Longitudinal and transverse feedback kickers for the ALS
Corlett, J.N.; Johnson, J.; Lambertson, G.; Voelker, F.
1994-06-01
We describe the development of electromagnetic kickers for coupled-bunch feedback systems at the ALS. Transverse kickers are of a stripline design with one kicker per plane, operating in the baseband, 10 kHz to 250 MHz. Longitudinal lockers are of a coaxial design with electrodes paired in series operating over the band 1.00 to 1.25 GHz. Operating-band measurements and parasitic impedance measurements are presented. Power levels from beam induced signals are presented. Fabrication techniques are discussed.
Grain Refinement in Al-Mg-Si Alloy TIG Welds Using Transverse Mechanical Arc Oscillation
NASA Astrophysics Data System (ADS)
Biradar, N. S.; Raman, R.
2012-11-01
Reduction in grain size in weld fusion zones (FZs) presents the advantages of increased resistance to solidification cracking and improvement in mechanical properties. Transverse mechanical arc oscillation was employed to obtain grain refinement in the weldment during tungsten inert gas welding of Al-Mg-Si alloy. Electron backscattered diffraction analysis was carried out on AA6061-AA4043 filler metal tungsten inert gas welds. Grain size, texture evolution, misorientation distribution, and aspect ratio of weld metal, PMZ, and BM have been observed at fixed arc oscillation amplitude and at three different frequencies levels. Arc oscillation showed grain size reduction and texture formation. Fine-grained arc oscillated welds exhibited better yield and ultimate tensile strengths and significant improvement in percent elongation. The obtained results were attributed to reduction in equivalent circular diameter of grains and increase in number of subgrain network structure of low angle grain boundaries.
AlGaAs/GaAs transverse junction stripe lasers with distributed feedback
NASA Technical Reports Server (NTRS)
Hafich, M. J.; Skogman, R. A.; Petersen, P. E.; Kawanishi, H.
1981-01-01
Transverse junction stripe (TJS) lasers with periodic feedback were fabricated in two geometries. An interferometric and wet chemical etching technique was used to create a feedback grating across the entire pumping region for the distributed feedback (DFB) TJS laser and to create the separate distributed Bragg reflectors/DBR) for the TJS/DBR laser. The TJS/DFB laser was a double heterostructure device grown by liquid phase epitaxy (LPE) and had a third order grating etched in the top ALO.2GaO.8As layer. The grating was buried by growing an ALO.35GaO.65As layer on the grating by metal organic chemical vapor deposition (MO-CVD). The TJS/DBR laser was also fabricated in an LPE double heterostructure. The top AlGaAs layer was thinned to 0.1 micron over more than half of the laser so that the grating would be close to the GaAs active layer and optical field. Single mode operation in both configurations was obtained. The thermal shift of the laser wavelength in both cases was less than 1 Angstrom/deg K, compared to the 3 Angstrom/deg K shift of the spontaneous emission peak.
Niu, Feng-lan; Xie, Wen-bing; Li, Chen-xu; Dong, Wei-yan
2005-04-01
Pb and Al in blood and hair of child were determined by transverse heated graphite furnace atomic absorption spectrometry with NH4H2PO4 and Mg(NO3)2 as a modifier, which enhanced the temperature of ashing, eliminated the matrix interference and memorial effect. The method is rapid, simple and accurate. The characteristic mass of the method was 2.3 x 10(-11) g and 2.2 x 10(-11) g for Pb and Al respectively. The relative standard deviation of Pb and Al was 3.0% and 11.4%, respectively, and the recovery was 96%-102%.
Reich, Christoph Guttmann, Martin; Wernicke, Tim; Mehnke, Frank; Kuhn, Christian; Feneberg, Martin; Goldhahn, Rüdiger; Rass, Jens; Kneissl, Michael; Lapeyrade, Mickael; Einfeldt, Sven; Knauer, Arne; Kueller, Viola; Weyers, Markus
2015-10-05
The optical polarization of emission from ultraviolet (UV) light emitting diodes (LEDs) based on (0001)-oriented Al{sub x}Ga{sub 1−x}N multiple quantum wells (MQWs) has been studied by simulations and electroluminescence measurements. With increasing aluminum mole fraction in the quantum well x, the in-plane intensity of transverse-electric (TE) polarized light decreases relative to that of the transverse-magnetic polarized light, attributed to a reordering of the valence bands in Al{sub x}Ga{sub 1−x}N. Using k ⋅ p theoretical model calculations, the AlGaN MQW active region design has been optimized, yielding increased TE polarization and thus higher extraction efficiency for bottom-emitting LEDs in the deep UV spectral range. Using (i) narrow quantum wells, (ii) barriers with high aluminum mole fractions, and (iii) compressive growth on patterned aluminum nitride sapphire templates, strongly TE-polarized emission was observed at wavelengths as short as 239 nm.
NASA Astrophysics Data System (ADS)
Giuseppe, Ciullo; Paolo, Lenisa; Marco, Contalbrigo; Delia, Hasch
2009-04-01
Purpose and status of the Italian transversity project / F. Bradamante -- Transversity asymmetries / D. Boer -- The transverse angular momentum sum rule / E. Leader -- Measurement of Collins and Sivers asymmetries at HERMES / L. L. Pappalardo (for the HERMES collaboration) -- Review of SSA results on deuteron at COMPASS / A. Richter (for the COMPASS collaboration) -- Single spin asymmetries on a transversely polarized proton target at COMPASS / S. Levorato (for the COMPASS collaboration) -- New preliminary results on the transversity distribution and the Collins fragmentation functions / M. Anselmino ... [et al.] -- Sivers effect in SIDIS pion and kaon production / M. Anselmino ... [et al.] -- Spin-orbit correlations / M. Burkardt -- Correlation functions in hard and (semi)-inclusive processes / M. Schlegel, S. Mei[symbol]ner and A. Metz -- Transversity via exclusive [pie symbol]-electroproduction / G. R. Goldstein, S. Liuti and S. Ahmad -- Estimate of the Sivers asymmetry at intermediate energies with rescattering extracted from exclusive processes / A. Bianconi -- Exclusively produced p[symbol] asymmetries on the deuteron and future GPD measurements at COMPASS / C. Schill (for the COMPASS collaboration) -- Transversity and transverse-momentum-dependent distribution measurements from PHENIX and BRAHMS / C. Aidala (for the PHENIX and BRAHMS collaborations) -- Sivers and Collins effects in polarized pp scattering processes / M. Anselmino ... [et al.] -- Sivers function in constituent quark models / S. Scopetta ... [et al.] -- Sivers, Boer-Mulders and transversity in Drell-Yan processes / M. Anselmino ... [et al.] -- TMDs and Drell-Yan experiments at Fermilab and J-PARC / J.-C. Peng -- Double polarisation observables at PAX / M. Nekipelov (for the PAX collaboration) -- Future Drell-Yan measurement @ COMPASS / M. Colantoni (for the COMPASS collaboration) -- Measurements of unpolarized azimuthal asymmetries at COMPASS / W. Käfer (for the COMPASS collaboration
Transverse-Weld Tensile Properties of a New Al-4Cu-2Si Alloy as Filler Metal
NASA Astrophysics Data System (ADS)
Sampath, K.
2009-12-01
AA2195, an Al-Cu-Li alloy in the T8P4 age-hardened condition, is a candidate aluminum armor for future combat vehicles, as this material offers higher static strength and ballistic protection than current aluminum armor alloys. However, certification of AA2195 alloy for armor applications requires initial qualification based on the ballistic performance of welded panels in the as-welded condition. Currently, combat vehicle manufacturers primarily use gas metal arc welding (GMAW) process to meet their fabrication needs. Unfortunately, a matching GMAW consumable electrode is currently not commercially available to allow effective joining of AA2195 alloy. This initial effort focused on an innovative, low-cost, low-risk approach to identify an alloy composition suitable for effective joining of AA2195 alloy, and evaluated transverse-weld tensile properties of groove butt joints produced using the identified alloy. Selected commercial off-the-shelf (COTS) aluminum alloy filler wires were twisted to form candidate twisted filler rods. Representative test weldments were produced using AA2195 alloy, candidate twisted filler rods and gas tungsten arc welding (GTAW) process. Selected GTA weldments produced using Al-4wt.%Cu-2wt.%Si alloy as filler metal consistently provided transverse-weld tensile properties in excess of 275 MPa (40 ksi) UTS and 8% El (over 25 mm gage length), thereby showing potential for acceptable ballistic performance of as-welded panels. Further developmental work is required to evaluate in detail GMAW consumable wire electrodes based on the Al-Cu-Si system containing 4.2-5.0 wt.% Cu and 1.6-2.0 wt.% Si.
Transverse acoustic waves in piezoelectric ZnO/MgO and GaN/AlN Fibonacci-periodic superlattices
NASA Astrophysics Data System (ADS)
Martínez-Gutiérrez, D.; Velasco, V. R.
2014-06-01
This work studies the transverse acoustic waves, including the piezoelectric coupling, in Fibonacci superlattices formed by wurtzite ZnO/MgO and GaN/AlN, respectively. We examine also other superlattice structures formed by combining different kinds of Fibonacci sequences and finite periodic systems. The possibility to use different Fibonacci sequences including layers with double length of one of the constituent materials produces important modifications in the dispersion curves. The effect is more important in the lower frequency range and affects the gaps appearing in this frequency range. It is also possible to find narrow and flat bands cutting the original gaps and producing narrower ones. There are modes at different frequency ranges having spatial confinement in one of the constituent parts of the superlattice period.
NASA Astrophysics Data System (ADS)
Gu, Z.; Ban, S. L.; Jiang, D. D.; Qu, Y.
2017-01-01
The two-mode property of bulk transverse optical (TO) phonons in ternary mixed crystals of wurtzite AlxGa1-xN has been investigated by introducing impurity modes in a modified random-element isodisplacement model. Based on the dielectric continuous model, the uniaxial model, and the Lei-Ting balance equation, the effects of the two-mode property on electrostatic potentials of interface optical and confined optical phonons in AlGaN/GaN quantum wells, as well as their influences on the electronic mobility (EM), are discussed by a component-dependent weight model. Our results indicate that the total EM decreases to a minimum at first and then increases slowly with x under the influences of the competitions from the eight branches of phonons. The further calculation shows that the total EM decreases with the increment of temperature in the range of 200 K < T < 400 K and reduction of well width d. As a comparison, the EM is calculated for an Al0.58Ga0.42N/GaN quantum well at room temperature, and our result is 1263.0 cm2/Vs, which is 1.44 times of the experiment value. Our result is expected since the difference between our theory and the experiment is mainly due to the neglect of interface-roughness and other secondary scattering mechanisms. Consequently, the two-mode property of bulk TO phonons in ternary mixed crystals does affect obviously on the electron transport in the quantum wells. And our component-dependent weight model could be extended to study the electric properties influenced by optical phonons in other related heterostructures.
Li, Xiao-Hang E-mail: dupuis@gatech.edu; Kao, Tsung-Ting; Satter, Md. Mahbub; Shen, Shyh-Chiang; Yoder, P. Douglas; Detchprohm, Theeradetch; Dupuis, Russell D. E-mail: dupuis@gatech.edu; Wei, Yong O.; Wang, Shuo; Xie, Hongen; Fischer, Alec M.; Ponce, Fernando A.
2015-01-26
We demonstrate transverse-magnetic (TM) dominant deep-ultraviolet (DUV) stimulated emission from photo-pumped AlGaN multiple-quantum-well lasers grown pseudomorphically on an AlN/sapphire template by means of photoluminescence at room temperature. The TM-dominant stimulated emission was observed at wavelengths of 239, 242, and 243 nm with low thresholds of 280, 250, and 290 kW/cm{sup 2}, respectively. In particular, the lasing wavelength of 239 nm is shorter compared to other reports for AlGaN lasers grown on foreign substrates including sapphire and SiC. The peak wavelength difference between the transverse-electric (TE)-polarized emission and TM-polarized emission was approximately zero for the lasers in this study, indicating the crossover of crystal-field split-off hole and heavy-hole valence bands. The rapid variation of polarization between TE- and TM-dominance versus the change in lasing wavelength from 243 to 249 nm can be attributed to a dramatic change in the TE-to-TM gain coefficient ratio for the sapphire-based DUV lasers in the vicinity of TE-TM switch.
Firsov, D. A.; Vorobjev, L. E.; Vinnichenko, M. Ya. Balagula, R. M.; Kulagina, M. M.; Vasil’iev, A. P.
2015-11-15
The photoluminescence and intersubband absorption spectra are studied in GaAs/AlGaAs tunnel- coupled quantum well structures. The peak positions in the photoluminescence and absorption spectra are consistent with the theoretically calculated energies of optical carrier transitions. The effect of a transverse electric field and temperature on intersubband light absorption is studied. It is caused by electron redistribution between the size-quantization levels and a variation in the energy spectrum of quantum wells. The variation in the refractive index in the energy region of observed intersubband transitions is estimated using Kramers–Kronig relations.
Nakamura, Hiroyuki; Nakanishi, Hidekazu; Goto, Rei; Hashimoto, Ken-ya
2011-10-01
A SiO(2)/Al/LiNbO(3) structure has a large electromechanical coupling factor (K(2)) and good temperature coefficient of frequency (TCF) for applications as a SAW duplexer of the Universal Mobile Telecommunications System (UMTS) Band I. However, the SiO(2)/Al/LiNbO(3) structure also supports two unwanted spurious responses; one is caused by the Rayleigh mode and the other by the transverse mode. As the authors have previously discussed, the Rayleigh-mode spurious response can be suppressed by controlling the cross-sectional shape of a SiO(2) overlay deposited on resonator electrodes. In this paper, a new technique to suppress the transverse-mode spurious responses is proposed. In the technique, the SiO(2) overlay is selectively removed from the dummy electrode region. The spurious responses are analyzed by the laser probe system. The results indicate that the spurious responses in question were hybrid modes caused by the coupling between the main (SH) SAW and another (Rayleigh) SAW with different velocities. The hybrid-mode spurious behavior was dependent on the velocities in the IDT and the dummy regions (v(i) and v(d)). The hybrid-mode spurious responses could be suppressed by selectively removing SiO(2). Furthermore, the SAW energy confinement could be enhanced in the IDT electrode region when v(i) < v(d). The transverse-mode spurious responses were successfully suppressed without degrading the SAW resonator performances.
TRANSVERSITY SINGLE SPIN ASYMMETRIES.
BOER,D.
2001-04-27
The theoretical aspects of two leading twist transversity single spin asymmetries, one arising from the Collins effect and one from the interference fragmentation functions, are reviewed. Issues of factorization, evolution and Sudakov factors for the relevant observables are discussed. These theoretical considerations pinpoint the most realistic scenarios towards measurements of transversity.
Transverse gravity versus observations
Álvarez, Enrique; Faedo, Antón F.; López-Villarejo, J.J. E-mail: anton.fernandez@uam.es
2009-07-01
Theories of gravity invariant under those diffeomorphisms generated by transverse vectors, ∂{sub μ}ξ{sup μ} = 0 are considered. Such theories are dubbed transverse, and differ from General Relativity in that the determinant of the metric, g, is a transverse scalar. We comment on diverse ways in which these models can be constrained using a variety of observations. Generically, an additional scalar degree of freedom mediates the interaction, so the usual constraints on scalar-tensor theories have to be imposed. If the purely gravitational part is Einstein-Hilbert but the matter action is transverse, the models predict that the three a priori different concepts of mass (gravitational active and gravitational passive as well as inertial) are not equivalent anymore. These transverse deviations from General Relativity are therefore tightly constrained, actually correlated with existing bounds on violations of the equivalence principle, local violations of Newton's third law and/or violation of Local Position Invariance.
Transverse instability of dunes.
Parteli, Eric J R; Andrade, José S; Herrmann, Hans J
2011-10-28
The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show, by means of numerical simulations, that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation.
Transverse spin and transverse momentum in scattering of plane waves.
Saha, Sudipta; Singh, Ankit K; Ray, Subir K; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya
2016-10-01
We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demonstrated that the interference of the transverse electric and transverse magnetic scattering modes enhances both the magnitudes and the spatial extent of the transverse SAM and the transverse momentum components.
Spontaneous transverse colon volvulus
Sana, Landolsi; Ali, Gassara; Kallel, Helmi; Amine, Baklouti; Ahmed, Saadaoui; Mohamed Ali, Elouer; Wajdi, Chaeib; Saber, Mannaï
2013-01-01
We report a case of spontaneous transverse colon volvulus in a young healthy woman. It constitutes an unusual case since it occurred in a young healthy woman with a subacute onset and no aetiological factor has been found. Its diagnosis is still challenging. Prompt recognition with emergency intervention constitutes the key to successful outcome. PMID:23785565
Spontaneous transverse colon volvulus.
Sana, Landolsi; Ali, Gassara; Kallel, Helmi; Amine, Baklouti; Ahmed, Saadaoui; Ali, Elouer Mohamed; Wajdi, Chaeib; Saber, Mannaï
2013-01-01
We report a case of spontaneous transverse colon volvulus in a young healthy woman. It constitutes an unusual case since it occurred in a young healthy woman with a subacute onset and no aetiological factor has been found. Its diagnosis is still challenging. Prompt recognition with emergency intervention constitutes the key to successful outcome.
Digital transversal filter architecture
NASA Astrophysics Data System (ADS)
Greenberger, A. J.
1985-01-01
A fast and efficient architecture is described for the realization of a pipelined, fully parallel digital transversal filter in VLSI. The order of summation is changed such that no explicit multiplication is seen, gated accumulators are used, and the coefficients are circulated. Estimates for the number of transistors needed for a CMOS implementation are given.
Transverse Bursts in Inclined Layer Convection: Experiment
NASA Astrophysics Data System (ADS)
Daniels, Karen; Wiener, Richard; Bodenschatz, Eberhard
2002-03-01
We report experimental results on inclined layer convection in a fluid of Prandtl number σ ≈ 1. A codimension-two point divides regions of buoyancy-driven convection (longitudinal rolls) at lower angles from shear-driven convection (transverse rolls) at higher angles (Daniels et al. PRL 84: 5320, 2000). In the region of buoyancy-driven convection, near the codimension-two point, we observe longitudinal rolls with intermittent, localized, subharmonic transverse bursts. The patterns are spatiotemporally chaotic. With increasing temperature difference the bursts increase in duration and number. We examine the details of the bursting process (e.g. the energy of longitudinal, transverse, and mixed modes) and compare our results to bursting processes in other systems. This work is supported by the National Science Foundation under grant DMR-0072077 and the IGERT program in nonlinear systems, grant DGE-9870631.
Tunable Microwave Transversal Filters.
1984-05-01
GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER AFOSR-TR. 84-0977 S4. TI TLE (and Subtitle) 5. TYP ?FE&T&PEO OEE U!NABLE MICROWAVE TRANSVERSAL FILTERS...this goal through magnetostatic waves MSW propagating at microwave frequency in magnetically biased, liquid phase epitaxial films of yttrium iron...garnet (YIG) grown on gadolinium gallium garnet (GGG). This technology has a number of advantages; low loss (greater than 30db/usec at xband), tunable by
Transverse Spin Physics: Recent Developments
Yuan, Feng
2008-12-10
Transverse-spin physics has been very active and rapidly developing in the last few years. In this talk, I will briefly summarize recent theoretical developments, focusing on the associated QCD dynamics in transverse spin physics.
Neutron Transversity at Jefferson Lab
Jian-Ping Chen; Xiaodong Jiang; Jen-chieh Peng; Lingyan Zhu
2005-09-07
Nucleon transversity and single transverse spin asymmetries have been the recent focus of large efforts by both theorists and experimentalists. On-going and planned experiments from HERMES, COMPASS and RHIC are mostly on the proton or the deuteron. Presented here is a planned measurement of the neutron transversity and single target spin asymmetries at Jefferson Lab in Hall A using a transversely polarized {sup 3}He target. Also presented are the results and plans of other neutron transverse spin experiments at Jefferson Lab. Finally, the factorization for semi-inclusive DIS studies at Jefferson Lab is discussed.
NASA Astrophysics Data System (ADS)
Mullin, William
2014-05-01
Transverse spin diffusion is a relatively new transport coefficient and a review of its history and physical basis will be presented. In NMR spin diffusion is often measured by spin echo techniques, which involve spin currents perpendicular to the direction of the magnetization, in contrast with the usual longitudinal case where the current is parallel to the magnetization. The first indication that this involved new physics was the Leggett-Rice effect (1970) in which spin waves, new spin-echo behavior, and an altered spin diffusion coefficient were predicted in liquid 3He. This effect gave the possibility of the first measurement of F1a, the parameter of the Landau Fermi-liquid theory mean-field responsible for the effect. In 1982 Lhuillier and Laloe found a transport equation very similar to the Leggett equation, but valid for highly-polarized dilute Boltzmann Bose and Fermi gases, and describing the ``identical spin rotation effect'' (ISRE), the analog of a Landau mean field. Coincidentally Bashkin and Meyerovich had also given equivalent descriptions of transport in polarized Boltzmann gases. That a mean-field effect could exists in dilute Boltzmann gases was theoretically surprising, but was confirmed experimentally. At low polarization the basic transverse diffusion constant D⊥ coincides with the longitudinal value D∥ however Meyerovich first pointed out that they could differ in highly polarized degenerate gases. Indeed detailed calculations (Jeon and Mullin) showed that, while D∥ is proportional to T-2, D⊥ approaches a constant (depending on polarization) at low T. Considerable controversy existed until experimental verification was achieved in 2004. The importance of ISRE again arose in 2008 as the basis of ``anomalous spin-state segregation'' in Duke and JILA experiments. More recently application of the ideas of transverse spin diffusion to strongly interacting Fermi gases has resulted in the observation of the diffusion constants at the quantum
Jouini, Riadh; Lefi, Mounir; Sami, Chelly; Manef, Gesmi; Mohsen, Belguith; Nouri, Abdellatif
2002-09-01
Transverse ectopic testis (TET) is a rare form of ectopic testis. The authors report the case of a 2-month-old infant presenting with right inguinoscrotal hernia and ectopic left testis with an impalpable testis. Opening of the hernia sac revealed two testes with two distally fused vasa deferentes. The contralateral testis was easily descended by translocation through the other inguinal canal. A favourable result was obtained with two testes situated in a normal position. In the light of this case, the authors emphasize the clinical and therapeutic features of this anomaly.
Brenneman, B.
1983-11-15
A fluid turbine, the rotation axis of which is transverse to the direction of fluid flow, has at least two blade assemblies mounted for rotation about the rotation axis. Each blade assembly includes a streamlined elongated blade having a span parallel to the rotation axis. Each blade is pivotable about a pivot axis parallel to and spaced from the rotation axis. The pivot axis is located circumferentially ahead of the blade center of pressure with respect to the direction of turbine rotation. Each blade assembly is so constructed that its center of mass is located either at its pivot axis or circumferentially at its pivot axis and radially outboard of its pivot axis.
Transverse field focused system
Anderson, Oscar A.
1986-01-01
A transverse field focused (TFF) system for transport or acceleration of an intense sheet beam of negative ions in which a serial arrangement of a plurality of pairs of concentric cylindrical-arc electrodes is provided. Acceleration of the sheet beam can be achieved by progressively increasing the mean electrode voltage of successive electrode pairs. Because the beam is curved by the electrodes, the system can be designed to transport the beam through a maze passage which is baffled to prevent line of sight therethrough. Edge containment of the beam can be achieved by shaping the side edges of the electrodes to produce an electric force vector directed inwardly from the electrode edges.
Transverse Compression of Tendons.
Salisbury, S T Samuel; Buckley, C Paul; Zavatsky, Amy B
2016-04-01
A study was made of the deformation of tendons when compressed transverse to the fiber-aligned axis. Bovine digital extensor tendons were compression tested between flat rigid plates. The methods included: in situ image-based measurement of tendon cross-sectional shapes, after preconditioning but immediately prior to testing; multiple constant-load creep/recovery tests applied to each tendon at increasing loads; and measurements of the resulting tendon displacements in both transverse directions. In these tests, friction resisted axial stretch of the tendon during compression, giving approximately plane-strain conditions. This, together with the assumption of a form of anisotropic hyperelastic constitutive model proposed previously for tendon, justified modeling the isochronal response of tendon as that of an isotropic, slightly compressible, neo-Hookean solid. Inverse analysis, using finite-element (FE) simulations of the experiments and 10 s isochronal creep displacement data, gave values for Young's modulus and Poisson's ratio of this solid of 0.31 MPa and 0.49, respectively, for an idealized tendon shape and averaged data for all the tendons and E = 0.14 and 0.10 MPa for two specific tendons using their actual measured geometry. The compression load versus displacement curves, as measured and as simulated, showed varying degrees of stiffening with increasing load. This can be attributed mostly to geometrical changes in tendon cross section under load, varying according to the initial 3D shape of the tendon.
Analytical description of the transverse Anderson localization of light
NASA Astrophysics Data System (ADS)
Schirmacher, Walter; Leonetti, Marco; Ruocco, Giancarlo
2017-04-01
We develop an analytical theory for describing the transverse localization properties of light beams in optical fibers with lateral disorder. This theory, which starts from the widely used paraxial approximation for the Helmholtz equation of the electric field, is a combination of an effective-medium theory for transverse disorder with the self-consistent localization theory of Vollhardt and Wölfle. We obtain explicit expressions for the dependence of the transverse localization length on the direction along the fiber. These results are in agreement with simulational data published recently by Karbasi et al. In particular we explain the focussing mechanism leading to the establishment of narrow transparent channels along the sample.
General formulation of transverse hydrodynamics
Ryblewski, Radoslaw; Florkowski, Wojciech
2008-06-15
General formulation of hydrodynamics describing transversally thermalized matter created at the early stages of ultrarelativistic heavy-ion collisions is presented. Similarities and differences with the standard three-dimensionally thermalized relativistic hydrodynamics are discussed. The role of the conservation laws as well as the thermodynamic consistency of two-dimensional thermodynamic variables characterizing transversally thermalized matter is emphasized.
Kinesthetic Transverse Wave Demonstration
NASA Astrophysics Data System (ADS)
Pantidos, Panagiotis; Patapis, Stamatis
2005-09-01
This is a variation on the String and Sticky Tape demonstration "The Wave Game," suggested by Ron Edge. A group of students stand side by side, each one holding a card chest high with both hands. The teacher cues the first student to begin raising and lowering his card. When he starts lowering his card, the next student begins to raise his. As succeeding students move their cards up and down, a wave such as that shown in the figure is produced. To facilitate the process, students' motions were synchronized with the ticks of a metronome (without such synchronization it was nearly impossible to generate a satisfactory wave). Our waves typically had a frequency of about 1 Hz and a wavelength of around 3 m. We videotaped the activity so that the students could analyze the motions. The (17-year-old) students had not received any prior instruction regarding wave motion and did not know beforehand the nature of the exercise they were about to carry out. During the activity they were asked what a transverse wave is. Most of them quickly realized, without teacher input, that while the wave propagated horizontally, the only motion of the transmitting medium (them) was vertical. They located the equilibrium points of the oscillations, the crests and troughs of the waves, and identified the wavelength. The teacher defined for them the period of the oscillations of the motion of a card to be the total time for one cycle. The students measured this time and then several asserted that it was the same as the wave period. Knowing the length of the waves and the number of waves per second, the next step can easily be to find the wave speed.
Transverse correlations in multiphoton entanglement
Wen Jianming; Rubin, Morton H.; Shih Yanhua
2007-10-15
We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case.
TRANSVERSE OSCILLATIONS IN CHROMOSPHERIC MOTTLES
Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Keenan, F. P.; Morton, R. J.; Erdelyi, R.; Dorrian, G. D.
2012-05-01
A number of recent investigations have revealed that transverse waves are ubiquitous in the solar chromosphere. The vast majority of these have been reported in limb spicules and active region fibrils. We investigate long-lived, quiet-Sun, on-disk features such as chromospheric mottles (jet-like features located at the boundaries of supergranular cells) and their transverse motions. The observations were obtained with the Rapid Oscillations in the Solar Atmosphere instrument at the Dunn Solar Telescope. The data set is comprised of simultaneous imaging in the H{alpha} core, Ca II K, and G band of an on-disk quiet-Sun region. Time-distance techniques are used to study the characteristics of the transverse oscillations. We detect over 40 transverse oscillations in both bright and dark mottles, with periods ranging from 70 to 280 s, with the most frequent occurrence at {approx}165 s. The velocity amplitudes and transverse displacements exhibit characteristics similar to limb spicules. Neighboring mottles oscillating in-phase are also observed. The transverse oscillations of individual mottles are interpreted in terms of magnetohydrodynamic kink waves. Their estimated periods and damping times are consistent with phase mixing and resonant mode conversion.
COMMENT: Comment on 'Transverse fluctuations in the driven lattice gas'
NASA Astrophysics Data System (ADS)
Albano, Ezequiel V.
2004-08-01
Extensive simulation results of the transverse fluctuations in two driven lattice gases, the classical one with current and a modified version without current, are in agreement with the field theory proposed by Garrido et al (GSM). Based on the facts that results from both models are indistinguishable and they obey excellent scaling only by using GSM exponents, I concluded that the conclusions of the recent letter by Caracciolo et al are flawed.
Novel itinerant transverse spin waves
NASA Astrophysics Data System (ADS)
Feldmann, John Delaney
In 1956, Lev Davidovich Landau put forth his theory on systems of interacting fermions, or fermi liquids. A year later, Viktor Pavlovich Silin described spin waves that such a system of fermions would support. The treatment of the contribution of the molecular field to the spin wave dispersion was a novel aspect of these spin waves. Silin predicted that there would exist a hierarchy of spin waves in a fermi liquid, one for each component of the spherical harmonic expansion of the fermi surface. In 1968, Anthony J. Leggett and Michael J. Rice derived from fermi liquid theory how the behavior of the spin diffusion coefficient of a fermi liquid could be directly experimentally observable via the spin echo effect [24]. Their prediction, that the diffusion coefficient of a fermi liquid would not decay exponentially with temperature, but rather would have a maximum at some non-zero temperature, was a direct consequence of the fermi liquid molecular field and spin wave phenomena, and this was corroborated by experiment in 1971 by Corruccini, et al. [13]. A parallel advancement in the theory of fermi liquid spin waves came with the extension of the theory to describe weak ferromagnetic metals. In 1959, Alexei Abrikosov and I. E. Dzyaloshiski put forth a theoretical description of a ferromagnetic fermi liquid [1]. In 2001, Kevin Bedell and Krastan Blagoev showed that a non-trivial contribution to the dispersion of the ferromagnetic current spin wave arises from the necessary consideration of higher harmonic moments in the distortion of the fermi surface from its ground state [8]. In the chapters to follow, the author presents new results for transverse spin waves in a fermi liquid, which arise from a novel ground state of a fermi liquid-one in which an l = 1 harmonic distortion exists in the ground state polarization. It is shown that such an instability can lead to spin waves with dispersions that are characterized by a linear dependence on the wave number at long
Transverse deformations of extreme horizons
NASA Astrophysics Data System (ADS)
Li, Carmen; Lucietti, James
2016-04-01
We consider the inverse problem of determining all extreme black hole solutions to the Einstein equations with a prescribed near-horizon geometry. We investigate this problem by considering infinitesimal deformations of the near-horizon geometry along transverse null geodesics. We show that, up to a gauge transformation, the linearised Einstein equations reduce to an elliptic PDE for the extrinsic curvature of a cross-section of the horizon. We deduce that for a given near-horizon geometry there exists a finite dimensional moduli space of infinitesimal transverse deformations. We then establish a uniqueness theorem for transverse deformations of the extreme Kerr horizon. In particular, we prove that the only smooth axisymmetric transverse deformation of the near-horizon geometry of extreme Kerr, such that cross-sections of the horizon are marginally trapped surfaces, corresponds to that of the extreme Kerr black hole. Furthermore, we determine all smooth and biaxisymmetric transverse deformations of the near-horizon geometry of the five-dimensional extreme Myers-Perry black hole with equal angular momenta. We find a three parameter family of solutions such that cross-sections of the horizon are marginally trapped, which is more general than the known black hole solutions. We discuss the possibility that they correspond to new five-dimensional vacuum black holes.
Flutter analysis using transversality theory
NASA Technical Reports Server (NTRS)
Afolabi, D.
1993-01-01
A new method of calculating flutter boundaries of undamped aeronautical structures is presented. The method is an application of the weak transversality theorem used in catastrophe theory. In the first instance, the flutter problem is cast in matrix form using a frequency domain method, leading to an eigenvalue matrix. The characteristic polynomial resulting from this matrix usually has a smooth dependence on the system's parameters. As these parameters change with operating conditions, certain critical values are reached at which flutter sets in. Our approach is to use the transversality theorem in locating such flutter boundaries using this criterion: at a flutter boundary, the characteristic polynomial does not intersect the axis of the abscissa transversally. Formulas for computing the flutter boundaries and flutter frequencies of structures with two degrees of freedom are presented, and extension to multi-degree of freedom systems is indicated. The formulas have obvious applications in, for instance, problems of panel flutter at supersonic Mach numbers.
Cosmology in Weyl transverse gravity
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2016-11-01
We study the Friedmann-Lemaître-Robertson-Walker (FLRW) cosmology in the Weyl-transverse (WTDiff) gravity in a general spacetime dimension. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeormorphisms (transverse diffeomorphisms) and is believed to be equivalent to general relativity at least at the classical level (perhaps, even in the quantum regime). It is explicitly shown by solving the equations of motion that the FLRW metric is a classical solution in the WTDiff gravity only when the spatial metric is flat, that is, the Euclidean space, and the lapse function is a nontrivial function of the scale factor.
Probabilities of transversions and transitions.
Vol'kenshtein, M V
1976-01-01
The values of the mean relative probabilities of transversions and transitions have been refined on the basis of the data collected by Jukes and found to be equal to 0.34 and 0.66, respectively. Evolutionary factors increase the probability of transversions to 0.44. The relative probabilities of individual substitutions have been determined, and a detailed classification of the nonsense mutations has been given. Such mutations are especially probable in the UGG (Trp) codon. The highest probability of AG, GA transitions correlates with the lowest mean change in the hydrophobic nature of the amino acids coded.
Indentation of Transversely Isotropic Materials
NASA Astrophysics Data System (ADS)
Bhat, Talapady Srivatsa
Instrumented indentation, as a tool for characterization of mechanical properties, has well been established in the past decades. Studies have been conducted to understand the behavior of isotropic materials under indentation and techniques to accurately predict isotropic material properties have also been reported. Further, within the isotropic regime, work has been done to predict the indentation hardness without having to investigate the area of contact during indentation. Studies have also reported the prospect of utilizing indentation to predict the fatigue behavior of isotropic materials. This dissertation is made with the intent of extending the use of indentation, as a characterization tool, to the anisotropic regime. The effect of transverse isotropy on the indentation response of materials is systematically studied here. Extensive computational analysis is performed to elucidate the underlying deformation mechanics of indentation of transversely isotropic materials. Owing to the anisotropy, indentation may be performed parallel or perpendicular to the plane of isotropy of the specimen. It is observed that the indentation response varies significantly for each of these cases. The two cases are treated as unique and an identical systematic analysis is carried for both. The indentation orientations shall henceforth be referred to as transverse and longitudinal indentation for indentation parallel and perpendicular to the plane of isotropy respectively. A technique is developed capable of extracting the elastic-plastic properties of transversely isotropic materials from interpretation of indentation response in either direction. The technique is rigorously tested for its robustness, accuracy and uniqueness of results. A sensitivity analysis is performed to determine how sensitive the technique is to errors in experimental results. Rigorous studies are performed to understand the variation in pile-up or sink-in during indentation with varying anisotropy in the
Hemorrhagic Longitudinally Extensive Transverse Myelitis.
Wu, Chris Y; Riangwiwat, Tanawan; Nakamoto, Beau K
2016-01-01
Longitudinally extensive transverse myelitis (LETM) may be associated with viral triggers, including both infections and vaccinations. We present a case of a healthy immunocompetent 33-year-old woman who developed a hemorrhagic LETM 2 weeks after seasonal influenza vaccination. Hemorrhagic LETM has not to our knowledge been reported after influenza vaccination. It may represent a forme fruste variant of acute hemorrhagic leukoencephalitis.
Small, D.W.; Wong, R.K.; Colson, W.B.
1995-12-31
In an ultraviolet Free Electron Laser (UV FEL), the electron beam size can be approximately the same as the optical mode size. The performance of a UV FEL is studied including the effect of emittance, betatron focusing, and external focusing of the electron beam on the transverse optical mode. The results are applied to the Industrial Laser Consortium`s UV FEL.
Transverse force on transversely polarized quarks in longitudinally polarized nucleons
NASA Astrophysics Data System (ADS)
Abdallah, Manal; Burkardt, Matthias
2016-11-01
We study the semiclassical interpretation of the x3 and x4 moments of twist-3 parton distribution functions (PDFs). While no semiclassical interpretation for the higher moments of gT(x ) and e (x ) was found, the x3 moment of the chirally odd spin-dependent twist-3 PDF hL3(x ) can be related to the longitudinal gradient of the transverse force on transversely polarized quarks in longitudinally polarized nucleons in a deep-inelastic scattering experiment. We discuss how this result relates to the torque acting on a quark in the same experiment. This has further implications for comparisons between the Jaffe-Manohar and the Ji decompositions of the nucleon spin.
Transverse shape of the electron
Hoyer, Paul; Kurki, Samu
2010-01-01
We study the charge density, form factors and spin distributions of the electron induced by its |e{gamma}> light-front Fock state in impact parameter space. Only transversally compact Fock states contribute to the leading behavior of the Dirac and Pauli form factors as the momentum transfer tends to infinity. Power suppressed contributions are not compact, and distributions weighted by the transverse size have endpoint contributions. The Fock state conserves the spin of the parent electron locally, but the separate contributions of the electron, photon, and orbital angular momentum depend on longitudinal momentum and impact parameter. The sign of the anomalous magnetic moment of the electron may be understood intuitively from the density distribution, addressing a challenge by Feynman.
Hemorrhagic Longitudinally Extensive Transverse Myelitis
Wu, Chris Y.; Riangwiwat, Tanawan
2016-01-01
Longitudinally extensive transverse myelitis (LETM) may be associated with viral triggers, including both infections and vaccinations. We present a case of a healthy immunocompetent 33-year-old woman who developed a hemorrhagic LETM 2 weeks after seasonal influenza vaccination. Hemorrhagic LETM has not to our knowledge been reported after influenza vaccination. It may represent a forme fruste variant of acute hemorrhagic leukoencephalitis. PMID:27847660
Transverse spin effects at COMPASS
Pesaro, G.
2009-03-23
The COMPASS experiment at the CERN SPS has a broad physics program focused on the nucleon spin structure and on hadron spectroscopy, using both muon and hadron beams. One of the main objectives for the spin program with the muon beam is the measurement of transverse spin effects in semi inclusive deep inelastic scattering. A longitudinally polarized 160 GeV/c muon beam is impinging on a transversely polarized target: from 2002 to 2004 a {sup 6}LiD(deuteron) target has been used, while during 2007 data taking a NH{sub 3}(proton) target was put in place. All measured transverse asymmetries on deuteron have been found to be small, and compatible with zero, within the few percent statistical errors. These results, which are currently used as input for global fits, can be interpreted as cancellation between u and d quark contribution in the deuteron. The first results for the Collins and Sivers asymmetries for charged hadrons from the 2007 proton COMPASS data are also presented and discussed.
Phenomenological extraction of Transverse Momentum Dependent distributions
Prokudin, Alexei
2011-10-24
We discuss phenomenological extraction of Transverse Momentum Dependent Distributions (TMDs) from experimental data. At leading twist spin structure of spin-1/2 hadron can be described by 8 TMDs. TMDs reveal three-dimensional distribution of partons inside polarised nucleon. Experimentally these functions can be studied in polarised experiments using Spin Asymmetries in particular Single Spin Asymmetries (SSAs). We discuss transversity that measures distribution of transversely polarised quarks in a transversely polarised nucleon and Sivers distribution function that describes distribution of unpolarised quarks in a transversely polarised nucleon.
Electron Ion Collider transverse spin physics
Prokudin, Alexei
2011-07-01
Electron Ion Collider is a future high energy facility for studies of the structure of the nucleon. Three-dimensional parton structure is one of the main goals of EIC. In momentum space Transverse Momentum Dependent Distributions (TMDs) are the key ingredients to map such a structure. At leading twist spin structure of spin-1/2 hadron can be described by 8 TMDs. Experimentally these functions can be studied in polarised SIDIS experiments. We discuss Sivers distribution function that describes distribution of unpolarised quarks in a transversely polarised nucleon and transversity that measures distribution of transversely polarised quarks in a transversely polarised nucleon
Electron Ion Collider transverse spin physics
Prokudin, Alexei
2011-07-15
Electron Ion Collider is a future high energy facility for studies of the structure of the nucleon. Three-dimensional parton structure is one of the main goals of EIC. In momentum space Transverse Momentum Dependent Distributions (TMDs) are the key ingredients to map such a structure. At leading twist spin structure of spin-1/2 hadron can be described by 8 TMDs. Experimentally these functions can be studied in polarised SIDIS experiments. We discuss Sivers distribution function that describes distribution of unpolarised quarks in a transversely polarised nucleon and transversity that measures distribution of transversely polarised quarks in a transversely polarised nucleon.
Investigation of transverse oscillation method.
Udesen, Jesper; Jensen, Jørgen Arendt
2006-05-01
Conventional ultrasound scanners can display only the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation (TO) method overcomes this limitation by introducing a TO and an axial oscillation in the pulse echo field. The theory behind the creation of the double oscillation pulse echo field is explained as well as the theory behind the estimation of the vector velocity. A parameter study of the method is performed, using the ultrasound simulation program Field II. A virtual linear-array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal-to-noise ratio (SNR), and type of echo-canceling filter used. Using an experimental scanner, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic flow in a blood mimicking fluid, and the fluid is scanned under different flow-to-beam angles. The relative standard deviation on the transverse velocity estimate is found to be less than 10% for all angles between 50 degrees and 90 degrees. Furthermore, the TO method is evaluated in the flowrig using pulsatile flow, which resembles the flow in the femoral artery. The estimated volume flow as a function of time is compared to the volume flow derived from a conventional axial method at a flow-to-beam angle of 60 degrees. It is found that the method is highly sensitive to the angle between the flow and the beam direction. Also, the choice of echo canceling filter affects the performance significantly.
Optical Isolators With Transverse Magnets
NASA Technical Reports Server (NTRS)
Fan, Yuan X.; Byer, Robert L.
1991-01-01
New design for isolator includes zigzag, forward-and-backward-pass beam path and use of transverse rather than longitudinal magnetic field. Design choices produce isolator with as large an aperture as desired using low-Verdet-constant glass rather than more expensive crystals. Uses commercially available permanent magnets in Faraday rotator. More compact and less expensive. Designed to transmit rectangular beam. Square cross section of beam extended to rectangular shape by increasing one dimension of glass without having to increase magnetic field. Potentially useful in laser systems involving slab lasers and amplifiers. Has applications to study of very-high-power lasers for fusion research.
A Transversely Isotropic Thermoelastic Theory
NASA Technical Reports Server (NTRS)
Arnold, S. M.
1989-01-01
A continuum theory is presented for representing the thermoelastic behavior of composites that can be idealized as transversely isotropic. This theory is consistent with anisotropic viscoplastic theories being developed presently at NASA Lewis Research Center. A multiaxial statement of the theory is presented, as well as plane stress and plane strain reductions. Experimental determination of the required material parameters and their theoretical constraints are discussed. Simple homogeneously stressed elements are examined to illustrate the effect of fiber orientation on the resulting strain distribution. Finally, the multiaxial stress-strain relations are expressed in matrix form to simplify and accelerate implementation of the theory into structural analysis codes.
Transitions, transversions, and the molecular evolutionary clock.
Jukes, T H
1987-01-01
Nucleotide substitutions in the form of transitions (purine-purine or pyrimidine-pyrimidine interchanges) and transversions (purine-pyrimidine interchanges) occur during evolution and may be compiled by aligning the sequences of homologous genes. Referring to the genetic code tables, silent transitions take place in third positions of codons in family boxes and two-codon sets. Silent transversions in third positions occur only in family boxes, except for A = C transversions between AGR and CGR arginine codons (R = A or G). Comparisons of several protein genes have been made, and various subclasses of transitional and transversional nucleotide substitutions have been compiled. Considerable variations occur among the relative proportions of transitions and transversions. Such variations could possibly be caused by mutator genes, favoring either transitions or, conversely, transversions, during DNA replication. At earlier stages of evolutionary divergence, transitions are usually more frequent, but there are exceptions. No indication was found that transversions usually originate from multiple substitutions in transitions.
Transverse section radionuclide scanning system
Kuhl, David E.; Edwards, Roy Q.
1976-01-01
This invention provides a transverse section radionuclide scanning system for high-sensitivity quantification of brain radioactivity in cross-section picture format in order to permit accurate assessment of regional brain function localized in three-dimensions. High sensitivity crucially depends on overcoming the heretofore known raster type scanning, which requires back and forth detector movement involving dead-time or partial enclosure of the scan field. Accordingly, this invention provides a detector array having no back and forth movement by interlaced detectors that enclose the scan field and rotate as an integral unit around one axis of rotation in a slip ring that continuously transmits the detector data by means of laser emitting diodes, with the advantages that increased amounts of data can be continuously collected, processed and displayed with increased sensitivity according to a suitable computer program.
Transversal magnetoresistance in Weyl semimetals
NASA Astrophysics Data System (ADS)
Klier, J.; Gornyi, I. V.; Mirlin, A. D.
2015-11-01
We explore theoretically the magnetoresistivity of three-dimensional Weyl and Dirac semimetals in transversal magnetic fields within two alternative models of disorder: (i) short-range impurities and (ii) charged (Coulomb) impurities. Impurity scattering is treated using the self-consistent Born approximation. We find that an unusual broadening of Landau levels leads to a variety of regimes of the resistivity scaling in the temperature-magnetic field plane. In particular, the magnetoresistance is nonmonotonous for the white-noise disorder model. For H →0 the magnetoresistance for short-range impurities vanishes in a nonanalytic way as H1 /3. In the limits of strongest magnetic fields H , the magnetoresistivity vanishes as 1 /H for pointlike impurities, while it is linear and positive in the model with Coulomb impurities.
Transverse patterning and human amnesia.
Rickard, Timothy C; Verfaellie, Mieke; Grafman, Jordan
2006-10-01
The transverse patterning (TP) task (A+ B-, B+ C-, C+ A-) has played a central role in testing the hypothesis that medial-temporal (and, in particular, hippocampal) brain damage selectively impairs learning on at least some classes of configural (i.e., nonlinear) learning tasks. Results in the animal and human literature generally support that hypothesis. Reed and Squire [Impaired transverse patterning in human amnesia is a special case of impaired memory for two-choice discrimination tasks. Behavioral Neuroscience, 113, 3-9, 1999], however, advanced an alternative account in which impaired TP performance in amnesia reflects a generic scaling artifact arising from the greater difficulty of the TP task compared to the elemental (i.e., linear) control task that is typically used. We begin with a critique of Reed and Squire, countering their conceptual arguments and showing that their results, when analyzed appropriately, support the configural deficit hypothesis. We then report results from eight new amnesic patients and controls on an improved version of the TP task. Despite substantial practice, accuracy of patients with bilateral hippocampal damage due to anoxia reached and maintained an asymptote of only 54% correct, well below the maximum accuracy obtainable (67%) in the absence of configural learning. A patient with selective bilateral damage to the anterior thalamic nuclei exhibited a TP accuracy asymptote that was near 67%, a pattern of two out of three correct consecutive trials, and a pattern of nearly always answering correctly for two of the three TP item pairs. These results are consistent with a set of unique and parameter-free predictions of the configural deficit hypothesis.
RF cavities with transversely biased ferrite tuning
Smythe, W.R.; Brophy, T.G.; Carlini, R.D.; Friedrichs, C.C.; Grisham, D.L.; Spalek, G.; Wilkerson, L.C.
1985-10-01
Earley et al. suggested that ferrite tuned rf cavities have lower ferrite power dissipation if the ferrite bias field is perpendicular rather than parallel to the rf magnetic field. A 50-84 MHz cavity has been constructed in which ferrite can be biased either way. Low power measurements of six microwave ferrites show that the magnetic Q's of these ferrites under perpendicular bias are much higher than under parallel bias, and that the high Q region extends over a much wider range of rf permeability. TDK Y-5 ferrite was found to have a magnetic Q of 10,800, 4,800, 1,200 and 129 at rf permeabilities of 1.2, 2.4, 3.7 and 4.5, respectively. Measurements of perpendicularly biased ferrite at various power levels were made in a coaxial line cavity. The Q of Y-5 ferrite was found to decrease by less than a factor of 2 as the power density in the ferrite was increased to 1.3 W/cmT. A cavity design for a 6 GeV, high current, rapid cycling synchrotron using transversely biased ferrite tuning is described.
Transverse Bursts in Inclined Layer Convection: Theory
NASA Astrophysics Data System (ADS)
Bodenschatz, Eberhard; Brink, Jeandrew; Pesch, Werner
2002-03-01
We report theoretical and computational results on thermally driven inclined layer convection. For small Prandtl number fluids, experiments have reported bursting phenomena at both small angles, strong driving and high angles, weak driving (Daniels et al. PRL 84: 5320, 2000). Theoretically, the small angle, strong driving case was described by Clever and Busse (Physics of Fluids 12: 2137, 2000) and was connected to a subharmonic instability. At large angles, close to the codimension-two point, intermittent, localized, transverse subharmonic bursts occur at weak driving. Qualitatively, the bursts draw energy from the roll modes, exhaust them while growing, and die out when they are unable to find a new attractor. We investigate a connection between the small- and large-angle bursts. Using Galerkin methods and direct simulations of the underlying Boussinesq equations, we examine the extent to which they are related to a linear instability of the roll pattern. We address a possible connection to the shear flow turbulent bursts observed in Taylor-Couette flow. In addition, we present a theoretical analysis of the small Prandtl number case, for which the codimension-two point moves to zero angle. This work is supported by a Cornell Graduate Student Fellowship and by the National Science Foundation under grant DMR-0072077.
Laparoscopic correction of right transverse colostomy prolapse.
Gundogdu, Gokhan; Topuz, Ufuk; Umutoglu, Tarik
2013-08-01
Colostomy prolapse is a frequently seen complication of transverse colostomy. In one child with recurrent stoma prolapse, we performed a loop-to-loop fixation and peritoneal tethering laparoscopically. No prolapse had recurred at follow-up. Laparoscopic repair of transverse colostomy prolapse seems to be a less invasive method than other techniques.
Transverse instability at the recycler ring
Ng, K.Y.; /Fermilab
2004-10-01
Sporadic transverse instabilities have been observed at the Fermilab Recycler Ring leading to increase in transverse emittances and beam loss. The driving source of these instabilities has been attributed to the resistive-wall impedance with space-charge playing an important role in suppressing Landau damping. Growth rates of the instabilities are computed. Remaining problems are discussed.
Acute transverse myelopathy complicating systemic lupus erythematosus.
Propper, D J; Bucknall, R C
1989-01-01
A sixteen year old girl with systemic lupus erythematosus developed acute transverse myelopathy. She was treated with high dose steroids, cyclophosphamide, and plasma exchange and regained partial neurological function. Previous descriptions of transverse myelopathy complicating systemic lupus erythematosus are reviewed, with particular reference to the efficacy of high dose steroid treatment. PMID:2662918
Transverse impedance localization using intensity dependent optics
Calaga,R.; Arduini, G.; Metral, E.; Papotti, G.; Quatraro, D.; Rumolo, G.; Salvant, B.; Tomas, R.
2009-05-04
Measurements of transverse impedance in the SPS to track the evolution over the last few years show discrepancies compared to the analytical estimates of the major contributors. Recent measurements to localize the major sources of the transverse impedance using intensity dependent optics are presented. Some simulations using HEADTAIL to understand the limitations of the reconstruction and related numerical aspects are also discussed.
Cladding For Transversely-Pumped Laser Rod
NASA Technical Reports Server (NTRS)
Byer, Robert L.; Fan, Tso Yee
1989-01-01
Combination of suitable dimensioning and cladding of neodymium:yttrium aluminum garnet of similar solid-state laser provides for more efficient utilization of transversely-incident pump light from diode lasers. New design overcomes some of limitations of longitudinal- and older transverse-pumping concepts and promotes operation at higher output powers in TEM00 mode.
Transverse Mercator Projection Via Elliptic Integrals
NASA Technical Reports Server (NTRS)
Wallis, David E.
1992-01-01
Improved method of construction of U.S. Army's universal transverse Mercator grid system based on Gauss-Kruger transverse Mercator projection and on use of elliptic integrals of second kind. Method can be used to map entire northern or southern hemisphere with respect to single principal meridian.
Electrodeposited, Transverse Nanowire Electroluminescent Junctions.
Qiao, Shaopeng; Xu, Qiang; Dutta, Rajen K; Le Thai, Mya; Li, Xiaowei; Penner, Reginald M
2016-09-27
The preparation by electrodeposition of transverse nanowire electroluminescent junctions (tn-ELJs) is described, and the electroluminescence (EL) properties of these devices are characterized. The lithographically patterned nanowire electrodeposition process is first used to prepare long (millimeters), linear, nanocrystalline CdSe nanowires on glass. The thickness of these nanowires along the emission axis is 60 nm, and the width, wCdSe, along the electrical axis is adjustable from 100 to 450 nm. Ten pairs of nickel-gold electrical contacts are then positioned along the axis of this nanowire using lithographically directed electrodeposition. The resulting linear array of nickel-CdSe-gold junctions produces EL with an external quantum efficiency, EQE, and threshold voltage, Vth, that depend sensitively on wCdSe. EQE increases with increasing electric field and also with increasing wCdSe, and Vth also increases with wCdSe and, therefore, the electrical resistance of the tn-ELJs. Vth down to 1.8(±0.2) V (for wCdSe ≈ 100 nm) and EQE of 5.5(±0.5) × 10(-5) (for wCdSe ≈ 450 nm) are obtained. tn-ELJs produce a broad EL emission envelope, spanning the wavelength range from 600 to 960 nm.
Transversity from two pion interference fragmentation
She Jun; Huang Yang; Barone, Vincenzo; Ma Boqiang
2008-01-01
We present calculation on the azimuthal spin asymmetries for pion pair production in semi-inclusive deep inelastic scattering (SIDIS) process at both HERMES and COMPASS kinematics, with transversely polarized proton, deuteron, and neutron targets. We calculate the asymmetry by adopting a set of parametrization of the interference fragmentation functions and two different models for the transversity. We find that the result for the proton target is insensitive to the approaches of the transversity but more helpful to understand the interference fragmentation functions. However, for the neutron target, which can be obtained through using deuteron and {sup 3}He targets, we find different predictions for different approaches to the transversity. Thus probing the two pion interference fragmentation from the neutron can provide us more interesting information on the transversity.
Transverse Emittance Reduction with Tapered Foil
Jiao, Yi; Chao, Alex; Cai, Yunhai; /SLAC
2011-12-09
The idea of reducing transverse emittance with tapered energy-loss foil is proposed by J.M. Peterson in 1980s and recently by B. Carlsten. In this paper, we present the physical model of tapered energy-loss foil and analyze the emittance reduction using the concept of eigen emittance. The study shows that, to reduce transverse emittance, one should collimate at least 4% of particles which has either much low energy or large transverse divergence. The multiple coulomb scattering is not trivial, leading to a limited emittance reduction ratio. Small transverse emittances are of essential importance for the accelerator facilities generating free electron lasers, especially in hard X-ray region. The idea of reducing transverse emittance with tapered energy-loss foil is recently proposed by B. Carlsten [1], and can be traced back to J.M. Peterson's work in 1980s [2]. Peterson illustrated that a transverse energy gradient can be produced with a tapered energy-loss foil which in turn leads to transverse emittance reduction, and also analyzed the emittance growth from the associated multiple coulomb scattering. However, what Peterson proposed was rather a conceptual than a practical design. In this paper, we build a more complete physical model of the tapered foil based on Ref. [2], including the analysis of the transverse emittance reduction using the concept of eigen emittance and confirming the results by various numerical simulations. The eigen emittance equals to the projected emittance when there is no cross correlation in beam's second order moments matrix [3]. To calculate the eigen emittances, it requires only to know the beam distribution at the foil exit. Thus, the analysis of emittance reduction and the optics design of the subsequent beam line section can be separated. In addition, we can combine the effects of multiple coulomb scattering and transverse energy gradient together in the beam matrix and analyze their net effect. We find that,when applied to an
TRANSVERSE SPIN AT PHENIX AND FUTURE PLANS.
MAKDISI,Y.
2005-01-28
The PHENIX experiment took data with transversely polarized proton beams in 2001-2002 and measured the transverse single spin asymmetries in inclusive neutral pion and non-identified charge hadrons at midrapidity and {radical} s = 200 GeV. The data near X{sub F} {approx} 0 cover a transverse momentum range from 0.5 to 5.0 GeV/c. The observed asymmetries are consistent with zero with good statistical accuracy. This paper presents the current work in light of earlier measurements at lower energies in this kinematic region and the future plans of the PHENIX detector.
Transverse single bunch instability study on BEPC
NASA Astrophysics Data System (ADS)
Gao, J.; Sun, Y. P.
2007-04-01
In recent years, a lot of experiments were done on ESRF and ELETTRA to study the single bunch transverse instability. To prevent such instabilities on BEPCII in the future, experiments were made on the single bunch transverse instability threshold current versus the chromaticity on BEPC. By analyzing the experimental data based on the theory developed in [J. Gao, Nucl. Instr. and Meth. A 416 (1998) 186 (see also PAC97, Vancouver, Canada, 1997, p. 1605).], the transverse loss factor of BEPC and the corresponding scaling law are obtained.
Transverse Colon Diverticulitis with Calcified Fecalith
Solak, Aynur; Solak, Ilhami; Genç, Berhan; Sahin, Neslin; Yalaz, Seyhan
2013-01-01
Left colonic diverticula are common in Western populations, whereas right colonic diverticulosis primarily occurs in Oriental populations. Diverticulitis of the transverse colon is very rare, with very few cases reported in the literature. Herein, we report a case of transverse colon diverticulitis caused by a calcified stone in a 69-year-old female. This was a solitary diverticulum. The signs and symptoms of the disease are similar to acute pancreatitis. To the best of our knowledge, this is the first report describing the MRI findings of a patient with trans-verse colon diverticulitis caused by a calcified stone. PMID:25610254
Ferroelectric Cathodes in Transverse Magnetic Fields
Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch
2002-07-29
Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode.
Transverse impedances of cavities and collimators
Kheifets, S.A.; Bane, K.L.F.; Bizek, H.
1987-03-01
Field matching has been used to compute the transverse impedance of simple, cylindrically symmetric, perfectly conducting structures, the subregions of which are separated by radial cuts. The method is briefly described, and some early results are presented. (LEW)
Transversally periodic solitary gravity–capillary waves
Milewski, Paul A.; Wang, Zhan
2014-01-01
When both gravity and surface tension effects are present, surface solitary water waves are known to exist in both two- and three-dimensional infinitely deep fluids. We describe here solutions bridging these two cases: travelling waves which are localized in the propagation direction and periodic in the transverse direction. These transversally periodic gravity–capillary solitary waves are found to be of either elevation or depression type, tend to plane waves below a critical transverse period and tend to solitary lumps as the transverse period tends to infinity. The waves are found numerically in a Hamiltonian system for water waves simplified by a cubic truncation of the Dirichlet-to-Neumann operator. This approximation has been proved to be very accurate for both two- and three-dimensional computations of fully localized gravity–capillary solitary waves. The stability properties of these waves are then investigated via the time evolution of perturbed wave profiles. PMID:24399922
Transverse optical forces for manipulating nanoparticles
NASA Astrophysics Data System (ADS)
Zharov, Alexander A.; Zharov, Alexander A.; Shadrivov, Ilya V.; Zharova, Nina A.
2016-12-01
We study optical forces acting on a subwavelength particle with anisotropic polarizability and discover an optomechanical effect that resembles the Hall effect for electrons. While in the classical Hall effect the transverse Lorentz force and the transverse voltage appear due to the static magnetic field which induces the nondiagonal components of the electric conductivity tensor; in our case the imaginary parts of the nondiagonal elements of the polarizability tensor are responsible for the transverse scattering force. We calculate this force for the examples of the ellipsoidal plasmonic nanoparticles and the spherical particle with gyromagnetic properties, and show that the transverse force depends on the physical origin of the anisotropy of the polarizability, and on the electromagnetic wave structure around the particle. Moreover, this force primarily occurs in the inhomogeneous field only.
Development of Transverse Modes Damped DLA Structure
Jing, C.; Kanareykin, A.; Schoessow, P.; Gai, W.; Konecny, R.; Power, J. G.; Conde, M.
2009-01-22
As the dimensions of accelerating structures become smaller and beam intensities higher, the transverse wakefields driven by the beam become quite large with even a slight misalignment of the beam from the geometric axis. These deflection modes can cause inter-bunch beam breakup and intra-bunch head-tail instabilities along the beam path, and thus BBU control becomes a critical issue. All new metal based accelerating structures, like the accelerating structures developed at SLAC or power extractors at CLIC, have designs in which the transverse modes are heavily damped. Similarly, minimizing the transverse wakefield modes (here the HEMmn hybrid modes in Dielectric-Loaded Accelerating (DLA) structures) is also very critical for developing dielectric based high energy accelerators. In this paper, we present the design of a 7.8 GHz transverse mode damped DLA structure currently under construction, along with plans for the experimental program.
Exploring the transverse spin structure of the nucleon
D'Alesio, Umberto
2008-10-13
We discuss our present understanding of the transverse spin structure of the nucleon and of related properties originating from parton transverse motion. Starting from the transversity distribution and the ways to access it, we then address the role played by spin and transverse momentum dependent (TMD) distributions in azimuthal and transverse single spin asymmetries. The latest extractions of the Sivers, Collins and transversity functions are also presented.
Schwarzschild solution from Weyl transverse gravity
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2017-01-01
We study classical solutions in the Weyl-transverse (WTDiff) gravity. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeomorphisms (Diff) (transverse diffeomorphisms (TDiff)) and is known to be equivalent to general relativity at least at the classical level. In particular, we find that in a general spacetime dimension, the Schwarzschild metric is a classical solution in the WTDiff gravity when it is expressed in the Cartesian coordinate system.
Transverse flat plate heat pipe experiment
NASA Technical Reports Server (NTRS)
Edelstein, F.
1978-01-01
This paper describes a Shuttle-launched flight experiment to evaluate the performance of a transverse flat plate heat pipe that serves as an integral temperature control/mounting panel for electronic equipment. A transverse heat pipe is a gas-controlled variable conductance heat pipe that can handle relatively large thermal loads. An experiment designed to flight test the concept over a 6-9 month period is self-sufficient with respect to electrical power, timing sequences, and data storage.
Acute transverse myelitis complicating breakthrough varicella infection.
Aslan, Asli; Kurugol, Zafer; Gokben, Sarenur
2014-11-01
We report a 10-year-old girl who presented with acute transverse myelitis after breakthrough varicella infection. The diagnosis was based on the development of motor weakness, paraparesis and bladder dysfunction, spinal magnetic resonance imaging findings and detection of anti-varicella zoster virus IgG antibody in the cerebrospinal fluid. This case report highlights that breakthrough varicella can result in serious complications such as acute transverse myelitis.
Chiral dynamics and peripheral transverse densities
Granados, Carlos G.; Weiss, Christian
2014-01-01
In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.
Transverse structure of the QCD string
Meyer, Harvey B.
2010-11-15
The characterization of the transverse structure of the QCD string is discussed. We formulate a conjecture as to how the stress-energy tensor of the underlying gauge theory couples to the string degrees of freedom. A consequence of the conjecture is that the energy density and the longitudinal-stress operators measure the distribution of the transverse position of the string, to leading order in the string fluctuations, whereas the transverse-stress operator does not. We interpret recent numerical measurements of the transverse size of the confining string and show that the difference of the energy and longitudinal-stress operators is a particularly natural probe at next-to-leading order. Second, we derive the constraints imposed by open-closed string duality on the transverse structure of the string. We show that a total of three independent ''gravitational'' form factors characterize the transverse profile of the closed string, and obtain the interpretation of recent effective string theory calculations: the square radius of a closed string of length {beta} defined from the slope of its gravitational form factor, is given by (d-1/2{pi}{sigma})log({beta}/4r{sub 0}) in d space dimensions. This is to be compared with the well-known result that the width of the open string at midpoint grows as (d-1/2{pi}{sigma})log(r/r{sub 0}). We also obtain predictions for transition form factors among closed-string states.
The stability of 1-D soliton in transverse direction
NASA Astrophysics Data System (ADS)
Verma, Deepa; Bera, Ratan Kumar; Das, Amita; Kaw, Predhiman
2016-12-01
The complete characterization of the exact 1-D solitary wave solutions (both stationary and propagating) for light plasma coupled system have been studied extensively in the parameter space of light frequency and the group speed [Poornakala et al., Phys. Plasmas 9(5), 1820 (2002)]. It has been shown in 1-D that solutions with single light wave peak and paired structures are stable and hence long lived. However, solutions having multiple peaks of light wave are unstable due to Raman scattering instability [Saxena et al., Phys. Plasmas 14, 072307 (2007)]. Here, we have shown with the help of 2-D fluid simulation that single peak and paired solutions too get destabilized by the transverse filamentation instability. The numerical growth rates obtained from simulations is seen to compare well with the analytical values. It is also shown that multiple peaks solitons first undergo the regular 1-D forward Raman scattering instability. Subsequently, they undergo a distinct second phase of destabilization through transverse filamentation instability. This is evident from the structure as well as the plot of the perturbed energy which shows a second phase of growth after saturating initially. The growth rate of the filamentation instability being comparatively slower than the forward Raman instability this phase comes quite late and is clearly distinguishable.
... that a person diagnosed with ALS seek a second opinion from an ALS "expert" - someone who diagnoses and treats many ALS patients and has training in this medical specialty. The ALS Association maintains a list of recognized experts in the field of ALS. See ALS Association Certified Centers of ...
NASA Astrophysics Data System (ADS)
Imtiaz, Ahmad; Lu, Zhi-Ming; Liu, Yu-Lu
2014-01-01
Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin's model, and at the fourth location, close to She—Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.
Nucleon Spin Structure: Longitudinal and Transverse
Jian-Ping Chen
2011-02-01
Inclusive Deep-Inelastic Scattering (DIS) experiments have provided us with the most extensive information on the unpolarized and longitudinal polarized parton (quark and gluon) distributions in the nucleon. It has becoming clear that transverse spin and transverse momentum dependent distributions (TMDs) study are crucial for a more complete understanding of the nucleon structure and the dynamics of the strong interaction. The transverse spin structure and the TMDs are the subject of increasingly intense theoretical and experimental study recently. With a high luminosity electron beam facility, JLab has played a major role in the worldwide effort to study both the longitudinal and transverse spin structure. Highlights of recent results will be presented. With 12-GeV energy upgrade, JLab will provide the most precise measurements in the valence quark region to close a chapter in longitudinal spin study. JLab will also perform a multi-dimensional mapping of the transverse spin structure and TMDs in the valence quark region through Semi-Inclusive DIS (SIDIS) experiments, providing a 3-d partonic picture of the nucleon in momentum space and extracting the u and d quark tensor charges of the nucleon. The precision mapping of TMDs will also allow a detailed study of the quark orbital motion and its dynamics.
Transverse Spin Relaxation in Liquid X
Romalis, M. V.; Ledbetter, M. P.
2001-08-06
Using spin-echo NMR techniques we study the transverse spin relaxation of hyperpolarized liquid X{sup 129}e in a spherical cell. We observe an instability of the transverse magnetization due to dipolar fields produced by liquid X{sup 129}e , and find that imperfections in the {pi} pulses of the spin-echo sequence suppress this instability. A simple perturbative model of this effect is in good agreement with the data. We obtain a transverse spin relaxation time of 1300sec in liquid X{sup 129}e , and discuss applications of hyperpolarized liquid X{sup 129}e as a sensitive magnetic gradiometer and for a permanent electric dipole moment search.
Efficient modeling in transversely isotropic inhomogeneous media
Alkhalifah, T.
1993-11-01
An efficient modeling technique for transversely isotropic, inhomogeneous media, is developed using a mix of analytical equations and numerical calculations. The analytic equation for the raypath in a factorized transversely isotropic (FTI) media with linear velocity variation, derived by Shearer and Chapman, is used to trace between two points. In addition, I derive an analytical equation for geometrical spreading in FTI media that aids in preserving program efficiency; however, the traveltime is calculated numerically. I then generalize the method to treat general transversely isotropic (TI) media that are not factorized anisotropic inhomogeneous by perturbing the FTI traveltimes, following the perturbation ideas of Cerveny and Filho. A Kirchhoff-summation-based program relying on Trorey`s (1970) diffraction method is used to generate synthetic seismograms for such a medium. For the type of velocity models treated, the program is much more efficient than finite-difference and general ray-trace modeling techniques.
Evolution of transverse modes in FELIX macropulses
Weits, H.H.; Lin, L.; Werkhoven, G.H.C. van
1995-12-31
We present ringdown measurements of both the intracavity beam, using a low reflection beamsplitter, as well as the hole-outcoupled beam of FELIX, the intracavity measurements being taken at various sets of transverse coordinates. Recent measurements show a significant difference in the decay of the signals at different radial positions, suggesting the presence of higher order transverse modes. The formation of transverse modes depends on the properties of the cold cavity and its losses (i.e. resonator parameters, diffraction and outcoupling at the hole, absorption and edge losses on the mirrors, waveguide clipping), as well as on the gain mechanism. Both simulations with the axisymmetric ELIXER code and previous hole-outcoupled measurements indicated a substantial energy content of the 2nd or 4th Gauss-Laguerre (GL) mode for the 20-30 {mu}m regime of FELIX. Moreover, as FELIX has a phase degenerate cavity, the fundamental and higher order transverse modes can interplay to create a reduced outcoupling efficiency at the hole. For example, in contrast to the decay rate of 13% per roundtrip that we would expect for a pure gaussian beam when we include a loss of 6% for the reflection at the intracavity beamsplitter, recent simulations indicate a decay rate as high as 23% of the hole-outcoupled signal. In this case the 2nd order GL mode contains 30% of the total intracavity power. The effect of transverse modes on subpulses in the limit cycle regime is an interesting aspect. As soon as a subpulse is losing contact with the electrons, its transverse pattern will exhibit an on-axis hole after a few roundtrips, according to the simulations. This process could mean that the subpulses are less pronounced in the hole-outcoupled signal of FELIX 1.
Phase diagrams of the quantum XY spin glass model in a transverse field
NASA Astrophysics Data System (ADS)
Büttner, G.; Kopeć, T. K.; Usadel, K. D.
1990-10-01
The infinite range XY spin glass model in a transverse field Γ is investigated by means of the static approximation within the Trotter-Suzuki approach and thermo-field dynamics. The corresponding phase diagrams are obtained showing that a spin glass transition takes place for non-zero values of the transverse field up to a critical value. However, it is found that the results from both methods disagree considerably from recent calculations by De Cesare et al. on this model, performed by using the two-spin cluster approximation.
Chatter in a transverse grinding process
NASA Astrophysics Data System (ADS)
Yan, Yao; Xu, Jian; Wiercigroch, Marian
2014-02-01
In transverse grinding, the wheel moves along the workpiece, which induces unique grinding dynamics. To understand these dynamic phenomena, specifically the grinding chatter, a new dynamical model of the process is proposed, in which the wheel position is assumed to be quasi-static since the transverse wheel velocity is small. From the stability and bifurcation analyses of the chatter vibration, it appears that the dynamics of the process is governed by the quasi-static interactions. Moreover, the obtained results also show that the wheel and workpiece chatters are quite different, having continuous and intermittent characters respectively.
Fractional variational calculus and the transversality conditions
NASA Astrophysics Data System (ADS)
Agrawal, O. P.
2006-08-01
This paper presents the Euler-Lagrange equations and the transversality conditions for fractional variational problems. The fractional derivatives are defined in the sense of Riemann-Liouville and Caputo. The connection between the transversality conditions and the natural boundary conditions necessary to solve a fractional differential equation is examined. It is demonstrated that fractional boundary conditions may be necessary even when the problem is defined in terms of the Caputo derivative. Furthermore, both fractional derivatives (the Riemann-Liouville and the Caputo) arise in the formulations, even when the fractional variational problem is defined in terms of one fractional derivative only. Examples are presented to demonstrate the applications of the formulations.
[The transversality and health promotion schools].
Gavidia Catalán, V
2001-01-01
The following article shows the evolution of the schools contribution to the Health Education of children and young people. Moving on from the traditional concept of health, today, Health Education has a general and global meaning, which encompasses all of the physical, psychological and social aspects of health. These aspects define the characteristics of the "Healthy School". The need to broach the "transversal subject" offers schools the possibility of developing "transversality" in the Health Education. Finally, the concept of promoting health defines, together with the other subjects, that which we understand by "the heath promotion schools", which attempts to progress the full integration of schools in the society in which they are located.
Transverse dimension and long-term stability.
Vanarsdall, R L
1999-09-01
This article emphasizes the critical importance of the skeletal differential between the width of the maxilla and the width of the mandible. Undiagnosed transverse discrepancy leads to adverse periodontal response, unstable dental camouflage, and less than optimal dentofacial esthetics. Hundreds of adult retreatment patients corrected for significant maxillary transverse deficiency using surgically assisted maxillary expansion (similar to osseous distraction) has produced excellent stability. Eliciting tooth movement for children (orthopedics, lip bumper, Cetlin plate) in all three planes of space by muscles, eruption, and growth, develops the broader arch form (without the mechanical forces of fixed or removable appliances) and has also demonstrated impressive long term stability.
Transverse dune trailing ridges and vegetation succession
NASA Astrophysics Data System (ADS)
Hesp, Patrick A.; ‘Marisa' Martinez, M. L.
2008-07-01
We describe the evolution of, and vegetation succession on, a previously undescribed landform: transverse dune trailing ridges at El Farallón transgressive dunefield in the state of Veracruz, Mexico. Three-dimensional clinometer/compass and tape topographic surveys were conducted in conjunction with 1 m 2 contiguous percent cover and presence/absence vegetation survey transects at eight locations across two adjacent trailing ridges. At the study site, and elsewhere, the transverse dune trailing ridges are formed by vegetation colonization of the lateral margins of active transverse, barchanoidal transverse, and aklé or network dunes. For simplicity, all trailing ridges formed from these dune types are referred to as transverse dune trailing ridges. Because there are several transverse dunes in the dunefield, multiple trailing ridges can be formed at one time. Two adjacent trailing ridges were examined. The shortest length ridge was 70 m long, and evolving from a 2.5 m-high transverse dune, while the longer ridge was 140 m long, and evolving from an 8 m-high dune. Trailing ridge length is a proxy measure of ridge age, since the longer the ridge, the greater the length of time since initial formation. With increasing age or distance upwind, species diversity increased, as well as species horizontal extent and percent cover. In turn, the degree of bare sand decreased. Overall, the data indicate a successional trend in the vegetation presence and cover with increasing age upwind. Those species most tolerant to burial ( Croton and Palafoxia) begin the process of trailing ridge formation. Ipomoea and Canavalia are less tolerant to burial and also are typically the next colonizing species. Trachypogon does not tolerate sand burial or deposition very well and only appears after significant stabilization has taken place. The ridges display a moderately defined successional sequence in plant colonization and percentage cover with time (and upwind distance). They are
Program Computes Universal Transverse Mercator Projection
NASA Technical Reports Server (NTRS)
Wallis, David E.
1991-01-01
Computer program produces Gauss-Kruger (constant meridional scale) transverse Mercator projection, used to construct U.S. Army's universal transverse Mercator (UTM) grid system. Capable of mapping entire Northern Hemisphere of Earth (and, by symmetry of projection, entire Earth) accurately with respect to single principal meridian. Mathematically insensitive to proximity to pole or equator and insensitive to departure of meridian from central meridian. Useful to any mapmaking agency. FORTRAN 77 program developed on IBM PC-series computer equipped with Intel Math Coprocessor.
... toward a world without ALS! Walk to Defeat ALS® Walk to Defeat ALS® draws people of all ... We need your help. I Will Advocate National ALS Registry The National ALS Registry is a congressionally ...
NASA Astrophysics Data System (ADS)
Krizanac, M.; Vedmedenko, E. Y.; Wiesendanger, R.
2017-01-01
We present a perturbative approach for the resonant tunnel splittings of an arbitrary effective single spin system. The Hamiltonian of such a system contains a uniaxial anisotropy, a transversal magnetic field and a second-order transversal anisotropy. Further, we investigate the influence of the transversal magnetic field on the energy splittings for higher integer quantum spins and we introduce an exact formula, which defines values of the transversal magnetic field, the transversal anisotropy and the uniaxial anisotropy where the contribution of the transversal magnetic field to the energy splitting is at least equal to the contribution of the transversal anisotropy.
Injection coupling with high amplitude transverse modes: Experimentation and simulation
NASA Astrophysics Data System (ADS)
Mery, Yoann; Ducruix, Sébastien; Scouflaire, Philippe; Candel, Sébastien
2009-06-01
High frequency combustion instabilities have technical importance in the design of liquid rocket engines. These phenomena involve a strong coupling between transverse acoustic modes and combustion. They are currently being investigated by combining experimentation and numerical simulations. On the experimental level, the coupling is examined in a model scale system featuring a multiple injector combustor (MIC) comprising five coaxial injectors fed with liquid oxygen and gaseous methane. This system is equipped with a novel VHAM actuator (Very High Amplitude Modulator) which comprises two nozzles and a rotating toothed wheel blocking the nozzles in an alternate fashion. This device was designed to obtain the highest possible levels of transverse oscillation in the MIC. After a brief review of the VHAM, this article reports cold flow experiments using this modulator. Velocity maps obtained under resonant conditions using the VHAM are examined at different instants during a cycle of oscillation. Experimental data are compared with numerical pressure and velocity fields obtained from an acoustic solver. The good agreement observed in the nozzle vicinity indicates that numerical simulations can be used to analyze the complex flow field generated by the VHAM. To cite this article: Y. Mery et al., C. R. Mecanique 337 (2009).
Sex Education as a Transversal Subject
ERIC Educational Resources Information Center
Rabelo, Amanda Oliveira; Pereira, Graziela Raupp; Reis, Maria Amélia; Ferreira, António G.
2015-01-01
Currently, sex education is in many countries a transversal subject, in which the school becomes a privileged place for the implementation of policies that aim at promoting "public health." Its design as a cross-cutting subject envisages fostering the dissemination of these subjects in all pedagogical and curricular fields; however, we…
The Effects of Transverse Stress on Magnetization.
1982-01-01
move to oppose the field in tension (90-). The contributions of these two types of walls are reversed with the aplication of co.npression((90-) walls...stress and field, whereas this research investigates transverse stress and field. An examination of the thermodynamics involved in the two cases quickly
Measuring transverse shape with virtual photons
Hoyer, Paul; Kurki, Samu
2011-06-01
A two-dimensional Fourier transform of hadron form factors allows to determine their charge density in transverse space. We show that this method can be applied to any virtual photon induced transition, such as {gamma}{sup *}(q)+N{yields}{pi}N. Only Fock states that are common to the initial and final states contribute to the amplitudes, which are determined by the overlap of the corresponding light-front wave functions. Their transverse extent may be studied as a function of the final state configuration, allowing qualitatively new insight into strong interaction dynamics. Fourier transforming the cross section (rather than the amplitude) gives the distribution of the transverse distance between the virtual photon interaction vertices in the scattering amplitude and its complex conjugate. While the measurement of parton distributions in longitudinal momentum depends on the leading twist approximation (-q{sup 2}{yields}{infinity} limit), all q{sup 2}<0 values contribute to the Fourier transform, with the transverse resolution increasing with the available range in q{sup 2}. We illustrate the method using QED amplitudes.
Transverse stability in a Stark decelerator
Meerakker, Sebastiaan Y. T. van de; Bethlem, Hendrick L.; Vanhaecke, Nicolas; Meijer, Gerard
2006-02-15
The concept of phase stability in a Stark decelerator ensures that polar molecules can be accelerated, guided, or decelerated without loss; molecules within a certain position and velocity interval are kept together throughout the deceleration process. In this paper the influence of the transverse motion on phase stability in a Stark decelerator is investigated. For typical deceleration experiments--i.e., for high values of the phase angle {phi}{sub 0}--the transverse motion considerably enhances the region in phase space for which phase stable deceleration occurs. For low values of {phi}{sub 0}, however, the transverse motion reduces the acceptance of a Stark decelerator and unstable regions in phase space appear. These effects are quantitatively explained in terms of a coupling between the longitudinal and transverse motion. The predicted longitudinal acceptance of a Stark decelerator is verified by measurements on a beam of OH (X {sup 2}{pi}{sub 3/2},J=3/2) radicals passing through a Stark decelerator.
Bending of Beams Subjected to Transverse Impacts,
1983-04-01
and rotary inertia effects have been considered by Karunes and Onat [6] Symonds [7] and Jones and Gomes de Oliveira (8]. The main aspects of the...Phys. Sol., Vol. 2, 1954, pp. 92-102. 6. Karunes , B. and Onat, E.T., "On the Effect of Shear on Plastic Deformation of Beams Under Transverse Impact
Barium granuloma of the transverse colon.
McKee, P. H.; Cameron, C. H.
1978-01-01
A case of barium sulphate granuloma of the transverse colon following gunshot wounds to the abdomen has been described. Scanning electron microscopy with electron probe microanalysis was used to confirm the presence of barium sulphate and the absence of lead or other elements related to the gunshot wounds. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:740599
Variation of transverse momentum in hadronic collisions
NASA Technical Reports Server (NTRS)
Saint Amand, J.; Uritam, R. A.
1975-01-01
The paper presents a detailed parameterization of the transverse momentum in hadronic collisions on multiplicity and on beam momentum. Hadronic collisions are considered at energies below the ultra-high energy domain, on the basis of an uncertainty relation and a naive eikonal model with an impact-parameter-dependent multiplicity.
Formulas for Precise Transverse Mercator Projection
NASA Technical Reports Server (NTRS)
Wallis, D. E.
1983-01-01
Transverse mercator projection, surface of Earth or other spheroid is mapped onto cylinder tangent at meridian of longitude. New method performs mapping by means of mathematical series in which higher order terms correct for deviation from exact sphericity. New method yields precise geodetic maps.
Mitigating chromatic effects for the transverse focusing of intense charged particle beams
NASA Astrophysics Data System (ADS)
Mitrani, James; Kaganovich, Igor; Davidson, Ronald
2013-09-01
A final focusing scheme designed to minimize chromatic effects is discussed. Solenoids are often used for transverse focusing in accelerator systems that require a charged particle beam with a small focal spot and/or large energy density A sufficiently large spread in axial momentum will reduce the effectiveness of transverse focusing, and result in chromatic effects on the final focal spot. Placing a weaker solenoid upstream of a stronger final focusing solenoid (FFS) mitigates chromatic effects on transverse beam focusing. J.M. Mitrani et al., Nucl. Inst. Meth. Phys. Res. A (2013) http://dx.doi.org/10.1016/j.nima.2013.05.09 This work was supported by DOE contract DE-AC02-09CH11466.
Transverse Acceleration of Ions in the Auroral Ionosphere
NASA Astrophysics Data System (ADS)
Ram, A. K.; Benisti, D.; Bers, A.
1996-11-01
We show that the recent observations of transverse acceleration of O^+ and H^+ ions in localized regions of the auroral ionosphere,(J. L. Vago et. al., J. Geophys. Res.), 97, 16935 (1992). where intense lower-hybrid waves exist, can be understood in terms of the nonlinear interaction of ions with electrostatic wave packets of finite bandwidth in frequency and wavelength. Contrary to previous studies, we find that motion of the ions does not need to become chaotic in order to explain the observed energies needed to escape the ionosphere. The energization process of thermal ions is coherent and occurs over times that are long compared to the ion gyration times. This coherent energization occurs when the ions interact with more than a single plane wave of differing frequencies. The conditions for the energization and an explanation of the observations will be discussed.
Repetitive operation of switchless transverse flow transversely excited atmosphere CO2 lasers.
Patil, Gautam C; Nilaya, J Padma; Biswas, D J
2011-09-01
The enhanced preionisation efficiency of a mutually coupled parallel spark preioniser has been exploited to achieve switchless operation of a transversely excited atmosphere (TEA) CO(2) laser in the conventional transverse gas flow configuration. This made the laser more compatible to repetitive operation and the satisfactory performance of a switchless TEA CO(2) laser of ~8 cc active volume is reported here up to a maximum repetition rate of 100 Hz at a gas replenishment factor of ~2.
Transversal Clifford gates on folded surface codes
Moussa, Jonathan E.
2016-10-12
Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surface codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. Lastly, the specific application of these codes to universal quantum computation based on qubit fusion is also discussed.
Transversal Clifford gates on folded surface codes
Moussa, Jonathan E.
2016-10-12
Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surfacemore » codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. Lastly, the specific application of these codes to universal quantum computation based on qubit fusion is also discussed.« less
Quantum interference between transverse spatial waveguide modes
Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal
2017-01-01
Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing. PMID:28106036
Optimization of energy extraction in transverse galloping
NASA Astrophysics Data System (ADS)
Sorribes-Palmer, F.; Sanz-Andres, A.
2013-11-01
A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert-Den Hartog criterion is used to determine the region of angles of attack (pitch angles) prone to present galloping. An analytic solution (based on a polynomial curve of Cz) is used to validate the method and to evaluate the discretization errors. Several bodies (of biconvex, D-shape and rhomboidal cross sections) have been tested in a wind tunnel and the stability of the galloping region has been analysed with the new method. An algorithm to determine the pitch angle of the body that allows the maximum value of the kinetic energy of the flow to be extracted is presented.
Transverse Instabilities in the Fermilab Recycler
Prost, L.R.; Burov, A.; Shemyakin, A.; Bhat, C.M.; Crisp, J.; Eddy, N.; /Fermilab
2011-07-01
Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly lowered for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.
Transverse mode imaging of guided matter waves
Dall, R. G.; Hodgman, S. S.; Johnsson, M. T.; Baldwin, K. G. H.; Truscott, A. G.
2010-01-15
Ultracold atoms whose de Broglie wavelength is of the same order as an extended confining potential can experience waveguiding along the potential. When the transverse kinetic energy of the atoms is sufficiently low, they can be guided in the lowest order mode of the confining potential by analogy with light guided by a single mode optical fiber. We have obtained the first images of the transverse mode structure of guided matter waves in a confining potential with up to 65% of atoms in the lowest order mode. The coherence of the guided atomic de Broglie waves is demonstrated by the diffraction pattern produced when incident upon a two dimensional periodic structure. Such coherent waveguides will be important atom optic components in devices with applications such as atom holography and atom interferometry.
Transverse tectonic boundaries near Kodiak Island, Alaska.
Fisher, M.A.; Bruns, T.R.; Von Huene, R.
1981-01-01
Transverse tectonic boundaries exist at the NE and SW ends of the Kodiak islands, so that the Aleutian arc-trench system is longitudinally segmented in this area. Evidence for the transverse boundaries includes alignments of such geologic features as offset volcanic lineations, terminations of structural trends, and boundaries of discrete zones of earthquake aftershock sequences. The boundaries appear to be broad zones of disruption that began to form during the late Miocene or Pliocene. Although oceanic fracture zones and seamount chains intersect the continental margin near the boundaries, subduction of these features probably did not cause the tectonic boundaries. The fracture zones and seamount chains have swept northeastward along the margin, at least since the late Pliocene, because of the direction of convergence of the Pacific and N American plates. -Authors
Transverse mis-alignments in a driver
Smith, L.; Hahn, K.
1988-06-01
The transverse errors of the beam lines are usually corrected by an appropriate feed back to bring the beam back on axis. In an induction linac, however, the head and tail of the bunch differ substantially in momentum at a given lens location. As a result, the correction has to be time dependent. Such a correction becomes increasingly difficult as the beam energy increases and the time duration of the bunch decreases. As a step towards an understanding of the problem, we have analyzed the extreme case of applying no correction. Since the lattice configuration changes and the transverse oscillations are damped as the ions are accelerated, the rms amplitude does not increase simply as the square root of the number of periods, as one would expect for constant velocity in a uniform channel. 2 refs., 2 figs.
MEASUREMENT OF TRANSVERSE ECHOES IN RHIC.
FISCHER, W.; SATOGATA, T.; TOMAS. R.
2005-05-16
Beam echoes are a very sensitive method to measure diffusion, and longitudinal echo measurements were performed in a number of machines. In RHIC, for the first time, a transverse beam echo was observed after applying a dipole kick followed by a quadrupole .kick. After application of the dipole kick, the dipole moment decohered completely due to lattice nonlinearities. When a quadrupole kick is applied at time {tau} after the dipole kick, the beam re-cohered at time 2{tau} thus showing an echo response. We describe the experimental setup and measurement results. In the measurements the dipole and quadrupole kick amplitudes, amplitude dependent tune shift, and the time between dipole and quadrupole kick were varied. In addition, measurements were taken with gold bunches of different intensities. These should exhibit different transverse diffusion rates due to intra-beam scattering.
Transverse vibration of nematic elastomer Timoshenko beams
NASA Astrophysics Data System (ADS)
Zhao, Dong; Liu, Ying; Liu, Chuang
2017-01-01
Being a rubber-like liquid crystalline elastomer, a nematic elastomer (NE) is anisotropic viscoelastic, and displays dynamic soft elasticity. In this paper, the transverse vibration of a NE Timoshenko beam is studied based on the linear viscoelasticity theory of nematic elastomers. The governing equation of motion for the transverse vibration of a NE Timoshenko beam is derived. A complex modal analysis method is used to obtain the natural frequencies and decrement coefficients of NE beams. The influences of the nematic director rotation, the rubber relaxation time, and the director rotation time on the vibration characteristic of NE Timoshenko beams are discussed in detail. The sensitivity of the dynamic performance of NE beams to director initial angle and relaxation times provides a possibility of intelligent controlling of their dynamic performance.
Quantum interference between transverse spatial waveguide modes
NASA Astrophysics Data System (ADS)
Mohanty, Aseema; Zhang, Mian; Dutt, Avik; Ramelow, Sven; Nussenzveig, Paulo; Lipson, Michal
2017-01-01
Integrated quantum optics has the potential to markedly reduce the footprint and resource requirements of quantum information processing systems, but its practical implementation demands broader utilization of the available degrees of freedom within the optical field. To date, integrated photonic quantum systems have primarily relied on path encoding. However, in the classical regime, the transverse spatial modes of a multi-mode waveguide have been easily manipulated using the waveguide geometry to densely encode information. Here, we demonstrate quantum interference between the transverse spatial modes within a single multi-mode waveguide using quantum circuit-building blocks. This work shows that spatial modes can be controlled to an unprecedented level and have the potential to enable practical and robust quantum information processing.
Transverse acousto-electric effect in superconductors
NASA Astrophysics Data System (ADS)
Lipavský, P.; Koláček, J.; Lin, P.-J.
2016-06-01
We formulate a theory based on the time-dependent Ginzburg-Landau (TDGL) theory and Newtonian vortex dynamics to study the transverse acousto-electric response of a type-II superconductor with Abrikosov vortex lattice. When exposed to a transverse acoustic wave, Cooper pairs emerge from the moving atomic lattice and moving electrons. As in the Tolman-Stewart effect in a normal metal, an electromagnetic field is radiated from the superconductor. We adapt the equilibrium-based TDGL theory to this non-equilibrium system by using a floating condensation kernel. Due to the interaction between normal and superconducting components, the radiated electric field as a function of magnetic field attains a maximum value occurring below the upper critical magnetic field. This local increase in electric field has weak temperature dependence and is suppressed by the presence of impurities in the superconductor.
Characteristics of transverse waves in chromospheric mottles
Kuridze, D.; Mathioudakis, M.; Jess, D. B.; Keenan, F. P.; Verth, G.; Erdélyi, R.; Morton, R. J.; Christian, D. J.
2013-12-10
Using data obtained by the high temporal and spatial resolution Rapid Oscillations in the Solar Atmosphere instrument on the Dunn Solar Telescope, we investigate at an unprecedented level of detail transverse oscillations in chromospheric fine structures near the solar disk center. The oscillations are interpreted in terms of propagating and standing magnetohydrodynamic kink waves. Wave characteristics including the maximum transverse velocity amplitude and the phase speed are measured as a function of distance along the structure's length. Solar magnetoseismology is applied to these measured parameters to obtain diagnostic information on key plasma parameters (e.g., magnetic field, density, temperature, flow speed) of these localized waveguides. The magnetic field strength of the mottle along the ∼2 Mm length is found to decrease by a factor of 12, while the local plasma density scale height is ∼280 ± 80 km.
Damped transverse oscillations of interacting coronal loops
NASA Astrophysics Data System (ADS)
Soler, Roberto; Luna, Manuel
2015-10-01
Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations. Here we theoretically investigate resonantly damped transverse oscillations of interacting nonuniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. Analytic and numerical results in the specific case of two interacting loops are given as an application.
Transversal Clifford gates on folded surface codes
NASA Astrophysics Data System (ADS)
Moussa, Jonathan E.
2016-10-01
Surface and color codes are two forms of topological quantum error correction in two spatial dimensions with complementary properties. Surface codes have lower-depth error detection circuits and well-developed decoders to interpret and correct errors, while color codes have transversal Clifford gates and better code efficiency in the number of physical qubits needed to achieve a given code distance. A formal equivalence exists between color codes and folded surface codes, but it does not guarantee the transferability of any of these favorable properties. However, the equivalence does imply the existence of constant-depth circuit implementations of logical Clifford gates on folded surface codes. We achieve and improve this result by constructing two families of folded surface codes with transversal Clifford gates. This construction is presented generally for qudits of any dimension. The specific application of these codes to universal quantum computation based on qubit fusion is also discussed.
Ferrimagnetic behaviors in a transverse Ising nanoisland
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2016-05-01
In this paper, the phase diagrams and magnetizations of a magnetic nanoisland described by the transverse Ising model (TIM) are investigated by the use of the effective-field theory (EFT) with correlations. A lot of characteristic behaviors observed in standard ferrimagnetic materials as well as novel phenomena have been obtained, although the system consists of two finite spin-1/2 layers coupled antiferromagnetically with a negative interlayer coupling.
TRANSVERSE MODE ELECTRO-OPTIC MATERIALS.
electro - optic modulators presently used are crystals such as KDP which exhibit a longitudinal electro - optic effect. It has been demonstrated that a more efficient modulator can be produced when a crystal having a transverse electro - optic effect is employed. Generally these crystals are produced either from the melt or from fluxes. Since melt grown crystals must be cooled through several hundred degrees and often must undergo phase transitions, these crystals are generally highly strained. Flux grown crystals are also
Computed Tomography of Transverse Phase Space
Watts, A.; Johnstone, C.; Johnstone, J.
2016-09-19
Two computed tomography techniques are explored to reconstruct beam transverse phase space using both simulated beam and multi-wire profile data in the Fermilab Muon Test Area ("MTA") beamline. Both Filtered Back-Projection ("FBP") and Simultaneous Algebraic Reconstruction Technique ("SART") algorithms [2] are considered and compared. Errors and artifacts are compared as a function of each algorithm’s free parameters, and it is shown through simulation and MTA beamline profiles that SART is advantageous for reconstructions with limited profile data.
Complementary methods of transverse emittance measurement
Zagel, James; Hu, Martin; Jansson, Andreas; Thurman-Keup, Randy; Yan, Ming-Jen; /Fermilab
2008-05-01
Several complementary transverse emittance monitors have been developed and used at the Fermilab accelerator complex. These include Ionization profile Monitors (IPM), Flying Wires, Schottky detectors and a Synchrotron Light Monitor (Synchlite). Mechanical scrapers have also been used for calibration purposes. This paper describes the various measurement devices by examining their basic features, calibration requirements, systematic uncertainties, and applications to collider operation. A comparison of results from different kinds of measurements is also presented.
Strong transverse fields in delta-spots
NASA Technical Reports Server (NTRS)
Zirin, Harold; Wang, Haimin
1993-01-01
Spectroscopic measurements of the strength and direction of transverse magnetic fields in six delta-spots are presented. The field direction is determined by the relative strength of the pi- and sigma-components at different polarizer orientations, and is, with one exception, parallel to the neutral line and as strong as the umbral field. Field strengths determined by line splitting are as high as 3980 G.
Transverse-momentum-dependent parton distributions (TMDs)
Bacchetta, Alessandro
2011-10-24
Transverse-momentum-dependent parton distributions (TMDs) provide three-dimensional images of the partonic structure of the nucleon in momentum space. We made impressive progress in understanding TMDs, both from the theoretical and experimental point of view. This brief overview on TMDs is divided in two parts: in the first, an essential list of achievements is presented. In the second, a selection of open questions is discussed.
Electron in a transverse harmonic cavity
Honkanen, H.; Maris, P.; Vary, J.P.; Brodsky, S.J.; /SLAC
2010-10-27
We employ Hamiltonian light-front quantum field theory in a basis function approach to solve the non-perturbative problem of an electron in a strong scalar transverse confining potential. We evaluate both the invariant mass spectra and the anomalous magnetic moment of the lowest state for this two-scale system. The weak external field limit of the anomalous magnetic moment agrees with the result of QED perturbation theory within the anticipated accuracy.
Transverse Mixing in a Natural River Channel
NASA Astrophysics Data System (ADS)
Swick, W. A.; Macmahan, J. H.; Reniers, A. J.; Thornton, E. B.; Brown, J.
2010-12-01
Transverse mixing in a river channel is investigated using field observations and a three-dimensional (3D) hydrodynamic model, Delft3D. Six fluorescent Rhodamine dye releases were conducted in a 30 m wide, 500 m long, and 2 m deep relatively straight reach in the Kootenai River, ID on 12-16 August 2010. The study reach contained a number of natural channel features, such as a pool-riffle sequence and bank irregularities, which influence transverse mixing. The dye was released at a constant rate for one hour from a kayak fixed in the center of the channel. River discharge was steady and all releases were conducted in the morning hours to avoid diurnal wind effects. Vertical dye concentrations and velocity profiles were measured near the source and four downstream locations: 25m, 100m, 300m and 500m. In addition to the stationary observations, two different roving dye sampling schemes were performed to increase the spatial dye concentration resolution. The first sampling scheme consisted of 5 evenly-spaced dye sensors being slowly moved upstream. The second scheme consisted of 3 dye sensors moved transversely across the channel at various streamwise channel locations. These observations provide the horizontal and vertical extent of the dye plume and the spatial and temporal variability of the dye concentration. Local flow structures, produced by the separation of flow over riffles and bank irregularities, strongly control the observed local concentration distributions. Qualitative calculations highlight the influence of channel irregularities on the rate of transverse mixing and quantitative inferences shed light on the dominant mixing processes operating within different parts of the channel. 1D analytical and 3D numerical model are used to assess the relative importance of turbulent diffusion and local flow structure on predicted spatial dye concentrations.
Theoretical Overview on Recent Developments in Transverse Spin Physics
Yuan, Feng
2009-01-14
Transverse-spin physics has been very active and rapidly developing in the last few years. In this talk, I will briefly summarize recent theoretical developments, focusing on the associated QCD dynamics in transverse spin physics.
Resources - ALS ... The following organizations are good resources for information on amyotrophic lateral sclerosis : Muscular Dystrophy Association -- www.mda.org/disease/amyotrophic-lateral-sclerosis National Amyotrophic Lateral Sclerosis (ALS) ...
Xodo, Serena; Saccone, Gabriele; Cromi, Antonella; Ozcan, Pinar; Spagnolo, Emanuela; Berghella, Vincenzo
2016-07-01
It is imperative to have evidence-based guidelines for cesarean delivery. The aim of this meta-analysis was to evaluate the effectiveness of a cephalad-caudad compared to transverse blunt expansion of the uterine incision to reduce blood loss in women who underwent low-segment transverse cesarean delivery. We therefore performed a systematic search in electronic databases from their inception until March 2016. We included all randomized trials comparing cephalad-caudad versus transverse (control group) blunt expansion of the uterine incision in women who underwent a low transverse cesarean delivery. The primary outcome was postpartum blood loss, defined as the mean amount of blood loss (mL). Two trials (921 women) were analyzed. After the transverse uterine incision in the lower uterine segment with the scalpel, the uterine incision was then bluntly expanded by the designated method. Blunt expansion of the primary incision was derived by placing the index fingers of the operating surgeon into the incision and pulling the fingers apart laterally (transverse group) or cephalad (cephalad-caudad group). Women who were randomized in the cephalad-caudad group had lower: mean of postpartum blood loss, hemoglobin drop and hematocrit drop 24h after cesarean, unintended extension, uterine vessels injury, blood loss >1500mL and need for additional stitches. There was no statistically significant difference in the incidence of blood loss >1000mL, in the operating time and in post-operative pain. In conclusion, expansion of the uterine incision with fingers in a cephalad-caudad direction is associated with better maternal outcomes and, therefore, should be preferred to transverse expansion during a cesarean delivery.
Transversity and Drell-Yan K-Factors
NASA Astrophysics Data System (ADS)
Ratcliffe, P. G.
2005-08-01
The Drell-Yan K-factors for transversely polarised hadrons are examined. Since transverse spin is peculiar in having no DIS reference point, the effects of higher-order corrections on DY asymmetries are examined via a DIS definition for transversity devised using a hypothetical scalar vertex. The results suggest that some care may be required when interpreting experimentally extracted partonic transversity, particularly when comparing with model calculations or predictions.
Cladding for transverse-pumped solid-state laser
NASA Technical Reports Server (NTRS)
Byer, Robert L. (Inventor); Fan, Tso Y. (Inventor)
1989-01-01
In a transverse pumped, solid state laser, a nonabsorptive cladding surrounds a gain medium. A single tranverse mode, namely the Transverse Electromagnetic (TEM) sub 00 mode, is provided. The TEM sub 00 model has a cross sectional diameter greater than a transverse dimension of the gain medium but less than a transverse dimension of the cladding. The required size of the gain medium is minimized while a threshold for laser output is lowered.
Physical modeling of transverse drainage mechanisms
NASA Astrophysics Data System (ADS)
Douglass, J. C.; Schmeeckle, M. W.
2005-12-01
Streams that incise across bedrock highlands such as anticlines, upwarps, cuestas, or horsts are termed transverse drainages. Their relevance today involves such diverse matters as highway and dam construction decisions, location of wildlife corridors, better-informed sediment budgets, and detailed studies into developmental histories of late Cenozoic landscapes. The transient conditions responsible for transverse drainage incision have been extensively studied on a case-by-case basis, and the dominate mechanisms proposed include: antecedence, superimposition, overflow, and piracy. Modeling efforts have been limited to antecedence, and such the specific erosional conditions required for transverse drainage incision, with respect to the individual mechanisms, remains poorly understood. In this study, fifteen experiments attempted to simulate the four mechanisms and constructed on a 9.15 m long, 2.1 m wide, and 0.45 m deep stream table. Experiments lasted between 50 and 220 minutes. The stream table was filled with seven tons of sediment consisting of a silt and clay (30%) and a fine to coarse sand (70%) mixture. The physical models highlighted the importance of downstream aggradation with regard to antecedent incision versus possible defeat and diversion. The overflow experiments indicate that retreating knickpoints across a basin outlet produce a high probability of downstream flooding when associated with a deep lake. Misters used in a couple of experiments illustrate a potential complication with regard to headward erosion driven piracy. Relatively level asymmetrically sloped ridges allow for the drainage divide across the ridge to retreat from headward erosion, but hindered when the ridge's apex undulates or when symmetrically sloped. Although these physical models cannot strictly simulate natural transverse drainages, the observed processes, their development over time, and resultant landforms roughly emulate their natural counterparts. Proposed originally from
Longitudinal and transverse mode evolution in free electron laser
Dattoli, G.; Giannessi, L.; Georgii, R.
1995-12-31
We use the method of Padg approximants and Fourier transform techniques to treat analytically the problem of transverse and longitudinal mode evolution in FELs. We obtain simple relations providing a transparent understanding of the dynamic of pulse propagation effects and of transverse mode guiding. We discuss the interplay with inhomogeneous broadening effects and derive gain formulae including longitudinal and transverse mode couplings.
46 CFR 154.174 - Transverse contiguous hull structure.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Transverse contiguous hull structure. 154.174 Section... Equipment Hull Structure § 154.174 Transverse contiguous hull structure. (a) The transverse contiguous hull structure of a vessel having cargo containment systems without secondary barriers must meet the standards...
Numerical Investigation of Fracture in a Transversely Loaded Metal Matrix Composite
NASA Astrophysics Data System (ADS)
Papakaliatakis, G.; Karalekas, D.
2009-08-01
A displacement-based finite element numerical approach has been employed to study the damage initiation and growth in a unidirectional SiC/Al composite which is loaded in the transverse direction to the reinforcing fibers. A detailed finite element based analysis was undertaken and incorporates an elastic-plastic analysis combined with the strain energy density criterion to predict crack initiation and extension.
Phenomenological Extraction of Transverse-Momentum-Dependent Distributions
Alexei Prokudin
2011-10-01
We discuss phenomenological extraction of Transverse Momentum Dependent Distributions (TMDs) from experimental data. At leading twist spin structure of spin-1/2 hadron can be described by 8 TMDs. TMDs reveal three-dimensional distribution of partons inside polarised nucleon. Experimentally these functions can be studied in polarised experiments using Spin Asymmetries in particular Single Spin Asymmetries (SSAs). We discuss transversity that measures distribution of transversely polarised quarks in a transversely polarised nucleon and Sivers distribution function that describes distribution of unpolarised quarks in a transversely polarised nucleon.
Transverse discrete breathers in unstrained graphene
NASA Astrophysics Data System (ADS)
Barani, Elham; Lobzenko, Ivan P.; Korznikova, Elena A.; Soboleva, Elvira G.; Dmitriev, Sergey V.; Zhou, Kun; Marjaneh, Aliakbar Moradi
2017-02-01
Discrete breathers (DB) are spatially localized vibrational modes of large amplitude in defect-free nonlinear lattices. The search for DBs in graphene is of high importance, taking into account that this one atom thick layer of carbon is promising for a number of applications. There exist several reports on successful excitation of DBs in graphene, based on molecular dynamics and ab initio simulations. In a recent work by Hizhnyakov with co-authors the possibility to excite a DB with atoms oscillating normal to the graphene sheet has been reported. In the present study we use a systematic approach for finding initial conditions to excite transverse DBs in graphene. The approach is based on the analysis of the frequency-amplitude dependence for a delocalized, short-wavelength vibrational mode. This mode is a symmetry-dictated exact solution to the dynamic equations of the atomic motion, regardless the mode amplitude and regardless the type of interatomic potentials used in the simulations. It is demonstrated that if the AIREBO potential is used, the mode frequency increases with the amplitude bifurcating from the upper edge of the phonon spectrum for out-of-plane phonons. Then a bell-shaped function is superimposed on this delocalized mode to obtain a spatially localized vibrational mode, i.e., a DB. Placing the center of the bell-shaped function at different positions with respect to the lattice sites, three different DBs are found. Typically, the degree of spatial localization of DBs increases with the DB amplitude, but the transverse DBs in graphene reported here demonstrate the opposite trend. The results are compared to those obtained with the use of the Savin interatomic potential and no transverse DBs are found in this case. The results of this study contribute to a better understanding of the nonlinear dynamics of graphene and they call for the ab initio simulations to verify which of the two potentials used in this study is more precise.
Transverse seismic analysis of buried pipelines
Mavridis, G.A.; Pitilakis, K.D.
1995-12-31
The objective of this study is to develop an analytical procedure for calculating upper bounds for stresses and strains for the case of the transverse seismic shaking of continuous buried pipelines taking into account the soil-pipeline interaction effects. A sensibility analysis of some critical parameters is performed. The influence of various parameters such as the apparent propagation velocity, the frequency content of the seismic ground excitation, the dynamic soil properties, the pipe`s material and size, on the ratio of the pipe to ground displacements amplitudes and consequently to the induced pipe strains, are studied parametrically.
Transversely isotropic elasticity imaging of cancellous bone.
Shore, Spencer W; Barbone, Paul E; Oberai, Assad A; Morgan, Elise F
2011-06-01
To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ɛ₁₂ is necessary to reconstruct C₁₂₁₂), and the application of regularization is shown to improve accuracy. Finally
Ferrimagnetism in a transverse Ising antiferromagnet
NASA Astrophysics Data System (ADS)
Kaneyoshi, T.
2016-05-01
The phase diagrams and temperature dependences of total magnetization mT in a transverse Ising antiferromagnet consisting of alternating two (A and B) layers are studied by the uses of the effective-field theory with correlations and the mean-field-theory. A lot of characteristic phenomena, namely ferrimagnetic behaviors, have been found in the mT, when the crystallographically equivalent conditions between the A and B layers are broken. The appearance of a compensation point has been found below its transition temperature.
Tornados and Transverse Oscillations during Prominence Eruption
NASA Astrophysics Data System (ADS)
Banerjee, Dipankar; Chandrashekhar, K.; Morton, Richard; Pant, Vaibhav; Datta, Ajanta
2016-07-01
We report and analyse different phases of a prominence eruption. The winding-unwinding of two footpoints and a tornado like swirling motion is studied. The prominence eruption is observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory (SDO). This prominence eruption is associated with a CME at a central principal angle of 340 degree, according to the SOHO/LASCO CME catalogue. We can observe the prominence threads and the time distance maps reveal that the loop threads are entangled. We also study the transverse oscillations in the threads. Swirling motions after the eruptions are also quantified and its possible link with the CME kinematics is also studied
TRANSVERSE OPTICS IMPROVEMENTS FOR RHIC RUN 4.
VAN ZEIJTS,J.
2004-07-05
The magnetic settings in RHIC are driven by an on-line model, and the quality of the resulting lattice functions depend on the correctness of the settings, and knowledge of the magnet transfer-functions. Here we first present the different inputs into the model, including dipole sextupole components, used to set tunes and chromaticities along the ramp. Based on an analysis of measured tunes along the FY03 polarized proton ramp, we present predictions for quadrupole transfer-function changes which have been implemented for the FY04 Au ramp. We show the improved model agreement for tunes along the ramp, and measured transverse phase-advance at store.
Transversely Isotropic Elasticity Imaging of Cancellous Bone
Shore, Spencer W.; Barbone, Paul E.; Oberai, Assad A.; Morgan, Elise F.
2012-01-01
To measure spatial variations in mechanical properties of biological materials, prior studies have typically performed mechanical tests on excised specimens of tissue. Less invasive measurements, however, are preferable in many applications, such as patient-specific modeling, disease diagnosis, and tracking of age- or damage-related degradation of mechanical properties. Elasticity imaging (elastography) is a nondestructive imaging method in which the distribution of elastic properties throughout a specimen can be reconstructed from measured strain or displacement fields. To date, most work in elasticity imaging has concerned incompressible, isotropic materials. This study presents an extension of elasticity imaging to three-dimensional, compressible, transversely isotropic materials. The formulation and solution of an inverse problem for an anisotropic tissue subjected to a combination of quasi-static loads is described, and an optimization and regularization strategy that indirectly obtains the solution to the inverse problem is presented. Several applications of transversely isotropic elasticity imaging to cancellous bone from the human vertebra are then considered. The feasibility of using isotropic elasticity imaging to obtain meaningful reconstructions of the distribution of material properties for vertebral cancellous bone from experiment is established. However, using simulation, it is shown that an isotropic reconstruction is not appropriate for anisotropic materials. It is further shown that the transversely isotropic method identifies a solution that predicts the measured displacements, reveals regions of low stiffness, and recovers all five elastic parameters with approximately 10% error. The recovery of a given elastic parameter is found to require the presence of its corresponding strain (e.g., a deformation that generates ε12 is necessary to reconstruct C1212), and the application of regularization is shown to improve accuracy. Finally, the effects
Interacting dark sector with transversal interaction
Chimento, Luis P.; Richarte, Martín G.
2015-03-26
We investigate the interacting dark sector composed of dark matter, dark energy, and dark radiation for a spatially flat Friedmann-Robertson-Walker (FRW) background by introducing a three-dimensional internal space spanned by the interaction vector Q and solve the source equation for a linear transversal interaction. Then, we explore a realistic model with dark matter coupled to a scalar field plus a decoupled radiation term, analyze the amount of dark energy in the radiation era and find that our model is consistent with the recent measurements of cosmic microwave background anisotropy coming from Planck along with the future constraints achievable by CMBPol experiment.
Summary report on transverse emittance preservation
Chou, W.; Vos, L.
1997-12-01
During the past years, significant progress has been made in understanding the beam transverse emittance blow-up and its preservation. However, one often finds him-/herself ignorant when he/she tries to explain what was observed in an existing machine or to predict what will happen in a machine under design. There are a number of such examples given in this report. Some of them are even fundamental. These are the challenges. But they are also the directions leading to new achievements. The workshop gladly acknowledged them and promised to work on them.
A Transversely Isotropic Thermo-mechanical Framework for Oil Shale
NASA Astrophysics Data System (ADS)
Semnani, S. J.; White, J. A.; Borja, R. I.
2014-12-01
The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers
Transversal mixing in the gastrointestinal tract
NASA Astrophysics Data System (ADS)
Vainchtein, Dmitri; Orthey, Perry; Parkman, Henry
2015-11-01
We discuss results of numerical simulations and analytical modeling of transversal intraluminal mixing in the GI tract produced by segmentation and peristaltic contractions. Particles that start in different parts of the small intestine are traced over several contractions and mixing is described using the particles' probability distribution function. We show that there is optimal set of parameters of contractions, such as the depth and frequency, that produces the most efficient mixing. We show that contractions create well-defined advection patterns in transversal direction. The research is inspired by several applications. First, there is the study of bacteria populating the walls of the intestine, which rely on fluid mixing for nutrients. Second, there are gastrointestinal diseases, such as Crohn's disease, which can be treated effectively using a drug delivery capsule through GI tract, for which it is needed to know how long it takes for a released drug to reach the intestinal wall. And finally, certain neurological and muscular deceases change the parameters of contractions, thus reducing the efficiency of mixing. Understanding an admissible range of the parameters (when mixing is still sufficient for biological purposes) may indicate when the medical action is required.
QCD Corrections in Transversely Polarized Scattering
Vogelsang,W.
2008-10-06
We discuss two recent calculations of higher-order QeD corrections to scattering of transversely polarized hadrons. A basic concept underlying much of the theoretical description of high-energy hadronic scattering is the factorization theorem, which states that large momentum-transfer reactions may be factorized into long-distance pieces that contain information on the structure of the nucleon in terms of its parton densities, and parts that are short-distance and describe the hard interactions of the partons. Two crucial points are that on the one hand the long-distance contributions are universal, i.e., they are the same in any inelastic reaction under consideration, and that on the other hand the short-distance pieces depend only on the large scales related to the large momentum transfer in the overall reaction and, therefore, may be evaluated using QCD perturbation theory. The lowest order for the latter can generally only serve to give a rough description of the reaction under study. It merely captures the main features, but does not usually provide a quantitative understanding. The first-order ('next-to-leading order' (NLO)) corrections are generally indispensable in order to arrive at a firmer theoretical prediction for hadronic cross sections, and in some cases even an all-order resummation of large perturbative corrections is needed. In the present paper we win discuss two calculations [1, 2] of higher-order QeD corrections to transversely polarized scattering.
Transverse-pumped Cs vapor laser
NASA Astrophysics Data System (ADS)
Zhdanov, B. V.; Shaffer, M. K.; Sell, J.; Knize, R. J.
2009-02-01
Scaling of alkali lasers to higher powers requires combining beams of multiple diode laser pump sources. For longitudinal pumping this can be very complicated if more than four beams are to be combined. In this paper we report a first demonstration of a transversely pumped Cs laser with fifteen laser diode arrays. The LDA pump beams were individually collimated with a beam size of about 1 x 4 cm as measured at a 1 m distance from the diodes. All these beams were incident on a cylindrical lens to be focused and coupled through the side slit of a hollow, cylindrical diffuse reflector which contained the Cs vapor cell. We measured the output power and efficiency of the Cs laser for pump powers up to 200 W at different cell temperatures. Although the values of output power and slope efficiency obtained for this laser system were less than those for a longitudinally pumped alkali laser, these recent results can be significantly improved by using a more optimal laser cavity design. The demonstrated operation of Cs laser with transverse pumping opens new possibilities in power scaling of alkali lasers.
Transverse profile imager for ultrabright electron beams
NASA Astrophysics Data System (ADS)
Ischebeck, Rasmus; Prat, Eduard; Thominet, Vincent; Ozkan Loch, Cigdem
2015-08-01
A transverse profile imager for ultrabright electron beams is presented, which overcomes resolution issues in present designs by observing the Scheimpflug imaging condition as well as the Snell-Descartes law of refraction in the scintillating crystal. Coherent optical transition radiation emitted by highly compressed electron bunches on the surface of the crystal is directed away from the camera, allowing to use the monitor for profile measurements of electron bunches suitable for X-ray free electron lasers. The optical design has been verified by ray tracing simulations, and the angular dependency of the resolution has been verified experimentally. An instrument according to the presented design principles has been used in the SwissFEL Injector Test Facility, and different scintillator materials have been tested. Measurements in conjunction with a transverse deflecting radiofrequency structure and an array of quadrupole magnets demonstrate a normalized slice emittance of 25 nm in the core of a 30 fC electron beam at a pulse length of 10 ps and a particle energy of 230 MeV.
Transversely accelerated ions in the topside ionosphere
NASA Technical Reports Server (NTRS)
Retterer, John M.; Chang, Tom; Jasperse, J. R.
1994-01-01
Data from the rocket campaigns Mechanism in the Auroral Region for Ion Energization (MARIE) and TOpside Probe of the Auroral Zone (TOPAZ) III, within regions of low-altitude transversely accelerated ions, are interpreted to explain the acceleration of the ions. Using the Monte Carlo kinetic technique to evaluate the ion heating produced by the simultaneously observed lower hybrid waves, we find that their observed electric field amplitudes are sufficient to explain the observed ion energies in the MARIE event. Much of the uncertainty in evaluating the efficiency of a plasma wave induced particle heating process which is dependent on a velocity resonance comes from the lack of information on the phase velocities of the waves. In the case of the MARIE observations, our modeling efforts show that features in the ion velocity distribution are consistent with the wave phase velocities inferred from interferometer measurements of wavelengths. The lower hybrid waves with which low-altitude transversely accelerated ions are associated are frequently observed to be concentrated in small-scale wave packets called 'spikelets'. We demonstrate through the scaling of the size of these wave packets that they are consistent with the theory of lower hybrid collapse. Using the Monte Carlo technique, we find that if the lower hybrid field energy is concentrated in these wave packets, it is still adequate to accelerate the ionospheric ions to the observed energies.
Extracting temperature and transverse flow by fitting transverse mass spectra and HBT radii together
NASA Astrophysics Data System (ADS)
He, Ronghua; Qian, Jing; Chen, Jianyi; Wu, Qingxin; Huo, Lei
2017-03-01
Single particle transverse mass spectra and HBT radii of identical pion and identical kaon are analyzed with a blast-wave parametrization under the assumptions of local thermal equilibrium and transverse expansion. Under the assumptions, temperature parameter T and transverse expansion rapidity ρ are sensitive to the shapes of transverse mass mT spectrum and HBT radius Rs(KT). Negative and positive correlations between T and ρ are observed by fitting mT spectrum and HBT radius Rs(KT), respectively. For a Monte Carlo simulation using the blast-wave function, T and ρ are extracted by fitting mT spectra and HBT radii together utilizing a combined optimization function χ2. With this method, T and ρ of the Monte Carlo sources can be extracted. Using this method for A Multi-Phase Transport (AMPT) model at Relativistic Heavy Ion Collider (RHIC) energy, the differences of T and ρ between pion and kaon are observed obviously, and the tendencies of T and ρ versus collision energy sNN are similar with the results extracted directly from the AMPT model.
Missing transverse energy performance of the CMS detector
Chatrchyan, Serguei; et al.
2011-09-01
During 2010 the LHC delivered pp collisions with a centre-of-mass energy of 7 TeV. In this paper, the results of comprehensive studies of missing transverse energy as measured by the CMS detector are presented. The results cover the measurements of the scale and resolution for missing transverse energy, and the effects of multiple pp interactions within the same bunch crossings on the scale and resolution. Anomalous measurements of missing transverse energy are studied, and algorithms for their identification are described. The performances of several reconstruction algorithms for calculating missing transverse energy are compared. An algorithm, called missing-transverse-energy significance, which estimates the compatibility of the reconstructed missing transverse energy with zero, is described, and its performance is demonstrated.
Surface impedance of transversely moving microwave ferrite
NASA Astrophysics Data System (ADS)
Mueller, R. S.
1990-01-01
A theoretical study was made of the surface impedance Z for an electromagnetic transverse magnetic wave from free space on a magnetized ferrite surface moving normal to the plane of incidence. It was found convenient to decompose the surface impedance into two transfer impedances, Z1 and Z2, which relate the hybrid reflected amplitudes to the amplitude of the incident wave. The surface impedance does not vary much with respect to the angle of incidence, so only the case of normal incidence (θi = 0°) was evaluated. Resonant poles at ƒc, [ƒc(ƒc + ƒm)]1/2, and ƒc + ƒm dominate the frequency characteristics of Z1 and Z2. The frequencies ƒc andƒm are the precessional frequency and magnetization frequency, respectively.
The interaction of transverse domain walls.
Krüger, Benjamin
2012-01-18
The interaction between transverse domain walls is calculated analytically using a multipole expansion up to third order. Starting from an analytical expression for the magnetization in the wall, the monopole, dipole, and quadrupole moments are derived and their impact on the interaction is investigated using the surface and volume charges. The surface charges are important for the dipole moment while the volume charges constitute the monopole and quadrupole moments. For domain walls that are situated in different wires it is found that there is a strong deviation from the interaction of two monopoles. This deviation is caused by the interaction of the monopole of the wall in the first wire with the dipole of the wall in the second wire and vice versa. The dipole-dipole and the quadrupole-monopole interactions are found to be also of considerable size and non-negligible. A comparison with micromagnetic simulations shows a good agreement.
Transverse (Harris) lines in Irish archaeological remains.
Hughes, C; Heylings, D J; Power, C
1996-09-01
Transverse lines were examined in 633 long bones from 73 individuals exhumed from two burial sites in the Republic of Ireland: Waterford City and Tintern Abbey. The burials cover four distinct periods between the 11th and 17th centuries. Lines were most numerous in the tibia, especially in the distal segment, and were not seen in the humerus nor the proximal part of the femur. The number of lines varied between the proximal and distal segments of each long bone, and though apparently equal in number across the midline, there were significant differences in the incidence of lines between corresponding pairs of bones. Thus, it is unwise to rely on the results of a single bone or one type of long bone alone either to indicate the health status of an individual, or as the basis for assessing the health status of a small population. Such results should be used only in association with other indicators.
Radiation emitted by transverse-gradient undulators
NASA Astrophysics Data System (ADS)
Bernhard, Axel; Braun, Nils; Rodríguez, Verónica Afonso; Peiffer, Peter; Rossmanith, Robert; Widmann, Christina; Scheer, Michael
2016-09-01
Conventional undulators are used in synchrotron light sources to produce radiation with a narrow relative spectral width as compared to bending magnets or wigglers. The spectral width of the radiation produced by conventional undulators is determined by the number of undulator periods and by the energy spread and emittance of the electron beam. In more compact electron sources like for instance laser plasma accelerators the energy spread becomes the dominating factor. Due to this effect these electron sources cannot in general be used for high-gain free electron lasers (FELs). In order to overcome this limitation, modified undulator schemes, so-called transverse gradient undulators (TGUs), were proposed and a first superconducting TGU was built at Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. In this paper simulations of the expected synchrotron radiation spectral distribution are presented. An experimental test with that device is under preparation at the laser wakefield accelerator at the JETI laser at the University of Jena, Germany.
Transverse Mode Coupling Instability with Space Charge
Balbekov, V.
2016-03-11
Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero at higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. A comparison of the results with published articles is represented.
Electrodes for transversely excited gas lasers
Eldridge, R.E
1989-05-23
An electrode for a transverse gas flow laser is described comprising: an elongated member having a substantially flat top surface and a substantially flat bottom surface, the top and the bottom surfaces being disposed substantially parallel one to another, the member further having opposing ends of substantially semicircular shape. The member further has a substantially vertical side wall extending perpendicularly upwards from the bottom surface and surrounding the member, the side wall and the top surface being joined by a convex transition region having a given, substantially constant radius of curvature, the substantially constant radius of curvature enabling the electrode to be used use over a range of at least approximately 5,000 volts of discharge potential.
Formability Studies on Transverse Tailor Welded Blanks
NASA Astrophysics Data System (ADS)
Bhaskar, V. Vijay; Narasimhan, K.
2005-08-01
Tailor Welded Blanks (TWB) technology is one of the several approaches that have been used to reduce the weight of the automobile body. TWBs are made up of two or more blanks having different/same properties (geometry, material etc.) prior to forming. The formability of these blanks depends on material and geometric parameters like strength ratio and thickness ratio. The study of these blanks can be classified on the basis of the weld orientation chosen viz. transverse weld or longitudinal weld with respect to the major straining direction. This paper studies the formability issues related to transverse TWB by FE simulation. The formability is assessed by analyzing tensile and Limit Dome Height (LDH) tests. The weld region is assumed to be a line in all the simulations. While modeling the tensile test, ultimate tensile strength (UTS) and elongation are monitored, and in LDH testing, pole height and maximum load (in near plane strain condition) are monitored. LDH testing shows that as thickness ratio increases, the load bearing capacity and the pole height decreases. There is a contribution from both the thicker and the thinner blank to the overall deforming volume. Failure location analysis shows that there is an abrupt change in the location of the failure from punch nose region to weld line region as the thickness ratio reaches a critical magnitude (1.08). The study of material properties shows that as the yield strength ratio (S ratio) and strain hardening exponent ratio (N ratio) between the blanks increases, the maximum load which the blank can sustain without failure (UTS) increases. This becomes constant and comparable to that of single sheet at higher N and S ratios.
Viscous propulsion in active transversely isotropic media
NASA Astrophysics Data System (ADS)
Cupples, G.; Dyson, R. J.; Smith, D. J.
2017-02-01
Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus is formed of polymer molecules which create an oriented fibrous network. Moreover, suspensions of elongated motile cells produce a form of active oriented matter. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude zero-Reynolds-number propulsion of a 'swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid produces an enhanced mean rate of working, independent of the initial fibre orientation, with an approximately linear dependence of energetic cost on the extensional and shear enhancements to the viscosity caused by fibres. In this regime the mean swimming velocity is unchanged from the Newtonian case. The effect of the constant term in Ericksen's model for the stress, which can be identified as a fibre tension or alternatively a stresslet characterising an active fluid, is also considered. This stress introduces an angular dependence and dramatically changes the streamlines and flow field; fibres aligned with the swimming direction increase the energetic demands of the sheet. The constant fibre stress may result in a reversal of the mean swimming velocity and a negative mean rate of working if sufficiently large relative to the other rheological parameters.
Transversity from First Principles in QCD
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2012-02-16
Transversity observables, such as the T-odd Sivers single-spin asymmetry measured in deep inelastic lepton scattering on polarized protons and the distributions which are measured in deeply virtual Compton scattering, provide important constraints on the fundamental quark and gluon structure of the proton. In this talk I discuss the challenge of computing these observables from first principles; i.e.; quantum chromodynamics, itself. A key step is the determination of the frame-independent light-front wavefunctions (LFWFs) of hadrons - the QCD eigensolutions which are analogs of the Schroedinger wavefunctions of atomic physics. The lensing effects of initial-state and final-state interactions, acting on LFWFs with different orbital angular momentum, lead to T-odd transversity observables such as the Sivers, Collins, and Boer-Mulders distributions. The lensing effect also leads to leading-twist phenomena which break leading-twist factorization such as the breakdown of the Lam-Tung relation in Drell-Yan reactions. A similar rescattering mechanism also leads to diffractive deep inelastic scattering, as well as nuclear shadowing and non-universal antishadowing. It is thus important to distinguish 'static' structure functions, the probability distributions computed the target hadron's light-front wavefunctions, versus 'dynamical' structure functions which include the effects of initial- and final-state rescattering. I also discuss related effects such as the J = 0 fixed pole contribution which appears in the real part of the virtual Compton amplitude. AdS/QCD, together with 'Light-Front Holography', provides a simple Lorentz-invariant color-confining approximation to QCD which is successful in accounting for light-quark meson and baryon spectroscopy as well as hadronic LFWFs.
PKU-RBRC Workshop on Transverse Spin
Avakian,H.; Bunce, G.; Yuan, F.
2008-06-30
Understanding the structure of the nucleon is a fundamental question in subatomic physics, and it has been under intensive investigation for the last several years. Modern research focuses in particular on the spin structure of the nucleon. Experimental and theoretical investigations worldwide over the last few decades have established that, contrary to nave quark model expectations, quarks carry only about 30% of the totd spin of the proton. The origin of the remaining spin is the key question in current hadronic physics and also the major driving forces for the current and future experiments, such as RHIC and CEBAF in US, JPARC in Japan, COMPASS at CERN in Europe, FAIR at GSI in Germany. Among these studies, the transverse-spin physics develops actively and rapidly in the last few years. Recent studies reveal that transverse-spin physics is closely related to many fundamental properties of the QCD dynamics such as the factorization, the non-trivial universality of the parton distribution and fragmentation functions. It was very timely to bring together the theorists and experimentalists in this field at this workshop to review and discuss the latest developments and future perspective in hadronic spin physics. This workshop was very success iu many aspects. First of all, it attracted almost every expert working in this field. We had more than eighty participants in total, among them 27 came from the US institutes, 13 from Europe, 3 from Korea, and 2 from Japan. The rest participants came from local institutes in China. Second, we arranged plenty physics presentations, and the program covers all recent progresses made in the last few years. In total, we had 47 physics presentations, and two round table discussions. The discussion sessions were especially very useful and very much appreciated by all participants. In addition, we also scheduled plenty time for discussion in each presentation, and the living discussions impressed and benefited all participants.
Transverse Microcracking in Celion 6000/PMR-15 Graphite-Polyimide
1979-12-01
strength of a ply is exceeded by the ply’s transverse stress.) The stress- and 83 Table 4. Predicted Transverse Residual Curing Stresses for [0/90]s Gr...strongly influences TVM density. 4. Laminate analysis using stress- and temperature-dependent material properties predicts that the residual curing stresses...Temperature and Curvature of a [03/903Js Lam’ na te 70 3 Material Property Polynomials for Celion 6000/PMR- 15 80 4 Predicted Transverse Residual
Transverse conformal Killing forms on Kähler foliations
NASA Astrophysics Data System (ADS)
Jung, Seoung Dal
2015-04-01
On a closed, connected Riemannian manifold with a Kähler foliation of codimension q = 2 m, any transverse Killing r(≥ 2) -form is parallel (Jung and Jung, 2012). In this paper, we study transverse conformal Killing forms on Kähler foliations. In fact, if the foliation is minimal, then for any transverse conformal Killing r-form ϕ(2 ≤ r ≤ q - 2), Jϕ is parallel. Here J is defined in Section 4.
The a-cycle problem for transverse Ising ring
NASA Astrophysics Data System (ADS)
Dong, Jian-Jun; Li, Peng; Chen, Qi-Hui
2016-11-01
Traditionally, the transverse Ising model is mapped to the fermionic c-cycle problem, which neglects the boundary effect due to thermodynamic limit. If persisting on a perfect periodic boundary condition, we can get a so-called a-cycle problem that has not been treated seriously so far (Lieb et al 1961 Ann. Phys. 16 407). In this work, we show a little surprising but exact result in this respect. We find the odevity of the number of lattice sites, N, in the a-cycle problem plays an unexpected role even in the thermodynamic limit, N\\to ∞ , due to the boundary constraint. We pay special attention to the system with N(\\in Odd)\\to ∞ , which is in contrast to the one with N(\\in Even)\\to ∞ , because the former suffers a ring frustration. As a new effect, we find the ring frustration induces a low-energy gapless spectrum above the ground state. By proving a theorem for a new type of Toeplitz determinant, we demonstrate that the ground state in the gapless region exhibits a peculiar longitudinal spin-spin correlation. The entangled nature of the ground state is also disclosed by the evaluation of its entanglement entropy. At low temperature, new behavior of specific heat is predicted. We also propose an experimental protocol for observing the new phenomenon due to the ring frustration.
TRANSVERSE OSCILLATIONS OF A LONGITUDINALLY STRATIFIED CORONAL LOOP SYSTEM
Fathalian, N.; Safari, H. E-mail: safari@znu.ac.i
2010-11-20
Collective transverse coronal loop oscillations seem to be detected in observational studies. In this regard, Luna et al. modeled the collective kink-like normal modes of several cylindrical loop systems using the T-matrix theory. This paper investigates the effects of longitudinal density stratification along the loop axis on the collective kink-like modes of the system of coronal loops. The coronal loop system is modeled as cylinders of parallel flux tubes, with two ends of each loop at the dense photosphere. The flux tubes are considered as uniform magnetic fields, with stratified density along the loop axis which changes discontinuously at the lateral surface of each cylinder. The MHD equations are reduced to solve a set of two coupled dispersion relations for frequencies and wavenumbers, in the presence of a stratification parameter. The fundamental and first overtone frequencies and longitudinal wavenumbers are computed. The previous results are verified for an unstratified coronal loop system. Finally, we conclude that an increased longitudinal density stratification parameter will result in an increase of the frequencies. The frequency ratios, first overtones to fundamentals, are very sensitive functions of the density scale height parameter. Therefore, stratification should be included in dynamics of coronal loop systems. For unstratified coronal loop systems, these ratios are the same as monoloop ones.
Simulations of a Detonation Wave in Transverse Magnetic Fields
NASA Astrophysics Data System (ADS)
Cole, Lord; Karagozian, Ann; Cambier, Jean-Luc
2010-11-01
Numerical simulations of magneto-hydrodynamic (MHD) effects on detonation wave structures are performed, with applications to flow control and MHD power extraction in Pulse Detonation Engines (PDE) and their design variations. In contrast to prior studies of MHD interactions in PDEs,ootnotetextCambier, et al., AIAA-2008-4688 the effects of the finite relaxation length scale for ionization on the stability of the detonation wave are examined. Depending on the coupling parameters, the magnetic field can quench the detonation and effectively act as a barrier to its propagation. Conversely, an applied transient magnetic field can exert a force on a pre-ionized gas and accelerate it. The dynamics are subject to non-linear effects; a propagating transverse magnetic field will initially exert a small force if the gas has a low conductivity and the magnetic Reynolds number (Rem) is low. Nevertheless, the gas accelerated by the "piston" action of the field can pre-heat the ambient gas and increase its conductivity. As the wave progresses, Rem increases and the magnetic field becomes increasingly effective. The dynamics of this process are examined in detail with a high-order shock-capturing method and full kinetics of combustion and ionization. The complex chemical kinetics calculations are ported onto a GPU using the CUDA language, and computational performance is compared with standard CPU-based computations.
Cooling power of transverse thermoelectrics for cryogenic cooling
NASA Astrophysics Data System (ADS)
Tang, Yang; Ma, Ming; Grayson, M.
2016-05-01
Transverse Peltier coolers have been experimentally and theoretically studied since 1960s due to their capability of achieving cooling in a single-leg geometry. Recently proposed pxn-type transverse thermoelectrics reveal the possibility of intrinsic or undoped transverse coolers that can, in principle, function at cryogenic temperatures, which has drawn more attention to the performance of such transverse coolers. However, unlike longitudinal thermoelectrics, the equations for transverse thermoelectrics cannot be solved analytically. In this study, we therefore calculate the thermoelectric transport in transverse coolers numerically, and introduce a normalized notation, which reduces the independent parameters in the governing equations to a normalized electric field E* and a hot-side transverse figure of merit zTh, only. A numerical study of the maximum cooling temperature difference and cooling power reveals the superior performance of transverse thermoelectric coolers compared to longitudinal coolers with the same figure of merit, providing another motivation in the search for new transverse thermoelectric materials with large figure of merit.
NASA Astrophysics Data System (ADS)
Reich, Michael Todd
Gigahertz Transverse Electromagnetic (GTEM) cells are commonly used to determine radiated emissions from electrically small objects. A correlation algorithm is used to relate the measurements taken in a GTEM cell with measurements that would be seen at an Open Air Test Site (OATS). The correlation algorithm can be broken into two portions. The first portion relates voltage measurements made in a GTEM to the terms of a multipole expansion approximating the radiated emissions of the test object. The second portion determines the equivalent radiated emissions at an OATS due to the terms of the multipole expansion. To date, these correlation algorithms assume that the Equipment Under Test (EUT) is placed at the transverse center of the GTEM cell. In this work a new correlation algorithm is introduced. Instead of assuming that the EUT is located at the transverse center of the cell, this algorithm makes use of different transverse positions in the cell to determine the multipole moments. The method requires a total of six measurements and requires that both the magnitude and phase of the emissions from the EUT are available. The method is numerically robust and can easily be extended to compute higher-order multipole moments. To date, phase measurements in a GTEM cell have only been demonstrated in a rudimentary fashion. This work also introduces the concept of the virtual port as a means of measuring the magnitude and phase of the emissions from an EUT within a GTEM cell. Utilizing a fiber-optic link, it is possible to create a second, virtual port within the GTEM cell.
Communicating with Transverse Modes of Light
NASA Astrophysics Data System (ADS)
Rodenburg, Brandon
Shannon's theory of communication created a set of tools for studying complex systems in an abstract and powerful way, providing the core foundations for the field of information theory. This thesis uses these ideas to provide a framework for studying the transverse degree of freedom of an optical field, appropriate for both classical and quantum states of light. This degree of freedom is in principle an unbounded space, providing a complex resource for encoding a large amount of information. This work focuses on studying the physical limits to the information of this space, both in terms of fundamental theoretical limitations as well as practical limitations due to experimental implementation and error. This thesis will pay particular interest to the design and implementation of a quantum key distribution system encoded using a particular set of transverse modes for encoding known as orbital angular momentum states, which represent normal modes of a typical free-space optical system. This specific technological implementation provides a motivation that acts to unify many of the themes in this work including quantum state preparation, state detection or discrimination, and state evolution or propagation. Additionally, such a setup gives a specific physical meaning to the abstract tools we will be utilizing as the information that we will be quantifying can be thought of as a measure of the possible complexity or information content of a single photon. Chapter 1 provides a brief introduction to information theory and the basic concepts and tools that are used throughout this work, as well as a basic introduction to quantum key distribution. Chapter 2 theoretically explores the fundamental limits of the information capacity of a channel due to diffraction, as well as computes the communication modes of a channel using a normal mode approach to propagation. Chapter 3 concerns the experimental implementation of a free-space quantum key distribution system including
Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation
Li, Ye; Zhu, Hua Xing
2017-01-01
Soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at hadron colliders are computed through to three loops in the expansion of strong coupling, with the help of bootstrap technique and supersymmetric decomposition. The corresponding rapidity anomalous dimension is extracted. An intriguing relation between anomalous dimensions for transverse-momentum resummation and threshold resummation is found.
17. Interior detail, pilaster on transverse wall at the northeast ...
17. Interior detail, pilaster on transverse wall at the northeast end of the Machine Shop, Roundhouse Machine Shop Extension, Southern Pacific Railroad Carlin Shops, view to northeast (90mm lens). Note the offset top of the pilaster, a feature common to all interior transverse wall pilasters. - Southern Pacific Railroad, Carlin Shops, Roundhouse Machine Shop Extension, Foot of Sixth Street, Carlin, Elko County, NV
On the Thermal Model of Transverse Flow of Unidirectional Materials
NASA Technical Reports Server (NTRS)
Tai, Hsiang
2002-01-01
The thermal model for transverse heat flow of having single filament in a unit cell is extended. In this model, we proposed that two circular filaments in a unit cell of square packing array and obtained the transverse thermal conductivity of an unidirectional material.
Acute transverse myelitis: an unusual complication of typhoid fever.
Mishra, Kirtisudha; Kaur, Sharandeep; Basu, Srikanta; Gulati, Praveen; Parakh, Ankit
2012-08-01
Typhoid fever is associated with a wide spectrum of neurological complications. Acute transverse myelitis is a rare complication with only a few reports in adults and none in children. A 15-year-old boy with typhoid fever is reported who developed acute transverse myelitis in the 3rd week of illness. He was treated with antibiotics and corticosteroids and made a complete recovery.
Bootstrapping Rapidity Anomalous Dimensions for Transverse-Momentum Resummation
NASA Astrophysics Data System (ADS)
Li, Ye; Zhu, Hua Xing
2017-01-01
A soft function relevant for transverse-momentum resummation for Drell-Yan or Higgs production at hadron colliders is computed through to three loops in the expansion of strong coupling, with the help of the bootstrap technique and supersymmetric decomposition. The corresponding rapidity anomalous dimension is extracted. An intriguing relation between anomalous dimensions for transverse-momentum resummation and threshold resummation is found.
Transverse wake field simulations for the ILC acceleration structure
Solyak, N.; Lunin, A.; Yakovlev, V.; /Fermilab
2008-06-01
Details of wake potential simulation in the acceleration structure of ILC, including the RF cavities and input/HOM couplers are presented. Transverse wake potential dependence is described versus the bunch length. Beam emittance dilution caused by main and HOM couplers is estimated, followed by a discussion of possible structural modifications allowing a reduction of transverse wake potential.
Computational and Experimental Investigation of Transverse Combustion Instabilities
2013-07-01
5113. 4. Pomeroy, B., Lamont, W., Anderson, W., “Subscale Tool for Determining Transverse Combustion Response,” 45th JPC , AIAA 2009-5490. 5. Li, D...Combustor”, 46th JPC , AIAA 2010-7146. 10. Ducruix, S., Rey, C., Candel, S., “A Method for the transverse modulation of reactive flows with application
Transverse relaxation of scalar-coupled protons.
Segawa, Takuya F; Baishya, Bikash; Bodenhausen, Geoffrey
2010-10-25
In a preliminary communication (B. Baishya, T. F. Segawa, G. Bodenhausen, J. Am. Chem. Soc. 2009, 131, 17538-17539), we recently demonstrated that it is possible to obtain clean echo decays of protons in biomolecules despite the presence of homonuclear scalar couplings. These unmodulated decays allow one to determine apparent transverse relaxation rates R(2) (app) of individual protons. Herein, we report the observation of R(2) (app) for three methyl protons, four amide H(N) protons, and all 11 backbone H(α) protons in cyclosporin A. If the proton resonances overlap, their R(2) (app) rates can be measured by transferring their magnetization to neighboring (13)C nuclei, which are less prone to overlap. The R(2) (app) rates of protons attached to (13)C are faster than those attached to (12)C because of (13)C-(1)H dipolar interactions. The differences of these rates allow the determination of local correlation functions. Backbone H(N) and H(α) protons that have fast decay rates R(2) (app) also feature fast longitudinal relaxation rates R(1) and intense NOESY cross peaks that are typical of crowded environments. Variations of R(2) (app) rates of backbone H(α) protons in similar amino acids reflect differences in local environments.
Modeling Transverse Chemotaxis in Porous Media
NASA Astrophysics Data System (ADS)
Porter, M. L.; Valdés-Parada, F. J.; Wood, B. D.
2009-12-01
The movement of microorganisms toward a chemical attractant (chemotaxis) has been shown to aid in subsurface contaminant degradation and enhanced oil recovery. However, chemotaxis is inherently a pore scale process that must be upscaled to arrive at continuum scale models for field applications. In this work, the method of volume averaging is used to upscale the microscale chemotactic microbial transport equations in order to obtain the corresponding macroscale models for the mass balance of bacteria and the chemical attractant to which they respond. As a first approach, cellular growth/death and consumption of the attractant by chemical reaction are assumed to be negligible with respect to convective and diffusive transport mechanisms. Two effective medium coefficients are introduced in the model, namely a total motility tensor and a total velocity vector. Under certain conditions, it is shown that the coefficients can differ considerably from the values corresponding to non-chemotactic transport. The model is validated by comparing the predicted transverse motility coefficients and concentration profiles to those measured within an engineered porous medium. For the concentration profiles, we introduced a lag that accounts for the difference between the arrival time of the microorganisms and the their chemotactic response to the attractant.
Optical Transversal Processor For Notch Filtering
NASA Astrophysics Data System (ADS)
Lugt, A. V.
1984-06-01
A frequency domain implementation of an optical transversal processor has been described previously. Since this system uses Bragg cells both as the delay line and as the accumulators that provide the tap weights, a key question concerns the effect the finite integration times have on the perfor-mance of the system. Computer programs were written to simulate an adaptive notch filtering application; the measure of performance is the correlation coefficient for the residual signal and the desired received signal. The correlation coefficient was increased significantly by tapering the accumulators so that the readaptation phenomena caused by large values leaving the accumulator are minimized. Several examples of the performance are given as a function of the number of taps, the length and degree of taper of the accumulator, the feedback gain, and the number of iterations. The results show that a finite accumulator is not a serious drawback, particularly for those applications in which the system must operate in a rapidly changing environment. The performance of the system then approaches that of one having an infinite accumulator with the gain adjusted to give equivalent tracking performance.
Exploring universality of transversity in proton-proton collisions
NASA Astrophysics Data System (ADS)
Radici, Marco; Ricci, Alessandro M.; Bacchetta, Alessandro; Mukherjee, Asmita
2016-08-01
We consider the azimuthal correlations of charged hadron pairs with large total transverse momentum and small relative momentum, produced in proton-proton collisions with one transversely polarized proton. One of these correlations directly probes the chiral-odd transversity parton distribution in connection with a chiral-odd interference fragmentation function. We present predictions for this observable based on previous extractions of transversity (from charged pion pair production in semi-inclusive deep-inelastic scattering) and of the interference fragmentation function (from the production of back-to-back charged pion pairs in electron-positron annihilations). All analyses are performed in the framework of collinear factorization. We compare our predictions to the recent data on proton-proton collisions released by the STAR Collaboration at RHIC, and we find them reasonably compatible. This comparison confirms for the first time the predicted role of transversity in proton-proton collisions, and it allows us to test its universality.
Transverse Magnetic Waves in Myelinated Nerves
2007-11-02
IN MYELINATED NERVES M. Mª Villapecellín-Cid1, L. Mª Roa2, and J. Reina-Tosina1 1Área de Teoría de la Señal y Comunicaciones , E.S. de Ingeniería...y Comunicaciones , E.S. de Ingeniería, University of Seville, Seville, Spain Performing Organization Report Number Sponsoring/Monitoring Agency Name(s
Transverse intensity transformation by laser amplifiers
NASA Astrophysics Data System (ADS)
Litvin, Igor A.; King, Gary; Collett, Oliver J. P.; Strauss, Hencharl J.
2015-03-01
Lasers beams with a specific intensity profile such as super-Gaussian, Airy or Dougnut-like are desirable in many applications such as laser materials processing, medicine and communications. We propose a new technique for laser beam shaping by amplifying a beam in an end-pumped bulk amplifier that is pumped with a beam that has a modified intensity profile. Advantages of this method are that it is relatively easy to implement, has the ability to reshape multimode beams and is naturally suited to high power/energy beams. Both three and four level gain materials can be used as amplifier media. However, a big advantage of using three level materials is their ability to attenuate of the seed beam, which enhances the contrast of the shaping. We first developed a numerical method to obtain the required pump intensity for an arbitrary beam transformation. This method was subsequently experimentally verified using a three level system. The output of a 2.07 μm seed laser was amplified in a Ho:YLF bulk amplifier which was being pumped by a 1.89 μm Tm:YLF laser which had roughly a TEM10 Hermit Gaussian intensity profile. The seed beam was amplified from 0.3 W to 0.55 W at the full pump power of 35 W. More importantly, the beam profile in one transverse direction was significantly shaped from Gaussian to roughly flat-top, as the model predicted. The concept has therefore been shown to be viable and can be used to optimise the beam profile for a wide range of applications.
Velocity analysis for transversely isotropic media
Alkhalifah, T.; Tsvankin, I.
1994-08-01
The main difficulty in extending seismic processing to anisotropic media is the recovery of anisotropic velocity fields from surface reflection data. Velocity analysis for transversely isotropic (TI) media can be done by inverting the dependence of P-wave moveout velocities on the ray parameter. P-wave NMO velocity in homogeneous TI media with a vertical symmetry axis depends just on the zero-dip value V{sub nmo} and a new effective parameter {eta} that reduces to the difference between Thomsen parameters {epsilon} and {delta} in the limit of weak anisotropy. It is possible to obtain {eta} and reconstruct the NMO velocity as a function of ray parameter using moveout velocities for two different dips. Moreover, V{sub nmo}(0) and {eta} determine not only the NMO velocity, but also also long-spread (nonhyperbollic) P-wave moveout for horizontal reflectors and time-migration impulse response. Inversion of dip-moveout information allows performance of all time-processing steps in TI media using only surface P-wave data. Isotropic time-processing methods remain entirely valid for elliptical anisotropy ({epsilon} = {delta}). Accurate time-to-depth conversion, however, requires the vertical velocity V{sub P0} be resolved independently. If I-P0 is known, then allisotropies {epsilon} and {delta} can be found by inverting two P-wave NMO velocities corresponding to a horizontal and a dipping reflector. If no information is available, all three parameters (V {sub P0}, {epsilon}, and {delta}) can be obtained by combining inversion results with shear-wave information. such as the P-SV or SV-SV wave NMO velocities for a horizontal reflector. Generalization of Tsvankin`s single-layer NMO equation for layered anisotropic media with a dipping reflector provides a basis for extending anisotropic velocity analysis to vertically inhomogeneous media. The influence of a stratified overburden on moveout velocity can be stripped through a Dix-type differentiation procedure.
On the methods for determining the transverse dispersion coefficient in river mixing
NASA Astrophysics Data System (ADS)
Baek, Kyong Oh; Seo, Il Won
2016-04-01
In this study, the strengths and weaknesses of existing methods for determining the dispersion coefficient in the two-dimensional river mixing model were assessed based on hydraulic and tracer data sets acquired from experiments conducted on either laboratory channels or natural rivers. From the results of this study, it can be concluded that, when the longitudinal dispersion coefficient as well as the transverse dispersion coefficients must be determined in the transient concentration situation, the two-dimensional routing procedures, 2D RP and 2D STRP, can be employed to calculate dispersion coefficients among the observation methods. For the steady concentration situation, the STRP can be applied to calculate the transverse dispersion coefficient. When the tracer data are not available, either theoretical or empirical equations by the estimation method can be used to calculate the dispersion coefficient using the geometric and hydraulic data sets. Application of the theoretical and empirical equations to the laboratory channel showed that equations by Baek and Seo [[3], 2011] predicted reasonable values while equations by Fischer [23] and Boxwall and Guymer (2003) overestimated by factors of ten to one hundred. Among existing empirical equations, those by Jeon et al. [28] and Baek and Seo [6] gave the agreeable values of the transverse dispersion coefficient for most cases of natural rivers. Further, the theoretical equation by Baek and Seo [5] has the potential to be broadly applied to both laboratory and natural channels.
Dynamic response of fiber bundle under transverse impact.
Lu, Wei-Yang; Song, Bo
2010-03-01
There has been a very high demand in developing efficient soft body armors to protect the military and law enforcement personnel from ballistic or explosive attack. As a basic component in the soft body armor, fibers or fiber bundles play a key role in the performance against ballistic impact. In order to study the ballistic-resistant mechanism of the soft body armor, it is desirable to understand the dynamic response of the fiber bundle under transverse impact. Transverse wave speed is one important parameter because a faster transverse wave speed can make the impact energy dissipate more quickly. In this study, we employed split Hopkinson pressure bar (SHPB) to generate constant high-speed impact on a Kevlar fiber bundle in the transverse direction. The deformation of the fiber bundle was photographed with high-speed digital cameras. The transverse wave speeds were experimentally measured at various transverse impact velocities. The experimental results can also be used to quantitatively verify the current analytical models or to develop new models to describe the dynamic response of fiber bundle under transverse impact.
NASA Astrophysics Data System (ADS)
Li, Mei; Wang, Jianbo; Lu, Jie
2017-02-01
The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.
Li, Mei; Wang, Jianbo; Lu, Jie
2017-01-01
The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs. PMID:28220893
Li, Mei; Wang, Jianbo; Lu, Jie
2017-02-21
The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.
Kinetic theory of transverse plasmons in pair plasmas
NASA Astrophysics Data System (ADS)
Liu, S. Q.; Liu, Y.
2011-04-01
A set of nonlinear governing equations for interactions of transverse plasmons with pair plasmas is derived from Vlasov-Maxwell equations. It is shown the ponderomotive force induced by high-frequency transverse plasmons will expel the pair particles away, resulting in the formation of density cavity in which transverse plasmons are trapped. Numerical results show the envelope of wave fields will collapse and break into a filamentary structure due to the spatially inhomogeneous growth rate. The results obtained would be useful for understanding the nonlinear propagation behavior of intense electromagnetic waves in pair plasmas.
Analysis of Slice Transverse Emittance Evolution ina Photocathode RF Gun
Huang, Z.; Ding, Y.; Qiang, J.; /LBL, Berkeley
2007-10-17
The slice transverse emittance of an electron beam is of critical significance for an x-ray FEL. In a photocathode RF gun, the slice transverse emittance is not only determined by the emission process, but also influenced strongly by the non-linear space charge effect. In this paper, we study the slice transverse emittance evolution in a photocathode RF gun using a simple model that includes effects of RF acceleration, focusing, and space charge force. The results are compared with IMPACT-T space charge simulations and may be used to understand the development of the slice emittance in an RF gun.
Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects
NASA Astrophysics Data System (ADS)
Hassan, S. S.; Sharaby, Y. A.; Ali, M. F. M.; Joshi, A.
2012-10-01
The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.
The influence of nanofiller alignment on transverse percolation and conductivity.
Tallman, T N; Wang, K W
2015-01-16
Nanocomposites have unprecedented potential for conductivity-based damage identification when used as matrices in structural composites. Recent research has investigated nanofiller alignment in structural composites, but because damage identification often requires in-plane measurements, percolation and conductivity transverse to the alignment direction become crucial considerations. We herein contribute indispensable guidance to the development of nanocomposites with aligned nanofiller networks and insights into percolation trends transverse to the alignment direction by studying the influence of alignment on transverse critical volume fraction, conductivity, and rate of transition from non-percolating to percolating in three-dimensional carbon nanotube composite systems.
First order tune shift calculations for transverse betatron dynamics
Garavaglia, T.
1991-09-01
An effective Hamiltonian, with non-linear magnetic multipole terms and momentum dispersion contributions, is used to obtain the first order tune-shift results for transverse betatron motion for protons in the Superconducting Super Collider (SSC). This Hamiltonian is represented in terms of action angle variables, and analytical results are obtained using symbolic algebra methods. Mathematical derivations of the transverse multipole expansion and of the transverse betatron equations, using an invariant action and curvilinear coordinates, are given in the appendices. Numerical and graphical tune-space results are given that illustrate the dependence of tune-shifts on injection amplitude and momentum spread. 10 refs., 7 figs.
Global transverse and forward energy measurements for Si+A and Au+A at the AGS
Moskowitz, B.; E802 /866 Collaboration
1993-04-01
The global transverse and forward energy from Si+Al,Au at 14.6A GeV/c and Au+Al,Au, at 11.6A GeV/c have been measured using the E802 lead-glass and ZCAL. Preliminary d{sigma}/dE{sub T}, dE{sub T}/d{eta} and d{sigma}dT{sub ZCAL} spectra are presented, and the shapes of the spectra from different systems are compared. The transverse and forward energies in Au+Au are observed to be anticorrelated in a manner that is reproduced by the cascade model ARC but not by the essentially geometric model Fritiof.
Global transverse and forward energy measurements for Si+A and Au+A at the AGS
Moskowitz, B.
1993-01-01
The global transverse and forward energy from Si+Al,Au at 14.6A GeV/c and Au+Al,Au, at 11.6A GeV/c have been measured using the E802 lead-glass and ZCAL. Preliminary d[sigma]/dE[sub T], dE[sub T]/d[eta] and d[sigma]dT[sub ZCAL] spectra are presented, and the shapes of the spectra from different systems are compared. The transverse and forward energies in Au+Au are observed to be anticorrelated in a manner that is reproduced by the cascade model ARC but not by the essentially geometric model Fritiof.
2012-01-01
Definition of the disease AL amyloidosis results from extra-cellular deposition of fibril-forming monoclonal immunoglobulin (Ig) light chains (LC) (most commonly of lambda isotype) usually secreted by a small plasma cell clone. Most patients have evidence of isolated monoclonal gammopathy or smoldering myeloma, and the occurrence of AL amyloidosis in patients with symptomatic multiple myeloma or other B-cell lymphoproliferative disorders is unusual. The key event in the development of AL amyloidosis is the change in the secondary or tertiary structure of an abnormal monoclonal LC, which results in instable conformation. This conformational change is responsible for abnormal folding of the LC, rich in β leaves, which assemble into monomers that stack together to form amyloid fibrils. Epidemiology AL amyloidosis is the most common type of systemic amyloidois in developed countries with an estimated incidence of 9 cases/million inhabitant/year. The average age of diagnosed patients is 65 years and less than 10% of patients are under 50. Clinical description The clinical presentation is protean, because of the wide number of tissues or organs that may be affected. The most common presenting symptoms are asthenia and dyspnoea, which are poorly specific and may account for delayed diagnosis. Renal manifestations are the most frequent, affecting two thirds of patients at presentation. They are characterized by heavy proteinuria, with nephrotic syndrome and impaired renal function in half of the patients. Heart involvement, which is present at diagnosis in more than 50% of patients, leading to restrictive cardiopathy, is the most serious complication and engages prognosis. Diagnostic methods The diagnosis relies on pathological examination of an involved site showing Congo red-positive amyloid deposits, with typical apple-green birefringence under polarized light, that stain positive with an anti-LC antibody by immunohistochemistry and/or immunofluorescence. Due to the
FIRST DIRECT MEASUREMENTS OF TRANSVERSE WAVES IN SOLAR POLAR PLUMES USING SDO/AIA
Thurgood, J. O.; Morton, R. J.; McLaughlin, J. A.
2014-07-20
There is intense interest in determining the precise contribution of Alfvénic waves propagating along solar structures to the problems of coronal heating and solar wind acceleration. Since the launch of SDO/AIA, it has been possible to resolve transverse oscillations in off-limb solar polar plumes and recently McIntosh et al. concluded that such waves are energetic enough to play a role in heating the corona and accelerating the fast solar wind. However, this result is based on comparisons to Monte Carlo simulations and confirmation via direct measurements is still outstanding. Thus, this Letter reports on the first direct measurements of transverse wave motions in solar polar plumes. Over a four hour period, we measure the transverse displacements, periods, and velocity amplitudes of 596 distinct oscillations observed in the 171 Å channel of SDO/AIA. We find a broad range of non-uniformly distributed parameter values which are well described by log-normal distributions with peaks at 234 km, 121 s, and 8 km s{sup –1}, and mean and standard deviations of 407 ± 297 km, 173 ± 118 s, and 14 ± 10 km s{sup –1}. Within standard deviations, our direct measurements are broadly consistent with previous results. However, accounting for the whole of our observed non-uniform parameter distribution we calculate an energy flux of 9-24 W m{sup –2}, which is 4-10 times below the energy requirement for solar wind acceleration. Hence, our results indicate that transverse magnetohydrodynamic waves as resolved by SDO/AIA cannot be the dominant energy source for fast solar wind acceleration in the open-field corona.
Site Plan and Transverse Section Chickamauga National Military Park ...
Site Plan and Transverse Section - Chickamauga National Military Park Tour Roads, Gordon's Slough Bridge, At the confluence of Alexander's Bridge Road and Gordon's Slough, southeast of Alexander's Bridge, Fort Oglethorpe, Catoosa County, GA
Transverse momentum distributions inside the nucleon from lattice QCD
Musch, B. U.; Haegler, Ph.; Negele, J. W.; Schaefer, A.
2011-07-15
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.
Transverse section through the Grand Lodge and Grand Chapter rooms ...
Transverse section through the Grand Lodge and Grand Chapter rooms of James H. Windrim and George Summerss neoclassical competition design for the New Masonic Temple, Philadelphia, 1867 - Masonic Temple, 1 North Broad Street, Philadelphia, Philadelphia County, PA
Onset of transverse instabilities of confined dark solitons
NASA Astrophysics Data System (ADS)
Hoefer, M. A.; Ilan, B.
2016-07-01
We investigate propagating dark soliton solutions of the two-dimensional defocusing nonlinear Schrödinger or Gross-Pitaevskii (NLS-GP) equation that are transversely confined to propagate in an infinitely long channel. Families of single, vortex, and multilobed solitons are computed using a spectrally accurate numerical scheme. The multilobed solitons are unstable to small transverse perturbations. However, the single-lobed solitons are stable if they are sufficiently confined along the transverse direction, which explains their effective one-dimensional dynamics. The emergence of a transverse modulational instability is characterized in terms of a spectral bifurcation. The critical confinement width for this bifurcation is found to coincide with the existence of a propagating vortex solution and the onset of a "snaking" instability in the dark soliton dynamics that, in turn, give rise to vortex or multivortex excitations. These results shed light on the superfluidic hydrodynamics of dispersive shock waves in Bose-Einstein condensates and nonlinear optics.
Electromechanical behavior of carbon nanotube fibers under transverse compression
NASA Astrophysics Data System (ADS)
Li, Yuanyuan; Lu, Weibang; Sockalingam, Subramani; Gu, Bohong; Sun, Baozhong; Gillespie, John W.; Chou, Tsu-Wei
2017-03-01
Although in most cases carbon nanotube (CNT) fibers experience axial stretch or compression, they can also be subjected to transverse compression, for example, under impact loading. In this paper, the electromechanical properties of both aerogel-spun and dry-spun CNT fibers under quasi-static transverse compressive loading are investigated for the first time. Transverse compression shows a nonlinear and inelastic behavior. The compressive modulus/strength of the aerogel-spun and dry-spun CNT fibers are about 0.21 GPa/0.796 GPa and 1.73 GPa/1.036 GPa, respectively. The electrical resistance goes through three stages during transverse compressive loading/unloading: initially it decreases, then it increases during the loading, and finally it decreases upon unloading. This study extends our knowledge of the overall properties of CNT fibers, and will be helpful in promoting their engineering applications.
Increased transversions in a novel mutator colon cancer cell line.
Eshleman, J R; Donover, P S; Littman, S J; Swinler, S E; Li, G M; Lutterbaugh, J D; Willson, J K; Modrich, P; Sedwick, W D; Markowitz, S D; Veigl, M L
1998-03-05
We describe a novel mutator phenotype in the Vaco411 colon cancer cell line which increases the spontaneous mutation rate 10-100-fold over background. This mutator results primarily in transversion base substitutions which are found infrequently in repair competent cells. Of the four possible types of transversions, only three were principally recovered. Spontaneous mutations recovered also included transitions and large deletions, but very few frameshifts were recovered. When compared to known mismatch repair defective colon cancer mutators, the distribution of mutations in Vaco411 is significantly different. Consistent with this difference, Vaco411 extracts are proficient in assays of mismatch repair. The Vaco411 mutator appears to be novel, and is not an obvious human homologue of any of the previously characterized bacterial or yeast transversion phenotypes. Several hypotheses by which this mutator may produce transversions are presented.
Transverse momentum distributions inside the nucleon from lattice QCD
Bernhard Musch, Philipp Haegler, John Negele, Andreas Schaefer
2011-07-01
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.
Transverse strain measurements using fiber optic grating based sensors
NASA Technical Reports Server (NTRS)
Udd, Eric (Inventor)
1998-01-01
A system and method to sense the application of transverse stress to an optical fiber which includes a light source that producing a relatively wide spectrum light beam. The light beam is reflected or transmitted off of an optical grating in the core of an optical fiber that is transversely stressed either directly or by the exposure to pressure when the fiber is bifringent so that the optical fiber responds to the pressure to transversely stress its core. When transversely stressed, the optical grating produces a reflection or transmission from the light beam that has two peaks or minimums in its frequency spectrum whose spacing and/or spread are indicative of the forces applied to the fiber. One or more detectors sense the reflection or transmissions from the optical grating to produce an output representative of the applied force. Multiple optical gratings and detectors may be employed to simultaneously measure temperature or the forces at different locations along the fiber.
Negative ion source with low temperature transverse divergence optical system
Whealton, J.H.; Stirling, W.L.
1985-03-04
A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.
Negative ion source with low temperature transverse divergence optical system
Whealton, John H.; Stirling, William L.
1986-01-01
A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.
Transverse momentum distribution of hadrons within a jet
NASA Astrophysics Data System (ADS)
Kang, Zhongbo
2017-01-01
We consider the transverse momentum distribution of hadrons within a fully reconstructed jet. Within the framework of Soft Collinear Effective Theory (SCET), we demonstrate how such a distribution for inclusive jet production in proton-proton collisions can be expressed in a transverse momentum dependent (TMD) factorization formalism. We show the phenomenological application of such a formalism, for both unpolarized and polarized collisions (e.g., Collins azimuthal asymmetry), which has been measured at both RHIC and/or LHC.
NASA Astrophysics Data System (ADS)
Srikanthreddy, D.; Glavin, B. A.; Poyser, C. L.; Henini, M.; Lehmann, D.; Jasiukiewicz, Cz.; Akimov, A. V.; Kent, A. J.
2017-02-01
We study the generation of microwave electronic signals by pumping a (311) GaAs Schottky diode with compressive and shear acoustic phonons, generated by the femtosecond optical excitation of an Al film transducer and mode conversion at the Al-GaAs interface. They propagate through the substrate and arrive at the Schottky device on the opposite surface, where they induce a microwave electronic signal. The arrival time, the amplitude, and the polarity of the signals depend on the phonon mode. A theoretical analysis is made of the polarity of the experimental signals. This analysis includes the piezoelectric and deformation potential mechanisms of electron-phonon interaction in a Schottky contact and shows that the piezoelectric mechanism is dominant for both transverse and longitudinal modes with frequencies below 250 and 70 GHz, respectively.
Noncritical quadrature squeezing in two-transverse-mode optical parametric oscillators
Navarrete-Benlloch, Carlos; Roldan, Eugenio; Valcarcel, German J. de; Romanelli, Alejandro
2010-04-15
In this article we explore the quantum properties of a degenerate optical parametric oscillator when it is tuned to the first family of transverse modes at the down-converted frequency. Recently we found [C. Navarrete-Benlloch et al., Phys. Rev. Lett. 100, 203601 (2008)] that above threshold a TEM{sub 10} mode following a random rotation in the transverse plane emerges in this system (we denote it as the bright mode), breaking thus its rotational invariance. Then, owing to the mode orientation being undetermined, we showed that the phase quadrature of the transverse mode orthogonal to this one (denoted as the dark mode) is perfectly squeezed at any pump level and without an increase in the fluctuations on its amplitude quadrature (which seems to contradict the uncertainty principle). In this article we go further in the study of this system and analyze some important features not considered previously. First we show that the apparent violation of the uncertainty principle is just that -'apparent' - as the conjugate pair of the squeezed quadrature is not another quadrature but the orientation of the bright mode (which is completely undetermined in the long term). We also study a homodyne scheme in which the local oscillator is not perfectly matched to the dark mode, as this could be impossible in real experiments due to the random rotation of the mode, showing that even in this case large levels of noise reduction can be obtained (also including the experimentally unavoidable phase fluctuations). Finally, we show that neither the adiabatic elimination of the pump variables nor the linearization of the quantum equations are responsible for the remarkable properties of the dark mode (which we prove analytically and through numerical simulations, respectively), which were simplifying assumptions used in Navarrete-Benlloch et al. [Phys. Rev. Lett. 100, 203601 (2008)]. These studies show that the production of noncritically squeezed light through spontaneous rotational
Theoretical study of transverse-longitudinal emittance coupling
Qin, H; Davidson, R C; Chung, M; Barnard, J J; Wang, T F
2011-04-14
The effect of a weakly coupled periodic lattice in terms of achieving emittance exchange between the transverse and longitudinal directions is investigated using the generalized Courant-Snyder theory for coupled lattices. Recently, the concept and technique of transverse-longitudinal emittance coupling have been proposed for applications in the Linac Coherent Light Source and other free-electron lasers to reduce the transverse emittance of the electron beam. Such techniques can also be applied to the driver beams for the heavy ion fusion and beam-driven high energy density physics, where the transverse emittance budget is typically tighter than the longitudinal emittance. The proposed methods consist of one or several coupling components which completely swap the emittances of one of the transverse directions and the longitudinal direction at the exit of the coupling components. The complete emittance exchange is realized in one pass through the coupling components. In the present study, we investigate the effect of a weakly coupled periodic lattice in terms of achieving emittance exchange between the transverse and longitudinal directions. A weak coupling component is introduced at every focusing lattice, and we would like to determine if such a lattice can realize the function of emittance exchange.
Beam-shape distortion caused by transverse wake fields
Chao, A.W.; Kheifets, S.
1983-02-01
As a particle bunch in a storage ring passes through a region with a transverse impedance, it generates a transverse wake electromagnetic field that is proportional to the transverse displacement of the bunch in the region. The field acts back on the bunch, causing various effects (such as instabilities) in the motion of the bunch. We study one such effect in which a transverse impedance causes the beam to be distorted in its shape. Observed at a fixed location in the storage ring, this distortion does not change from turn to turn; rather, the distortion is static in time. To describe the distortion, the bunch is considered to be divided longitudinally into many slices and the centers of change of the slices are connected into a curve. In the absence of transverse impedance, this curve is a straight line parallel to the direction of motion of the bunch. Perturbed by the transverse wake field, the curve becomes distorted. What we find in this paper is the shape of such a curve. The results obtained are applied to the PEP storage ring. The impedance is assumed to come solely from the rf cavities. We find that the beam shape is sufficiently distorted and hence that loss of luminosity due to this effect becomes a possibility.
What does the transverse carpal ligament contribute to carpal stability?
Vanhees, Matthias; Verstreken, Frederik; van Riet, Roger
2015-02-01
Background The transverse carpal ligament is well known for its involvement in carpal tunnel syndrome, and sectioning of this ligament remains the definite treatment for this pathology. Some authors believe that the transverse carpal ligament is an important stabilizer of the carpal arch, whereas others do not consider it to be significant. Several studies have been performed, both in vivo and in in vitro. Sectioning of the transverse carpal ligament does not seem to have any effect on the width of the carpal arch in the unloaded condition. However, patients will load the arch during their activities of daily living. Materials and Methods A cadaveric study was done with distraction of the carpal bones before and after sectioning the transverse carpal ligament. Results With the transverse carpal ligament intact, the carpal arch is mobile, with distraction leading up to 50% widening of the arch. Sectioning of the transverse carpal ligament resulted in a significant widening of the carpal arch by a further 30%. Conclusions Loading of the carpal arch after sectioning of the transeverse carapal ligament leads to a significant increase in intracarpal mobility. This will inevitably influence carpal kinematics in the patient and might be responsible for some complications after simple carpal tunnel releases, such as pillar pain, palmar tenderness, and loss of grip strength.
Transverse myelitis and vaccines: a multi-analysis.
Agmon-Levin, N; Kivity, S; Szyper-Kravitz, M; Shoenfeld, Y
2009-11-01
Transverse myelitis is a rare clinical syndrome in which an immune-mediated process causes neural injury to the spinal cord. The pathogenesis of transverse myelitis is mostly of an autoimmune nature, triggered by various environmental factors, including vaccination. Our aim here was to search for and analyze reported cases of transverse myelitis following vaccination. A systematic review of PubMed, EMBASE and DynaMed for all English-language journals published between 1970 and 2009 was preformed, utilizing the key words transverse myelitis, myelitis, vaccines, post-vaccination, vaccination and autoimmunity. We have disclosed 37 reported cases of transverse myelitis associated with different vaccines including those against hepatitis B virus, measles-mumps-rubella, diphtheria-tetanus-pertussis and others, given to infants, children and adults. In most of these reported cases the temporal association was between several days and 3 months, although a longer time frame of up to several years was also suggested. Although vaccines harbor a major contribution to public health in the modern era, in rare cases they may be associated with autoimmune phenomena such as transverse myelitis. The associations of different vaccines with a single autoimmune phenomenon allude to the idea that a common denominator of these vaccines, such as an adjuvant, might trigger this syndrome.
Experimental detection of transverse particle movement with structured light
Rosales-Guzmán, Carmelo; Hermosa, Nathaniel; Belmonte, Aniceto; Torres, Juan P.
2013-01-01
One procedure widely used to detect the velocity of a moving object is by using the Doppler effect. This is the perceived change in frequency of a wave caused by the relative motion between the emitter and the detector, or between the detector and a reflecting target. The relative movement, in turn, generates a time-varying phase which translates into the detected frequency shift. The classical longitudinal Doppler effect is sensitive only to the velocity of the target along the line-of-sight between the emitter and the detector (longitudinal velocity), since any transverse velocity generates no frequency shift. This makes the transverse velocity undetectable in the classical scheme. Although there exists a relativistic transverse Doppler effect, it gives values that are too small for the typical velocities involved in most laser remote sensing applications. Here we experimentally demonstrate a novel way to detect transverse velocities. The key concept is the use of structured light beams. These beams are unique in the sense that their phases can be engineered such that each point in its transverse plane has an associated phase value. When a particle moves across the beam, the reflected light will carry information about the particle's movement through the variation of the phase of the light that reaches the detector, producing a frequency shift associated with the movement of the particle in the transverse plane. PMID:24085150
Normal planar undulators doubling as transverse gradient undulators
NASA Astrophysics Data System (ADS)
Jia, Qika; Li, Heting
2017-02-01
The transverse gradient undulator (TGU) has important application in the short-wavelength high-gain free electron lasers (FELs) driven by laser-plasma accelerators. However, the usual transversely tapered TGUs need special design and manufacture, and the transverse gradient cannot be tuned arbitrarily. In this paper we explore a new and simple method of using the natural transverse gradient of a normal planar undulator to compensate the beam energy spread effect. In this method, a vertical dispersion on the electron beam is introduced, then the dispersed beam passes through a normal undulator with a vertical off-axis orbit where the vertical field gradient is selected properly related to the dispersion strength and the beam energy spread. Theoretical analysis and numerical simulations for self-amplified spontaneous emission FELs based on laser plasma accelerators are presented, and indicate that this method can greatly reduce the effect of the beam energy spread, leading to a similar enhancement on FEL performance as the usual transversely tapered TGU, but with the advantages of economy, tunable transverse gradient and no demand of extra field for correcting the orbit deflection induced by the field gradient.
Terahertz Radiation from Laser Created Plasma by Applying a Transverse Static Electric Field
NASA Astrophysics Data System (ADS)
Fukuda, Takuya; Katahira, Koji; Yugami, Noboru; Sentoku, Yasuhiko; Sakagami, Hitoshi; Nagatomo, Hideo
2016-10-01
Terahertz (THz) radiation, which is emitted in narrow cone in the forward direction from laser created plasma has been observed by N.Yugami et al.. Additionally, Löffler et al. have observed that a significantly increased THz emission intensity in the forward direction when the transverse static electric field is applied to the plasma. The purpose of our study is to derive the mechanism of the THz radiation from laser created plasma by applying the transverse static electric field. To study the radiation mechanism, we conducted 2D-PIC simulation. With the static electric field of 10 kV/cm and gas density of 1020 cm-3, we obtain 1.2 THz single cycle pulse radiation, whose intensity is 1.3 ×105 W/cm2. The magnetic field called ``picket fence mode'' is generated in the laser created plasma. At the boundary surface between the plasma and vacuum, the magnetic field is canceled because eddy current flows. We conclude that the temporal behavior of the magnetic field at the boundary surface radiates the THz wave.
NASA Astrophysics Data System (ADS)
Ghods, M.; Johnson, L.; Lauer, M.; Grugel, R. N.; Tewari, S. N.; Poirier, D. R.
2016-05-01
Hypoeutectic Al-7 wt% Si and Al-19 wt% Cu alloys were directionally solidified upward in a Bridgman furnace through a range of constant growth speeds and thermal gradients. Though processing is thermo-solutally stable, flow initiated by gravity-independent advection at, slightly leading, central dendrites moves rejected solute out ahead and across the advancing interface. Here any lagging dendrites are further suppressed which promotes a curved solid-liquid interface and the eventual dendrite "clustering" seen in transverse sections (dendrite "steepling" in longitudinal orientations) as well as extensive radial macrosegregation. Both aluminum alloys showed considerable macrosegregation at the low growth speeds (10 and 30 μm s-1) but not at higher speed (72 μm s-1). Distribution of the fraction eutectic-constituent on transverse sections was determined in order to quantitatively describe radial macrosegregation. The convective mechanisms leading to dendrite-steepling were elucidated with numerical simulations, and their results compared with the experimental observations.
Transverse bed slope effects in an annular flume
NASA Astrophysics Data System (ADS)
Baar, Anne; Kleinhans, Maarten; de Smit, Jaco; Uijttewaal, Wim
2016-04-01
Large scale morphology, in particular bar dimensions and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by helical flows. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and do not account for the presence of bedforms. In morphological modelling the deflection angle is therefore often calibrated on measured morphology. Our objective is to experimentally quantify the transverse slope effect for a large range of near-bed flow conditions and sediment sizes (0.17 - 4 mm) to test existing predictors, in order to improve morphological modelling of rivers and estuaries. We have conducted about 400 experiments in an annular flume, which functions as an infinitely long bended flume and therefore avoids boundary effects. Flow is generated by rotating the lid of the flume, while the intensity of the helical flow can be decreased by counterrotating the bottom of the flume. The equilibrium transverse slope that develops during the experiments is a balance between the transverse bed slope effect and the bed shear stress caused by the helical flow. We obtained sediment mobilities from no motion to sheet flow, ranging across bedload and suspended load. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and helical flow intensities that deviate from typical power relations with Shields number. As an end member we found transversely horizontal beds by counterrotation that partially cancelled the helical flow near the bed, which allows us to quantify helical flow. The large range in sediment mobilities caused different bed states from ripples and dunes to sheet flow that affect near-bed flow, which cause novel nonlinear relations between transverse slope and Shields number. In conclusion, our results show for a wide range of conditions and sediments that transverse
Transverse-coherence properties of the FEL at the LCLS
Ding, Yuantao; Huang, Zhirong; Ocko, Samuel A.; /MIT, Cambridge, Dept. Phys.
2010-09-02
The recently commissioned Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is now operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron sources. Understanding of coherence properties of the radiation from SASE FELs at LCLS is of great practical importance for some user experiments. We present the numerical analysis of the coherence properties at different wavelengths based on a fast algorithmusing ideal and start-end simulated FEL fields. The sucessful commissioning and operation of the linac coherent light source (LCLS) [1] has demonstrated that the x-ray free-electron laser (FEL) has come of age; these types of x-ray sources are poised to revolutionize the ultra-fast x-ray sciences. The LCLS and other hard x-ray FELs under construction are based on the principle of self-amplified spontaneous emission (SASE) [2, 3], where the amplification process starts from the shot noise in the electron beam. A large number of transverse radiation modes are also excited when the electron beam enters the undulator. The FEL collective instability in the electron beam causes the modulation of the electron density to increase exponentially, and after sufficient undulator distances, a single transverse mode starts to dominate. As a result, SASE FEL is almost fully coherent in the transverse dimension. Understanding of transverse coherence properties of the radiation from SASE FELs is of great practical importance. The longitudinal coherence properties of SASE FELs have been studied before [4]. Some studies on the transverse coherence can be found in previous papers, for example, in ref. [5, 6, 7, 8, 9]. In this paper, we first discuss a new numerical algorithm based on Markov chain Monte Carlo techniques to calculate the FEL transverse coherence. Then we focus on the numerical analysis of the LCLS FEL transverse coherence.
NASA Astrophysics Data System (ADS)
Tang, Yang; Koblmüller, G.; Riedl, H.; Grayson, M.
2016-03-01
Transverse thermoelectrics promise entirely new strategies for integrated cooling elements for optoelectronics. The recently introduced p × n-type transverse thermoelectric paradigm indicates that the most important step to engineering artificial transverse thermoelectrics is to create alternate p- and n-doped layers with orthogonally oriented anisotropic conductivity. This paper studies an approach to creating extreme anisotropic conductivity in bulk-doped semiconductor thin films via ion implantation. This approach defines an array of parallel conduction channels with photolithographic patterning of an SiO2 mask layer, followed by proton implantation. With a 10 μm channel width and 20 μm pitch, both n-type and p-type Al0.42 Ga0.58As thin films demonstrate a conductivity anisotropy ratio σ /σ⊥ > 104 at room temperature, while the longitudinal resistivity along the channel direction after implantation only increased by a factor of 3.3 ˜ 3.6. This approach can be readily adapted to other semiconductor materials for artificial p × n-type transverse thermoelectrics as other applications.
Rapid Confined Mixing Using Transverse Jets Part 2: Multiple Jets
NASA Astrophysics Data System (ADS)
Forliti, David; Salazar, David
2012-11-01
An experimental study has been conducted at the Air Force Research Laboratory at Edwards Air Force Base to investigate the properties of confined mixing devices that employ transverse jets. The experiment considers the mixing of water with a mixture of water and fluorescein, and planar laser induced fluorescence was used to measure instantaneous mixture fraction distributions in the cross section view. Part one of this study presents the scaling law development and results for a single confined transverse jet. Part two will describe the results of configurations including multiple transverse jets. The different regimes of mixing behavior, ranging from under to overpenetration of the transverse jets, are characterized in terms of a new scaling law parameter presented in part one. The level of unmixedness, a primary metric for mixing device performance, is quantified for different jet diameters, number of jets, and relative flow rates. It is apparent that the addition of a second transverse jet provides enhanced scalar uniformity in the main pipe flow cross section compared to a single jet. Three and six jet configurations also provide highly uniform scalar distributions. Turbulent scalar fluctuation intensities, spectral features, and spatial eigenfunctions using the proper orthogonal decomposition will be presented. Distribution A: Public Release, Public Affairs Clearance Number: 12656.
Pion transverse charge density and the edge of hadrons
NASA Astrophysics Data System (ADS)
Carmignotto, Marco; Horn, Tanja; Miller, Gerald A.
2014-08-01
We use the world data on the pion form factor for space-like kinematics and a technique previously used to extract the proton transverse densities to extract the transverse pion charge density and its uncertainty due the incomplete knowledge of the pion form factor at large values of Q2 and the experimental uncertainties. The pion charge density at small values of impact parameter b < 0.1 fm is dominated by this incompleteness error while the range between 0.1-0.3 fm is relatively well constrained. A comparison of pion and proton transverse charge densities shows that the pion is denser than the proton for values of b <0.2fm. The pion and proton transverse charge densities seem to be the same for values of b =0.3-0.6 fm. Future data from Thomas Jefferson National Accelerator Facility (JLab) 12 GeV and the Electron-Ion Collider (EIC) will increase the dynamic extent of the form factor data to higher values of Q2 and thus reduce the uncertainties in the extracted pion transverse charge density.
Projectile transverse motion and stability in electromagnetic induction launchers
Shokair, I.R.
1993-08-01
The transverse motion of a projectile in an electromagnetic induction launcher is considered. The equations of motion for translation and rotation are derived assuming a rigid projectile and a flyway restoring force per unit length that is proportional to the local displacement. Transverse forces and torques due to energized coils are derived for displaced or tilted projectile elements based on a first order perturbation method. The resulting equations of motion for a rigid projectile composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system of equations and a simple stability condition is derived. The equations of motion are incorporated into the 2-D Slingshot code and numerical solutions for the transverse motion are obtained. For the 20 meter navy launcher parameters we find that stability is achieved with a flyway spring constant of k {approx} 1{times} 10{sup 8} N/m{sup 2}. For k {approx} 1.5 {times} 10{sup 8} N/m{sup 2} and sample coil misalignment modeled as a sine wave of I mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a maximum of 4 mm. This growth is due to resonance between the natural frequency of the Projectile transverse motion and the coil displacement wavelength. This resonance does not persist because of the changing axial velocity. Random coil displacement is also found to cause roughly the same projectile displacement. For the maximum displacement a rough estimate of the transverse pressure is 50 bars.
Realizing vector meson dominance with transverse charge densities
Gerald Miller, Mark Strikman, Christian Weiss
2011-10-01
The transverse charge density in a fast-moving nucleon is represented as a dispersion integral of the imaginary part of the Dirac form factor in the timelike region (spectral function). At a given transverse distance b the integration effectively extends over energies in a range {radical}t {approx}< 1/b, with exponential suppression of larger values. The transverse charge density at peripheral distances thus acts as a low-pass filter for the spectral function and allows one to select energy regions dominated by specific t-channel states, corresponding to definite exchange mechanisms in the spacelike form factor. We show that distances b {approx} 0.5 - 1.5 fm in the isovector density are maximally sensitive to the {rho} meson region, with only a {approx}10% contribution from higher-mass states. Soft-pion exchange governed by chiral dynamics becomes relevant only at larger distances. In the isoscalar density higher-mass states beyond the {omega} are comparatively more important. The dispersion approach suggests that the positive transverse charge density in the neutron at b {approx} 1 fm, found previously in a Fourier analysis of spacelike form factor data, could serve as a sensitive test of the isoscalar strength in the {approx}1 GeV mass region. In terms of partonic structure, the transverse densities in the vector meson region b {approx} 1 fm support an approximate mean-field picture of the motion of valence quarks in the nucleon.
Longitudinal evaluation of foetal transverse lie using ultrasonography.
Oyinloye, Olalekan I; Okoyomo, Alexander A
2010-03-01
The purpose of this study was to assess the risk of persistence of transverse lie detected earlier in pregnancy and associated predisposing factors using follow-up ultrasound (US). A longitudinal study was carried out from January 2004 to august 2004 at Federal Medical centre, Lokoja, Nigeria. All singleton pregnancies, with ultrasound diagnosis of transverse lie, between 24-28 weeks were followed to term. At 24-28 weeks, 183 fetuses presented with transverse lie. Thirty seven were lost to follow-up; out of the remaining 146 babies, 22 persisted to term. Overall persistence rate was 15.1%. No identifiable predisposing factors were seen in 91.1%, placenta previa in 5.5%, lower segment fibroids in 2.7%, and ectopic kidney in 0.7%. In conclusion, transverse lie detected early in pregnancy is transient, and majority would convert to a longitudinal lie at term. Potential predisposing factors highlighted above increases the risk of persistent transverse lie at term, with placenta previa and lower segment fibroids being the major predisposing factors.
Transverse Spin Azimuthal Asymmetries in SIDIS at COMPASS: Multidimensional Analysis
NASA Astrophysics Data System (ADS)
Parsamyan, Bakur
2016-02-01
COMPASS is a high-energy physics experiment operating at the SPS at CERN. Wide physics program of the experiment comprises study of hadron structure and spectroscopy with high energy muon and hadrons beams. As for the muon-program, one of the important objectives of the COMPASS experiment is the exploration of the transverse spin structure of the nucleon via spin (in)dependent azimuthal asymmetries in single-hadron production in deep inelastic scattering of polarized leptons off transversely polarized target. For this purpose a series of measurements were made in COMPASS, using 160 GeV/c longitudinally polarized muon beam and transversely polarized 6LiD (in 2002, 2003 and 2004) and NH3 (in 2007 and 2010) targets. The experimental results obtained by COMPASS for unpolarized target azimuthal asymmetries, Sivers and Collins effects and other azimuthal observables play an important role in the general understanding of the three-dimensional nature of the nucleon. Giving access to the entire twsit-2 set of transverse momentum dependent parton distribution functions and fragmentation functions COMPASS data triggers constant theoretical interest and is being widely used in phenomenological analyses and global data fits. In this review main focus is given to the very recent results obtained by the COMPASS collaboration from first ever multi-dimensional extraction of transverse spin asymmetries.
On the origin of G --> T transversions in lung cancer.
Pfeifer, Gerd P; Hainaut, Pierre
2003-05-15
G-->T transversions in the TP53 gene are more common in lung cancers from smokers than in any other cancer except for hepatocellular carcinomas linked to aflatoxin. The high frequency of G-->T transversions in lung cancer has been attributed to the mutagenic action of cigarette smoke components, in particular polycyclic aromatic hydrocarbons (PAH). In a recent review [Mutat. Res. 508 (2002) 1-19], Rodin and Rodin have questioned the direct mutagenic action of PAH-like compounds and have suggested that other factors, such as selection of pre-existing endogenous mutations by smoke-induced stress, can better explain the excess of G-->T transversions in lung tumors. Their two main arguments against an involvement of PAH are that smoking may inhibit the repair of G-->T primary lesions on the non-transcribed strand and that lung cancer cell lines show a higher frequency of G-->T transversions than primary lung tumors suggesting that these mutations are not related to smoking. We illustrate here that both of these suggestions are incompatible with available evidence and that the abundance and sequence specificity of G-->T transversions in lung tumors is best explained by a direct mutagenic action of PAH compounds present in cigarette smoke.
Generation of self-healing and transverse accelerating optical vortices
NASA Astrophysics Data System (ADS)
Wei, Bing-Yan; Chen, Peng; Ge, Shi-Jun; Duan, Wei; Hu, Wei; Lu, Yan-Qing
2016-09-01
Self-healing and transverse accelerating optical vortices are generated via modulating Gaussian beams through subsequent liquid crystal q-plate and polarization Airy mask. We analyze the propagation dynamics of these vortex Airy beams, and find that they possess the features of both optical vortices and Airy beams. Topological charges and characteristics of nondiffraction, self-healing, and transverse acceleration are experimentally verified. In addition, vortex Airy beams with both topological charge and radial index are demonstrated and mode switch among Gaussian, vortex, vector, Airy beams and their combinations can be acquired easily. Our design provides a flexible and highly efficient way to generate unique optical vortices with self-healing and transverse acceleration properties, and facilitates prospective applications in optics and photonics.
Atypical abdominal pain: post-traumatic transverse colon stricture.
Rotar, Raluca; Uwechue, Raphael; Sasapu, Kishore Kumar
2013-08-23
A driver presented to the emergency department 1 day after an accident driving his excavator with abdominal pain and vomiting. He was admitted to the surgical ward 2 days later, after reattending. A CT scan revealed wall thickening and oedema in the transverse colon. This was supported by a subsequent CT virtual colonoscopy which raised the suspicion of neoplasia. A follow-up colonoscopy was not carried further than the transverse colon due to an indurated, tight stricture. Biopsies from that area showed ulceration and inflammatory changes non-specific for ischaemia, drug-induced changes or inflammatory bowel disease. As a consequence of the subocclusive symptoms and the possibility of a neoplastic diagnosis, a laparoscopic-assisted transverse colectomy was performed. The histology of the resected segment revealed post-traumatic inflammation and fibrosis with no evidence of neoplasia.
Transverse Instability of Line Solitary Waves in Massive Dirac Equations
NASA Astrophysics Data System (ADS)
Pelinovsky, Dmitry; Shimabukuro, Yusuke
2016-04-01
Working in the context of localized modes in periodic potentials, we consider two systems of the massive Dirac equations in two spatial dimensions. The first system, a generalized massive Thirring model, is derived for the periodic stripe potentials. The second one, a generalized massive Gross-Neveu equation, is derived for the hexagonal potentials. In both cases, we prove analytically that the line solitary waves are spectrally unstable with respect to periodic transverse perturbations of large periods. The spectral instability is induced by the spatial translation for the generalized massive Thirring model and by the gauge rotation for the generalized massive Gross-Neveu model. We also observe numerically that the spectral instability holds for the transverse perturbations of any period in the generalized massive Thirring model and exhibits a finite threshold on the period of the transverse perturbations in the generalized massive Gross-Neveu model.
Kinetic theory for electrostatic waves due to transverse velocity shears
NASA Technical Reports Server (NTRS)
Ganguli, G.; Lee, Y. C.; Palmadesso, P. J.
1988-01-01
A kinetic theory in the form of an integral equation is provided to study the electrostatic oscillations in a collisionless plasma immersed in a uniform magnetic field and a nonuniform transverse electric field. In the low temperature limit the dispersion differential equation is recovered for the transverse Kelvin-Helmholtz modes for arbitrary values of K parallel, where K parallel is the component of the wave vector in the direction of the external magnetic field assumed in the z direction. For higher temperatures the ion-cyclotron-like modes described earlier in the literature by Ganguli, Lee and Plamadesso are recovered. In this article, the integral equation is reduced to a second-order differential equation and a study is made of the kinetic Kelvin-Helmholtz and ion-cyclotron-like modes that constitute the two branches of oscillation in a magnetized plasma including a transverse inhomogeneous dc electric field.
Exclusive ω meson muoproduction on transversely polarised protons
NASA Astrophysics Data System (ADS)
Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M. G.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anfimov, N. V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C. D. R.; Badełek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E. R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Büchele, M.; Chang, W.-C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S.-U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F. H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; d'Hose, N.; Hsieh, C.-Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Jörg, P.; Kabuß, E.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O. M.; Krämer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z. V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y.-S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G. K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matoušek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G. V.; Meyer, M.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V. I.; Nový, J.; Nowak, W.-D.; Nukazuka, G.; Nunes, A. S.; Olshevsky, A. G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J.-C.; Pereira, F.; Pešek, M.; Peshekhonov, D. V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Ryabchikov, D. I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V. D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I. A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schönning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Steffen, D.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.
2017-02-01
Exclusive production of ω mesons was studied at the COMPASS experiment by scattering 160 GeV / c muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured in the range of photon virtuality 1 (GeV / c) 2
Anomalous postcritical refraction behavior for certain transversely isotropic media
Fa, L.; Brown, R.L.; Castagna, J.P.
2006-01-01
Snell's law at the boundary between two transversely isotropic media with a vertical axis of symmetry (VTI media) can be solved by setting up a fourth order polynomial for the sine of the reflection/transmission angles. This approach reveals the possible presence of an anomalous postcritical angle for certain transversely isotropic media. There are thus possibly three incident angle regimes for the reflection/refraction of longitudinal or transverse waves incident upon a VTI medium: precritical, postcritical/preanomalous, and postanomalous. The anomalous angle occurs for certain strongly anisotropic media where the required root to the phase velocity equation must be switched in order to obey Snell's law. The reflection/transmission coefficients, polarization directions, and the phase velocity are all affected by both the anisotropy and the incident angle. The incident critical angles are also effected by the anisotropy. ?? 2006 Acoustical Society of America.
Transverse single-spin asymmetries: Challenges and recent progress
Metz, Andreas; Pitonyak, Daniel; Schafer, Andreas; ...
2014-11-25
In this study, transverse single-spin asymmetries are among the most intriguing observables in hadronic physics. Though such asymmetries were already measured for the first time about four decades ago, their origin is still under debate. Here we consider transverse single-spin asymmetries in semi-inclusive lepton–nucleon scattering, in nucleon–nucleon scattering, and in inclusive lepton–nucleon scattering. It is argued that, according to recent work, the single-spin asymmetries for those three processes may be simultaneously described in perturbative QCD, where the re-scattering of the active partons plays a crucial role. A comparison of single-spin asymmetries in different reactions can also shed light on themore » universality of transverse momentum dependent parton correlation functions. In particular, we discuss what existing data may tell us about the predicted process dependence of the Sivers function.« less
An endochronic theory for transversely isotropic fibrous composites
NASA Technical Reports Server (NTRS)
Pindera, M. J.; Herakovich, C. T.
1981-01-01
A rational methodology of modelling both nonlinear and elastic dissipative response of transversely isotropic fibrous composites is developed and illustrated with the aid of the observed response of graphite-polyimide off-axis coupons. The methodology is based on the internal variable formalism employed within the text of classical irreversible thermodynamics and entails extension of Valanis' endochronic theory to transversely isotropic media. Applicability of the theory to prediction of various response characteristics of fibrous composites is illustrated by accurately modelling such often observed phenomena as: stiffening reversible behavior along fiber direction; dissipative response in shear and transverse tension characterized by power-laws with different hardening exponents; permanent strain accumulation; nonlinear unloading and reloading; and stress-interaction effects.
Hot electrons transverse refluxing in ultraintense laser-solid interactions.
Buffechoux, S; Psikal, J; Nakatsutsumi, M; Romagnani, L; Andreev, A; Zeil, K; Amin, M; Antici, P; Burris-Mog, T; Compant-La-Fontaine, A; d'Humières, E; Fourmaux, S; Gaillard, S; Gobet, F; Hannachi, F; Kraft, S; Mancic, A; Plaisir, C; Sarri, G; Tarisien, M; Toncian, T; Schramm, U; Tampo, M; Audebert, P; Willi, O; Cowan, T E; Pépin, H; Tikhonchuk, V; Borghesi, M; Fuchs, J
2010-07-02
We have analyzed the coupling of ultraintense lasers (at ∼2×10{19} W/cm{2}) with solid foils of limited transverse extent (∼10 s of μm) by monitoring the electrons and ions emitted from the target. We observe that reducing the target surface area allows electrons at the target surface to be reflected from the target edges during or shortly after the laser pulse. This transverse refluxing can maintain a hotter, denser and more homogeneous electron sheath around the target for a longer time. Consequently, when transverse refluxing takes places within the acceleration time of associated ions, we observe increased maximum proton energies (up to threefold), increased laser-to-ion conversion efficiency (up to a factor 30), and reduced divergence which bodes well for a number of applications.
Anomalous postcritical refraction behavior for certain transversely isotropic media.
Fa, Lin; Brown, Ray L; Castagna, John P
2006-12-01
Snell's law at the boundary between two transversely isotropic media with a vertical axis of symmetry (VTI media) can be solved by setting up a fourth order polynomial for the sine of the reflection/transmission angles. This approach reveals the possible presence of an anomalous postcritical angle for certain transversely isotropic media. There are thus possibly three incident angle regimes for the reflection/refraction of longitudinal or transverse waves incident upon a VTI medium: precritical, postcritical/preanomalous, and postanomalous. The anomalous angle occurs for certain strongly anisotropic media where the required root to the phase velocity equation must be switched in order to obey Snell's law. The reflection/transmission coefficients, polarization directions, and the phase velocity are all affected by both the anisotropy and the incident angle. The incident critical angles are also effected by the anisotropy.
Correlation of transverse relaxation time with structure of biological tissue
NASA Astrophysics Data System (ADS)
Furman, Gregory B.; Meerovich, Victor M.; Sokolovsky, Vladimir L.
2016-09-01
Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.
Propagation of a transverse wave on a foam microchannel
NASA Astrophysics Data System (ADS)
Derec, C.; Leroy, V.; Kaurin, D.; Arbogast, L.; Gay, C.; Elias, F.
2015-11-01
In a dry foam, soap films meet by three in the liquid microchannels, called Plateau borders, which contain most of the liquid of the foam. We investigated here the transverse vibration of a single Plateau border isolated on a rigid frame. We measured and we computed numerically and analytically the propagation of a transverse pulse along the channel in the 20-2000 Hz frequency range. The dispersion relation shows different scaling regimes, which provide information on the role of inertial and elastic forces acting on the Plateau border. At low frequency, the dispersion relation is dominated by the vibration of the air set into motion by the transverse vibration of the adjacent soap films. The inertia of the liquid in the Plateau border plays a role at high frequency, the critical frequency separating the low-frequency and the high-frequency regimes being a decreasing function of the radius R of the Plateau border.
Some Properties of the Transverse Elastic Waves in Quasiperiodic Structures
NASA Astrophysics Data System (ADS)
Tutor, J.; Velasco, V. R.
We have studied the integrated density of states and fractal dimension of the transverse elastic waves spectrum in quasiperiodic systems following the Fibonacci, Thue-Morse and Rudin-Shapiro sequences. Due to the finiteness of the quasiperiodic generations, in spite of the high number of materials included, we have studied the possible influence of the boundary conditions, infinite periodic or finite systems, together with that of the different ways to generate the constituent blocks of the quasiperiodic systems, on the transverse elastic waves spectra. No relevant differences have been found for the different boundary conditions, but the different ways of generating the building blocks produce appreciable consequences in the properties of the transverse elastic waves spectra of the quasiperiodic systems studied here.
Persistent mullerian duct syndrome with transverse testicular ectopia: rare entity.
Deepika; Kumar, Abhay
2014-03-01
We are reporting on a 35-year-old male from low socio-economic strata, who presented with a left-sided inguinal hernia. Intraoperatively, a uterus and two fallopian tubes were found in the hernial sac which was adjacent to the two gonads, which received their blood supply partly, along with Mullerian duct remnants (Persitent Mullerian duct Syndrome with Transverse testicular ectopia). The gonads were testes by histological examination, with features of degeneration and fibrosis. Complete excision of the mass was done and mesh hernioplasty was done.The diagnosis of persistent Mullerian duct syndrome with Transverse testicular ectopia was confirmed. Persistent Mullerian duct Syndrome is a rare entity and itís association with Transverse testicular ectopia is even more rare.
Transverse commensurability effect for vortices on periodic pinning arrays
Reichhardt, Charles; Reichhardt, Cynthia J
2008-01-01
Using computer simulations, we demonstrate a type of commensurability that occurs for vortices moving longitudinally through periodic pinning arrays in the presence of an additional transverse driving force. As a function of vortex density, there is a series of broad maxima in the transverse critical depinning force that do not fall at the matching fields where the number of vortices equals an integer multiple of the number of pinning sites. The commensurability effects are associated with dynamical states in which evenly spaced structures consisting of one or more moving rows of vortices form between rows of pinning sites. Remarkably, the critical transverse depinning force can be more than an order of magnitude larger than the longitudinal depinning force.
Effect of dephasing on DNA sequencing via transverse electronic transport
Zwolak, Michael; Krems, Matt; Pershin, Yuriy V; Di Ventra, Massimiliano
2009-01-01
We study theoretically the effects of dephasing on DNA sequencing in a nanopore via transverse electronic transport. To do this, we couple classical molecular dynamics simulations with transport calculations using scattering theory. Previous studies, which did not include dephasing, have shown that by measuring the transverse current of a particular base multiple times, one can get distributions of currents for each base that are distinguishable. We introduce a dephasing parameter into transport calculations to simulate the effects of the ions and other fluctuations. These effects lower the overall magnitude of the current, but have little effect on the current distributions themselves. The results of this work further implicate that distinguishing DNA bases via transverse electronic transport has potential as a sequencing tool.
Correlation of transverse relaxation time with structure of biological tissue.
Furman, Gregory B; Meerovich, Victor M; Sokolovsky, Vladimir L
2016-09-01
Transverse spin-spin relaxation of liquids entrapped in nanocavities with different orientational order is theoretically investigated. Based on the bivariate normal distribution of nanocavities directions, we have calculated the anisotropy of the transverse relaxation time for biological systems, such as collagenous tissues, articular cartilage, and tendon. In the framework of the considered model, the dipole-dipole interaction is determined by a single coupling constant. The calculation results for the transverse relaxation time explain the angular dependence observed in MRI experiments with biological objects. The good agreement with the experimental data is obtained by adjustment of only one parameter which characterizes the disorder in fiber orientations. The relaxation time is correlated with the degree of ordering in biological tissues. Thus, microstructure of the tissues can be revealed from the measurement of relaxation time anisotropy. The clinical significance of the correlation, especially in the detection of damage must be evaluated in a large prospective clinical trials.
Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; ...
2015-01-01
In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum qT spectra of Higgs and vector bosons for low qT, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMDLIB, to parton density fits and parameterizations.
Transverse Momentum-Dependent Parton Distributions From Lattice QCD
Michael Engelhardt, Bernhard Musch, Philipp Haegler, Andreas Schaefer
2012-12-01
Starting from a definition of transverse momentum-dependent parton distributions for semi-inclusive deep inelastic scattering and the Drell-Yan process, given in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection, a scheme to determine such observables in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are presented, focusing in particular on their dependence on the staple extent and the Collins-Soper evolution parameter.
High-Efficiency Absorber for Damping the Transverse Wake Fields
Novokhatski, A.; Seeman, J.; Weathersby, S.; /SLAC
2007-02-28
Transverse wake fields generated by intense beams may propagate long distances in the vacuum chamber and dissipate power in different shielded elements such as bellows, vacuum valves or vacuum pumps. Induced heating in these elements may be high enough to deteriorate vacuum conditions. We have developed a broadband water-cooled bellows-absorber to capture and damp these harmful transverse fields without impacting the longitudinal beam impedance. Experimental results at the PEP-II SLAC B-factory demonstrate high efficiency of this device. This absorber may be useful in other machines like synchrotron light sources or International Linear Collider.
Exploring quark transverse momentum distributions with lattice QCD
Bernhard U. Musch, Philipp Hagler, John W. Negele, Andreas Schafer
2011-05-01
We discuss in detail a method to study transverse momentum dependent parton distribution functions (TMDs) using lattice QCD. To develop the formalism and to obtain first numerical results, we directly implement a bi-local quark-quark operator connected by a straight Wilson line, allowing us to study T-even, "process-independent" TMDs. Beyond results for x-integrated TMDs and quark densities, we present a study of correlations in x and transverse momentum. Our calculations are based on domain wall valence quark propagators by the LHP collaboration calculated on top of gauge configurations provided by MILC with 2+1 flavors of asqtad-improved staggered sea quarks.
Experimental confirmation of the transversal symmetry breaking in laser profiles
NASA Astrophysics Data System (ADS)
Carvalho, Silvânia A.; De Leo, Stefano; Oliveira-Huguenin, José A.; da Silva, Ladário
2017-02-01
The Snell phase effects on the propagation of optical beams through dielectric blocks have been matter of recent theoretical studies. The effects of this phase on the laser profiles have been tested in our experiment. The data show an excellent agreement with the theoretical predictions confirming the axial spreading modification and the transversal symmetry breaking. The possibility to set, by rotating the dielectric blocks, different configurations allows to recover the transversal symmetry. Based on this experimental evidence, dielectric blocks can be used as alternative optical tools to control the beam profile.
Transversal Anderson localization of sound in acoustic waveguide arrays.
Ye, Yangtao; Ke, Manzhu; Feng, Junheng; Wang, Mudi; Qiu, Chunyin; Liu, Zhengyou
2015-04-22
We present designs of one-dimensional acoustic waveguide arrays and investigate wave propagation inside. Under the condition of single identical waveguide mode and weak coupling, the acoustic wave motion in waveguide arrays can be modeled with a discrete mode-coupling theory. The coupling constants can be retrieved from simulations or experiments as the function of neighboring waveguide separations. Sound injected into periodic arrays gives rise to the discrete diffraction, exhibiting ballistic or extended transport in transversal direction. But sound injected into randomized waveguide arrays readily leads to Anderson localization transversally. The experimental results show good agreement with simulations and theoretical predictions.
Transverse momentum dependent distribution functions in the bag model
Harut A. Avakian; Efremov, A. V.; Schweitzer, P.; Yuan, F.
2010-04-01
Leading and subleading twist transverse momentum dependent parton distribution functions (TMDs) are studied in a quark model framework provided by the bag model. A complete set of relations among different TMDs is derived, and the question is discussed how model-(in)dependent such relations are. A connection of the pretzelosity distribution and quark orbital angular momentum is derived. Numerical results are presented, and applications for phenomenology discussed. In particular, it is shown that in the valence-x region the bag model supports a Gaussian Ansatz for the transverse momentum dependence of TMDs.
Reissner-Nordström solution from Weyl transverse gravity
NASA Astrophysics Data System (ADS)
Oda, Ichiro
2016-10-01
We study classical solutions in the Weyl-transverse (WTDiff) gravity coupled to an electromagnetic field in four spacetime dimensions. The WTDiff gravity is invariant under both the local Weyl (conformal) transformation and the volume preserving diffeomorphisms (transverse diffeomorphisms) and is known to be equivalent to general relativity at least at the classical level (perhaps even in the quantum regime). In particular, we find that only in four spacetime dimensions, the charged Reissner-Nordström black hole metric is a classical solution when it is expressed in the Cartesian coordinate system.
Transverse momentum distributions inside the nucleon from lattice QCD
Bernhard Musch, Philipp Hagler, John Negele, Andreas Schafer
2011-07-01
Transverse momentum dependent parton distribution functions (TMDs) provide a framework to study the spin-dependent motion of quarks inside the nucleon. They are relevant for our understanding of azimuthal asymmetries in, e.g., semi-inclusive DIS. We present lattice calculations of TMDs based on spacially separated quark operators connected by a gauge link. Studies with straight gauge links reveal, e.g., visible dipole deformations of the quark density in the transverse momentum plain. Progress towards TMDs directly suitable for the description of experimental processes and, in particular, single-spin asymmetries can be made with a more elaborate link geometry.
Transverse momentum dependence of semi-inclusive pion production
Hamlet Mkrtchyan; Peter Bosted
2007-09-19
Cross sections for semi-inclusive electroproduction of charged pions ($\\pi^{\\pm}$) from both proton and deuteron targets were measured for $0.2<0.5$, $2<4$ GeV$^2$, $0.3<1$, and $P_t^2<0.2$ GeV$^2$. We find the azimuthal dependence to be small and consistent with zero, for $P_t<0.1$ GeV. In the context of a simple fit, the initial transverse momenta of $d$ quarks tends to be larger than for $u$ quarks, while the transverse momentum width of the favored fragmentation function is slightly larger than that of the unfavored function.
Observation of Femtosecond Bunch Length Using a Transverse Deflecting Structure
Huning, M.; Bolzmann, A.; Schlarb, H.; Frisch, J.; McCormick, D.; Ross, M.; Smith, T.; Rossbach, J.; /Hamburg U.
2005-12-14
The design of the VUV-FEL at DESY demands bunch lengths in the order of 50 fs and below. For the diagnostic of such very short bunches a transverse deflecting RF structure (LOLA) has been installed which streaks the beam according to the longitudinal distribution. Tests in the VUV-FEL yielded a rich substructure of the bunches. The most pronounced peak in the has a rms length of approximately 50 fs during FEL operation and below 20 fs FWHM at maximum compression. Depending on the transverse focusing a resolution well below 50 fs was achieved.
Broad area lasers with folded-resonator geometry for integrated transverse mode selection
NASA Astrophysics Data System (ADS)
Hoffmann, Dirk; Huthmacher, Klaus; Doering, Christoph; Fouckhardt, Henning
2011-02-01
AlGaInAsSb-based broad area lasers (BALs) with a monolithically integrated Fourier-optical 4f set-up in a folded-resonator geometry are realized. The two resonator branches - each one d = 0.825 mm long - are connected through a dry-etched cylindrical total-internal-reflection (TIR) mirror acting as a Fourier-transform element. Transverse mode selection (TMS) is achieved by monolithically integrated spatial-frequency filters positioned in the back focal plane of the mirror (i.e. in the Fourier-transform plane). The whole resonator is gain section (active medium) as well as part of the TMS 4f set-up at the same time. The integration of TMS within the active BAL chip is shown to be successful. All employed BAL/TMS type-II heterostructure lasers are MBE-grown on GaSb substrates, designed for an emission wavelength in the mid-infrared around 2 μm. Different laser samples without any filter elements (no-TMS) and with filters for the selection of the fundamental transverse mode (#0; TMS0) are prepared and characterized. Just for a proof of principle also samples for the selection of higher order transverse modes, here exemplarily mode #6 (TMS6) and #8 (TMS8), have been processed and investigated. The free spectral range between the longitudinal modes is found to be around 0.33 nm corresponding to the BAL's total-resonator length 2d = 1.65 mm (with an effective refractive index neff ~ 3.8). This result strongly emphasizes that both resonator branches act together as one entity.
NASA Astrophysics Data System (ADS)
Li, D. H.; Zhang, X.; Sze, K. Y.; Liu, Y.
2016-10-01
In this paper, the extended layerwise method (XLWM), which was developed for laminated composite beams with multiple delaminations and transverse cracks (Li et al. in Int J Numer Methods Eng 101:407-434, 2015), is extended to laminated composite plates. The strong and weak discontinuous functions along the thickness direction are adopted to simulate multiple delaminations and interlaminar interfaces, respectively, whilst transverse cracks are modeled by the extended finite element method (XFEM). The interaction integral method and maximum circumferential tensile criterion are used to calculate the stress intensity factor (SIF) and crack growth angle, respectively. The XLWM for laminated composite plates can accurately predicts the displacement and stress fields near the crack tips and delamination fronts. The thickness distribution of SIF and thus the crack growth angles in different layers can be obtained. These information cannot be predicted by using other existing shell elements enriched by XFEM. Several numerical examples are studied to demonstrate the capabilities of the XLWM in static response analyses, SIF calculations and crack growth predictions.
NASA Technical Reports Server (NTRS)
Kahen, K. B.
1986-01-01
The optical properties of III to V binary and ternary compounds and GaAs-Al(x)Ga(1-x)As superlattices are determined by calculating the real and imaginary parts of the transverse dielectric constant. Emphasis is given to determining the influence of different material and superlattice parameters on the values of the index of refraction and absorption coefficient. In order to calculate the optical properties of a material, it is necessary to compute its electronic band structure. This was accomplished by introducing a partition band structure approach based on a combination of the vector k x vector p and nonlocal pseudopotential techniques. The advantages of this approach are that it is accurate, computationally fast, analytical, and flexible. These last two properties enable incorporation of additional effects into the model, such as disorder scattering, which occurs for alloy materials and excitons. Furthermore, the model is easily extended to more complex structures, for example multiple quantum wells and superlattices. The results for the transverse dielectric constant and absorption coefficient of bulk III to V compounds compare well with other one-electron band structure models and the calculations show that for small frequencies, the index of refraction is determined mainly by the contibution of the outer regions of the Brillouin zone.
A Simple Laser Teaching Aid for Transverse Mode Structure Demonstration
ERIC Educational Resources Information Center
Ren, Cheng; Zhang, Shulian
2009-01-01
A teaching aid for demonstrating the transverse mode structure in lasers is described. A novel device called "multi-dimension adjustable combined cat-eye reflector" has been constructed from easily available materials to form a He-Ne laser resonator. By finely adjusting the cat-eye, the boundary conditions of the laser cavity can be altered, which…
HICOV - Newton-Raphson calculus of variation with automatic transversalities
NASA Technical Reports Server (NTRS)
Heintschel, T. J.
1968-01-01
Computer program generates trajectories that are optimum with respect to payload placed in an earth orbit. It uses a subroutine package which produces the terminal and transversality conditions and their partial derivatives. This program is written in FORTRAN 4 and FORMAC for the IBM 7094 computer.
Transverse Mode Multi-Resonant Single Crystal Transducer
NASA Technical Reports Server (NTRS)
Snook, Kevin A. (Inventor); Liang, Yu (Inventor); Luo, Jun (Inventor); Hackenberger, Wesley S. (Inventor); Sahul, Raffi (Inventor)
2015-01-01
A transducer is disclosed that includes a multiply resonant composite, the composite having a resonator bar of a piezoelectric single crystal configured in a d(sub 32) transverse length-extensional resonance mode having a crystallographic orientation set such that the thickness axis is in the (110) family and resonance direction is the (001) family.
58. Photocopy of illustrations. TRANSVERSE SECTION OF BULKHEAD FOUNDATION, CAISSON ...
58. Photocopy of illustrations. TRANSVERSE SECTION OF BULKHEAD FOUNDATION, CAISSON AND WALL, AND PIER TIMBER SUBSTRUCTURE. (From The Engineering Record, 'The New Hoboken Terminal of the North German Lloyd Line,' December 22, 1900, p. 589. Artist unknown) - Hoboken Piers Headhouse, River Street at Hudson River, Hoboken, Hudson County, NJ
59. Photocopy of illustrations. TRANSVERSE SECTION OF BULKHEAD HOUSE AND ...
59. Photocopy of illustrations. TRANSVERSE SECTION OF BULKHEAD HOUSE AND PIER SHEDS, DETAILS OF FLOORS AND POSTS, PLAN OF PIERS AND BULKHEAD HOUSE. (From The Engineering Record, 'The New Hoboken Terminal of the North German Lloyd Line,' December 22, 1900, p. 589. Artist unknown) - Hoboken Piers Headhouse, River Street at Hudson River, Hoboken, Hudson County, NJ
Transverse momentum dependent quark densities from Lattice QCD
Musch, B. U.; Haegler, Ph.; Negele, J. W.; Schaefer, A.
2011-10-24
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. We discuss the basic concepts of the method, including renormalization of the gauge link. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.
Estimating the Transverse Impedance in the Fermilab Recycler
Ainsworth, Robert; Adamson, Philip; Burov, Alexey; Kourbanis, Ioanis; Yang, Ming-Jen
2016-06-01
Impedance could represent a limitation of running high intensity bunches in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this, studies have been performed measuring the tune shift as a function of bunch intensity allowing the transverse impedance to be derived.
Observational constraints on transverse gravity: A generalization of unimodular gravity
NASA Astrophysics Data System (ADS)
Lopez-Villarejo, J. J.
2010-04-01
We explore the hypothesis that the set of symmetries enjoyed by the theory that describes gravity is not the full group of diffeomorphisms (Diff(M)), as in General Relativity, but a maximal subgroup of it (TransverseDiff(M)), with its elements having a jacobian equal to unity; at the infinitesimal level, the parameter describing the coordinate change xμ → xμ + ξμ(x) is transverse, i.e., δμξμ = 0. Incidentally, this is the smaller symmetry one needs to propagate consistently a graviton, which is a great theoretical motivation for considering these theories. Also, the determinant of the metric, g, behaves as a "transverse scalar", so that these theories can be seen as a generalization of the better-known unimodular gravity. We present our results on the observational constraints on transverse gravity, in close relation with the claim of equivalence with general scalar-tensor theory. We also comment on the structure of the divergences of the quantum theory to the one-loop order.
Low mass lepton pair production at large transverse momentum
NASA Astrophysics Data System (ADS)
Qiu, Jianwei; Kang, Zhongbo; Vogelsang, Werner
2008-10-01
PHENIX collaboration has recently measured the transverse momentum distribution of lepton pair production at RHIC with the pair's invariant mass as low as 120 < Q < 300 MeV. We will show that the distribution of low mass lepton pair production at large transverse momentum QTQ can be systematically calculated in terms of the perturbative QCD factorization approach. All factorized short-distance parotnic hard parts are evaluated at a distance scale ˜1/QT, while all long-distance non-perturbative physics are factorized into the universal parton-to-lepton pair fragmentation functions. We introduce a model for the input lepton pair fragmentation functions at a scale μ˜ 1 GeV, which are then evolved perturbatively to scales relevant at RHIC. Using the evolved fragmentation functions, we calculate the transverse momentum distributions of low mass lepton pair production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions. We demonstrate that the transverse momentum distribution of low mass lepton pairs is extremely sensitive to the shape of gluon distribution.
On the conformal geometry of transverse Riemann Lorentz manifolds
NASA Astrophysics Data System (ADS)
Aguirre, E.; Fernández, V.; Lafuente, J.
2007-06-01
Physical reasons suggested in [J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815-1834] for the Quantum Gravity Problem lead us to study type-changing metrics on a manifold. The most interesting cases are Transverse Riemann-Lorentz Manifolds. Here we study the conformal geometry of such manifolds.
High neutral transverse energy events at the CERN ISR
Cox, P. T.
1983-01-01
The CERN-Oxford-Rockefeller (COR) collaboration has obtained neutral transverse energy, E/sub T//sup 0/, spectra in pp collisions at ..sqrt..s = 30.5, 45.0, and 62.3 GeV. Evidence is presented for the increasing dominance of 2-jet events as E/sub T//sup 0/ increases.
11. Axial view of west bay, view to east. Transverse ...
11. Axial view of west bay, view to east. Transverse wall at end of space was installed after cessation of railway use. - Interurban Electric Railway Bridge Yard Shop, Interstate 80 at Alameda County Postmile 2.0, Oakland, Alameda County, CA
Transverse momentum dependent quark densities from Lattice QCD
Bernhard Musch,Philipp Hagler,John Negele,Andreas Schafer
2011-10-01
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. We discuss the basic concepts of the method, including renormalization of the gauge link. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.
Transverse Mode Dynamics of VCSELs Undergoing Current Modulation
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Ning, C. Z.; Agrawal, Govind
2000-01-01
Transverse mode dynamics of a 20-micron-diameter vertical-cavity surface-emitting laser (VCSEL) undergoing gain switching by deep current modulation is studied numerically. The direct current (dc) level is set slightly below threshold and is modulated by a large alternating current (ac). The resulting optical pulse train and transverse-mode patterns are obtained numerically. The ac frequency is varied from 2.5 GHz to 10 GHz, and the ac amplitude is varied from one-half to four times that of the dc level. At high modulation frequencies, a regular pulse train is not generated unless the ac amplitude is large enough. At all modulation frequencies, the transverse spatial profile switches from single-mode to multiple-mode pattern as the ac pumping level is increased. Optical pulse widths vary in the range 5-30 ps. with the pulse width decreasing when either the frequency is increased or the ac amplitude is decreased. The numerical modeling uses an approximation form of the semiconductor Maxwell-Bloch equations. Temporal evolution of the spatial profiles of the laser (and of carrier density) is determined without any assumptions about the type or number of modes. Keywords: VCSELs, current modulation, gain switching, transverse mode dynamics, computational modeling
Transverse Effect due to Short-range Resistive Wall Wakefield
Juhao Wu; Alex Chao; Jean Delayen
2007-06-18
For accelerator designs with ultra short electron beams, beam dynamics study has to invoke the short-range wakefields. In this paper, we first obtain the short-range dipole mode resistive wall wakefield. Analytical approach is then developed to study the single bunch transverse beam dynamics due to this short-range resistive wall wake. The results are applied to the LCLS undulator.
Transverse Effect Due to Short Range Resistive Wall Wakefield
Delayen, J.R.; Chao, Alexander Wu; Wu, J.; /SLAC
2008-01-08
For accelerator designs with ultra short electron beams, beam dynamics study has to invoke the short-range wakefields. In this paper, we first obtain the short-range dipole mode resistive wall wakefield. Analytical approach is then developed to study the single bunch transverse beam dynamics due to this short-range resistive wall wake. The results are applied to the LCLS undulator.
Intrinsic transverse momentum and dynamical chiral symmetry breaking
Christian Weiss, Peter Schweitzer, Mark Strikman
2013-01-01
We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.
The linear Fresnel lens solar concentrator: Transverse tracking error effects
NASA Technical Reports Server (NTRS)
Cosby, R. M.
1977-01-01
The solar concentration performance of a line focusing, flat base Fresnel lens in the presence of small transverse tracking errors was analyzed. Solar transmittance of the lens and focal plane imaging characteristics were evaluated. Transmission losses by reflectance and material absorption were also studied.
Linearly polarized gluons and the Higgs transverse momentum distribution.
Boer, Daniël; den Dunnen, Wilco J; Pisano, Cristian; Schlegel, Marc; Vogelsang, Werner
2012-01-20
We study how gluons carrying linear polarization inside an unpolarized hadron contribute to the transverse momentum distribution of Higgs bosons produced in hadronic collisions. They modify the distribution produced by unpolarized gluons in a characteristic way that could be used to determine whether the Higgs boson is a scalar or a pseudoscalar particle.
Comparing new models of transverse instability with simulations
Blaskiewicz M.
2012-05-20
Recently, Balbekov and Burov have produced an ordinary integro-differential equation that approximates the Vlasov equation for beams with wakefields and large space charge tune shift. The present work compares this model with simulations. In particular, the claim that certain types of transverse wakes cannot lead to mode coupling instabilities is explored.
A STATISTICAL STUDY OF TRANSVERSE OSCILLATIONS IN A QUIESCENT PROMINENCE
Hillier, A.; Morton, R. J.; Erdélyi, R.
2013-12-20
The launch of the Hinode satellite has allowed for seeing-free observations at high-resolution and high-cadence making it well suited to study the dynamics of quiescent prominences. In recent years it has become clear that quiescent prominences support small-amplitude transverse oscillations, however, sample sizes are usually too small for general conclusions to be drawn. We remedy this by providing a statistical study of transverse oscillations in vertical prominence threads. Over a 4 hr period of observations it was possible to measure the properties of 3436 waves, finding periods from 50 to 6000 s with typical velocity amplitudes ranging between 0.2 and 23 km s{sup –1}. The large number of observed waves allows the determination of the frequency dependence of the wave properties and derivation of the velocity power spectrum for the transverse waves. For frequencies less than 7 mHz, the frequency dependence of the velocity power is consistent with the velocity power spectra generated from observations of the horizontal motions of magnetic elements in the photosphere, suggesting that the prominence transverse waves are driven by photospheric motions. However, at higher frequencies the two distributions significantly diverge, with relatively more power found at higher frequencies in the prominence oscillations. These results highlight that waves over a large frequency range are ubiquitous in prominences, and that a significant amount of the wave energy is found at higher frequency.
On the Causes of Evolutionary Transition:Transversion Bias.
Stoltzfus, Arlin; Norris, Ryan W
2016-03-01
A pattern in which nucleotide transitions are favored several fold over transversions is common in molecular evolution. When this pattern occurs among amino acid replacements, explanations often invoke an effect of selection, on the grounds that transitions are more conservative in their effects on proteins. However, the underlying hypothesis of conservative transitions has never been tested directly. Here we assess support for this hypothesis using direct evidence: the fitness effects of mutations in actual proteins measured via individual or paired growth experiments. We assembled data from 8 published studies, ranging in size from 24 to 757 single-nucleotide mutations that change an amino acid. Every study has the statistical power to reveal significant effects of amino acid exchangeability, and most studies have the power to discern a binary conservative-vs-radical distinction. However, only one study suggests that transitions are significantly more conservative than transversions. In the combined set of 1,239 replacements (544 transitions, 695 transversions), the chance that a transition is more conservative than a transversion is 53 % (95 % confidence interval 50 to 56) compared with the null expectation of 50 %. We show that this effect is not large compared with that of most biochemical factors, and is not large enough to explain the several-fold bias observed in evolution. In short, the available data have the power to verify the "conservative transitions" hypothesis if true, but suggest instead that selection on proteins plays at best a minor role in the observed bias.
Longitudinal and Transverse Inelastic Electron Scattering from 56Fe
NASA Astrophysics Data System (ADS)
Altemus, R.; Cafolla, A.; Day, D.; McCarthy, J. S.; Whitney, R. R.; Wise, J. E.
1980-04-01
Inelastic-electron-scattering cross sections for 56Fe have been measured in the continuum region. The longitudinal and transverse inelastic response functions have been determined for vector momentum transfers, q, from 210-410 MeV/c and for energy losses 0<ω<=220 MeV.
Transverse multipolar light-matter couplings in evanescent waves
NASA Astrophysics Data System (ADS)
Fernandez-Corbaton, Ivan; Zambrana-Puyalto, Xavier; Bonod, Nicolas; Rockstuhl, Carsten
2016-11-01
We present an approach to study the interaction between matter and evanescent fields. The approach is based on the decomposition of evanescent plane waves into multipoles of well-defined angular-momentum transverse to both decay and propagation directions. We use the approach to identify the origin of the recently observed directional coupling of emitters into guided modes, and of the opposite Zeeman state excitation of atoms near a fiber. We explain how to rigorously quantify both effects and show that the directionality and the difference in excitation rates grow exponentially with the multipolar order of the light-matter interaction. We also use the approach to study and maximize the transverse torque exerted by an evanescent plane wave onto a given spherical absorbing particle. All the obtained physical insights can be traced back to the two main features of the decomposition of evanescent plane waves into transverse multipolar modes: A polarization independent exponential dominance of modes with large transverse angular momentum, and a polarization-controlled parity selection rule.
Transverse momentum at work in high-energy scattering experiments
NASA Astrophysics Data System (ADS)
Signori, Andrea
2017-01-01
I will review some aspects of the definition and the phenomenology of Transverse-Momentum-Dependent distributions (TMDs) which are potentially interesting for the physics program at several current and future experimental facilities. First of all, I will review the definition of quark, gluon and Wilson loop TMDs based on gauge invariant hadronic matrix elements. Looking at the phenomenology of quarks, I will address the flavor dependence of the intrinsic transverse momentum in unpolarized TMDs, focusing on its extraction from Semi-Inclusive Deep-Inelastic Scattering. I will also present an estimate of its impact on the transverse momentum spectrum of W and Z bosons produced in unpolarized hadronic collisions and on the determination of the W boson mass. Moreover, the combined effect of the flavor dependence and the evolution of TMDs with the energy scale will be discussed for electron-positron annihilation. Concerning gluons, I will present from an effective theory point of view the TMD factorization theorem for the transverse momentum spectrum of pseudoscalar quarkonium produced in hadronic collisions. Relying on this, I will discuss the possibility of extracting precise information on (un)polarized gluon TMDs at a future Fixed Target Experiment at the LHC (AFTER@LHC).
Laparoscopic Repair of Internal Transmesocolic Hernia of Transverse Colon
Kishiki, Tomokazu; Mori, Toshiyuki; Hashimoto, Yoshikazu; Matsuoka, Hiroyoshi; Abe, Nobutsugu; Masaki, Tadahiko; Sugiyama, Masanori
2015-01-01
Introduction. Internal hernias are often misdiagnosed because of their rarity, with subsequent significant morbidity. Case Presentation. A 61-year-old Japanese man with no history of surgery was referred for intermittent abdominal pain. CT suggested the presence of a transmesocolic internal hernia. The patient underwent a surgical procedure and was diagnosed with transmesocolic internal hernia. We found internal herniation of the small intestine loop through a defect in the transverse mesocolon, without any strangulation of the small intestine. We were able to complete the operation laparoscopically. The patient's postoperative course was uneventful and the patient was discharged on postoperative day 6. Discussion. Transmesocolic hernia of the transverse colon is very rare. Transmesocolic hernia of the sigmoid colon accounts for 60% of all other mesocolic hernias. Paraduodenal hernias are difficult to distinguish from internal mesocolic transverse hernias. We can rule out paraduodenal hernias with CT. Conclusion. The patient underwent a surgical procedure and was diagnosed with transmesocolic internal hernia. We report a case of a transmesocolic hernia of the transverse colon with intestinal obstruction that was diagnosed preoperatively and for which laparoscopic surgery was performed. PMID:26246930
Skeletal muscle transverse strain during isometric contraction at different lengths.
van Donkelaar, C C; Willems, P J; Muijtjens, A M; Drost, M R
1999-08-01
An important assumption in 2D numerical models of skeletal muscle contraction involves deformation in the third dimension of the included muscle section. The present paper studies the often used plane strain description. Therefore, 3D muscle surface deformation is measured from marker displacements during isometric contractions at various muscle lengths. Longitudinal strains at superficial muscle fibers ( - 14 +/- 2.6% at L0, n = 57) and aponeurosis (0.8 +/- 0.9% at L0) decrease with increasing muscle length. The same holds for transverse muscle surface strains in superficial muscle fibers and aponeurosis, which are comparable at intermediate muscle length, but differ at long and short muscle length. Because transverse strains during isometric contraction change with initial muscle length, it is concluded that the effect of muscle length on muscle deformation cannot be studied in plane strain models. These results do not counteract the use of these models to study deformation in contractions with approximately - 9 % longitudinal muscle fiber strain, as transverse strain in superficial muscle fibers and in aponeurosis tissue is minimal in that case. Aponeurosis surface area change decreases with increasing initial muscle length, but muscle fiber surface area change is - 11%, independent of muscle length. Assuming incompressible muscle material, this means that strain perpendicular to the muscle surface equals 11%. Taking the relationship between transverse and longitudinal muscle fiber strain into account, it is hypothesized that superficial muscle fibers flatten during isometric contractions.
Projectile transverse motion and stability in electromagnetic induction launchers
Shokair, I.R.
1993-12-31
The transverse motion of a projectile in an electromagnetic induction launcher is considered. The equations of motion for translation and rotation are derived assuming a rigid projectile and a flyway restoring force per unit length that is proportional to the local displacement. Linearized transverse forces and torques due to energized coils are derived for displaced or tilted armature elements based on a first order perturbation method. The resulting equations of motion for a rigid projectile composed of multiple elements in a multi-coil launcher are analyzed as a coupled oscillator system of equations and a simple linear stability condition is derived. The equations of motion are incorporated into the 2-D Slingshot circuit code and numerical solutions for the transverse motion are obtained. For a launcher with a 10 cm bore radius with a 40 cm long solid armature, we find that stability is achieved with a restoring force (per unit length) constant of k {approx} 1 {times} 10{sup 8} N/m{sup 2}. For k = 1.5 {times} 10{sup 8} N/m{sup 2} and sample coil misalignment modeled as a sine wave of 1 mm amplitude at wavelengths of one or two meters, the projectile displacement grows to a maximum of 4 mm. This growth is due to resonance between the natural frequency of the projectile transverse motion and the coil displacement wavelength. This resonance does not persist because of the changing axial velocity. Random coil displacement is also found to cause roughly the same projectile displacement. For the maximum displacement a rough estimate of the transverse pressure is 50 bars. Results for a wound armature with uniform current density throughout show very similar displacements.
The transverse mechanical behaviour of glass fibre reinforced plastics
NASA Astrophysics Data System (ADS)
Wells, Garry Michael
The importance of transverse cracking in composites technology is highlighted by the use of classical lamination theory to predict the sequential damage process in cross-plied laminates. The literature on transverse fibre carposite behaviour is comprehensively reviewed, with particular emphasis on papers which present quantitative theoretical models. No work reviewed has measured the full range of mechanical properties on a single material necessary to allow a complete assessment of all the models of transverse failure. A resin system, based on epoxy/urethane blends, has been identified which allows production of high quality unidirectional composites with a systematic variation in flexibility. A preliminary experimental programme has identified those test specimens which can provide the necessary stress/strain and toughness properties of the range of flexibilised materials and thereby allow a validation of the theoretical models reviewed. In the preliminary experimental programme, transverse cracks are shown to extend with an increasing fracture toughness due to the formation of a 'tied zone' of fracture face bridging 'stringers' behind the crack tip. The influence of this effect on crack stability is discussed. By modelling the balance between fracture and strain energies, the equilibrium state of individual stringers is predicted. Direct observations of equilibrium stringer angles are seen to correspond with these predictions. A quite general model is developed which predicts, with reasonble accuracy, the observed increase of fracture toughness with crack extension and the geometry dependence of this increase. The literature models of stiffness, strength and failure strain are seen to display a dissappointing lack of agreement with the experimental results over the full range of material flexibilities. The influence of matrix Poisson constraint on these properties is discussed. Fracture toughness results indicate that very large critical defects control
Slipchenko, S. O. Bondarev, A. D.; Vinokurov, D. A.; Nikolaev, D. N.; Fetisova, N. V.; Sokolova, Z. N.; Pikhtin, N. A.; Tarasov, I. S.
2009-01-15
Asymmetric Al{sub 0.3}Ga{sub 0.7}As/GaAs/InGaAs heterostructures with a broadened waveguide produced by the method of MOCVD epitaxy are studied. It is established that the precision shift of the active region to one of the cladding layers ensures the generation of the chosen mode of high order in the transverse broadened waveguide. It is experimentally established that this shift brings about an increase in internal optical losses and a decrease in the internal quantum efficiency of stimulated emission. It is shown experimentally that the shift of the active region to the n-type cladding layer governs the sublinear form of the power-current characteristic for semiconductor lasers; in the case of a shift of the active region towards the p-type cladding layer, the laser diodes demonstrated a linear dependence of optical power on the pump current in the entire range of pump currents.
Magnetic field dependent transverse spin diffusion constant in 3He- 4He solutions
NASA Astrophysics Data System (ADS)
Owers-Bradley, J. R.; Child, A.; Bowley, R. M.
1994-02-01
The transverse spin diffusion constant of 3He- 4He solutions has been measured by pulsed nmr in magnetic fields of 2.18T and 8.8T for 3He concentrations of 0.5%, 1.0% and 3.8%. For the higher concentrations the diffusion constant at 8.8T is smaller than at 2.18T for the lowest temperatures used. The effect is largest for the 3.8% solution (a reduction by 1.7 at 15mK), but is too small to be measurable for the 0.5% solution. These results are compared to measurements of Candela et al. for pure 3He, and to the theory of Jeon and Mullin.
NASA Astrophysics Data System (ADS)
Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming
2016-07-01
In this paper, we study the rotated ferromagnetic Heisenberg model (RFHM) in two different transverse fields, hx and hz, which can be intuitively visualized as studying spin-orbit coupling (SOC) effects in two-dimensional (2D) Ising or anisotropic X Y model in a transverse field. At a special SOC class, it was found in our previous work [Phys. Rev. A 92, 043609 (2015), 10.1103/PhysRevA.92.043609] that the RFHM at a zero field owns an exact spin-orbit coupled ground state called the Y -x state. It supports not only the commensurate magnons (called C -C0 and C -Cπ ), but also the incommensurate magnons (called C-IC). These magnons are nonrelativistic, not embedded in the exact ground state, so need to be thermally excited or generated by various external probes. Their dramatic response under a longitudinal hy field was recently worked out by Sun et al. [arXiv:1502.05338]. Here we find they respond very differently under the two transverse fields. Any hx (hz) introduces quantum fluctuations to the ground state and changes the collinear Y -x state to a canted coplanar Y X -x (Y Z -x ) state. The C -C0,C -Cπ , and C-IC magnons become relativistic and sneak into the quantum ground state. We determine the competing boundaries among the C -C0,C -Cπ , and C-IC magnons, especially the detailed dispersions of the C-IC magnons inside the canted phases, which can be mapped out by the transverse spin structure factors. As hx (hz) increases further, the C -C0 magnons always win the competition and emerge as the seeds to drive a transition from the Y X -x (or Y Z -x ) to the ferromagnetic along the X (orZ ) direction called the X -FM (or Z -FM) phase. We show that the transition is in the 3D Ising universality class and it becomes the 3D X Y transition at the two Abelian points. We evaluate these magnons' contributions to magnetization and specific heat at low temperatures which can be measured by various established experimental techniques. The nature of the finite
NASA Astrophysics Data System (ADS)
Petrescu-Prahova, I. B.; Lazanu, S.; Lepşa, M.; Mihailovici, P.
1988-11-01
An investigation was made of the emission from GaAlAs large-optical-cavity (LOC) laser heterostructures with an active layer more than 2 μm thick. The far-field radiation pattern, representing a superposition of the fundamental and several higher-order transverse modes, had a central maximum. The gain, mirror losses, near- and far-field patterns of each propagation mode, as well as mode competition were analyzed on the basis of a simple model. The far-field pattern of single modes was determined by selecting separate spectral intervals from the total emission spectrum of the laser.
NASA Astrophysics Data System (ADS)
Antonov, N. N.; Baldin, A. A.; Viktorov, V. A.; Gapienko, V. A.; Gapienko, G. S.; Gres', V. N.; Ilyushin, M. A.; Korotkov, V. A.; Mysnik, A. I.; Prudkoglyad, A. F.; Semak, A. A.; Terekhov, V. I.; Uglekov, V. Ya.; Ukhanov, M. N.; Chuiko, B. V.; Shimanskii, S. S.
2016-11-01
Formation of the d and t cumulative light nuclear fragments emitted from the nucleus with large transverse momenta at an angle of 35° in the laboratory frame is investigated. The data on collisions of 50-GeV protons with the C, Al, Cu, and W nuclei are collected using the extracted proton beam of the IHEP accelerator and the SPIN detector. The results indicate that the dominant contribution to formation of nuclear fragments comes from the local process of direct knockout from the nucleus.
GTF Transverse and Longitudinal Emittance Data Analysis Technique
Not Available
2010-12-07
The SSRL Gun Test Facility (GTF) was built to develop a high brightness electron injector for the LCLS and has been operational since 1996. Measurements at the GTF include quadrupole scan transverse emittance measurements and linac phase scan longitudinal emittance measurements. Typically the beam size is measured on a screen as a function of a quadrupole current or linac phase and the beam matrix is then fit to the measured data. Often the emittance which is the final result of the measurement is the only number reported. However, the method used to reduce the data to the final emittance value can have a significant effect on the result. This paper describes in painful detail the methods used to analyze the transverse and longitudinal emittance data collected at the GTF.
A Novel Transverse Flux Machine for Vehicle Traction Applications
Wan, Zhao; Ahmed, Adeeb; Husain, Iqbal; Muljadi, Eduard
2015-10-05
A novel transverse flux machine topology for electric vehicle traction application using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to Halbach-array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from Finite Element Analysis (FEA) show the motor achieved comparable torque density to conventional rare-earth permanent magnet machines. This machine is a viable candidate for direct drive applications with low cost and high torque density.
Transverse momentum-dependent parton distribution functions from lattice QCD
Michael Engelhardt, Philipp Haegler, Bernhard Musch, John Negele, Andreas Schaefer
2012-12-01
Transverse momentum-dependent parton distributions (TMDs) relevant for semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process can be defined in terms of matrix elements of a quark bilocal operator containing a staple-shaped Wilson connection. Starting from such a definition, a scheme to determine TMDs in lattice QCD is developed and explored. Parametrizing the aforementioned matrix elements in terms of invariant amplitudes permits a simple transformation of the problem to a Lorentz frame suited for the lattice calculation. Results for the Sivers and Boer-Mulders transverse momentum shifts are obtained using ensembles at the pion masses 369MeV and 518MeV, focusing in particular on the dependence of these shifts on the staple extent and a Collins-Soper-type evolution parameter quantifying proximity of the staples to the light cone.
Longitudinal shear wave and transverse dilatational wave in solids.
Catheline, S; Benech, N
2015-02-01
Dilatation wave involves compression and extension and is known as the curl-free solution of the elastodynamic equation. Shear wave on the contrary does not involve any change in volume and is the divergence-free solution. This letter seeks to examine the elastodynamic Green's function through this definition. By separating the Green's function in divergence-free and curl-free terms, it appears first that, strictly speaking, the longitudinal wave is not a pure dilatation wave and the transverse wave is neither a pure shear wave. Second, not only a longitudinal shear wave but also a transverse dilatational wave exists. These waves are shown to be a part of the solution known as coupling terms. Their special motion is carefully described and illustrated.
Transverse impedance measurement in RHIC and the AGS
Biancacci, Nicolo; Blaskiewicz, M.; Dutheil, Y.; Liu, C.; Mernick, M.; Minty, M.; White, S. M.
2014-05-12
The RHIC luminosity upgrade program aims for an increase of the polarized proton luminosity by a factor 2. To achieve this goal a significant increase in the beam intensity is foreseen. The beam coupling impedance could therefore represent a source of detrimental effects for beam quality and stability at high bunch intensities. For this reason it is essential to quantify the accelerator impedance budget and the major impedance sources, and possibly cure them. In this MD note we summarize the results of the 2013 transverse impedance measurements in the AGS and RHIC. The studies have been performed measuring the tune shift as a function of bunch intensity and deriving the total accelerator machine transverse impedance. For RHIC, we could obtain first promising results of impedance localization measurements as well.
Dual-transverse-mode microsquare lasers with tunable wavelength interval.
Long, Heng; Huang, Yong-Zhen; Ma, Xiu-Wen; Yang, Yue-De; Xiao, Jin-Long; Zou, Ling-Xiu; Liu, Bo-Wen
2015-08-01
A dual-transverse-mode microsquare laser with a tunable wavelength interval is designed and realized by using a square-ring-patterned contact window. For a 30-μm-side-length microsquare laser with the square-ring width of 4 μm, the wavelength interval varies from 0.25 to 0.37 nm with the intensity ratio less than 2.5 dB as the injection current increases from 89 to 108 mA. Based on the dual-transverse-mode microsquare laser, the microwave signals with the frequencies of 30.56, 32.70, 35.12, and 39.51 GHz and the 3-dB bandwidths of 47, 53, 54, and 47 MHz are obtained at the injection currents of 90, 95, 100, and 105 mA, respectively.
Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint
Wan, Z.; Ahmed, A.; Husain, I.; Muljadi, E.
2015-04-02
A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achieved comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.
Transverse charge and magnetization densities in the nucleon's chiral periphery
Granados, Carlos G.; Weiss, Christian
2014-01-01
In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.
Transverse mixing of simulated piscicides in small montane streams
Brown, Peter J.; Ard, Jenifer L.; Zale, Alexander V.
2012-01-01
Thorough mixing of piscicides into receiving waters is important for efficient and effective fish eradication. However, no guidance exists for the placement of drip stations with respect to mixing. Salt (NaCl) was used as a tracer to measure the mixing rates of center versus edge applications in riffle–pool, straight, and meandering sections of montane streams. The tracer was applied at either the center or the edge of a channel and measured with a conductivity meter across a downstream grid to determine the distances at which transverse mixing was complete. No advantage was accrued by applying piscicides in different types of channels because transverse mixing distance did not differ among them. However, mixing distance was significantly shorter at center applications. Chemicals entering a stream at the center of the channel mixed thoroughly within 10 stream widths, whereas chemicals entering a stream channel at the edge mixed thoroughly within 20 stream widths.
Acute Transverse Myelitis Associated with Salmonella Bacteremia: A Case Report
Richert, Mary E.; Hosier, Hillary; Weltz, Adam S.; Wise, Eric S.; Joshi, Manjari; Diaz, Jose J.
2016-01-01
Patient: Female, 28 Final Diagnosis: Acute transverse myelitis Symptoms: Ascending paralysis Medication: — Clinical Procedure: — Specialty: Infectious Diseases Objective: Rare disease Background: Acute transverse myelitis (ATM) is an uncommon and often overlooked complication of certain bacterial and viral infections that can have a rapid onset and result in severe neurological deficits. Case Report: This case report describes a previously healthy 28-year-old woman who presented to the trauma center after developing acute paralysis and paresthesias of all four extremities within the span of hours. The initial presumptive diagnosis was spinal cord contusion due to a fall versus an unknown mechanism of trauma, but eventual laboratory studies revealed Salmonella bacteremia, indicating a probable diagnosis of parainfectious ATM. Conclusions: This case illustrates the importance of considering the diagnosis of parainfectious ATM in patients presenting with acute paralysis with incomplete or unobtainable medical histories. PMID:27928148
Manipulating transverse modes of photons for quantum cryptography
NASA Astrophysics Data System (ADS)
Luda, Marcelo Alejandro; Larotonda, Miguel Antonio; Paz, Juan Pablo; Schmiegelow, Christian Tomás
2014-04-01
Several schemes have been proposed to extend quantum key distribution protocols aimed at improving their security or at providing new physical substrates for qubit implementation. We present a toolbox to jointly create, manipulate, and measure qubits stored in polarization and transverse-modes degrees of freedom of single photons. The toolbox includes local operations on single qubits, controlled operations between the two qubits, and projective measurements over a wide variety of nonlocal bases in the four-dimensional space of states. We describe how to implement the toolbox to perform an extended version of the BB84 protocol for this Hilbert space (ideally transmitting two key bits per photon). We present the experimental implementation of the measurement scheme both in the regimes of intense light beams and with single photons. Thus, we show the feasibility of implementing the protocol, providing an interesting example of a method for quantum information processing using the polarization and transverse modes of light as qubits.
Transverse target spin asymmetries in exclusive ρ0 muoproduction
NASA Astrophysics Data System (ADS)
Adolph, C.; Akhunzyanov, R.; Alekseev, M. G.; Alexakhin, V. Yu.; Alexandrov, Yu.; Alexeev, G. D.; Amoroso, A.; Andrieux, V.; Anosov, V.; Austregesilo, A.; Badełek, B.; Balestra, F.; Barth, J.; Baum, G.; Beck, R.; Bedfer, Y.; Berlin, A.; Bernhard, J.; Bertini, R.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Büchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S. U.; Cicuttin, A.; Crespo, M. L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S. S.; Dasgupta, S.; Denisov, O. Yu.; Donskov, S. V.; Doshita, N.; Duic, V.; Dünnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P. D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J. M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O. P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Gorzellik, M.; Grabmüller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthörl, T.; Haas, F.; von Harrach, D.; Hahne, D.; Hashimoto, R.; Heinsius, F. H.; Herrmann, F.; Heß, C.; Hinterberger, F.; Höppner, Ch.; Horikawa, N.; d'Hose, N.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Joerg, P.; Joosten, R.; Kabuß, E.; Kang, D.; Ketzer, B.; Khaustov, G. V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J. H.; Kolosov, V. N.; Kondo, K.; Königsmann, K.; Konorov, I.; Konstantinov, V. F.; Kotzinian, A. M.; Kouznetsov, O.; Kral, Z.; Krämer, M.; Kroumchtein, Z. V.; Kuchinski, N.; Kunne, F.; Kurek, K.; Kurjata, R. P.; Lednev, A. A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G. K.; Marchand, C.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Miyachi, Y.; Nagaytsev, A.; Nagel, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V. I.; Novy, J.; Nowak, W.-D.; Nunes, A. S.; Orlov, I.; Olshevsky, A. G.; Ostrick, M.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Pesek, M.; Peshekhonov, D.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V. A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Reicherz, G.; Rocco, E.; Rodionov, V.; Rondio, E.; Rossiyskaya, N. S.; Ryabchikov, D. I.; Samoylenko, V. D.; Sandacz, A.; Sapozhnikov, M. G.; Sarkar, S.; Savin, I. A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schlüter, T.; Schmidt, A.; Schmidt, K.; Schmitt, L.; Schmïden, H.; Schönning, K.; Schopferer, S.; Schott, M.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vondra, J.; Wang, L.; Weisrock, T.; Wilfert, M.; Windmolders, R.; Wiślicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Zhuravlev, N.; Ziembicki, M.
2014-04-01
Exclusive production of ρ0 mesons was studied at the COMPASS experiment by scattering 160 GeV/c muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured as a function of Q2, x, or pT2. The sin ϕS asymmetry is found to be -0.019±0.008(stat.)±0.003(syst.). All other asymmetries are also found to be of small magnitude and consistent with zero within experimental uncertainties. Very recent calculations using a GPD-based model agree well with the present results. The data is interpreted as evidence for the existence of chiral-odd, transverse generalized parton distributions.
Nonlinear Accelerator with Transverse Motion Integrable in Normalized Polar Coordinates
Nagaitsev, S.; Kharkov, Y.; Morozov, I.A.; Zolkin, T.V.; /Chicago U.
2012-05-01
Several families of nonlinear accelerator lattices with integrable transverse motion were suggested recently. One of the requirements for the existence of two analytic invariants is a special longitudinal coordinate dependence of fields. This paper presents the particle motion analysis when a problem becomes integrable in the normalized polar coordinates. This case is distinguished from the others: it yields an exact analytical solution and has a uniform longitudinal coordinate dependence of the fields (since the corresponding nonlinear potential is invariant under the transformation from the Cartesian to the normalized coordinates). A number of interesting features are revealed: while the frequency of radial oscillations is independent of the amplitude, the spread of angular frequencies in a beam is absolute. A corresponding spread of frequencies of oscillations in the Cartesian coordinates is evaluated via the simulation of transverse Schottky noise.
Transverse coherence measurement using a folded Michelson interferometer.
Dean, Jesse; Bercx, Martin; Nantel, Marc; Marjoribanks, Robin
2007-06-01
The transverse coherence of a 1 ps pulsed laser beam was measured using a technique involving a modified Michelson interferometer and separate reference images. Using this technique, the transverse coherence of a selected plane in the laser beam was determined, in this case at the exit of a channel in a metal foil self-drilled by the laser. Images of each arm were used as references. Through this technique, it is possible to use the interference patterns produced with uneven intensity distributions and for pulsed lasers on a single-shot basis. The results of these measurements were then shown to be in agreement with those obtained using a Young's double-slit setup.
Transverse coupling property of beam from ECR ion sources
Yang, Y.; Yuan, Y. J.; Sun, L. T.; Feng, Y. C.; Fang, X.; Cao, Y.; Lu, W.; Zhang, X. Z.; Zhao, H. W.
2014-11-15
Experimental evidence of the property of transverse coupling of beam from Electron Cyclotron Resonance (ECR) ion source is presented. It is especially of interest for an ECR ion source, where the cross section of extracted beam is not round along transport path due to the magnetic confinement configuration. When the ions are extracted and accelerated through the descending axial magnetic field at the extraction region, the horizontal and vertical phase space strongly coupled. In this study, the coupling configuration between the transverse phase spaces of the beam from ECR ion source is achieved by beam back-tracking simulation based on the measurements. The reasonability of this coupling configuration has been proven by a series of subsequent simulations.
Stress waves in transversely isotropic media: The homogeneous problem
NASA Technical Reports Server (NTRS)
Marques, E. R. C.; Williams, J. H., Jr.
1986-01-01
The homogeneous problem of stress wave propagation in unbounded transversely isotropic media is analyzed. By adopting plane wave solutions, the conditions for the existence of the solution are established in terms of phase velocities and directions of particle displacements. Dispersion relations and group velocities are derived from the phase velocity expressions. The deviation angles (e.g., angles between the normals to the adopted plane waves and the actual directions of their propagation) are numerically determined for a specific fiber-glass epoxy composite. A graphical method is introduced for the construction of the wave surfaces using magnitudes of phase velocities and deviation angles. The results for the case of isotropic media are shown to be contained in the solutions for the transversely isotropic media.
Physically Based Failure Criteria for Transverse Matrix Cracking
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.
2003-01-01
A criterion for matrix failure of laminated composite plies in transverse tension and in-plane shear is developed by examining the mechanics of transverse matrix crack growth. Matrix cracks are assumed to initiate from manufacturing defects and can propagate within planes parallel to the fiber direction and normal to the ply mid-plane. Fracture mechanics models of cracks in unidirectional laminates, embedded plies and outer plies are developed to determine the onset and direction of propagation for unstable crack growth. The models for each ply configuration relate ply thickness and ply toughness to the corresponding in-situ ply strength. Calculated results for several materials are shown to correlate well with experimental results.
Resolution of Transverse Electron Beam Measurements using Optical Transition Radiation
Ischebeck, Rasmus; Decker, Franz-Josef; Hogan, Mark; Iverson, Richard H.; Krejcik, Patrick; Lincoln, Melissa; Siemann, Robert H.; Walz, Dieter; Clayton, Chris E.; Huang, Chengkun; Lu, Wei; Deng, Suzhi; Oz, Erdem; /Southern California U.
2005-06-22
In the plasma wakefield acceleration experiment E-167, optical transition radiation is used to measure the transverse profile of the electron bunches before and after the plasma acceleration. The distribution of the electric field from a single electron does not give a point-like distribution on the detector, but has a certain extension. Additionally, the resolution of the imaging system is affected by aberrations. The transverse profile of the bunch is thus convolved with a point spread function (PSF). Algorithms that deconvolve the image can help to improve the resolution. Imaged test patterns are used to determine the modulation transfer function of the lens. From this, the PSF can be reconstructed. The Lucy-Richardson algorithm is used to deconvolute this PSF from test images.
Overview of the PHENIX Longitudinal and Transverse Spin Physics Program
Sarsour, Murad
2011-07-15
The PHENIX experiment uses polarized p+p collisions at RHIC to explore the spin structure of the proton. The p+p collisions, while complementary to deep inelastic lepton scattering experiments, offer distinct advantages for the determination of the helicity preferences of gluons, the flavor-dependence of sea antiquark polarizations, and parton transverse motion or spin orientation preferences inside polarized protons. The PHENIX experiment has been measuring the double longitudinal spin asymmetry of several inclusive probes to understand the gluon polarization in the allowed kinematic range. In addition, PHENIX experiment also has been studying the single spin asymmetries with a variety of final state particles in different kinematic regimes to shed light on the transverse spin structure. A brief overview is given of results to date and planned future directions.
Characterization of localized transverse structures in wide-aperture lasers
NASA Astrophysics Data System (ADS)
Rosanov, N. N.; Fedorov, A. V.; Fedorov, S. V.; Khodova, G. V.
The problem of characterization of spatio-temporal patterns is discussed for the case of wide-aperture lasers with nonlinear losses where variety of such patterns is especially rich. Laser autosolitons (LASs)-localized transverse structures representing “islands of lasing” on a background of the nonlasing mode on the laser aperture-are studied. Existence of stable single LASs which are motionless or moving in the transverse direction with constant linear velocity is shown. Described are also LASs with regular wavefronts, those with screw dislocations (defects) of wavefronts with different topological indices, and those with axially symmetric and asymmetric intensity distributions rotating with constant angular velocity around the LAS center. An approach is given for qualitative and quantitative characterization of a single LAS by its linear and angular velocities and frequency shift, based on a combination of analytical methods and computer simulations. Results of investigations of weak and strong interactions among the LASs are presented.
Transverse momentum dependent (TMD) parton distribution functions: Status and prospects*
Angeles-Martinez, R.; Bacchetta, A.; Balitsky, Ian I.; Boer, D.; Boglione, M.; Boussarie, R.; Ceccopieri, F. A.; Cherednikov, I. O.; Connor, P.; Echevarria, M. G.; Ferrera, G.; Grados Luyando, J.; Hautmann, F.; Jung, H.; Kasemets, T.; Kutak, K.; Lansberg, J. P.; Lykasov, G.; Madrigal Martinez, J. D.; Mulders, P. J.; Nocera, E. R.; Petreska, E.; Pisano, C.; Placakyte, R.; Radescu, V.; Radici, M.; Schnell, G.; Signori, A.; Szymanowski, L.; Taheri Monfared, S.; Van der Veken, F. F.; van Haevermaet, H. J.; Van Mechelen, P.; Vladimirov, A. A.; Wallon, S.
2015-01-01
In this study, we review transverse momentum dependent (TMD) parton distribution functions, their application to topical issues in high-energy physics phenomenology, and their theoretical connections with QCD resummation, evolution and factorization theorems. We illustrate the use of TMDs via examples of multi-scale problems in hadronic collisions. These include transverse momentum q_{T} spectra of Higgs and vector bosons for low q_{T}, and azimuthal correlations in the production of multiple jets associated with heavy bosons at large jet masses. We discuss computational tools for TMDs, and present the application of a new tool, TMD_{LIB}, to parton density fits and parameterizations.
Early transverse decoherence of bunches with space charge
NASA Astrophysics Data System (ADS)
Karpov, Ivan; Kornilov, Vladimir; Boine-Frankenheim, Oliver
2016-12-01
The transverse decoherence of injected bunches is an important phenomenon in synchrotrons and storage rings. The initial stage of this process determines the transverse emittance blowup, which should be taken into account for the design of feedback systems, for example. The interplay of different high-intensity effects can strongly affect the initial decoherence stage. We present a model that explains decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. We compare the model for different combinations of parameters with self-consistent particle tracking simulations and measurements in the SIS18 synchrotron at GSI Darmstadt. Generally, space charge slows down the decoherence process and can cause the loss of decoherence. Chromaticity and image charges can partly compensate this loss and restore the decoherence. We also analyze the single-particle excitation driven by space charge during the decoherence process. Particles gain large amplitudes from the coherent beam oscillation, which leads to halo buildup and losses.
Forward Analysis of Transversely Isotropic Thin Film by Indentation Method
NASA Astrophysics Data System (ADS)
Zhi, Zheng
Instrument indentation based methods for determining elasto-plastic properties of bulk specimen or thin film have received considerable and continue growing attention for recent decades, due to its simplicity, operability, and potential applications. However, the researches of transversely isotropic thin film are still at the beginning stage. In order to obtain a deeper understand of the relationship between P -- h curve and thin film properties, both dimensional analysis method and finite element method were applied in the present work. Extensive computational analysis of 630 sets of materials properties was carried out here. Through systematical studies, a more reasonable and intrinsic relationship, between indenter displacement h and the force P on it, was revealed. Also, an effect of materials transverse isotropic properties was summarized. Moreover, accurate and powerful forward analysis functions were established at the end of this thesis. These functions were, then, tested and mismatches were studied.
... Javits, actor David Niven, “Sesame Street” creator Jon Stone, boxing champion Ezzard Charles, NBA Hall of Fame ... Help for People with ALS and Caregivers Read stories from families living with ALS Forms of ALS ...
Transverse Diode Pumping of Solid-State Lasers
1992-05-29
more common apertures (laser rod end and cavity end mirror ) leads to a thin-film coating damage issue. The transverse pumped geometry avoids the...proprietary one-half inch square cooler developed for high-power adaptive optics mirror applications. The laser performance observed, with up to 35 watts of...including the development of active mirrors capable of sustaining high power loadings. As part of those efforts, TTC has developed a small (one-half inch
Transversely polarized source cladding for an optical fiber
NASA Technical Reports Server (NTRS)
Egalon, Claudio Oliveira (Inventor); Rogowski, Robert S. (Inventor)
1994-01-01
An optical fiber comprising a fiber core having a longitudinal symmetry axis is provided. An active cladding surrounds a portion of the fiber core and comprises light-producing sources which emit light in response to chemical or light excitation. The cladding sources are oriented transversely with respect to the longitudinal axis of the fiber core. This polarization results in a superior power efficiency compared to active cladding sources that are randomly polarized or longitudinally polarized parallel with the longitudinal symmetry axis.
Orchiopexy through a single high transverse scrotal incision
Khirallah, Mohammad G.; Elafifi, Mahmoud A.; Elbatarny, Akram M.; Elsharaby, Ahmed M.
2015-01-01
Background: Palpable Undescended Testis (PUT) represents a common paediatric problem in many premature and some mature infants. There are several surgical techniques to correct PUT either through combined inguinal and scrotal incision or single transverse scrotal incision. This study assessed single high transverse scrotal incision for the management of PUT as regards to feasibility, postoperative success and final cosmetic results. Materials and Methods: One hundred twenty patients were managed at the Paediatric Surgery Department of Tanta University Hospital with PUT during the period from March 2010 to March 2014. They were all operated at the age of 6-12 months. We excluded recurrent cases, and cases older than 12 months. Through high transverse scrotal incision, the layers were divided, and the canal entered through the external ring, dissecting the PUT and bringing it through the incision. Hernia sac, if present, was ligated at the neck. Creation of the dartos pouch was then made through the same incision. All infants were followed-up at 1 month, 2 months and 6 months to detect any re-ascended cases, testicular atrophy and the final cosmetic appearance. Results: A total of 140 PUTs were operated upon in 120 patients. PUT was bilateral in 20 patients, right-sided in 65 cases and left-sided in 35 cases. Thirty testes were located at the external ring; the others were located within the inguinal canal. No cases needed a redo operation, and there was no case of postoperative testicular atrophy. Conclusion: Single high transverse incision was sufficient to deal with PUT especially, in young infants (age 6 months) with no need for conversion in most cases to the traditional two incisions technique, and good long term follow-up and a better cosmetic results. PMID:25659553
Persistent Mullerian Duct Syndrome with Transverse Testicular Ectopia
Kumar, P. Naresh; Venugopala, Kandgal
2015-01-01
Persistent Mullerian duct syndrome (PMDS) is a rare form of male pseudohermaphroditism characterized by the presence of Mullerian duct structures in a normal male with 46, XY karyotype. Transverse testicular ectopia (TTE) is rare form of testicular ectopia in which two testes are located on one inguinal side. The opposite scrotum is empty. PMDS with TTE is rare. We report a case of PMDS with TTE discovered during surgery for a right inguinal hernia in a 25-year-old male. PMID:27512542
Extra Dimensions in Photon or Jet plus Missing Transverse Energy
NASA Astrophysics Data System (ADS)
Cardaci, Marco
2010-02-01
Recent studies of the CMS collaboration are presented on the sensitivity to searches for large (ADD) extra dimensions in channels with missing transverse energy (MET), i.e. the channels jets plus MET and photon plus MET. These studies are based on detailed detector simulation, including all Standard Model backgrounds. Particular emphasis is given to possible early discoveries, i.e. with 100 pb-1 or less. Projected 95% CL exclusion limits as function of luminosity are presented as well.
Decay of transverse correlations in quantum Heisenberg models
Björnberg, Jakob E. E-mail: daniel@ueltschi.org; Ueltschi, Daniel E-mail: daniel@ueltschi.org
2015-04-15
We study a class of quantum spin systems that include the S=1/2 Heisenberg and XY-models and prove that two-point correlations exhibit exponential decay in the presence of a transverse magnetic field. The field is not necessarily constant, it may be random, and it points in the same direction. Our proof is entirely probabilistic and it relies on a random loop representations of the correlation functions, on stochastic domination and on first-passage percolation.
Transverse momentum dependent quark densities from Lattice QCD
Bernhard Musch,Philipp Hagler,John Negele,Andreas Schafer
2011-02-01
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simpli?ed operator geometry show visible dipole de- formations of spin-dependent quark momentum densities. We discuss the basic concepts of the method, including renormalization of the gauge link, and an ex- tension to a more elaborate operator geometry that would allow us to analyze process-dependent TMDs such as the Sivers-function.
Transverse momentum distributions inside the nucleon from Lattice QCD
Bernhard Musch, Philipp Hagler, John Negele, Andreas Schafer
2010-06-01
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities. We discuss the basic concepts of the method, including renormalization of the gauge link, and an extension to a more elaborate operator geometry that would allow us to analyze process-dependent TMDs such as the Sivers-function.
Inductively stabilized, long pulse duration transverse discharge apparatus
Sze, Robert C.
1986-01-01
An inductively stabilized, long pulse duration transverse discharge apparatus. The use of a segmented electrode where each segment is attached to an inductive element permits high energy, high efficiency, long-pulsed laser outputs to be obtained. The present apparatus has been demonstrated with rare-gas halide lasing media. Orders of magnitude increase in pulse repetition frequency are obtained in lasing devices that do not utilize gas flow.
Transversely diode-pumped alkali metal vapour laser
Parkhomenko, A I; Shalagin, A M
2015-09-30
We have studied theoretically the operation of a transversely diode-pumped alkali metal vapour laser. For the case of high-intensity laser radiation, we have obtained an analytical solution to a complex system of differential equations describing the laser. This solution allows one to exhaustively determine all the energy characteristics of the laser and to find optimal parameters of the working medium and pump radiation (temperature, buffer gas pressure, and intensity and width of the pump spectrum). (lasers)
Transversely bounded DFB lasers. [bounded distributed-feedback lasers
NASA Technical Reports Server (NTRS)
Elachi, C.; Evans, G.; Yeh, C.
1975-01-01
Bounded distributed-feedback (DFB) lasers are studied in detail. Threshold gain and field distribution for a number of configurations are derived and analyzed. More specifically, the thin-film guide, fiber, diffusion guide, and hollow channel with inhomogeneous-cladding DFB lasers are considered. Optimum points exist and must be used in DFB laser design. Different-modes feedback and the effects of the transverse boundaries are included. A number of applications are also discussed.
Transverse, propagating velocity perturbations in solar coronal loops
NASA Astrophysics Data System (ADS)
De Moortel, I.; Pascoe, D. J.; Wright, A. N.; Hood, A. W.
2016-01-01
As waves and oscillations carry both energy and information, they have enormous potential as a plasma heating mechanism and, through seismology, to provide estimates of local plasma properties which are hard to obtain from direct measurements. Being sufficiently near to allow high-resolution observations, the atmosphere of the Sun forms a natural plasma laboratory. Recent observations have revealed that an abundance of waves and oscillations is present in the solar atmosphere, leading to a renewed interest in wave heating mechanisms. This short review paper gives an overview of recently observed transverse, propagating velocity perturbations in coronal loops. These ubiquitous perturbations are observed to undergo strong damping as they propagate. Using 3D numerical simulations of footpoint-driven transverse waves propagating in a coronal plasma with a cylindrical density structure, in combination with analytical modelling, it is demonstrated that the observed velocity perturbations can be understood in terms of coupling of different wave modes in the inhomogeneous boundaries of the loops. Mode coupling in the inhomogeneous boundary layers of the loops leads to the coupling of the transversal (kink) mode to the azimuthal (Alfvén) mode, observed as the decay of the transverse kink oscillations. Both the numerical and analytical results show the spatial profile of the damped wave has a Gaussian shape to begin with, before switching to exponential decay at large heights. In addition, recent analysis of CoMP (Coronal Multi-channel Polarimeter) Doppler shift observations of large, off-limb, trans-equatorial loops shows that Fourier power at the apex appears to be higher in the high-frequency part of the spectrum than expected from theoretical models. This excess high-frequency FFT power could be tentative evidence for the onset of a cascade of the low-to-mid frequency waves into (Alfvénic) turbulence.
Delaminations in composite plates under transverse static loads - Experimental results
NASA Technical Reports Server (NTRS)
Finn, Scott R.; He, Yi-Fei; Springer, George S.
1992-01-01
Tests were performed measuring the damage initiation loads and the locations, shapes, and sizes of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite-PEEK plates subjected to transverse static loads. The data were compared to the results of the Finn-Springer model, and good agreements were found between the measured and calculated delamination lengths and widths.
High-energy transversely pumped alkali vapor laser
NASA Astrophysics Data System (ADS)
Zweiback, J.; Komashko, A.
2011-03-01
We report on the results from our transversely pumped alkali laser. This system uses an Alexandrite laser to pump a stainless steel laser head. The system uses methane and helium as buffer gasses. Using rubidium, the system produced up to 40 mJ of output energy when pumped with 63 mJ. Slope efficiency was 75%. Using potassium as the lasing species the system produced 32 mJ and a 53% slope efficiency.
Analysis of transverse momentum correlations in hadronic Z decays
NASA Astrophysics Data System (ADS)
ALEPH Collaboration; Barate, R.; Buskulic, D.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Merle, E.; Minard, M.-N.; Nief, J.-Y.; Perrodo, P.; Pietrzyk, B.; Alemany, R.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Graugès, E.; Juste, A.; Martinez, M.; Merino, G.; Miquel, R.; Mir, Ll. M.; Pacheco, A.; Park, I. C.; Pascual, A.; Riu, I.; Sanchez, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Becker, U.; Boix, G.; Cattaneo, M.; Cerutti, F.; Ciulli, V.; Dissertori, G.; Drevermann, H.; Forty, R. W.; Frank, M.; Halley, A. W.; Hansen, J. B.; Harvey, J.; Janot, P.; Jost, B.; Lehraus, I.; Leroy, O.; Mato, P.; Minten, A.; Moneta, L.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Rousseau, D.; Schlatter, D.; Schmitt, M.; Schneider, O.; Tejessy, W.; Teubert, F.; Tomalin, I. R.; Tournefier, E.; Wachsmuth, H.; Ajaltouni, Z.; Badaud, F.; Chazelle, G.; Deschamps, O.; Falvard, A.; Ferdi, C.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Blondel, A.; Bonneaud, G.; Brient, J.-C.; Rougé, A.; Rumpf, M.; Swynghedauw, M.; Valassi, A.; Verderi, M.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Lynch, J. G.; Negus, P.; O'Shea, V.; Raine, C.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, E.; Buchmüller, O.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Sommer, J.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Girone, M.; Goodsir, S.; Martin, E. B.; Marinelli, N.; Nash, J.; Sedgbeer, J. K.; Spagnolo, P.; Williams, M. D.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Buck, P. G.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Robertson, N. A.; Williams, M. I.; Giehl, I.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Etienne, F.; Motsch, F.; Payre, P.; Talby, M.; Thulasidas, M.; Aleppo, M.; Antonelli, M.; Ragusa, F.; Berlich, R.; Büscher, V.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Mannert, C.; Männer, W.; Moser, H.-G.; Schael, S.; Settles, R.; Seywerd, H.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Azzurri, P.; Boucrot, J.; Callot, O.; Chen, S.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jacholkowska, A.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Bagliesi, G.; Bettarini, S.; Boccali, T.; Bozzi, C.; Calderini, G.; dell'Orso, R.; Ferrante, I.; Foà, L.; Giassi, A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Tenchini, R.; Vannini, C.; Venturi, A.; Verdini, P. G.; Blair, G. A.; Chambers, J. T.; Cowan, G.; Green, M. G.; Medcalf, T.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Konstantinidis, N.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Kelly, M. S.; Lehto, M.; Thompson, L. F.; Affholderbach, K.; Böhrer, A.; Brandt, S.; Grupen, C.; Prange, G.; Saraiva, P.; Smolik, L.; Stephan, F.; Giannini, G.; Gobbo, B.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Charles, E.; Elmer, P.; Ferguson, D. P. S.; Gao, Y.; González, S.; Greening, T. C.; Hayes, O. J.; Hu, H.; Jin, S.; McNamara, P. A., III; Nachtman, J. M.; Nielsen, J.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.
1999-02-01
In a recent paper, evidence was presented for a significant, positive correlation between the total transverse momenta of particles on opposite hemispheres of hadronic events. A new, model independent analysis of the data has been made. Two components can be distinguished in the correlation, and quantitative estimates of each are given. The results form a significant test of Monte Carlo models and some of the physics behind them.
Determination of the Transverse Properties of ESR 4340 Steel.
1980-09-01
PROPERTIES OF ESR 4340 STEEL SEPTEMBER 1980 D TIC ELECTE John T. Berry JAN 2 2 1981, School of Mechanical Engineering 0 Georgia Institute of Technology...of the Transverse Properties of ESR 4340 Steel Covering period from August 3, 1978 to June 20, 1980. DATED: June 20, 1980 John T. Berry S. Peter Kezios...the plates, a thorough investigation was performed with respect to fabricating and testing AISI 4340 steel DLT bars. Materials from previous ESR 4340
Issues of the transverse feedback systems design at the SSC
Chou, W.; Peterson, J.
1993-05-01
The transverse feedback systems are needed at the SSC for several different reasons. The requirements of these systems are analyzed and specified. In addition to the general requirements (power, bandwidth and gain), specific attention is given to the noises in the systems, which need to be controlled in order to keep the emittance growth at a tolerable rate. A quantitative treatment is given to specify the allowable noise level in the feedback systems.
Transverse microcracking in Celion 6000/PMR-15 graphite-polyimide
NASA Technical Reports Server (NTRS)
Mills, J. S.; Herakovich, C. T.; Davis, J. G., Jr.
1979-01-01
The effects of room temperature tensile loading and five thermal loadings, in the range -320 F (-196C) to 625F (330CC), upon the development of transverse microcracks (TVM) in Celion 6000/PMR-15 graphite-polyimide laminates were investigated. Microcracks were observed using a replicating technique, microscopy and X-ray. The mechanical or thermal load at which microcracking initiates and the ply residual stresses were predicted using laminate analysis with stress- and temperature-dependent material properties.
Studies of transverse momentum dependent parton distributions and Bessel weighting
Aghasyan, M.; Avakian, H.; De Sanctis, E.; Gamberg, L.; Mirazita, M.; Musch, B.; Prokudin, A.; Rossi, P.
2015-03-01
In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Monte Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.
Studies of transverse momentum dependent parton distributions and Bessel weighting
Aghasyan, M.; Avakian, H.; De Sanctis, E.; ...
2015-03-01
In this paper we present a new technique for analysis of transverse momentum dependent parton distribution functions, based on the Bessel weighting formalism. The procedure is applied to studies of the double longitudinal spin asymmetry in semi-inclusive deep inelastic scattering using a new dedicated Monte Carlo generator which includes quark intrinsic transverse momentum within the generalized parton model. Using a fully differential cross section for the process, the effect of four momentum conservation is analyzed using various input models for transverse momentum distributions and fragmentation functions. We observe a few percent systematic offset of the Bessel-weighted asymmetry obtained from Montemore » Carlo extraction compared to input model calculations, which is due to the limitations imposed by the energy and momentum conservation at the given energy/Q2. We find that the Bessel weighting technique provides a powerful and reliable tool to study the Fourier transform of TMDs with controlled systematics due to experimental acceptances and resolutions with different TMD model inputs.« less
Adaptive robust control of longitudinal and transverse electron beam profiles
NASA Astrophysics Data System (ADS)
Rezaeizadeh, Amin; Schilcher, Thomas; Smith, Roy S.
2016-05-01
Feedback control of the longitudinal and transverse electron beam profiles are considered to be critical for beam control in accelerators. In the feedback scheme, the longitudinal or transverse beam profile is measured and compared to a desired profile to give an error estimate. The error is then used to act on the appropriate actuators to correct the profile. The role of the transverse feedback is to steer the beam in a particular trajectory, known as the "orbit." The common approach for orbit correction is based on approximately inverting the response matrix, and in the best case, involves regulating or filtering the singular values. In the current contribution, a more systematic and structured way of handling orbit correction is introduced giving robustness against uncertainties in the response matrix. Moreover, the input bounds are treated to avoid violating the limits of the corrector currents. The concept of the robust orbit correction has been successfully tested at the SwissFEL injector test facility. In the SwissFEL machine, a photo-injector laser system extracts electrons from a cathode and a similar robust control method is developed for the longitudinal feedback control of the current profile of the electron bunch. The method manipulates the angles of the crystals in the laser system to produce a desired charge distribution over the electron bunch length. This approach paves the way towards automation of laser pulse stacking.
Interface module for transverse energy input to dye laser modules
English, Jr., Ronald E.; Johnson, Steve A.
1994-01-01
An interface module (10) for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams (36) in the form of illumination bar (54) to the lasing zone (18) of a dye laser device, in particular to a dye laser amplifier (12). The preferred interface module (10) includes an optical fiber array (30) having a plurality of optical fibers (38) arrayed in a co-planar fashion with their distal ends (44) receiving coherent laser energy from an enhancing laser source (46), and their proximal ends (4) delivered into a relay structure (3). The proximal ends (42) of the optical fibers (38) are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array (36) delivered from the optical fiber array (30) is acted upon by an optical element array (34) to produce an illumination bar (54) which has a cross section in the form of a elongated rectangle at the position of the lasing window (18). The illumination bar (54) is selected to have substantially uniform intensity throughout.
Interface module for transverse energy input to dye laser modules
English, R.E. Jr.; Johnson, S.A.
1994-10-11
An interface module for transverse energy input to dye laser modules is provided particularly for the purpose of delivering enhancing transverse energy beams in the form of illumination bar to the lasing zone of a dye laser device, in particular to a dye laser amplifier. The preferred interface module includes an optical fiber array having a plurality of optical fibers arrayed in a co-planar fashion with their distal ends receiving coherent laser energy from an enhancing laser source, and their proximal ends delivered into a relay structure. The proximal ends of the optical fibers are arrayed so as to be coplanar and to be aimed generally at a common point. The transverse energy beam array delivered from the optical fiber array is acted upon by an optical element array to produce an illumination bar which has a cross section in the form of a elongated rectangle at the position of the lasing window. The illumination bar is selected to have substantially uniform intensity throughout. 5 figs.
ANTI-PHASE SIGNATURE OF FLARE GENERATED TRANSVERSE LOOP OSCILLATIONS
White, R. S.; Verwichte, E.; Foullon, C.
2013-09-10
Transverse loop oscillations observed by the Atmospheric Imaging Assembly instrument on the Solar Dynamics Observatory spacecraft are studied after an impulsive solar flare eruption on 2012 May 8. We have found that a transversely oscillating coronal loop seen in the 171 A bandpass oscillates in anti-phase with respect to adjacent larger loops seen in the 193 A and 211 A bandpasses. These unusual oscillations are analyzed to investigate the excitation mechanism responsible for their initial inwardly directed anti-phase behavior. The transverse oscillations are analyzed by constructing space-time diagrams from cuts made parallel to the projected loop displacements. The displacement time oscillation profiles are background subtracted and fitted with a damped cosine curve that includes a linear change in the period with time. The local magnetic topology of the active region is modeled using potential field source surface extrapolation. It reveals that the loops are anchored in different topological regions with foot point locations identified on either side of the EUV flare peak emission source. In this context, the oscillation characteristics indicate that the excitation mechanism is closely linked to the local magnetic field topology and the reconnection generated wave dynamics in the active region rather than following an external flare blast wave. We discuss how observations such as these may serve to identify reconnection processes in similar quadrupolar active regions.
Growth and Transverse Field Muon Spin Rotation of Cobalt Niobate
NASA Astrophysics Data System (ADS)
Munsie, Timothy; Millington, Anna; Marjerrison, Casey; Medina, Teresa; Wilson, Murray; Kermarrec, Edwin; Liu, Lian; Dabkowska, Hanna; Uemura, Yasutomo; Williams, Travis; Luke, Graeme
2014-03-01
Cobalt niobate, CoNb2O6, is a material whose spins, when in a transverse field, act like the theoretical ideal 1D-Ising model. This occurs due to the magnetic spins aligning highly anisotropically along the Co2+ chains. Because of this unique structure and material performance, the creation and characterization of this material is of both experimental and theoretical interest. The research we will present is a detailing of changes in the characteristics of the growth of the material utilizing the optical floating zone crystal growth method compared to previous growth parameters and an examination of this material in a moderately high transverse field using the technique of muon spin rotation (μSR). We have determined that the quality of crystals created by the floating zone are highly dependent on the growth parameters utilized (original ceramic shape and rotation rate) and dictate the speed at which the growth can be performed. Transverse Field μSR shows a gradual but significant change to the magnetic structure of the material below 5 K. Second Affiliation: Brockhouse Institute for Materials Research.
Genesis of transverse kame trains in eastern Poland
NASA Astrophysics Data System (ADS)
Terpiłowski, Sławomir
2007-01-01
Transverse kames, forming trains perpendicular to the direction of ice-sheet advance, are rare morphological elements in previously glaciated areas. The genesis of an example from the ice-contact zone of the Wartanian glaciation in eastern Poland is discussed. The transverse kames there form two main, distinctly separated, sub-parallel trains. Their sedimentary successions fill erosional troughs incised in the pre-Wartanian deposits on northern slopes. They consist of thick glaciofluvial sand and glaciofluvial/glaciolacustrine sandy/silty units that are covered with a thin, usually discontinuous, glacial till succession. The genesis of this kame type has been modelled. It is concluded that transverse kames developed in two phases: (1) erosion of the substratum in subglacial channels during initial deglaciation, and (2) glaciofluvial deposition in crevasses during advanced deglaciation (in the form of low-energy fans periodically submerged under stagnant water), followed locally by a cover of flowtills. Both the ablation of the ice and the accumulation of the kame deposits were controlled by the co-occurrence of ice zones either enriched or impoverished with sediment. Zonal enrichment of ice with debris was determined by the development of shear zones over substratum elevations that were inclined up-ice. The formation and subsequent infilling of crevasses both took place in zones of relatively clean ice, so that the resulting kames form a train perpendicular to the direction of ice movement.
Transverse-momentum-dependent gluon distributions from JIMWLK evolution
NASA Astrophysics Data System (ADS)
Marquet, C.; Petreska, E.; Roiesnel, C.
2016-10-01
Transverse-momentum-dependent (TMD) gluon distributions have different operator definitions, depending on the process under consideration. We study that aspect of TMD factorization in the small- x limit, for the various unpolarized TMD gluon distributions encountered in the literature. To do this, we consider di-jet production in hadronic collisions, since this process allows to be exhaustive with respect to the possible operator definitions, and is suitable to be investigated at small x. Indeed, for forward and nearly back-to-back jets, one can apply both the TMD factorization and Color Glass Condensate (CGC) approaches to compute the di-jet cross-section, and compare the results. Doing so, we show that both descriptions coincide, and we show how to express the various TMD gluon distributions in terms of CGC correlators of Wilson lines, while keeping N c finite. We then proceed to evaluate them by solving the JIMWLK equation numerically. We obtain that at large transverse momentum, the process dependence essentially disappears, while at small transverse momentum, non-linear saturation effects impact the various TMD gluon distributions in very different ways. We notice the presence of a geometric scaling regime for all the TMD gluon distributions studied: the "dipole" one, the Weizsäcker-Williams one, and the six others involved in forward di-jet production.
Transverse Oscillations in a Coronal Loop Triggered by a Jet
NASA Astrophysics Data System (ADS)
Sarkar, S.; Pant, V.; Srivastava, A. K.; Banerjee, D.
2016-11-01
We detect and analyse transverse oscillations in a coronal loop, lying at the south-east limb of the Sun as seen from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). The jet is believed to trigger transverse oscillations in the coronal loop. The jet originates from a region close to the coronal loop on 19 September 2014 at 02:01:35 UT. The length of the loop is estimated to be between 377 - 539 Mm. Only one complete oscillation is detected with an average period of about 32±5 min. Using magnetohydrodynamic (MHD) seismologic inversion techniques, we estimate the magnetic field inside the coronal loop to be between 2.68 - 4.5 G. The velocity of the hot and cool components of the jet is estimated to be 168 km s^{-1} and 43 km s^{-1}, respectively. The energy density of the jet is found to be greater than the energy density of the oscillating coronal loop. We therefore conclude that the jet triggered transverse oscillations in the coronal loop. To our knowledge, this is the first coronal loop seismology study using the properties of a jet propagation to trigger oscillations.
Anisotropic Transverse Stress in Calcite and Sapphire Measured Using Birefringence
NASA Astrophysics Data System (ADS)
Tear, Gareth R.; Chapman, David J.; Eakins, Daniel E.; Proud, William G.
2015-06-01
Many significant geological minerals have anisotropic crystal structures leading to material properties that are anisotropic, including compressive elastic behaviour. A non-invasive approach to investigate the directional dependence of transverse stress in these materials during shock compression would supplement current understanding. As many geological minerals are transparent and hence optically anisotropic, measuring the change in birefringence induced by transverse stress in the material offers the possibility of a fast, non-invasive approach to probe transverse behaviour. Shock compression experiments have been performed on a-cut calcite and a-cut sapphire for strain rates of order 105 s-1 and up to longitudinal stresses of 2 GPa for calcite and 12 GPa for sapphire. We present measured changes in birefringence for these materials under shock compression, comparing with current and past literature as well as an in house optical model. The authors would like to thank Mr Steve Johnson and Mr David Pittman for technical support. The Institute of Shock Physics acknowledges the continued support of AWE and Imperial College London.
Sea quark transverse momentum distributions and dynamical chiral symmetry breaking
Schweitzer, Peter; Strikman, Mark; Weiss, Christian
2014-01-01
Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.
Transverse cracking and stiffness reduction in composite laminates
NASA Technical Reports Server (NTRS)
Yuan, F. G.; Selek, M. C.
1993-01-01
A study of transverse cracking mechanism in composite laminates is presented using a singular hybrid finite element model. The model provides the global structural response as well as the precise local crack-tip stress fields. An elasticity basis for the problem is established by employing Lekhnitskii's complex variable potentials and method of eigenfunction expansion. Stress singularities associated with the transverse crack are obtained by decomposing the deformation into the symmetric and antisymmetric modes and proper boundary conditions. A singular hybrid element is thereby formulated based on the variational principle of a modified hybrid functional to incorporate local crack singularities. Axial stiffness reduction due to transverse cracking is studied. The results are shown to be in very good agreement with the existing experimental data. Comparison with simple shear lag analysis is also given. The effects of stress intensity factors and strain energy density on the increase of crack density are analyzed. The results reveal that the parameters approach definite limits when crack densities are saturated, an evidence of the existence of characteristic damage state.
Observations of transverse ion acceleration in the topside auroral ionosphere
NASA Technical Reports Server (NTRS)
Garbe, G. P.; Arnoldy, R. L.; Moore, T. E.; Kintner, P. M.; Vago, J. L.
1992-01-01
The paper reports data obtained from a sounding rocket flight which reached an apogee of 927 km and passed through several auroral arcs. Therma/superthermal ions were sampled by charged particle analyzers which allowed for a rapid (about 1 s) sampling of their distribution function. During portions of the flight when the rocket was not in an energetic auroral structure, the ion data are fit to a Maxwellian function which yields the plasma parameters. Throughout the middle portion of the flight, above 700-km altitude, ion distributions having a superthermal tail were measured. When the rocket was immersed in energetic auroral electron precipitation, two other ion distributions were observed. Transversely accelerated ions which represented bulk heating of the ambient population were observed continuously in these arcs. The characteristic perpendicular energy of the transversely bulk heated ions reached as high as 3 eV compared to typically less than 0.4 eV during nonauroral times. The observations are discussed in terms of some current theories of transverse ion energization.
Determination of Transverse Charge Density from Kaon Form Factor Data
NASA Astrophysics Data System (ADS)
Mejia-Ott, Johann; Horn, Tanja; Pegg, Ian; Mecholski, Nicholas; Carmignotto, Marco; Ali, Salina
2016-09-01
At the level of nucleons making up atomic nuclei, among subatomic particles made up of quarks, K-mesons or kaons represent the most simple hadronic system including the heavier strange quark, having a relatively elementary bound state of a quark and an anti-quark as its valence structure. Its electromagnetic structure is then parametrized by a single, dimensionless quantity known as the form factor, the two-dimensional Fourier transform of which yields the quantity of transverse charge density. Transverse charge density, in turn, provides a needed framework for the interpretation of form factors in terms of physical charge and magnetization, both with respect to the propagation of a fast-moving nucleon. To this is added the value of strange quarks in ultimately presenting a universal, process-independent description of nucleons, further augmenting the importance of studying the kaon's internal structure. The pressing character of such research questions directs the present paper, describing the first extraction of transverse charge density from electromagnetic kaon form factor data. The extraction is notably extended to form factor data at recently acquired higher energy levels, whose evaluation could permit more complete phenomenological models for kaon behavior to be proposed. This work was supported in part by NSF Grant PHY-1306227.
Transverse sacral fractures: case series and literature review
Kim, Miriam Y.; Reidy, Declan P.; Nolan, Paul C.; Finkelstein, Joel A.
2001-01-01
Objectives To report experience with transverse sacral fracture, an uncommon injury frequently associated with neurologic deficit, and to perform a meta-analysis of the literature in order to define the role of decompression for the management of sacral fractures. Design A review of 7 cases. Setting A university-affiliated tertiary care centre. Patients Seven patients with transverse fractures of the sacrum. The mean follow-up was 13 months. Interventions A review of the clinical data and a search of the literature for studies that reported on 4 or more patients with a transverse sacral fracture. Main outcome measures Mechanism of injury, type of neurologic deficit and its management. Results The most common mechanism in the 7 study patients was a fall from a height. Six patients had neurologic deficits, mostly in the form of bowel or bladder disturbance. Five of these were treated with surgical decompression, and 4 of them had an improvement in neurologic function. The 7 original studies from the literature dealt with a total of 55 patients. As in the study patients, falls from a height and motor vehicle accidents predominated as the mechanisms of injury. In contrast to patients in this study, 20 of 48 patients in the literature review with neurologic deficits were treated conservatively. Conclusions The outcomes in this study are similar to those reported in the literature. The place of surgical decompression for patients with neurologic deficit cannot be clearly determined from the evidence currently available. PMID:11603749
Multiplicity dependence of transverse momentum in hadronic collisions
NASA Technical Reports Server (NTRS)
Saint Amand, J.; Uritam, R. A.
1976-01-01
The process of secondary-particle emission in hadron-hadron collisions is analytically studied using a simple model of hadron structure. The model neglects the 'size' of the hadron constituents, considering a hadron as a continuous distribution of matter according to a step function of radius R. A version of the eikonal approximation is applied to derive the relative probability for interaction and emission of secondaries when the impact parameter b is smaller than 2R. On the basis of these assumptions, and using the uncertainty relation, an empirical parameterization is obtained for the dependence of the transverse momentum of charged secondaries on their multiplicity in the case of high-energy proton-proton collisions. Comparison with experimental data at 28 GeV/c yields agreement to within about 3%. The analysis shows that at a fixed beam momentum, the transverse momentum decreases with increasing multiplicity, and that for a given multiplicity, the transverse momentum exhibits a slow increase with beam momentum.
[A case of transverse myelopathy caused by acupuncture].
Sato, M; Yamane, K; Ezima, M; Sugishita, Y; Nozaki, H
1991-07-01
A 54-year-old man received insertion of an acupuncture needle into the region extending from the posterior neck to the back on two occasions for the treatment of shoulder stiffness. Two weeks after the second acupuncture, he developed fever, dysarthria and mictionary disturbance, finally reaching the condition of tetraplegia. He was immediately admitted to an emergency room in our hospital, and was diagnosed as sepsis with DIC, ARDS, heart failure, renal failure, liver failure, and myelitis. After one month, he recovered with transverse myelopathy as a residual deficit. Neurological findings showed transverse myelopathy below the level of Th2 at that time. Cervical CT revealed an irregular low density at the periphery of the cervical vertebra from the C2 to C4 level. Cervical MRI revealed an irregular swelling of his spinal cord from the C2 to C7 level. We explained the mechanism of transverse myelopathy in this case as follows. After the acupuncture, he suffered a focal infection of the region of needle insertion, and then the infection expanded to the cervical vertebra, thus causing osteomyelitis, sepsis, and finally cervical myelitis. Direct injury of the spinal cord and nerve roots as a complication of acupuncture was previously reported, but indirect injury of the spinal cord due to myelitis had not been reported except our present case. Careful attentions should be paid to the complications of acupuncture.
Transverse Aeolian Ridges on Mars: Sediment sources, volumes, and ages.
NASA Astrophysics Data System (ADS)
Berman, D. C.; Balme, M. R.
2014-12-01
Transverse Aeolian Ridges (TARs) are aeolian bedforms that are morphologically and dimensionally distinct from Large Dark Dune (LDD) fields, being generally brighter than, or of similar albedo to, the surrounding terrain. These features are significantly smaller than the LDDs, appear to form normal to local winds, and tend to have simple, transverse, ripple-like morphologies. Whether these small martian bedforms represent large granule ripples, small transverse dunes, or something else entirely is currently under debate. The spatial distribution of TARs provides important information about where on Mars aeolian sediments are concentrated, and determining their volume can help us constrain the sediment transport regime on Mars. Also, if we can determine if TARs were active only in the past, or whether TARs are mobile under today's wind conditions, then we can begin to assess when and where TARs are/were active over Mars' recent geological history. Thus TARs have the potential for being indicators/records of climate change on Mars. In this work we build on previous work [1,2] and focus on the local/regional scale. We have identified six regional study areas, each 5° by 5°, to investigate the behavior of TARs in detail; one in the northern hemisphere, three in the equatorial band, and two in the southern hemisphere. We have systematically mapped TAR and LDD deposits in each study area to constrain sediment transport pathways and identify sediment sources. In general, TAR sediments appear to be tied to local sources such as LDDs or layered terrains. HiRISE DTMs were utilized to measure TAR heights, widths, wavelengths, and lengths to calculate sediment volumes and estimate volumes over entire study areas based on mapping. Crater count analyses on contiguous TAR fields in the equatorial regions, where the bedforms appear more lithified, reveal ages of several million years. Mid-latitude TAR fields do not show any superposed craters, suggesting much younger deposits
NASA Astrophysics Data System (ADS)
Lu, Jie
2016-06-01
In this work, we report analytical results on transverse domain wall (TDW) statics and field-driven dynamics in quasi-one-dimensional biaxial nanowires under arbitrary uniform transverse magnetic fields (TMFs) based on the Landau-Lifshitz-Gilbert equation. Without axial driving fields, the static TDW should be symmetric about its center while twisted in its azimuthal angle distribution. By decoupling polar and azimuthal degrees of freedom, an approximate solution is provided which reproduces these features to a great extent. When an axial driving field is applied, the dynamical behavior of a TDW is viewed as the response of its static profile to external excitations. By means of the asymptotic expansion method, the TDW velocity in the traveling-wave mode is obtained, which provides the extent and boundary of the "velocity-enhancement" effect of TMFs on TDWs in biaxial nanowires. Finally, numerical simulations are performed and strongly support our analytics.
Mok, Jinsik
2014-01-01
Summary This study is motivated in part to better understand multiplexing in wireless communications, which employs photons carrying varying angular momenta. In particular, we examine both transverse electric (TE) and transverse magnetic (TM) waves in either co-rotations or counter-rotations. To this goal, we analyze both Poynting-vector flows and orbital and spin parts of the energy flow density for the combined fields. Consequently, we find not only enhancements but also cancellations between the two modes. To our surprise, the photon spins in the azimuthal direction exhibit a complete annihilation for the counter-rotational case even if the intensities of the colliding waves are of different magnitudes. In contrast, the orbital flow density disappears only if the two intensities satisfy a certain ratio. In addition, the concepts of spin sifters and enantiomer sorting are illustrated. PMID:25383300
2015-02-01
Introduction In the tradition of post-9/11 senior Arab militant figures operating in Khurasan (the Afghanistan-Pakistan region), there is little doubt as to...the standing of Libyan jihadi commander Abu al-Layth al-Libi. If Usama bin Ladin and Ayman al-Zawahiri came to be the most prominent Arab -Afghan...Libi, a longtime leader of the Libyan Islamic Fighting Group (LIFG), who rapidly established himself as the champion of the Arab -Afghan milieu after
High efficiency single transverse mode photonic band crystal lasers with low vertical divergence
NASA Astrophysics Data System (ADS)
Zhao, Shaoyu; Qu, Hongwei; Liu, Yun; Li, Lunhua; Chen, Yang; Zhou, Xuyan; Lin, Yuzhe; Liu, Anjin; Qi, Aiyi; Zheng, Wanhua
2016-10-01
High efficiency 980 nm longitudinal photonic band crystal (PBC) edge emitting laser diodes are designed and fabricated. The calculated results show that eight periods of Al0.1Ga0.9As and Al0.25Ga0.75As layer pairs can reduce the vertical far field divergence to 10.6° full width at half maximum (FWHM). The broad area (BA) lasers show a very high internal quantum efficiency ηi of 98% and low internal loss αi of 1.92 cm-1. Ridge waveguide (RW) lasers with 3 mm cavity length and 5um strip width provide 430 mW stable single transverse mode output at 500 mA injection current with power conversion efficiency (PCE) of 47% under continuous wave (CW) mode. A maximum PCE of 50% is obtained at the 300 mA injection current. A very low vertical far field divergence of 9.4° is obtained at 100 mA injection. At 500 mA injection, the vertical far field divergence increases to 11°, the beam quality factors M2 values are 1.707 in vertical direction and 1.769 in lateral direction.
NASA Astrophysics Data System (ADS)
Nader, A.
2001-08-01
This work concerns the analytical expression of the transverse resistance for lamellar superconductors. It was first shown that the expression given by González et al [González J L, Espinoza Ortiz J S and Baggio-Saitovich E 1999 Physica C 315 271] deviates from the famous expression of B F Logan when the so-called effective anisotropy, Γ, is less than 0.25. This deviation was found to be caused by the use of the Dirac function to simulate contacts of negligible width, and that it disappears when contacts are considered of finite but small width. Also, the expression of González et al was improved to be valid for the case when the current contacts are not necessarily aligned among the c-axis. A similar expression was given for the longitudinal resistance for the general case when the current contacts are arbitrarily disposed on the same face of the sample. These two expressions are useful to avoid the error induced by contact misalignment.
Stripline Transversal Filter Techniques for Sub-picosecond Bunch Timing Measurements
Fox, John D.; Mastorides, Themis; Rivetta, Claudio Hector; Winkle, Daniel Van
2007-07-06
Measurement of time of arrival of a particle bunch is a fundamental beam diagnostic. The PEP-II/ALS/BESSY/PLS longitudinal feedback systems use a planar stripline circuit to convert a 30 ps beam BPM impulse signal into a 4 cycle tone burst at the 6th harmonic of the accelerator RF frequency (2.856 GHz). A phase-detection technique is used to measure the arrival time of these BPM impulses with 200 fs rms single-shot resolution (out of a 330 ps dynamic range). Scaled in frequency, this approach is directly applicable to FEL and other sub-ps regime pulse and timing measurements. The transversal circuit structure is applicable to measurement of microbunches or closely spaced bunches (the PEP-II/ALS/BESSY/PLS examples make independent measurements at 2 ns bunch spacing) and opens up some new diagnostic and control possibilities. This paper reviews the principles of the technique, and uses data from PEP-II operations to predict the limits of performance of this measurement scheme for arrival phase measurement. These predictions are compared with results in the literature from electro-optic sub-picosecond beam timing and phasing diagnostics.
Stimulated emission and optical gain in AlGaN heterostructures grown on bulk AlN substrates
Guo, Wei Bryan, Zachary; Kirste, Ronny; Bryan, Isaac; Hussey, Lindsay; Bobea, Milena; Haidet, Brian; Collazo, Ramón; Sitar, Zlatko; Xie, Jinqiao; Mita, Seiji; Gerhold, Michael
2014-03-14
Optical gain spectra for ∼250 nm stimulated emission were compared in three different AlGaN-based structures grown on single crystalline AlN substrates: a single AlGaN film, a double heterostructure (DH), and a Multiple Quantum Well (MQW) structure; respective threshold pumping power densities of 700, 250, and 150 kW/cm{sup 2} were observed. Above threshold, the emission was transverse-electric polarized and as narrow as 1.8 nm without a cavity. The DH and MQW structures showed gain values of 50–60 cm{sup −1} when pumped at 1 MW/cm{sup 2}. The results demonstrated the excellent optical quality of the AlGaN-based heterostructures grown on AlN substrates and their potential for realizing electrically pumped sub-280 nm laser diodes.
A 0.5 Tesla Transverse-Field Alternating Magnetic Field Demagnetizer
NASA Astrophysics Data System (ADS)
Schillinger, W. E.; Morris, E. R.; Finn, D. R.; Coe, R. S.
2015-12-01
We have built an alternating field demagnetizer that can routinely achieve a maximum field of 0.5 Tesla. It uses an amorphous magnetic core with an air-cooled coil. We have started with a 0.5 T design, which satisfies most of our immediate needs, but we can certainly achieve higher fields. In our design, the magnetic field is transverse to the bore and uniform to 1% over a standard (25 mm) paleomagnetic sample. It is powered by a 1 kW power amplifier and is compatible with our existing sample handler for automated demagnetization and measurement (Morris et al., 2009). It's much higher peak field has enabled us to completely demagnetize many of the samples that previously we could not with commercial equipment. This capability is especially needed for high-coercivity sedimentary and igneous rocks that contain magnetic minerals that alter during thermal demagnetization. It will also enable detailed automated demagnetization of high coercivity phases in extraterrestrial samples, such as native iron, iron-alloy and sulfide minerals that are common in lunar rocks and meteorites. Furthermore, it has opened the door for us to use the rock-magnetic technique of component analysis, using coercivity distributions derived from very detailed AF demagnetization of NRM and remanence produced in the laboratory to characterize the magnetic mineralogy of sedimentary rocks. In addition to the many benefits this instrument has brought to our own research, a much broader potential impact is to replace the transverse coils in automated AF demagnetization systems, which typically are limited to peak fields around 0.1 T.
A Calculation Technique for Transverse Evolution of Electron Swarms in Gases
NASA Astrophysics Data System (ADS)
Sugawara, Hirotake; Sakai, Yosuke
1998-10-01
A simulation technique for observing the time-dependent electron swarm evolution in transverse direction was developed based on a propagator method (H.Sugawara et al.) 1998 J.Phys.D: Appl.Phys. 31 319-27. Under an electric field applied in x direction, the temporal variation of the nth-order spatial moments of electrons with respect to y direction, m_y,n(v,t)=int_r y^nf(r,v,t) dr (n>=0), were calculated in order to derive the higher order transverse diffusion coefficients D_T, D_T4, D_T6, \\cdots. The calculations were performed using a series of moment equations described in velocity space; (partial/partial t)m_y,n=-a_x(partial/partial v_x)m_y,n +nv_ym_y,n-1+(partial/partial t)_collm_y,n, in which m_y,n can be expanded as m_y,n(v,θ,φ,t)=sum_k=0^nw_n,k(v,θ,t)\\cos^kφ. When the spatial and velocity distributions of initial electrons are azimuthally symmetric around x and vx axes respectively, w_n,k=0 for n and k with different parities, thus, D_Tn can be derived from a simultaneous calculation of w_0,0, w_1,1, w_2,0, w_2,2, w_3,1, w_3,3, \\cdots, w_n,n. The calculation result of D_Tn in SF6 and CCl_2F2 agreed well with that by a Monte Carlo simulation.
Bliokh, K. Yu.; Bliokh, Yu. P.
2007-06-15
We present a solution to the problem of partial reflection and refraction of a polarized paraxial Gaussian beam at the interface between two transparent media. The Fedorov-Imbert transverse shifts of the centers of gravity of the reflected and refracted beams are calculated. Our results differ in the general case from those derived previously by other authors. In particular, they obey general conservation law for the beams' total angular momentum but do not obey one-particle conservation laws for individual photons, which have been proposed by [Onoda et al. Phys. Rev. Lett. 93, 083901 (2004)]. We ascertain that these circumstances relate to the artificial model accepted in the literature for the polarized beam; this model does not fit to real beams. The present paper resolves the recent controversy and confirms the results of our previous paper [Bliokh et al. Phys. Rev. Lett. 96, 073903 (2006)]. In addition, a diffraction effect of angular transverse shifts of the reflected and refracted beams is described.
NASA Astrophysics Data System (ADS)
Segawa, Takuya F.; Bodenhausen, Geoffrey
2013-12-01
Homogeneous line-widths that arise from transverse relaxation tend to be masked by B0 field inhomogeneity and by multiplets due to homonuclear J-couplings. Besides well-known spin-locking sequences that lead to signals that decay with a rate R1ρ without any modulations, alternative experiments allow one to determine the transverse relaxation rates R2 in systems with scalar-coupled spins. We evaluate three recent strategies by experiment and simulation: (i) moderate-amplitude SITCOM-CPMG sequences (Dittmer and Bodenhausen, 2006 [2]), (ii) multiple-quantum filtered (MQF) sequences (Barrère et al., 2011 [4]) and (iii) PROJECT sequences (Aguilar et al., 2012 [5]). Experiments where the J-evolution is suppressed by spin-locking measure the pure relaxation rate R2(Ix) of an in-phase component. Experiments based on J-refocusing yield a mixture of in-phase rates R2(Ix) and antiphase rates R2(2IySz), where the latter are usually faster than the former. Moderate-amplitude SITCOM-CPMG and PROJECT methods can be applied to systems with many coupled spins, but applications of MQF sequences are limited to two-spin systems since modulations in larger systems can only partly be suppressed.
The origin of transverse instability of aeolian megaripples
NASA Astrophysics Data System (ADS)
Yizhaq, Hezi; Katra, Itzhak; Schmerler, Erez; Silvestro, Simone
2016-04-01
Two different kinds of sand ripples, normal ripples and megaripples which differ in their sizes, grain-size compositions and morphology are observed in nature. While normal ripples form almost straight lines, megaripples have greater sinuosity due to their transverse instability, a property that causes small undulations to grow in time. The physical origin of this pronounced transverse instability has remained elusive. We studied ripple development in a series of wind tunnel experiments with different mixtures of sand. For unimodal fine sand, initial differences in height diminished in time leading to straight ripples. In contrast, for bimodal sand initial perturbations in height remained and even grew in time resulting in more wavy patterns. The results indicate that the differences in sinuosity between normal and megaripples are due to grain size segregation at three dimensions with a positive feedback between coarse grains and ripples height. The accumulations of coarse particles at the crest allow further growth of the ripples at these locations thus decreasing their migration rate. This in turn allows further accumulation of coarse grains. This mechanism leads to variations of the thickness of the armoring layer along the ripple crest which correlates with crest height. Field measurements of grain size distribution and sinuosity index along megaripple crests support the findings. In addition, the sinuosity of megaripples and TARs (Transverse Aeolian Ridges) on Mars at several locations was calculated from images taken from High Resolution Imaging Science Experiment (HiRISE). These images provide the capability of obtaining orbital images of Mars with a resolution down to 25 cm/pixel. The preliminary results show that due to their bimodal grain-size distribution megaripples are more undulated than TARs. This new look at aeolian bedforms on Mars can help in a better classification of them and improve the understanding of the aeolian processes involved in their
Modeling the Causal Regulation of Transversely Accelerated Ion (TAI) Outflows
NASA Astrophysics Data System (ADS)
Varney, R. H.; Wiltberger, M. J.; Zhang, B.; Schmitt, P.; Lotko, W.
2013-12-01
TAIs are generated by wave particle interactions driven by waves at temporal and spatial scales which are inaccessible in global coupled geospace models. So far attempts to include TAI outflows in global models have focused on the use of empirical correlations between observed outflow fluxes and various inputs such as DC Poynting flux, Alfvénic Poynting flux, and electron precipitation fluxes. These treatments ignore feedbacks between the outflow and the state of the ionosphere and assume the spatial and temporal distributions of the outflows are identical to those of their drivers. This work presents an alternative approach which can overcome these deficiencies while still being sufficiently computationally efficient to couple into a global modeling framework. TAIs are incorporated into a 3-D fluid model of the ionosphere and polar wind by modeling them as a separate fluid which obeys transport equations appropriate for monoenergetic conic distributions. The characteristics of the TAI outflow produced depend on the assumed transverse heating rates and the 'promotion rate' which connects the TAI fluid to the thermal O+ fluid. Using drivers extracted from runs of the Coupled Magnetosphere Ionosphere Thermosphere (CMIT) model, different strategies for causally regulating these free parameters are explored. The model can reproduce many of the observed features of TAI outflows but also exhibits physical attributes that empirical relationships alone miss. These characteristics include flux limiting of the outflow from below when intense outflow creates high-altitude cavities, time delays between the onset of transverse heating and the appearance of outflow, and spatial distributions of outflow which are different from the spatial distributions of the applied transverse heating and which depend on the ionospheric convection pattern.
Transverse flow reactor studies of the dynamics of radical reactions
Macdonald, R.G.
1993-12-01
Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.
An efficient numerical algorithm for transverse impact problems
NASA Technical Reports Server (NTRS)
Sankar, B. V.; Sun, C. T.
1985-01-01
Transverse impact problems in which the elastic and plastic indentation effects are considered, involve a nonlinear integral equation for the contact force, which, in practice, is usually solved by an iterative scheme with small increments in time. In this paper, a numerical method is proposed wherein the iterations of the nonlinear problem are separated from the structural response computations. This makes the numerical procedures much simpler and also efficient. The proposed method is applied to some impact problems for which solutions are available, and they are found to be in good agreement. The effect of the magnitude of time increment on the results is also discussed.
Dirac oscillator in perpendicular magnetic and transverse electric fields
Nath, D.; Roy, P.
2014-12-15
We study (2+1) dimensional massless Dirac oscillator in the presence of perpendicular magnetic and transverse electric fields. Exact solutions are obtained and it is shown that there exists a critical magnetic field B{sub c} such that the spectrum is different in the two regions B>B{sub c} and B
Calculations of synchrotron radiation emission in the transverse coherent limit
Hulbert, S.L.; Williams, G.P.
2009-10-14
We present approximations for the synchrotron radiation emission for low emittance light sources, which provide a connection between user needs and the electron beam parameters. The results and calculations are a consequence of the phase coherence in the emission from the electrons. We derive the remarkable result that if the electron beam is energetic enough, the emitted flux is independent of the photon energy, electron beam energy, or bending radius in the transverse coherent limit. Similarly the brightness is identical for all machines at a given current.
Medium induced transverse momentum broadening in hard processes
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Wu, Bin; Xiao, Bo-Wen; Yuan, Feng
2017-02-01
Using deep inelastic scattering on a large nucleus as an example, we consider the transverse momentum broadening of partons in hard processes in the presence of medium. We find that one can factorize the vacuum radiation contribution and medium related PT broadening effects into the Sudakov factor and medium dependent distributions, respectively. Our derivations can be generalized to other hard processes, such as dijet productions, which can be used as a probe to measure the medium PT broadening effects in heavy ion collisions when Sudakov effects are not overwhelming.
Transverse quasilinear relaxation in an inhomogeneous magnetic field
NASA Astrophysics Data System (ADS)
Lyutikov, Maxim
1998-08-01
Transverse quasilinear relaxation of the cyclotron Cherenkov instability of an ultrarelativistic beam propagating along a strong, inhomogeneous magnetic field in a pair plasma is considered. We find a quasilinear state in which the kinetic-type instability is saturated by the force arising in the inhomogeneous field due to the conservation of the adiabatic invariant. The resulting wave intensities generally have a non-power-law frequency dependence, but in a broad frequency range can be well approximated by a power law with a spectral index -2. The emergent spectra and fluxes are consistent with the one observed from radio pulsars.
Mode transverse d'un laser à atomes
NASA Astrophysics Data System (ADS)
Guerin, W.; Riou, J.-F.; Fauquembergue, M.; Le Coq, Y.; Josse, V.; Bouyer, P.; Aspect, A.
2006-10-01
Nous réalisons à partir d'un condensat de Bose-Einstein un laser à atomes quasi-continu par application d'un coupleur radiofréquence. La très forte densité du condensat source rend les interactions entre celui-ci et le laser extrêmement importantes, modifiant considérablement la structure transverse du faisceau. Comme en optique photonique, nous caractérisons les faisceaux ainsi produits par un facteur de qualité M2.
Transverse instability of the antiproton beam in the Recycler Ring
Prost, L.R.; Bhat, C.M.; Burov, A.; Crisp, J.; Eddy, N.; Hu, M.; Shemyakin, A.; /Fermilab
2011-03-01
The brightness of the antiproton beam in Fermilab's 8 GeV Recycler ring is limited by a transverse instability. This instability has occurred during the extraction process to the Tevatron for large stacks of antiprotons even with dampers in operation. This paper describes observed features of the instability, introduces the threshold phase density to characterize the beam stability, and finds the results to be in agreement with a resistive wall instability model. Effective exclusion of the longitudinal tails from Landau damping by decreasing the depth of the RF potential well is observed to lower the threshold density by up to a factor of two.
Transverse laser cooling of a thermal atomic beam of dysprosium
Leefer, N.; Cingoez, A.; Gerber-Siff, B.; Sharma, Arijit; Torgerson, J. R.; Budker, D.
2010-04-15
A thermal atomic beam of dysprosium atoms is cooled using the 4f{sup 10}6s{sup 2}(J=8){yields}4f{sup 10}6s6p(J=9) transition at 421 nm. The cooling is done via a standing light wave orthogonal to the atomic beam. Efficient transverse cooling to the Doppler limit is demonstrated for all observable isotopes of dysprosium. Branching ratios to metastable states are demonstrated to be <5x10{sup -4}. A scheme for enhancement of the nonzero-nuclear-spin-isotope cooling and a method for direct identification of possible trap states are proposed.
Thermal Crosslinking of Organic Semiconducting Polythiophene Improves Transverse Hole Conductivity
Gearba, I.R.; Nam, C.-Y.; Pindak, R.; Black, C.T.
2009-10-26
Thermal crosslinking using a suitable radical initiator simultaneously improves electrical conductivity in the semiconducting polymer poly(3-hexylthiophene) and makes the material insoluble. Crosslinked polythiophene shows as much as a fivefold increase in hole conductivity across the film thickness without any shift in spectral light absorption. Grazing incidence x-ray diffraction reveals more in-plane polymer lamellae stacking with only a small decrease in film crystallinity. Improved transverse conductivity increases the performance of model planar solar cells by threefold, from 0.07% to 0.2%. The ability to render polythiophene insoluble without disrupting film structural order enables fabrication pathways to more complex device architectures.
Delaminations in composite plates under transverse impact loads - Experimental results
NASA Technical Reports Server (NTRS)
Finn, Scott R.; He, Ye-Fei; Springer, George S.
1993-01-01
Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.
Transverse-structure electrostatic charged particle beam lens
Moran, Michael J.
1998-01-01
Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility.
Transverse-structure electrostatic charged particle beam lens
Moran, M.J.
1998-10-13
Electrostatic particle-beam lenses using a concentric co-planar array of independently biased rings can be advantageous for some applications. Traditional electrostatic lenses often consist of axial series of biased rings, apertures, or tubes. The science of lens design has devoted much attention to finding axial arrangements that compensate for the substantial optical aberrations of the individual elements. Thus, as with multi-element lenses for light, a multi-element charged-particle lens can have optical behavior that is far superior to that of the individual elements. Transverse multiple-concentric-ring lenses achieve high performance, while also having advantages in terms of compactness and optical versatility. 7 figs.
Transverse ageostrophic circulations associated with elevated mixed layers
NASA Technical Reports Server (NTRS)
Keyser, D.; Carlson, T. N.
1984-01-01
The nature of the frontogenetically forced transverse ageostrophic circulations connected with elevated mixed layer structure is investigated as a first step toward diagnosing the complex vertical circulation patterns occurring in the vicinity of elevated mixed layers within a severe storm environment. The Sawyer-Eliassen ageostrophic circulation equation is reviewed and applied to the elevated mixed layer detected in the SESAME IV data set at 2100 GMT of May 9, 1979. The results of the ageostrophic circulation diagnosis are confirmed and refined by considering an analytic specification for the elevated mixed layer structure.
Transverse Myelitis as an Unusual Complication of Dengue Fever.
Mota, Mânlio Tasso de Oliveira; Estofolete, Cássia Fernanda; Zini, Nathalia; Terzian, Ana Carolina Bernardes; Gongora, Delzi Vinha Nunes; Maia, Irineu Luiz; Nogueira, Maurício Lacerda
2017-02-08
Dengue fever is the most common arbovirus disease, and presents with a large spectrum of clinical manifestations ranging from asymptomatic disease through to the development of dengue hemorrhagic fever. These extreme cases can lead to dengue shock syndrome, and sometimes death. Spinal cord involvement in dengue virus (DENV) infections is rare. Here, we report a case in which the patient developed acute transverse myelitis (TM) without paraparesis following a DENV infection. This case highlights the importance of physicians' awareness of the possible link between DENV and TM in endemic areas.
A transverse Kelvin-Helmholtz instability in a magnetized plasma
NASA Technical Reports Server (NTRS)
Kintner, P.; Dangelo, N.
1977-01-01
An analysis is conducted of the transverse Kelvin-Helmholtz instability in a magnetized plasma for unstable flute modes. The analysis makes use of a two-fluid model. Details regarding the instability calculation are discussed, taking into account the ion continuity and momentum equations, the solution of a zero-order and a first-order component, and the properties of the solution. It is expected that the linear calculation conducted will apply to situations in which the plasma has experienced no more than a few growth periods.
Transverse testicular ectopia with a blind ending vas deferens
Dhua, Anjan Kumar; Varshney, Abhimanyu; Bhatnagar, Veereshwar
2016-01-01
Transverse testicular ectopia (TTE) is an uncommon anomaly of testicular descent. Herein, we describe a case of TTE with blindly ending vas and persistent Mόllerian duct syndrome in a 2-year-old child. Orchidopexy could be done through the normal orthotopic route after separating it from the Mόllerian structure and dividing the peritoneal fold just distal to the blindly ending vas. The report highlights that laparoscopy is useful for identifying subtle anomalies in addition to its therapeutic role. PMID:27843218
Are there approximate relations among transverse momentum dependent distribution functions?
Harutyun AVAKIAN; Anatoli Efremov; Klaus Goeke; Andreas Metz; Peter Schweitzer; Tobias Teckentrup
2007-10-11
Certain {\\sl exact} relations among transverse momentum dependent parton distribution functions due to QCD equations of motion turn into {\\sl approximate} ones upon the neglect of pure twist-3 terms. On the basis of available data from HERMES we test the practical usefulness of one such ``Wandzura-Wilczek-type approximation'', namely of that connecting $h_{1L}^{\\perp(1)a}(x)$ to $h_L^a(x)$, and discuss how it can be further tested by future CLAS and COMPASS data.
Joint transverse momentum and threshold resummation beyond NLL
NASA Astrophysics Data System (ADS)
Lustermans, Gillian; Waalewijn, Wouter J.; Zeune, Lisa
2016-11-01
To describe the transverse momentum spectrum of heavy color-singlet production, the joint resummation of threshold and transverse momentum logarithms is investigated. We obtain factorization theorems for various kinematic regimes valid to all orders in the strong coupling, using Soft-Collinear Effective Theory. We discuss how these enable resummation and how to combine regimes. The new ingredients in the factorization theorems are calculated at next-to-leading order, and a range of consistency checks is performed. Our framework goes beyond the current next-to-leading logarithmic accuracy (NLL). 1 ∼ 1 - z ≫pT / Q: transverse mom. factorization 1 ≫ 1 - z ≫pT / Q: intermediate regime 1 ≫ 1 - z ∼pT / Q: threshold factorization The factorization theorems for regimes 1 and 3 are simply a more differential version of the standard transverse momentum and threshold resummation. The intermediate regime 2 requires us to extend SCET with additional collinear-soft (csoft) degrees of freedom. Such theories, typically referred to as SCET+, have recently been used to describe a range of joint resummations [15-21]. We will elaborate on how the factorization in SCET leads to resummation using the renormalization group (RG) evolution. As a byproduct, this implies an all-order relation between the anomalous dimension of the thrust soft function and threshold soft function. We discuss how to combine the different factorization theorems describing the three regimes, finding that regime 2 can be obtained from regime 1 by a proper modification of renormalization scales, but that regime 3 contains additional corrections beyond NLL. By using SCET, gauge invariance is manifest, and the ingredients in factorization theorems have matrix element definitions. We will focus on the production of a color neutral state pp → V + X with V = Z , W , h , …, working in momentum space. All ingredients will be collected for joint resummation at next
Process-dependent transverse momentum distributions from lattice QCD
Bernhard Musch
2011-12-01
Certain single-spin asymmetries in semi-inclusive DIS (SIDIS) and the Drell-Yan process (DY) can be explained by transverse momentum dependent parton distribution functions (TMDs) that are predicted to differ in sign for SIDIS and DY. On the lattice, we can use non-local operators with U-shaped Wilson lines to study these TMDs, in particular the Sivers- and the Boer-Mulders function. We discuss the method, its limitations and preliminary results from an exploratory calculation using lattices generated by the MILC and LHP collaborations.
Characteristics of thermally-induced transverse cracks in graphite epoxy composite laminates
NASA Technical Reports Server (NTRS)
Adams, D. S.; Bowles, D. E.; Herakovich, C. T.
1983-01-01
The characteristics of thermally induced transverse cracks in T300/5208 graphite-epoxy cross-ply and quasi-isotropic laminates were investigated both experimentally and analytically. The formation of transverse cracks and the subsequent crack spacing present during cool down to -250 F (116K) and thermal cycling between 250 and -250 F (116 and 394K) was investigated. The state of stress in the vicinity of a transverse crack and the influence of transverse cracking on the laminate coefficient of thermal expansion (CTE) was predicted using a generalized plane strain finite element analysis and a modified shear lag analysis. A majority of the cross-ply laminates experienced transverse cracking during the initial cool down to -250 F whereas the quasi-isotropic laminates remained uncracked. The in situ transverse strength of the 90 degree layers was more than 1.9 times greater than the transverse strength of the unidirectional 90 degree material for all laminates investigated.
[Case of transient cortical blindness due to thrombosis of the transverse sinus].
Mitaki, Shingo; Fukuda, Hitoshi; Kitani, Mitsuhiro
2008-05-01
An 62-year-old man presented visual impairment and generalized seizure. Brain CT performed on the day of admission showed thrombus in the right transverse sinus, and DWI showed high intensity areas in the bilateral occipital and parietal lobes. According to bilateral occipital lobe lesions, we considered his visual impairment as cortical blindness. He was diagnosed as venous sinus thrombosis and intravenous heparin, edaravone and osmotic diuretics were administered. MR venography performed after starting of intravenous treatment showed flow gap in the left transverse sinus but no abnormalities in the right transverse sinus. On the second day of hospitalization, his cortical blindness showed improvement and thrombus in the right transverse sinus were disappeared. This indicated that his left transverse sinus originally hypoplastic, thrombus and hemostatis in the right transverse sinus (his dominant side) caused his cortical blindness and generalized seizure. There was a recanalization in the right transverse sinus after heparin therapy.
Dissipative Landau-Zener quantum dynamics with transversal and longitudinal noise
NASA Astrophysics Data System (ADS)
Javanbakht, S.; Nalbach, P.; Thorwart, M.
2015-05-01
We determine the Landau-Zener transition probability in a dissipative environment including both longitudinal as well as transversal quantum-mechanical noise originating from a single noise source. For this, we use the numerically exact quasiadiabatic path integral, as well as the approximative nonequilibrium Bloch equations. We find that transversal quantum noise in general influences the Landau-Zener probability much more strongly than longitudinal quantum noise does at a given temperature and system-bath coupling strength. In other words, transversal noise contributions become important even when the coupling strength of transversal noise is smaller than that of longitudinal noise. We furthermore reveal that transversal noise renormalizes the tunnel coupling independent of temperature. Finally, we show that the effect of mixed longitudinal and transversal noise originating from a single bath cannot be obtained from an incoherent sum of purely longitudinal and purely transversal noise.
Transverse piezoelectric coefficient measurement of flexible lead zirconate titanate thin films
Dufay, T.; Guiffard, B.; Seveno, R.; Thomas, J.-C.
2015-05-28
Highly flexible lead zirconate titanate, Pb(Zr,Ti)O{sub 3} (PZT), thin films have been realized by modified sol-gel process. The transverse piezoelectric coefficient d{sub 31} was determined from the tip displacement of bending-mode actuators made of PZT cantilever deposited onto bare or RuO{sub 2} coated aluminium substrate (16 μm thick). The influence of the thickness of ruthenium dioxide RuO{sub 2} and PZT layers was investigated for Pb(Zr{sub 0.57}Ti{sub 0.43})O{sub 3}. The modification of Zr/Ti ratio from 40/60 to 60/40 was done for 3 μm thick PZT thin films onto aluminium (Al) and Al/RuO{sub 2} substrates. A laser vibrometer was used to measure the beam displacement under controlled electric field. The experimental results were fitted in order to find the piezoelectric coefficient. Very large tip deflections of about 1 mm under low voltage (∼8 V) were measured for every cantilevers at the resonance frequency (∼180 Hz). For a given Zr/Ti ratio of 58/42, it was found that the addition of a 40 nm thick RuO{sub 2} interfacial layer between the aluminium substrate and the PZT layer induces a remarkable increase of the d{sub 31} coefficient by a factor of 2.7, thus corresponding to a maximal d{sub 31} value of 33 pC/N. These results make the recently developed PZT/Al thin films very attractive for both low frequency bending mode actuating applications and vibrating energy harvesting.
Virtuality and transverse momentum dependence of the pion distribution amplitude
Radyushkin, Anatoly V.
2016-03-08
We describe basics of a new approach to transverse momentum dependence in hard exclusive processes. We develop it in application to the transition process γ*γ → π0 at the handbag level. Our starting point is coordinate representation for matrix elements of operators (in the simplest case, bilocal O (0,z)) describing a hadron with momentum p. Treated as functions of (pz) and z2, they are parametrized through virtuality distribution amplitudes (VDA) Φ(x,σ), with x being Fourier-conjugate to (pz) and σ Laplace-conjugate to z2. For intervals with z+ = 0, we introduce the transverse momentum distribution amplitude (TMDA) ψ(x, k), and writemore » it in terms of VDA Φ(x,σ). The results of covariant calculations, written in terms of Φ(x, σ) are converted into expressions involving ψ(x, k). Starting with scalar toy models, we extend the analysis onto the case of spin-1/2 quarks and QCD. We propose simple models for soft VDAs/TMDAs, and use them for comparison of handbag results with experimental (BaBar and BELLE) data on the pion transition form factor. Furthermore, we discuss how one can generate high-k tails from primordial soft distributions.« less
Virtuality and transverse momentum dependence of the pion distribution amplitude
Radyushkin, Anatoly V.
2016-03-08
We describe basics of a new approach to transverse momentum dependence in hard exclusive processes. We develop it in application to the transition process γ*γ → π^{0} at the handbag level. Our starting point is coordinate representation for matrix elements of operators (in the simplest case, bilocal O (0,z)) describing a hadron with momentum p. Treated as functions of (pz) and z^{2}, they are parametrized through virtuality distribution amplitudes (VDA) Φ(x,σ), with x being Fourier-conjugate to (pz) and σ Laplace-conjugate to z^{2}. For intervals with z^{+} = 0, we introduce the transverse momentum distribution amplitude (TMDA) ψ(x, k), and write it in terms of VDA Φ(x,σ). The results of covariant calculations, written in terms of Φ(x, σ) are converted into expressions involving ψ(x, k). Starting with scalar toy models, we extend the analysis onto the case of spin-1/2 quarks and QCD. We propose simple models for soft VDAs/TMDAs, and use them for comparison of handbag results with experimental (BaBar and BELLE) data on the pion transition form factor. Furthermore, we discuss how one can generate high-k tails from primordial soft distributions.
Transverse beam emittance measurement using quadrupole variation at KIRAMS-430
NASA Astrophysics Data System (ADS)
An, Dong Hyun; Hahn, Garam; Park, Chawon
2015-02-01
In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.
Using ions to probe the transverse size of a bunch
Rees, J.
1984-05-01
The electric field carried along by a SLC bunch is very intense at the surface of the bunch because of the bunch's tiny transverse dimensions and its high charge density. For a given bunch population, the maximum electric field - which occurs at the surface - is inversely proportional to the bunch radius for a round bunch. The smaller the radius, the higher the peak field. A charged particle such as an ion or an electron which is placed at rest in the path of the oncoming bunch will be accelerated by the field as the bunch has passed having sampled the field of the bunch. Thus by placing a swarm of stationary charged particles in the path of the bunch and measuring their momentum distribution when they emerge, we can hope to infer the bunch's transverse size. We are using the terms size and surface in a qualitative way, of course, expecting that their meaning will be reasonably clear to the reader. In our calculations we use a cylindrical model for the bunch in which their meanings are precise.
Transverse Velocity Shifts in Protostellar Jets: Rotation or Velocity Asymmetries?
NASA Astrophysics Data System (ADS)
De Colle, Fabio; Cerqueira, Adriano H.; Riera, Angels
2016-12-01
Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction that have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these velocity shifts, and show that they could originate from rotation in the flow, or from side-to-side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (˜100-200 km s-1), an asymmetry ≳10% can produce velocity shifts comparable to those observed. We also present three-dimensional numerical simulations of rotating, precessing, and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts (TVSs). Our analysis indicates that side-to-side velocitiy asymmetries could represent an important contribution to TVSs, being the most important contributor for large jet inclination angles (with respect the the plane of the sky), and cannot be neglected when interpreting the observations.
[A case of mixed adenoneuroendocrine carcinoma of the transverse colon].
Kusakabe, Jiro; Miki, Akira; Kobayashi, Hiroyuki; Uryuhara, Kenji; Hashida, Hiroki; Mizumoto, Masaki; Kaihara, Satoshi; Hosotani, Ryo; Yamashita, Daisuke
2014-11-01
A 7 1-year-old man presented to our hospital with constipation and abdominal pain. Computed tomography of the abdomen and colonoscopy revealed advanced cancer of the transverse colon. The biopsy specimen indicated a highly differentiated adenocarcinoma. The patient underwent extended right hemicolectomy with regional lymph node dissection. Pathological examination showed a neuroendocrine carcinoma (NEC) with concurrent adenocarcinoma of the transverse colon and regional lymph node metastases of the NEC and adenocarcinoma. The histopathological examination confirmed a diagnosis of mixed adenoneuroendocrine carcinoma (MANEC) in accordance with the 2010 WHO Classification of Tumors of the Digestive System. Liver and lung metastases were identified 8 months after the surgery. We administered chemotherapy including 5-fluorouracil, Leucovorin, and oxaliplatin (mFOLFOX) plus bevacizumab, with limited therapeutic effect, as the disease progressed despite treatment. The patient chose best supportive care 13 months after the surgery. Several studies have reported that most patients with adenoendocrine cell carcinoma, including MANEC, experience relapse within 1 year after surgery, and few patients remain disease-free for long periods after surgery. The optimal strategy for the management of MANEC is variable owing to its rarity; only 2 cases of MANEC in the colon, including the present case, have been reported in Japan. It is thus important to gather more evidence on this disease and its management.
Transverse electron-scale instability in relativistic shear flows
NASA Astrophysics Data System (ADS)
Alves, E. P.; Grismayer, T.; Fonseca, R. A.; Silva, L. O.
2015-08-01
Electron-scale surface waves are shown to be unstable in the transverse plane of a sheared flow in an initially unmagnetized collisionless plasma, not captured by (magneto)hydrodynamics. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroomlike electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. This transverse electron-scale instability may play an important role in relativistic and supersonic sheared flow scenarios, which are stable at the (magneto)hydrodynamic level. Macroscopic (≫c /ωp e ) fields are shown to be generated by this microscopic shear instability, which are relevant for particle acceleration, radiation emission, and to seed magnetohydrodynamic processes at long time scales.
Transverse mode selection in laser resonators using volume Bragg gratings
NASA Astrophysics Data System (ADS)
Anderson, Brian; Venus, George; Ott, Daniel; Divliansky, Ivan; Dawson, Jay W.; Drachenberg, Derrek R.; Messerly, Mike J.; Pax, Paul H.; Tassano, John B.; Glebov, Leonid
2014-06-01
Power scaling of high power laser resonators is limited due to several nonlinear effects. Scaling to larger mode areas can offset these effects at the cost of decreased beam quality, limiting the brightness that can be achieved from the multi-mode system. In order to improve the brightness from such multi-mode systems, we present a method of transverse mode selection utilizing volume Bragg gratings (VBGs) as an angular filter, allowing for high beam quality from large mode area laser resonators. An overview of transverse mode selection using VBGs is given, with theoretical models showing the effect of the angular selectivity of transmitting VBGs on the resonator modes. Applications of this ideology to the design of laser resonators, with cavity designs and experimental results presented for three types of multimode solid state lasers: a Nd:YVO4 laser with 1 cm cavity length and 0.8 mm diameter beam with an M2 of 1.1, a multimode diode with diffraction limited far field divergence in the slow axis, and a ribbon fiber laser with 13 cores showing M2 improved from 11.3 to 1.5.
Combined adenocarcinoma-carcinoid tumor of transverse colon.
Bhattacharjee, Prosanta Kumar; Halder, Shyamal
2013-01-01
A 65-year-old male presented with painless hematochezia associated with episodic cramps in upper abdomen, watery diarrhea, and a slowly growing mass in upper abdomen. Examination revealed a firm 6 x 5 cm, intra-abdominal, epigastric mass. Colonoscopy up to 90 cm showed a stenosing, ulcero-proliferative lesion in the transverse colon. No synchronous lesion was detected. Biopsy revealed mucin secreting adenocarcinoma. Exploration showed the growth involving the transverse colon proximal to the splenic flexure with a part of ileum, approximately three feet proximal to ileo-caecal junction, adherent to it. No significant mesenteric lymph node enlargement was evident. The patient underwent resection of the growth along with the segment of adherent ileum. Continuity was re-established by a colo-colic and ileo-ileal anastomosis respectively. Patient received adjuvant chemotherapy. Post-operative histopathology demonstrated a composite histological pattern with an admixture of carcinoid tumor and adenocarcinoma, invasion of ileal serosa and adenocarcinomatous deposits in mesocolic lymph nodes, the tumor staging being (T4, N0, M0/Stage II) for carcinoid and (T4, N1, M0/Stage III) for adenocarcinoma. Patient was followed-up for a year and was doing well without any evidence of recurrence.
ENERGY CONTENT AND PROPAGATION IN TRANSVERSE SOLAR ATMOSPHERIC WAVES
Goossens, M.; Van Doorsselaere, T.; Soler, R.; Verth, G.
2013-05-10
Recently, a significant amount of transverse wave energy has been estimated propagating along solar atmospheric magnetic fields. However, these estimates have been made with the classic bulk Alfven wave model which assumes a homogeneous plasma. In this paper, the kinetic, magnetic, and total energy densities and the flux of energy are computed for transverse MHD waves in one-dimensional cylindrical flux tube models with a piecewise constant or continuous radial density profile. There are fundamental deviations from the properties for classic bulk Alfven waves. (1) There is no local equipartition between kinetic and magnetic energy. (2) The flux of energy and the velocity of energy transfer have, in addition to a component parallel to the magnetic field, components in the planes normal to the magnetic field. (3) The energy densities and the flux of energy vary spatially, contrary to the case of classic bulk Alfven waves. This last property has the important consequence that the energy flux computed with the well known expression for bulk Alfven waves could overestimate the real flux by a factor in the range 10-50, depending on the flux tube equilibrium properties.
Virtuality and transverse momentum dependence of the pion distribution amplitude
NASA Astrophysics Data System (ADS)
Radyushkin, A. V.
2016-03-01
We describe basics of a new approach to transverse momentum dependence in hard exclusive processes. We develop it in application to the transition process γ*γ →π0 at the handbag level. Our starting point is coordinate representation for matrix elements of operators [in the simplest case, bilocal O (0 ,z ) ] describing a hadron with momentum p . Treated as functions of (p z ) and z2, they are parametrized through virtuality distribution amplitudes (VDA) Φ (x ,σ ) , with x being Fourier conjugate to (p z ) and σ Laplace conjugate to z2. For intervals with z+=0 , we introduce the transverse momentum distribution amplitude (TMDA) Ψ (x ,k⊥), and write it in terms of VDA Φ (x ,σ ). The results of covariant calculations, written in terms of Φ (x ,σ ), are converted into expressions involving Ψ (x ,k⊥). Starting with scalar toy models, we extend the analysis onto the case of spin-1 /2 quarks and QCD. We propose simple models for soft VDAs/TMDAs, and use them for comparison of handbag results with experimental (BABAR and BELLE) data on the pion transition form factor. We also discuss how one can generate high-k⊥ tails from primordial soft distributions.
Measurements of the Transverse Wakefields Due to Varying Collimator Characteristics
Molloy, S.; Seletskiy, Sergei; Woods, Mike; Smith, Jonathan David Andrew; Beard, Carl David; Fernandez-Hernando, Juan Luis; Watson, Nigel; Bungau, Adriana; Sopczak, Andre; /Lancaster U.
2007-07-06
We report on measurements of the transverse wakefields induced by collimators of differing characteristics. An apparatus allowing the insertion of different collimator jaws into the path of a beam was installed in End Station A (ESA) in SLAC. Eight comparable collimator geometries were designed, including one that would allow easy comparison with previous results, and were installed in this apparatus. Measurements of the beam kick due to the collimator wakefields were made with a beam energy of 28.5 GeV, and beam dimensions of 100 microns vertically and a range of 0.5 to 1.5 mm longitudinally. The trajectory of the beam upstream and downstream of the collimator test apparatus was determined from the outputs of ten BPMs (four upstream and six downstream), thus allowing a measurement of the angular kick imparted to the beam by the collimator under test. The transverse wakefield was inferred from the measured kick. The different aperture designs, data collection and analysis, and initial comparison to theoretical and analytic predictions are presented here.
Pion transverse charge density and the edge of hadrons
Carmignotto, Marco; Horn, Tanja; Miller, Gerald A.
2014-08-01
We use the world data on the pion form factor for space-like kinematics and a technique used to extract the proton transverse densities, to extract the transverse pion charge density and its uncertainty due to experimental uncertainties and incomplete knowledge of the pion form factor at large values of Q2. The pion charge density at small values of b<0.1 fm is dominated by this incompleteness error while the range between 0.1-0.3 fm is relatively well constrained. A comparison of pion and proton charge densities shows that the pion is denser than the proton for values of b<0.2 fm. The pion and proton distributions seem to be the same for values of b=0.2-0.6 fm. Future data from Jlab 12 GeV and the EIC will increase the dynamic extent of the data to higher values of Q2 and thus reduce the uncertainties in the extracted pion charge density.
Optical measurement of transverse molecular diffusion in a microchannel.
Kamholz, A E; Schilling, E A; Yager, P
2001-01-01
Quantitative analysis of molecular diffusion is a necessity for the efficient design of most microfluidic devices as well as an important biophysical method in its own right. This study demonstrates the rapid measurement of diffusion coefficients of large and small molecules in a microfluidic device, the T-sensor, by means of conventional epifluorescence microscopy. Data were collected by monitoring the transverse flux of analyte from a sample stream into a second stream flowing alongside it. As indicated by the low Reynolds numbers of the system (< 1), flow is laminar, and molecular transport between streams occurs only by diffusion. Quantitative determinations were made by fitting data with predictions of a one-dimensional model. Analysis was made of the flow development and its effect on the distribution of diffusing analyte using a three-dimensional modeling software package. Diffusion coefficients were measured for four fluorescently labeled molecules: fluorescein-biotin, insulin, ovalbumin, and streptavidin. The resulting values differed from accepted results by an average of 2.4%. Microfluidic system parameters can be selected to achieve accurate diffusion coefficient measurements and to optimize other microfluidic devices that rely on precise transverse transport of molecules. PMID:11259309
Numerical modeling of the wind flow over a transverse dune.
Araújo, Ascânio D; Parteli, Eric J R; Pöschel, Thorsten; Andrade, José S; Herrmann, Hans J
2013-10-04
Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee - the separation bubble - displays a surprisingly strong dependence on the wind shear velocity, u: it is nearly independent of u for shear velocities within the range between 0.2 m/s and 0.8 m/s but increases linearly with u for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u is larger than approximately 0.39 m/s, whereas a larger value of u (about 0.49 m/s) is required to initiate this reverse transport.
Numerical modeling of the wind flow over a transverse dune
Araújo, Ascânio D.; Parteli, Eric J. R.; Pöschel, Thorsten; Andrade, José S.; Herrmann, Hans J.
2013-01-01
Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee — the separation bubble — displays a surprisingly strong dependence on the wind shear velocity, u*: it is nearly independent of u* for shear velocities within the range between 0.2 m/s and 0.8 m/s but increases linearly with u* for larger shear velocities. Our calculations show that transport in the direction opposite to dune migration within the separation bubble can be sustained if u* is larger than approximately 0.39 m/s, whereas a larger value of u* (about 0.49 m/s) is required to initiate this reverse transport. PMID:24091456
Fast Transverse Instability and Electron Cloud Measurements in Fermilab Recycler
Eldred, Jeffery; Adamson, Philip; Capista, David; Eddy, Nathan; Kourbanis, Ioanis; Morris, Denton; Thangaraj, Jayakar; Yang, Ming-Jen; Zwaska, Robert; Ji, Yichen
2015-03-01
A new transverse instability is observed that may limit the proton intensity in the Fermilab Recycler. The instability is fast, leading to a beam-abort loss within two hundred turns. The instability primarily affects the first high-intensity batch from the Fermilab Booster in each Recycler cycle. This paper analyzes the dynamical features of the destabilized beam. The instability excites a horizontal betatron oscillation which couples into the vertical motion and also causes transverse emittance growth. This paper describes the feasibility of electron cloud as the mechanism for this instability and presents the first measurements of the electron cloud in the Fermilab Recycler. Direct measurements of the electron cloud are made using a retarding field analyzer (RFA) newly installed in the Fermilab Recycler. Indirect measurements of the electron cloud are made by propagating a microwave carrier signal through the beampipe and analyzing the phase modulation of the signal. The maximum betatron amplitude growth and the maximum electron cloud signal occur during minimums of the bunch length oscillation.
Imaging tilted transversely isotropic media with a generalised screen propagator
NASA Astrophysics Data System (ADS)
Shin, Sung-Il; Byun, Joongmoo; Seol, Soon Jee
2015-01-01
One-way wave equation migration is computationally efficient compared with reverse time migration, and it provides a better subsurface image than ray-based migration algorithms when imaging complex structures. Among many one-way wave-based migration algorithms, we adopted the generalised screen propagator (GSP) to build the migration algorithm. When the wavefield propagates through the large velocity variation in lateral or steeply dipping structures, GSP increases the accuracy of the wavefield in wide angle by adopting higher-order terms induced from expansion of the vertical slowness in Taylor series with each perturbation term. To apply the migration algorithm to a more realistic geological structure, we considered tilted transversely isotropic (TTI) media. The new GSP, which contains the tilting angle as a symmetric axis of the anisotropic media, was derived by modifying the GSP designed for vertical transversely isotropic (VTI) media. To verify the developed TTI-GSP, we analysed the accuracy of wave propagation, especially for the new perturbation parameters and the tilting angle; the results clearly showed that the perturbation term of the tilting angle in TTI media has considerable effects on proper propagation. In addition, through numerical tests, we demonstrated that the developed TTI-GS migration algorithm could successfully image a steeply dipping salt flank with high velocity variation around anisotropic layers.
A transverse electron target for heavy ion storage rings
Geyer, Sabrina Meusel, Oliver; Kester, Oliver
2015-01-09
Electron-ion interaction processes are of fundamental interest for several research fields like atomic and astrophysics as well as plasma applications. To address this topic, a transverse electron target based on the crossed beam technique was designed and constructed for the application in storage rings. Using a sheet beam of free electrons in crossed beam geometry promises a good energy resolution and gives access to the interaction region for spectroscopy. The produced electron beam has a length of 10 cm in ion beam direction and a width in the transverse plane of 5 mm. Therewith, electron densities of up to 10{sup 9} electrons/cm{sup 3} are reachable in the interaction region. The target allows the adjustment of the electron beam current and energy in the region of several 10 eV to a few keV. Simulations have been performed regarding the energy resolution for electron-ion collisions and its influence on spectroscopic measurements. Also, the effect on ion-beam optics due to the space charge of the electron beam was investigated. Presently the electron target is integrated into a test bench to evaluate its performance for its dedicated installation at the storage rings of the FAIR facility. Therefore, optical diagnostics of the interaction region and charge state analysis with a magnetic spectrometer is used. Subsequently, the target will be installed temporarily at the Frankfurt Low-Energy Storage Ring (FLSR) for further test measurements.
Linear Coupling between Transverse Modes of a Nanomechanical Resonator
NASA Astrophysics Data System (ADS)
Truitt, Patrick; Hertzberg, Jared; Schwab, Keith
2013-03-01
Recently, several groups have identified a linear coupling between different vibrational modes of nanomechanical resonators. We report observations of such a coupling between the two transverse modes of a doubly-clamped Si3N4 resonator with transverse resonance frequencies of 8.4 and 8.7 MHz. The resonator is voltage biased with respect to a nearby gate electrode for capactive readout. Increasing the gate bias introduces an electrostatic contribution to the spring constant of each mode, reducing the frequency gap between the two modes. At degeneracy, we observe an avoided crossing of 100 kHz. Measurements of the displacement amplitudes and quality factors through degeneracy is consistent with a linear superposition of the two modes. Magnetomotive measurements, which are sensitive to the projection of each mode's displacement onto an applied field, show that the coupled modes remain linearly polarized, with the direction of polarization rotating with increasing gate bias. In an effort to identify the source of the coupling, we constructed a finite element model of the resonator-gate capacitance and find that the observed coupling is an order of magnitude larger than what is expected from electrostatic gradients alone.
Bursts of transverse ion acceleration at rocket altitudes
NASA Technical Reports Server (NTRS)
Arnoldy, R. L.; Lynch, K. A.; Kintner, P. M.; Vago, J.; Chesney, S.; Moore, T. E.; Pollock, C. J.
1992-01-01
High-time-resolution ion mass spectrometer distribution function measurements and wave data from a sounding rocket flight over an aurora have revealed the fine structure of the transverse ion acceleration mechanism in the upper ionosphere. The transversely accelerated ion (TAI) events can occur in a volume with a cross-field dimension as small as several tens of meters and thus appear as 50-100 ms ion bursts due to the rocket payload motion. Bulk heating to a characteristic energy of several eV and tail heating in the direction perpendicular to B of a few percent of ambient ions to a characteristic energy the order of 10 eV occur for both hydrogen and oxygen ions. The TAI at 90 deg pitch angle occur in localized regions of intense lower hybrid waves and in regions of density depletion. On close examination of the correlation between the wave bursts and the TAI it is believed that the waves produce the ion acceleration. The TAI occur during periods of field-aligned auroral electron bursts. Finally, near 1000 km altitude they occur about once every second. If the event presented here is considered average, the flux of TAI oxygen ions above 7 eV could account for the ion conic fluxes measured by the ISIS spacecraft.
Transverse forces on a vortex in lattice models of superfluids
NASA Astrophysics Data System (ADS)
Sonin, E. B.
2013-12-01
The paper derives the transverse forces (the Magnus and the Lorentz forces) in the lattice models of superfluids in the continuous approximation. The continuous approximation restores translational invariance absent in the original lattice model, but the theory is not Galilean invariant. As a result, calculation of the two transverse forces on the vortex, Magnus force and Lorentz force, requires the analysis of two balances, for the true momentum of particles in the lattice (Magnus force) and for the quasimomentum (Lorentz force) known from the Bloch theory of particles in the periodic potential. While the developed theory yields the same Lorentz force, which was well known before, a new general expression for the Magnus force was obtained. The theory demonstrates how a small Magnus force emerges in the Josephson-junction array if the particle-hole symmetry is broken. The continuous approximation for the Bose-Hubbard model close to the superfluid-insulator transition was developed, which was used for calculation of the Magnus force. The theory shows that there is an area in the phase diagram for the Bose-Hubbard model, where the Magnus force has an inverse sign with respect to that which is expected from the sign of velocity circulation.
Effect of Noise on DNA Sequencing via Transverse Electronic Transport
Krems, Matt; Zwolak, Michael; Pershin, Yuriy V.; Di Ventra, Massimiliano
2009-01-01
Abstract Previous theoretical studies have shown that measuring the transverse current across DNA strands while they translocate through a nanopore or channel may provide a statistically distinguishable signature of the DNA bases, and may thus allow for rapid DNA sequencing. However, fluctuations of the environment, such as ionic and DNA motion, introduce important scattering processes that may affect the viability of this approach to sequencing. To understand this issue, we have analyzed a simple model that captures the role of this complex environment in electronic dephasing and its ability to remove charge carriers from current-carrying states. We find that these effects do not strongly influence the current distributions due to the off-resonant nature of tunneling through the nucleotides—a result we expect to be a common feature of transport in molecular junctions. In particular, only large scattering strengths, as compared to the energetic gap between the molecular states and the Fermi level, significantly alter the form of the current distributions. Since this gap itself is quite large, the current distributions remain protected from this type of noise, further supporting the possibility of using transverse electronic transport measurements for DNA sequencing. PMID:19804730
Bryan, Zachary Bryan, Isaac; Sitar, Zlatko; Collazo, Ramón; Mita, Seiji; Tweedie, James
2015-06-08
Since the band ordering in AlGaN has a profound effect on the performance of UVC light emitting diodes (LEDs) and even determines the feasibility of surface emitting lasers, the polarization properties of emitted light from c-oriented AlGaN and AlGaN-based laser structures were studied over the whole composition range, as well as various strain states, quantum confinements, and carrier densities. A quantitative relationship between the theoretical valence band separation, determined using k•p theory, and the experimentally measured degree of polarization is presented. Next to composition, strain was found to have the largest influence on the degree of polarization while all other factors were practically insignificant. The lowest crossover point from the transverse electric to transverse magnetic polarized emission of 245 nm was found for structures pseudomorphically grown on AlN substrates. This finding has significant implications toward the efficiency and feasibility of surface emitting devices below this wavelength.
NASA Astrophysics Data System (ADS)
Kish, Orel; Froumin, Natalya; Aizenshtein, Michael; Frage, Nachum
2014-05-01
Wettability and interfacial interaction of the Ta2O5/Cu-Al system were studied. Pure Cu does not wet the Ta2O5 substrate, and improved spreading is achieved when relatively a high fraction of the active element (~40 at.% Al) was added. The Al2O3 and AlTaO4 phases were observed at the Ta2O5/Cu-Al interface. A thermodynamic evaluation allowed us to suggest that the lack of wetting bellow 40 at.% Al is due to the presence of a native oxide, which covers the drop. The conditions of the native oxide decomposition and the formation of the volatile Al2O suboxide strongly depend on the vacuum level during sessile drop experiments and the composition of the Cu-Al alloy. In our case, Al contents greater than 40% provides thermodynamic conditions for the formation of Al2O (as a result of Al reaction with Al2O3) and the drop spreading. It was suggested that the final contact angle in the Ta2O5/Cu-Al system (50°) is determined by Ta adsorption on the newly formed alumina interlayer.
... Chapters Certified Centers and Clinics Support Groups About ALS About Us Our Research In Your Community Advocate ... Diagnosis En español Symptoms The initial symptoms of ALS can be quite varied in different people. One ...
... 1930s. People in England and Australia call ALS motor neurone disease (MND). The French refer to it ... about ALS in 1869. Lou Gehrig's disease damages motor neurons in the brain and spinal cord. Motor ...
Growth and microstructure evolution of the Nb{sub 2}Al-Al{sub 3}Nb eutectic in situ composite
Rios, C.T.; Ferrandini, P.L.; Milenkovic, S.; Caram, R. . E-mail: rcaram@fem.unicamp.br
2005-03-15
In situ composite materials obtained by directional growth of eutectic alloys usually show improved properties, that make them potential candidates for high temperature applications. The eutectic alloy found in the Al-Nb system is composed of the two intermetallic phases Al{sub 3}Nb (D0{sub 22}) and Nb{sub 2}Al (D8{sub b}). This paper describes the directional solidification of an Al-Nb eutectic alloy using a Bridgman type facility at growth rates varying from 1.0 to 2.9 cm/h. Longitudinal and transverse sections of grown samples were characterized regarding the solidification microstructure by using optical and scanning electron microscopy, energy dispersive spectroscopy (EDS) and X-ray diffraction. Despite both phases being intermetallic compounds, the eutectic microstructure obtained was very regular. The results obtained were discussed regarding the effect of the growth rate on the microstructure, lamellar-rod transition and variation of phase volume fraction.
Investigating higher order modes effects on thermionic RF gun transverse emittance
NASA Astrophysics Data System (ADS)
Rajabi, A.; Shokri, B.; Feghhi, S. A. H.
2017-02-01
As the excitation of higher order modes in high gradient accelerating cavities of the RF gun negatively influences electron beam quality, in the present work a theory is obtained based on generalizing Panofsky-Wenzel theorem to study the effect of transverse magnetic modes on transverse emittance growth of the RF gun. Based on this theory, the impact of higher order modes on transverse momentum is investigated. Based on analysis and simulation results, it is shown that different RF modes result in divergence or convergence effects on beam transverse dynamics. The presence of dipole and quadrupole modes can enhance the transverse emittance by 320 % and 450 % , respectively. The compound effect of the presence of two higher order modes results in 470 % transverse emittance growth.
Numerical investigation of the transverse instability on the radiation-pressure-driven foil.
Wang, W Q; Yin, Y; Yu, T P; Xu, H; Zou, D B; Shao, F Q
2015-12-01
The development of transverse instability in the radiation-pressure-acceleration dominant laser-foil interaction is numerically examined by two-dimensional particle-in-cell simulations. When a plane laser impinges on a foil with modulated surface, the transverse instability is incited, and periodic perturbations of the proton density develop. The growth rate of the transverse instability is numerically diagnosed. It is found that the linear growth of the transverse instability lasts only a few laser periods, then the instability gets saturated. In order to optimize the modulation wavelength of the target, a method of information entropy is put forward to describe the chaos degree of the transverse instability. With appropriate modulation, the transverse instability shows a low chaos degree, and a quasi-monoenergetic proton beam is produced.
Beam dynamics studies for transverse electromagnetic mode type rf deflectors
Ahmed, Shahid; Krafft, Geoffrey A.; Deitrick, Kirsten; ...
2012-02-14
We have performed three-dimensional simulations of beam dynamics for transverse electromagnetic mode (TEM) type rf deflectors: normal and superconducting. The compact size of these cavities as compared to the conventional TM110 type structures is more attractive particularly at low frequency. Highly concentrated electromagnetic fields between the parallel bars provide strong electrical stability to the beam for any mechanical disturbance. An array of six 2-cell normal conducting cavities or a single cell superconducting structure is enough to produce the required vertical displacement at the target point. Both the normal and superconducting structures show very small emittance dilution due to the verticalmore » kick of the beam.« less
Transverse momentum-dependent parton distribution functions in lattice QCD
Engelhardt, Michael G.; Musch, Bernhard U.; Haegler, Philipp G.; Negele, John W.; Schaefer, Andreas
2013-08-01
A fundamental structural property of the nucleon is the distribution of quark momenta, both parallel as well as perpendicular to its propagation. Experimentally, this information is accessible via selected processes such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY), which can be parametrized in terms of transversemomentum-dependent parton distributions (TMDs). On the other hand, these distribution functions can be extracted from nucleon matrix elements of a certain class of bilocal quark operators in which the quarks are connected by a staple-shaped Wilson line serving to incorporate initial state (DY) or final state (SIDIS) interactions. A scheme for evaluating such matrix elements within lattice QCD is developed. This requires casting the calculation in a particular Lorentz frame, which is facilitated by a parametrization of the matrix elements in terms of invariant amplitudes. Exploratory results are presented for the time-reversal odd Sivers and Boer-Mulders transverse momentum shifts.
Parallel computation of transverse wakes in linear colliders
Zhan, Xiaowei; Ko, Kwok
1996-11-01
SLAC has proposed the detuned structure (DS) as one possible design to control the emittance growth of long bunch trains due to transverse wakefields in the Next Linear Collider (NLC). The DS consists of 206 cells with tapering from cell to cell of the order of few microns to provide Gaussian detuning of the dipole modes. The decoherence of these modes leads to two orders of magnitude reduction in wakefield experienced by the trailing bunch. To model such a large heterogeneous structure realistically is impractical with finite-difference codes using structured grids. The authors have calculated the wakefield in the DS on a parallel computer with a finite-element code using an unstructured grid. The parallel implementation issues are presented along with simulation results that include contributions from higher dipole bands and wall dissipation.
Management of Recurrent Stricture Formation after Transverse Vaginal Septum Excision
Gupta, Ridhima; Bozzay, Joseph D.; Williams, David L.; DePond, Robert T.; Gantt, Pickens A.
2015-01-01
Background. A transverse vaginal septum (TVS) is a rare obstructing anomaly, caused due to improper fusion of Müllerian ducts and urogenital sinus during embryogenesis. Case. A 15-year-old girl presented with primary amenorrhea. She had multiple congenital anomalies. Initial examination and imaging investigation revealed the presence of a unicornuate uterus and a TVS. The TVS was excised; however the patient was unable to perform vaginal dilation postoperatively leading to recurrent stricture formation. She underwent multiple surgeries for excision of the stricture. The patient was eventually evaluated every day in the clinic until she was able to demonstrate successful vaginal dilatation in the presence of a clinician. Summary and Conclusion. Properly guided regular and intensive vaginal dilation after TVS excision may decrease the need of reoperations due to recurrent stricture formation. PMID:26078895
Transverse Field Perturbation For PIP-II SRF Cavities
Berrutti, Paolo; Khabiboulline, Timergali N.; Lebedev, Valeri; Yakovlev, Vyacheslav P.
2015-06-01
Proton Improvement Plan II (PIP-II) consists in a plan for upgrading the Fermilab proton accelerator complex to a beam power capability of at least 1 MW delivered to the neutrino production target. A room temperature section accelerates H⁻ ions to 2.1 MeV and creates the desired bunch structure for injection into the superconducting (SC) linac. Five cavity types, operating at three different frequencies 162.5, 325 and 650 MHz, provide acceleration to 800 MeV. This paper presents the studies on transverse field perturbation on particle dynamic for all the superconducting cavities in the linac. The effects studied include quadrupole defocusing for coaxial resonators, and dipole kick due to couplers for elliptical cavities. A multipole expansion has been performed for each of the cavity designs including effects up to octupole.
Direct Optical Probing of Transverse Electric Mode in Graphene
Menabde, Sergey G.; Mason, Daniel R.; Kornev, Evgeny E.; Lee, Changhee; Park, Namkyoo
2016-01-01
Unique electrodynamic response of graphene implies a manifestation of an unusual propagating and localised transverse-electric (TE) mode near the spectral onset of interband transitions. However, excitation and further detection of the TE mode supported by graphene is considered to be a challenge for it is extremely sensitive to excitation environment and phase matching condition adherence. Here for the first time, we experimentally prove an existence of the TE mode by its direct optical probing, demonstrating significant coupling to an incident wave in electrically doped multilayer graphene sheet at room temperature. We believe that proposed technique of careful phase matching and obtained access to graphene’s TE excitation would stimulate further studies of this unique phenomenon, and enable its potential employing in various fields of photonics as well as for characterization of graphene. PMID:26898892
Transonic injection in interaction with transverse compressible flow.
Dizene, R; Charbonnier, J M; Dorignac, E; Lablanc, R
2002-10-01
An extensive study devoted to modelling blade cooling was undertaken at CEAT a few years ago in collaboration with SNECMA. For the turbomachinery applications, an experimental configuration of a turbulent boundary layer with heat transfer was studied for compressible and incompressible flows. The research presented here is a part of that study and this paper reports on the experimental results of an investigation concerned with a row of transonic jets interacting with a transverse flow. In many applications, the cooling layer does not emerge onto the surface from a tangential slot but comes from a slot normal to or inclined to what is otherwise a flush surface. In this case the freestream interacts with the coolant flow. The secondary (jet) flow is introduced at an angle of 45 degrees to the mainstream flow direction. Visualization studies using the surface flow patterns and surface temperature flow patterns are reported and discussed.
Simulation study on transverse mode of laser resonator
NASA Astrophysics Data System (ADS)
Zou, H.; Zhou, L. F.; Yang, Z.
2015-08-01
Simulation study of the stability lateral field distribution for a variety of shapes parallel-plane cavity with the Fox-Li numerical iterative method is conducted in this paper, which gives the optical field amplitude distribution and phase distribution after iterating any number of times. After calculation and simulation, we find that the strip cavity needs 245 times iterations to produce a stable field conditions, while rectangular and circular cavity need 103 and 114 times under the same condition. Finally, the user interface for simulating the field distribution of a common parallel-plane cavity is designed, which is conducive to the understanding and extensive application of the theory of laser transverse mode.
Dynamic postures of the transverse metacarpal arch during typing.
Baker, Nancy A; Xiu, Kaihua; Moehling, Krissy; Li, Zong-Ming
2013-12-01
The purpose of this paper is to describe the transverse metacarpal arch (TMA) during a dynamic typing task. Static/relaxed and dynamic typing TMA were collected from 36 right-handed females with musculoskeletal discomfort using a motion capture system. While the angle of right TMA static/relaxed posture (10.1° ± 5.5°) was significantly larger than the left (8.5° ± 5.6°) (P < .05), the right dynamic posture (10.6° ± 4.3°) was not significantly different from the left (10.3° ± 5.5°) (P = .66). Within both these mean scores, there was considerable individual variation, with some subjects demonstrating very flat TMA, and some very curved. The results indicate that TMA angular postures both for static/relaxed and dynamic typing are highly variable both between individuals and between individual hands.
Hot electron dominated rapid transverse ionization growth in liquid water.
Brown, Michael S; Erickson, Thomas; Frische, Kyle; Roquemore, William M
2011-06-20
Pump/probe optical-transmission measurements are used to monitor in space and time the ionization of a liquid column of water following impact of an 800-nm, 45-fs pump pulse. The pump pulse strikes the 53-μm-diameter column normal to its axis with intensities up to 2 × 10(15) W/cm2. After the initial photoinization and for probe delay times < 500 fs, the neutral water surrounding the beam is rapidly ionized in the transverse direction, presumably by hot electrons with initial velocities of 0.55 times the speed of light (relativistic kinetic energy of ~100 keV). Such velocities are unusual for condensed-matter excitation at the stated laser intensities.
Nonintercepting diagnostics for transverse beam parameters: From rings to ERLs
NASA Astrophysics Data System (ADS)
Lumpkin, Alex H.
2006-02-01
The characterization of particle-beam parameters in accelerators and transport lines is important to the experiment's success. The development of nonintercepting (NI) diagnostics is of growing interest in the community due to top-up operations for storage rings such as the Advanced Photon Source (APS), as well as the rapidly developing energy recovering linacs (ERLs). In both areas beam position and beam quality are relevant, and the ability to measure these in an NI manner is critical. Beam transverse size and divergence are more of a challenge, and examples of the minimally intercepting or NI measurements based on optical transition radiation (OTR), optical synchrotron radiation (OSR), X-ray synchrotron radiation (XSR), optical diffraction radiation (ODR), and undulator radiation (UR) will be presented as space permits. These are relevant to the various ERL parameter spaces and operating modes.
Error studies for SNS Linac. Part 1: Transverse errors
Crandall, K.R.
1998-12-31
The SNS linac consist of a radio-frequency quadrupole (RFQ), a drift-tube linac (DTL), a coupled-cavity drift-tube linac (CCDTL) and a coupled-cavity linac (CCL). The RFQ and DTL are operated at 402.5 MHz; the CCDTL and CCL are operated at 805 MHz. Between the RFQ and DTL is a medium-energy beam-transport system (MEBT). This error study is concerned with the DTL, CCDTL and CCL, and each will be analyzed separately. In fact, the CCL is divided into two sections, and each of these will be analyzed separately. The types of errors considered here are those that affect the transverse characteristics of the beam. The errors that cause the beam center to be displaced from the linac axis are quad displacements and quad tilts. The errors that cause mismatches are quad gradient errors and quad rotations (roll).
Transversely Excited Multipass Photoacoustic Cell Using Electromechanical Film as Microphone
Saarela, Jaakko; Sand, Johan; Sorvajärvi, Tapio; Manninen, Albert; Toivonen, Juha
2010-01-01
A novel multipass photoacoustic cell with five stacked electromechanical films as a microphone has been constructed, tested and characterized. The photoacoustic cell is an open rectangular structure with two steel plates facing each other. The longitudinal acoustic resonances are excited transversely in an optical multipass configuration. A detection limit of 22 ppb (10−9) was achieved for flowing NO2 in N2 at normal pressure by using the maximum of 70 laser beams between the resonator plates. The corresponding minimum detectable absorption and the normalized noise-equivalent absorption coefficients were 2.2 × 10−7 cm−1 and 3.2 × 10−9 cm−1WHz−1/2, respectively. PMID:22219662
Transverse shear effect in a circumferentially cracked cylindrical shell
NASA Technical Reports Server (NTRS)
Delale, F.; Erdogan, F.
1979-01-01
The objectives of the paper are to solve the problem of a circumferentially-cracked cylindrical shell by taking into account the effect of transverse shear, and to obtain the stress intensity factors for the bending moment as well as the membrane force as the external load. The formulation of the problem is given for a specially orthotropic material within the framework of a linearized shallow shell theory. The particular theory used permits the consideration of all five boundary conditions as to moment and stress resultants on the crack surface. The effect of Poisson's ratio on the stress intensity factors and the nature of the out-of-plane displacement along the edges of the crack, i.e., bulging, are also studied.
Transverse-displacement stabilizer for passive magnetic bearing systems
Post, Richard F
2017-03-07
The invention provides a way re-center a rotor's central longitudinal rotational axis with a desired system longitudinal axis. A pair of planar semicircular permanent magnets are pieced together to form a circle. The flux from each magnet is pointed in in opposite directions that are both parallel with the rotational axis. A stationary shorted circular winding the plane of which is perpendicular to the system longitudinal axis and the center of curvature of the circular winding is positioned on the system longitudinal axis. Upon rotation of the rotor, when a transverse displacement of the rotational axis occurs relative to the system longitudinal axis, the winding will experience a time-varying magnetic flux such that an alternating current that is proportional to the displacement will flow in the winding. Such time-varying magnetic flux will provide a force that will bring the rotor back to its centered position about the desired axis.
Spatially covariant theories of a transverse, traceless graviton: Formalism
NASA Astrophysics Data System (ADS)
Khoury, Justin; Miller, Godfrey E. J.; Tolley, Andrew J.
2012-04-01
General relativity is a generally covariant, locally Lorentz covariant theory of two transverse, traceless graviton degrees of freedom. According to a theorem of Hojman, Kuchař, and Teitelboim, modifications of general relativity must either introduce new degrees of freedom or violate the principle of local Lorentz covariance. In this paper, we explore modifications of general relativity that retain the same graviton degrees of freedom, and therefore explicitly break Lorentz covariance. Motivated by cosmology, the modifications of interest maintain explicit spatial covariance. In spatially covariant theories of the graviton, the physical Hamiltonian density obeys an analogue of the renormalization group equation which encodes invariance under flow through the space of conformally equivalent spatial metrics. This paper is dedicated to setting up the formalism of our approach and applying it to a realistic class of theories. Forthcoming work will apply the formalism more generally.
Ultra-broadband carpet cloak for transverse-electric polarization
NASA Astrophysics Data System (ADS)
Deng, Ye; Xu, Su; Zhang, Runren; Zheng, Bin; Chen, Hua; Gao, Fei; Yu, Faxin; Zhang, Baile; Chen, Hongsheng
2016-04-01
Magnetism is a necessity in constructing macroscopic metamaterial invisibility cloaks that are theoretically designed by transformation optics, but will generally limit the cloaking bandwidth to an impractically narrow range. To meet the broad bandwidth demand, magnetism has been fully abandoned in previous demonstrations of macroscopic carpet cloaking, whose approach, however, cannot apply to a transverse-electric (TE) polarization. To fill this gap, here we experimentally demonstrate an ultra-broadband magnetic carpet cloak for the TE polarization. The cloak is made of non-resonant closed-ring metamaterials with little dispersion and the cloaking performance is confirmed with both time-domain simulation and frequency scanning measurement over a broad bandwidth corresponding to a pulse signal illumination.
Phase retrieval with transverse translation diversity: a nonlinear optimization approach.
Guizar-Sicairos, Manuel; Fienup, James R
2008-05-12
We develop and test a nonlinear optimization algorithm for solving the problem of phase retrieval with transverse translation diversity, where the diverse far-field intensity measurements are taken after translating the object relative to a known illumination pattern. Analytical expressions for the gradient of a squared-error metric with respect to the object, illumination and translations allow joint optimization of the object and system parameters. This approach achieves superior reconstructions, with respect to a previously reported technique [H. M. L. Faulkner and J. M. Rodenburg, Phys. Rev. Lett. 93, 023903 (2004)], when the system parameters are inaccurately known or in the presence of noise. Applicability of this method for samples that are smaller than the illumination pattern is explored.
Deep Tunnel in Transversely Anisotropic Rock with Groundwater Flow
NASA Astrophysics Data System (ADS)
Bobet, Antonio
2016-12-01
Closed-form solutions for the stresses and deformations induced in the ground and tunnel liner are provided for a deep tunnel in a transversely anisotropic elastic rock, with anisotropic permeability, when subjected to groundwater seepage. Complex variable theory and conformal mapping are used to obtain the solutions; additional complex functions, necessary to prevent multiple solutions of the displacements, are included. The analytical solutions are verified by comparing their results from those of a finite element method. Simplified formulations are presented for tunnels with a perfectly flexible and completely incompressible liner. A spreadsheet is included that can be used to obtain stresses and displacements of the liner due to groundwater flow and far-field geostatic stresses.
Mechanical action of the transverse spin flows in evanescent fields
NASA Astrophysics Data System (ADS)
Angelsky, O. V.; Zenkova, C. Yu.; Maksymyak, P. P.; Maksymyak, A. P.; Ivansky, D. I.
2016-12-01
Mechanical action caused by the optical forces connected with the canonical momentum density associated with the local wavevector or Belifante's spin angular momentum, the helicity dependent and the helicity independent forces determined by spin momenta of different nature open attractive prospects to use optical structures for manipulating with minute quantities of matter that is of importance in nanophysics, nanooptics and nanotechnologies, precision chemistry and pharmacology and in numerous other areas. The main finding of our study consists in direct experimental demonstration of physical reality and mechanical action of recently discovered extraordinary transverse component of the spin angular momentum arising (in our case) in an evanescent light wave due to the total internal reflection of linearly polarized probing beam with azimuth 450 at the interface `birefringent plate-air', which is oriented perpendicularly to the wave vector of an evanescent wave.
Theory of Slow Waves in Transversely Nonuniform Plasma Waveguides
Kuzelev, M.V.; Romanov, R.V.; Rukhadze, A.A.
2005-02-15
A general method is developed for a numerical analysis of the frequency spectra of internal, internal-surface, and surface slow waves in a waveguide with transverse plasma density variations. For waveguides with a piecewise constant plasma filling, the spectra of slow waves are thoroughly examined in the limits of an infinitely weak and an infinitely strong external magnetic field. For a smooth plasma density profile, the frequency spectrum of long-wavelength surface waves remains unchanged, but a slow damping rate appears that is caused by the conversion of the surface waves into internal plasma waves at the plasma resonance point. As for short-wavelength internal waves, they are strongly damped by this effect. It is pointed out that, for annular plasma geometry, which is of interest from the experimental point of view, the spectrum of the surface waves depends weakly on the magnetic field strength in the waveguide.
Transverse Domain Wall Profile for Spin Logic Applications
Goolaup, S.; Ramu, M.; Murapaka, C.; Lew, W. S.
2015-01-01
Domain wall (DW) based logic and memory devices require precise control and manipulation of DW in nanowire conduits. The topological defects of Transverse DWs (TDW) are of paramount importance as regards to the deterministic pinning and movement of DW within complex networks of conduits. In-situ control of the DW topological defects in nanowire conduits may pave the way for novel DW logic applications. In this work, we present a geometrical modulation along a nanowire conduit, which allows for the topological rectification/inversion of TDW in nanowires. This is achieved by exploiting the controlled relaxation of the TDW within an angled rectangle. Direct evidence of the logical operation is obtained via magnetic force microscopy measurement. PMID:25900455
Transverse electromagnetic horn antenna with resistively-loaded exterior surfaces
Aurand, John F.
1999-01-01
An improved transverse electromagnetic (TEM) horn antenna comprises a resistive loading material on the exterior surfaces of the antenna plates. The resistive loading material attenuates or inhibits currents on the exterior surfaces of the TEM horn antenna. The exterior electromagnetic fields are of opposite polarity in comparison to the primary and desired interior electromagnetic field, thus inherently cause partial cancellation of the interior wave upon radiation or upon reception. Reducing the exterior fields increases the radiation efficiency of the antenna by reducing the cancellation of the primary interior field (supported by the interior surface currents). This increases the transmit gain and receive sensitivity of the TEM horn antenna, as well as improving the transient (time-domain) response.
Transverse Electronic Signature of DNA for Electronic Sequencing
NASA Astrophysics Data System (ADS)
Xu, Mingsheng; Endres, Robert G.; Arakawa, Yasuhiko
In recent years, the proliferation of large-scale DNA sequencing projects for applications in clinical medicine and health care has driven the search for new methods that could reduce the time and cost. The commonly used Sanger sequencing method relies on the chemistry to read the bases in DNA and is far too slow and expensive for reading personal genetic codes. There were earlier attempts to sequence DNA by directly visualizing the nucleotide composition of the DNA molecules by scanning tunneling microscopy (STM). However, sequencing DNA based on directly imaging DNA's atomic structure has not yet been successful. In Chap. 9, Xu, Endres, and Arakawa report a potential physical alternative by detecting unique transverse electronic signatures of DNA bases using ultrahigh vacuum STM. Supported by the principles, calculations and statistical analyses, these authors argue that it would be possible to directly sequence DNA by the STM-based technology without any modification of the DNA.
Suppression of transverse instability by a digital damper
Burov, A.; Lebedev, V.; /Fermilab
2006-06-01
With cooling, beam phase space density increases, which makes the beam motion intrinsically unstable. To suppress instabilities, dampers are required. With a progress of digital technology, digital dampers are getting to be more and more preferable. Conversion of an analog signal into digital one is described by a linear operator with explicit time dependence. Thus, the analog-digital converter (ADC) does not preserve a signal frequency. Instead, a monochromatic input signal is transformed into a mixture of all possible frequencies, combining the input one with multiples of the sampling frequency. Stability analysis has to include a cross-talk between all these combined frequencies. In this paper, we are analyzing a problem of stability for beam transverse microwave oscillations in a presence of digital damper; the impedance and the space charge are taken into account. The developed formalism is applied for antiproton beam in the Recycler Ring (RR) at Fermilab.
Transversely isotropic poroelasticity arising from thin isotropic layers
Berryman, J.G.
1996-11-01
Percolation phenomena play central roles in the field of poroelasticity, where two distinct sets of percolating continua intertwine. A connected solid frame forms the basis of the elastic behavior of a poroelastic medium in the presence of confining forces, while connected pores permit a percolating fluid (if present) to influence the mechanical response of the system from within. The present paper discusses isotropic and anisotropic poroelastic media and establishes general formulas for the behavior of transversely isotropic poroelasticity arising from laminations of isotropic components. The Backus averaging method is shown to provide elementary means of constructing general formulas. The results for confined fluids are then compared with the more general Gassmann formulas that must be satisfied by any anisotropic poroelastic medium and found to be in complete agreement.
Image reconstruction by phase retrieval with transverse translation diversity
NASA Astrophysics Data System (ADS)
Guizar-Sicairos, Manuel; Fienup, James R.
2008-08-01
Measuring a series of far-field intensity patterns from an object, taken after a transverse translation of the object with respect to a known illumination pattern, has been shown to make the problem of image reconstruction by phase retrieval much more robust. However, previously reported reconstruction algorithms [Phys. Rev. Lett. 93, 023903 (2004)] rely on an accurate knowledge of the translations and illumination pattern for a successful reconstruction. We developed a nonlinear optimization algorithm that allows optimization over the translations and illumination pattern, dramatically improving the reconstructions if the system parameters are inaccurately known [Opt. Express 16, 7264 (2008)]. In this paper we compare reconstructions obtained with these algorithms under realistic experimental scenarios.
Transverse dispersion of contaminants in fractured permeable formations
Rubin, H.; Buddemeier, R.W.
1996-01-01
Our interest in understanding some of the mechanisms involved in the mineralization of the Great Bend Prairie aquifer of Kansas by salt water originating from Permian bedrock formations, which are fractured sandstones, has prompted this basic study. The fractured permeable formation is represented by a simplified conceptual model incorporating two sets of oblique and parallel fractures embedded in permeable blocks. The domain is initially divided into a completely freshwater zone overlying a completely saline water zone. However, the sharp interface originally existing between the saline and fresh water is subject to dispersion because of mixing in fracture intersections and between the fracture flow and the permeable block flow. Simulations based on the use of an appropriate numerical model developed in the present study have helped us to characterize dispersion of the sharp interface and creation of the transition zone. Relationships of transverse and longitudinal dispersion in the domain are also determined. ?? 1996 - Elsevier Science B.V. All rights reserved.
Numerical simulation of plasma processes driven by transverse ion heating
NASA Technical Reports Server (NTRS)
Singh, Nagendra; Chan, C. B.
1993-01-01
The plasma processes driven by transverse ion heating in a diverging flux tube are investigated with numerical simulation. The heating is found to drive a host of plasma processes, in addition to the well-known phenomenon of ion conics. The downward electric field near the reverse shock generates a doublestreaming situation consisting of two upflowing ion populations with different average flow velocities. The electric field in the reverse shock region is modulated by the ion-ion instability driven by the multistreaming ions. The oscillating fields in this region have the possibility of heating electrons. These results from the simulations are compared with results from a previous study based on a hydrodynamical model. Effects of spatial resolutions provided by simulations on the evolution of the plasma are discussed.
Transitions and transversions in evolutionary descent - An approach to understanding
NASA Technical Reports Server (NTRS)
Holmquist, R.
1983-01-01
A quantitative theoretical groundwork is presented for determining the proportions of the possible types of base substitutions observed between 12 genes sharing a common ancestor and isolated from extant species. Three methods (direct count, regression, and informational entropy maximization) are described by which conditional base substitution probabilities that determine evolutionary descent can be estimated from experimental data. These methods are utilized to study the ratio of transversions to transitions during gene divergence. The limiting ratio is directly calculated from a knowledge of the 12 conditional probabilities for each type of base substitution and from a knowledge of the equilibrium base composition of the DNAs compared. An expression is developed for this calculation. It is concluded that multiple substitutions per se do not lead to a decrease in transition differences with increasing evolutionary divergence.
Quantum quench in the transverse-field Ising chain.
Calabrese, Pasquale; Essler, Fabian H L; Fagotti, Maurizio
2011-06-03
We consider the time evolution of observables in the transverse-field Ising chain after a sudden quench of the magnetic field. We provide exact analytical results for the asymptotic time and distance dependence of one- and two-point correlation functions of the order parameter. We employ two complementary approaches based on asymptotic evaluations of determinants and form-factor sums. We prove that the stationary value of the two-point correlation function is not thermal, but can be described by a generalized Gibbs ensemble (GGE). The approach to the stationary state can also be understood in terms of a GGE. We present a conjecture on how these results generalize to particular quenches in other integrable models.
Probing transverse momentum broadening in heavy ion collisions
NASA Astrophysics Data System (ADS)
Mueller, A. H.; Wu, Bin; Xiao, Bo-Wen; Yuan, Feng
2016-12-01
We study the dijet azimuthal de-correlation in relativistic heavy ion collisions as an important probe of the transverse momentum broadening effects of a high energy jet traversing the quark-gluon plasma. We take into account both the soft gluon radiation in vacuum associated with the Sudakov logarithms and the jet PT-broadening effects in the QCD medium. We find that the Sudakov effects are dominant at the LHC, while the medium effects can play an important role at RHIC energies. This explains why the LHC experiments have not yet observed sizable PT-broadening effects in the measurement of dijet azimuthal correlations in heavy ion collisions. Future investigations at RHIC will provide a unique opportunity to study the PT-broadening effects and help to pin down the underlying mechanism for jet energy loss in a hot and dense medium.
Transverse top quark polarization and the forward-backward asymmetry
NASA Astrophysics Data System (ADS)
Baumgart, Matthew; Tweedie, Brock
2013-08-01
The forward-backward asymmetry in top pair production at the Tevatron has long been in tension with the Standard Model prediction. One of the only viable new physics scenarios capable of explaining this anomaly is an s-channel axigluon-like resonance, with the quantum numbers of the gluon but with significant axial couplings to quarks. While such a resonance can lead to a clear bump or excess in the or dijet mass spectra, it may also simply be too broad to cleanly observe. Here, we point out that broad resonances generally lead to net top and antitop polarizations transverse to the production plane. This polarization is consistent with all discrete spacetime symmetries, and, analogous to the forward-backward asymmetry itself, is absent in QCD at leading order. Within the parameter space consistent with the asymmetry measurements, the induced polarization can be sizable, and might be observable at the Tevatron or the LHC.
Transverse Mercator with an accuracy of a few nanometers
NASA Astrophysics Data System (ADS)
Karney, Charles F. F.
2011-08-01
Implementations of two algorithms for the transverse Mercator projection are described; these achieve accuracies close to machine precision. One is based on the exact equations of Thompson and Lee and the other uses an extension of Krüger's series for the mapping to higher order. The exact method provides an accuracy of 9 nm over the entire ellipsoid, while the errors in the series method are less than 5 nm within 3900 km of the central meridian. In each case, the meridian convergence and scale are also computed with similar accuracy. The speed of the series method is competitive with other less accurate algorithms and the exact method is about five times slower.
NASA Astrophysics Data System (ADS)
Lachab, Mohamed; Sun, WenHong; Jain, Rakesh; Dobrinsky, Alex; Gaevski, Mikhail; Rumyantsev, Sergey; Shur, Michael; Shatalov, Max
2017-01-01
We demonstrate the capability to control the optical polarization of room-temperature stimulated emissions (SEs) at 238-239 nm from optically pumped AlGaN multiple-quantum-well (MQW) heterostructures on bulk AlN. The results of structural and optical characterizations provided evidence that altering the strain state in the pseudomorphically grown MQW laser structures enabled the switching of the polarization direction of the SE from predominantly transverse electric (TE) at 238 nm to predominantly transverse magnetic (TM) at 239 nm. The SE observed at 238 nm represents the shortest peak wavelength with TE polarization yet reported for AlGaN materials grown on any type of substrate.
Studies of the transverse structure of the nucleon at JLab
Mirazita, Marco
2014-03-01
Since the earliest measurements in the '70, hadronic physics deals with a number of surprising phenomena that cannot be explained in the framework of perturbative QCD. Examples are the small fraction of the proton spin carried by the valence quark spins, the persistence at high energies of single spin asymmetries and azimuthal asymmetries in unpolarized processes. It is now believed that the answer to these questions may come from the transverse motion of partons inside the nucleon, which is encoded in the Transverse Momentum Dependent (TMD) Parton Distribution Functions. Among the large variety of processes that can be described in terms of TMDs, a major role is played by Semi-Inclusive Deep Inelastic Scattering (SIDIS) reactions, in which, together with the scattered electron, one or more hadrons are detected in the final state. Single and Double Spin Asymmetries are the experimental observables sensitive to TMDs. The identification of the final hadrons allows the tagging of the quark involved in the reaction at the parton level, and then the flavor separation of the relevant TMDs. SIDIS reactions are studied at Jefferson Laboratories since many years and are one of the main items in the physics program after the upgrade of the CEBAF accelerator. The large amount of new data that will be available in few years calls for the implementation of new tools, such as multidimensional analyses and refined techniques of TMDs extraction from the experimental asymmetries. In this talk, the more recent results obtained at 6 GeV will be shown and the future measurements will be discussed.
An in vitro investigation of transverse flow estimation
NASA Astrophysics Data System (ADS)
Udesen, Jesper; Jensen, Jorgen A.
2004-04-01
Conventional ultrasound scanners are restricted to display the blood velocity component in the ultrasound beam direction. By introducing a laterally oscillating field, signals are created from which the transverse velocity component can be estimated. This paper presents velocity and volume flow estimates obtained from flow phantom and in-vivo measurements at 90° relative to the ultrasound beam axis. The flow phantom experiment setup consists of a SMI140 flow phantom connected to a CompuFlow 1000 programmable flow pump, which generates a flow similarly to that in the femoral artery. A B-K medical 8804 linear array transducer with 128 elements and a center frequency of 7 MHz is emitting 8 cycle ultrasound pulses with a pulse repetition frequency of 7 kHz in a direction perpendicular to the flow direction in the phantom. The transducer is connected to the experimental ultrasound scanner RASMUS, and 1.4 seconds of data is acquired. Using 2 parallel receive beamformers a transverse oscillation is introduced with an oscillation period 1.2 mm. The velocity estimation is performed using an extended autocorrelation algorithm. The volume flow can be estimated with a relative standard deviation of 13.0% and a relative mean bias of 3.4%. The in-vivo experiment is performed on the common carotid artery of a healthy 25 year old male. The same transducer and setup is used as in the flow phantom experiment, and the data is acquired using the RASMUS scanner. The peak velocity of the carotid flow is estimated to 1.2 m/s and the volume flow to 290 ml/min. This is within normal physiological range.
Transversely isotropic elasticity and poroelasticity arising from thin isotropic layers
Berryman, J.G.
1997-07-01
Since the classic work of Postma [1955] and Backus [1962], much has been learned about elastic constants in vertical transversely isotropic (VTI) media when the anisotropy is due to fine layering of isotropic elastic materials. However, new results are still being discovered. For example, the P-wave anisotropy parameter c{sub 11}/c{sub 33} lies in the range 1/4 {<=} c{sub 11}/c{sub 33} {<=} <{lambda}+2{mu}><1/({lambda}+2{mu})>, when the layers are themselves composed of isotropic elastic materials with Lame constants {lambda} and {mu} and the vertical average of the layers is symbolized by <{center_dot}>. The lower bound corrects a result of Postma. For porous layers, a connected solid frame forms the basis of the elastic behavior of a poroelastic medium in the presence of confining forces, while connected pores permit a percolating fluid (if present) to influence the mechanical response of the system from within. For isotropic and anisotropic poroelastic media, we establish general formulas for the behavior of transversely isotropic poroelasticity arising from laminations of isotropic components. The Backus averaging method is shown to provide elementary means of constructing general formulas. The results for confined fluids are then compared with the more general Gassmann [1951] formulas that must be satisfied by any anisotropic poroelastic medium and found to be in complete agreement. Such results are important for applications to oil exploration using AVO (amplitude versus offset) since the presence or absence of a fluid component, as well as the nature of the fluid, is the critical issue and the ways in which the fluid influences seismic reflection data still need to be better understood.
A Critical Analysis of Transverse Dispersivity Field Data
NASA Astrophysics Data System (ADS)
Attinger, Sabine; Zech, Alraune; Bellin, Alberto; Cvetkovic, Vladimir; Dagan, Gedeon; Dietrich, Peter; Fiori, Aldo; Teutsch, Georg
2016-04-01
Spreading of solute plumes in groundwater is often quantified by macrodispersivity. Thereby, the transverse αT and vertical αV characterize the broadening of the plume in the vertical plane, perpendicular to the flow direction. Determining αT and αV from field experiments is difficult and costly. Still, it is an important parameter for making predictions of contaminant transport e.g. for stationary contamination plumes, bio-degradation and natural attenuation. Measured values of αT and αV at field scale are only available for a few sites. Gelhar and coworkers classified in 1992 the values into three reliability groups: highly, moderately and lowly reliable. Only recently, we could show for the longitudinal macrodispersivity αL, that the values of low reliability need to be excluded for further analysis, based on a re-evaluation of the experiments. Furthermore, new studies emerged in the meantime, which requires evaluation of reliability and incorporation, when appropriate. This work focuses on collecting reliable field data of transverse and vertical macrodispersivities. The ensemble of reliable αT and αV values is then used to answer the following questions: (i) Is there an upper limit of αT and αV or the tendency of increasing values with increasing travel distance of tracer plumes? (ii) Can the field data be predicted by theoretical models? (iii) What can we learn from the field based ratios αV/αT and αT/αL? The investigation may provide valuable information for modeling and predicting contaminant transport in groundwater.
Relative yield of heavy hadrons as a function of the transverse momentum in LHC experiments
Berezhnoy, A. V.; Likhoded, A. K.
2015-03-15
The relative yield of hadrons involving a b quark (B{sub c}, B{sub s}, B, Ʌ{sub b}, etc.) is studied as a function of the transverse momentum. It is shown that the yields in question exhibit a nontrivial transverse-momentum dependence because of the difference in nonperturbative fragmentation functions and because of the contribution of power-law corrections at low transverse momenta.
Stress concentration in a transversely isotropic spherical shell with two circular rigid inclusions
NASA Astrophysics Data System (ADS)
Chekhov, V. N.; Zakora, S. V.
2011-10-01
The refined Timoshenko-type theory that takes into account the transverse shear strains is used to find an analytic solution for the stress state of transversely isotropic shallow spherical shell with two circular rigid inclusions. The case of a shell with closely spaced rigid inclusions of unequal radii under internal pressure is analyzed numerically. The stresses in the shell increase considerably with decrease in the distance between the inclusions and increase in the transverse shear parameter
Average transverse momentum and energy density in high-energy nucleus-nucleus collisions
NASA Technical Reports Server (NTRS)
Burnett, T. H.; Dake, S.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.; Jurak, A.; Lord, J. J.
1986-01-01
Emulsion chambers were used to measure the transverse momenta of photons or pi(0) mesons produced in high-energy cosmic-ray nucleus-nucleus collisions. A group of events having large average transverse momenta has been found which apparently exceeds the expected limiting values. Analysis of the events at early interaction times, of the order of 1 fm/c, indicates that the observed transverse momentum increases with both rapidity density and energy density.
NASA Astrophysics Data System (ADS)
Sankarasubramanian, V.; Buitenweg, J. R.; Holsheimer, J.; Veltink, P.
2011-02-01
The aim of this modeling study is to determine the influence of electrode alignment of transverse tripoles on the paresthesia coverage of the pain area in spinal cord stimulation, using a percutaneous triple-lead approach. Transverse tripoles, comprising a central cathode and two lateral anodes, were modeled on the low-thoracic vertebral region (T10-T12) using percutaneous triple-lead configurations, with the center lead on the spinal cord midline. The triple leads were oriented both aligned and staggered. In the staggered configuration, the anodes were offset either caudally (caudally staggered) or rostrally (rostrally staggered) with respect to the midline cathode. The transverse tripolar field steering with the aligned and staggered configurations enabled the estimation of dorsal column fiber thresholds (IDC) and dorsal root fiber thresholds (IDR) at various anodal current ratios. IDC and IDR were considerably higher for the aligned transverse tripoles as compared to the staggered transverse tripoles. The aligned transverse tripoles facilitated deeper penetration into the medial dorsal columns (DCs). The staggered transverse tripoles always enabled broad and bilateral DC activation, at the expense of mediolateral steerability. The largest DC recruited area was obtained with the rostrally staggered transverse tripole. Transverse tripolar geometries, using percutaneous leads, allow for selective targeting of either medial or lateral DC fibers, if and only if the transverse tripole is aligned. Steering of anodal currents between the lateral leads of the staggered transverse tripoles cannot target medially confined populations of DC fibers in the spinal cord. An aligned transverse tripolar configuration is strongly recommended, because of its ability to provide more post-operative flexibility than other configurations.
2014-07-29
investigation of confined turbulent multiple transverse jets 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER F...14386 14. ABSTRACT The flow and mixing properties of confined transverse jets are relevant to a myriad of combustion devices ranging from propulsion...to energy generation and chemical processing. The current effort focuses on understanding the mixing process between a transverse jet mixing in a
2015-01-01
Technical Paper 3. DATES COVERED (From - To) January 2015-May 2015 4. TITLE AND SUBTITLE COMPUTATIONAL MODELING APPROACHES FOR STUDYING TRANSVERSE ...so that the effect of the transverse instability on the center study element can be examined parametrically. The second approach models the entire...APPROACHES FOR STUDYING TRANSVERSE COMBUSTION INSTABILITY IN A MULTI-ELEMENT INJECTOR M.E. Harvazinski1, K.J. Shipley2*, D.G. Talley1, V. Sankaran1, and
2015-05-01
Charts 3. DATES COVERED (From - To) May 2015- June 2015 4. TITLE AND SUBTITLE COMPUTATIONAL MODELING APPROACHES FOR STUDYING TRANSVERSE COMBUSTION...an artificial forcing term. The forcing amplitude can be adjusted so that the effect of the transverse instability on the center study element can be...Approaches for Studying Transverse Combustion Instability in a Multi-element Injector Matt Harvazinski1, Kevin Shipley2, Doug Talley1, Venke Sankaran1
Low-Profile UHF Antenna Design Based on an Anisotropic Transverse Resonance Condition
2014-08-01
Low-Profile UHF Antenna Design Based on an Anisotropic Transverse Resonance Condition by Gregory Mitchell and Wasyl Wasylkiwskyj ARL-TR...2014 Low-Profile UHF Antenna Design Based on an Anisotropic Transverse Resonance Condition Gregory Mitchell and Wasyl Wasylkiwskyj Sensors...DATES COVERED (From - To) 01/2014–06/2014 4. TITLE AND SUBTITLE Low-Profile UHF Antenna Design Based on an Anisotropic Transverse Resonance
Quantum Quench Dynamics in the Transverse Field Ising Model at Non-zero Temperatures
NASA Astrophysics Data System (ADS)
Abeling, Nils; Kehrein, Stefan
The recently discovered Dynamical Phase Transition denotes non-analytic behavior in the real time evolution of quantum systems in the thermodynamic limit and has been shown to occur in different systems at zero temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this talk we present the extension of the analysis to non-zero temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum quench in the transverse field Ising model. Although the quantitative behavior at non-zero temperatures still displays features derived from the zero temperature non-analyticities, it is shown that in this model dynamical phase transitions do not exist if T > 0 . This is a consequence of the system being initialized in a thermal state. Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a global quench or to obtain the change of the equilibrium free energy density. This work was supported through CRC SFB 1073 (Project B03) of the Deutsche Forschungsgemeinschaft (DFG).
Collins, J.; Gamberg, L.; Prokudin, A.; Rogers, T. C.; Sato, N.; Wang, B.
2016-08-08
We construct an improved implementation for combining TMD factorization transverse- momentum-dependent (TMD) factorization and collinear factorization. TMD factorization is suit- able for low transverse momentum physics, while collinear factorization is suitable for high transverse momenta and for a cross section integrated over transverse momentum. The result is a modified version of the standard W + Y prescription traditionally used in the Collins-Soper-Sterman (CSS) formalism and related approaches. As a result, we further argue that questions regarding the shape and Q- dependence of the cross sections at lower Q are largely governed by the matching to the Y -term.
Continuous Quantum Nondemolition Measurement of the Transverse Component of a Qubit.
Vool, U; Shankar, S; Mundhada, S O; Ofek, N; Narla, A; Sliwa, K; Zalys-Geller, E; Liu, Y; Frunzio, L; Schoelkopf, R J; Girvin, S M; Devoret, M H
2016-09-23
Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudospin component. Is it possible, instead, to observe quantum jumps between the transverse superpositions of these eigenstates? We answer positively by presenting the first continuous quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the transverse qubit states, and a dispersive measurement of the corresponding operator. Such transverse component measurements are a useful tool in the driven-dissipative operation engineering toolbox, which is central to quantum simulation and quantum error correction.
Arregui, I.; Asensio Ramos, A.
2013-06-01
We present a Bayesian seismology inversion technique for propagating magnetohydrodynamic transverse waves observed in coronal waveguides. The technique uses theoretical predictions for the spatial damping of propagating kink waves in transversely inhomogeneous coronal waveguides. It combines wave amplitude damping length scales along the waveguide with theoretical results for resonantly damped propagating kink waves to infer the plasma density variation across the oscillating structures. Provided that the spatial dependence of the velocity amplitude along the propagation direction is measured and the existence of two different damping regimes is identified, the technique would enable us to fully constrain the transverse density structuring, providing estimates for the density contrast and its transverse inhomogeneity length scale.
NASA Astrophysics Data System (ADS)
Collins, J.; Gamberg, L.; Prokudin, A.; Rogers, T. C.; Sato, N.; Wang, B.
2016-08-01
We construct an improved implementation for combining transverse-momentum-dependent (TMD) factorization and collinear factorization. TMD factorization is suitable for low transverse momentum physics, while collinear factorization is suitable for high transverse momenta and for a cross section integrated over transverse momentum. The result is a modified version of the standard W +Y prescription traditionally used in the Collins-Soper-Sterman (CSS) formalism and related approaches. We further argue that questions regarding the shape and Q dependence of the cross sections at lower Q are largely governed by the matching to the Y term.
Performance of the transverse coupled-bunch feedback system in the SRRC
Hsu, K.T.; Kuo, C.C.; Kuo, C.H.; Lin, K.K.; Ueng, T.S.; Weng, W.T.
1996-10-01
A transverse feedback system has been implemented and commissioned in the SRRC storage ring to suppress transverse coupled-bunch oscillations of the electron beam. The system includes transverse oscillation detectors, notch filter, baseband quadrature processing circuitry, power amplifiers, and kickers. To control a large number of transverse coupled-bunch modes, the system is broad-band, bunch-by- bunch in nature. Because the system is capable of bunch-by-bunch correction, it can also be useful for suppressing instabilities introduced by ions. The sextupole strength was then reduced to improve dynamic aperture and hence lifetime of the storage ring.
Continuous Quantum Nondemolition Measurement of the Transverse Component of a Qubit
NASA Astrophysics Data System (ADS)
Vool, U.; Shankar, S.; Mundhada, S. O.; Ofek, N.; Narla, A.; Sliwa, K.; Zalys-Geller, E.; Liu, Y.; Frunzio, L.; Schoelkopf, R. J.; Girvin, S. M.; Devoret, M. H.
2016-09-01
Quantum jumps of a qubit are usually observed between its energy eigenstates, also known as its longitudinal pseudospin component. Is it possible, instead, to observe quantum jumps between the transverse superpositions of these eigenstates? We answer positively by presenting the first continuous quantum nondemolition measurement of the transverse component of an individual qubit. In a circuit QED system irradiated by two pump tones, we engineer an effective Hamiltonian whose eigenstates are the transverse qubit states, and a dispersive measurement of the corresponding operator. Such transverse component measurements are a useful tool in the driven-dissipative operation engineering toolbox, which is central to quantum simulation and quantum error correction.
Effect of twist on transverse impact response of ballistic fiber yarns
Song, Bo; Lu, Wei -Yang
2015-06-15
A Hopkinson bar was employed to conduct transverse impact testing of twisted Kevlar KM2 fiber yarns at the same impact speed. The speed of Euler transverse wave generated by the impact was measured utilizing a high speed digital camera. The study included fiber yarns twisted by different amounts. The Euler transverse wave speed was observed to increase with increasing amount of twist of the fiber yarn, within the range of this investigation. As a result, the higher transverse wave speeds in the more twisted fiber yarns indicate better ballistic performance in soft body armors for personal protection.
NASA Astrophysics Data System (ADS)
Nakagawa, I.
2016-08-01
Large single spin asymmetries in very forward neutron production seen using the PHENIX zero-degree calorimeters are a long established feature of transversely polarized proton-proton collisions at RHIC. Neutron production near zero degrees is well described by the one-pion exchange framework. The absorptive correction to the OPE generates the asymmetry as a consequence of a phase shift between the spin flip and non-spin flip amplitudes. However, the amplitude predicted by the OPE is too small to explain the large observed asymmetries. A model introducing interference of pion and a 1-Reggeon exchanges has been successful in reproducing the experimental data. During the RHIC experiment in year 2015, RHIC delivered polarized proton collisions with Au and Al nuclei for the first time, enabling the exploration of the mechanism of transverse single-spin asymmetries with nuclear collisions. The observed asymmetries showed surprisingly strong A-dependence in the inclusive forward neutron production, while the existing framework which was successfull in p+p only predicts moderate A- dependence. Thus the observed data are absolutely unexpected and unpredicted. In this report, experimental and theoretical efforts are discussed to disentangle the observed A-dependence using somewhat semi-inclusive type measurements and Monte-Carlo study, respectively.
Stress wave propagation in a composite beam subjected to transverse impact.
Lu, Wei-Yang; Song, Bo; Jin, Huiqing
2010-08-01
Composite materials, particularly fiber reinforced plastic composites, have been extensively utilized in many military and industrial applications. As an important structural component in these applications, the composites are often subjected to external impact loading. It is desirable to understand the mechanical response of the composites under impact loading for performance evaluation in the applications. Even though many material models for the composites have been developed, experimental investigation is still needed to validate and verify the models. It is essential to investigate the intrinsic material response. However, it becomes more applicable to determine the structural response of composites, such as a composite beam. The composites are usually subjected to out-of-plane loading in applications. When a composite beam is subjected to a sudden transverse impact, two different kinds of stress waves, longitudinal and transverse waves, are generated and propagate in the beam. The longitudinal stress wave propagates through the thickness direction; whereas, the propagation of the transverse stress wave is in-plane directions. The longitudinal stress wave speed is usually considered as a material constant determined by the material density and Young's modulus, regardless of the loading rate. By contrast, the transverse wave speed is related to structural parameters. In ballistic mechanics, the transverse wave plays a key role to absorb external impact energy [1]. The faster the transverse wave speed, the more impact energy dissipated. Since the transverse wave speed is not a material constant, it is not possible to be calculated from stress-wave theory. One can place several transducers to track the transverse wave propagation. An alternative but more efficient method is to apply digital image correlation (DIC) to visualize the transverse wave propagation. In this study, we applied three-pointbending (TPB) technique to Kolsky compression bar to facilitate
Palinspastic restoration of the Anniston transverse zone in the Appalachian thrust belt, Alabama
NASA Astrophysics Data System (ADS)
Thomas, William A.; Bayona, Germán
2002-04-01
Transverse zones are cross-strike alignments of cross-strike linking structures (lateral ramps, transverse faults, and displacement-transfer zones) in foreland thrust belts. Cross-strike links constitute one component of a three-dimensional system of fault surfaces, connecting strike-parallel structures (frontal ramps) and detachment flats both geometrically and kinematically. Three-dimensional palinspastic restoration provides the basis to consider causes of cross-strike alignments of cross-strike links into transverse zones, as well as the role of transverse zones in kinematic history. The Anniston transverse zone in the Appalachian thrust belt in Alabama (southeastern United States) exemplifies the types and distribution of cross-strike links within a transverse zone. Palinspastic reconstruction of the Anniston transverse zone relies on matching hanging-wall/footwall pairs of frontal and lateral ramps for geometric balance in three dimensions in palinspastic-map and cross-section views. Cross-strike links within the Anniston transverse zone are systematically distributed across strike, from hinterland to foreland, as domains of lateral ramps, transverse faults, and displacement-transfer zones, in response to variations in depth to basement beneath the thrust belt and variations in thickness of décollement-host weak rocks. Contrasting structural profiles characterize the thrust belt on opposite sides of the Anniston transverse zone as a result of abrupt along-strike changes at the cross-strike alignment of cross-strike links. The Anniston transverse zone is aligned with a northwest-striking basement fault that offsets the boundary faults of the Birmingham basement graben, suggesting kinematic partitioning within the advancing thrust sheets at a stress concentrator. The northwest-striking basement fault separates domains of contrasting structural profiles of basement fault systems, differing elevations of top of basement, and differing thicknesses of the regional
Novel High Transverse Momentum Phenomena in Hadronic and Nuclear Collisions
Brodsky, Stanley J.; /SLAC
2009-04-10
I discuss a number of novel phenomenological features of QCD in high transverse momentum reactions. The presence of direct higher-twist processes, where a proton is produced directly in the hard subprocess, can explain the 'baryon anomaly' - the large proton-to-pion ratio seen at RHIC in high centrality heavy ion collisions. Direct hadronic processes can also account for the deviation from leading-twist PQCD scaling at fixed x{sub T} = 2 p{sub T}/{radical}s. I suggest that the 'ridge' --the same-side long-range rapidity correlation observed at RHIC in high centrality heavy ion collisions is due to the imprint of semihard DGLAP gluon radiation from initial-state partons which have transverse momenta biased toward the trigger. A model for early thermalization of the quark-gluon medium is also outlined. Rescattering interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam-Tung relation in Drell-Yan reactions, nuclear shadowing--all leading-twist dynamics not incorporated in the light-front wavefunctions of the target computed in isolation. Anti shadowing is shown to be quark flavor specific and thus different in charged and neutral deep inelastic lepton-nucleus scattering. I also discuss other aspects of quantum effects in heavy ion collisions, such as tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and the important consequences of color-octet intrinsic heavy quark distributions in the proton for particle and Higgs production at high x{sub F}. I also discuss how the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories allows one to compute the analytic form of frame-independent light-front wavefunctions of
Buckling and Damage Resistance of Transversely-Loaded Composite Shells
NASA Technical Reports Server (NTRS)
Wardle, Brian L.
1998-01-01
Experimental and numerical work was conducted to better understand composite shell response to transverse loadings which simulate damage-causing impact events. The quasi-static, centered, transverse loading response of laminated graphite/epoxy shells in a [+/-45(sub n)/O(sub n)](sub s) layup having geometric characteristics of a commercial fuselage are studied. The singly-curved composite shell structures are hinged along the straight circumferential edges and are either free or simply supported along the curved axial edges. Key components of the shell response are response instabilities due to limit-point and/or bifurcation buckling. Experimentally, deflection-controlled shell response is characterized via load-deflection data, deformation-shape evolutions, and the resulting damage state. Finite element models are used to study the kinematically nonlinear shell response, including bifurcation, limit-points, and postbuckling. A novel technique is developed for evaluating bifurcation from nonlinear prebuckling states utilizing asymmetric spatial discretization to introduce numerical perturbations. Advantages of the asymmetric meshing technique (AMT) over traditional techniques include efficiency, robustness, ease of application, and solution of the actual (not modified) problems. The AMT is validated by comparison to traditional numerical analysis of a benchmark problem and verified by comparison to experimental data. Applying the technique, bifurcation in a benchmark shell-buckling problem is correctly identified. Excellent agreement between the numerical and experimental results are obtained for a number of composite shells although predictive capability decreases for stiffer (thicker) specimens which is attributed to compliance of the test fixture. Restraining the axial edge (simple support) has the effect of creating a more complex response which involves unstable bifurcation, limit-point buckling, and dynamic collapse. Such shells were noted to bifurcate into
SIMULATIONS OF TRANSVERSE STACKING IN THE NSLS-II BOOSTER
Fliller III, R.; Shaftan, T.
2011-03-28
The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The linac needs to deliver 15 nC in 80 - 150 bunches to the booster every minute to achieve current stability goals in the storage ring. This is a very stringent requirement that has not been demonstrated at an operating light source. We have developed a scheme to transversely stack two bunch trains in the NSLS-II booster in order to alleviate the charge requirements on the linac. This scheme has been outlined previously. In this paper we show particle tracking simulations of the tracking scheme. We show simulations of the booster ramp with a stacked beam for a variety of lattice errors and injected beam parameters. In all cases the performance of the proposed stacking method is sufficient to reduce the required charge from the linac. For this reason the injection system of the NSLS-II booster is being designed to include this feature. The NSLS-II injection system consists of a 200 MeV linac and a 3 GeV booster. The injectors must provide 7.5nC in bunch trains 80-150 bunches long every minute for top off operation of the storage ring. Top off then requires that the linac deliver 15nC of charge once losses in the injector chain are taken into consideration. This is a very stringent requirement that has not been demonstrated at an operating light source. For this reason we have developed a method to transversely stack two bunch trains in the booster while maintaining the charge transport efficiency. This stacking scheme has been discussed previously. In this paper we show the simulations of the booster ramp with a single bunch train in the booster. Then we give a brief overview of the stacking scheme. Following, we show the results of stacking two bunch trains in the booster with varying beam emittances and train separations. The behavior of the beam through the ramp is examined showing that it is possible to stack two bunch trains in the booster.
Experimental investigations of the transverse edge effect in induction pumps were carried out on metallic plates in the channel of a mercury pump at...a flow rate Q = 0. The following formula was derived for determining the coefficient of K sub delta which characterizes the transverse edge effect : K
Measurement the thickness of the transverse abdominal muscle in different tasks
Pang, Ling; Yin, Liquan; Tajiri, Kimiko; Huo, Ming; Maruyama, Hitoshi
2017-01-01
[Purpose] This study examined the measurement of the thickness of the transverse abdominal muscle in different tasks. [Subjects and Methods] The subjects were eleven healthy adult females. Thicknesses of transverse abdominal muscle were measured in seven tasks in the supine position. The tasks were: 1) Resting state, 2) Maximal contraction of transverse abdominal muscle, 3) Maximal contraction of levator ani muscle, 4) Maximal simultaneous contraction of both transverse abdominal muscle and levator ani muscle, 5) Maximal simultaneous contraction of both transverse abdominal muscle and levator ani muscle with front side resistance added to both knee, 6) Maximal simultaneous contraction of both transverse abdominal muscle and levator ani muscle with diagonal resistance added to both knees, and 7) Maximal simultaneous contraction of both transverse abdominal muscle and levator ani muscle with lateral resistance added to both knees. [Results] The thicknesses of transverse abdominal muscle during maximal simultaneous contraction and maximal simultaneous contraction with resistance were greater than during the resting state. [Conclusion] The muscle output during simultaneous contraction and resistance movement were larger than that of each individual muscle. PMID:28265140
NASA Astrophysics Data System (ADS)
Urbański, Mariusz
2016-03-01
Dealing with with countable (finite and infinite alike) alphabet random conformal iterated function systems with overlaps, we formulate appropriate transversality conditions and then prove the relevant, in such a context, the Moran-Bowen formula which determines the Hausdorff dimension of random limit sets in dynamical terms. We also provide large classes of examples of such random systems satisfying the transversality condition.
Choquette, K.D.; Geib, K.M.; Hegarty, S.P.; Hou, H.Q.; Huyet, G.; McInerney, J.G.; Porta, P.
1999-07-06
We analyze the transverse profiles of oxide-confined vertical cavity laser diodes as a function of aperture size. For small apertures we demonstrate that thermal lensing can be the dominant effect in determining the transverse resonator properties. We also analyze pattern formation in lasers with large apertures where we observe the appearance of tilted waves.
ERIC Educational Resources Information Center
Larsen, Verner
2013-01-01
This paper describes the principles underlying how various knowledge areas blend into transversal formations in two educational contexts employing PBL. Such "transversality" has often been referred to as inter- cross- or trans-disciplinarity. However, these terms are ambiguous, especially in relation to Problem Based Learning. There is a…
Transversity in Drell-Yan Process of Polarized Protons and Antiprotons in Pax Experiment
NASA Astrophysics Data System (ADS)
Efremov, A. V.; Goeke, K.; Schweitzer, P.
2005-08-01
Estimates are given for the double-spin asymmetry in lepton-pair production from collisions of transversely polarized protons and antiprotons for the kinematics of the recently proposed PAX experiment at GSI, on the basis of predictions for the transversity distribution from the chiral quark soliton model.
p × n-Type Transverse Thermoelectrics: A Novel Type of Thermal Management Material
NASA Astrophysics Data System (ADS)
Tang, Yang; Cui, Boya; Zhou, Chuanle; Grayson, Matthew
2015-06-01
In this paper we review the recently identified p × n-type transverse thermoelectrics and study the thermoelectric properties of the proposed candidate materials. Anisotropic electron and hole conductivity arise from either an artificially engineered band structure or from appropriately anisotropic crystals, and result in orthogonal p-type and n-type directional Seebeck coefficients, inducing a non-zero off-diagonal transverse Seebeck coefficient with appropriately oriented currents. Such materials have potential for new applications of thermoelectric materials in transverse Peltier cooling and transverse thermal energy harvesting. In this paper we review general transverse thermoelectric phenomena to identify advantages of p × n-type transverse thermoelectrics compared with previously studied transverse thermoelectric phenomena. An intuitive overview of the band structure of one such p × n-material, the InAs/GaSb type-II superlattice, is introduced, and the plot of thermoelectric performance as a function of superlattice structure is calculated, as an example of how band structures can be optimized for the best transverse thermoelectric performance.
McLaughlin, Russell L.; Heverin, Mark; Thorpe, Owen; Abrahams, Sharon; Al-Chalabi, Ammar; Hardiman, Orla
2017-01-01
Objective: To determine the degree of consensus among clinicians on the clinical use of genetic testing in amyotrophic lateral sclerosis (ALS) and the factors that determine decision-making. Methods: ALS researchers worldwide were invited to participate in a detailed online survey to determine their attitudes and practices relating to genetic testing. Results: Responses from 167 clinicians from 21 different countries were analyzed. The majority of respondents (73.3%) do not consider that there is a consensus definition of familial ALS (FALS). Fifty-seven percent consider a family history of frontotemporal dementia and 48.5% the presence of a known ALS genetic mutation as sufficient for a diagnosis of FALS. Most respondents (90.2%) offer genetic testing to patients they define as having FALS and 49.4% to patients with sporadic ALS. Four main genes (SOD1, C9orf72, TARDBP, and FUS) are commonly tested. A total of 55.2% of respondents would seek genetic testing if they had personally received a diagnosis of ALS. Forty-two percent never offer presymptomatic testing to family members of patients with FALS. Responses varied between ALS specialists and nonspecialists and based on the number of new patients seen per year. Conclusions: There is a lack of consensus among clinicians as to the definition of FALS. Substantial variation exists in attitude and practices related to genetic testing of patients and presymptomatic testing of their relatives across geographic regions and between experienced specialists in ALS and nonspecialists. PMID:28159885
Sureka, Binit; Mittal, Mahesh Kumar; Mittal, Aliza; Agarwal, Mukul Sinha Kanhaiya; Bhambri, Narendra Kumar; Thukral, Brij Bhushan
2015-01-01
Purpose: To study the location, origin, size and relationship of the vertebral artery and the transverse foramina in the lower cervical spine by computed tomographic angiography (CTA) measurements in the Indian population. Materials and Methods: A retrospective review of multi-detector CT (MDCT) cerebral angiography scans was done between June 2011 and February 2014. A total of 120 patients were evaluated. The diameter of the vertebral artery (AL) and the shortest distance between the vertebral artery and the medial (M), lateral (L), anterior (A), and posterior (P) borders of transverse foramen were studied. In addition, the shortest distance between the vertebral artery and pedicle (h) was also analyzed. Statistical Analysis: The means and their standard deviations (SD) were calculated in both the sexes. The t-tests were performed to look for significant sexual difference. Results: The largest vertebral artery diameter (AL) was at level C7 on the right side (3.5 ± 0.8) and at the level of C5 on the left side (3.7 ± 0.4). Statistically significant difference between males and females were seen at levels C4, C5, and C7. The diameter of the vertebral artery was smaller in females than males. The L value was greater than other parameters (M, A, P) at the same level in all the measurements. The h value was greatest at C6 level and shortest at C5. Conclusion: CTA is necessary before pedicle screw fixation due to variation in measurements at all levels. The highest potential risk of vertebral artery injury during cervical pedicle screw implantation may be at C5, then at C4, and the safest is at C7. PMID:25969640
Structural and mixing characteristics in actively controlled transverse jets
NASA Astrophysics Data System (ADS)
Shoji, Takeshi; Besnard, Andrea; Harris, Elijah; M'closkey, Robert; Karagozian, Ann; Cortelezzi, Luca
2016-11-01
These experiments explore the effect of external excitation on gaseous transverse jet (TJ) structural and mixing characteristics, emphasizing axisymmetric jet forcing. Sinusoidal as well as single and multiple square wave pulses, the latter with variable amplitudes, are explored for a range of jet-to-crossflow momentum flux ratios J, spanning regimes of absolutely unstable upstream shear layers (J < 10) and convectively unstable shear layers (J > 10). The studies utilize acetone PLIF imaging of the jet, as done for unforced jets. Axisymmetric forcing, irrespective of the waveform, can enhance cross-sectional symmetry of the TJ for convectively unstable conditions, but generally disrupts the usually symmetric counter-rotating vortex pair (CVP) observed for the absolutely unstable TJ. Conditions producing deeply penetrating, periodic vortical structures, such as square wave forcing at critical stroke ratios, increase jet spread, but do not always optimize molecular mixing. Creating multiple vortex structures of different strengths via multiple square pulses leads to enhanced interactions and accelerated vortex breakdown, potentially increasing mixing. Supported by NSF (CBET-1437014) & AFOSR (FA9550-15-1-0261).