire de la Côte d'Azur (OCA) that has been established to determine the stellar atmospheric parameters for the archived spectra of four ESO spectrographs. Aims: The analysis of the UVES archived spectra for their stellar parameters was completed in the third phase of the AMBRE Project. From the complete ESO:UVES archive dataset that was received covering the period 2000 to 2010, 51 921 spectra for the six standard setups were analysed. These correspond to approximately 8014 distinct targets (that comprise stellar and non-stellar objects) by radial coordinate search. Methods: The AMBRE analysis pipeline integrates spectral normalisation, cleaning and radial velocity correction procedures in order that the UVES spectra can then be analysed automatically with the stellar parameterisation algorithm MATISSE to obtain the stellar atmospheric parameters. The synthetic grid against which the MATISSE analysis is carried out is currently constrained to parameters of FGKM stars only. Results: Stellar atmospheric parameters are reported for 12 403 of the 51 921 UVES archived spectra analysed in AMBRE:UVES. This equates to ~23.9% of the sample and ~3708 stars. Effective temperature, surface gravity, metallicity, and alpha element to iron ratio abundances are provided for 10 212 spectra (~19.7%), while effective temperature at least is provided for the remaining 2191 spectra. Radial velocities are reported for 36 881 (~71.0%) of the analysed archive spectra. While parameters were determined for 32 306 (62.2%) spectra these parameters were not considered reliable (and thus not reported to ESO) for reasons such as very low S/N, too poor radial velocity determination, spectral features too broad for analysis, and technical issues from the reduction. Similarly the parameters of a further 7212 spectra (13.9%) were also not reported to ESO based on quality criteria and error analysis which were determined within the automated parameterisation process. Those tests lead us to expect that multi-component stellar systems will return high errors in radial velocity and fitting to the synthetic spectra and therefore will not have parameters reported to ESO. Typical external errors of σTeff ~ 110 dex, σlog g ~ 0.18 dex, σ[ M/H ] ~ 0.13 dex, and σ[ α/ Fe ] ~ 0.05 dex with some variation between giants and dwarfs and between setups are reported. Conclusions: UVES is used to observe an extensive collection of stellar and non-stellar objects all of which have been included in the archived dataset provided to OCA by ESO. The AMBRE analysis extracts those objects that lie within the FGKM parameter space of the AMBRE slow-rotating synthetic spectra grid. Thus by homogeneous blind analysis AMBRE has successfully extracted and parameterised the targeted FGK stars (23.9% of the analysed sample) from within the ESO:UVES archive.

  11. Pipeline Processing for VISTA

    NASA Astrophysics Data System (ADS)

    Lewis, J. R.; Irwin, M.; Bunclark, P.

    2010-12-01

    The VISTA telescope is a 4 metre instrument which has recently been commissioned at Paranal, Chile. Equipped with an infrared camera, 16 2Kx2K Raytheon detectors and a 1.7 square degree field of view, VISTA represents a huge leap in infrared survey capability in the southern hemisphere. Pipeline processing of IR data is far more technically challenging than for optical data. IR detectors are inherently more unstable, while the sky emission is over 100 times brighter than most objects of interest, and varies in a complex spatial and temporal manner. To compensate for this, exposure times are kept short, leading to high nightly data rates. VISTA is expected to generate an average of 250 GB of data per night over the next 5-10 years, which far exceeds the current total data rate of all 8m-class telescopes. In this presentation we discuss the pipelines that have been developed to deal with IR imaging data from VISTA and discuss the primary issues involved in an end-to-end system capable of: robustly removing instrument and night sky signatures; monitoring data quality and system integrity; providing astrometric and photometric calibration; and generating photon noise-limited images and science-ready astronomical catalogues.

  12. VISTA: A μ-Thermogravimeter for Investigation of Volatile Compounds in Planetary Environments.

    PubMed

    Palomba, Ernesto; Longobardo, Andrea; Dirri, Fabrizio; Zampetti, Emiliano; Biondi, David; Saggin, Bortolino; Bearzotti, Andrea; Macagnano, Antonella

    2016-06-01

    This paper presents the VISTA (Volatile In Situ Thermogravimetry Analyser) instrument, conceived to perform planetary in-situ measurements. VISTA can detect and quantify the presence of volatile compounds of astrobiological interest, such as water and organics, in planetary samples. These measurements can be particularly relevant when performed on primitive asteroids or comets, or on targets of potential astrobiological interest such as Mars or Jupiter's satellite Europa. VISTA is based on a micro-thermogravimetry technique, widely used in different environments to study absorption and sublimation processes. The instrument core is a piezoelectric crystal microbalance, whose frequency variations are affected by variations of the mass of the deposited sample, due to chemical processes such as sublimation, condensation or absorption/desorption. The low mass (i.e. 40 g), the low volume (less than 10 cm(3)) and the low power (less than 1 W) required makes this kind of instrument very suitable for space missions. This paper discusses the planetary applications of VISTA, and shows the calibration operations performed on the breadboard, as well as the performance tests which demonstrate the capability of the breadboard to characterize volatile compounds of planetary interests.

  13. Manfred Ziebell Retires

    NASA Astrophysics Data System (ADS)

    Hofstadt, D.

    2002-12-01

    On December 1st, 2002, after thirty- seven years of service, first in Chile and then in Garching, Ms. Christa Euler will leave ESO to enjoy a welldeserved retirement. Among the current staff, she is probably the only person who started her career at ESO just four years after the Organization was founded.

  14. ALMA On the Move - ESO Awards Important Contract for the ALMA Project

    NASA Astrophysics Data System (ADS)

    2005-12-01

    Only two weeks after awarding its largest-ever contract for the procurement of antennas for the Atacama Large Millimeter Array project (ALMA), ESO has signed a contract with Scheuerle Fahrzeugfabrik GmbH, a world-leader in the design and production of custom-built heavy-duty transporters, for the provision of two antenna transporting vehicles. These vehicles are of crucial importance for ALMA. ESO PR Photo 41a/05 ESO PR Photo 41a/05 The ALMA Transporter (Artist's Impression) [Preview - JPEG: 400 x 756 pix - 234k] [Normal - JPEG: 800 x 1512 pix - 700k] [Full Res - JPEG: 1768 x 3265 pix - 2.3M] Caption: Each of the ALMA transporters will be 10 m wide, 4.5 m high and 16 m long. "The timely awarding of this contract is most important to ensure that science operations can commence as planned," said ESO Director General Catherine Cesarsky. "This contract thus marks a further step towards the realization of the ALMA project." "These vehicles will operate in a most unusual environment and must live up to very strict demands regarding performance, reliability and safety. Meeting these requirements is a challenge for us, and we are proud to have been selected by ESO for this task," commented Hans-Jörg Habernegg, President of Scheuerle GmbH. ESO PR Photo 41b/05 ESO PR Photo 41b/05 Signing the Contract [Preview - JPEG: 400 x 572 pix - 234k] [Normal - JPEG: 800 x 1143 pix - 700k] [HiRes - JPEG: 4368 x 3056 pix - 2.3M] Caption: (left to right) Mr Thomas Riek, Vice-President of Scheuerle GmbH, Dr Catherine Cesarsky, ESO Director General and Mr Hans-Jörg Habernegg, President of Scheuerle GmbH. When completed on the high-altitude Chajnantor site in Chile, ALMA is expected to comprise more than 60 antennas, which can be placed in different locations on the plateau but which work together as one giant telescope. Changing the relative positions of the antennas and thus also the configuration of the array allows for different observing modes, comparable to using a zoom lens, offering different degrees of resolution and sky coverage as needed by the astronomers. The ALMA Antenna Transporters allow for moving the antennas between the different pre-defined antenna positions. They will also be used for transporting antennas between the maintenance area at 2900 m elevation and the "high site" at 5000 m above sea level, where the observations are carried out. Given their important functions, both for the scientific work and in transporting high-tech antennas with the required care, the vehicles must live up to very demanding operational requirements. Each transporter has a mass of 150 tonnes and is able to lift and transport antennas of 110 tonnes. They must be able to place the antennas on the docking pads with millimetric precision. At the same time, they must be powerful enough to climb 2000 m reliably and safely with their heavy and valuable load, putting extraordinary demands on the 500 kW diesel engines. This means negotiating a 28 km long high-altitude road with an average slope of 7 %. Finally, as they will be operated at an altitude with significantly reduced oxygen levels, a range of redundant safety devices protect both personnel and equipment from possible mishaps or accidents. The first transporter is scheduled to be delivered in the summer of 2007 to match the delivery of the first antennas to Chajnantor. The ESO contract has a value of approx. 5.5 m Euros.

  15. Turning Planetary Theory Upside Down

    NASA Astrophysics Data System (ADS)

    2010-04-01

    The discovery of nine new transiting exoplanets is announced today at the RAS National Astronomy Meeting (NAM2010). When these new results were combined with earlier observations of transiting exoplanets astronomers were surprised to find that six out of a larger sample of 27 were found to be orbiting in the opposite direction to the rotation of their host star - the exact reverse of what is seen in our own Solar System. The new discoveries provide an unexpected and serious challenge to current theories of planet formation. They also suggest that systems with exoplanets of the type known as hot Jupiters are unlikely to contain Earth-like planets. "This is a real bomb we are dropping into the field of exoplanets," says Amaury Triaud, a PhD student at the Geneva Observatory who, with Andrew Cameron and Didier Queloz, leads a major part of the observational campaign. Planets are thought to form in the disc of gas and dust encircling a young star. This proto-planetary disc rotates in the same direction as the star itself, and up to now it was expected that planets that form from the disc would all orbit in more or less the same plane, and that they would move along their orbits in the same direction as the star's rotation. This is the case for the planets in the Solar System. After the initial detection of the nine new exoplanets [1] with the Wide Angle Search for Planets (WASP, [2]), the team of astronomers used the HARPS spectrograph on the 3.6-metre ESO telescope at the La Silla observatory in Chile, along with data from the Swiss Euler telescope, also at La Silla, and data from other telescopes to confirm the discoveries and characterise the transiting exoplanets [3] found in both the new and older surveys. Surprisingly, when the team combined the new data with older observations they found that more than half of all the hot Jupiters [4] studied have orbits that are misaligned with the rotation axis of their parent stars. They even found that six exoplanets in this extended study (of which two are new discoveries) have retrograde motion: they orbit their star in the "wrong" direction. "The new results really challenge the conventional wisdom that planets should always orbit in the same direction as their stars spin," says Andrew Cameron of the University of St Andrews, who presented the new results at the RAS National Astronomy Meeting (NAM2010) in Glasgow this week. In the 15 years since the first hot Jupiters were discovered, their origin has been a puzzle. These are planets with masses similar to or greater than that of Jupiter, but that orbit very close to their suns. The cores of giant planets are thought to form from a mix of rock and ice particles found only in the cold outer reaches of planetary systems. Hot Jupiters must therefore form far from their star and subsequently migrate inwards to orbits much closer to the parent star. Many astronomers believed this was due to gravitational interactions with the disc of dust from which they formed. This scenario takes place over a few million years and results in an orbit aligned with the rotation axis of the parent star. It would also allow Earth-like rocky planets to form subsequently, but unfortunately it cannot account for the new observations. To account for the new retrograde exoplanets an alternative migration theory suggests that the proximity of hot Jupiters to their stars is not due to interactions with the dust disc at all, but to a slower evolution process involving a gravitational tug-of-war with more distant planetary or stellar companions over hundreds of millions of years. After these disturbances have bounced a giant exoplanet into a tilted and elongated orbit it would suffer tidal friction, losing energy every time it swung close to the star. It would eventually become parked in a near circular, but randomly tilted, orbit close to the star. "A dramatic side-effect of this process is that it would wipe out any other smaller Earth-like planet in these systems," says Didier Queloz of Geneva Observatory. Two of the newly discovered retrograde planets have already been found to have more distant, massive companions that could potentially be the cause of the upset. These new results will trigger an intensive search for additional bodies in other planetary systems. This research was presented at the Royal Astronomical Society National Astronomy Meeting (NAM2010) that is taking place this week in Glasgow, Scotland. Nine publications submitted to international journals will be released on this occasion, four of them using data from ESO facilities. On the same occasion, the WASP consortium was awarded the 2010 Royal Astronomical Society Group Achievement Award. Notes [1] The current count of known exoplanets is 454. [2] The nine newly found exoplanets were discovered by the Wide Angle Search for Planets (WASP). WASP comprises two robotic observatories, each consisting of eight wide-angle cameras that simultaneously monitor the sky continuously for planetary transit events. A transit occurs when a planet passes in front of its parent star, temporarily blocking some of the light from it. The eight wide-angle cameras allow millions of stars to be monitored simultaneously to detect these rare transit events. The WASP cameras are operated by a consortium including Queen's University Belfast, the Universities of Keele, Leicester and St Andrews, the Open University, the Isaac Newton Group on La Palma and the Instituto Astrofisica Canarias. [3] To confirm the discovery and characterise a new transiting planet, it is necessary to do radial velocity follow-up to detect the wobble of the host star around its common centre of mass with the planet. This is done with a worldwide network of telescopes equipped with sensitive spectrometers. In the northern hemisphere, the Nordic Optical Telescope in the Canary Islands and the SOPHIE instrument on the 1.93-metre telescope at Haute-Provence in France lead the search. In the south, the HARPS exoplanet hunter attached to the 3.6-metre ESO telescope and the CORALIE spectrometer on the Euler Swiss telescope, both at La Silla, were used to confirm the new planets and measure the angle through which each planet's orbit is tilted relative to its star's equator. The robotic Faulkes Telescopes of the Las Cumbres Observatory, located in Hawaii and Australia, provided the brightness measurements that determined the sizes of the planets. Follow-up observations of WASP exoplanet candidates are obtained at the Swiss Euler Telescope at La Silla, Chile (in collaboration with colleagues at Geneva Observatory), at the Nordic Optical Telescope on La Palma, and at the 1.93-metre telescope of the Observatoire de Haute-Provence in France (in collaboration with colleagues at the Institut d'Astrophysique de Paris and the Laboratoire d'Astrophysique de Marseille). The studies of the orbital tilt angles of the WASP planets were made with the HARPS instrument on the ESO 3.6-metre telescope and with the CORALIE instrument on the Euler Swiss telescope, both at La Silla in the southern hemisphere, and at Tautenburg Observatory, McDonald Observatory and the Nordic Optical Telescope in the northern hemisphere. [4] Hot Jupiters are planets orbiting other stars that have masses similar to, or greater than, that of Jupiter, but that orbit their parent stars much more closely than any of the planets in our own Solar System. Because they are both large and close they are easier to detect from their gravitational effect on their stars and also more likely to transit the disc of the star. Most of the first exoplanets to be found were of this class. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  16. Comet or Asteroid?

    NASA Astrophysics Data System (ADS)

    1997-11-01

    When is a minor object in the solar system a comet? And when is it an asteroid? Until recently, there was little doubt. Any object that was found to display a tail or appeared diffuse was a comet of ice and dust grains, and any that didn't, was an asteroid of solid rock. Moreover, comets normally move in rather elongated orbits, while most asteroids follow near-circular orbits close to the main plane of the solar system in which the major planets move. However, astronomers have recently discovered some `intermediate' objects which seem to possess properties that are typical for both categories. For instance, a strange object (P/1996 N2 - Elst-Pizarro) was found last year at ESO ( ESO Press Photo 36/96 ) which showed a cometary tail, while moving in a typical asteroidal orbit. At about the same time, American scientists found another (1996 PW) that moved in a very elongated comet-type orbit but was completely devoid of a tail. Now, a group of European scientists, by means of observations carried out at the ESO La Silla observatory, have found yet another object that at first appeared to be one more comet/asteroid example. However, continued and more detailed observations aimed at revealing its true nature have shown that it is most probably a comet . Consequently, it has received the provisional cometary designation P/1997 T3 . The Uppsala-DLR Trojan Survey Some time ago, Claes-Ingvar Lagerkvist (Astronomical Observatory, Uppsala, Sweden), in collaboration with Gerhard Hahn, Stefano Mottola, Magnus Lundström and Uri Carsenty (DLR, Institute of Planetary Exploration, Berlin, Germany), started to study the distribution of asteroids near Jupiter. They were particularly interested in those that move in orbits similar to that of Jupiter and which are located `ahead' of Jupiter in the so-called `Jovian L4 Lagrangian point'. Together with those `behind' Jupiter, these asteroids have been given the names of Greek and Trojan Heroes who participated in the famous Trojan war. Thus such asteroids are known as the Trojans and the mentioned programme is referred to as the Uppsala-DLR Trojan Survey . In September and October/November 1996, the ESO Schmidt telescope was used to cover about 900 square degrees twice centered on the sky field in the direction of the Jovian L4 point. The observations were made by ESO night-assistants Guido and Oscar Pizarro . By inspection of those from September, Claes-Ingvar Lagerkvist found a total of about 400 Trojan asteroids, most of which were hitherto unknown. Their accurate positions were measured on a two-coordinate measuring machine at the ESO Headquarters in Garching (Germany). During the same period, the 0.6-m Bochum telescope at La Silla was used for additional observations of positions and magnitudes. An asteroid with a tail? ESO Press Photo 31a/97 ESO Press Photo 31a/97 [JPG, 120k] Caption: Discovery image of P/1997 T3 , obtained on October 1, 1997, with the 1-metre ESO Schmidt telescope at the La Silla observatory in the Chilean Atacama desert. The object is seen as a small straight and sharp `asteroidal' trail (in 4 o'clock orientation) on the lower right side of the strong white line in the middle of the field, directly opposite the white dot (these marks were placed in order to mark the position of the new object on the film). A new object was found by Claes-Ingvar Lagerkvist on a film obtained with the ESO 1-metre Schmidt telescope on October 1, 1997. The appearance was that of a point light source, i.e. it was presumably of asteroidal nature , cf. ESO Press Photo 31a/97. ESO Press Photo 31b/97 ESO Press Photo 31b/97 [JPG, 45k] Caption: P/1997 T3 on October 6, 1997 at 05:13:54 UT. This image of the new object (slightly above and to the left of the centre of the field) was obtained with the 0.6-m Bochum telescope at La Silla; the observer was Andreas Nathues . The tail is faintly visible to the lower left of the point-like object (in the 7 o'clock direction). However, when Andreas Nathues (DLR, Institute of Planetary Exploration) soon thereafter obtained seven unfiltered CCD images on three consecutive nights with the 60-cm `Bochum telescope' at La Silla, Uri Carsenty found a tail extending 15 arcseconds in the WSE direction from the point source, cf. ESO Press Photo 31b/97. The (red) magnitude was about 19, or 150,000 times fainter than what is visible to the naked eye. More observations were obtained at La Silla during the following nights, confirming the persistent presence of this tail. NTT observations confirm the cometary nature of P/1997 T3 ESO Press Photo 31c/97 ESO Press Photo 31c/97 [JPG, 52k] Caption: Deep NTT image of P/1997 T3. This image covers a field of 105 x 60 arcsec and is a composite of several CCD exposures. It was taken with the ESO New Technology Telescope (NTT) and the EMMI multi-mode instrument by ESO astronomers Hermann Boehnhardt and Olivier Hainaut on different days between 21 and 25 October 1997. By computer processing, the images of P/1997 T3 are aligned to the same pixel position and co-added in order to increase the visibility of the comet. Due to the motion of the comet, multiple images of several galaxies and stars appear in this photo. At the time of the observations, the comet was about 3.34 AU from Earth and about 4.30 AU from the Sun. A larger version [JPG, 384k] is also available. In late October 1997, further images of the new object and its tail were taken with the ESO 3.5-m New Technology Telescope (NTT) at La Silla, cf. ESO Press Photo 31c/97. On these, the narrow tail was seen to be at least 90 arcsec long and pointing roughly in the Sun direction . The steady appearance and the sunward orientation of the tail indicates that it consists of dust. Moreover, a preliminary image analysis shows the presence of a weak and very condensed coma of dust grains around the nucleus. Interestingly, a series of images through several broadband filters with a total of almost 30 min exposure time did not show any trace of a normal, anti-sunward tail seen in most comets. Still, these observations indicate that the object resembles a typical comet much more than originally thought. This is also supported by the fact that its orbit, calculated on the basis of positional observations during the past month, has been found to be moderately elongated (eccentricity 0.36). The mean distance to the Sun is 6.67 AU (1000 million kilometres), but it comes as close as 4.25 AU (635 million kilometres) at its perihelion. The orbital period is about 17 years. More observations needed! It will be interesting to follow this new object in coming years. Will it remain `cometary' or will the unusual tail disappear after a while? Could it be that some `asteroids' in `cometary' orbits, if observed in more detail with a larger telescope, as was done in this case with the NTT, will also turn out to have a faint coma and even a tail? It is at this moment still unknown which implications the discovery of apparently `intermediate' objects may have on our understanding of the origin and evolution of the solar system. In particular, it is not at all clear whether they represent a completely new class of objects with an internal structure (and composition?) that is significantly different from a `dirty-snowball' cometary nucleus or a rocky asteroid. It may also be that some asteroids have substantial deposits of icy material on or near the surface that may be set free under certain circumstances and mimic cometary activity. This might in theory happen by collisions with other, smaller objects or due to an internal heat source. Only further observations of such objects will allow to tell. Where to find more information Here are some WWW-addresses where more useful information may be obtained about the comet/asteroid phenomenon: * http://www.dlr.de/Berlin/ - Small Bodies Group at the DLR (Berlin, Germany) * http://www.astro.uu.se/planet/asteroid - Asteroids' page of the Uppsala planetary system group (Sweden) * http://www.skypub.com/comets/1996n2pw.html - Are They Comets or Asteroids? (adapted version of article by Stuart J. Goldman in Sky & Telescope, November 1996) * http://cfa-www.harvard.edu/~graff/pressreleases/1996PW.html - Two Unusual Objects: 1996 PW and C/1996 N2 (Press information from the Harvard-Smithsonian Center for Astrophysics (CfA), Cambridge, Massachusetts, U.S.A.) * Abstract of research article : Origin and Evolution of the Unusual Object 1996 PW: Asteroids from the Oort Cloud? by Paul R. Weissman and Harold F. Levison * Abstract of research article : The Main Asteroid Belt - Comet Graveyard or Nursery? by Mark Hammergren * Preprint of research article : The Lightcurve and Colours of Unusual Minor Planet 1996 PW by J.K. Davies et al. This Press Release is accompanied by ESO PR Photo 31a/97 [JPG, 120k] , ESO PR Photo 31b/97 [JPG, 45k] and ESO PR Photo 31c/97 [JPG, 52k]. A larger version of ESO PR Photo 31c/97 [JPG, 384k] is also available. They may be reproduced, if credit is given to the European Southern Observatory. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ).

  17. Do 'Planemos' Have Progeny?

    NASA Astrophysics Data System (ADS)

    2006-06-01

    Two new studies, based on observations made with ESO's telescopes, show that objects only a few times more massive than Jupiter are born with discs of dust and gas, the raw material for planet making. This suggests that miniature versions of the solar system may circle objects that are some 100 times less massive than our Sun. These findings are to be presented Monday, 5 June at the American Astronomical Society meeting in Calgary, Canada. Since a few years, it is known that many young brown dwarfs, 'failed stars' that weigh less than 8 percent the mass of the Sun, are surrounded by a disc of material. This may indicate these objects form the same way as did our Sun. The new findings confirm that the same appears to be true for their even punier cousins, sometimes called planetary mass objects or 'planemos'. These objects have masses similar to those of extra-solar planets, but they are not in orbit around stars - instead, they float freely through space. "Our findings, combined with previous work, suggest similar infancies for our Sun and objects that are some hundred times less massive", says Valentin D. Ivanov (ESO), co-author of the first study. ESO PR Photo 19a/06 ESO PR Photo 19a/06 Spectra of Candidate 'Planemos' "Now that we know of these planetary mass objects with their own little infant planetary systems, the definition of the word 'planet' has blurred even more," adds Ray Jayawardhana, from the University of Toronto (Canada) and lead author of the study. "In a way, the new discoveries are not too surprising - after all, Jupiter must have been born with its own disc, out of which its bigger moons formed." Unlike Jupiter, however, these planemos are not circling stars. In their study, Jayawardhana and Ivanov used two of ESO's telescopes - Antu, the 8.2-metre Unit Telescope no. 1 of the Very Large Telescope, and the 3.5-metre New Technology Telescope - to obtain optical spectra of six candidates identified recently by researchers at the University of Texas at Austin. Two of the six turned out to have masses between five to 10 times that of Jupiter while two others are a tad heftier, at 10 to 15 times Jupiter's mass. All four of these objects are 'newborns', just a few million years old, and are located in star-forming regions about 450 light-years from Earth. The planemos show infrared emission from dusty discs that may evolve into miniature planetary systems over time. In another study, Subhanjoy Mohanty (Harvard-Smithsonian Center for Astrophysics, CfA), Ray Jayawardhana (Univ. of Toronto), Nuria Huelamo (ESO) and Eric Mamajek (also at CfA) used the Very Large Telescope, this time with its adaptive optics system and infrared camera NACO, to obtain images and spectra of a planetary mass companion discovered at ESO two years ago around a young brown dwarf that is itself about 25 times the mass of Jupiter. This planetary mass companion is the first-ever exoplanet to have been imaged (see ESO 12/05). ESO PR Photo 19b/06 ESO PR Photo 19b/06 The 2M1207 System The brown dwarf, dubbed 2M1207 for short and located 170 light-years from Earth, was known to be surrounded by a disc. Now, this team has found evidence for a disc around the eight-Jupiter-mass companion as well. "The pair probably formed together, like a petite stellar binary", explains lead author Mohanty, "instead of the companion forming in the disc around the brown dwarf, like a star-planet system." "Moreover", Jayawardhana adds, "it is quite likely that smaller planets or asteroids could now form in the disc around each one." Read more in the Appendix about recent developments on Exoplanets at ESO.

  18. Charting the Giants

    NASA Astrophysics Data System (ADS)

    2004-06-01

    Largest Census Of X-Ray Galaxy Clusters Provides New Constraints on Dark Matter [1] Clusters of galaxies Clusters of galaxies are very large building blocks of the Universe. These gigantic structures contain hundreds to thousands of galaxies and, less visible but equally interesting, an additional amount of "dark matter" whose origin still defies the astronomers, with a total mass of thousands of millions of millions times the mass of our Sun. The comparatively nearby Coma cluster, for example, contains thousands of galaxies and measures more than 20 million light-years across. Another well-known example is the Virgo cluster at a distance of about 50 million light-years, and still stretching over an angle of more than 10 degrees in the sky! Clusters of galaxies form in the densest regions of the Universe. As such, they perfectly trace the backbone of the large-scale structures in the Universe, in the same way that lighthouses trace a coastline. Studies of clusters of galaxies therefore tell us about the structure of the enormous space in which we live. The REFLEX survey ESO PR Photo 18a/04 ESO PR Photo 18a/04 Galaxy Cluster RXCJ 1206.2-0848 (Visible and X-ray) [Preview - JPEG: 400 x 478 pix - 70k] [Normal - JPEG: 800 x 956 pix - 1.2Mk] Caption: PR Photo 18a shows the very massive distant cluster of galaxies RXCJ1206.2-0848, newly discovered during the REFLEX project, and located at a redshift of z = 0.44 [3]. The contours indicate the X-ray surface brightness distribution. Most of the yellowish galaxies are cluster members. A gravitationally lensed galaxy with a distorted, very elongated image is seen, just right of the centre. The image was obtained with the EFOSC multi-mode instrument on the ESO 3.6-m telescope at the La Silla Observatory (Chile). ESO PR Photo 18b/04 ESO PR Photo 18b/04 Galaxy cluster RXCJ1131.9-1955 [Preview - JPEG: 400 x 477 pix - 40k] [Normal - JPEG: 800 x 953 pix - 912k] [FullRes - JPEG: 2251 x 2681 pix - 7.7Mk] Caption: PR Photo 18b displays the very massive galaxy cluster RXCJ1131.9-1955 at redshift z = 0.306 [3] in a very rich galaxy field with two major concentrations. It was originally found by George Abell and designated "Abell 1300". The image was obtained with the ESO/MPG 2.2-m telescope and the WFI camera at La Silla. ESO PR Photo 18c/04 ESO PR Photo 18c/04 Galaxy Cluster RXCJ0937.9-2020 [Preview - JPEG: 400 x 746 pix - 60k] [Normal - JPEG: 800 x 1491 pix - 1.3M] [HiRes - JPEG: 2380 x 4437 pix - 14.2M] Caption: PR Photo 18c/04 shows the much smaller, more nearby galaxy group RXCJ0937.9-2020 at a redshift of z = 0.034 [3]. It is dominated by the massive elliptical galaxy seen at the top of the image. The photo covers only the southern part of this group. Such galaxy groups with typical masses of a few 1013 solar masses constitute the smallest objects included in the REFLEX catalogue. This image was obtained with the FORS1 multi-mode instrument on the ESO 8.2-m VLT Antu telescope. ESO PR Video Clip 05/04 ESO PR Video Clip 05/04 Galaxy Clusters in the REFLEX Catalogue (3D-visualization) [MPG - 11.7Mb] Caption: ESO PR Video Clip 05/04 illustrates the three-dimensional distribution of the galaxy clusters identfied in the ROSAT All-Sky survey in the northern and southern sky. In addition to the galaxy clusters in the REFLEX catalogue this movie also contains those identified during the ongoing, deeper search for X-ray clusters: the extension of the southern REFLEX Survey and the northern complementary survey that is conducted by the MPE team at the Calar Alto observatory and at US observatories in collaboration with John Huchra and coworkers at the Harvard-Smithonian Center for Astrophysics. In total, more than 1400 X-ray bright galaxy cluster have been found to date. (Prepared by Ferdinand Jamitzky.) Following this idea, a European team of astronomers [2], under the leadership of Hans Böhringer (MPE, Garching, Germany), Luigi Guzzo (INAF, Milano, Italy), Chris A. Collins (JMU, Liverpool), and Peter Schuecker (MPE, Garching) has embarked on a decade-long study of these gargantuan structures, trying to locate the most massive of clusters of galaxies. Since about one-fifth of the optically invisible mass of a cluster is in the form of a diffuse very hot gas with a temperature of the order of several tens of millions of degrees, clusters of galaxies produce powerful X-ray emission. They are therefore best discovered by means of X-ray satellites. For this fundamental study, the astronomers thus started by selecting candidate objects using data from the X-ray Sky Atlas compiled by the German ROSAT satellite survey mission. This was the beginning only - then followed a lot of tedious work: making the final identification of these objects in visible light and measuring the distance (i.e., redshift [3]) of the cluster candidates. The determination of the redshift was done by means of observations with several telescopes at the ESO La Silla Observatory in Chile, from 1992 to 1999. The brighter objects were observed with the ESO 1.5-m and the ESO/MPG 2.2-m telescopes, while for the more distant and fainter objects, the ESO 3.6-m telescope was used. Carried out at these telescopes, the 12 year-long programme is known to astronomers as the REFLEX (ROSAT-ESO Flux Limited X-ray) Cluster Survey. It has now been concluded with the publication of a unique catalogue with the characteristics of the 447 brightest X-ray clusters of galaxies in the southern sky. Among these, more than half the clusters were discovered during this survey. Constraining the dark matter content ESO PR Photo 18d/04 ESO PR Photo 18d/04 Constraints on Cosmological Parameters [Preview - JPEG: 400 pix x 572 - 37k] [Normal - JPEG: 800 x 1143 pix - 265k] Caption: PR Photo 18d demonstrates the current observational constraints on the cosmic density of all matter including dark matter (Ωm) and the dark energy (ΩΛ) relative to the density of a critical-density Universe (i.e., an expanding Universe which approaches zero expansion asymptotically after an infinite time and has a flat geometry). All three observational tests by means of supernovae (green), the cosmic microwave background (blue) and galaxy clusters converge at a Universe around Ωm ~ 0.3 and ΩΛ ~ 0.7. The dark red region for the galaxy cluster determination corresponds to 95% certainty (2-sigma statistical deviation) when assuming good knowledge of all other cosmological parameters, and the light red region assumes a minimum knowledge. For the supernovae and WMAP results, the inner and outer regions corespond to 68% (1-sigma) and 95% certainty, respectively. References: Schuecker et al. 2003, A&A, 398, 867 (REFLEX); Tonry et al. 2003, ApJ, 594, 1 (supernovae); Riess et al. 2004, ApJ, 607, 665 (supernovae) Galaxy clusters are far from being evenly distributed in the Universe. Instead, they tend to conglomerate into even larger structures, "super-clusters". Thus, from stars which gather in galaxies, galaxies which congregate in clusters and clusters tying together in super-clusters, the Universe shows structuring on all scales, from the smallest to the largest ones. This is a relict of the very early (formation) epoch of the Universe, the so-called "inflationary" period. At that time, only a minuscule fraction of one second after the Big Bang, the tiny density fluctuations were amplified and over the eons, they gave birth to the much larger structures. Because of the link between the first fluctuations and the giant structures now observed, the unique REFLEX catalogue - the largest of its kind - allows astronomers to put considerable constraints on the content of the Universe, and in particular on the amount of dark matter that is believed to pervade it. Rather interestingly, these constraints are totally independent from all other methods so far used to assert the existence of dark matter, such as the study of very distant supernovae (see e.g. ESO PR 21/98) or the analysis of the Cosmic Microwave background (e.g. the WMAP satellite). In fact, the new REFLEX study is very complementary to the above-mentioned methods. The REFLEX team concludes that the mean density of the Universe is in the range 0.27 to 0.43 times the "critical density", providing the strongest constraint on this value up to now. When combined with the latest supernovae study, the REFLEX result implies that, whatever the nature of the dark energy is, it closely mimics a Universe with Einstein's cosmological constant. A giant puzzle The REFLEX catalogue will also serve many other useful purposes. With it, astronomers will be able to better understand the detailed processes that contribute to the heating of the gas in these clusters. It will also be possible to study the effect of the environment of the cluster on each individual galaxy. Moreover, the catalogue is a good starting point to look for giant gravitational lenses, in which a cluster acts as a giant magnifying lens, effectively allowing observations of the faintest and remotest objects that would otherwise escape detection with present-day telescopes. But, as Hans Böhringer says: "Perhaps the most important advantage of this catalogue is that the properties of each single cluster can be compared to the entire sample. This is the main goal of surveys: assembling the pieces of a gigantic puzzle to build the grander view, where every single piece then gains a new, more comprehensive meaning." More information The results presented in this Press Release will appear in the research journal Astronomy and Astrophysics ("The ROSAT-ESO Flux Limited X-ray (REFLEX) Galaxy Cluster Survey. V. The cluster catalogue" by H. Böhringer et al.; astro-ph/0405546). See also the REFLEX website.

  19. Double Engine for a Nebula

    NASA Astrophysics Data System (ADS)

    2009-08-01

    ESO has just released a stunning new image of a field of stars towards the constellation of Carina (the Keel). This striking view is ablaze with a flurry of stars of all colours and brightnesses, some of which are seen against a backdrop of clouds of dust and gas. One unusual star in the middle, HD 87643, has been extensively studied with several ESO telescopes, including the Very Large Telescope Interferometer (VLTI). Surrounded by a complex, extended nebula that is the result of previous violent ejections, the star has been shown to have a companion. Interactions in this double system, surrounded by a dusty disc, may be the engine fuelling the star's remarkable nebula. The new image, showing a very rich field of stars towards the Carina arm of the Milky Way, is centred on the star HD 87643, a member of the exotic class of B[e] stars [1]. It is part of a set of observations that provide astronomers with the best ever picture of a B[e] star. The image was obtained with the Wide Field Imager (WFI) attached to the MPG/ESO 2.2-metre telescope at the 2400-metre-high La Silla Observatory in Chile. The image shows beautifully the extended nebula of gas and dust that reflects the light from the star. The central star's wind appears to have shaped the nebula, leaving bright, ragged tendrils of gas and dust. A careful investigation of these features seems to indicate that there are regular ejections of matter from the star every 15 to 50 years. A team of astronomers, led by Florentin Millour, has studied the star HD 87643 in great detail, using several of ESO's telescopes. Apart from the WFI, the team also used ESO's Very Large Telescope (VLT) at Paranal. At the VLT, the astronomers used the NACO adaptive optics instrument, allowing them to obtain an image of the star free from the blurring effect of the atmosphere. To probe the object further, the team then obtained an image with the Very Large Telescope Interferometer (VLTI). The sheer range of this set of observations, from the panoramic WFI image to the fine detail of the VLTI observations, corresponds to a zoom-in factor of 60 000 between the two extremes. The astronomers found that HD 87643 has a companion located at about 50 times the Earth-Sun distance and is embedded in a compact dust shell. The two stars probably orbit each other in a period between 20 and 50 years. A dusty disc may also be surrounding the two stars. The presence of the companion could be an explanation for the regular ejection of matter from the star and the formation of the nebula: as the companion moves on a highly elliptical orbit, it would regularly come very close to HD 87643, triggering an ejection. Notes [1]: B[e] stars are stars of spectral type B, with emission lines in their spectra, hence the "e". They are surrounded by a large amount of dust. More information The work on HD 87643 has been published in a paper to appear in Astronomy and Astrophysics: A binary engine fueling HD 87643's complex circumstellar environment using AMBER/VLTI imaging, by F. Millour et al. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  20. First Giant Mirror for the ESO VLT Ready at REOSC

    NASA Astrophysics Data System (ADS)

    1995-11-01

    The REOSC Contract In 1989, the European Southern Observatory (ESO), the European Organisation for Astronomy, awarded to REOSC, a subsidiary of the SFIM Group and located in Saint Pierre du Perray (France), a comprehensive contract for the polishing of four 8.2-metre diameter mirrors for the unit telescopes of the ESO Very Large Telescope (VLT) project. These mirrors are the largest ever manufactured and polished. This contract comprises not only the polishing and high-precision optical testing of each giant mirror, but also the safe condition of transportation of the blanks which were manufactured by Schott Glaswerke in Mainz (Germany). In order to fulfill the contract, REOSC conceived, built and equipped a novel, high-tech workshop which would allow to polish and test the mirrors, each of which has a surface area of more than 50 square metres. First 8.2-Metre Mirror is Ready and within Specifications The REOSC polishing facility for giant mirrors was built in Saint Pierre du Perray, just south of Paris. It is equipped with two machines: one for grinding and the other for polishing the mirrors, and both with 150-actuator systems that support the thin and flexible mirrors. All equipment is computer controlled. State-of-the-art interferometers probe the accuracy of the mirror surface as the polishing proceeds; they are installed at the top level of the facility in a 30-metre high tower, at the centre of the mirror's radius of curvature. The success of the work at REOSC is now evident by the fact that careful measurements of the first mirror earlier this month have shown that the final optical surface is correct to within 0.00005 millimetres. For illustration, this corresponds to an accuracy of only 1 millimetre deviation over a surface with a diameter of 165 kilometres (equivalent to the entire Paris area)! ESO Receives the First VLT Mirror After having been carefully placed in a special transport box designed by REOSC, the first mirror blank, weighing 23.5 tons and with a replacement value of about 20 million DEM, was transported from Mainz to Saint Pierre du Perray in July 1993. The shaping and polishing phases lasted two years and were completed in October 1995. After one month's hard work, dedicated to optical and mechanical verifications by ESO and REOSC, the mirror's various characteristics have now been found to be in accordance with the contract specifications. Following the technical acceptance, the first mirror was re-installed in its transport container on November 13, 1995. It will thereafter be formally handed over to ESO during a ceremony at REOSC on Tuesday, November 21, 1995. The mirror will be stored at the REOSC facility until its future departure to ESO's VLT Observatory on Cerro Paranal, a 2650 m high summit in the Andean Cordillera in northern Chile. Here it will be installed in the first VLT unit telescope, soon after the assembly of the mechanical parts has been completed. Future Plans at REOSC The polishing of the second VLT mirror, as well as the grinding of the third mirror which was transported from Mainz to Saint Pierre du Perray at the beginning of October 1995, have already started. The transport of the fourth blank will take place in March 1996. With the construction, in a subsequent phase, of a workshop of more than 6000 square metres and mostly dedicated to space and astronomy, the SFIM group will have invested more than 50 million French Francs at the Saint Pierre du Perray site alone. The group is also involved in the contract related to the actuator support system; this is a clear indication of its determination to maintain its position within this scientific-technological market. In addition to the ESO VLT mirrors, REOSC will also polish the two 8.2-metre diameter mirrors of the Gemini programme of the Association of Universities for Research in Astronomy (AURA) in the United States. This important work was entrusted REOSC, following an international call for tenders, in which also US firms participated. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  1. The VLT Opening Symposium

    NASA Astrophysics Data System (ADS)

    1999-02-01

    Scientists Meet in Antofagasta to Discuss Front-Line Astrophysics To mark the beginning of the VLT era, the European Southern Observatory is organizing a VLT Opening Symposium which will take place in Antofagasta (Chile) on 1-4 March 1999, just before the start of regular observations with the ESO Very Large Telescope on April 1, 1999. The Symposium occupies four full days and is held on the campus of the Universidad Catolica del Norte. It consists of plenary sessions on "Science in the VLT Era and Beyond" and three parallel Workshops on "Clusters of Galaxies at High Redshift" , "Star-way to the Universe" and "From Extrasolar Planets to Brown Dwarfs" . There will be many presentations of recent work at the major astronomical facilities in the world. The meeting provides a very useful forum to discuss the latest developments and, in this sense, contributes to the planning of future research with the VLT and other large telescopes. The symposium will be opened with a talk by the ESO Director General, Prof. Riccardo Giacconi , on "Paranal - an observatory for the 21st century". It will be followed by reports about the first scientific results from the main astronomical instruments on VLT UT1, FORS1 and ISAAC. The Symposium participants will see the VLT in operation during special visits to the Paranal Observatory. Press conferences are being arranged each afternoon to inform about the highlights of the conference. After the Symposium, there will be an Official Inauguration Ceremony at Paranal on 5 March Contributions from ESO ESO scientists will make several presentations at the Symposium. They include general reviews of various research fields as well as important new data and results from the VLT that show the great potential of this new astronomical facility. Some of the recent work is described in this Press Release, together with images and spectra of a large variety of objects. Note that all of these data will soon become publicly available via the VLT Archive. The text below summarizes the individual projects. Comprehensive texts with all photos and diagrammes are available in nine separate web documents ( ESO PR Photos 08/99 to 16/99 ) that may be accessed via the links at the top of each section. The degree of detail and level of complexity of the texts depend on the subject and the available materials. 1. Dwarf Galaxies in the Local Group ESO PR Photo 10a/99 ESO PR Photo 10a/99 The Antlia Galaxy (FORS1 colour composite) . Access full text and PR Photos 10a-d/99 In addition to large spiral galaxies like the Milky Way Galaxy, the Andromeda Galaxy and Messier 33, the Local Group of Galaxies contains many dwarf galaxies. The VLT has observed two of these, Antlia and NGC 6822 . Antlia is a low-surface brightness, spheroidal dwarf galaxy that was only discovered in 1997. While it contains a large amount of atomic hydrogen at its centre, no young stars are found, and it appears that most of its stars are old. This is unlike other dwarf galaxies in the Milky Way neighbourhood, as star formation is expected to occur within dense hydrogen clouds. Further observations will be necessary to understand this unusual characteristics. The VLT also obtained images of an irregular dwarf galaxy in the Local Group, NGC 6822, as well as spectra of some of its stars. This galaxy is of the "irregular" type and is situated at a distance of about 2 million light-years. A comparison of the spectra of supergiant stars in NGC 6822 shows that many spectral lines are much weaker than in stars of similar type in the Milky Way, but of similar strength as in stars in the Small Magellanic Cloud. This confirms an earlier finding that NGC 6822 has chemical composition (a lower "metallicity") that is different from what is observed in our Galaxy. 2. The Double Stellar Cluster NGC 1850 in the LMC ESO PR Photo 15/99 ESO PR Photo 15/99 NGC 1850 (FORS1 colour composite) . Access full text and PR Photo 15/99 NGC 1850 is a double cluster in the Large Magellanic Cloud, a satellite galaxy to the Milky Way Galaxy. This cluster is representative of a class of objects, young, globular-like stellar associations , that has no counterpart in our own Galaxy. The VLT images show faint nebulosity in this area, with filaments and various sharp "shocks". This offers support to the theory of supernova-induced star birth in the younger of the two clusters. It is estimated that about 1000 stars in the older of the clusters have exploded during the past 20 million years. 3. The Barred Galaxy NGC 1365 ESO PR Photo 08a/99 ESO PR Photo 08a/99 The Barred Galaxy NGC 1365 (FORS1 colour composite) . Access full text and PR Photos 08a-e/99 NGC 1365 is one of the most prominent "barred" galaxies in the sky. It is a supergiant galaxy and is a member of the Fornax Cluster of Galaxies, at a distance of about 60 million light-years. This galaxy has an intricate structure with a massive straight bar and two pronounced spiral arms. There are many dust lanes and emission nebulae in these and also a bright nuclear region at the center that may hide a black hole. Several images of NGC 1365 have recently been obtained with all three astronomical instruments, now installed at the VLT UT1. They show the overall structure of this magnificent galaxy, and also the fine details of the innermost region, close to the centre. An infrared ISAAC image penetrates deep into the obscuring dust clouds in this area. 4. The colours of NGC 1232 ESO PR Photo 13a/99 ESO PR Photo 13a/99 Differential (UV-B) image of NGC 1232 (FORS1) . Access full text and PR Photos 13a-b/99 NGC 1232 is a large spiral galaxy in the constellation Eridanus (The River). With a diameter of nearly 200,000 light-years, it is about twice the size of the Milky Way galaxy. The distance is about 100 million light-years, but the excellent optical quality of the VLT and FORS allows us to see an incredible wealth of details. Computer processed "colour-index images" have been prepared that show the "difference" between images of the galaxy, as seen in different wavebands. Since different types of objects have different brightness in different colours, this method is very useful to locate objects of a particular type and to obtain an overview of their distribution in the galaxy. The distribution of star-forming regions and dust lanes in NGC 1232 are shown on two such photos. 5. A Selection of ISAAC Spectra ESO PR Photo 11a/99 ESO PR Photo 11a/99 He I 1038 nm line in SN1987A (ISAAC spectrum) . Access full text and PR Photos 11a-c/99 Various observations were made with the ISAAC multi-mode instrument at the Nasmyth focus of VLT UT1 during the recent commissioning periods for this infrared multi-mode instrument. They impressively demonstrate the unique capabilities of this facility. The new data include several infrared spectra of faint objects with interesting features. A spectrum was obtained in the near-infrared region of the ring nebula around SN 1987A in the Large Magellanic Cloud. It consists of material blown off the progenitor star during its evolution. Of particular interest is a jet like structure in the dispersion direction which reveals the presence of a broad, blueshifted, HeI component which presumably originates in the shock ionized ejecta. Another spectrum shows emission features in two galaxies at redshift z = 0.6 [1] that allow the determination of a rotation curve at this large distance. The 1 - 2.5 µm infrared spectrum of the radio galaxy MRC0406 at z =2.42 is also included. 6. The Cluster of Galaxies MS1008.1-1224 ESO PR Photo 09b/99 ESO PR Photo 09b/99 Centre of the Cluster of Galaxies MS1008.1-122 (FORS1 colour composite) . Access full text and PR Photos 09a-b/99 The study of "Deep Fields" is becoming a common tool in astronomy. Among the various sky fields that have been selected for detailed investigation of the faint and distant objects therein, is the FORS Deep Field that will be observed during FORS1 "guaranteed time", available to astronomers from institutes that built this instrument. In preparation of this work, an imaging programme was carried out during the FORS1 Science Verification programme. Multicolour (UBVRI) deep images were obtained of the galaxy cluster MS1008.1-1224 , to be complemented with infrared (JHK) images with ISAAC of the cluster core. The redshift is z = 0.306 and many arclets from gravitational lensing are seen within the cluster area. Such observations serve many purposes, including the study of the distribution of mass and the associated gravitational field of the cluster, of individual cluster galaxies, and also of background objects whose images are amplified and distorted by gravitational lensing caused by the cluster. 7. Quasar Spectra ESO PR Photo 14a/99 ESO PR Photo 14c/99 Spectrum of Quasar at z = 5 Access full text and PR Photos 14a-c/99 The FORS1 multi-mode instrument is able to record images as well as spectra of even very distant objects. During the past months, data have been obtained that show the properties of some of the remotest known objects in the Universe. Three spectral tracings of very distant quasars are included, for which the redshifts have been determined as z = 3.11, 3.83 and 5.0. They were taken by the FORS Commissioning Team in September and December 1998 in the long-slit spectroscopy mode of FORS1. This instrument is very efficient; even for the most distant and faintest quasar, the exposure time was only 1 hour. All spectra show a wealth of details. 8. Spectrum of a Gravitationally Lensed Galaxy ESO PR Photo 16c/99 ESO PR Photo 16c/99 Spectrum of Gravitationally Lensed Galaxy at z = 3.23 (FORS1) . Access full text and PR Photos 16a-c/99 The galaxy cluster 1ES 0657-55 is located in the southern constellation Carina (The Keel), at redshift z = 0.29. It emits strong and very hot X-ray emission and has an asymmetric galaxy distribution, indicating a large mass and recent formation. Earlier images with the ESO NTT at La Silla have revealed the presence of a gravitational arc, i.e. a background galaxy at larger distance, whose image is strongly distorted by the gravitational field of this cluster. New images of this cluster have been obtained with FORS1 under good seeing conditions. They show that this arc is very thin and long. Other arcs and arclets are also visible. It was possible to obtain a spectrum of the arc. Several absorption lines are well visible and show that the arc is the highly distorted image of a young, background galaxy at redshift z = 3.23. 9. Spectra of Faint Primordial Objects ESO PR Photo 12d/99 ESO PR Photo 12d/99 Spectrum of Distant Galaxy EIS 107 at z = 3.92 (FORS1) . Access full text and PR Photos 12a-f/99 During the recent commissioning and science verification of FORS1, spectra were taken of several objects, thought to be high-redshift galaxies. These objects are extremely faint and their spectra can only be observed with very large telescopes like the VLT and a highly efficient spectrograph. The near-infrared (I) magnitudes of the objects studied during the present test observations ranged between 23.4 and 25.5, or between 10 and 65 million times fainter than what can be seen with the unaided eye. As predicted, a large fraction of the spectra obtained turned out to be those of extremely distant galaxies, in the redshift range between z = 2.8 - 4.0. Outlook These observations provide but a small demonstration of the great capability of the ESO VLT to provide front-line astronomical data. Many others will be discussed during the Symposium and contribute to the future planning of the best possible exploitation of this great new research facility. The first 8.2-m VLT Unit Telescope (UT1) with which the observations reported in this Press Release were made will soon be joined by UT2, for which "First Light" is expected shortly, cf. PR Photos 07/99. The first instrument to be mounted on this telescope will be UVES that will provide the capability of obtaining high-dispersion spectra; the next is FORS2. During the coming years, more instruments of different types and capabilities will become available on the four 8.2-m telescopes, together providing an unrivalled potential for astronomical investigations. Note: [1]: In astronomy, the redshift (z) denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy or quasar gives a direct estimate of the universal expansion (i.e. the `recession velocity'). Since this expansion rate increases with the distance, the velocity (and thus the redshift) is itself a function (the Hubble relation) of the distance to the object. The larger the distance, the longer it has taken the light from the object to reach us, and the larger is the "look-back" time, i.e. the fraction of the age of the Universe that has elapsed since the light we now receive, was emitted from the object. How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org../ ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory . Note also the comprehensive VLT Information site.

  2. Fourteen Times the Earth

    NASA Astrophysics Data System (ADS)

    2004-08-01

    ESO HARPS Instrument Discovers Smallest Ever Extra-Solar Planet Summary A European team of astronomers [1] has discovered the lightest known planet orbiting a star other than the sun (an "exoplanet"). The new exoplanet orbits the bright star mu Arae located in the southern constellation of the Altar. It is the second planet discovered around this star and completes a full revolution in 9.5 days. With a mass of only 14 times the mass of the Earth, the new planet lies at the threshold of the largest possible rocky planets, making it a possible super Earth-like object. Uranus, the smallest of the giant planets of the Solar System has a similar mass. However Uranus and the new exoplanet differ so much by their distance from the host star that their formation and structure are likely to be very different. This discovery was made possible by the unprecedented accuracy of the HARPS spectrograph on ESO's 3.6-m telescope at La Silla, which allows radial velocities to be measured with a precision better than 1 m/s. It is another clear demonstration of the European leadership in the field of exoplanet research. PR Photo 25a/04: The HARPS Spectrograph and the 3.6m Telescope PR Photo 25b/04: Observed Velocity Variation of mu Arae (3.6m/HARPS, 1.2m Swiss/CORALIE, AAT/UCLES) PR Photo 25c/04: Velocity Variation of mu Arae Observed by HARPS (3.6m/HARPS) PR Photo 25d/04: "Velocity Curve" of mu Arae A unique planet hunting machine ESO PR Photo 25a/04 ESO PR Photo 25a/04 The HARPS Spectrograph and the 3.6m Telescope [Preview - JPEG: 602 x 400 pix - 211k] [Normal - JPEG: 1202 x 800 pix - 645k] Caption: ESO PR Photo 25a/04 represents a montage of the HARPS spectrograph and the 3.6m telescope at La Silla. The upper left shows the dome of the telescope, while the upper right illustrates the telescope itself. The HARPS spectrograph is shown in the lower image during laboratory tests. The vacuum tank is open so that some of the high-precision components inside can be seen. Since the first detection in 1995 of a planet around the star 51 Peg by Michel Mayor and Didier Queloz from the Geneva Observatory (Switzerland), astronomers have learned that our Solar System is not unique, as more than 120 giant planets orbiting other stars were discovered mostly by radial-velocity surveys (cf. ESO PR 13/00, ESO PR 07/01, and ESO PR 03/03). This fundamental observational method is based on the detection of variations in the velocity of the central star, due to the changing direction of the gravitational pull from an (unseen) exoplanet as it orbits the star. The evaluation of the measured velocity variations allows to deduce the planet's orbit, in particular the period and the distance from the star, as well as a minimum mass [2]. The continued quest for exoplanets requires better and better instrumentation. In this context, ESO undoubtedly took the leadership with the new HARPS spectrograph (High Accuracy Radial Velocity Planet Searcher) of the 3.6-m telescope at the ESO La Silla Observatory (see ESO PR 06/03). Offered in October 2003 to the research community in the ESO member countries, this unique instrument is optimized to detect planets in orbit around other stars ("exoplanets") by means of accurate (radial) velocity measurements with an unequalled precision of 1 metre per second. HARPS was built by a European Consortium [3] in collaboration with ESO. Already from the beginning of its operation, it has demonstrated its very high efficiency. By comparison with CORALIE, another well known planet-hunting optimized spectrograph installed on the Swiss-Euler 1.2-m telescope at La Silla (cf ESO PR 18/98, 12/99, 13/00), the typical observation times have been reduced by a factor one hundred and the accuracy of the measurements has been increased by a factor ten. These improvements have opened new perspectives in the search for extra-solar planets and have set new standards in terms of instrumental precision. The planetary system around mu Arae The star mu Arae is about 50 light years away. This solar-like star is located in the southern constellation Ara (the Altar) and is bright enough (5th magnitude) to be observed with the unaided eye. Mu Arae was already known to harbour a Jupiter-sized planet with a 650 days orbital period. Previous observations also hinted at the presence of another companion (a planet or a star) much further away. The new measurements obtained by the astronomers on this object, combined with data from other teams confirm this picture. But as François Bouchy, member of the team, states: "Not only did the new HARPS measurements confirm what we previously believed to know about this star but they also showed that an additional planet on short orbit was present. And this new planet appears to be the smallest yet discovered around a star other than the sun. This makes mu Arae a very exciting planetary system." "Listening" to the star ESO PR Photo 25b/04 ESO PR Photo 25b/04 Observed Velocity Variation of mu Arae [Preview - JPEG: 440 x 400 pix - 98k] [Normal - JPEG: 879 x 800 pix - 230k] ESO PR Photo 25c/04 ESO PR Photo 25c/04 Velocity Variation of mu Arae Observed by HARPS [Preview - JPEG: 460 x 400 pix - 90k] [Normal - JPEG: 919 x 800 pix - 215k] Captions: ESO PR Photo 25b/04 shows the measurements of the radial velocity of the star mu Arae obtained by HARPS on the ESO 3.6m telescope at La Silla (green triangles), CORALIE on the Swiss Leonhard Euler 1.2m telescope also on La Silla (red dots) and UCLES on the Anglo-Australian Telescope (blue circles). The solid line shows the best fit to the measurements, assuming the existence of two planets and an additional long-period companion. The fact that the line happens to have a given width is related to the existence of the newly found short period planet. The data shown span the interval from July 1998 to August 2004. ESO PR Photo 25c/04 illustrates the high-quality radial velocity measurements obtained with HARPS. Here also, the solid line shows the best fit to the measurements, assuming the existence of two planets. The data were obtained over a time span of 80 days and the first points shown are the data from the 8 nights in June. Note that the full span of the vertical axis is only 40 m/s! Error bars indicate the accuracy of the measurements. The lower part of the diagram displays the deviation of the measurements from the best fit. ESO PR Photo 25d/04 ESO PR Photo 25d/04 Observed Velocity Variation of mu Arae [Preview - JPEG: 440 x 400 pix - 78k] [Normal - JPEG: 879 x 800 pix - 171k] Caption: ESO PR Photo 25d/04 displays the HARPS radial velocity measurements phase-folded with the orbital period of the newly found exoplanet (9.5 days). The measurements have been corrected from the effect of the two longer period companions. The semi-amplitude of the curve is less than 5 m/s! Coupled with the 9.5 days orbital period, this implies a minimum mass for the newly discovered planet of 14 times the mass of the Earth. During 8 nights in June 2004, mu Arae was repeatedly observed and its radial velocity measured by HARPS to obtain information on the interior of the star. This so-called astero-seismology technique (see ESO PR 15/01) studies the small acoustic waves which make the surface of the star periodically pulsate in and out. By knowing the internal structure of the star, the astronomers aimed at understanding the origin of the unusual amount of heavy elements observed in its stellar atmosphere. This unusual chemical composition could provide unique information to the planet formation history. Says Nuno Santos, another member of the team: "To our surprise, the analysis of the new measurements revealed a radial velocity variation with a period of 9.5 days on top of the acoustic oscillation signal!" This discovery has been made possible thanks to the large number of measurements obtained during the astero-seimology campaign. From this date, the star, that was also part of the HARPS consortium survey programme, was regularly monitored with a careful observation strategy to reduce the "seismic noise" of the star. These new data confirmed both the amplitude and the periodicity of the radial velocity variations found during the 8 nights in June. The astronomers were left with only one convincing explanation to this periodic signal: a second planet orbits mu Arae and accomplishes a full revolution in 9.5 days. But this was not the only surprise: from the radial velocity amplitude, that is the size of the wobble induced by the gravitational pull of the planet on the star, the astronomers derived a mass for the planet of only 14 times the mass of the Earth! This is about the mass of Uranus, the smallest of the giant planets in the solar system. The newly found exoplanet therefore sets a new record in the smallest planet discovered around a solar type star. At the boundary The mass of this planet places it at the boundary between the very large earth-like (rocky) planets and giant planets. As current planetary formation models are still far from being able to account for all the amazing diversity observed amongst the extrasolar planets discovered, astronomers can only speculate on the true nature of the present object. In the current paradigm of giant planet formation, a core is formed first through the accretion of solid "planetesimals". Once this core reaches a critical mass, gas accumulates in a "runaway" fashion and the mass of the planet increases rapidly. In the present case, this later phase is unlikely to have happened for otherwise the planet would have become much more massive. Furthermore, recent models having shown that migration shortens the formation time, it is unlikely that the present object has migrated over large distances and remained of such small mass. This object is therefore likely to be a planet with a rocky (not an icy) core surrounded by a small (of the order of a tenth of the total mass) gaseous envelope and would therefore qualify as a "super-Earth". Further Prospects The HARPS consortium, led by Michel Mayor (Geneva Observatory, Switzerland), has been granted 100 observing nights per year during a 5-year period at the ESO 3.6-m telescope to perform one of the most ambitious systematic searches for exoplanets so far implemented worldwide. To this aim, the consortium repeatedly measures velocities of hundreds of stars that may harbour planetary systems. The detection of this new light planet after less than 1 year of operation demonstrates the outstanding potential of HARPS for detecting rocky planets on short orbits. Further analysis shows that performances achieved with HARPS make possible the detection of big "telluric" planets with only a few times the mass of the Earth. Such a capability is a major improvement compared to past planet surveys. Detection of such rocky objects strengthens the interest of future transit detections from space with missions like COROT, Eddington and KEPLER that shall be able to measure their radius. More information The research described in this Press release has been submitted for publication to the leading astrophysical journal "Astronomy and Astrophysics". A preprint is available as a postscript file at http://www.oal.ul.pt/~nuno/. Notes [1]: The team is composed of Nuno Santos (Centro de Astronomia e Astrofisica da Universidade de Lisboa, Portugal), François Bouchy and Jean-Pierre Sivan (Laboratoire d'astrophysique de Marseille, France), Michel Mayor, Francesco Pepe, Didier Queloz, Stéphane Udry, and Christophe Lovis (Observatoire de l'Université de Genève, Switzerland), Sylvie Vauclair, Michael Bazot (Toulouse, France), Gaspare Lo Curto and Dominique Naef (ESO), Xavier Delfosse (LAOG, Grenoble, France), Willy Benz and Christoph Mordasini (Physikalisches Institut der Universität Bern, Switzerland), and Jean-Louis Bertaux (Service d'Aéronomie de Verrière-le-Buisson, Paris, France). [2] A fundamental limitation of the radial-velocity method is the unknown of the inclination of the planetary orbit that only allows the determination of a lower mass limit for the planet. However, statistical considerations indicate that in most cases, the true mass will not be much higher than this value. The mass units for the exoplanets used in this text are 1 Jupiter mass = 22 Uranus masses = 318 Earth masses; 1 Uranus mass = 14.5 Earth masses. [3] HARPS has been designed and built by an international consortium of research institutes, led by the Observatoire de Genève (Switzerland) and including Observatoire de Haute-Provence (France), Physikalisches Institut der Universität Bern (Switzerland), the Service d'Aeronomie (CNRS, France), as well as ESO La Silla and ESO Garching.

  3. 77 FR 65939 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-31

    ... Technology Architecture (VistA) Records-VA'' (79VA19) as set forth in the Federal Register 75 FR 4454. VA is... Health Information Systems and Technology Architecture (VistA) Records-VA ROUTINE USES OF RECORDS...

  4. 5. Roaring Fork Motor Nature Trail, vista at stop three. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Roaring Fork Motor Nature Trail, vista at stop three. - Great Smoky Mountains National Park Roads & Bridges, Roaring Fork Motor Nature Trail, Between Cherokee Orchard Road & U.S. Route 321, Gatlinburg, Sevier County, TN

  5. 12. VISTA SOUTHWEST ON NEW HAMPSHIRE AVENUE TO WASHINGTON CIRCLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VISTA SOUTHWEST ON NEW HAMPSHIRE AVENUE TO WASHINGTON CIRCLE FROM RESERVATION NO. 140 AT THE INTERSECTION OF NEW HAMPSHIRE AVENUE, M, AND 21ST STREETS, NW. - New Hampshire Avenue, Washington, District of Columbia, DC

  6. 40 CFR 81.316 - Iowa.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Buchanan County Buena Vista County Butler County Calhoun County Carroll County Cass County Cedar County... Buchanan County Buena Vista County Butler County Calhoun County Carroll County Cass County Cedar County... Unclassifiable/Attainment. Calhoun County Unclassifiable/Attainment. Carroll County Unclassifiable/Attainment...

  7. 40 CFR 81.316 - Iowa.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Buchanan County Buena Vista County Butler County Calhoun County Carroll County Cass County Cedar County... Buchanan County Buena Vista County Butler County Calhoun County Carroll County Cass County Cedar County... Unclassifiable/Attainment. Calhoun County Unclassifiable/Attainment. Carroll County Unclassifiable/Attainment...

  8. 40 CFR 81.316 - Iowa.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Boone County Bremer County Buchanan County Buena Vista County Butler County Calhoun County Carroll... County Bremer County Buchanan County Buena Vista County Butler County Calhoun County Carroll County Cass.../Attainment. Butler County Unclassifiable/Attainment. Calhoun County Unclassifiable/Attainment. Carroll County...

  9. Operating a petabyte class archive at ESO

    NASA Astrophysics Data System (ADS)

    Suchar, Dieter; Lockhart, John S.; Burrows, Andrew

    2008-07-01

    The challenges of setting up and operating a Petabyte Class Archive will be described in terms of computer systems within a complex Data Centre environment. The computer systems, including the ESO Primary and Secondary Archive and the associated computational environments such as relational databases will be explained. This encompasses the entire system project cycle, including the technical specifications, procurement process, equipment installation and all further operational phases. The ESO Data Centre construction and the complexity of managing the environment will be presented. Many factors had to be considered during the construction phase, such as power consumption, targeted cooling and the accumulated load on the building structure to enable the smooth running of a Petabyte class Archive.

  10. First Images from VLT Science Verification Programme

    NASA Astrophysics Data System (ADS)

    1998-09-01

    Two Weeks of Intensive Observations Successfully Concluded After a period of technical commissioning tests, the first 8.2-m telescope of the ESO VLT (UT1) has successfully performed an extensive series of "real science" observations , yielding nearly 100 hours of precious data. They concern all possible types of astronomical objects, from distant galaxies and quasars to pulsars, star clusters and solar system objects. This intensive Science Verification (SV) Programme took place as planned from August 17 to September 1, 1998, and was conducted by the ESO SV Team at the VLT Observatory on Paranal (Chile) and at the ESO Headquarters in Garching (Germany). The new giant telescope lived fully up to the high expectations and worked with spectacular efficiency and performance through the entire period. All data will be released by September 30 via the VLT archive and the web (with some access restrictions - see below). The Science Verification period Just before the beginning of the SV period, the 8.2-m primary mirror in its cell was temporarily removed in order to install the "M3 tower" with the tertiary mirror [1]. The reassembly began on August 15 and included re-installation at the Cassegrain focus of the VLT Test Camera that was also used for the "First Light" images in May 1998. After careful optical alignment and various system tests, the UT1 was handed over to the SV Team on August 17 at midnight local time. The first SV observations began immediately thereafter and the SV Team was active 24 hours a day throughout the two-week period. Video-conferences between Garching and Paranal took place every day at about noon Garching time (6 o'clock in the morning on Paranal). Then, while the Paranal observers were sleeping, data from the previous night were inspected and reduced in Garching, with feedback on what was best to do during the following night being emailed to Paranal several hours in advance of the beginning of the observations. The campaign ended in the morning of September 1 when the telescope was returned to the Commissioning Team that has since continued its work. The FORS instrument is now being installed and the first images from this facility are expected shortly. Observational circumstances During the two-week SV period, a total of 154 hours were available for astronomical observations. Of these, 95 hours (62%) were used to collect scientific data, including calibrations, e.g. flat-fielding and photometric standard star observations. 15 hours (10%) were spent to solve minor technical problems, while another 44 hours (29%) were lost due to adverse meteorological conditions (clouds or wind exceeding 15 m/sec). The amount of telescope technical downtime is very small at this moment of the UT1 commissioning. This fact provides an impressive indication of high technical reliability that has been achieved and which will be further consolidated during the next months. The meteorological conditions that were encountered at Paranal during this period were unfortunately below average, when compared to data from the same calendar period in earlier years. There was an excess of bad seeing and fewer good seeing periods than normal; see, however, ESO PR Photo 35c/98 with 0.26 arcsec image quality. Nevertheless, the measured image quality on the acquired frames was often better than the seeing measured outside the enclosure by the Paranal seeing monitor. Part of this very positive effect is due to "active field stabilization" , now performed during all observations by rapid motion (10 - 70 times per second) of the 1.1-m secondary mirror of beryllium (M2) and compensating for the "twinkling" of stars. Science Verification data soon to be released A great amount of valuable data was collected during the SV programme. The available programme time was distributed as follows: Hubble Deep Field - South [HDF-S; NICMOS and STIS Fields] (37.1 hrs); Lensed QSOs (3.2 hrs); High-z Clusters (6.2 hrs); Host Galaxies of Gamma-Ray Bursters (2.1 hrs); Edge-on Galaxies (7.4 hrs); Globular cluster cores (6.7 hrs); QSO Hosts (4.4 hrs); TNOs (3.4 hrs); Pulsars (1.3 hrs); Calibrations (22.7 hrs). All of the SV data are now in the process of being prepared for public release by September 30, 1998 to the ESO and Chilean astronomical communities. It will be possible to retrieve the data from the VLT archive, and a set of CDs will be distributed to all astronomical research institutes within the ESO member states and Chile. Moreover, data obtained on the HDF-S will become publicly available worldwide, and retrievable from the VLT archive. Updated information on this data release can be found on the ESO web site at http://www.eso.org/vltsv/. It is expected that the first scientific results based on the SV data will become available in the course of October and November 1998. First images from the Science Verification programme This Press Release is accompanied by three photos that reproduce some of the images obtained during the SV period. ESO PR Photo 35a/98 ESO PR Photo 35a/98 [Preview - JPEG: 671 x 800 pix - 752k] [High-Res - JPEG: 2518 x 3000 pix - 5.8Mb] This colour composite was constructed from the U+B, R and I Test Camera Images of the Hubble Deep Field South (HDF-S) NICMOS field. These images are displayed as blue, green and red, respectively. The first photo is a colour composite of the HDF-S NICMOS sky field that combines exposures obtained in different wavebands: ultraviolet (U) + blue (B), red (R) and near-infrared (I). For all of them, the image quality is better than 0.9 arcsec. Most of the objects seen in the field are distant galaxies. The image is reproduced in such a way that it shows the faintest features scaled, while rendering the image of the star below the large spiral galaxy approximately white. The spiral galaxy is displayed in such a way that the internal structure is visible. A provisional analysis has shown that limiting magnitudes that were predicted for the HDF-S observations (27.0 - 28.5, depending on the band), were in fact reached. Technical information : Photo 35a/98 is based on 16 U-frames (~370 nm; total exposure time 17800 seconds; mean seeing 0.71 arcsec) and 15 B-frames (~430 nm; 10200 seconds; 0.71 arcsec) were added and combined with 8 R frames (~600 nm; 7200 seconds; 0.49 arcsec) and 12 I-frames (~800 nm; 10150 seconds; 0.59 arcsec) to make this colour composite. Individual frames were flat-fielded and cleaned for cosmics before combination. The field shown measures 1.0 x 1.0 arcmin. North is up; East is to the left. ESO PR Photo 35b/98 ESO PR Photo 35b/98 [Preview - JPEG: 679 x 800 pix - 760k] [High-Res - JPEG: 2518 x 3000 pix - 5.7Mb] The colour composite of the HDF-S NICMOS field constructed by combining VLT Test Camera images in U+B and R bands with a HST NICMOS near-IR H-band exposure. These images are displayed as blue, green and red, respectively. The NICMOS image was smoothed to match the angular resolution of the R-band VLT image. The boundary of the NICMOS image is also shown. The next photo is similar to the first one, but uses a near-IR frame obtained with the Hubble Space Telescope NICMOS instrument instead of the VLT I-frame. The HST image has nearly the same total exposure time as the VLT images. Their combination is meaningful since the VLT and NICMOS images reach similar depths and show more or less the same faint objects. This is the result of several effects compensating each other: while more distant galaxies are redder and therefore better visible at the infrared waveband of the NICMOS image and this image has a better angular resolution than those from the VLT, the collecting area of the UT1 mirror is over 11 times larger than that of the HST. It is interesting to note that all objects in the NICMOS image are also visible in the VLT images, with the exception of the very red object just left of the face-on spiral. The bright red object near the bottom has not before been detected in optical images (to the limit of R ~ 26 mag), but is clearly present in all the VLT Test Camera coadded images, with the exception of the U-band image. Both of these very red objects are possibly extremely distant, elliptical galaxies [2]. The additional information that can be obtained from the combination of the VLT and the infrared NICMOS images has an immediate bearing on the future work with the VLT. When the infrared, multi-mode ISAAC instrument enters into operation in early 1999, it will be able to obtain spectra of such objects and, in general, to deliver very deep infrared images. Thus, the combination of visual (from FORS) and infrared (from ISAAC) images and spectra promises to become an extremely powerful tool that will allow the detection of very red and therefore exceedingly distant galaxies. Moreover, it is obvious that this sky field is not very crowded - much longer exposure times will thus be possible without encountering serious problems of overlapping objects at the "confusion limit". Technical information : Photo 35b/98 is based on 16 U-frames (~370 nm; total exposure time 17800 seconds; mean seeing 0.71 arcsec) and 15 B-frames (~430 nm; 10200 seconds; 0.71 arcsec) were added and combined with 8 R frames (~600 nm; 7200 seconds; 0.49 arcsec) as well as a HST/NICMOS H-band frame(a H-band HST/NICMOS image from the ST-ECF public archive) (~1600 nm; 7040 seconds; 0.2 arcsec) to make this colour composite. Individual frames were flat-fielded and cleaned for cosmics before combination. The field shown measures 1.0 x 1.0 arcmin. North is up; East is to the left. ESO PR Photo 35c/98 ESO PR Photo 35c/98 [Preview - JPEG: 654 x 800 pix - 280k] [High-Res - JPEG: 2489 x 3000 pix - 2.6Mb] Coaddition of two R-band images of edge-on galaxy ESO342-G017 , obtained with 0.26 arcsec image quality. The galaxy ESO342-G017 was observed on August 19, 1998 during a spell of excellent observing conditions. Two exposures, each lasting 120 seconds, were taken through a red filtre to produce this photo. The quality of the original images is excellent, with seeing (FWHM) of only 0.26 arcsec measured on the stars in the frame. ESO342-G017 is an Sc-type spiral galaxy seen edge-on, and the Test Camera was rotated so that the disk of the galaxy appears horizontal in the figure. Thanks to the image quality, the photo shows much detail in the rather flat disk, including a very thin, obscuring dust band and some brighter knots, most probably star-forming regions. This galaxy is located well outside the Milky Way band in the southern constellation of Sagittarius. Its distance is about 400 million light-years (recession velocity about 7,700 km/sec). A number of more distant galaxies are seen in the background on this short exposure. Technical information : Photo 35c/98 is a reproduced from a composite of two 120-second exposures in the red R-band (~600 nm) of the edge-on galaxy ESO342-G017, both with 0.26 arcsec image quality. The frames were flat-fielded and cleaned for cosmics before combination. The field shown measures 1.5 x 1.5 arcmin. North is inclined 38 o clockwise from the top, East is to the left. Notes: [1] The flat and elliptically shaped, tertiary mirror M3 is mounted on top of the M3 Tower that is fixed in the center of the M1 Cell. The tower can rotate along its axis and deflects the light coming from the M2 mirror to the astronomical instruments on either Nasmyth platform. A mechanism at the top of the M3 Tower is used to move the M3 mirror away from the optical path when the instrument at the Cassegrain focus is used, e.g. the Test Camera during the SV observations. [2] This effect is due to the fact that the more distant a galaxy is, the larger is the velocity with which it recedes from us (Hubble's law). The larger the velocity, the further its emitted light will be shifted redwards in the observed spectrum (the Doppler effect) and the redder its image will appear to us. By comparing the brightness of a distant galaxy in different wavebands (measuring its colour), it is therefore in practice possible to estimate its redshift and thus its distance (the " photometric redshift" method). How to obtain ESO Press Information ESO Press Information is made available on the World-Wide Web (URL: http://www.eso.org ). ESO Press Photos may be reproduced, if credit is given to the European Southern Observatory.

  11. World's fastest and most sensitive astronomical camera

    NASA Astrophysics Data System (ADS)

    2009-06-01

    The next generation of instruments for ground-based telescopes took a leap forward with the development of a new ultra-fast camera that can take 1500 finely exposed images per second even when observing extremely faint objects. The first 240x240 pixel images with the world's fastest high precision faint light camera were obtained through a collaborative effort between ESO and three French laboratories from the French Centre National de la Recherche Scientifique/Institut National des Sciences de l'Univers (CNRS/INSU). Cameras such as this are key components of the next generation of adaptive optics instruments of Europe's ground-based astronomy flagship facility, the ESO Very Large Telescope (VLT). ESO PR Photo 22a/09 The CCD220 detector ESO PR Photo 22b/09 The OCam camera ESO PR Video 22a/09 OCam images "The performance of this breakthrough camera is without an equivalent anywhere in the world. The camera will enable great leaps forward in many areas of the study of the Universe," says Norbert Hubin, head of the Adaptive Optics department at ESO. OCam will be part of the second-generation VLT instrument SPHERE. To be installed in 2011, SPHERE will take images of giant exoplanets orbiting nearby stars. A fast camera such as this is needed as an essential component for the modern adaptive optics instruments used on the largest ground-based telescopes. Telescopes on the ground suffer from the blurring effect induced by atmospheric turbulence. This turbulence causes the stars to twinkle in a way that delights poets, but frustrates astronomers, since it blurs the finest details of the images. Adaptive optics techniques overcome this major drawback, so that ground-based telescopes can produce images that are as sharp as if taken from space. Adaptive optics is based on real-time corrections computed from images obtained by a special camera working at very high speeds. Nowadays, this means many hundreds of times each second. The new generation instruments require these corrections to be done at an even higher rate, more than one thousand times a second, and this is where OCam is essential. "The quality of the adaptive optics correction strongly depends on the speed of the camera and on its sensitivity," says Philippe Feautrier from the LAOG, France, who coordinated the whole project. "But these are a priori contradictory requirements, as in general the faster a camera is, the less sensitive it is." This is why cameras normally used for very high frame-rate movies require extremely powerful illumination, which is of course not an option for astronomical cameras. OCam and its CCD220 detector, developed by the British manufacturer e2v technologies, solve this dilemma, by being not only the fastest available, but also very sensitive, making a significant jump in performance for such cameras. Because of imperfect operation of any physical electronic devices, a CCD camera suffers from so-called readout noise. OCam has a readout noise ten times smaller than the detectors currently used on the VLT, making it much more sensitive and able to take pictures of the faintest of sources. "Thanks to this technology, all the new generation instruments of ESO's Very Large Telescope will be able to produce the best possible images, with an unequalled sharpness," declares Jean-Luc Gach, from the Laboratoire d'Astrophysique de Marseille, France, who led the team that built the camera. "Plans are now underway to develop the adaptive optics detectors required for ESO's planned 42-metre European Extremely Large Telescope, together with our research partners and the industry," says Hubin. Using sensitive detectors developed in the UK, with a control system developed in France, with German and Spanish participation, OCam is truly an outcome of a European collaboration that will be widely used and commercially produced. More information The three French laboratories involved are the Laboratoire d'Astrophysique de Marseille (LAM/INSU/CNRS, Université de Provence; Observatoire Astronomique de Marseille Provence), the Laboratoire d'Astrophysique de Grenoble (LAOG/INSU/CNRS, Université Joseph Fourier; Observatoire des Sciences de l'Univers de Grenoble), and the Observatoire de Haute Provence (OHP/INSU/CNRS; Observatoire Astronomique de Marseille Provence). OCam and the CCD220 are the result of five years work, financed by the European commission, ESO and CNRS-INSU, within the OPTICON project of the 6th Research and Development Framework Programme of the European Union. The development of the CCD220, supervised by ESO, was undertaken by the British company e2v technologies, one of the world leaders in the manufacture of scientific detectors. The corresponding OPTICON activity was led by the Laboratoire d'Astrophysique de Grenoble, France. The OCam camera was built by a team of French engineers from the Laboratoire d'Astrophysique de Marseille, the Laboratoire d'Astrophysique de Grenoble and the Observatoire de Haute Provence. In order to secure the continuation of this successful project a new OPTICON project started in June 2009 as part of the 7th Research and Development Framework Programme of the European Union with the same partners, with the aim of developing a detector and camera with even more powerful functionality for use with an artificial laser star. This development is necessary to ensure the image quality of the future 42-metre European Extremely Large Telescope. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  12. Light Dawns on Dark Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    2010-12-01

    Gamma-ray bursts are among the most energetic events in the Universe, but some appear curiously faint in visible light. The biggest study to date of these so-called dark gamma-ray bursts, using the GROND instrument on the 2.2-metre MPG/ESO telescope at La Silla in Chile, has found that these gigantic explosions don't require exotic explanations. Their faintness is now fully explained by a combination of causes, the most important of which is the presence of dust between the Earth and the explosion. Gamma-ray bursts (GRBs), fleeting events that last from less than a second to several minutes, are detected by orbiting observatories that can pick up their high energy radiation. Thirteen years ago, however, astronomers discovered a longer-lasting stream of less energetic radiation coming from these violent outbursts, which can last for weeks or even years after the initial explosion. Astronomers call this the burst's afterglow. While all gamma-ray bursts [1] have afterglows that give off X-rays, only about half of them were found to give off visible light, with the rest remaining mysteriously dark. Some astronomers suspected that these dark afterglows could be examples of a whole new class of gamma-ray bursts, while others thought that they might all be at very great distances. Previous studies had suggested that obscuring dust between the burst and us might also explain why they were so dim. "Studying afterglows is vital to further our understanding of the objects that become gamma-ray bursts and what they tell us about star formation in the early Universe," says the study's lead author Jochen Greiner from the Max-Planck Institute for Extraterrestrial Physics in Garching bei München, Germany. NASA launched the Swift satellite at the end of 2004. From its orbit above the Earth's atmosphere it can detect gamma-ray bursts and immediately relay their positions to other observatories so that the afterglows could be studied. In the new study, astronomers combined Swift data with new observations made using GROND [2] - a dedicated gamma-ray burst follow-up observation instrument, which is attached to the 2.2-metre MPG/ESO telescope at La Silla in Chile. In doing so, astronomers have conclusively solved the puzzle of the missing optical afterglow. What makes GROND exciting for the study of afterglows is its very fast response time - it can observe a burst within minutes of an alert coming from Swift using a special system called the Rapid Response Mode - and its ability to observe simultaneously through seven filters covering both the visible and near-infrared parts of the spectrum. By combining GROND data taken through these seven filters with Swift observations, astronomers were able to accurately determine the amount of light emitted by the afterglow at widely differing wavelengths, all the way from high energy X-rays to the near-infrared. The astronomers used this information to directly measure the amount of obscuring dust that the light passed through en route to Earth. Previously, astronomers had to rely on rough estimates of the dust content [3]. The team used a range of data, including their own measurements from GROND, in addition to observations made by other large telescopes including the ESO Very Large Telescope, to estimate the distances to nearly all of the bursts in their sample. While they found that a significant proportion of bursts are dimmed to about 60-80 percent of the original intensity by obscuring dust, this effect is exaggerated for the very distant bursts, letting the observer see only 30-50 percent of the light [4]. The astronomers conclude that most dark gamma-ray bursts are therefore simply those that have had their small amount of visible light completely stripped away before it reaches us. "Compared to many instruments on large telescopes, GROND is a low cost and relatively simple instrument, yet it has been able to conclusively resolve the mystery surrounding dark gamma-ray bursts," says Greiner. Notes [1] Gamma-ray bursts lasting longer than two seconds are referred to as long bursts and those with a shorter duration are known as short bursts. Long bursts, which were observed in this study, are associated with the supernova explosions of massive young stars in star-forming galaxies. Short bursts are not well understood, but are thought to originate from the merger of two compact objects such as neutron stars. [2] The Gamma-Ray burst Optical and Near-infrared Detector (GROND) was designed and built at the Max-Planck Institute for Extraterrestrial Physics in collaboration with the Tautenburg Observatory, and has been fully operational since August 2007. [3] Other studies relating to dark gamma-ray bursts have been released. Early this year, astronomers used the Subaru Telescope to observe a single gamma-ray burst, from which they hypothesised that dark gamma-ray bursts may indeed be a separate sub-class that form through a different mechanism, such as the merger of binary stars. In another study published last year using the Keck Telescope, astronomers studied the host galaxies of 14 dark GRBs, and based on the derived low redshifts they infer dust as the likely mechanism to create the dark bursts. In the new work reported here, 39 GRBs were studied, including nearly 20 dark bursts, and it is the only study in which no prior assumptions have been made and the amount of dust has been directly measured. [4] Because the afterglow light of very distant bursts is redshifted due to the expansion of the Universe, the light that left the object was originally bluer than the light we detect when it gets to Earth. Since the reduction of light intensity by dust is greater for blue and ultraviolet light than for red, this means that the overall dimming effect of dust is greater for the more distant gamma-ray bursts. This is why GROND's ability to observe near-infrared radiation makes such a difference. More information This research is presented in a paper to appear in the journal Astronomy & Astrophysics on 16 December 2010 The team is composed of: J. Greiner (Max-Planck-Institut für extraterrestrische Physik [MPE], Germany), T. Krühler (MPE, Universe Cluster, Technische Universität München), S. Klose (Thüringer Landessternwarte, Germany), P. Afonso (MPE), C. Clemens (MPE), R. Filgas (MPE), D.H. Hartmann (Clemson University, USA), A. Küpcü Yoldaş¸ (University of Cambridge, UK), M. Nardini (MPE), F. Olivares E. (MPE), A. Rau (MPE), A. Rossi (Thüringer Landessternwarte, Germany), P. Schady (MPE), and A. Updike (Clemson University, USA) ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  13. Understanding MSFC/Earth Science Office Within NASA

    NASA Technical Reports Server (NTRS)

    Rickman, Doug

    2010-01-01

    This slide presentation reviews the role of the Marshal's Earth Science Office (ESO) and the relationship of the office to the NASA administration, the National Research Council and NASA's Science Directorate. The presentation also reviews the strategic goals for Earth Science, and briefly reviews the ESO's international partners that NASA is cooperating with.

  14. Forty Years at ESO - Bernard Delabre and Optical Designs

    NASA Astrophysics Data System (ADS)

    de Zeeuw, T.; Lévêque, S.; Pasquini, L.; Péron, M.; Spyromilio, J.

    2017-09-01

    The optical designer Bernard Delabre has retired from ESO after 40 years at the forefront of telescope and instrument optics. A short overview of his achievements and his legacy of astronomical telescopes and instrumenta-tion is presented. Bernard Delabre was awarded the 2017 Tycho Brahe Prize by the European Astronomical Society.

  15. Gruber Prize in Cosmology Awarded for the Discovery of the Accelerated Expansion of the Universe

    NASA Astrophysics Data System (ADS)

    2007-09-01

    Nearly a decade ago astronomers from two competing teams announced that they had found evidence for an accelerated cosmic expansion. The Gruber Prize in Cosmology 2007 honours this achievement and has been awarded to two groups: the Supernova Cosmology Project team, led by Saul Perlmutter (Lawrence Berkeley Laboratory), and the High-z Supernova Search Team, led by Brian Schmidt (Australian National University). Their results were based on the observations of distant Type Ia supernovae and were obtained with the major telescopes at the time (Riess et al. 1998, AJ 116, 1009; Perlmutter et al. 1999, ApJ 517, 565). Both teams used the 3.6-m telescope and the NTT to contribute photometry and spectroscopic classifications of the supernovae. Four people at ESO were directly involved in the two teams and are recognised as co-recipients of the Gruber Prize. Isobel Hook (now at Oxford University) and Chris Lidman (ESO Chile) were ESO Fellows when they contributed to the work of the Super- nova Cosmology Project, while Jason Spyromilio and Bruno Leibundgut (both ESO Garching) participated in the High-z Supernova Search Team.

  16. Optical calibration and test of the VLT Deformable Secondary Mirror

    NASA Astrophysics Data System (ADS)

    Briguglio, Runa; Xompero, Marco; Riccardi, Armando; Andrighettoni, Mario; Pescoller, Dietrich; Biasi, Roberto; Gallieni, Daniele; Vernet, Elise; Kolb, Johann; Arsenault, Robin; Madec, Pierre-Yves

    2013-12-01

    The Deformable Secondary Mirror (DSM) for the VLT (ESO) represents the state-of-art of the large-format deformable mirror technology with its 1170 voice-coil actuators and its internal metrology based on actuator co-located capacitive sensors to control the shape of the 1.12m-diameter 2mm-thick convex shell. The present paper reports the results of the optical characterization of the mirror unit with the ASSIST facility located at ESO-Garching and executed in a collaborative effort by ESO, INAF-Osservatorio Astrofisico di Arcetri and the DSM manufacturing companies (Microgate s.r.l. and A.D.S. International s.r.l.). The main purposes of the tests are the optical characterization of the shell flattening residuals, the corresponding calibration of flattening commands, the optical calibration of the capacitive sensors and the optical calibration of the mirror influence functions. The results are used for the optical acceptance of the DSM and to allow the next test phase coupling the DSM with the wave-front sensor modules of the new Adaptive Optics Facility (AOF) of ESO.

  17. ESO unveils an amazing, interactive, 360-degree panoramic view of the entire night sky

    NASA Astrophysics Data System (ADS)

    2009-09-01

    The first of three images of ESO's GigaGalaxy Zoom project - a new magnificent 800-million-pixel panorama of the entire sky as seen from ESO's observing sites in Chile - has just been released online. The project allows stargazers to explore and experience the Universe as it is seen with the unaided eye from the darkest and best viewing locations in the world. This 360-degree panoramic image, covering the entire celestial sphere, reveals the cosmic landscape that surrounds our tiny blue planet. This gorgeous starscape serves as the first of three extremely high-resolution images featured in the GigaGalaxy Zoom project, launched by ESO within the framework of the International Year of Astronomy 2009 (IYA2009). GigaGalaxy Zoom features a web tool that allows users to take a breathtaking dive into our Milky Way. With this tool users can learn more about many different and exciting objects in the image, such as multicoloured nebulae and exploding stars, just by clicking on them. In this way, the project seeks to link the sky we can all see with the deep, "hidden" cosmos that astronomers study on a daily basis. The wonderful quality of the images is a testament to the splendour of the night sky at ESO's sites in Chile, which are the most productive astronomical observatories in the world. The plane of our Milky Way Galaxy, which we see edge-on from our perspective on Earth, cuts a luminous swath across the image. The projection used in GigaGalaxy Zoom place the viewer in front of our Galaxy with the Galactic Plane running horizontally through the image - almost as if we were looking at the Milky Way from the outside. From this vantage point, the general components of our spiral galaxy come clearly into view, including its disc, marbled with both dark and glowing nebulae, which harbours bright, young stars, as well as the Galaxy's central bulge and its satellite galaxies. The painstaking production of this image came about as a collaboration between ESO, the renowned French writer and astrophotographer Serge Brunier and his fellow Frenchman Frédéric Tapissier. Brunier spent several weeks during the period between August 2008 and February 2009 capturing the sky, mostly from ESO observatories at La Silla and Paranal in Chile. In order to cover the full Milky Way, Brunier also made a week-long trip to La Palma, one of the Canary Islands, to photograph the northern skies [1]. Once the raw photographs were in hand, image processing by Tapissier and ESO experts helped to convey accurately the night sky as our eyes behold it [2]. The resulting image, now available on GigaGalaxy Zoom, is composed of almost 300 fields each individually captured by Brunier four times, adding up to nearly 1200 photos that encompass the entire night sky. "I wanted to show a sky that everyone can relate to - with its constellations, its thousands of stars, with names familiar since childhood, its myths shared by all civilisations since Homo became Sapiens," says Brunier. "The image was therefore made as man sees it, with a regular digital camera under the dark skies in the Atacama Desert and on La Palma." As photographing extended over several months, objects from the Solar System came and went through the star fields, with bright planets such as Venus and Jupiter. A brilliant, emerald-green comet also flew by, although spotting it among a background of tens of millions of stars will be difficult (but rewarding). Overall, the creators of the GigaGalaxy Zoom project hope that these tremendous efforts in bringing the night sky as observed under the best conditions on the planet to stargazers everywhere will inspire awe for the beautiful, immense Universe that we live in. "The vision of the IYA2009 is to help people rediscover their place in the Universe through the day- and night-time sky, and this is exactly what the GigaGalaxy Zoom project is all about," says project coordinator Henri Boffin. The second dramatic GigaGalaxy Zoom image will be revealed next week, on 21 September 2009. Notes [1] During his quest, Brunier used a Nikon D3 digital camera. The apparent motion of the sky caused by Earth's rotation was corrected for using a small, precise equatorial mount moving in the opposite direction, which made a whole circle in 23 hours 56 minutes around the Earth's axis of rotation. Each photo required a six-minute exposure, for a total exposure time of more than 120 hours. [2] The data processing, using software called Autopano Pro Giga, took great care in respecting the colours and "texture" of the Milky Way. Frédéric Tapissier needed about 340 computing hours on a powerful PC to complete the task. More information As part of the IYA2009, ESO is participating in several remarkable outreach activities, in line with its world-leading rank in the field of astronomy. ESO is hosting the IYA2009 Secretariat for the International Astronomical Union, which coordinates the Year globally. ESO is one of the Organisational Associates of IYA2009, and was also closely involved in the resolution submitted to the United Nations (UN) by Italy, which led to the UN's 62nd General Assembly proclaiming 2009 the International Year of Astronomy. In addition to a wide array of activities planned both at the local and international level, ESO is leading three of the twelve global Cornerstone Projects. ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky". Serge Brunier is a French journalist, photographer and writer who specialises in popularising astronomy. He is a regular contributor to Science & Vie magazine, and to the France Info radio station. He has written numerous popular astronomy books, translated into over ten languages, and is a prize-winning photographer, who has captured images of solar eclipses from the most amazing places in the world. A life-long quest for the best skies in the world led him to Chile. This whole sky panorama was presented from 25 August till 13 September 2009 in the exhibition "Un ciel pour la planète" (A sky for the planet) in the Atrium of the Monte-Carlo Casino, Monaco. With a giant print of 12 times 6 metres, the exhibition was under the Patronage of The Prince Albert II of Monaco, and showed with images and videos the making of this unique ESO project.

  18. 45 CFR 1217.6 - Roles of volunteers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... roles: (a) Primary contact with VISTA volunteers on personal and administrative matters. (b) Aid in... program concepts with VISTA volunteers and supervisor/sponsor. (g) Advise supervisor on potential problem... best meet goals and objectives addressing the community's problem(s). ...

  19. 45 CFR 1217.6 - Roles of volunteers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... roles: (a) Primary contact with VISTA volunteers on personal and administrative matters. (b) Aid in... program concepts with VISTA volunteers and supervisor/sponsor. (g) Advise supervisor on potential problem... best meet goals and objectives addressing the community's problem(s). ...

  20. 4. WASHBURN POINT VISTA AREA. HALF DOME AT CENTER REAR. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. WASHBURN POINT VISTA AREA. HALF DOME AT CENTER REAR. LOOKING NE. GIS: N-37 43 13.7 / W-119 34 23.0 - Glacier Point Road, Between Chinquapin Flat & Glacier Point, Yosemite Village, Mariposa County, CA

  1. 76 FR 59250 - Approval and Promulgation of Air Quality Implementation Plans; North Carolina: Clean Smokestacks Act

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-26

    ... other NAAQS, improving visibility in the mountains and other scenic vistas, and reducing acid rain. EPA... the mountains and other scenic vistas, and reducing acid rain. The specific approved provisions...

  2. A distribuição de velocidades na linha de visada em galáxias barradas vistas de face

    NASA Astrophysics Data System (ADS)

    Gadotti, D. A.; de Souza, R. E.

    2003-08-01

    Com o objetivo de realizar um estudo cinemático da componente vertical de barras em galáxias, obtivemos espectros de fenda longa de alta razão S/N ao longo dos eixos maior e menor de 14 galáxias barradas vistas de face, nos telescópios de 1.52m do ESO em La Silla, Chile, e de 2.3m do Steward Observatory em Kitt Peak, Arizona. Estes dados nos permitiram determinar a distribuição de velocidades das estrelas ao longo do eixo vertical das barras e discos destes sistemas, tanto no centro como em pontos que distam cerca de 5 e 20 segundos de arco do núcleo, correspondendo a distâncias de cerca de 0.7 e 2.8 kpc, respectivamente. Desta forma, a variação radial da distribuição de velocidades também pôde ser avaliada. Este tipo de análise tem raros exemplos na literatura por ser caro em termos de tempo de telescópio. Entretanto, é de fácil justificativa, considerando que traz novas informações que podem ser utilizadas para aperfeiçoar modelos teóricos acerca da formação e evolução de galáxias. Um algoritmo por nós desenvolvido foi utilizado para obter as distribuições de velocidades como Gaussianas generalizadas (polinômios de Gauss-Hermite), o que traz um ingrediente a mais neste tipo de estudo que, tradicionalmente, se utiliza de Gaussianas puras, uma hipótese nem sempre razoável. Apresentaremos os resultados deste trabalho, que incluem um diagnóstico para a identificação de barras recém formadas, e testes para o modelo isotérmico de discos. Mostraremos que: (i) a escolha das estrelas padrão em velocidade, e dos parâmetros da Gaussiana, deve ser muito bem justificada já que tem influência significativa nos resultados; (ii) muitas galáxias apresentam uma depressão na dispersão de velocidades na região central, que pode estar associada a um disco interno; e (iii) a dispersão de velocidades é constante ao longo da barra, nos eixos maior e menor, mas cai substancialmente quando se passa da barra para o disco.

  3. País de gordos/país de muertos: Obesity, death and nation in biomedical and forensic genetics in Mexico

    PubMed Central

    García-Deister, Vivette; López-Beltrán, Carlos

    2015-01-01

    This article provides a comparison between genomic medicine and forensic genetics in Mexico, in light of recent depictions of the nation as a ‘país de gordos’ (country of the fat) and a ‘país de muertos’ (country of the dead). We examine the continuities and ruptures in the public image of genetics in these two areas of attention, health and security, focusing especially on how the relevant publics of genetic science are assembled in each case. Publics of biomedical and forensic genetics are assembled through processes of recruitment and interpellation, in ways that modulate current theorizations of co-production. The comparison also provides a vista onto discussions regarding the involvement of genetics in regimes of governance and citizenship and about the relationship between the state and biopower in a context of perceived health crisis and war-like violence. PMID:27479997

  4. País de gordos/país de muertos: Obesity, death and nation in biomedical and forensic genetics in Mexico.

    PubMed

    García-Deister, Vivette; López-Beltrán, Carlos

    2015-12-01

    This article provides a comparison between genomic medicine and forensic genetics in Mexico, in light of recent depictions of the nation as a 'país de gordos' (country of the fat) and a 'país de muertos' (country of the dead). We examine the continuities and ruptures in the public image of genetics in these two areas of attention, health and security, focusing especially on how the relevant publics of genetic science are assembled in each case. Publics of biomedical and forensic genetics are assembled through processes of recruitment and interpellation, in ways that modulate current theorizations of co-production. The comparison also provides a vista onto discussions regarding the involvement of genetics in regimes of governance and citizenship and about the relationship between the state and biopower in a context of perceived health crisis and war-like violence.

  5. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient.

    PubMed

    Miyai, Manami; Eikawa, Shingo; Hosoi, Akihiro; Iino, Tamaki; Matsushita, Hirokazu; Isobe, Midori; Uenaka, Akiko; Udono, Heiichiro; Nakajima, Jun; Nakayama, Eiichi; Kakimi, Kazuhiro

    2015-01-01

    Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS can potentially better estimate the actual frequency of antigen-specific T cells and thus provide more accurate patient monitoring.

  6. Detection and Tracking of NY-ESO-1-Specific CD8+ T Cells by High-Throughput T Cell Receptor β (TCRB) Gene Rearrangements Sequencing in a Peptide-Vaccinated Patient

    PubMed Central

    Miyai, Manami; Eikawa, Shingo; Hosoi, Akihiro; Iino, Tamaki; Matsushita, Hirokazu; Isobe, Midori; Uenaka, Akiko; Udono, Heiichiro; Nakajima, Jun; Nakayama, Eiichi; Kakimi, Kazuhiro

    2015-01-01

    Comprehensive immunological evaluation is crucial for monitoring patients undergoing antigen-specific cancer immunotherapy. The identification and quantification of T cell responses is most important for the further development of such therapies. Using well-characterized clinical samples from a high responder patient (TK-f01) in an NY-ESO-1f peptide vaccine study, we performed high-throughput T cell receptor β-chain (TCRB) gene next generation sequencing (NGS) to monitor the frequency of NY-ESO-1-specific CD8+ T cells. We compared these results with those of conventional immunological assays, such as IFN-γ capture, tetramer binding and limiting dilution clonality assays. We sequenced human TCRB complementarity-determining region 3 (CDR3) rearrangements of two NY-ESO-1f-specific CD8+ T cell clones, 6-8L and 2F6, as well as PBMCs over the course of peptide vaccination. Clone 6-8L possessed the TCRB CDR3 gene TCRBV11-03*01 and BJ02-01*01 with amino acid sequence CASSLRGNEQFF, whereas 2F6 possessed TCRBV05-08*01 and BJ02-04*01 (CASSLVGTNIQYF). Using these two sequences as models, we evaluated the frequency of NY-ESO-1-specific CD8+ T cells in PBMCs ex vivo. The 6-8L CDR3 sequence was the second most frequent in PBMC and was present at high frequency (0.7133%) even prior to vaccination, and sustained over the course of vaccination. Despite a marked expansion of NY-ESO-1-specific CD8+ T cells detected from the first through 6th vaccination by tetramer staining and IFN-γ capture assays, as evaluated by CDR3 sequencing the frequency did not increase with increasing rounds of peptide vaccination. By clonal analysis using 12 day in vitro stimulation, the frequency of B*52:01-restricted NY-ESO-1f peptide-specific CD8+ T cells in PBMCs was estimated as only 0.0023%, far below the 0.7133% by NGS sequencing. Thus, assays requiring in vitro stimulation might be underestimating the frequency of clones with lower proliferation potential. High-throughput TCRB sequencing using NGS can potentially better estimate the actual frequency of antigen-specific T cells and thus provide more accurate patient monitoring. PMID:26291626

  7. TreeQ-VISTA: An Interactive Tree Visualization Tool withFunctional Annotation Query Capabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Shengyin; Anderson, Iain; Kunin, Victor

    2007-05-07

    Summary: We describe a general multiplatform exploratorytool called TreeQ-Vista, designed for presenting functional annotationsin a phylogenetic context. Traits, such as phenotypic and genomicproperties, are interactively queried from a relational database with auser-friendly interface which provides a set of tools for users with orwithout SQL knowledge. The query results are projected onto aphylogenetic tree and can be displayed in multiple color groups. A richset of browsing, grouping and query tools are provided to facilitatetrait exploration, comparison and analysis.Availability: The program,detailed tutorial and examples are available online athttp://genome-test.lbl.gov/vista/TreeQVista.

  8. Phylo-VISTA: Interactive visualization of multiple DNA sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.

    The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. Results: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a frameworkmore » based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. Availability: Phylo-VISTA is available at http://www-gsd.lbl. gov/phylovista. It requires an Internet browser with Java Plugin 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu« less

  9. Intravitreal Aflibercept Injection in Eyes With Substantial Vision Loss After Laser Photocoagulation for Diabetic Macular Edema: Subanalysis of the VISTA and VIVID Randomized Clinical Trials.

    PubMed

    Wykoff, Charles C; Marcus, Dennis M; Midena, Edoardo; Korobelnik, Jean-François; Saroj, Namrata; Gibson, Andrea; Vitti, Robert; Berliner, Alyson J; Williams Liu, Zinaria; Zeitz, Oliver; Metzig, Carola; Schmelter, Thomas; Heier, Jeffrey S

    2016-12-22

    Information on the effect of anti-vascular endothelial growth factor therapy in eyes with diabetic macular edema (DME) with vision loss after macular laser photocoagulation is clinically valuable. To evaluate visual and anatomic outcomes in a subgroup of macular laser photocoagulation treatment control (hereafter laser control) eyes with substantial vision loss receiving treatment with intravitreal aflibercept injection. This investigation was a post hoc analysis of a subgroup of laser control eyes in 2 phase 3 trials-VISTA (Study of Intravitreal Aflibercept Injection in Patients With Diabetic Macular Edema) and VIVID (Intravitreal Aflibercept Injection in Vision Impairment Due to DME)-in a multicenter setting. One hundred nine laser control eyes with center-involving DME were included. Treatment with intravitreal aflibercept injection (2 mg) every 8 weeks after 5 monthly doses with sham injections on nontreatment visits starting at week 24 was initiated on meeting prespecified criteria of at least a 10-letter visual acuity loss at 2 consecutive visits or at least a 15-letter visual acuity loss from the best previous measurement at 1 visit and vision not better than at baseline. Visual and anatomic outcomes in a subgroup of laser control eyes receiving treatment with intravitreal aflibercept injection. Through week 100, a total of 63 of 154 eyes (40.9%) in VISTA and 46 of 133 eyes (34.6%) in VIVID initially randomized to laser control received treatment with intravitreal aflibercept injection. The median time from week 24 to the first intravitreal aflibercept injection treatment was 34.0 (VISTA) and 83.5 (VIVID) days. In this subgroup, the mean (SD) visual gain from baseline to week 100 was 2.2 (12.5) (VISTA) and 3.8 (10.1) (VIVID) letters. At the time of intravitreal aflibercept injection initiation, these eyes had a mean (SD) loss of 11.0 (10.1) (VISTA) and 10.0 (6.5) (VIVID) letters from baseline, and they subsequently gained a mean (SD) of 17.4 (9.7) (VISTA) and 13.6 (8.6) (VIVID) letters from the initiation of treatment with intravitreal aflibercept injection through week 100. There was a minimal mean change in central subfield thickness from baseline in these eyes at the time of intravitreal aflibercept injection initiation (an increase of 3.9 μm in VISTA and a decrease of 3.0 μm in VIVID), after which further mean (SD) reductions of 285.6 (202.6) μm (VISTA) and 313.4 (181.9) μm (VIVID) occurred through week 100. Intravitreal aflibercept injection improves visual and anatomic outcomes in eyes experiencing substantial vision loss after macular laser photocoagulation treatment for DME. clinicaltrials.gov Identifiers: NCT01363440 and NCT01331681.

  10. VizieR Online Data Catalog: VLT Survey Telescope ATLAS (Shanks+, 2015)

    NASA Astrophysics Data System (ADS)

    Shanks, T.; Metcalfe, N.; Chehade, B.; Findlay, J. R.; Irwin, M. J.; Gonzalez-Solares, E.; Lewis, J. R.; Yoldas, A. K.; Mann, R. G.; Read, M. A.; Sutorius, E. T. W.; Voutsinas, S.

    2017-11-01

    The ATLAS sky coverage consists of two contiguous blocks in the North and South galactic caps. The ATLAS South Galactic Cap (SGC) area lies between 21h30m

  11. The Gaia-ESO Survey: Calibration strategy

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Lardo, C.; Altavilla, G.; Marinoni, S.; Ragaini, S.; Cocozza, G.; Bellazzini, M.; Sabbi, E.; Zoccali, M.; Donati, P.; Heiter, U.; Koposov, S. E.; Blomme, R.; Morel, T.; Símon-Díaz, S.; Lobel, A.; Soubiran, C.; Montalban, J.; Valentini, M.; Casey, A. R.; Blanco-Cuaresma, S.; Jofré, P.; Worley, C. C.; Magrini, L.; Hourihane, A.; François, P.; Feltzing, S.; Gilmore, G.; Randich, S.; Asplund, M.; Bonifacio, P.; Drew, J. E.; Jeffries, R. D.; Micela, G.; Vallenari, A.; Alfaro, E. J.; Allende Prieto, C.; Babusiaux, C.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Hambly, N.; Korn, A. J.; Lanzafame, A. C.; Smiljanic, R.; Van Eck, S.; Walton, N. A.; Bayo, A.; Carraro, G.; Costado, M. T.; Damiani, F.; Edvardsson, B.; Franciosini, E.; Frasca, A.; Lewis, J.; Monaco, L.; Morbidelli, L.; Prisinzano, L.; Sacco, G. G.; Sbordone, L.; Sousa, S. G.; Zaggia, S.; Koch, A.

    2017-02-01

    The Gaia-ESO survey (GES) is now in its fifth and last year of observations and has produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysical calibration targets, ensuring that all GES results on radial velocities, atmospheric parameters, and chemical abundance ratios will be both internally consistent and easily comparable with other literature results, especially from other large spectroscopic surveys and from Gaia. The calibration of GES is particularly delicate because of (I) the large space of parameters covered by its targets, ranging from dwarfs to giants, from O to M stars; these targets have a large wide of metallicities and also include fast rotators, emission line objects, and stars affected by veiling; (II) the variety of observing setups, with different wavelength ranges and resolution; and (III) the choice of analyzing the data with many different state-of-the-art methods, each stronger in a different region of the parameter space, which ensures a better understanding of systematic uncertainties. An overview of the GES calibration and homogenization strategy is also given, along with some examples of the usage and results of calibrators in GES iDR4, which is the fourth internal GES data release and will form the basis of the next GES public data release. The agreement between GES iDR4 recommended values and reference values for the calibrating objects are very satisfactory. The average offsets and spreads are generally compatible with the GES measurement errors, which in iDR4 data already meet the requirements set by the main GES scientific goals. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programme IDs 188.B-3002 and 193.B-0936.Full Table 2 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/598/A5

  12. ESDIS Standards Office (ESO): Requirements, Standards and Practices

    NASA Technical Reports Server (NTRS)

    Mitchell, Andrew E.; Mcinerney, Mark Allen; Enloe, Yonsok K.; Conover, Helen T.; Doyle, Allan

    2016-01-01

    The ESDIS Standards Office assists the ESDIS Project in formulating standards policy for NASA Earth Science Data Systems (ESDS), coordinates standards activities within ESDIS, and provides technical expertise and assistance with standards related tasks within the NASA Earth Science Data System Working Groups (ESDSWG). This poster summarizes information found on the earthdata.nasa.gov site that describes the ESO.

  13. Koha@ESO Reloaded

    NASA Astrophysics Data System (ADS)

    Meakins, S.; Grothkopf, U.

    2015-04-01

    What happened to the ESO library's plan to use the open source software Koha as their new library system? After an intensive migration process, we finally went online in June 2012. We want to share some of our experiences, point out advantages and disadvantages of an open source system and show some highlights of Koha, especially the flexibility the system offers.

  14. VizieR Online Data Catalog: ABCG209 spectroscopic and photometric catalog (Mercurio+, 2008)

    NASA Astrophysics Data System (ADS)

    Mercurio, A.; Barbera, F. L.; Haines, C. P.; Merluzzi, P.; Busarello, G.; Capaccioli, M.

    2008-11-01

    Spectroscopic observations were carried out at the ESO New Technology Telescope (NTT) with the ESO Multi-Mode Instrument (EMMI) and at the Telescopio Nazionale Galileo (TNG) with the Device Optimized for the LOw RESolution (DOLORES), while NIR photometric data were collected with the Son OF ISAAC (SOFI) at NTT. (3 data files).

  15. Software for Scientists Facing Wicked Problems: Lessons from the VISTAS Project

    EPA Science Inventory

    The Visualization for Terrestrial and Aquatic Systems project (VISTAS) aims to help scientists produce effective environmental science visualizations for their own use and for use in presenting their work to a wide range of stakeholders (including other scientists, decision maker...

  16. Experimental Physical Sciences Vistas Performance through Science Winter 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kippen, Karen Elizabeth; Cruz, James Michael; Hockaday, Mary Yvonne P.

    This issue of Experimental Physical Sciences Vistas focuses on the integrated science that plays a critical role in Los Alamos National Laboratory’s support of the nation’s nuclear deterrent. I hope you will enjoy reading about these accomplishments, opportunities, and challenges.

  17. 4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VISTA POINT AND INTERPRETIVE PLAQUE AT LEE VINING CANYON. NOTE ROAD CUT ON CANYON WALL. LOOKING NNE. GIS: N-37 56 30.3 / 119 13 44.8 - Tioga Road, Between Crane Flat & Tioga Pass, Yosemite Village, Mariposa County, CA

  18. SNP-VISTA: An interactive SNP visualization tool

    PubMed Central

    Shah, Nameeta; Teplitsky, Michael V; Minovitsky, Simon; Pennacchio, Len A; Hugenholtz, Philip; Hamann, Bernd; Dubchak, Inna L

    2005-01-01

    Background Recent advances in sequencing technologies promise to provide a better understanding of the genetics of human disease as well as the evolution of microbial populations. Single Nucleotide Polymorphisms (SNPs) are established genetic markers that aid in the identification of loci affecting quantitative traits and/or disease in a wide variety of eukaryotic species. With today's technological capabilities, it has become possible to re-sequence a large set of appropriate candidate genes in individuals with a given disease in an attempt to identify causative mutations. In addition, SNPs have been used extensively in efforts to study the evolution of microbial populations, and the recent application of random shotgun sequencing to environmental samples enables more extensive SNP analysis of co-occurring and co-evolving microbial populations. The program is available at [1]. Results We have developed and present two modifications of an interactive visualization tool, SNP-VISTA, to aid in the analyses of the following types of data: A. Large-scale re-sequence data of disease-related genes for discovery of associated and/or causative alleles (GeneSNP-VISTA). B. Massive amounts of ecogenomics data for studying homologous recombination in microbial populations (EcoSNP-VISTA). The main features and capabilities of SNP-VISTA are: 1) mapping of SNPs to gene structure; 2) classification of SNPs, based on their location in the gene, frequency of occurrence in samples and allele composition; 3) clustering, based on user-defined subsets of SNPs, highlighting haplotypes as well as recombinant sequences; 4) integration of protein evolutionary conservation visualization; and 5) display of automatically calculated recombination points that are user-editable. Conclusion The main strength of SNP-VISTA is its graphical interface and use of visual representations, which support interactive exploration and hence better understanding of large-scale SNP data by the user. PMID:16336665

  19. Qualitative differences in memory for vista and environmental spaces are caused by opaque borders, not movement or successive presentation.

    PubMed

    Meilinger, Tobias; Strickrodt, Marianne; Bülthoff, Heinrich H

    2016-10-01

    Two classes of space define our everyday experience within our surrounding environment: vista spaces, such as rooms or streets which can be perceived from one vantage point, and environmental spaces, for example, buildings and towns which are grasped from multiple views acquired during locomotion. However, theories of spatial representations often treat both spaces as equal. The present experiments show that this assumption cannot be upheld. Participants learned exactly the same layout of objects either within a single room or spread across multiple corridors. By utilizing a pointing and a placement task we tested the acquired configurational memory. In Experiment 1 retrieving memory of the object layout acquired in environmental space was affected by the distance of the traveled path and the order in which the objects were learned. In contrast, memory retrieval of objects learned in vista space was not bound to distance and relied on different ordering schemes (e.g., along the layout structure). Furthermore, spatial memory of both spaces differed with respect to the employed reference frame orientation. Environmental space memory was organized along the learning experience rather than layout intrinsic structure. In Experiment 2 participants memorized the object layout presented within the vista space room of Experiment 1 while the learning procedure emulated environmental space learning (movement, successive object presentation). Neither factor rendered similar results as found in environmental space learning. This shows that memory differences between vista and environmental space originated mainly from the spatial compartmentalization which was unique to environmental space learning. Our results suggest that transferring conclusions from findings obtained in vista space to environmental spaces and vice versa should be made with caution. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. 45 CFR 1210.3-1 - Grounds for termination.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-1 Grounds for termination. ACTION may terminate or suspend a Volunteer based on the Volunteer's conduct for the following reasons: (a) Conviction of any criminal offense under Federal, State...

  1. 45 CFR 1210.3-3 - Suspension.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-3 Suspension. (a) The ACTION State Director may suspend a Volunteer for up to 30 days in order... Volunteer. Suspension is not warranted if the State Director determines that sufficient grounds already...

  2. 45 CFR 1210.3-5 - Preparation for appeal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-5 Preparation for appeal. (a) Entitlement to Representation. A Volunteer may be accompanied, represented and advised by a representative of the Volunteer's own choice at any stage of the...

  3. 45 CFR 1210.3-5 - Preparation for appeal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-5 Preparation for appeal. (a) Entitlement to Representation. A Volunteer may be accompanied, represented and advised by a representative of the Volunteer's own choice at any stage of the...

  4. 45 CFR 1210.3-1 - Grounds for termination.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-1 Grounds for termination. ACTION may terminate or suspend a Volunteer based on the Volunteer's conduct for the following reasons: (a) Conviction of any criminal offense under Federal, State...

  5. 45 CFR 1210.3-5 - Preparation for appeal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-5 Preparation for appeal. (a) Entitlement to Representation. A Volunteer may be accompanied, represented and advised by a representative of the Volunteer's own choice at any stage of the...

  6. 45 CFR 1210.3-1 - Grounds for termination.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-1 Grounds for termination. ACTION may terminate or suspend a Volunteer based on the Volunteer's conduct for the following reasons: (a) Conviction of any criminal offense under Federal, State...

  7. 45 CFR 1210.3-3 - Suspension.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-3 Suspension. (a) The ACTION State Director may suspend a Volunteer for up to 30 days in order... Volunteer. Suspension is not warranted if the State Director determines that sufficient grounds already...

  8. 45 CFR 1210.3-3 - Suspension.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-3 Suspension. (a) The ACTION State Director may suspend a Volunteer for up to 30 days in order... Volunteer. Suspension is not warranted if the State Director determines that sufficient grounds already...

  9. 45 CFR 1210.3-5 - Preparation for appeal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-5 Preparation for appeal. (a) Entitlement to Representation. A Volunteer may be accompanied, represented and advised by a representative of the Volunteer's own choice at any stage of the...

  10. 45 CFR 1210.3-1 - Grounds for termination.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-1 Grounds for termination. ACTION may terminate or suspend a Volunteer based on the Volunteer's conduct for the following reasons: (a) Conviction of any criminal offense under Federal, State...

  11. 45 CFR 1210.3-3 - Suspension.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-3 Suspension. (a) The ACTION State Director may suspend a Volunteer for up to 30 days in order... Volunteer. Suspension is not warranted if the State Director determines that sufficient grounds already...

  12. 45 CFR 1210.3-3 - Suspension.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-3 Suspension. (a) The ACTION State Director may suspend a Volunteer for up to 30 days in order... Volunteer. Suspension is not warranted if the State Director determines that sufficient grounds already...

  13. 45 CFR 1210.3-1 - Grounds for termination.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-1 Grounds for termination. ACTION may terminate or suspend a Volunteer based on the Volunteer's conduct for the following reasons: (a) Conviction of any criminal offense under Federal, State...

  14. 45 CFR 1210.3-5 - Preparation for appeal.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-5 Preparation for appeal. (a) Entitlement to Representation. A Volunteer may be accompanied, represented and advised by a representative of the Volunteer's own choice at any stage of the...

  15. 78 FR 58290 - Information Collection; Submission for OMB Review, Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-23

    ... (ICR) entitled VISTA Revision Concept Paper, Application & Budget Instructions for review and approval... received from this Notice. Description: CNCS is seeking approval of the AmeriCorps VISTA Concept Paper... and Community Service. Title: Concept Paper, Application, Budget Instructions. OMB Number: 3045-0038...

  16. SIZE AND COMPOSITION OF VISIBILITY-REDUCING AEROSOLS IN SOUTHWESTERN PLUMES

    EPA Science Inventory

    The southwestern United States desert and mountain areas are generally characterized by very good visibility. Until recent years, scenic vistas of natural landmarks and mountains with a visual range of over 100 miles were common. These vistas have been considered a major resource...

  17. Point-of-care: being a pilot site. Interview by Bill W. Childs.

    PubMed

    Bills, J

    1988-11-01

    Scripps Memorial Hospital in Chula Vista, CA, a 159-bed acute care facility, opened in 1964. The facility was acquired in 1986 by the Scripps Memorial Hospitals family which has acute care facilities in La Jolla, Encinitas and Chula Vista, CA. Prior to 1986, the hospital was in severe financial difficulty and was very near to closing its doors. With the help of an excellent group of employees and medical staff, Scripps Memorial Hospital--Chula Vista has made significant changes in all aspects of the operation. The CliniCom pilot program is only one of many changes the hospital has introduced in its effort to continue its role as a major healthcare provider in the South Bay area of San Diego. Scripps Memorial Hospital--Chula Vista is a very active facility with 85 percent occupancy, 32,000 emergency visits and 4,200 deliveries a year. The hospital is planning an expansion program to meet the current and future needs of the community.

  18. 32 New Exoplanets Found

    NASA Astrophysics Data System (ADS)

    2009-10-01

    oday, at an international ESO/CAUP exoplanet conference in Porto, the team who built the High Accuracy Radial Velocity Planet Searcher, better known as HARPS, the spectrograph for ESO's 3.6-metre telescope, reports on the incredible discovery of some 32 new exoplanets, cementing HARPS's position as the world's foremost exoplanet hunter. This result also increases the number of known low-mass planets by an impressive 30%. Over the past five years HARPS has spotted more than 75 of the roughly 400 or so exoplanets now known. "HARPS is a unique, extremely high precision instrument that is ideal for discovering alien worlds," says Stéphane Udry, who made the announcement. "We have now completed our initial five-year programme, which has succeeded well beyond our expectations." The latest batch of exoplanets announced today comprises no less than 32 new discoveries. Including these new results, data from HARPS have led to the discovery of more than 75 exoplanets in 30 different planetary systems. In particular, thanks to its amazing precision, the search for small planets, those with a mass of a few times that of the Earth - known as super-Earths and Neptune-like planets - has been given a dramatic boost. HARPS has facilitated the discovery of 24 of the 28 planets known with masses below 20 Earth masses. As with the previously detected super-Earths, most of the new low-mass candidates reside in multi-planet systems, with up to five planets per system. In 1999, ESO launched a call for opportunities to build a high resolution, extremely precise spectrograph for the ESO 3.6-metre telescope at La Silla, Chile. Michel Mayor, from the Geneva Observatory, led a consortium to build HARPS, which was installed in 2003 and was soon able to measure the back-and-forward motions of stars by detecting small changes in a star's radial velocity - as small as 3.5 km/hour, a steady walking pace. Such a precision is crucial for the discovery of exoplanets and the radial velocity method, which detects small changes in the radial velocity of a star as it wobbles slightly under the gentle gravitational pull from an (unseen) exoplanet, has been most prolific method in the search for exoplanets. In return for building the instrument, the HARPS consortium was granted 100 observing nights per year during a five-year period to carry out one of the most ambitious systematic searches for exoplanets so far implemented worldwide by repeatedly measuring the radial velocities of hundreds of stars that may harbour planetary systems. The programme soon proved very successful. Using HARPS, Mayor's team discovered - among others - in 2004, the first super-Earth (around µ Ara; in 2006, the trio of Neptunes around HD 69830; in 2007, Gliese 581d, the first super Earth in the habitable zone of a small star (eso0722); and in 2009, the lightest exoplanet so far detected around a normal star, Gliese 581e (eso0915). More recently, they found a potentially lava-covered world, with density similar to that of the Earth's (eso0933). "These observations have given astronomers a great insight into the diversity of planetary systems and help us understand how they can form," says team member Nuno Santos. The HARPS consortium was very careful in their selection of targets, with several sub-programmes aimed at looking for planets around solar-like stars, low-mass dwarf stars, or stars with a lower metal content than the Sun. The number of exoplanets known around low-mass stars - so-called M dwarfs - has also dramatically increased, including a handful of super Earths and a few giant planets challenging planetary formation theory. "By targeting M dwarfs and harnessing the precision of HARPS we have been able to search for exoplanets in the mass and temperature regime of super-Earths, some even close to or inside the habitable zone around the star," says co-author Xavier Bonfils. The team found three candidate exoplanets around stars that are metal-deficient. Such stars are thought to be less favourable for the formation of planets, which form in the metal-rich disc around the young star. However, planets up to several Jupiter masses have been found orbiting metal-deficient stars, setting an important constraint for planet formation models. Although the first phase of the observing programme is now officially concluded, the team will pursue their effort with two ESO Large Programmes looking for super-Earths around solar-type stars and M dwarfs and some new announcements are already foreseen in the coming months, based on the last five years of measurements. There is no doubt that HARPS will continue to lead the field of exoplanet discoveries, especially pushing towards the detection of Earth-type planets. More information This discovery was announced today at the ESO/CAUP conference "Towards Other Earths: perspectives and limitations in the ELT era", taking place in Porto, Portugal, on 19-23 October 2009. This conference discusses the new generation of instruments and telescopes that is now being conceived and built by different teams around the world to allow the discovery of other Earths, especially for the European Extremely Large Telescope (E-ELT). The new planets are simultaneously presented by Michel Mayor at the international symposium "Heirs of Galileo: Frontiers of Astronomy" in Madrid, Spain. This research was presented in a series of eight papers submitted - or soon to be submitted - to the Astronomy and Astrophysics journal. The team is composed of * Geneva Observatory: M. Mayor, S. Udry, D. Queloz, F. Pepe, C. Lovis, D. Ségransan, X. Bonfils * LAOG Grenoble: X. Delfosse, T. Forveille, X. Bonfils, C. Perrier * CAUP Porto: N.C. Santos * ESO: G. Lo Curto, D. Naef * University of Bern: W. Benz, C. Mordasini * IAP Paris: F. Bouchy, G. Hébrard * LAM Marseille: C. Moutou * Service d'aéronomie, Paris: J.-L. Bertaux ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky". * The web page of the conference "Towards Other Earths: perspectives and limitations in the ELT era" is at http://www.astro.up.pt/investigacao/conferencias/toe2009/

  19. Titanic Weather Forecasting

    NASA Astrophysics Data System (ADS)

    2004-04-01

    New Detailed VLT Images of Saturn's Largest Moon Optimizing space missions Titan, the largest moon of Saturn was discovered by Dutch astronomer Christian Huygens in 1655 and certainly deserves its name. With a diameter of no less than 5,150 km, it is larger than Mercury and twice as large as Pluto. It is unique in having a hazy atmosphere of nitrogen, methane and oily hydrocarbons. Although it was explored in some detail by the NASA Voyager missions, many aspects of the atmosphere and surface still remain unknown. Thus, the existence of seasonal or diurnal phenomena, the presence of clouds, the surface composition and topography are still under debate. There have even been speculations that some kind of primitive life (now possibly extinct) may be found on Titan. Titan is the main target of the NASA/ESA Cassini/Huygens mission, launched in 1997 and scheduled to arrive at Saturn on July 1, 2004. The ESA Huygens probe is designed to enter the atmosphere of Titan, and to descend by parachute to the surface. Ground-based observations are essential to optimize the return of this space mission, because they will complement the information gained from space and add confidence to the interpretation of the data. Hence, the advent of the adaptive optics system NAOS-CONICA (NACO) [1] in combination with ESO's Very Large Telescope (VLT) at the Paranal Observatory in Chile now offers a unique opportunity to study the resolved disc of Titan with high sensitivity and increased spatial resolution. Adaptive Optics (AO) systems work by means of a computer-controlled deformable mirror that counteracts the image distortion induced by atmospheric turbulence. It is based on real-time optical corrections computed from image data obtained by a special camera at very high speed, many hundreds of times each second (see e.g. ESO Press Release 25/01 , ESO PR Photos 04a-c/02, ESO PR Photos 19a-c/02, ESO PR Photos 21a-c/02, ESO Press Release 17/02, and ESO Press Release 26/03 for earlier NACO images, and ESO Press Release 11/03 for MACAO-VLTI results.) The southern smile ESO PR Photo 08a/04 ESO PR Photo 08a/04 Images of Titan on November 20, 25 and 26, 2002 Through Five Filters (VLT YEPUN + NACO) [Preview - JPEG: 522 x 400 pix - 40k] [Normal - JPEG: 1043 x 800 pix - 340k] [Hires - JPEG: 2875 x 2205 pix - 1.2M] Caption: ESO PR Photo 08a/04 shows Titan (apparent visual magnitude 8.05, apparent diameter 0.87 arcsec) as observed with the NAOS/CONICA instrument at VLT Yepun (Paranal Observatory, Chile) on November 20, 25 and 26, 2003, between 6.00 UT and 9.00 UT. The median seeing values were 1.1 arcsec and 1.5 arcsec respectively for the 20th and 25th. Deconvoluted ("sharpened") images of Titan are shown through 5 different narrow-band filters - they allow to probe in some detail structures at different altitudes and on the surface. Depending on the filter, the integration time varies from 10 to 100 seconds. While Titan shows its leading hemisphere (i.e. the one observed when Titan moves towards us) on Nov. 20, the trailing side (i.e the one we see when Titan moves away from us in its course around Saturn) - which displays less bright surface features - is observed on the last two dates. ESO PR Photo 08b/04 ESO PR Photo 08b/04 Titan Observed Through Nine Different Filters on November 26, 2002 [Preview - JPEG: 480 x 400 pix - 36k] [Normal - JPEG: 960 x 800 pix - 284k] Caption: ESO PR Photo 08b/04: Images of Titan taken on November 26, 2002 through nine different filters to probe different altitudes, ranging from the stratosphere to the surface. On this night, a stable "seeing" (image quality before adaptive optics correction) of 0.9 arcsec allowed the astronomers to attain the diffraction limit of the telescope (0.032 arcsec resolution). Due to these good observing conditions, Titan's trailing hemisphere was observed with contrasts of about 40%, allowing the detection of several bright features on this surface region, once thought to be quite dark and featureless. ESO PR Photo 08c/04 ESO PR Photo 08c/04 Titan Surface Projections [Preview - JPEG: 601 x 400 pix - 64k] [Normal - JPEG: 1201 x 800 pix - 544k] Caption: ESO PR Photo 08c/04 : Titan images obtained with NACO on November 26th, 2002. Left: Titan's surface projection on the trailing hemisphere as observed at 1.3 μm, revealing a complex brightness structure thanks to the high image contrast of about 40%. Right: a new, possibly meteorological, phenomenon observed at 2.12 μm in Titan's atmosphere, in the form of a bright feature revolving around the South Pole. A team of French astronomers [2] have recently used the NACO state-of-the-art adaptive optics system on the fourth 8.2-m VLT unit telescope, Yepun, to map the surface of Titan by means of near-infrared images and to search for changes in the dense atmosphere. These extraordinary images have a nominal resolution of 1/30th arcsec and show details of the order of 200 km on the surface of Titan. To provide the best possible views, the raw data from the instrument were subjected to deconvolution (image sharpening). Images of Titan were obtained through 9 narrow-band filters, sampling near-infrared wavelengths with large variations in methane opacity. This permits sounding of different altitudes ranging from the stratosphere to the surface. Titan harbours at 1.24 and 2.12 μm a "southern smile", that is a north-south asymmetry, while the opposite situation is observed with filters probing higher altitudes, such as 1.64, 1.75 and 2.17 μm. A high-contrast bright feature is observed at the South Pole and is apparently caused by a phenomenon in the atmosphere, at an altitude below 140 km or so. This feature was found to change its location on the images from one side of the south polar axis to the other during the week of observations. Outlook An additional series of NACO observations of Titan is foreseen later this month (April 2004). These will be a great asset in helping optimize the return of the Cassini/Huygens mission. Several of the instruments aboard the spacecraft depend on such ground-based data to better infer the properties of Titan's surface and lower atmosphere. Although the astronomers have yet to model and interpret the physical and geophysical phenomena now observed and to produce a full cartography of the surface, this first analysis provides a clear demonstration of the marvellous capabilities of the NACO imaging system. More examples of the exciting science possible with this facility will be found in a series of five papers published today in the European research journal Astronomy & Astrophysics (Vol. 47, L1 to L24).

  20. Free from the Atmosphere

    NASA Astrophysics Data System (ADS)

    2007-06-01

    An artificial, laser-fed star now shines regularly over the sky of Paranal, home of ESO's Very Large Telescope, one of the world's most advanced large ground-based telescopes. This system provides assistance for the adaptive optics instruments on the VLT and so allows astronomers to obtain images free from the blurring effect of the atmosphere, regardless of the brightness and the location on the sky of the observed target. Now that it is routinely offered by the observatory, the skies seem much sharper to astronomers. In order to counteract the blurring effect of Earth's atmosphere, astronomers use the adaptive optics technique. This requires, however, a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed. To surmount this limitation, astronomers now use at Paranal a powerful laser that creates an artificial star, where and when they need it. Two of the Adaptive Optics (AO) science instruments at the Paranal observatory, NACO and SINFONI, have been upgraded to work with the recently installed Laser Guide Star (LGS; see ESO 07/06) and have delivered their first scientific results. This achievement opens astronomers' access to a wealth of new targets to be studied under the sharp eyes of AO. "These unique results underline the advantage of using a Laser Guide Star with Adaptive Optics instruments, since they could not be obtained with Natural Guide Stars," says Norbert Hubin, head of the Adaptive Optics group at ESO. "This is also a crucial milestone towards the multi-laser systems ESO is designing for the VLT and the future E-ELT" (see e.g. ESO 19/07). ESO PR Photo 27a/07 ESO PR Photo 27a/07 An Ultra Luminous Merger (NACO-LGS/VLT) The Laser Guide Star System installed at Paranal uses the PARSEC dye laser developed by MPE-Garching and MPIA-Heidelberg, while the launch telescope and the laser laboratory was developed by ESO. "It is great to see the whole system working so well together," emphasises Richard Davies, project manager of the PARSEC laser. "To test the laser guide star adaptive optics system to its limits, and even beyond, we observed a number of galaxies, ranging from a close neighbour to one that is seen when the universe was very young," explains Markus Kasper, the NACO Instrument Scientist at ESO. The first objects that were observed are interacting galaxies. The images obtained reveal exquisite details, and have a resolution comparable to that of the Hubble Space Telescope. In one case, it was possible to derive for the first time the motion of the stars in two merging galaxies, showing that there are two counter-rotating discs of stars. "The enhanced resolution that laser guide star adaptive optics provides is certain to bring important new discoveries in this exciting area," says Davies ESO PR Photo 27c/07 ESO PR Photo 27c/07 Merging System Arp 220 (SINFONI-LGS/VLT) The astronomers then turned the laser to a galaxy called K20-ID5 which is at a redshift of 2.2 - we are seeing this galaxy when the universe was less than 1/3 of its current age. The image obtained with NACO shows that the stars are concentrated in a much more compact region than the gas. "These observations are both remarkable and exciting," declares Kasper. "They are the first time that it has been possible to trace in such detail the distributions of both the stars and the gas at an epoch where we are witnessing the formation of galaxies similar to our own Milky Way." At the opposite extreme, much nearer to home, LGS-AO observations were made of the active galaxy NGC 4945. The new LGS observations with NACO resolved the central parts into a multitude of individual stars. "It is in galaxies such as these where we can really quantify the star formation history in the vicinity of the nucleus, that we can start to piece together the puzzle of how gas is accreted onto the supermassive black hole, and understand how and when these black holes light up so brightly," says Davies. ESO PR Photo 27e/07 ESO PR Photo 27e/07 Active Galaxy NGC 4945 (NACO-LGS/VLT) Still closer to home, the LGS system can also be applied to solar system objects, such as asteroids or satellites, but also to the study of particular regions of spatially extended bodies like the polar regions of giant planets, where aurora activity is concentrated. During their science verification, the scientists turned the SINFONI instrument with the LGS to a Trans-Neptunian Object, 2003 EL 61. The high image contrast and sensitivity obtained with the use of the LGS mode permit the detection of the two faint satellites known to orbit the TNO. "From such observations one can study the chemical composition of the surface material of the TNO and its satellites (mainly crystalline water ice), estimate their surface properties and constrain their internal structure," explains Christophe Dumas, from ESO. The VLT Laser Guide System is the result of a collaborative work by a team of scientists and engineers from ESO and the Max Planck Institutes for Extraterrestrial Physics in Garching and for Astronomy in Heidelberg, Germany. NACO was built by a Consortium of French and German institutes and ESO. SINFONI was built by a Consortium of German and Dutch Institutes and ESO. More Information Normally, the achievable image sharpness of a ground-based telescope is limited by the effect of atmospheric turbulence. This drawback can be surmounted with adaptive optics, allowing the telescope to produce images that are as sharp as if taken from space. This means that finer details in astronomical objects can be studied, and also that fainter objects can be observed. In order to work, adaptive optics needs a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed to a few percent only. To overcome this limitation, astronomers use a powerful laser that creates an artificial star, where and when they need it. The laser beam takes advantage of the layer of sodium atoms that is present in Earth's atmosphere at an altitude of 90 kilometres. Shining at a well-defined wavelength the laser makes it glow. The laser is launched from Yepun, the fourth 8.2-m Unit Telescope of the Very Large Telescope, producing an artificial star. Despite this star being about 20 times fainter than the faintest star that can be seen with the unaided eye, it is bright enough for the adaptive optics to measure and correct the atmosphere's blurring effect. Compared to a normal star, this artificial star has some differing properties that the associated Laser Guide Star (LGS) Adaptive Optics (AO) system has to be able to cope with. A press release, in English and German, is also available from the Max-Planck Institute.

  1. Back on Track

    NASA Astrophysics Data System (ADS)

    2007-06-01

    An artificial, laser-fed star now shines regularly over the sky of Paranal, home of ESO's Very Large Telescope, one of the world's most advanced large ground-based telescopes. This system provides assistance for the adaptive optics instruments on the VLT and so allows astronomers to obtain images free from the blurring effect of the atmosphere, regardless of the brightness and the location on the sky of the observed target. Now that it is routinely offered by the observatory, the skies seem much sharper to astronomers. In order to counteract the blurring effect of Earth's atmosphere, astronomers use the adaptive optics technique. This requires, however, a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed. To surmount this limitation, astronomers now use at Paranal a powerful laser that creates an artificial star, where and when they need it. Two of the Adaptive Optics (AO) science instruments at the Paranal observatory, NACO and SINFONI, have been upgraded to work with the recently installed Laser Guide Star (LGS; see ESO 07/06) and have delivered their first scientific results. This achievement opens astronomers' access to a wealth of new targets to be studied under the sharp eyes of AO. "These unique results underline the advantage of using a Laser Guide Star with Adaptive Optics instruments, since they could not be obtained with Natural Guide Stars," says Norbert Hubin, head of the Adaptive Optics group at ESO. "This is also a crucial milestone towards the multi-laser systems ESO is designing for the VLT and the future E-ELT" (see e.g. ESO 19/07). ESO PR Photo 27a/07 ESO PR Photo 27a/07 An Ultra Luminous Merger (NACO-LGS/VLT) The Laser Guide Star System installed at Paranal uses the PARSEC dye laser developed by MPE-Garching and MPIA-Heidelberg, while the launch telescope and the laser laboratory was developed by ESO. "It is great to see the whole system working so well together," emphasises Richard Davies, project manager of the PARSEC laser. "To test the laser guide star adaptive optics system to its limits, and even beyond, we observed a number of galaxies, ranging from a close neighbour to one that is seen when the universe was very young," explains Markus Kasper, the NACO Instrument Scientist at ESO. The first objects that were observed are interacting galaxies. The images obtained reveal exquisite details, and have a resolution comparable to that of the Hubble Space Telescope. In one case, it was possible to derive for the first time the motion of the stars in two merging galaxies, showing that there are two counter-rotating discs of stars. "The enhanced resolution that laser guide star adaptive optics provides is certain to bring important new discoveries in this exciting area," says Davies ESO PR Photo 27c/07 ESO PR Photo 27c/07 Merging System Arp 220 (SINFONI-LGS/VLT) The astronomers then turned the laser to a galaxy called K20-ID5 which is at a redshift of 2.2 - we are seeing this galaxy when the universe was less than 1/3 of its current age. The image obtained with NACO shows that the stars are concentrated in a much more compact region than the gas. "These observations are both remarkable and exciting," declares Kasper. "They are the first time that it has been possible to trace in such detail the distributions of both the stars and the gas at an epoch where we are witnessing the formation of galaxies similar to our own Milky Way." At the opposite extreme, much nearer to home, LGS-AO observations were made of the active galaxy NGC 4945. The new LGS observations with NACO resolved the central parts into a multitude of individual stars. "It is in galaxies such as these where we can really quantify the star formation history in the vicinity of the nucleus, that we can start to piece together the puzzle of how gas is accreted onto the supermassive black hole, and understand how and when these black holes light up so brightly," says Davies. ESO PR Photo 27e/07 ESO PR Photo 27e/07 Active Galaxy NGC 4945 (NACO-LGS/VLT) Still closer to home, the LGS system can also be applied to solar system objects, such as asteroids or satellites, but also to the study of particular regions of spatially extended bodies like the polar regions of giant planets, where aurora activity is concentrated. During their science verification, the scientists turned the SINFONI instrument with the LGS to a Trans-Neptunian Object, 2003 EL 61. The high image contrast and sensitivity obtained with the use of the LGS mode permit the detection of the two faint satellites known to orbit the TNO. "From such observations one can study the chemical composition of the surface material of the TNO and its satellites (mainly crystalline water ice), estimate their surface properties and constrain their internal structure," explains Christophe Dumas, from ESO. The VLT Laser Guide System is the result of a collaborative work by a team of scientists and engineers from ESO and the Max Planck Institutes for Extraterrestrial Physics in Garching and for Astronomy in Heidelberg, Germany. NACO was built by a Consortium of French and German institutes and ESO. SINFONI was built by a Consortium of German and Dutch Institutes and ESO. More Information Normally, the achievable image sharpness of a ground-based telescope is limited by the effect of atmospheric turbulence. This drawback can be surmounted with adaptive optics, allowing the telescope to produce images that are as sharp as if taken from space. This means that finer details in astronomical objects can be studied, and also that fainter objects can be observed. In order to work, adaptive optics needs a nearby reference star that has to be relatively bright, thereby limiting the area of the sky that can be surveyed to a few percent only. To overcome this limitation, astronomers use a powerful laser that creates an artificial star, where and when they need it. The laser beam takes advantage of the layer of sodium atoms that is present in Earth's atmosphere at an altitude of 90 kilometres. Shining at a well-defined wavelength the laser makes it glow. The laser is launched from Yepun, the fourth 8.2-m Unit Telescope of the Very Large Telescope, producing an artificial star. Despite this star being about 20 times fainter than the faintest star that can be seen with the unaided eye, it is bright enough for the adaptive optics to measure and correct the atmosphere's blurring effect. Compared to a normal star, this artificial star has some differing properties that the associated Laser Guide Star (LGS) Adaptive Optics (AO) system has to be able to cope with. A press release, in English and German, is also available from the Max-Planck Institute.

  2. Comet Tempel 1 Went Back to Sleep

    NASA Astrophysics Data System (ADS)

    2005-07-01

    Astronomers Having Used ESO Telescopes Start Analysing Unique Dataset on the Comet Following the Deep Impact Mission Ten days after part of the Deep Impact spacecraft plunged onto Comet Tempel 1 with the aim to create a crater and expose pristine material from beneath the surface, astronomers are back in the ESO Offices in Santiago, after more than a week of observing at the ESO La Silla Paranal Observatory. In this unprecedented observing campaign - among the most ambitious ever conducted by a single observatory - the astronomers have collected a large amount of invaluable data on this comet. The astronomers have now started the lengthy process of data reduction and analysis. Being all together in a single place, and in close contacts with the space mission' scientific team, they will try to assemble a clear picture of the comet and of the impact. The ESO observations were part of a worldwide campaign to observe this unique experiment. During the campaign, ESO was connected by phone, email, and videoconference with colleagues in all major observatories worldwide, and data were freely exchanged between the different groups. This unique collaborative spirit provides astronomers with data taken almost around the clock during several days and this, with the largest variety of instruments, making the Deep Impact observing campaign one of the most successful of its kind, and thereby, ensuring the greatest scientific outcome. From the current analysis, it appears most likely that the impactor did not create a large new zone of activity and may have failed to liberate a large quantity of pristine material from beneath the surface. ESO PR Photo 22/05 ESO PR Photo 22/05 Evolution of Comet Tempel 1 (FORS2/VLT) [Preview - JPEG: 400 x 701 pix - 128k] [Normal - JPEG: 800 x 1401 pix - 357k] ESO PR Photo 22/05 Animated Gif Caption: ESO PR Photo 22/05 shows the evolution of Comet Tempel 1 as observed with the FORS2 instrument on Antu (VLT). The images obtained at the VLT show that after the impact, the morphology of Comet Tempel 1 had changed, with the appearance of a new plume-like structure, produced by matter being ejected with a speed of about 700 to 1000 km/h (see ESO PR Photo 23/05). This structure, however, diffused away in the following days, being more and more diluted and less visible, the comet taking again the appearance it had before the impact. Further images obtained with, among others, the adaptive optics NACO instrument on the Very Large Telescope, showed the same jets that were visible prior to impact, demonstrating that the comet activity survived widely unaffected by the spacecraft crash. The study of the gas in Comet Tempel 1 (see "Looking for Molecules"), made with UVES on Kueyen (UT2 of the VLT), reveals a small flux increase the first night following the impact. At that time, more than 17 hours after the impact, the ejected matter was fading away but still measurable thanks to the large light collecting power of the VLT. The data accumulated during 10 nights around the impact have provided the astronomers with the best ever time series of optical spectra of a Jupiter Family comet, with a total of more than 40 hours of exposure time. This unique data set has already allowed the astronomers to characterize the normal gas activity of the comet and also to detect, to their own surprise, an active region. This active region is not related to the impact as it was also detected in data collected in June. It shows up about every 41 hours, the rotation period of the comet nucleus determined by the Deep Impact spacecraft. Exciting measurements of the detailed chemical composition (such as the isotopic ratios) of the material released by the impact as well as the one coming from that source will be performed by the astronomers in the next weeks and months. Further spectropolarimetric observations with FORS1 have confirmed the surface of the comet to be rather evolved - as expected - but more importantly, that the dust is not coming from beneath the surface. These data constitute another unique high-quality data set on comets. Comet Tempel 1 may thus be back to sleep but work only starts for the astronomers. More information On July 4, 2005, the NASA Deep Impact spacecraft launched a 360 kg impactor onto Comet 9P/Tempel 1. This experiment is seen by many as the first opportunity to study the crust and the interior of a comet, revealing new information on the early phases of the Solar System. ESO actively participated in pre- and post-impact observations. Apart from a long-term monitoring of the comet, for two days before and six days after, all major ESO telescopes - i.e. the four Unit Telescopes of the Very Large Telescope Array at Paranal, as well as the 3.6m, 3.5m NTT and the 2.2m ESO/MPG telescopes at La Silla - have been observing Comet 9P/Tempel 1, in a coordinated fashion and in very close collaboration with the space mission' scientific team. The simultaneous use of all ESO telescopes with all together 10 instruments has an enormous potential, since it allows for observation of the comet at different wavelengths in the visible and infrared by imaging, spectroscopy and polarimetry. Such multiplexing capabilities of the instrumentation do not exist at any other observatory in the world. More information is available at the dedicated Deep Impact at ESO web site.

  3. The Paranal Metamorphosis

    NASA Astrophysics Data System (ADS)

    2000-12-01

    Some years ago, the Paranal mountain was still a remote and inhospitable site, some 12 km from the Pacific Coast in the dry Atacama desert in northern Chile. Few aircraft passengers flying along that coast would notice anything particular about this peak, except perhaps that it was one of the tallest in the steep coastal mountain range. Already in the early 1960's, pioneer astronomers crossed this desolate region in search of suitable sites for future observatories. One of them, Jürgen Stock , did notice the Paranal peak as a possible candidate. However, without any water in this extremely dry area, how could any people, even hardy scientists, ever live up there? He then went on to discover La Silla, where ESO decided to build its first observatory in 1964. ESO presence at Paranal from 1983 In the beginning of the 1980's, when the main construction phase at La Silla was over, ESO launched a thorough search for the best possible site for the next-generation telescope, already then known as the "Very Large Telescope", or VLT. During this campaign, the Paranal mountain was visited by a small search troupe from this organisation, including the ESO Director General (1975 - 1987), Lo Woltjer . The first test measurements indicated a great potential for astronomical observations, both in term of clear nights and low humidity, the latter being particularly important for infrared observations. From 1983, ESO maintained a small site testing station at the top of Paranal. The meteorological conditions were registered around the clock and the atmospheric transparency and stability were recorded each night. At that time, the mountain Vizcachas, a site near ESO's first observatory, La Silla, and some 600 km further south, was also considered a possible site for the VLT. The data from the two sites were therefore carefully compared over a period of several years. Paranal becomes the site for the VLT Following the decision in December 1987 by the ESO Council to embark upon the VLT Project (with Massimo Tarenghi as Project Manager), Paranal was chosen as the site in 1991. In the meantime, the Chilean Government had resolved to donate an area of approx. 700 km 2 around this mountain to ESO, and construction work started the same year. The left photo shows Paranal at this stage. The development of Paranal included much blasting and heavy earthwork; about 350,000 m 3 of rock had to be moved to achieve a flat platform of sufficient size to house the various components of the VLT and, in particular, the spacious VLT Interferometer. The situation, right after this work, is depicted in the middle photo from 1994. An operational observatory The construction at Paranal progressed at high speed. It is hard to believe that just four years later, "First Light" was achieved with the first 8.2-m telescope, ANTU, in May 1998. Then followed KUEYEN (March 1999), MELIPAL (January 2000) and YEPUN (September 2000). The first two telescopes have now been "taken over" by the astronomers and Paranal has become an operational observatory with Roberto Gilmozzi as Director. Large numbers of scientists in the ESO member countries, and even more within international collaborations, are busy producing exciting research results, now increasingly visible in the world's professional journals and some of which are announced in the ESO Press Releases. The other two will soon be equipped with high-quality astronomical instruments; the first will be VIMOS at MELIPAL in the beginning of 2001. Both telescopes will become fully available to the astronomical community in the course of 2001. And now the VLT Interferometer... The next decisive step will happen already in early 2001, when the VLT Interferometer is expected to see "First Fringes", the equivalent of "First Light" for this type of facility. This is when two small "siderostats" on the Paranal platform will track and capture the light from one and the same (bright) star, directing the two beams towards the underground Interferometric Laboratory via a series of intermediate mirrors. Here, the critical technical elements are the "delay lines" in the Interferometric Tunnel, cf. ESO Press Photos 26a-e/00.They have already undergone the first tests with very positive results, so the ESO staff is in a confident mood. Later in 2001, two of the 8.2-m Unit Telescopes will be coupled and interferometric test observations will be made on faint celestial objects. In the next years, the three movable 1.8-m Auxiliary Telescopes will be installed on the Paranal "railroad" and the VLT Interferometer will progressively enter into full operation. From a lonely mountain top to the world's foremost optical/infrared astronomical observatory, Paranal has indeed come a long way! This is the caption to ESO PR Photo 36/00 . It may be reproduced, if credit is given to the European Southern Observatory.

  4. The Gaia-ESO Survey: dynamics of ionized and neutral gas in the Lagoon nebula (M 8)

    NASA Astrophysics Data System (ADS)

    Damiani, F.; Bonito, R.; Prisinzano, L.; Zwitter, T.; Bayo, A.; Kalari, V.; Jiménez-Esteban, F. M.; Costado, M. T.; Jofré, P.; Randich, S.; Flaccomio, E.; Lanzafame, A. C.; Lardo, C.; Morbidelli, L.; Zaggia, S.

    2017-08-01

    Aims: We present a spectroscopic study of the dynamics of the ionized and neutral gas throughout the Lagoon nebula (M 8), using VLT-FLAMES data from the Gaia-ESO Survey. The new data permit exploration of the physical connections between the nebular gas and the stellar population of the associated star cluster NGC 6530. Methods: We characterized through spectral fitting emission lines of Hα, [N II] and [S II] doublets, [O III], and absorption lines of sodium D doublet, using data from the FLAMES-Giraffe and UVES spectrographs, on more than 1000 sightlines toward the entire face of the Lagoon nebula. Gas temperatures are derived from line-width comparisons, densities from the [S II] doublet ratio, and ionization parameter from Hα/[N II] ratio. Although doubly-peaked emission profiles are rarely found, line asymmetries often imply multiple velocity components along the same line of sight. This is especially true for the sodium absorption, and for the [O III] lines. Results: Spatial maps for density and ionization are derived, and compared to other known properties of the nebula and of its massive stars 9 Sgr, Herschel 36 and HD 165052 which are confirmed to provide most of the ionizing flux. The detailed velocity fields across the nebula show several expanding shells, related to the cluster NGC 6530, the O stars 9 Sgr and Herschel 36, and the massive protostar M 8East-IR. The origins of kinematical expansion and ionization of the NGC 6530 shell appear to be different. We are able to put constrains on the line-of-sight (relative or absolute) distances between some of these objects and the molecular cloud. The data show that the large obscuring band running through the middle of the nebula is being compressed by both sides, which might explain its enhanced density. We also find an unexplained large-scale velocity gradient across the entire nebula. At larger distances, the transition from ionized to neutral gas is studied using the sodium lines. Based on observations collected with the FLAMES spectrograph at VLT/UT2 telescope (Paranal Observatory, ESO, Chile), for the Gaia-ESO Large Public Survey (program 188.B-3002).Full Tables A.1 and A.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/604/A135

  5. Therapeutical solutions for non-malignant eso-bronchial fistulas

    PubMed Central

    Galie, N; Grigorie, V

    2009-01-01

    We assessed the efficacy of surgical treatment for the patients with eso-respiratory fistulas. The following cases revealed the anesthesic and surgical difficulties, and also intraoperative and postoperative complications that can occur when the esophageal contents get into the respiratory system. In these situations, therapy must be adapted according to fistula’s topography and etiology, and also to patients’ biological conditions. PMID:20108499

  6. J, H, K Spectro-Interferometry of the Mira Variable S Orionis

    DTIC Science & Technology

    2008-01-01

    the Mira variable S Orionis M. Wittkowski1, D. A. Boboltz2, T. Driebe3, J.-B. Le Bouquin4 F. Millour3 K. Ohnaka3, and M. Scholz5,6 1 ESO, Karl ... Schwarzschild -Str. 2, 85748 Garching bei München, Germany e-mail: mwittkow@eso.org 2 US Naval Observatory, 3450 Massachusetts Avenue, NW, Washington, DC

  7. 45 CFR 1210.3-11 - Disposition of termination and appeal files.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-11 Disposition of termination and appeal files. All... successful termination appeal may be made part of, or included in, a Volunteer's official folder. ...

  8. 45 CFR 1210.3-11 - Disposition of termination and appeal files.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-11 Disposition of termination and appeal files. All... successful termination appeal may be made part of, or included in, a Volunteer's official folder. ...

  9. 45 CFR 1210.3-8 - Termination file and Examiner's report.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-8 Termination file and Examiner's report. (a) Preparation and Content... part of the termination file. (b) Review by Volunteer. On completion of the termination file, the...

  10. 45 CFR 1210.3-11 - Disposition of termination and appeal files.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-11 Disposition of termination and appeal files. All... successful termination appeal may be made part of, or included in, a Volunteer's official folder. ...

  11. 45 CFR 1210.3-8 - Termination file and Examiner's report.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-8 Termination file and Examiner's report. (a) Preparation and Content... part of the termination file. (b) Review by Volunteer. On completion of the termination file, the...

  12. 45 CFR 1210.3-11 - Disposition of termination and appeal files.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-11 Disposition of termination and appeal files. All... successful termination appeal may be made part of, or included in, a Volunteer's official folder. ...

  13. 45 CFR 1210.3-11 - Disposition of termination and appeal files.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... FOR NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-11 Disposition of termination and appeal files. All... successful termination appeal may be made part of, or included in, a Volunteer's official folder. ...

  14. 45 CFR 1210.3-8 - Termination file and Examiner's report.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-8 Termination file and Examiner's report. (a) Preparation and Content... part of the termination file. (b) Review by Volunteer. On completion of the termination file, the...

  15. 45 CFR 1210.3-8 - Termination file and Examiner's report.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... NATIONAL AND COMMUNITY SERVICE VISTA TRAINEE DESELECTION AND VOLUNTEER EARLY TERMINATION PROCEDURES VISTA Volunteer Early Termination § 1210.3-8 Termination file and Examiner's report. (a) Preparation and Content... part of the termination file. (b) Review by Volunteer. On completion of the termination file, the...

  16. Cosmic Spider is Good Mother

    NASA Astrophysics Data System (ADS)

    2006-04-01

    Hanging above the Large Magellanic Cloud (LMC) - one of our closest galaxies - in what some describe as a frightening sight, the Tarantula nebula is worth looking at in detail. Also designated 30 Doradus or NGC 2070, the nebula owes its name to the arrangement of its brightest patches of nebulosity that somewhat resemble the legs of a spider. This name, of the biggest spiders on Earth, is also very fitting in view of the gigantic proportions of the celestial nebula - it measures nearly 1,000 light years across! ESO PR Photo 11/06 ESO PR Photo 13b/06 Tarantula's Central Cluster, R136 The Tarantula nebula is the largest emission nebula in the sky and also one of the largest known star-forming regions in all the Milky Way's neighbouring galaxies. Located about 170,000 light-years away, in the southern constellation Dorado (The Swordfish), it can be seen with the unaided eye. As shown in this image obtained with the FORS1 multi-mode instrument on ESO's Very Large Telescope, its structure is fascinatingly complex, with a large number of bright arcs and apparently dark areas in between. Inside the giant emission nebula lies a cluster of young, massive and hot stars, denoted R 136, whose intense radiation and strong winds make the nebula glow, shaping it into the form of a giant arachnid. The cluster is about 2 to 3 million years old, that is, almost from 'yesterday' in the 13.7 billion year history of the Universe. Several of the brighter members in the immediate surroundings of the dense cluster are among the most massive stars known, with masses well above 50 times the mass of our Sun. The cluster itself contains more than 200 massive stars. ESO PR Photo 11/06 ESO PR Photo 13c/06 The Stellar Cluster Hodge 301 In the upper right of the image, another cluster of bright, massive stars is seen. Known to astronomers as Hodge 301, it is about 20 million years old, or about 10 times older than R136. The more massive stars of Hodge 301 have therefore already exploded as supernovae, blasting material away at tremendous speed and creating a web of entangled filaments. More explosions will come soon - in astronomical terms - as three red supergiants are indeed present in Hodge 301 that will end their life in the gigantic firework of a supernova within the next million years. ESO PR Photo 13d/06 ESO PR Photo 13d/06 Gas Pillars in Tarantula Nebula While some stars are dying in this spidery cosmic inferno, others are yet to be born. Some structures, seen in the lower part of the image, have the appearance of elephant trunks, not unlike the famous and fertile "Pillars of Creation" at the top of which stars are forming. In fact, it seems that stars form all over the place in this gigantic stellar nursery and in all possible masses, at least down to the mass of our Sun. In some places, in a marvellous recycling process, it is the extreme radiation from the hot and massive stars and the shocks created by the supernova explosions that has compressed the gas to such extent to allow stars to form. To the right and slightly below the central cluster, a red bubble is visible. The star that blows the material making this bubble is thought to be 20 times more massive, 130 000 times more luminous, 10 times larger and 6 times hotter than our Sun. A possible fainter example of such a bubble is also visible just above the large red bubble in the image. ESO PR Photo 13e/06 ESO PR Photo 13e/06 Red Bubbles in Tarantula Nebula Earlier colour composite images of the Tarantula nebula have been made with other instruments and/or filters at ESO's telescopes, e.g. PR Photo 05a/00 in visual light with FORS2 at the VLT at Paranal, and PR Photos 14a-g/02 and 34a-h/04 with the Wide-Field Imager at the ESO/MPG 2.2-m telescope at La Silla.

  17. Richest Planetary System Discovered - Up to seven planets orbiting a Sun-like star

    NASA Astrophysics Data System (ADS)

    2010-08-01

    Astronomers using ESO's world-leading HARPS instrument have discovered a planetary system containing at least five planets, orbiting the Sun-like star HD 10180. The researchers also have tantalising evidence that two other planets may be present, one of which would have the lowest mass ever found. This would make the system similar to our Solar System in terms of the number of planets (seven as compared to the Solar System's eight planets). Furthermore, the team also found evidence that the distances of the planets from their star follow a regular pattern, as also seen in our Solar System. "We have found what is most likely the system with the most planets yet discovered," says Christophe Lovis, lead author of the paper reporting the result. "This remarkable discovery also highlights the fact that we are now entering a new era in exoplanet research: the study of complex planetary systems and not just of individual planets. Studies of planetary motions in the new system reveal complex gravitational interactions between the planets and give us insights into the long-term evolution of the system." The team of astronomers used the HARPS spectrograph, attached to ESO's 3.6-metre telescope at La Silla, Chile, for a six-year-long study of the Sun-like star HD 10180, located 127 light-years away in the southern constellation of Hydrus (the Male Water Snake). HARPS is an instrument with unrivalled measurement stability and great precision and is the world's most successful exoplanet hunter. Thanks to the 190 individual HARPS measurements, the astronomers detected the tiny back and forth motions of the star caused by the complex gravitational attractions from five or more planets. The five strongest signals correspond to planets with Neptune-like masses - between 13 and 25 Earth masses [1] - which orbit the star with periods ranging from about 6 to 600 days. These planets are located between 0.06 and 1.4 times the Earth-Sun distance from their central star. "We also have good reasons to believe that two other planets are present," says Lovis. One would be a Saturn-like planet (with a minimum mass of 65 Earth masses) orbiting in 2200 days. The other would be the least massive exoplanet ever discovered [2], with a mass of about 1.4 times that of the Earth. It is very close to its host star, at just 2 percent of the Earth-Sun distance. One "year" on this planet would last only 1.18 Earth-days. "This object causes a wobble of its star of only about 3 km/hour - slower than walking speed - and this motion is very hard to measure," says team member Damien Ségransan. If confirmed, this object would be another example of a hot rocky planet, similar to Corot-7b (eso0933). The newly discovered system of planets around HD 10180 is unique in several respects. First of all, with at least five Neptune-like planets lying within a distance equivalent to the orbit of Mars, this system is more populated than our Solar System in its inner region, and has many more massive planets there [3]. Furthermore, the system probably has no Jupiter-like gas giant. In addition, all the planets seem to have almost circular orbits. So far, astronomers know of fifteen systems with at least three planets. The last record-holder was 55 Cancri, which contains five planets, two of them being giant planets. "Systems of low-mass planets like the one around HD 10180 appear to be quite common, but their formation history remains a puzzle," says Lovis. Using the new discovery as well as data for other planetary systems, the astronomers found an equivalent of the Titius-Bode law that exists in our Solar System: the distances of the planets from their star seem to follow a regular pattern [4]. "This could be a signature of the formation process of these planetary systems," says team member Michel Mayor. Another important result found by the astronomers while studying these systems is that there is a relationship between the mass of a planetary system and the mass and chemical content of its host star. All very massive planetary systems are found around massive and metal-rich stars, while the four lowest-mass systems are found around lower-mass and metal-poor stars [5]. Such properties confirm current theoretical models. The discovery is announced today at the international colloquium "Detection and dynamics of transiting exoplanets", at the Observatoire de Haute-Provence, France. Notes [1] Using the radial velocity method, astronomers can only estimate a minimum mass for a planet as the mass estimate also depends on the tilt of the orbital plane relative to the line of sight, which is unknown. From a statistical point of view, this minimum mass is however often close to the real mass of the planet. [2] (added 30 August 2010) HD 10180b would be the lowest mass exoplanet discovered orbiting a "normal" star like our Sun. However, lower mass exoplanets have been previously discovered orbiting the pulsar PSR B1257+12 (a highly magnetised rotating neutron star). [3] On average the planets in the inner region of the HD 10180 system have 20 times the mass of the Earth, whereas the inner planets in our own Solar System (Mercury, Venus, Earth and Mars) have an average mass of half that of the Earth. [4] The Titius-Bode law states that the distances of the planets from the Sun follow a simple pattern. For the outer planets, each planet is predicted to be roughly twice as far away from the Sun as the previous object. The hypothesis correctly predicted the orbits of Ceres and Uranus, but failed as a predictor of Neptune's orbit. [5] According to the definition used in astronomy, "metals" are all the elements other than hydrogen and helium. Such metals, except for a very few minor light chemical elements, have all been created by the various generations of stars. Rocky planets are made of "metals". More information This research was presented in a paper submitted to Astronomy and Astrophysics ("The HARPS search for southern extra-solar planets. XXVII. Up to seven planets orbiting HD 10180: probing the architecture of low-mass planetary systems" by C. Lovis et al.). The team is composed of C. Lovis, D. Ségransan, M. Mayor, S. Udry, F. Pepe, and D. Queloz (Observatoire de Genève, Université de Genève, Switzerland), W. Benz (Universität Bern, Switzerland), F. Bouchy (Institut d'Astrophysique de Paris, France), C. Mordasini (Max-Planck-Institut für Astronomie, Heidelberg, Germany), N. C. Santos (Universidade do Porto, Portugal), J. Laskar (Observatoire de Paris, France), A. Correia (Universidade de Aveiro, Portugal), and J.-L. Bertaux (Université Versailles Saint-Quentin, France) and G. Lo Curto (ESO). ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and VISTA, the world's largest survey telescope. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  18. An Eagle of Cosmic Proportions

    NASA Astrophysics Data System (ADS)

    2009-07-01

    Today ESO has released a new and stunning image of the sky around the Eagle Nebula, a stellar nursery where infant star clusters carve out monster columns of dust and gas. Located 7000 light-years away, towards the constellation of Serpens (the Snake), the Eagle Nebula is a dazzling stellar nursery, a region of gas and dust where young stars are currently being formed and where a cluster of massive, hot stars, NGC 6611, has just been born. The powerful light and strong winds from these massive new arrivals are shaping light-year long pillars, seen in the image partly silhouetted against the bright background of the nebula. The nebula itself has a shape vaguely reminiscent of an eagle, with the central pillars being the "talons". The star cluster was discovered by the Swiss astronomer, Jean Philippe Loys de Chéseaux, in 1745-46. It was independently rediscovered about twenty years later by the French comet hunter, Charles Messier, who included it as number 16 in his famous catalogue, and remarked that the stars were surrounded by a faint glow. The Eagle Nebula achieved iconic status in 1995, when its central pillars were depicted in a famous image obtained with the NASA/ESA Hubble Space Telescope. In 2001, ESO's Very Large Telescope (VLT) captured another breathtaking image of the nebula in the near-infrared, giving astronomers a penetrating view through the obscuring dust, and clearly showing stars being formed in the pillars. The newly released image, obtained with the Wide-Field Imager camera attached to the MPG/ESO 2.2-metre telescope at La Silla, Chile, covers an area on the sky as large as the full Moon, and is about 15 times more extensive than the previous VLT image, and more than 200 times more extensive than the iconic Hubble visible-light image. The whole region around the pillars can now be seen in exquisite detail. The "Pillars of Creation" are in the middle of the image, with the cluster of young stars, NGC 6611, lying above and to the right. The "Spire" - another pillar captured by Hubble - is at the centre left of the image. Finger-like features protrude from the vast cloud wall of cold gas and dust, not unlike stalagmites rising from the floor of a cave. Inside the pillars, the gas is dense enough to collapse under its own weight, forming young stars. These light-year long columns of gas and dust are being simultaneously sculpted, illuminated and destroyed by the intense ultraviolet light from massive stars in NGC 6611, the adjacent young stellar cluster. Within a few million years - a mere blink of the universal eye - they will be gone forever. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

  19. Extremely Large Telescope Project Selected in ESFRI Roadmap

    NASA Astrophysics Data System (ADS)

    2006-10-01

    In its first Roadmap, the European Strategy Forum on Research Infrastructures (ESFRI) choose the European Extremely Large Telescope (ELT), for which ESO is presently developing a Reference Design, as one of the large scale projects to be conducted in astronomy, and the only one in optical astronomy. The aim of the ELT project is to build before the end of the next decade an optical/near-infrared telescope with a diameter in the 30-60m range. ESO PR Photo 40/06 The ESFRI Roadmap states: "Extremely Large Telescopes are seen world-wide as one of the highest priorities in ground-based astronomy. They will vastly advance astrophysical knowledge allowing detailed studies of inter alia planets around other stars, the first objects in the Universe, super-massive Black Holes, and the nature and distribution of the Dark Matter and Dark Energy which dominate the Universe. The European Extremely Large Telescope project will maintain and reinforce Europe's position at the forefront of astrophysical research." Said Catherine Cesarsky, Director General of ESO: "In 2004, the ESO Council mandated ESO to play a leading role in the development of an ELT for Europe's astronomers. To that end, ESO has undertaken conceptual studies for ELTs and is currently also leading a consortium of European institutes engaged in studying enabling technologies for such a telescope. The inclusion of the ELT in the ESFRI roadmap, together with the comprehensive preparatory work already done, paves the way for the next phase of this exciting project, the design phase." ESO is currently working, in close collaboration with the European astronomical community and the industry, on a baseline design for an Extremely Large Telescope. The plan is a telescope with a primary mirror between 30 and 60 metres in diameter and a financial envelope of about 750 m Euros. It aims at more than a factor ten improvement in overall performance compared to the current leader in ground based astronomy: the ESO Very Large Telescope at the Paranal Observatory. The draft Baseline Reference Design will be presented to the wider scientific community on 29 - 30 November 2006 at a dedicated ELT Workshop Meeting in Marseille (France) and will be further reiterated. The design is then to be presented to the ESO Council at the end of 2006. The goal is to start the detailed E-ELT design work by the first half of 2007. Launched in April 2002, the European Strategy Forum on Research Infrastructures was set-up following a recommendation of the European Union Council, with the role to support a coherent approach to policy-making on research infrastructures in Europe, and to act as an incubator for international negotiations about concrete initiatives. In particular, ESFRI has prepared a European Roadmap identifying new Research Infrastructure of pan-European interest corresponding to the long term needs of the European research communities, covering all scientific areas, regardless of possible location and likely to be realised in the next 10 to 20 years. The Roadmap was presented on 19 October. It is the result of an intensive two-year consultation and peer review process involving over 1000 high level European and international experts. The Roadmap identifies 35 large scale infrastructure projects, at various stages of development, in seven key research areas including Environmental Sciences; Energy; Materials Sciences; Astrophysics, Astronomy, Particle and Nuclear Physics; Biomedical and Life Sciences; Social Sciences and the Humanities; Computation and data Treatment.

  20. NGC 4945: The Milky Way's not-so-distant Cousin

    NASA Astrophysics Data System (ADS)

    2009-09-01

    ESO has released a striking new image of a nearby galaxy that many astronomers think closely resembles our own Milky Way. Though the galaxy is seen edge-on, observations of NGC 4945 suggest that this hive of stars is a spiral galaxy much like our own, with swirling, luminous arms and a bar-shaped central region. These resemblances aside, NGC 4945 has a brighter centre that likely harbours a supermassive black hole, which is devouring reams of matter and blasting energy out into space. As NGC 4945 is only about 13 million light-years away in the constellation of Centaurus (the Centaur), a modest telescope is sufficient for skygazers to spot this remarkable galaxy. NGC 4945's designation comes from its entry number in the New General Catalogue compiled by the Danish-Irish astronomer John Louis Emil Dreyer in the 1880s. James Dunlop, a Scottish astronomer, is credited with originally discovering NGC 4945 in 1826 from Australia. Today's new portrait of NGC 4945 comes courtesy of the Wide Field Imager (WFI) instrument at the 2.2-metre MPG/ESO telescope at the La Silla Observatory in Chile. NGC 4945 appears cigar-shaped from our perspective on Earth, but the galaxy is actually a disc many times wider than it is thick, with bands of stars and glowing gas spiralling around its centre. With the use of special optical filters to isolate the colour of light emitted by heated gases such as hydrogen, the image displays sharp contrasts in NGC 4945 that indicate areas of star formation. Other observations have revealed that NGC 4945 has an active galactic nucleus, meaning its central bulge emits far more energy than calmer galaxies like the Milky Way. Scientists classify NGC 4945 as a Seyfert galaxy after the American astronomer Carl K. Seyfert, who wrote a study in 1943 describing the odd light signatures emanating from some galactic cores. Since then, astronomers have come to suspect that supermassive black holes cause the turmoil in the centre of Seyfert galaxies. Black holes gravitationally draw gas and dust into them, accelerating and heating this attracted matter until it emits high-energy radiation, including X-rays and ultraviolet light. Most large, spiral galaxies, including the Milky Way, host a black hole in their centres, though many of these dark monsters no longer actively "feed" at this stage in galactic development. More information ESO, the European Southern Observatory, is the foremost intergovernmental astronomy organisation in Europe and the world's most productive astronomical observatory. It is supported by 14 countries: Austria, Belgium, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Portugal, Spain, Sweden, Switzerland and the United Kingdom. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory. ESO is the European partner of a revolutionary astronomical telescope ALMA, the largest astronomical project in existence. ESO is currently planning a 42-metre European Extremely Large optical/near-infrared Telescope, the E-ELT, which will become "the world's biggest eye on the sky".

Top