Are Fundamental Constants Really Constant?
ERIC Educational Resources Information Center
Swetman, T. P.
1972-01-01
Dirac's classical conclusions, that the values of e2, M and m are constants and the quantity of G decreases with time. Evoked considerable interest among researchers and traces historical development by which further experimental evidence points out that both e and G are constant values. (PS)
NASA Astrophysics Data System (ADS)
Leiva, A. M.; Briozzo, C. M.
Starting from the numerical integration of 1736649 trajectories we study the behaviour of 783209 trajectories in the Earth-Moon Circular Restricted Three Body Problem, for a value h=-1.5887 of the Jacobi constant. Many of these trajectories are of great interest because they take place between the primary masses for times shorter than 217 days and show close approaches to the Moon. On a surface of section we show dynamical maps which provide a global description of the main features of these trajectories, and show the optimal regions to search for periodic orbits and for orbits colliding with the Moon. FULL TEXT IN SPANISH
Yoshida, Tatsusada; Hirozumi, Koji; Harada, Masataka; Hitaoka, Seiji; Chuman, Hiroshi
2011-06-01
The rate of hydrogen atom abstraction from phenolic compounds by a radical is known to be often linear with the Hammett substitution constant σ(+), defined using the S(N)1 solvolysis rates of substituted cumyl chlorides. Nevertheless, a physicochemical reason for the above "empirical fact" has not been fully revealed. The transition states of complexes between the 2,2-diphenyl-1-picrylhydrazyl radical (dpph·) and a series of para-substituted phenols were determined by DFT (Density Functional Theory) calculations, and then the activation energy as well as the homolytic bond dissociation energy of the O-H bond and charge distribution in the transition state were calculated. The heterolytic bond dissociation energy of the C-Cl bond and charge distribution in the corresponding para-substituted cumyl chlorides were calculated in parallel. Excellent correlations among σ(+), charge distribution, and activation and bond dissociation energies revealed quantitatively that there is a strong similarity between the two reactions, showing that the electron-deficiency of the π-electron system conjugated with a substituent plays a crucial role in determining rates of the two reactions. The results provide a new insight into and physicochemical understanding of σ(+) in the hydrogen abstraction from substituted phenols by a radical.
NASA Technical Reports Server (NTRS)
Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Craw, James M. (Technical Monitor)
1995-01-01
We prove known identities for the Khinchin constant and develop new identities for the more general Hoelder mean limits of continued fractions. Any of these constants can be developed as a rapidly converging series involving values of the Riemann zeta function and rational coefficients. Such identities allow for efficient numerical evaluation of the relevant constants. We present free-parameter, optimizable versions of the identities, and report numerical results.
Huchra, J P
1992-04-17
The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy The Hubble constant is the constant of proportionality between recession velocity and development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution. PMID:17743107
NASA Technical Reports Server (NTRS)
Carroll, Sean M.; Press, William H.; Turner, Edwin L.
1992-01-01
The cosmological constant problem is examined in the context of both astronomy and physics. Effects of a nonzero cosmological constant are discussed with reference to expansion dynamics, the age of the universe, distance measures, comoving density of objects, growth of linear perturbations, and gravitational lens probabilities. The observational status of the cosmological constant is reviewed, with attention given to the existence of high-redshift objects, age derivation from globular clusters and cosmic nuclear data, dynamical tests of Omega sub Lambda, quasar absorption line statistics, gravitational lensing, and astrophysics of distant objects. Finally, possible solutions to the physicist's cosmological constant problem are examined.
Fundamental Physical Constants
National Institute of Standards and Technology Data Gateway
SRD 121 CODATA Fundamental Physical Constants (Web, free access) This site, developed in the Physics Laboratory at NIST, addresses three topics: fundamental physical constants, the International System of Units (SI), which is the modern metric system, and expressing the uncertainty of measurement results.
Calculation of magnetostriction constants
NASA Astrophysics Data System (ADS)
Tatebayashi, T.; Ohtsuka, S.; Ukai, T.; Mori, N.
1986-02-01
The magnetostriction constants h1 and h2 for Ni and Fe metals and the anisotropy constants K1 and K2 for Fe metal are calculated on the basis of the approximate d bands obtained by Deegan's prescription, by using Gilat-Raubenheimer's method. The obtained results are compared with the experimental ones.
Space Shuttle astrodynamical constants
NASA Technical Reports Server (NTRS)
Cockrell, B. F.; Williamson, B.
1978-01-01
Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.
The cosmological constant problem
Dolgov, A.D.
1989-05-01
A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.
Constant potential pulse polarography
Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.
1976-01-01
The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.
Helmkamp, B F; Krebs, H B; Isikoff, M B; Poliakoff, S R; Averette, H E
1980-10-15
Although numerous articles regarding the etiology, incidence, complications, and management of pelvic lymphocysts have been published in the American literature since 1958, there has been no mention of para-aortic lymphocyst as a complication of para-aortic node dissection. Two recent cases of symptomatic para-aortic lymphocyst have prompted a review of our para-aortic node dissection technique when this procedure is not combined with a more extensive pelvic lymphadenectomy. Our modification in technique is to use retroperitoneal para-aortic drainage by constant pressure-controlled suction following closure of the posterior parietal peritoneum, and the results in our first 15 patients are presented. There were no complications related to the drainage technique. Abdominal ultrasound and intravenous urography have proved to be excellent diagnostic tools in the initial evaluation and subsequent follow-up of para-aortic lymphocytes.
Variation of Fundamental Constants
NASA Astrophysics Data System (ADS)
Flambaum, V. V.
2006-11-01
Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. The spatial variation can explain a fine tuning of the fundamental constants which allows humans (and any life) to appear. We appeared in the area of the Universe where the values of the fundamental constants are consistent with our existence. We present a review of recent works devoted to the variation of the fine structure constant α, strong interaction and fundamental masses. There are some hints for the variation in quasar absorption spectra. Big Bang nucleosynthesis, and Oklo natural nuclear reactor data. A very promising method to search for the variation of the fundamental constants consists in comparison of different atomic clocks. Huge enhancement of the variation effects happens in transition between accidentally degenerate atomic and molecular energy levels. A new idea is to build a ``nuclear'' clock based on the ultraviolet transition between very low excited state and ground state in Thorium nucleus. This may allow to improve sensitivity to the variation up to 10 orders of magnitude! Huge enhancement of the variation effects is also possible in cold atomic and molecular collisions near Feshbach resonance.
Peselnick, L.; Robie, R.A.
1962-01-01
The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.
NASA Technical Reports Server (NTRS)
Huchra, John P.
1992-01-01
The Hubble constant is the constant of proportionality between recession velocity and distance in the expanding universe. It is a fundamental property of cosmology that sets both the scale and the expansion age of the universe. It is determined by measurement of galaxy radial velocities and distances. Although there has been considerable progress in the development of new techniques for the measurements of galaxy distances, both calibration uncertainties and debates over systematic errors remain. Current determinations still range over nearly a factor of 2; the higher values favored by most local measurements are not consistent with many theories of the origin of large-scale structure and stellar evolution.
Scott, Tricia
2015-11-01
Compassion is a powerful word that describes an intense feeling of commiseration and a desire to help those struck by misfortune. Most people know intuitively how and when to offer compassion to relieve another person's suffering. In health care, compassion is a constant; it cannot be rationed because emergency nurses have limited time or resources to manage increasing demands.
2005-06-20
This application (XrayOpticsConstants) is a tool for displaying X-ray and Optical properties for a given material, x-ray photon energy, and in the case of a gas, pressure. The display includes fields such as the photo-electric absorption attenuation length, density, material composition, index of refraction, and emission properties (for scintillator materials).
Scott, Tricia
2015-11-01
Compassion is a powerful word that describes an intense feeling of commiseration and a desire to help those struck by misfortune. Most people know intuitively how and when to offer compassion to relieve another person's suffering. In health care, compassion is a constant; it cannot be rationed because emergency nurses have limited time or resources to manage increasing demands. PMID:26542898
Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe
2011-02-15
We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of the constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.
Varying constants quantum cosmology
Leszczyńska, Katarzyna; Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: abalcerz@wmf.univ.szczecin.pl
2015-02-01
We discuss minisuperspace models within the framework of varying physical constants theories including Λ-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansätze for the variability of constants: c(a) = c{sub 0} a{sup n} and G(a)=G{sub 0} a{sup q}. We find that most of the varying c and G minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe ''from nothing'' (a=0) to a Friedmann geometry with the scale factor a{sub t} is large for growing c models and is strongly suppressed for diminishing c models. As for G varying, the probability of tunneling is large for G diminishing, while it is small for G increasing. In general, both varying c and G change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.
Lubowitz, James H; Provencher, Matthew T; Brand, Jefferson C; Rossi, Michael J; Poehling, Gary G
2015-06-01
In 2015, Henry P. Hackett, Managing Editor, Arthroscopy, retires, and Edward A. Goss, Executive Director, Arthroscopy Association of North America (AANA), retires. Association is a positive constant, in a time of change. With change comes a need for continuing education, research, and sharing of ideas. While the quality of education at AANA and ISAKOS is superior and most relevant, the unique reason to travel and meet is the opportunity to interact with innovative colleagues. Personal interaction best stimulates new ideas to improve patient care, research, and teaching. Through our network, we best create innovation.
Cosmology with varying constants.
Martins, Carlos J A P
2002-12-15
The idea of possible time or space variations of the 'fundamental' constants of nature, although not new, is only now beginning to be actively considered by large numbers of researchers in the particle physics, cosmology and astrophysics communities. This revival is mostly due to the claims of possible detection of such variations, in various different contexts and by several groups. I present the current theoretical motivations and expectations for such variations, review the current observational status and discuss the impact of a possible confirmation of these results in our views of cosmology and physics as a whole.
NASA Astrophysics Data System (ADS)
Blichert-Toft, J.; Albarede, F.
2011-12-01
When only modern isotope compositions are concerned, the choice of normalization values is inconsequential provided that their values are universally accepted. No harm is done as long as large amounts of standard reference material with known isotopic differences with respect to the reference value ('anchor point') can be maintained under controlled conditions. For over five decades, the scientific community has been referring to an essentially unavailable SMOW for stable O and H isotopes and to a long-gone belemnite sample for carbon. For radiogenic isotopes, the isotope composition of the daughter element, the parent-daughter ratio, and a particular value of the decay constant are all part of the reference. For the Lu-Hf system, for which the physical measurements of the decay constant have been particularly defective, the reference includes the isotope composition of Hf and the Lu/Hf ratio of an unfortunately heterogeneous chondrite mix that has been successively refined by Patchett and Tatsumoto (1981), Blichert-Toft and Albarede (1997, BTA), and Bouvier et al. (2008, BVP). The \\varepsilonHf(T) difference created by using BTA and BVP is nearly within error (+0.45 epsilon units today and -0.36 at 3 Ga) and therefore of little or no consequence. A more serious issue arises when the chondritic reference is taken to represent the Hf isotope evolution of the Bulk Silicate Earth (BSE): the initial isotope composition of the Solar System, as determined by the indistinguishable intercepts of the external eucrite isochron (Blichert-Toft et al., 2002) and the internal angrite SAH99555 isochron (Thrane et al., 2010), differs from the chondrite value of BTA and BVP extrapolated to 4.56 Ga by ~5 epsilon units. This difference and the overestimated value of the 176Lu decay constant derived from the slopes of these isochrons, have been interpreted as reflecting irradiation of the solar nebula by either gamma (Albarede et al., 2006) or cosmic rays (Thrane et al., 2010) during
Measurement of the solar constant
NASA Technical Reports Server (NTRS)
Crommelynck, D.
1981-01-01
The absolute value of the solar constant and the long term variations that exist in the absolute value of the solar constant were measured. The solar constant is the total irradiance of the Sun at a distance of one astronomical unit. An absolute radiometer removed from the effects of the atmosphere with its calibration tested in situ was used to measure the solar constant. The importance of an accurate knowledge of the solar constant is emphasized.
Tully, R B
1993-06-01
Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391
Beiu, V.
1997-04-01
In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.
Tully, R B
1993-01-01
Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391
Unitaxial constant velocity microactuator
McIntyre, Timothy J.
1994-01-01
A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.
Unitaxial constant velocity microactuator
McIntyre, T.J.
1994-06-07
A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment is disclosed. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-nanometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment. 10 figs.
Constant attitude orbit transfer
NASA Astrophysics Data System (ADS)
Cress, Peter; Evans, Michael
A two-impulse orbital transfer technique is described in which the spacecraft attitude remains constant for both burns, eliminating the need for attitude maneuvers between the burns. This can lead to significant savings in vehicle weight, cost and complexity. Analysis is provided for a restricted class of applications of this transfer between circular orbits. For those transfers with a plane change less than 30 deg, the total velocity cost of the maneuver is less than twelve percent greater than that of an optimum plane split Hohmann transfer. While this maneuver does not minimize velocity requirement, it does provide a means of achieving necessary transfer while substantially reducing the cost and complexity of the spacecraft.
NASA Technical Reports Server (NTRS)
Stevens, F W
1924-01-01
This report describes a new optical method of unusual simplicity and of good accuracy suitable to study the kinetics of gaseous reactions. The device is the complement of the spherical bomb of constant volume, and extends the applicability of the relationship, pv=rt for gaseous equilibrium conditions, to the use of both factors p and v. The method substitutes for the mechanical complications of a manometer placed at some distance from the seat of reaction the possibility of allowing the radiant effects of reaction to record themselves directly upon a sensitive film. It is possible the device may be of use in the study of the photoelectric effects of radiation. The method makes possible a greater precision in the measurement of normal flame velocities than was previously possible. An approximate analysis shows that the increase of pressure and density ahead of the flame is negligible until the velocity of the flame approaches that of sound.
Philicities, Fugalities, and Equilibrium Constants.
Mayr, Herbert; Ofial, Armin R
2016-05-17
. Benzhydrylium ions (diarylcarbenium ions) with para- and meta-substituents are used as reference compounds for these investigations, because their Lewis acidities and electrophilicities can be varied by many orders of magnitude, while the steric surroundings of the reaction centers are kept constant. The rate constants for their reactions with nucleophiles correlate linearly over a wide range with the Lewis acidities of the benzhydrylium ions: from slow reactions with late transition states to very fast reactions with early, reactant-like transition states (including reactions which proceed without an enthalpic barrier, ΔH(⧧) = 0). Thus, unequivocal evidence is obtained that even within a series of closely related reactions, the Leffler-Hammond α cannot be a measure for the position of the transition state. Differences in intrinsic barriers lead to deviations from the linear rate-equilibrium correlations and give rise to counterintuitive phenomena. Thus, 1,4-diazabicyclo[2.2.2]octane (DABCO) reacts with lower intrinsic barriers than 4-(dimethylamino)pyridine (DMAP) and, therefore, is a stronger nucleophile as well as a better nucleofuge than DMAP. Common synthetically used SN2 reactions are presented, in which weak nucleophiles replace stronger ones. Whereas solvolysis rates of alkoxy- and alkyl-substituted benzhydryl derivatives correlate linearly with the Lewis acidities of the resulting carbenium ions, this is not the case for amino-substituted benzhydrylium ions, where differences in intrinsic barriers play a major role. The common rule that a structural variation, which increases the electrophilicity of a carbocation at the same time reduces its electrofugality, does not hold any longer. The need to systematically analyze the role of intrinsic barriers is emphasized.
NASA Astrophysics Data System (ADS)
1995-08-01
about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the
New Quasar Studies Keep Fundamental Physical Constant Constant
NASA Astrophysics Data System (ADS)
2004-03-01
Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold
Constant-Pressure Hydraulic Pump
NASA Technical Reports Server (NTRS)
Galloway, C. W.
1982-01-01
Constant output pressure in gas-driven hydraulic pump would be assured in new design for gas-to-hydraulic power converter. With a force-multiplying ring attached to gas piston, expanding gas would apply constant force on hydraulic piston even though gas pressure drops. As a result, pressure of hydraulic fluid remains steady, and power output of the pump does not vary.
Constants and Variables of Nature
Sean Carroll
2009-04-03
It is conventional to imagine that the various parameters which characterize our physical theories, such as the fine structure constant or Newton’s gravitational constant, are truly “constant”, in the sense that they do not change from place to place or time to time. Recent developments in both theory and observation have led us to re-examine this assumption, and to take seriously the possibility that our supposed constants are actually gradually changing. I will discuss why we might expect these parameters to vary, and what observation and experiment have to say about the issue.
Varying Constants, Gravitation and Cosmology
NASA Astrophysics Data System (ADS)
Uzan, Jean-Philippe
2011-12-01
Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. Thus, it is of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, solar system observations, meteorite dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.
Constant fields and constant gradients in open ionic channels.
Chen, D P; Barcilon, V; Eisenberg, R S
1992-05-01
Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant.
Constant fields and constant gradients in open ionic channels.
Chen, D P; Barcilon, V; Eisenberg, R S
1992-01-01
Ions enter cells through pores in proteins that are holes in dielectrics. The energy of interaction between ion and charge induced on the dielectric is many kT, and so the dielectric properties of channel and pore are important. We describe ionic movement by (three-dimensional) Nemst-Planck equations (including flux and net charge). Potential is described by Poisson's equation in the pore and Laplace's equation in the channel wall, allowing induced but not permanent charge. Asymptotic expansions are constructed exploiting the long narrow shape of the pore and the relatively high dielectric constant of the pore's contents. The resulting one-dimensional equations can be integrated numerically; they can be analyzed when channels are short or long (compared with the Debye length). Traditional constant field equations are derived if the induced charge is small, e.g., if the channel is short or if the total concentration gradient is zero. A constant gradient of concentration is derived if the channel is long. Plots directly comparable to experiments are given of current vs voltage, reversal potential vs. concentration, and slope conductance vs. concentration. This dielectric theory can easily be tested: its parameters can be determined by traditional constant field measurements. The dielectric theory then predicts current-voltage relations quite different from constant field, usually more linear, when gradients of total concentration are imposed. Numerical analysis shows that the interaction of ion and channel can be described by a mean potential if, but only if, the induced charge is negligible, that is to say, the electric field is spatially constant. Images FIGURE 1 PMID:1376159
Effective cosmological constant induced by stochastic fluctuations of Newton's constant
NASA Astrophysics Data System (ADS)
de Cesare, Marco; Lizzi, Fedele; Sakellariadou, Mairi
2016-09-01
We consider implications of the microscopic dynamics of spacetime for the evolution of cosmological models. We argue that quantum geometry effects may lead to stochastic fluctuations of the gravitational constant, which is thus considered as a macroscopic effective dynamical quantity. Consistency with Riemannian geometry entails the presence of a time-dependent dark energy term in the modified field equations, which can be expressed in terms of the dynamical gravitational constant. We suggest that the late-time accelerated expansion of the Universe may be ascribed to quantum fluctuations in the geometry of spacetime rather than the vacuum energy from the matter sector.
Variación temporal de las constantes fundamentales
NASA Astrophysics Data System (ADS)
Landau, S. J.; Vucetich, H.
La variación temporal de las constantes fundamentales es un problema que ha motivado numerosos trabajos teóricos y experimentales desde la hipótesis de los grandes números de Dirac en 1937. Entre los métodos experimentales y observacionales para establecer restricciones sobre la variación de las constantes fundamentes es importante mencionar: comparación entre relojes atómicos[1], métodos geofísicos[2][3], análisis de sistemas de absorción en quasares[4][5][6] y cotas provenientes de la nucleosíntesis primordial[7]. En un trabajo reciente[5], se reportó una significativa variación en la constante de estructura fina. Intentos de unificar las cuatro interacciones fundamentales dieron como resultado teorías con múltiples dimensiones como las teorías de Kaluza-Klein y teorías de supercuerdas. Estas teorías proporcionan un marco teórico natural para el estudio de la variación temporal de las constantes fundamentales. A su vez, un modelo sencillo para estudiar la variación de la constante de estructura fina, fue propuesto en [8], a partir de premisas muy generales como ser covarianza, invarianza de gauge, causalidad y invarianza ante reversiones temporales en el electromagnetismo. Diferentes versiones de las teorías antes mencionadas coinciden en predecir variaciones temporales de las constantes fundamentales pero difieren en la forma de esta variación[9][10]. De esta manera, las restricciones establecidas experimentalmente sobre la variación de las constantes fundamentales pueden ser una herramienta importante para testear estas diferentes teorías. En este trabajo, utilizamos las cotas provenientes de diversas técnicas experimentales, para testear si las mismas son consistentes con alguna de las teorías antes mencionadas. En particular, establecemos cotas sobre la variación de los parámentros libres de las diferentes teorías como por ejemplo el radio de las dimensiones extras en las teorías tipo Kaluza-Klein.
Optical constants of solid methane
NASA Technical Reports Server (NTRS)
Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.
1989-01-01
Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented of the optical constants of solid methane for the 0.4 to 2.6 micron region. K is reported for both the amorphous and the crystalline (annealed) states. Using the previously measured values of the real part of the refractive index, n, of liquid methane at 110 K n is computed for solid methane using the Lorentz-Lorentz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for condensed CH4.
Optical constants of solid methane
NASA Technical Reports Server (NTRS)
Khare, Bishun N.; Thompson, W. R.; Sagan, C.; Arakawa, E. T.; Bruel, C.; Judish, J. P.; Khanna, R. K.; Pollack, J. B.
1990-01-01
Methane is the most abundant simple organic molecule in the outer solar system bodies. In addition to being a gaseous constituent of the atmospheres of the Jovian planets and Titan, it is present in the solid form as a constituent of icy surfaces such as those of Triton and Pluto, and as cloud condensate in the atmospheres of Titan, Uranus, and Neptune. It is expected in the liquid form as a constituent of the ocean of Titan. Cometary ices also contain solid methane. The optical constants for both solid and liquid phases of CH4 for a wide temperature range are needed for radiative transfer calculations, for studies of reflection from surfaces, and for modeling of emission in the far infrared and microwave regions. The astronomically important visual to near infrared measurements of solid methane optical constants are conspicuously absent from the literature. Preliminary results are presented on the optical constants of solid methane for the 0.4 to 2.6 micrometer region. Deposition onto a substrate at 10 K produces glassy (semi-amorphous) material. Annealing this material at approximately 33 K for approximately 1 hour results in a crystalline material as seen by sharper, more structured bands and negligible background extinction due to scattering. The constant k is reported for both the amorphous and the crystalline (annealed) states. Typical values (at absorption maxima) are in the .001 to .0001 range. Below lambda = 1.1 micrometers the bands are too weak to be detected by transmission through the films less than or equal to 215 micrometers in thickness, employed in the studies to date. Using previously measured values of the real part of the refractive index, n, of liquid methane at 110 K, n is computed for solid methane using the Lorentz-Lorenz relationship. Work is in progress to extend the measurements of optical constants n and k for liquid and solid to both shorter and longer wavelengths, eventually providing a complete optical constants database for
Cosmologies with variable gravitational constant
Narkikar, J.V.
1983-03-01
In 1937 Dirac presented an argument, based on the socalled large dimensionless numbers, which led him to the conclusion that the Newtonian gravitational constant G changes with epoch. Towards the end of the last century Ernst Mach had given plausible arguments to link the property of inertia of matter to the large scale structure of the universe. Mach's principle also leads to cosmological models with a variable gravitational constant. Three cosmologies which predict a variable G are discussed in this paper both from theoretical and observational points of view.
NASA Astrophysics Data System (ADS)
Czechowski, Grzegorz; Zywucki, B.; Jadzyn, Jan
1993-10-01
The Frederiks transitions for the n-octyloxycyanobiphenyl (8-OCB) placed in the external magnetic and electric field as a function of the temperature have been studied. On the basis of threshold values Bc and Uc, the elastic constants for splay, bend and twist modes are determined. The magnetic anisotropy of 8-OCB as a function of temperature has been determined. The K11 and K33 elastic constants show the pretransitional nematic- smectic A effect. The values of critical exponents obtained from the temperature dependence of K11 and K33 in the vicinity of N-SA phase transition are discussed.
Boltzmann's constant: A laboratory experiment
NASA Astrophysics Data System (ADS)
Kruglak, Haym
1989-03-01
The mean-square displacement of a latex microsphere is determined from its projection on a TV monitor. The distribution of displacement is shown to be Gaussian. Boltzmann's constant, calculated from the pooled data of several observers, is in excellent agreement with the accepted value. The experiment is designed for one laboratory period in the advanced undergraduate laboratory.
Ten Thousand Solar Constants Radiometer
NASA Technical Reports Server (NTRS)
Kendall, J. M., Sr.
1985-01-01
"Radiometer for Accurate (+ or - 1%) Measurement of Solar Irradiances Equal to 10,000 Solar Constants," gives additional information on radiometer described elsewhere. Self-calibrating, water-cooled, thermopile radiometer measures irradiance produced in solar image formed by parabolic reflector or by multiple-mirror solar installation.
The 1% concordance Hubble constant
Bennett, C. L.; Larson, D.; Weiland, J. L.; Hinshaw, G.
2014-10-20
The determination of the Hubble constant has been a central goal in observational astrophysics for nearly a hundred years. Extraordinary progress has occurred in recent years on two fronts: the cosmic distance ladder measurements at low redshift and cosmic microwave background (CMB) measurements at high redshift. The CMB is used to predict the current expansion rate through a best-fit cosmological model. Complementary progress has been made with baryon acoustic oscillation (BAO) measurements at relatively low redshifts. While BAO data do not independently determine a Hubble constant, they are important for constraints on possible solutions and checks on cosmic consistency. A precise determination of the Hubble constant is of great value, but it is more important to compare the high and low redshift measurements to test our cosmological model. Significant tension would suggest either uncertainties not accounted for in the experimental estimates or the discovery of new physics beyond the standard model of cosmology. In this paper we examine in detail the tension between the CMB, BAO, and cosmic distance ladder data sets. We find that these measurements are consistent within reasonable statistical expectations and we combine them to determine a best-fit Hubble constant of 69.6 ± 0.7 km s{sup –1} Mpc{sup –1}. This value is based upon WMAP9+SPT+ACT+6dFGS+BOSS/DR11+H {sub 0}/Riess; we explore alternate data combinations in the text. The combined data constrain the Hubble constant to 1%, with no compelling evidence for new physics.
Variation of fundamental constants: theory
NASA Astrophysics Data System (ADS)
Flambaum, Victor
2008-05-01
Theories unifying gravity with other interactions suggest temporal and spatial variation of the fundamental ``constants'' in expanding Universe. There are some hints for the variation of different fundamental constants in quasar absorption spectra and Big Bang nucleosynthesis data. A large number of publications (including atomic clocks) report limits on the variations. We want to study the variation of the main dimensionless parameters of the Standard Model: 1. Fine structure constant alpha (combination of speed of light, electron charge and Plank constant). 2. Ratio of the strong interaction scale (LambdaQCD) to a fundamental mass like electron mass or quark mass which are proportional to Higgs vacuum expectation value. The proton mass is propotional to LambdaQCD, therefore, the proton-to-electron mass ratio comes into this second category. We performed necessary atomic, nuclear and QCD calculations needed to study variation of the fundamental constants using the Big Bang Nucleosynthsis, quasar spectra, Oklo natural nuclear reactor and atomic clock data. The relative effects of the variation may be enhanced in transitions between narrow close levels in atoms, molecules and nuclei. If one will study an enhanced effect, the relative value of systematic effects (which are not enhanced) may be much smaller. Note also that the absolute magnitude of the variation effects in nuclei (e.g. in very narrow 7 eV transition in 229Th) may be 5 orders of magnitude larger than in atoms. A different possibility of enhancement comes from the inversion transitions in molecules where splitting between the levels is due to the quantum tunneling amplitude which has strong, exponential dependence on the electron to proton mass ratio. Our study of NH3 quasar spectra has already given the best limit on the variation of electron to proton mass ratio.
Varying Fine-Structure Constant and the Cosmological Constant Problem
NASA Astrophysics Data System (ADS)
Fujii, Yasunori
We start with a brief account of the latest analysis of the Oklo phenomenon providing the still most stringent constraint on time variability of the fine-structure constant α. Comparing this with the recent result from the measurement of distant QSO's appears to indicate a non-uniform time-dependence, which we argue to be related to another recent finding of the accelerating universe. This view is implemented in terms of the scalar-tensor theory, applied specifically to the small but nonzero cosmological constant. Our detailed calculation shows that these two phenomena can be understood in terms of a common origin, a particular behavior of the scalar field, dilaton. We also sketch how this theoretical approach makes it appropriate to revisit non-Newtonian gravity featuring small violation of Weak Equivalence Principle at medium distances.
New Quasar Studies Keep Fundamental Physical Constant Constant
NASA Astrophysics Data System (ADS)
2004-03-01
Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold
Three pion nucleon coupling constants
NASA Astrophysics Data System (ADS)
Ruiz Arriola, E.; Amaro, J. E.; Navarro Pérez, R.
2016-08-01
There exist four pion nucleon coupling constants, fπ0pp, - fπ0nn, fπ+pn/2 and fπ-np/2 which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination fp2 = 0.0759(4),f 02 = 0.079(1),f c2 = 0.0763(6), based on a partial wave analysis of the 3σ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.
Quaternions as astrometric plate constants
NASA Technical Reports Server (NTRS)
Jefferys, William H.
1987-01-01
A new method for solving problems in relative astrometry is proposed. In it, the relationship between the measured quantities and the components of the position vector of a star is modeled using quaternions, in effect replacing the plate constants of a standard four-plate-constant solution with the four components of a quaternion. The method allows a direct solution for the position vectors of the stars, and hence for the equatorial coordinates. Distortions, magnitude, and color effects are readily incorporated into the formalism, and the method is directly applicable to overlapping-plate problems. The advantages of the method include the simplicity of the resulting equations, their freedom from singularities, and the fact that trigonometric functions and tangential point transformations are not needed to model the plate material. A global solution over the entire sky is possible.
Three pion nucleon coupling constants
NASA Astrophysics Data System (ADS)
Ruiz Arriola, E.; Amaro, J. E.; Navarro Pérez, R.
2016-08-01
There exist four pion nucleon coupling constants, fπ0pp, ‑ fπ0nn, fπ+pn/2 and fπ‑np/2 which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination fp2 = 0.0759(4),f 02 = 0.079(1),f c2 = 0.0763(6), based on a partial wave analysis of the 3σ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.
Time-Varying Fundamental Constants
NASA Astrophysics Data System (ADS)
Olive, Keith
2003-04-01
Recent data from quasar absorption systems can be interpreted as arising from a time variation in the fine-structure constant. However, there are numerous cosmological, astro-physical, and terrestrial bounds on any such variation. These includes bounds from Big Bang Nucleosynthesis (from the ^4He abundance), the Oklo reactor (from the resonant neutron capture cross-section of Sm), and from meteoretic lifetimes of heavy radioactive isotopes. The bounds on the variation of the fine-structure constant are significantly strengthened in models where all gauge and Yukawa couplings vary in a dependent manner, as would be expected in unified theories. Models which are consistent with all data are severly challenged when Equivalence Principle constraints are imposed.
Millikan's measurement of Planck's constant
NASA Astrophysics Data System (ADS)
Franklin, Allan
2013-12-01
Robert Millikan is famous for measuring the charge of the electron. His result was better than any previous measurement and his method established that there was a fundamental unit of charge, or charge quantization. He is less well-known for his measurement of Planck's constant, although, as discussed below, he is often mistakenly given credit for providing significant evidence in support of Einstein's photon theory of light.1 His Nobel Prize citation was "for his work on the elementary electric charge of electricity and the photoelectric effect," an indication of the significance of his work on the photoelectric effect.
Chandra Independently Determines Hubble Constant
NASA Astrophysics Data System (ADS)
2006-08-01
A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion
Henry's law constants of polyols
NASA Astrophysics Data System (ADS)
Compernolle, S.; Müller, J.-F.
2014-05-01
Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. Depending on the case, infinite dilution activity coefficients (IDACs), solid state pressures or activity coefficient ratios are obtained as intermediary results. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.
Stability constant estimator user`s guide
Hay, B.P.; Castleton, K.J.; Rustad, J.R.
1996-12-01
The purpose of the Stability Constant Estimator (SCE) program is to estimate aqueous stability constants for 1:1 complexes of metal ions with ligands by using trends in existing stability constant data. Such estimates are useful to fill gaps in existing thermodynamic databases and to corroborate the accuracy of reported stability constant values.
Asympotics with positive cosmological constant
NASA Astrophysics Data System (ADS)
Bonga, Beatrice; Ashtekar, Abhay; Kesavan, Aruna
2014-03-01
Since observations to date imply that our universe has a positive cosmological constant, one needs an extension of the theory of isolated systems and gravitational radiation in full general relativity from the asymptotically flat to asymptotically de Sitter space-times. In current definitions, one mimics the boundary conditions used in asymptotically AdS context to conclude that the asymptotic symmetry group is the de Sitter group. However, these conditions severely restricts radiation and in fact rules out non-zero flux of energy, momentum and angular momentum carried by gravitational waves. Therefore, these formulations of asymptotically de Sitter space-times are uninteresting beyond non-radiative spacetimes. The situation is compared and contrasted with conserved charges and fluxes at null infinity in asymptotically flat space-times.
Henry's law constants of polyols
NASA Astrophysics Data System (ADS)
Compernolle, S.; Müller, J.-F.
2014-12-01
Henry's law constants (HLC) are derived for several polyols bearing between 2 and 6 hydroxyl groups, based on literature data for water activity, vapour pressure and/or solubility. While deriving HLC and depending on the case, also infinite dilution activity coefficients (IDACs), solid state vapour pressures or activity coefficient ratios are obtained as intermediate results. An error analysis on the intermediate quantities and the obtained HLC is included. For most compounds, these are the first values reported, while others compare favourably with literature data in most cases. Using these values and those from a previous work (Compernolle and Müller, 2014), an assessment is made on the partitioning of polyols, diacids and hydroxy acids to droplet and aqueous aerosol.
Is There a Cosmological Constant?
NASA Technical Reports Server (NTRS)
Kochanek, Christopher; Oliversen, Ronald J. (Technical Monitor)
2002-01-01
The grant contributed to the publication of 18 refereed papers and 5 conference proceedings. The primary uses of the funding have been for page charges, travel for invited talks related to the grant research, and the support of a graduate student, Charles Keeton. The refereed papers address four of the primary goals of the proposal: (1) the statistics of radio lenses as a probe of the cosmological model (#1), (2) the role of spiral galaxies as lenses (#3), (3) the effects of dust on statistics of lenses (#7, #8), and (4) the role of groups and clusters as lenses (#2, #6, #10, #13, #15, #16). Four papers (#4, #5, #11, #12) address general issues of lens models, calibrations, and the relationship between lens galaxies and nearby galaxies. One considered cosmological effects in lensing X-ray sources (#9), and two addressed issues related to the overall power spectrum and theories of gravity (#17, #18). Our theoretical studies combined with the explosion in the number of lenses and the quality of the data obtained for them is greatly increasing our ability to characterize and understand the lens population. We can now firmly conclude both from our study of the statistics of radio lenses and our survey of extinctions in individual lenses that the statistics of optically selected quasars were significantly affected by extinction. However, the limits on the cosmological constant remain at lambda < 0.65 at a 2-sigma confidence level, which is in mild conflict with the results of the Type la supernova surveys. We continue to find that neither spiral galaxies nor groups and clusters contribute significantly to the production of gravitational lenses. The lack of group and cluster lenses is strong evidence for the role of baryonic cooling in increasing the efficiency of galaxies as lenses compared to groups and clusters of higher mass but lower central density. Unfortunately for the ultimate objective of the proposal, improved constraints on the cosmological constant, the next
Capacitive Cells for Dielectric Constant Measurement
ERIC Educational Resources Information Center
Aguilar, Horacio Munguía; Maldonado, Rigoberto Franco
2015-01-01
A simple capacitive cell for dielectric constant measurement in liquids is presented. As an illustrative application, the cell is used for measuring the degradation of overheated edible oil through the evaluation of their dielectric constant.
High voltage compliance constant current ballast
NASA Technical Reports Server (NTRS)
Rosenthal, L. A.
1976-01-01
A ballast circuit employing a constant current diode and a vacuum tube that can provide a constant current over a voltage range of 1000 volts. The simple circuit can prove useful in studying voltage breakdown characteristics.
Temporal variation of coupling constants and nucleosynthesis
NASA Astrophysics Data System (ADS)
Oberhummer, H.; Csótó, A.; Fairbairn, M.; Schlattl, H.; Sharma, M. M.
2003-05-01
We investigate the triple-alpha process and the Oklo phenomenon to obtain constraints on possible cosmological time variations of fundamental constants. Specifically we study cosmological temporal constraints for the fine structure constant and nucleon and meson masses.
Fundamental Constants and Tests with Simple Atoms
NASA Astrophysics Data System (ADS)
Tan, Joseph
2015-05-01
Precise measurements with simple atoms provide stringent tests of physical laws, improving the accuracy of fundamental constants--a set of which will be selected to fully define the proposed New International System of Units. This talk focuses on the atomic constants (namely, the Rydberg constant, the fine-structure constant, and the proton charge radius), discussing the impact of the proton radius obtained from the Lamb-shift measurements in muonic hydrogen. Significant discrepancies persist despite years of careful examination: the slightly smaller proton radius obtained from muonic hydrogen requires the Rydberg constant and the fine-structure constant to have values that disagree significantly with the CODATA recommendations. After giving a general overview, I will discuss our effort to produce one-electron ions in Rydberg states, to enable a different test of theory and measurement of the Rydberg constant.
Emergent cosmological constant from colliding electromagnetic waves
Halilsoy, M.; Mazharimousavi, S. Habib; Gurtug, O. E-mail: habib.mazhari@emu.edu.tr
2014-11-01
In this study we advocate the view that the cosmological constant is of electromagnetic (em) origin, which can be generated from the collision of em shock waves coupled with gravitational shock waves. The wave profiles that participate in the collision have different amplitudes. It is shown that, circular polarization with equal amplitude waves does not generate cosmological constant. We also prove that the generation of the cosmological constant is related to the linear polarization. The addition of cross polarization generates no cosmological constant. Depending on the value of the wave amplitudes, the generated cosmological constant can be positive or negative. We show additionally that, the collision of nonlinear em waves in a particular class of Born-Infeld theory also yields a cosmological constant.
Effective elastic constants of polycrystalline aggregates
NASA Astrophysics Data System (ADS)
Bonilla, Luis L.
A METHOD is presented for the determination of the effective elastic constants of a transversely isotropic aggregate of weakly anisotropic crystallites with cubic symmetry. The results obtained generalize those given in the literature for the second and third order elastic constants. In addition, the second moments and the binary angular correlations of the second order stiffnesses are obtained. It is also explained how these moments can be used to find the two-point correlations of the elastic constants.
Constant voltage electro-slag remelting control
Schlienger, Max E.
1996-01-01
A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an eletrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable.
Constant voltage electro-slag remelting control
Schlienger, M.E.
1996-10-22
A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.
Modification of the characteristic gravitational constants
NASA Astrophysics Data System (ADS)
Vujičić, V. A.
2006-08-01
In the educational and scientific literature the numerical values of gravitational constants are seen as only approximately correct. The numerical values are different in work by various researchers, as also are the formulae and definitions of constants employed. In this paper, on the basis of Newton’s laws and Kepler’s laws we prove that it is necessary to modify the characteristic gravitational constants and their definitions. The formula for the geocentric gravitational constant of the satellites Kosmos N and the Moon are calculated.
Varying constant cosmologies and cosmic singularities
NASA Astrophysics Data System (ADS)
Dabrowski, Mariusz P.; Marosek, Konrad
2013-02-01
We review standard and non-standard cosmological singularities paying special attention onto those which are of a weak type and do not necessarily exhibit geodesic incompletness. Then, we discuss how these singularities can be weakened, strengthened, or avoided due to the time-variation of the physical constants such as the speed of light c and the gravitational constant G.
String theory, cosmology and varying constants
NASA Astrophysics Data System (ADS)
Damour, Thibault
In string theory the coupling `constants' appearing in the low-energy effective Lagrangian are determined by the vacuum expectation values of some (a priori) massless scalar fields (dilaton, moduli). This naturally leads one to expect a correlated variation of all the coupling constants, and an associated violation of the equivalence principle. We review some string-inspired theoretical models which incorporate such a spacetime variation of coupling constants while remaining naturally compatible both with phenomenological constraints coming from geochemical data (Oklo; Rhenium decay) and with present equivalence principle tests. Barring a very unnatural fine-tuning of parameters, a variation of the fine-structure constant as large as that recently `observed' by Webb et al. in quasar absorption spectra appears to be incompatible with these phenomenological constraints. Independently of any model, it is emphasized that the best experimental probe of varying constants are high-precision tests of the universality of free fall, such as MICROSCOPE and STEP.
Vicinal coupling constants and protein dynamics.
Hoch, J C; Dobson, C M; Karplus, M
1985-07-16
The effects of motional averaging on the analysis of vicinal spin-spin coupling constants derived from proton NMR studies of proteins have been examined. Trajectories obtained from molecular dynamics simulations of bovine pancreatic trypsin inhibitor and of hen egg white lysozyme were used in conjunction with an expression for the dependence of the coupling constant on the intervening dihedral angle to calculate the time-dependent behavior of the coupling constants. Despite large fluctuations, the time-average values of the coupling constants are not far from those computed for the average structure in the cases where fluctuations occur about a single potential well. The calculated differences show a high correlation with the variation in the magnitude of the fluctuations of individual dihedral angles. For the cases where fluctuations involve multiple sites, large differences are found between the time-average values and the average structure values for the coupling constants. Comparison of the simulation results with the experimental trends suggests that side chains with more than one position are more common in proteins than is inferred from X-ray results. It is concluded that for the main chain, motional effects do not introduce significant errors where vicinal coupling constants are used in structure determinations; however, for side chains, the motional average can alter deductions about the structure. Accurately measured coupling constants are shown to provide information concerning the magnitude of dihedral angle fluctuations.
On geometrically unified fields and universal constants
NASA Astrophysics Data System (ADS)
Fabbri, Luca
2013-07-01
We consider the Cartan extension of Riemann geometry as the basis upon which to build the Sciama-Kibble completion of Einstein gravity, developing the most general theory in which torsion and metric have two independent coupling constants: the main problem of the ESK theory was that torsion, having the Newton constant, was negligible beyond the Planck scale, but in this {ESK}2 theory torsion, with its own coupling constant, may be relevant much further Planck scales; further consequences of these torsionally-induced interactions will eventually be discussed.
The Determination of the Strong Coupling Constant
NASA Astrophysics Data System (ADS)
Dissertori, Günther
2016-10-01
The strong coupling constant is one of the fundamental parameters of the Standard Theory of particle physics. In this review I will briefly summarise the theoretical framework, within which the strong coupling constant is defined and how it is connected to measurable observables. Then I will give an historical overview of its experimental determinations and discuss the current status and world average value. Among the many different techniques used to determine this coupling constant in the context of quantum chromodynamics, I will focus in particular on a number of measurements carried out at the Large Electron-Positron Collider (LEP) and the Large Hadron Collider (LHC) at CERN.
Laser Propulsion and the Constant Momentum Mission
NASA Astrophysics Data System (ADS)
Larson, C. William; Mead, Franklin B.; Knecht, Sean D.
2004-03-01
We show that perfect propulsion requires a constant momentum mission, as a consequence of Newton's second law. Perfect propulsion occurs when the velocity of the propelled mass in the inertial frame of reference matches the velocity of the propellant jet in the rocket frame of reference. We compare constant momentum to constant specific impulse propulsion, which, for a given specification of the mission delta V, has an optimum specific impulse that maximizes the propelled mass per unit jet kinetic energy investment. We also describe findings of more than 50 % efficiency for conversion of laser energy into jet kinetic energy by ablation of solids.
Laser Propulsion and the Constant Momentum Mission
Larson, C. William; Mead, Franklin B. Jr.; Knecht, Sean D.
2004-03-30
We show that perfect propulsion requires a constant momentum mission, as a consequence of Newton's second law. Perfect propulsion occurs when the velocity of the propelled mass in the inertial frame of reference matches the velocity of the propellant jet in the rocket frame of reference. We compare constant momentum to constant specific impulse propulsion, which, for a given specification of the mission delta V, has an optimum specific impulse that maximizes the propelled mass per unit jet kinetic energy investment. We also describe findings of more than 50 % efficiency for conversion of laser energy into jet kinetic energy by ablation of solids.
Constants and Pseudo-Constants of Coupled Beam Motion in the PEP-II Rings
Decker, F.J.; Colocho, W.S.; Wang, M.H.; Yan, Y.T.; Yocky, G.; /SLAC
2011-11-01
Constants of beam motion help as cross checks to analyze beam diagnostics and the modeling procedure. Pseudo-constants, like the betatron mismatch parameter or the coupling parameter det C, are constant till certain elements in the beam line change them. This can be used to visually find the non-desired changes, pinpointing errors compared with the model.
How the cosmological constant affects gravastar formation
Chan, R.; Silva, M.F.A. da; Rocha, P. E-mail: mfasnic@gmail.com
2009-12-01
Here we generalized a previous model of gravastar consisted of an internal de Sitter spacetime, a dynamical infinitely thin shell with an equation of state, but now we consider an external de Sitter-Schwarzschild spacetime. We have shown explicitly that the final output can be a black hole, a ''bounded excursion'' stable gravastar, a stable gravastar, or a de Sitter spacetime, depending on the total mass of the system, the cosmological constants, the equation of state of the thin shell and the initial position of the dynamical shell. We have found that the exterior cosmological constant imposes a limit to the gravastar formation, i.e., the exterior cosmological constant must be smaller than the interior cosmological constant. Besides, we have also shown that, in the particular case where the Schwarzschild mass vanishes, no stable gravastar can be formed, but we still have formation of black hole.
The Solar Constant: A Take Home Lab
ERIC Educational Resources Information Center
Eaton, B. G.; And Others
1977-01-01
Describes a method that uses energy from the sun, absorbed by aluminum discs, to melt ice, and allows the determination of the solar constant. The take-home equipment includes Styrofoam cups, a plastic syringe, and aluminum discs. (MLH)
Dielectric constant of water in the interface.
Dinpajooh, Mohammadhasan; Matyushov, Dmitry V
2016-07-01
We define the dielectric constant (susceptibility) that should enter the Maxwell boundary value problem when applied to microscopic dielectric interfaces polarized by external fields. The dielectric constant (susceptibility) of the interface is defined by exact linear-response equations involving correlations of statistically fluctuating interface polarization and the Coulomb interaction energy of external charges with the dielectric. The theory is applied to the interface between water and spherical solutes of altering size studied by molecular dynamics (MD) simulations. The effective dielectric constant of interfacial water is found to be significantly lower than its bulk value, and it also depends on the solute size. For TIP3P water used in MD simulations, the interface dielectric constant changes from 9 to 4 when the solute radius is increased from ∼5 to 18 Å.
The Rate Constant for Fluorescence Quenching
ERIC Educational Resources Information Center
Legenza, Michael W.; Marzzacco, Charles J.
1977-01-01
Describes an experiment that utilizes fluorescence intensity measurements from a Spectronic 20 to determine the rate constant for the fluorescence quenching of various aromatic hydrocarbons by carbon tetrachloride in an ethanol solvent. (MLH)
Inflation with a constant rate of roll
NASA Astrophysics Data System (ADS)
Motohashi, Hayato; Starobinsky, Alexei A.; Yokoyama, Jun'ichi
2015-09-01
We consider an inflationary scenario where the rate of inflaton roll defined by ̈phi/H dot phi remains constant. The rate of roll is small for slow-roll inflation, while a generic rate of roll leads to the interesting case of 'constant-roll' inflation. We find a general exact solution for the inflaton potential required for such inflaton behaviour. In this model, due to non-slow evolution of background, the would-be decaying mode of linear scalar (curvature) perturbations may not be neglected. It can even grow for some values of the model parameter, while the other mode always remains constant. However, this always occurs for unstable solutions which are not attractors for the given potential. The most interesting particular cases of constant-roll inflation remaining viable with the most recent observational data are quadratic hilltop inflation (with cutoff) and natural inflation (with an additional negative cosmological constant). In these cases even-order slow-roll parameters approach non-negligible constants while the odd ones are asymptotically vanishing in the quasi-de Sitter regime.
RNA structure and scalar coupling constants
Tinoco, I. Jr.; Cai, Z.; Hines, J.V.; Landry, S.M.; SantaLucia, J. Jr.; Shen, L.X.; Varani, G.
1994-12-01
Signs and magnitudes of scalar coupling constants-spin-spin splittings-comprise a very large amount of data that can be used to establish the conformations of RNA molecules. Proton-proton and proton-phosphorus splittings have been used the most, but the availability of {sup 13}C-and {sup 15}N-labeled molecules allow many more coupling constants to be used for determining conformation. We will systematically consider the torsion angles that characterize a nucleotide unit and the coupling constants that depend on the values of these torsion angles. Karplus-type equations have been established relating many three-bond coupling constants to torsion angles. However, one- and two-bond coupling constants can also depend on conformation. Serianni and coworkers measured carbon-proton coupling constants in ribonucleosides and have calculated their values as a function of conformation. The signs of two-bond coupling can be very useful because it is easier to measure a sign than an accurate magnitude.
NASA Astrophysics Data System (ADS)
Suzuki, Takuji; Iida, Simpei; Yamashita, Takashi; Nagashima, Yasuyuki
2015-06-01
We have measured the positron diffusion constants in polycrystalline molybdenum by the observation of positronium negative ions (Ps-). The Ps- ions emitted from the sample surface coated with Na were accelerated. The γ-rays from the accelerated Ps- ions were Doppler- shifted and thus the signals of self-annihilation of the Ps- ions were isolated from those of self-annihilation of para-positronium (p-Ps) or pair-annihilation of positrons in the bulk. Clear and reliable values of the diffusion constants have been obtained.
Absolute radiometry and the solar constant
NASA Technical Reports Server (NTRS)
Willson, R. C.
1974-01-01
A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).
Optimizing constant wavelength neutron powder diffractometers
NASA Astrophysics Data System (ADS)
Cussen, Leo D.
2016-06-01
This article describes an analytic method to optimize constant wavelength neutron powder diffractometers. It recasts the accepted mathematical description of resolution and intensity in terms of new variables and includes terms for vertical divergence, wavelength and some sample scattering effects. An undetermined multiplier method is applied to the revised equations to minimize the RMS value of resolution width at constant intensity and fixed wavelength. A new understanding of primary spectrometer transmission (presented elsewhere) can then be applied to choose beam elements to deliver an optimum instrument. Numerical methods can then be applied to choose the best wavelength.
Dielectric constants of soils at microwave frequencies
NASA Technical Reports Server (NTRS)
Geiger, F. E.; Williams, D.
1972-01-01
A knowledge of the complex dielectric constant of soils is essential in the interpretation of microwave airborne radiometer data of the earth's surface. Measurements were made at 37 GHz on various soils from the Phoenix, Ariz., area. Extensive data have been obtained for dry soil and soil with water content in the range from 0.6 to 35 percent by dry weight. Measurements were made in a two arm microwave bridge and results were corrected for reflections at the sample interfaces by solution of the parallel dielectric plate problem. The maximum dielectric constants are about a factor of 3 lower than those reported for similar soils at X-band frequencies.
Microfabricated microengine with constant rotation rate
Romero, L.A.; Dickey, F.M.
1999-09-21
A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.
Atomic Weights No Longer Constants of Nature
Coplen, T.B.; Holden, N.
2011-03-01
Many of us grew up being taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis has changed the way we view atomic weights and why they are no longer constants of nature.
Atomic weights: no longer constants of nature
Coplen, Tyler B.; Holden, Norman E.
2011-01-01
Many of us were taught that the standard atomic weights we found in the back of our chemistry textbooks or on the Periodic Table of the Chemical Elements hanging on the wall of our chemistry classroom are constants of nature. This was common knowledge for more than a century and a half, but not anymore. The following text explains how advances in chemical instrumentation and isotopic analysis have changed the way we view atomic weights and why they are no longer constants of nature
TOPICAL REVIEW The cosmological constant puzzle
NASA Astrophysics Data System (ADS)
Bass, Steven D.
2011-04-01
The accelerating expansion of the Universe points to a small positive vacuum energy density and negative vacuum pressure. A strong candidate is the cosmological constant in Einstein's equations of general relativity. Possible contributions are zero-point energies and the condensates associated with spontaneous symmetry breaking. The vacuum energy density extracted from astrophysics is 1056 times smaller than the value expected from quantum fields and standard model particle physics. Is the vacuum energy density time dependent? We give an introduction to the cosmological constant puzzle and ideas how to solve it.
Cosmological constant in scale-invariant theories
Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R.
2011-10-01
The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.
Environmental dependence of masses and coupling constants
Olive, Keith A.; Pospelov, Maxim
2008-02-15
We construct a class of scalar field models coupled to matter that lead to the dependence of masses and coupling constants on the ambient matter density. Such models predict a deviation of couplings measured on the Earth from values determined in low-density astrophysical environments, but do not necessarily require the evolution of coupling constants with the redshift in the recent cosmological past. Additional laboratory and astrophysical tests of {delta}{alpha} and {delta}(m{sub p}/m{sub e}) as functions of the ambient matter density are warranted.
Our Universe from the cosmological constant
Barrau, Aurélien; Linsefors, Linda E-mail: linda.linsefors@lpsc.in2p3.fr
2014-12-01
The issue of the origin of the Universe and of its contents is addressed in the framework of bouncing cosmologies, as described for example by loop quantum gravity. If the current acceleration is due to a true cosmological constant, this constant is naturally conserved through the bounce and the Universe should also be in a (contracting) de Sitter phase in the remote past. We investigate here the possibility that the de Sitter temperature in the contracting branch fills the Universe with radiation that causes the bounce and the subsequent inflation and reheating. We also consider the possibility that this gives rise to a cyclic model of the Universe and suggest some possible tests.
Microfabricated microengine with constant rotation rate
Romero, Louis A.; Dickey, Fred M.
1999-01-01
A microengine uses two synchronized linear actuators as a power source and converts oscillatory motion from the actuators into constant rotational motion via direct linkage connection to an output gear or wheel. The microengine provides output in the form of a continuously rotating output gear that is capable of delivering drive torque at a constant rotation to a micromechanism. The output gear can have gear teeth on its outer perimeter for directly contacting a micromechanism requiring mechanical power. The gear is retained by a retaining means which allows said gear to rotate freely. The microengine is microfabricated of polysilicon on one wafer using surface micromachining batch fabrication.
Constant capacitance in nanopores of carbon monoliths.
García-Gómez, Alejandra; Moreno-Fernández, Gelines; Lobato, Belén; Centeno, Teresa A
2015-06-28
The results obtained for binder-free electrodes made of carbon monoliths with narrow micropore size distributions confirm that the specific capacitance in the electrolyte (C2H5)4NBF4/acetonitrile does not depend significantly on the micropore size and support the foregoing constant result of 0.094 ± 0.011 F m(-2).
Damping constant estimation in magnetoresistive readers
Stankiewicz, Andrzej Hernandez, Stephanie
2015-05-07
The damping constant is a key design parameter in magnetic reader design. Its value can be derived from bulk or sheet film ferromagnetic resonance (FMR) line width. However, dynamics of nanodevices is usually defined by presence of non-uniform modes. It triggers new damping mechanisms and produces stronger damping than expected from traditional FMR. This work proposes a device-level technique for damping evaluation, based on time-domain analysis of thermally excited stochastic oscillations. The signal is collected using a high bandwidth oscilloscope, by direct probing of a biased reader. Recorded waveforms may contain different noise signals, but free layer FMR is usually a dominating one. The autocorrelation function is a reflection of the damped oscillation curve, averaging out stochastic contributions. The damped oscillator formula is fitted to autocorrelation data, producing resonance frequency and damping constant values. Restricting lag range allows for mitigation of the impact of other phenomena (e.g., reader instability) on the damping constant. For a micromagnetically modeled reader, the technique proves to be much more accurate than the stochastic FMR line width approach. Application to actual reader waveforms yields a damping constant of ∼0.03.
Variations of the Solar Constant. [conference
NASA Technical Reports Server (NTRS)
Sofia, S. (Editor)
1981-01-01
The variations in data received from rocket-borne and balloon-borne instruments are discussed. Indirect techniques to measure and monitor the solar constant are presented. Emphasis is placed on the correlation of data from the Solar Maximum Mission and the Nimbus 7 satellites.
Unified Technical Concepts. Module 12: Time Constants.
ERIC Educational Resources Information Center
Technical Education Research Center, Waco, TX.
This concept module on time constants is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each energy…
The ideal Kolmogorov inertial range and constant
NASA Technical Reports Server (NTRS)
Zhou, YE
1993-01-01
The energy transfer statistics measured in numerically simulated flows are found to be nearly self-similar for wavenumbers in the inertial range. Using the measured self-similar form, an 'ideal' energy transfer function and the corresponding energy flux rate were deduced. From this flux rate, the Kolmogorov constant was calculated to be 1.5, in excellent agreement with experiments.
The Elastic Constants for Wrought Aluminum Alloys
NASA Technical Reports Server (NTRS)
Templin, R L; Hartmann, E C
1945-01-01
There are several constants which have been devised as numerical representations of the behavior of metals under the action of loadings which stress the metal within the range of elastic action. Some of these constants, such as Young's modulus of elasticity in tension and compression, shearing modulus of elasticity, and Poisson's ratio, are regularly used in engineering calculations. Precise tests and experience indicate that these elastic constants are practically unaffected by many of the factors which influence the other mechanical properties of materials and that a few careful determinations under properly controlled conditions are more useful and reliable than many determinations made under less favorable conditions. It is the purpose of this paper to outline the methods employed by the Aluminum Research Laboratories for the determination of some of these elastic constants, to list the values that have been determined for some of the wrought aluminum alloys, and to indicate the variations in the values that may be expected for some of the commercial products of these alloys.
The Cosmological Constant and its Interpretation
NASA Astrophysics Data System (ADS)
Liddle, A.; Murdin, P.
2002-12-01
The cosmological constant was first introduced into the equations of general relativity by Einstein himself, who later famously criticized this move as his `greatest blunder'. His main motivation had been to allow cosmological models featuring a static universe, but this possibility swiftly became redundant with Edwin Hubble's discovery of the expansion of the universe. Despite this, it has period...
Can compactifications solve the cosmological constant problem?
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.; Masoumi, Ali
2016-06-01
Recently, there have been claims in the literature that the cosmological constant problem can be dynamically solved by specific compactifications of gravity from higher-dimensional toy models. These models have the novel feature that in the four-dimensional theory, the cosmological constant Λ is much smaller than the Planck density and in fact accumulates at Λ = 0. Here we show that while these are very interesting models, they do not properly address the real cosmological constant problem. As we explain, the real problem is not simply to obtain Λ that is small in Planck units in a toy model, but to explain why Λ is much smaller than other mass scales (and combinations of scales) in the theory. Instead, in these toy models, all other particle mass scales have been either removed or sent to zero, thus ignoring the real problem. To this end, we provide a general argument that the included moduli masses are generically of order Hubble, so sending them to zero trivially sends the cosmological constant to zero. We also show that the fundamental Planck mass is being sent to zero, and so the central problem is trivially avoided by removing high energy physics altogether. On the other hand, by including various large mass scales from particle physics with a high fundamental Planck mass, one is faced with a real problem, whose only known solution involves accidental cancellations in a landscape.
Spray Gun With Constant Mixing Ratio
NASA Technical Reports Server (NTRS)
Simpson, William G.
1987-01-01
Conceptual mechanism mounted in handle of spray gun maintains constant ratio between volumetric flow rates in two channels leading to spray head. With mechanism, possible to keep flow ratio near 1:1 (or another desired ratio) over range of temperatures, orifice or channel sizes, or clogging conditions.
Asymptotically Vanishing Cosmological Constant in the Multiverse
NASA Astrophysics Data System (ADS)
Kawai, Hikaru; Okada, Takashi
We study the problem of the cosmological constant in the context of the multiverse in Lorentzian space-time, and show that the cosmological constant will vanish in the future. This sort of argument was started by Sidney Coleman in 1989, and he argued that the Euclidean wormholes make the multiverse partition function a superposition of various values of the cosmological constant Λ, which has a sharp peak at Λ = 0. However, the implication of the Euclidean analysis to our Lorentzian space-time is unclear. With this motivation, we analyze the quantum state of the multiverse in Lorentzian space-time by the WKB method, and calculate the density matrix of our universe by tracing out the other universes. Our result predicts vanishing cosmological constant. While Coleman obtained the enhancement at Λ = 0 through the action itself, in our Lorentzian analysis the similar enhancement arises from the front factor of eiS in the universe wave function, which is in the next leading order in the WKB approximation.
A tunable CMOS constant current source
NASA Technical Reports Server (NTRS)
Thelen, D.
1991-01-01
A constant current source has been designed which makes use of on chip electrically erasable memory to adjust the magnitude and temperature coefficient of the output current. The current source includes a voltage reference based on the difference between enhancement and depletion transistor threshold voltages. Accuracy is +/- 3% over the full range of power supply, process variations, and temperature using eight bits for tuning.
Man's Size in Terms of Fundamental Constants.
ERIC Educational Resources Information Center
Press, William H.
1980-01-01
Reviews calculations that derive an order of magnitude expression for the size of man in terms of fundamental constants, assuming that man satifies these three properties: he is made of complicated molecules; he requires an atmosphere which is not hydrogen and helium; he is as large as possible. (CS)
Factorization of the constants of motion
NASA Astrophysics Data System (ADS)
Nash, P. L.; Chen, L. Y.
2006-08-01
A complete set of first integrals, or constants of motion, for a model system is constructed using "factorization", as described below. The system is described by the effective Feynman Lagrangian L = 1/4 [m(x)double over dot(t) + 2m lambda(x)over dot(t) + partial derivative V-x(x(t))](2), with one of the simplest, nontrivial, potentials V (x) = 1/2m omega(2)x(2) selected for study. Four new, explicitly time-dependent, constants of the motion c(i +/-), i = 1, 2 are defined for this system. While partial derivative/partial derivative tc(i +/-) not equal 0, d/tc(i +/-) = partial derivative/partial derivative tc(i +/-) + (x)over dot partial derivative/partial derivative xc(i +/-) + (x)double over dot partial derivative/partial derivative xci +/- + ... = along an extremal of L. The Hamiltonian H is shown to equal a sum of products of the c(i +/-), and verifies partial derivative H/partial derivative t = 0. A second, functionally independent constant of motion is also constructed as a sum of the quadratic products of c(i +/-). It is shown that these derived constants of motion are in involution.
Teaching Nanochemistry: Madelung Constants of Nanocrystals
ERIC Educational Resources Information Center
Baker, Mark D.; Baker, A. David
2010-01-01
The Madelung constants for binary ionic nanoparticles are determined. The computational method described here sums the Coulombic interactions of each ion in the particle without the use of partial charges commonly used for bulk materials. The results show size-dependent lattice energies. This is a useful concept in teaching how properties such as…
Construction of Lines of Constant Density and Constant Refractive Index for Ternary Liquid Mixtures.
ERIC Educational Resources Information Center
Tasic, Aleksandar Z.; Djordjevic, Bojan D.
1983-01-01
Demonstrates construction of density constant and refractive index constant lines in triangular coordinate system on basis of systematic experimental determinations of density and refractive index for both homogeneous (single-phase) ternary liquid mixtures (of known composition) and the corresponding binary compositions. Background information,…
Components of Dielectric Constants of Ionic Liquids
NASA Astrophysics Data System (ADS)
Izgorodina, Ekaterina I.
2010-03-01
In this study ab initio-based methods were used to calculate electronic polarizability and dipole moment of ions comprising ionic liquids [1]. The test set consisted of a number of anions and cations routinely used in the ionic liquid field. As expected, in the first approximation electronic polarizability volume turned out to be proportional to the ion volume, also calculated by means of ab initio theory. For ionic liquid ions this means that their electronic polarizabilities are at least an order of magnitude larger than those of traditional molecular solvents like water and DMSO. On this basis it may seem surprising that most of ionic liquids actually possess modest dielectric constants, falling the narrow range between 10 and 15. The lower than first expected dielectric constants of ionic liquids has been explored in this work via explicit calculations of the electronic and orientation polarization contributions to the dielectric constant using the Clausius-Mossotti equation and the Onsager theory for polar dielectric materials. We determined that the electronic polarization contribution to the dielectric constant was rather small (between 1.9 and 2.2) and comparable to that of traditional molecular solvents. These findings were explained by the interplay between two quantities, increasing electronic polarizability of ions and decreasing number of ions present in the unit volume; although electronic polarizability is usually relatively large for ionic liquid ions, due to their size there are fewer ions present per unit volume (by a factor of 10 compared to traditional molecular solvents). For ionic liquids consisting of ions with zero (e.g. BF4) or negligible (e.g. NTf2) dipole moments the calculated orientation polarization does not contribute enough to account for the whole of the measured values of the dielectric constants. We suggest that in ionic liquids an additional type of polarization, ``ionic polarization'', originating from small movements of the
Optical constants of liquid and solid methane
NASA Technical Reports Server (NTRS)
Martonchik, John V.; Orton, Glenn S.
1994-01-01
The optical constants n(sub r) + in(sub i) of liquid methane and phase 1 solid methane were determined over the entire spectral range by the use of various data sources published in the literature. Kramers-Kronig analyses were performed on the absorption spectra of liquid methane at the boiling point (111 K) and the melting point (90 K) and on the absorption spectra of phase 1 solid methane at the melting point and at 30 K. Measurements of the static dielectric constant at these temperatures and refractive indices determined over limited spectral ranges were used as constraints in the analyses. Applications of methane optical properties to studies of outer solar system bodies are described.
Some Dynamical Effects of the Cosmological Constant
NASA Astrophysics Data System (ADS)
Axenides, M.; Floratos, E. G.; Perivolaropoulos, L.
Newton's law gets modified in the presence of a cosmological constant by a small repulsive term (antigravity) that is proportional to the distance. Assuming a value of the cosmological constant consistent with the recent SnIa data (Λ~=10-52 m-2), we investigate the significance of this term on various astrophysical scales. We find that on galactic scales or smaller (less than a few tens of kpc), the dynamical effects of the vacuum energy are negligible by several orders of magnitude. On scales of 1 Mpc or larger however we find that the vacuum energy can significantly affect the dynamics. For example we show that the velocity data in the local group of galaxies correspond to galactic masses increased by 35% in the presence of vacuum energy. The effect is even more important on larger low density systems like clusters of galaxies or superclusters.
BOREAS RSS-17 Dielectric Constant Profile Measurements
NASA Technical Reports Server (NTRS)
Hall, Forrest G. (Editor); Nickeson, Jaime (Editor); McDonald, Kyle C.; Zimmerman, Reiner; Way, JoBea
2000-01-01
The BOREAS RSS-17 team acquired and analyzed imaging radar data from the ESA's ERS-1 over a complete annual cycle at the BOREAS sites in Canada in 1994 to detect shifts in radar backscatter related to varying environmental conditions. This data set consists of dielectric constant profile measurements from selected trees at various BOREAS flux tower sites. The relative dielectric constant was measured at C-band (frequency = 5 GHz) as a function of depth into the trunk of three trees at each site, Measurements were made during April 1994 with an Applied Microwave Corporation field PDP fitted with a 0.358-cm (0.141-inch) diameter coaxial probe tip. The data are available in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).
Dielectric Constant Measurements for Characterizing Lunar Soils
NASA Technical Reports Server (NTRS)
Anderson, Robert C.; Buehler, M.; Seshadri, S.; Kuhlman, G.; Schaap, M.
2005-01-01
The return to the Moon has ignited the need to characterize the lunar regolith using fast, reliable in-situ methods. Characterizing the physical properties of the rocks and soils can be very difficult because of the many complex parameters that influence the measurements. In particular, soil electrical property measurements are influenced by temperature, mineral type, grain size, porosity, and soil conductivity. Determining the dielectric constant of lunar materials may be very important in providing quick characterization of surface deposits, especially for the Moon. A close examination of the lunar regolith samples collected by the Apollo astronauts indicates that the rocks and soils on the Moon are dominated by silicates and oxides. In this presentation, we will show that determining the dielectric constant measurements can provide a simple, quick detection method for minerals that contain titanium, iron, and water. Their presence is manifest by an unusually large imaginary permittivity.
Cosmological constant in the quantum multiverse
NASA Astrophysics Data System (ADS)
Larsen, Grant; Nomura, Yasunori; Roberts, Hannes L. L.
2011-12-01
Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. In this paper, we elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein.
Hyperscaling violation and the shear diffusion constant
NASA Astrophysics Data System (ADS)
Kolekar, Kedar S.; Mukherjee, Debangshu; Narayan, K.
2016-09-01
We consider holographic theories in bulk (d + 1)-dimensions with Lifshitz and hyperscaling violating exponents z , θ at finite temperature. By studying shear gravitational modes in the near-horizon region given certain self-consistent approximations, we obtain the corresponding shear diffusion constant on an appropriately defined stretched horizon, adapting the analysis of Kovtun, Son and Starinets. For generic exponents with d - z - θ > - 1, we find that the diffusion constant has power law scaling with the temperature, motivating us to guess a universal relation for the viscosity bound. When the exponents satisfy d - z - θ = - 1, we find logarithmic behaviour. This relation is equivalent to z = 2 +deff where deff =di - θ is the effective boundary spatial dimension (and di = d - 1 the actual spatial dimension). It is satisfied by the exponents in hyperscaling violating theories arising from null reductions of highly boosted black branes, and we comment on the corresponding analysis in that context.
On determining dose rate constants spectroscopically
Rodriguez, M.; Rogers, D. W. O.
2013-01-15
Purpose: To investigate several aspects of the Chen and Nath spectroscopic method of determining the dose rate constants of {sup 125}I and {sup 103}Pd seeds [Z. Chen and R. Nath, Phys. Med. Biol. 55, 6089-6104 (2010)] including the accuracy of using a line or dual-point source approximation as done in their method, and the accuracy of ignoring the effects of the scattered photons in the spectra. Additionally, the authors investigate the accuracy of the literature's many different spectra for bare, i.e., unencapsulated {sup 125}I and {sup 103}Pd sources. Methods: Spectra generated by 14 {sup 125}I and 6 {sup 103}Pd seeds were calculated in vacuo at 10 cm from the source in a 2.7 Multiplication-Sign 2.7 Multiplication-Sign 0.05 cm{sup 3} voxel using the EGSnrc BrachyDose Monte Carlo code. Calculated spectra used the initial photon spectra recommended by AAPM's TG-43U1 and NCRP (National Council of Radiation Protection and Measurements) Report 58 for the {sup 125}I seeds, or TG-43U1 and NNDC(2000) (National Nuclear Data Center, 2000) for {sup 103}Pd seeds. The emitted spectra were treated as coming from a line or dual-point source in a Monte Carlo simulation to calculate the dose rate constant. The TG-43U1 definition of the dose rate constant was used. These calculations were performed using the full spectrum including scattered photons or using only the main peaks in the spectrum as done experimentally. Statistical uncertainties on the air kerma/history and the dose rate/history were Less-Than-Or-Slanted-Equal-To 0.2%. The dose rate constants were also calculated using Monte Carlo simulations of the full seed model. Results: The ratio of the intensity of the 31 keV line relative to that of the main peak in {sup 125}I spectra is, on average, 6.8% higher when calculated with the NCRP Report 58 initial spectrum vs that calculated with TG-43U1 initial spectrum. The {sup 103}Pd spectra exhibit an average 6.2% decrease in the 22.9 keV line relative to the main peak when
Simple liquid models with corrected dielectric constants.
Fennell, Christopher J; Li, Libo; Dill, Ken A
2012-06-14
Molecular simulations often use explicit-solvent models. Sometimes explicit-solvent models can give inaccurate values for basic liquid properties, such as the density, heat capacity, and permittivity, as well as inaccurate values for molecular transfer free energies. Such errors have motivated the development of more complex solvents, such as polarizable models. We describe an alternative here. We give new fixed-charge models of solvents for molecular simulations--water, carbon tetrachloride, chloroform, and dichloromethane. Normally, such solvent models are parametrized to agree with experimental values of the neat liquid density and enthalpy of vaporization. Here, in addition to those properties, our parameters are chosen to give the correct dielectric constant. We find that these new parametrizations also happen to give better values for other properties, such as the self-diffusion coefficient. We believe that parametrizing fixed-charge solvent models to fit experimental dielectric constants may provide better and more efficient ways to treat solvents in computer simulations.
Pole placement with constant gain output feedback
NASA Technical Reports Server (NTRS)
Sridhar, B.; Lindorff, D. P.
1972-01-01
Given a linear time invariant multivariable system with m inputs and p outputs, it was shown that p closed loop poles of the system can be preassigned arbitrarily using constant gain output feedback provided (A circumflex, B circumflex) is controllable. These data show that if (A circumflex, B circumflex, C circumflex) is controllable and observable, and Rank B circumflex = m, Rank C circumflex = p, then max (m,p) poles of the system can be assigned arbitarily using constant gain output feedback. Further, it is shown that in some cases more than max (m,p) poles can be arbitrarily assigned. A least square design technique is outlined to approximate the desired pole locations when it is not possible to place all the poles.
A damped simple pendulum of constant amplitude
NASA Astrophysics Data System (ADS)
Abdelkader, Mostafa A.
1984-03-01
A simple pendulum acted on by gravity and subjected to a resistance proportional to the velocity of the bob is considered. If the length of the string and the mass of the bob are held constant, the amplitude of the bob decreases gradually because of the damping. We want to keep the maximum swing of the bob constant for all time; this we achieve by varying the length of the string, the mass of the bob or both. The key to the solution of our problem is a second-order nonlinear differential equation having arbitrary nonlinearity and an arbitrary coefficient function, for which we give the exact integral. We also give an application of this differential equation to a boundary-value problem for a nonlinear generalization of a hypergeometric equation.
Gravitational constant in multiple field gravity
Abedi, Habib; Abbassi, Amir M. E-mail: amabasi@khayam.ut.ac.ir
2015-05-01
In the present study, we consider general form of the Lagrangian f(R, φ{sup I}, X) , that is a function of the Ricci scalar, multiple scalar fields and non-canonical kinetic terms. We obtain the effective Newton's constant deep inside the Hubble radius. We use Jordan and Einstein frames, and study the conservation of energy-momentum tensor.
Mars Pathfinder Project: Planetary Constants and Models
NASA Technical Reports Server (NTRS)
Vaughan, Robin
1995-01-01
This document provides a common set of astrodynamic constants and planetary models for use by the Mars Pathfinder Project. It attempts to collect in a single reference all the quantities and models in use across the project during development and for mission operations. These models are central to the navigation and mission design functions, but they are also used in other aspects of the project such as science observation planning and data reduction.
Casimir effect in spacetimes with cosmological constant
NASA Astrophysics Data System (ADS)
Bessa, C. H. G.; Bezerra, V. B.; Silva, J. C. J.
2016-06-01
In this work, we study the influence of the gravitational field induced by the presence of a cosmological constant Λ on the Casimir energy density. We consider two metrics with the presence of the Λ-term, namely de Sitter and Schwarzschild-de Sitter (SdS). In the former case, we consider a conformal de Sitter spacetime and in the last one, a weak gravitational SdS spacetime.
Dynamical Cosmological Constant in R 3 Gravity
NASA Astrophysics Data System (ADS)
Zare, Nasser; Fathi, Mohsen
2015-03-01
In this paper, we go through the famous f( R) theories of gravity, but keeping a peculiar one, namely R 3 modification. Moreover, instead of a coordinate free cosmological parameter, we take it to be a function of time. Having all these stuff, we investigate the notions of standard cosmology model, in the context of R 3 modification to general relativity, and in various regimes, we study the dynamical cosmological constant.
Time constants of flat superconducting cables
Takacs, S.; Yamamoto, J.
1997-06-01
The frequency dependence of coupling losses is calculated for flat superconducting cables, including the electromagnetic coupling between different current loops on the cable. It is shown that there are two characteristic time constants for both parallel and transverse coupling losses. The values of these time constants {tau}{sub 0} and {tau}{sub 1} are calculated by introducing effective inductances for the current loops. In both cases, {tau}{sub 1} is considerably smaller than {tau}{sub 0}. As the most important methods of determining {tau}{sub 0} from AC losses - namely, the limiting slope of loss/cycle at zero frequency and the position of the maximum loss/cycle vs. frequency - estimate {tau}{sub 0} and {tau}{sub 1}, respectively, the results are important for practical measurements and evaluation of time constants from AC losses. At larger frequencies, the losses are more likely to those in normal conductors (skin effect). The calculation schemes can be applied to cables with closely wound strands (like the cable-in-conduit conductors), too. However, several other effects should be considered being different and/or more important with respect to other cable types (demagnetization factor of strands and cables, larger regions near the cable edges, smaller number of strands and subcables, etc.).
Universal constant for heat production in protists.
Johnson, Matthew D; Völker, Jens; Moeller, Holly V; Laws, Edward; Breslauer, Kenneth J; Falkowski, Paul G
2009-04-21
Using a high sensitivity differential scanning calorimeter in isothermal mode, we directly measured heat production in eukaryotic protists from 5 phyla spanning over 5 orders of magnitude in carbon biomass and 8 orders of magnitude in cell volume. Our results reveal that metabolic heat production normalized to cell mass is virtually constant in these organisms, with a median of 0.037 pW pg C(-1) (95% confidence interval = 0.022-0.061 pW pg C(-1)) at 5 degrees C. Contrary to allometric models, the relationship between heat production and cell carbon content or surface area is isometric (scaling exponents, 1.056 and 1.057, respectively). That heat production per unit cell surface area is constant suggests that heat flux through the cell surface is effectively instantaneous, and hence that cells are isothermal with their environment. The results further suggest that allometric models of metabolism based on metazoans are not applicable to protists, and that the underlying metabolic processes in the latter polyphyletic group are highly constrained by evolutionary selection. We propose that the evolutionary constraint leading to a universally constant heat production in single-celled eukaryotes is related to cytoplasmic packaging of organelles and surface area to volume relationships controlling diffusion of resources to these organelles.
NASA Astrophysics Data System (ADS)
Dereli, Tekin; Yetişmişoǧlu, Cem
2016-09-01
We derive the field equations for topologically massive gravity coupled with the most general quadratic curvature terms using the language of exterior differential forms and a first order constrained variational principle. We find variational field equations both in the presence and absence of torsion. We then show that spaces of constant negative curvature (i.e. the anti-de Sitter space AdS3) and constant torsion provide exact solutions.
Localized (super)gravity and cosmological constant
NASA Astrophysics Data System (ADS)
Kakushadze, Zurab
2000-11-01
We consider localization of gravity in domain wall solutions of Einstein's gravity coupled to a scalar field with a generic potential. We discuss conditions on the scalar potential such that domain wall solutions are non-singular. Such solutions even exist for appropriate potentials which have no minima at all and are unbounded below. Domain walls of this type have infinite tension, while usual kink type of solutions interpolating between two AdS minima have finite tension. In the latter case the cosmological constant on the domain wall is necessarily vanishing, while in the former case it can be zero or negative. Positive cosmological constant is allowed for singular domain walls. We discuss non-trivial conditions for physically allowed singularities arising from the requirement that truncating the space at the singularities be consistent. Non-singular domain walls with infinite tension might a priori avoid recent "no-go" theorems indicating impossibility of supersymmetric embedding of kink type of domain walls in gauged supergravity. We argue that (non-singular) domain walls are stable even if they have infinite tension. This is essentially due to the fact that localization of gravity in smooth domain walls is a Higgs mechanism corresponding to a spontaneous breakdown of translational invariance. As to discontinuous domain walls arising in the presence of δ-function "brane" sources, they explicitly break translational invariance. Such solutions cannot therefore be thought of as limits of smooth domain walls. We point out that if the scalar potential has no minima and approaches finite negative values at infinity, then higher derivative terms are under control, and do not affect the cosmological constant which is vanishing for such backgrounds. Nonetheless, we also point out that higher curvature terms generically delocalize gravity, so that the desired lower-dimensional Newton's law is no longer reproduced.
Axion decay constants away from the lamppost
NASA Astrophysics Data System (ADS)
Conlon, Joseph P.; Krippendorf, Sven
2016-04-01
It is unknown whether a bound on axion field ranges exists within quantum gravity. We study axion field ranges using extended supersymmetry, in particular allowing an analysis within strongly coupled regions of moduli space. We apply this strategy to Calabi-Yau compactifications with one and two Kähler moduli. We relate the maximally allowable decay constant to geometric properties of the underlying Calabi-Yau geometry. In all examples we find a maximal field range close to the reduced Planck mass (with the largest field range being 3.25 M P ). On this perspective, field ranges relate to the intersection and instanton numbers of the underlying Calabi-Yau geometry.
Rate constants, timescales, and free energy barriers
NASA Astrophysics Data System (ADS)
Salamon, Peter; Wales, David; Segall, Anca; Lai, Yi-An; Schön, J. Christian; Hoffmann, Karl Heinz; Andresen, Bjarne
2016-01-01
The traditional connection between rate constants and free energy landscapes is extended to define effective free energy landscapes relevant on any chosen timescale. Although the Eyring-Polanyi transition state theory specifies a fixed timescale of τ=h/kBT}, we introduce instead the timescale of interest for the system in question, e.g. the observation time. The utility of drawing such landscapes using a variety of timescales is illustrated by the example of Holliday junction resolution. The resulting free energy landscapes are easier to interpret, clearly reveal observation time dependent effects like coalescence of short-lived states, and reveal features of interest for the specific system more clearly.
Optical constants of minerals and rocks.
Aronson, J R; Strong, P F
1975-12-01
Lorentz line parameters (and estimates of their standard deviations) have been empirically derived from measured reflectance data for muscovite mica, an anorthosite, a diopsidic pyroxenite, an almandite-pyrope garnet, and a soda lime glass. These parameters provide a useful starting point for computer calculations requiring optical constants as a function of frequency and are therefore given here. A novel method of fitting the reflectance data by least squares is described in detail, as is the statistical procedure for estimating the standard deviations of the parameters found. PMID:20155132
The fine structure constant and habitable planets
NASA Astrophysics Data System (ADS)
Sandora, McCullen
2016-08-01
We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts α-1 to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.
Quantum coherence, wormholes, and the cosmological constant
Unruh, W.G. )
1989-08-15
Coleman has argued that if wormhole solutions to the Euclidean action coupled to matter dominate the Euclidean path integral for quantum gravity, they do not lead to a loss of quantum coherence for wave functions in our Universe. Furthermore, they also lead to the prediction that the ultimate'' cosmological constant is zero. I analyze the assumptions that go into this result and argue that the presence of wormhole solutions does lead to a loss of quantum coherence and, furthermore, completely destroys the Euclidean quantum theory by producing a highly nonlocal effective Euclidean action which is violently unbounded from below.
Constant-Elasticity-of-Substitution Simulation
NASA Technical Reports Server (NTRS)
Reiter, G.
1986-01-01
Program simulates constant elasticity-of-substitution (CES) production function. CES function used by economic analysts to examine production costs as well as uncertainties in production. User provides such input parameters as price of labor, price of capital, and dispersion levels. CES minimizes expected cost to produce capital-uncertainty pair. By varying capital-value input, one obtains series of capital-uncertainty pairs. Capital-uncertainty pairs then used to generate several cost curves. CES program menu driven and features specific print menu for examining selected output curves. Program written in BASIC for interactive execution and implemented on IBM PC-series computer.
Optical constants of minerals and rocks.
Aronson, J R; Strong, P F
1975-12-01
Lorentz line parameters (and estimates of their standard deviations) have been empirically derived from measured reflectance data for muscovite mica, an anorthosite, a diopsidic pyroxenite, an almandite-pyrope garnet, and a soda lime glass. These parameters provide a useful starting point for computer calculations requiring optical constants as a function of frequency and are therefore given here. A novel method of fitting the reflectance data by least squares is described in detail, as is the statistical procedure for estimating the standard deviations of the parameters found.
Characterization of a constant current charge detector.
Mori, Masanobu; Chen, Yongjing; Ohira, Shin-Ichi; Dasgupta, Purnendu K
2012-12-15
Ion exchangers are ionic equivalents of doped semiconductors, where cations and anions are equivalents of holes and electrons as charge carriers in solid state semiconductors. We have previously demonstrated an ion exchange membrane (IEM) based electrolyte generator which behaves similar to a light-emitting diode and a charge detector (ChD) which behaves analogous to a p-i-n photodiode. The previous work on the charge detector, operated at a constant voltage, established its unique ability to respond to the charge represented by the analyte ions regardless of their redox properties, rather than to their conductivities. It also suggested that electric field induced dissociation (EFID) of water occurs at one or both ion exchange membranes. A logical extension is to study the behavior of the same device, operated in a constant current mode (ChD(i)). The evidence indicates that in the present operational mode the device also responds to the charge represented by the analytes and not their conductivity. Injection of a base into a charge detector operated in the constant voltage mode was not previously examined; in the constant current mode, base injection appears to inhibit EFID. The effects of applied current, analyte residence time and outer channel fluid composition were individually examined; analyte ions of different mobilities as well as affinities for the respective IEMs were used. While the exact behavior is somewhat dependent on the applied current, strong electrolytes, both acids and salts, respond the highest and in a near-uniform fashion, weak acids and their salts respond in an intermediate fashion and bases produce the lowest responses. A fundamentally asymmetric behavior is observed. Injected bases but not injected acids produce a poor response; the effects of incorporating a strong base as the electrolyte in the anion exchange membrane (AEM) compartment is far greater than incorporating an acid in the cation exchange membrane (CEM) compartment. These
TASI Lectures on the cosmological constant
Bousso, Raphael; Bousso, Raphael
2007-08-30
The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.
The fine structure constant and habitable planets
NASA Astrophysics Data System (ADS)
Sandora, McCullen
2016-08-01
We use the existence of habitable planets to impose anthropic requirements on the fine structure constant, α. To this effect, we present two considerations that restrict its value to be very near the one observed. The first, that the end product of stellar fusion is iron and not one of its neighboring elements, restricts α‑1 to be 145± 50. The second, that radiogenic heat in the Earth's interior remains adequately productive for billions of years, restricts it to be 145±9. A connection with the grand unified theory window is discussed, effectively providing a route to probe ultra-high energy physics with upcoming advances in planetary science.
The Boltzmann constant from a snifter
NASA Astrophysics Data System (ADS)
Tyukodi, B.; Sárközi, Zs; Néda, Z.; Tunyagi, A.; Györke, E.
2012-03-01
Evaporation of a small glass of ethylic alcohol is studied both experimentally and through an elementary thermal physics approach. For a cylindrical beaker and no air flow in the room, a simple quadratic relation is found between the evaporation time and the mass of evaporated liquid. This problem and the obtained results offer excellent possibilities for simple student experiments and for testing basic principles of thermal physics. As an example, we use the obtained results for estimating the value of the Boltzmann constant from evaporation experiments.
Radiation balances and the solar constant
NASA Astrophysics Data System (ADS)
Crommelynck, D.
1981-07-01
The radiometric concepts are defined in order to consider various types of radiation balances and relate them to the diabetic form of the energy balance. Variability in space and time of the components of the radiation field are presented. A specific concept for sweeping which is tailored to the requirements is proposed. Finally, after establishing the truncated character of the present knowledge of the radiation balance. The results of the last observations of the solar constant are given. Ground and satellite measurement techniques are discussed.
Optical constants of minerals and rocks
NASA Technical Reports Server (NTRS)
Aronson, J. R.; Strong, P. F.
1975-01-01
Lorentz line parameters (and estimates of their standard deviations) have been empirically derived from measured reflectance data for muscovite mica, an anorthosite, a diopsidic pyroxenite, an almandite-pyrope garnet, and a soda lime glass. These parameters provide a useful starting point for computer calculations requiring optical constants as a function and are therefore given here. A novel method of fitting the reflectance data by least squares is described in detail, as is the statistical procedure for estimating the standard deviations of the parameters found.
Variable energy constant current accelerator structure
Anderson, Oscar A.
1990-01-01
A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.
Holographic dark energy with cosmological constant
NASA Astrophysics Data System (ADS)
Hu, Yazhou; Li, Miao; Li, Nan; Zhang, Zhenhui
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ωhde are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ2min=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain -0.07<ΩΛ0<0.68 and correspondingly 0.04<Ωhde0<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Ventricular fibrillation time constant for swine.
Wu, Jiun-Yan; Nimunkar, Amit J; Sun, Hongyu; O'Rourke, Ann; Huebner, Shane; Will, James A; Webster, John G
2008-10-01
The strength-duration curve for cardiac excitation can be modeled by a parallel resistor-capacitor circuit that has a time constant. Experiments on six pigs were performed by delivering current from the X26 Taser dart at a distance from the heart to cause ventricular fibrillation (VF). The X26 Taser is an electromuscular incapacitation device (EMD), which generates about 50 kV and delivers a pulse train of about 15-19 pulses s(-1) with a pulse duration of about 150 micros and peak current about 2 A. Similarly a continuous 60 Hz alternating current of the amplitude required to cause VF was delivered from the same distance. The average current and duration of the current pulse were estimated in both sets of experiments. The strength-duration equation was solved to yield an average time constant of 2.87 ms +/- 1.90 (SD). Results obtained may help in the development of safety standards for future electromuscular incapacitation devices (EMDs) without requiring additional animal tests.
Superintegrable systems on spaces of constant curvature
Gonera, Cezary Kaszubska, Magdalena
2014-07-15
Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.
Constant-mesh, multiple-shaft transmission
Rea, J.E.; Mills, D.D.; Sewell, J.S.
1992-04-21
This patent describes a multiple-shaft, constant-mesh transmission adapted to establish selectively a reverse torque delivery path and a forward drive torque delivery path and having a torque input means including a torque input shaft, a mainshaft aligned with the input shaft, a countershaft geared to the input shaft in spaced, parallel relationship with respect to the mainshaft, a torque output shaft joined to the mainshaft; multiple mainshaft gear elements journalled on the main airshaft, multiple cluster gear elements carried by the countershaft in meshing engagement with the mainshaft gear elements, one of the cluster gear elements being rotatably journalled on the countershaft; a reverse idle gear, a reverse gear journalled on the countershaft, the reverse idler gear being in constant mesh with the reverse gear and one of the mainshaft gear elements; first clutch means for connecting selectively the reverse gear and the countershaft; second synchronizer clutch means for connecting selectively the one of the mainshaft gear elements to the mainshaft; and third synchronizer clutch means for selectively connecting another of the mainshaft gear elements to the mainshaft; the first clutch means being a double-acting clutch with a first common axially movable clutch element adapted upon movement in one axial direction to drivably connected the reverse gear to the countershaft and adapted upon movement in the opposite axial direction to connect the one cluster gear element to the countershaft.
The Hubble Constant and the Expanding Universe
NASA Astrophysics Data System (ADS)
Freedman, Wendy
2003-01-01
In 1929 Edwin Hubble proved that our universe is expanding by showing that the farther a galaxy is from us, the faster it is speeding away into space. This velocity-distance relation came to be called Hubble's law, and the value that describes the rate of expansion is known as the Hubble constant, or H0 . Like the speed of light, H0 is a fundamental constant, and it is a key parameter needed to estimate both the age and size of the universe. Since the late 1950s astronomers have been arguing for an H0 value between 50 to 100 kilometers per second per megaparsec, a lack of precision that produced an unacceptably wide range of ages for the universe—anywhere from 10 to 20 billion years. Using the Hubble Space Telescope, Freedman and her colleagues measured H0 to an unprecedented level of accuracy, deriving a value of 72, with an uncertainty of 10 percent—a milestone achievement in cosmology. The new result suggests that our universe is about 13 billion years old, give or take a billion years, and it's a value that sits comfortably alongside the 12 billion years estimated for the age of the oldest stars.
A Constant-Force Resistive Exercise Unit
NASA Technical Reports Server (NTRS)
Colosky, Paul; Ruttley, Tara
2010-01-01
A constant-force resistive exercise unit (CFREU) has been invented for use in both normal gravitational and microgravitational environments. In comparison with a typical conventional exercise machine, this CFREU weighs less and is less bulky: Whereas weight plates and associated bulky supporting structures are used to generate resistive forces in typical conventional exercise machines, they are not used in this CFREU. Instead, resistive forces are generated in this CFREU by relatively compact, lightweight mechanisms based on constant-torque springs wound on drums. Each such mechanism is contained in a module, denoted a resistive pack, that includes a shaft for making a torque connection to a cable drum. During a stroke of resistive exercise, the cable is withdrawn from the cable drum against the torque exerted by the resistance pack. The CFREU includes a housing, within which can be mounted one or more resistive pack(s). The CFREU also includes mechanisms for engaging any combination of (1) one or more resistive pack(s) and (2) one or more spring(s) within each resistive pack to obtain a desired level of resistance.
Holographic dark energy with cosmological constant
Hu, Yazhou; Li, Nan; Zhang, Zhenhui; Li, Miao E-mail: mli@itp.ac.cn E-mail: zhangzhh@mail.ustc.edu.cn
2015-08-01
Inspired by the multiverse scenario, we study a heterotic dark energy model in which there are two parts, the first being the cosmological constant and the second being the holographic dark energy, thus this model is named the ΛHDE model. By studying the ΛHDE model theoretically, we find that the parameters d and Ω{sub hde} are divided into a few domains in which the fate of the universe is quite different. We investigate dynamical behaviors of this model, and especially the future evolution of the universe. We perform fitting analysis on the cosmological parameters in the ΛHDE model by using the recent observational data. We find the model yields χ{sup 2}{sub min}=426.27 when constrained by Planck+SNLS3+BAO+HST, comparable to the results of the HDE model (428.20) and the concordant ΛCDM model (431.35). At 68.3% CL, we obtain −0.07<Ω{sub Λ0}<0.68 and correspondingly 0.04<Ω{sub hde0}<0.79, implying at present there is considerable degeneracy between the holographic dark energy and cosmological constant components in the ΛHDE model.
Direct Measures of the Hubble Constant
NASA Astrophysics Data System (ADS)
Schechter, P. L.
1999-05-01
When astronomers talk about Lutz-Kelker corrections, metallicity dependent zeropoints, statistical parallaxes, Tully-Fisher relations, "fundamental" planes, light curve decline rates and, worst of all, Malmquist bias, physicists begin heading for the exits, showing signs of severe allergic reaction. They respond less violently to so-called "direct" methods of measuring distances which bypass the traditional distance ladder. Two of these, gravitational lens time delay measurements (Refsdal's method) and the Sunyaev-Zeldovich (S-Z) effect, give distance measurements to objects at high redshift which appear to rival more traditional approaches. Present, model mediated interpretations of such measurements give low values for the Hubble constant. But as is often the case with new techniques, initial enthusiasm is followed by increasing concern about systematic errors connected with messy astrophysical details. The single largest source of error in modelling lenses is the difficulty in constraining the degree of central concentration of the lensing galaxy. Sources of systematic error in S-Z distances include the clumpiness of intracluster gas, temperature variations within that gas and a bias toward selecting clusters that are elongated along the line of sight. Present best estimates of the Hubble constant, along with best estimates of the systematic uncertainties, and the prospects for improving upon these, will be presented. Support from NSF grant AST96-16866 is gratefully acknowledged.
Exercise Device Would Exert Selectable Constant Resistance
NASA Technical Reports Server (NTRS)
Smith, Damon C.
2003-01-01
An apparatus called the resistive exercise device (RED) has been proposed to satisfy a requirement for exercise equipment aboard the International Space Station (ISS) that could passively exert a selectable constant load on both the outward and return strokes. The RED could be used alone; alternatively, the RED could be used in combination with another apparatus called the treadmill with vibration isolation and stabilization (TVIS), in which case the combination would be called the subject load device (SLD). The basic RED would be a passive device, but it could incorporate an electric motor to provide eccentric augmentation (augmentation to make the load during inward movement greater than the load during outward movement). The RED concept represents a unique approach to providing a constant but selectable resistive load for exercise for the maintenance and development of muscles. Going beyond the original ISS application, the RED could be used on Earth as resistive weight training equipment. The advantage of the RED over conventional weight-lifting equipment is that it could be made portable and lightweight.
Do Wormholes Fix the Coupling Constants?
NASA Astrophysics Data System (ADS)
Goradia, Shantilal
2004-05-01
If Newtonian gravitation is modified to use surface-to-surface separation between particles, it can have the strength of nuclear force between nucleons. This may be justified by possible existence of quantum wormholes in particles. All gravitational interactions would be between coupled wormholes, emitting 1/r graviton flux from their exit mouths as a function of the particle size, allowing the point-like treatment above. When the wormhole exit mouths are 1 Planck length apart, the resultant force is the known strong force coupling constant with an order of magnitude of 40 compared to the normal gravitational strength for nucleons. In addition to being mathematically simple, the above finding is consistent with observations of other coupling constants, Feynman's speculation of "transfusion" of two particles into spin 2 gravitons (published in 1962), Hawking radiation, big-bang theory abundance of quantum wormholes, wormhole theory fine-tuned by Kip S. Thorne and Matt Visser, and recent microscopic gravity measurements. It potentially leads to the holographic principle being promoted by Dr. G. t' Hooft, by naturally pointing out that the mass of the particles is proportional to their diameter squared.
Computing the dielectric constant of liquid water at constant dielectric displacement
NASA Astrophysics Data System (ADS)
Zhang, Chao; Sprik, Michiel
2016-04-01
The static dielectric constant of liquid water is computed using classical force field based molecular dynamics simulation at fixed electric displacement D . The method to constrain the electric displacement is the finite-temperature classical variant of the constant D method developed by Stengel, Spaldin, and Vanderbilt [Nat. Phys. 5, 304 (2009), 10.1038/nphys1185]. There is also a modification of this scheme imposing fixed values of the macroscopic field E . The method is applied to the popular SPC/E model of liquid water. We compare four different estimates of the dielectric constant, two obtained from fluctuations of the polarization at D =0 and E =0 and two from the variation of polarization with finite D and E . It is found that all four estimates agree when properly converged. The computational effort to achieve convergence varies, however, with constant D calculations being substantially more efficient. We attribute this difference to the much shorter relaxation time of longitudinal polarization compared to transverse polarization accelerating constant D calculations.
Zhang, M.; Takahashi, M.; Morin, R.H.; Esaki, T.
1998-01-01
A theoretical analysis is presented that compares the response characteristics of the constant head and the constant flowrate (flow pump) laboratory techniques for quantifying the hydraulic properties of geologic materials having permeabilities less than 10-10 m/s. Rigorous analytical solutions that describe the transient distributions of hydraulic gradient within a specimen are developed, and equations are derived for each method. Expressions simulating the inflow and outflow rates across the specimen boundaries during a constant-head permeability test are also presented. These solutions illustrate the advantages and disadvantages of each method, including insights into measurement accuracy and the validity of using Darcy's law under certain conditions. The resulting observations offer practical considerations in the selection of an appropriate laboratory test method for the reliable measurement of permeability in low-permeability geologic materials.
Frank's constant in the hexatic phase.
Keim, P; Maret, G; von Grünberg, H H
2007-03-01
Using videomicroscopy data of a two-dimensional colloidal system the bond-order correlation function G{6} is calculated and used to determine both the orientational correlation length xi{6} in the liquid phase and the modulus of orientational stiffness, Frank's constant F{A}, in the hexatic phase. The latter is an anisotropic fluid phase between the crystalline and the isotropic liquid phase. F{A} is found to be finite within the hexatic phase, takes the value 72/pi at the hexatic<-->isotropic liquid phase transition, and diverges at the hexatic<-->crystal transition as predicted by the Kosterlitz-Thouless-Halperin-Nelson-Young theory. This is a quantitative test of the mechanism of breaking the orientational symmetry by disclination unbinding.
Defect Motifs for Constant Mean Curvature Surfaces
NASA Astrophysics Data System (ADS)
Kusumaatmaja, Halim; Wales, David J.
2013-04-01
The energy landscapes of electrostatically charged particles embedded on constant mean curvature surfaces are analyzed for a wide range of system size, curvature, and interaction potentials. The surfaces are taken to be rigid, and the basin-hopping method is used to locate the putative global minimum structures. The defect motifs favored by potential energy agree with experimental observations for colloidal systems: extended defects (scars and pleats) for weakly positive and negative Gaussian curvatures, and isolated defects for strongly negative Gaussian curvatures. Near the phase boundary between these regimes, the two motifs are in strong competition, as evidenced from the appearance of distinct funnels in the potential energy landscape. We also report a novel defect motif consisting of pentagon pairs.
Statistical Modelling of the Soil Dielectric Constant
NASA Astrophysics Data System (ADS)
Usowicz, Boguslaw; Marczewski, Wojciech; Bogdan Usowicz, Jerzy; Lipiec, Jerzy
2010-05-01
The dielectric constant of soil is the physical property being very sensitive on water content. It funds several electrical measurement techniques for determining the water content by means of direct (TDR, FDR, and others related to effects of electrical conductance and/or capacitance) and indirect RS (Remote Sensing) methods. The work is devoted to a particular statistical manner of modelling the dielectric constant as the property accounting a wide range of specific soil composition, porosity, and mass density, within the unsaturated water content. Usually, similar models are determined for few particular soil types, and changing the soil type one needs switching the model on another type or to adjust it by parametrization of soil compounds. Therefore, it is difficult comparing and referring results between models. The presented model was developed for a generic representation of soil being a hypothetical mixture of spheres, each representing a soil fraction, in its proper phase state. The model generates a serial-parallel mesh of conductive and capacitive paths, which is analysed for a total conductive or capacitive property. The model was firstly developed to determine the thermal conductivity property, and now it is extended on the dielectric constant by analysing the capacitive mesh. The analysis is provided by statistical means obeying physical laws related to the serial-parallel branching of the representative electrical mesh. Physical relevance of the analysis is established electrically, but the definition of the electrical mesh is controlled statistically by parametrization of compound fractions, by determining the number of representative spheres per unitary volume per fraction, and by determining the number of fractions. That way the model is capable covering properties of nearly all possible soil types, all phase states within recognition of the Lorenz and Knudsen conditions. In effect the model allows on generating a hypothetical representative of
Maximum terminal velocity turns at constant altitude
NASA Astrophysics Data System (ADS)
Eisler, G. Richard; Hull, David G.
An optimal control problem is formulated for a maneuvering reentry vehicle to execute a maximum terminal velocity turn at constant altitude to a fixed final position. A control solution technique is devised which uses a Newton scheme to repetitively solve a nonlinear algebraic system for two parameters to provide the on-line guidance. The turn control takes advantage of the high dynamic pressure at the beginning of the flight path; the lift solution acts to null deviations from the prescribed altitude. Control solutions are compared for a continuously updated, approximate physical model, for a simulation of the approximate optimal guidance in a true physical model, and for a parameter optimization solution for the true model. End constraint satisfaction is excellent. Overall trajectory agreement is good, if the assumed atmospheric model is reasonably accurate.
Maximum terminal velocity turns at constant altitude
Eisler, G.R.; Hull, D.G.
1987-01-01
An optimal control problem is formulated for a maneuvering reentry vehicle to execute a maximum terminal velocity turn at constant altitude to a fixed final position. A control solution technique is devised which uses a Newton scheme to repetitively solve a nonlinear algebraic system for two parameters to provide the on-line guidance. The turn control takes advantage of the high dynamic pressure at the beginning of the flight path; the lift solution acts to null deviations from the prescribed altitude. Control solutions are compared for a continuously updated, approximate physical model, for a simulation of the approximate optimal guidance in a true physical model, and for a parameter optimization solution for the true model. End constraint satisfaction is excellent. Overall trajectory agreement is good, if the assumed atmospheric model is reasonably accurate.
Measuring the RC time constant with Arduino
NASA Astrophysics Data System (ADS)
Pereira, N. S. A.
2016-11-01
In this work we use the Arduino UNO R3 open source hardware platform to assemble an experimental apparatus for the measurement of the time constant of an RC circuit. With adequate programming, the Arduino is used as a signal generator, a data acquisition system and a basic signal visualisation tool. Theoretical calculations are compared with direct observations from an analogue oscilloscope. Data processing and curve fitting is performed on a spreadsheet. The results obtained for the six RC test circuits are within the expected interval of values defined by the tolerance of the components. The hardware and software prove to be adequate to the proposed measurements and therefore adaptable to a laboratorial teaching and learning context.
Running cosmological constant with observational tests
NASA Astrophysics Data System (ADS)
Geng, Chao-Qiang; Lee, Chung-Chi; Zhang, Kaituo
2016-09-01
We investigate the running cosmological constant model with dark energy linearly proportional to the Hubble parameter, Λ = σH +Λ0, in which the ΛCDM limit is recovered by taking σ = 0. We derive the linear perturbation equations of gravity under the Friedmann-Lemaïtre-Robertson-Walker cosmology, and show the power spectra of the CMB temperature and matter density distribution. By using the Markov chain Monte Carlo method, we fit the model to the current observational data and find that σH0 /Λ0 ≲ 2.63 ×10-2 and 6.74 ×10-2 for Λ (t) coupled to matter and radiation-matter, respectively, along with constraints on other cosmological parameters.
NASA Astrophysics Data System (ADS)
Rotenberg, E.; Davis, D. W.; Amelin, Y.
2009-05-01
Despite dozens of measurements of the decay constant of 87Rb (λ87), uncertainty surrounding the value remains. Mounting evidence [e.g. 1,2,3] suggests that the actual value is 1-2% lower than the conventional value of 1.42 × 10-11a-1 [4]. Increased precision and accuracy are crucial if meaningful comparisons are to be made between Rb-Sr and U-Pb ages. We have been working on measuring the decay constant by the accumulation of radiogenic 87Sr (87Sr*) in a RbClO4 salt. Our original measurements by this method had large errors [5,6] and tended to agree with the conventional value. Because the samples contained very little common Sr, it was impossible to properly correct for instrumental fractionation, with the result that both precision and accuracy were compromised. Furthermore, the concentration of the 84Sr spike was not determined reliably, which likely affected the accuracy. In order to overcome this, a new 84-86Sr double-spike was prepared, and the experiment was repeated. The spike was calibrated against three different Sr reference solutions. Two were prepared from Sr metal and the third from SrCl2. The isotopic abundance ratios of the 84-86Sr double-spike are: 84/86 = 0.93252, 87/86 = 0.01033, and 88/86 = 0.02240. The concentration was determined to be 832.95 ± 0.26 ng Sr/g solution (MSWD = 2.5). Seventeen measurements of the decay-constant were made by measuring 87Sr* ingrowth in a RbClO4 salt over approximately 32 years. 87Sr* ranges from 125 - 616 pg. The two highest points are eliminated: one due to high procedure blank and the second due to abnormal fractionation behaviour. A weighted average of the remaining fifteen measurements yields a decay constant of 1.3981 × 10-11a-11 ± 0.0009 (0.062%; and a high MSWD = 106. The 2σ standard deviation is 0.004). The data scatter outside of their analytical errors. Recent geological calibrations [1,2] and a carefully controlled decay counting measurement [3] yield λ87 values from 1.395 ± 0.006 to 1.398 ± 0
Constant-parameter capture-recapture models
Brownie, C.; Hines, J.E.; Nichols, J.D.
1986-01-01
Jolly (1982, Biometrics 38, 301-321) presented modifications of the Jolly-Seber model for capture-recapture data, which assume constant survival and/or capture rates. Where appropriate, because of the reduced number of parameters, these models lead to more efficient estimators than the Jolly-Seber model. The tests to compare models given by Jolly do not make complete use of the data, and we present here the appropriate modifications, and also indicate how to carry out goodness-of-fit tests which utilize individual capture history information. We also describe analogous models for the case where young and adult animals are tagged. The availability of computer programs to perform the analysis is noted, and examples are given using output from these programs.
Constant field gradient planar coupled cavity structure
Kang, Yoon W.; Kustom, Robert L.
1999-01-01
A cavity structure having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.
Constant field gradient planar coupled cavity structure
Kang, Y.W.; Kustom, R.L.
1999-07-27
A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.
Hawking temperature of constant curvature black holes
Cai Ronggen; Myung, Yun Soo
2011-05-15
The constant curvature (CC) black holes are higher dimensional generalizations of Banados-Teitelboim-Zanelli black holes. It is known that these black holes have the unusual topology of M{sub D-1}xS{sup 1}, where D is the spacetime dimension and M{sub D-1} stands for a conformal Minkowski spacetime in D-1 dimensions. The unusual topology and time-dependence for the exterior of these black holes cause some difficulties to derive their thermodynamic quantities. In this work, by using a globally embedding approach, we obtain the Hawking temperature of the CC black holes. We find that the Hawking temperature takes the same form when using both the static and global coordinates. Also, it is identical to the Gibbons-Hawking temperature of the boundary de Sitter spaces of these CC black holes.
Constant field gradient planar cavity structure
Kang, Yoon W.; Kustom, R.L.
1997-12-01
A cavity structure is described having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.
Consistency tests for the cosmological constant.
Zunckel, Caroline; Clarkson, Chris
2008-10-31
We propose consistency tests for the cosmological constant which provide a direct observational signal if Lambda is wrong, regardless of the densities of matter and curvature. As an example of its utility, our flat case test can warn of a small transition of the equation of state w(z) from w(z)=-1 of 20% from SNAP (Supernova Acceleration Probe) quality data at 4-sigma, even when direct reconstruction techniques see virtually no evidence for deviation from Lambda. It is shown to successfully rule out a wide range of non-Lambda dark energy models with no reliance on knowledge of Omega_{m} using SNAP quality data and a large range for using 10;{5} supernovae as forecasted for the Large Synoptic Survey Telescope. PMID:18999813
Automatic gesture analysis using constant affine velocity.
Cifuentes, Jenny; Boulanger, Pierre; Pham, Minh Tu; Moreau, Richard; Prieto, Flavio
2014-01-01
Hand human gesture recognition has been an important research topic widely studied around the world, as this field offers the ability to identify, recognize, and analyze human gestures in order to control devices or to interact with computer interfaces. In particular, in medical training, this approach is an important tool that can be used to obtain an objective evaluation of a procedure performance. In this paper, some obstetrical gestures, acquired by a forceps, were studied with the hypothesis that, as the scribbling and drawing movements, they obey the one-sixth power law, an empirical relationship which connects path curvature, torsion, and euclidean velocity. Our results show that obstetrical gestures have a constant affine velocity, which is different for each type of gesture and based on this idea this quantity is proposed as an appropriate classification feature in the hand human gesture recognition field. PMID:25570332
Simple Pendulum Determination of the Gravitational Constant
Parks, Harold V.; Faller, James E.
2010-09-10
We determined the Newtonian constant of gravitation G by interferometrically measuring the change in spacing between two free-hanging pendulum masses caused by the gravitational field from large tungsten source masses. We find a value for G of (6.672 34{+-}0.000 14)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}. This value is in good agreement with the 1986 Committee on Data for Science and Technology (CODATA) value of (6.672 59{+-}0.000 85)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}[Rev. Mod. Phys. 59, 1121 (1987)] but differs from some more recent determinations as well as the latest CODATA recommendation of (6.674 28{+-}0.000 67)x10{sup -11} m{sup 3} kg{sup -1} s{sup -2}[Rev. Mod. Phys. 80, 633 (2008)].
Molecular dynamics at constant Cauchy stress
NASA Astrophysics Data System (ADS)
Miller, Ronald E.; Tadmor, Ellad B.; Gibson, Joshua S.; Bernstein, Noam; Pavia, Fabio
2016-05-01
The Parrinello-Rahman algorithm for imposing a general state of stress in periodic molecular dynamics simulations is widely used in the literature and has been implemented in many readily available molecular dynamics codes. However, what is often overlooked is that this algorithm controls the second Piola-Kirchhoff stress as opposed to the true (Cauchy) stress. This can lead to misinterpretation of simulation results because (1) the true stress that is imposed during the simulation depends on the deformation of the periodic cell, (2) the true stress is potentially very different from the imposed second Piola-Kirchhoff stress, and (3) the true stress can vary significantly during the simulation even if the imposed second Piola-Kirchhoff is constant. We propose a simple modification to the algorithm that allows the true Cauchy stress to be controlled directly. We then demonstrate the efficacy of the new algorithm with the example of martensitic phase transformations under applied stress.
Constant-force approach to discontinuous potentials.
Orea, Pedro; Odriozola, Gerardo
2013-06-01
Aiming to approach the thermodynamical properties of hard-core systems by standard molecular dynamics simulation, we propose setting a repulsive constant-force for overlapping particles. That is, the discontinuity of the pair potential is replaced by a linear function with a large negative slope. Hence, the core-core repulsion, usually modeled with a power function of distance, yields a large force as soon as the cores slightly overlap. This leads to a quasi-hardcore behavior. The idea is tested for a triangle potential of short range. The results obtained by replica exchange molecular dynamics for several repulsive forces are contrasted with the ones obtained for the discontinuous potential and by means of replica exchange Monte Carlo. We found remarkable agreements for the vapor-liquid coexistence densities as well as for the surface tension.
The Solar constant: Status of our knowledge
NASA Astrophysics Data System (ADS)
Crommelynck, D.
A historical survey of the observations of the Solar constant up to now is given and commented with respect to the particular conditions in which they were obtained. The continuous series of measurements obtained by J.R. Hickey since 1978, C. Willson since 1980 and R.B. Lee III since 1984 and the differences are analysed to deduce the state of the art of absolute radiometry. Taking into account the large scale monitoring requirements for climatological purposes, the areas in absolute radiometry where improvements are still possible are identified together with the estimated ultimate possible accuracy. A strategy is proposed to guarantee the continuity of the monitoring over large enough climatological periods.
Universal equations and constants of turbulent motion
NASA Astrophysics Data System (ADS)
Baumert, H. Z.
2013-07-01
This paper presents a parameter-free theory of shear-generated turbulence at asymptotically high Reynolds numbers in incompressible fluids. It is based on a two-fluids concept. Both components are materially identical and inviscid. The first component is an ensemble of quasi-rigid dipole-vortex tubes (vortex filaments, excitations) as quasi-particles in chaotic motion. The second is a superfluid performing evasive motions between the tubes. The local dipole motions follow Helmholtz' law. The vortex radii scale with the energy-containing length scale. Collisions between quasi-particles lead either to annihilation (likewise rotation, turbulent dissipation) or to scattering (counterrotation, turbulent diffusion). There are analogies with birth and death processes of population dynamics and their master equations and with Landau's two-fluid theory of liquid helium. For free homogeneous decay the theory predicts the turbulent kinetic energy to follow t-1. With an adiabatic wall condition it predicts the logarithmic law with von Kármán's constant as 1/\\sqrt {2\\,\\pi }= 0.399 . Likewise rotating couples form localized dissipative patches almost at rest (→ intermittency) wherein under local quasi-steady conditions the spectrum evolves into an ‘Apollonian gear’ as discussed first by Herrmann (1990 Correlation and Connectivity (Dordrecht: Kluwer) pp 108-20). Dissipation happens exclusively at scale zero and at finite scales this system is frictionless and reminds of Prigogine's (1947 Etude Thermodynamique des Phenomenes Irreversibles (Liege: Desoer) p 143) law of minimum (here: zero) entropy production. The theory predicts further the prefactor of the 3D-wavenumber spectrum (a Kolmogorov constant) as \\frac {1}{3}(4\\,\\pi )^{2/3}=1.802 , well within the scatter range of observational, experimental and direct numerical simulation results.
Broadband negative optical constants in composite materials
NASA Astrophysics Data System (ADS)
Khosravi, S.; Rostami, A.; Rostami, G.; Dolatyari, M.
2015-04-01
Capability of flexible composite substrates, consisting of randomly distributed nanoparticles in polymeric host medium, to illustrate negative effective permittivity and permeability in the mid infrared wavelengths (3-5 μm) is investigated. To produce negative permittivity in the desired wavelength range, we proposed a structure in which plasmonic nanoparticles (doped semiconductors or metallic nanoparticles) are inserted inside polytetrafluoroethylene as the low refractive index polymeric medium. Also, the optical properties of the structures including core/shell nanoparticles in polytetrafluoroethylene host (with polytetrafluoroethylene as core material and dielectric shells possessing higher refractive index compared to refractive index of the host medium) are investigated. It is shown that, high refractive index dielectric shells result in negative μeff in these structures. As a basic idea, to obtain negative optical constants in broad wavelength range, superposition of the mentioned nanoparticles in the polymeric host is examined. The advantages and limitations of the proposed structure are carefully investigated. Moreover, based on the simulation results, we will introduce flexible media that simultaneously display negative permittivity and permeability in the wavelength range of interest. Capability of two types of composites (the first one contains mixture of plasmonic nanoparticles with polymer-dielectric core-shell nanoparticles and the second one includes metal-dielectric core-shell nanoparticles in the polymeric host) to produce both negative effective parameters in the desired wavelength range are investigated and compared together. Finally a polymeric medium with random distribution of core-shell (metal-dielectric) nanoparticles and plasmonic nanoparticles is introduced as an optimal medium to illustrate negative optical constants in mid infrared wavelengths. Clausius-Mossotti formula is used to calculate the effective parameters.
Are thermal constants constant? A test using two species of ladybird.
Jarošík, V; Kumar, G; Omkar; Dixon, A F G
2014-02-01
There is a controversy about whether the thermal constants, lower developmental threshold, rate of development and corresponding degree days required for development, change when a species is reared under different developmental conditions. We present a more precise way of measuring these constants using the linear relationship between the rate of development and temperature. First we use the equation proposed by Ikemoto and Takai (2000) to determine the linear phase of development and then a generalised linear model having a different variance at low and high temperatures, specific for each condition, to estimate the parameters of the linear relationship. Using this method, we show that providing the difference in food quality is sufficiently great, an aphidophagous ladybird develops significantly faster and starts developing at a significantly lower temperature on a good than on a poor quality diet. Adaptive significance of the thermal constants not remaining constant is discussed in terms of a trade-off between growth and rate of development, when temperature and food quality varies. PMID:24556254
Are thermal constants constant? A test using two species of ladybird.
Jarošík, V; Kumar, G; Omkar; Dixon, A F G
2014-02-01
There is a controversy about whether the thermal constants, lower developmental threshold, rate of development and corresponding degree days required for development, change when a species is reared under different developmental conditions. We present a more precise way of measuring these constants using the linear relationship between the rate of development and temperature. First we use the equation proposed by Ikemoto and Takai (2000) to determine the linear phase of development and then a generalised linear model having a different variance at low and high temperatures, specific for each condition, to estimate the parameters of the linear relationship. Using this method, we show that providing the difference in food quality is sufficiently great, an aphidophagous ladybird develops significantly faster and starts developing at a significantly lower temperature on a good than on a poor quality diet. Adaptive significance of the thermal constants not remaining constant is discussed in terms of a trade-off between growth and rate of development, when temperature and food quality varies.
Broeckhoven, K; Verstraeten, M; Choikhet, K; Dittmann, M; Witt, K; Desmet, G
2011-02-25
We report on a general theoretical assessment of the potential kinetic advantages of running LC gradient elution separations in the constant-pressure mode instead of in the customarily used constant-flow rate mode. Analytical calculations as well as numerical simulation results are presented. It is shown that, provided both modes are run with the same volume-based gradient program, the constant-pressure mode can potentially offer an identical separation selectivity (except from some small differences induced by the difference in pressure and viscous heating trajectory), but in a significantly shorter time. For a gradient running between 5 and 95% of organic modifier, the decrease in analysis time can be expected to be of the order of some 20% for both water-methanol and water-acetonitrile gradients, and only weakly depending on the value of V(G)/V₀ (or equivalently t(G)/t₀). Obviously, the gain will be smaller when the start and end composition lie closer to the viscosity maximum of the considered water-organic modifier system. The assumptions underlying the obtained results (no effects of pressure and temperature on the viscosity or retention coefficient) are critically reviewed, and can be inferred to only have a small effect on the general conclusions. It is also shown that, under the adopted assumptions, the kinetic plot theory also holds for operations where the flow rate varies with the time, as is the case for constant-pressure operation. Comparing both operation modes in a kinetic plot representing the maximal peak capacity versus time, it is theoretically predicted here that both modes can be expected to perform equally well in the fully C-term dominated regime (where H varies linearly with the flow rate), while the constant pressure mode is advantageous for all lower flow rates. Near the optimal flow rate, and for linear gradients running from 5 to 95% organic modifier, time gains of the order of some 20% can be expected (or 25-30% when accounting for
Accurate lineshape spectroscopy and the Boltzmann constant
Truong, G.-W.; Anstie, J. D.; May, E. F.; Stace, T. M.; Luiten, A. N.
2015-01-01
Spectroscopy has an illustrious history delivering serendipitous discoveries and providing a stringent testbed for new physical predictions, including applications from trace materials detection, to understanding the atmospheres of stars and planets, and even constraining cosmological models. Reaching fundamental-noise limits permits optimal extraction of spectroscopic information from an absorption measurement. Here, we demonstrate a quantum-limited spectrometer that delivers high-precision measurements of the absorption lineshape. These measurements yield a very accurate measurement of the excited-state (6P1/2) hyperfine splitting in Cs, and reveals a breakdown in the well-known Voigt spectral profile. We develop a theoretical model that accounts for this breakdown, explaining the observations to within the shot-noise limit. Our model enables us to infer the thermal velocity dispersion of the Cs vapour with an uncertainty of 35 p.p.m. within an hour. This allows us to determine a value for Boltzmann's constant with a precision of 6 p.p.m., and an uncertainty of 71 p.p.m. PMID:26465085
Theophylline: constant-rate infusion predictions.
Mesquita, C A; Sahebjami, H; Imhoff, T; Thomas, J P; Myre, S A
1984-01-01
This study was undertaken to evaluate a method of prospectively estimating appropriate aminophylline infusion rates in acutely ill, hospitalized patients with bronchospasm. Steady-state serum theophylline concentrations (Css), clearances (Cl), and half-lives (t1/2) were estimated by the Chiou method using serum concetrantions obtained 1 and 6 h after the start of a constant-rate intravenous aminophylline infusion in 10 male patients averaging 57 years of age. Using an enzyme-multiplied immunoassay (EMIT) system for theophylline analysis, pharmacokinetic estimations were excellent for Css (r = 0.9103, p less than 0.01) and Cl (r = 0.9750, p less than 0.01). The mean estimation errors were 9.4% (range 0.8-21.5) for Css and 12.3% (range 1.3-28.0) for Cl. There was no correlation between patient age and Cl. This method is useful for rapidly individualizing aminophylline therapy in patients with acute bronchospasm. PMID:6740734
Dimensionless constants, cosmology, and other dark matters
Tegmark, Max; Aguirre, Anthony; Rees, Martin J.; Wilczek, Frank
2006-01-15
We identify 31 dimensionless physical constants required by particle physics and cosmology, and emphasize that both microphysical constraints and selection effects might help elucidate their origin. Axion cosmology provides an instructive example, in which these two kinds of arguments must both be taken into account, and work well together. If a Peccei-Quinn phase transition occurred before or during inflation, then the axion dark matter density will vary from place to place with a probability distribution. By calculating the net dark matter halo formation rate as a function of all four relevant cosmological parameters and assessing other constraints, we find that this probability distribution, computed at stable solar systems, is arguably peaked near the observed dark matter density. If cosmologically relevant weakly interacting massive particle (WIMP) dark matter is discovered, then one naturally expects comparable densities of WIMPs and axions, making it important to follow up with precision measurements to determine whether WIMPs account for all of the dark matter or merely part of it.
Tunnelling with a negative cosmological constant
NASA Astrophysics Data System (ADS)
Gibbons, G. W.
1996-02-01
The point of this paper is to see what light new results in hyperbolic geometry may throw on gravitational entropy and whether gravitational entropy is relevant for the quantum origin of the universe. We introduce some new gravitational instantons which mediate the birth from nothing of closed universes containing wormholes and suggest that they may contribute to the density matrix of the universe. We also discuss the connection between their gravitational action and the topological and volumetric entropies introduced in hyperbolic geometry. These coincide for hyperbolic 4-manifolds, and increase with increasing topological complexity of the 4-manifold. We raise the question of whether the action also increases with the topological complexity of the initial 3-geometry, measured either by its 3-volume or its Matveev complexity. We point out, in distinction to the non-supergravity case, that universes with domains of negative cosmological constant separated by supergravity domain walls cannot be born from nothing. Finally we point out that our wormholes provide examples of the type of Perpetual Motion machines envisaged by Frolov and Novikov.
Universal constants and equations of turbulent motion
NASA Astrophysics Data System (ADS)
Baumert, Helmut
2011-11-01
For turbulence at high Reynolds number we present an analogy with the kinetic theory of gases, with dipoles made of vortex tubes as frictionless, incompressible but deformable quasi-particles. Their movements are governed by Helmholtz' elementary vortex rules applied locally. A contact interaction or ``collision'' leads either to random scatter of a trajectory or to the formation of two likewise rotating, fundamentally unstable whirls forming a dissipative patch slowly rotating around its center of mass, the latter almost at rest. This approach predicts von Karman's constant as 1/sqrt(2 pi) = 0.399 and the spatio-temporal dynamics of energy-containing time and length scales controlling turbulent mixing [Baumert 2005, 2009]. A link to turbulence spectra was missing so far. In the present contribution it is shown that the above image of dipole movements is compatible with Kolmogorov's spectra if dissipative patches, beginning as two likewise rotating eddies, evolve locally into a space-filling bearing in the sense of Herrmann [1990], i.e. into an ``Apollonian gear.'' Its parts and pieces are are frictionless, excepting the dissipative scale of size zero. Our approach predicts the dimensionless pre-factor in the 3D Eulerian wavenumber spectrum (in terms of pi) as 1.8, and in the Lagrangian frequency spectrum as the integer number 2. Our derivations are free of empirical relations and rest on geometry, methods from many-particle physics, and on elementary conservation laws only. Department of the Navy Grant, ONR Global
Expanding Taylor bubble under constant heat flux
NASA Astrophysics Data System (ADS)
Voirand, Antoine; Benselama, Adel M.; Ayel, Vincent; Bertin, Yves
2016-09-01
Modelization of non-isothermal bubbles expanding in a capillary, as a contribution to the understanding of the physical phenomena taking place in Pulsating Heat Pipes (PHPs), is the scope of this paper. The liquid film problem is simplified and solved, while the thermal problem takes into account a constant heat flux density applied at the capillary tube wall, exchanging with the liquid film surrounding the bubble and also with the capillary tube outside medium. The liquid slug dynamics is solved using the Lucas-Washburn equation. Mass and energy balance on the vapor phase allow governing equations of bubble expansion to be written. The liquid and vapor phases are coupled only through the saturation temperature associated with the vapor pressure, assumed to be uniform throughout the bubble. Results show an over-heating of the vapor phase, although the particular thermal boundary condition used here always ensures an evaporative mass flux at the liquid-vapor interface. Global heat exchange is also investigated, showing a strong decreasing of the PHP performance to convey heat by phase change means for large meniscus velocities.
Recoupling pulse sequences with constant phase increments
NASA Astrophysics Data System (ADS)
Khaneja, Navin; Kumar, Ashutosh
2016-10-01
The paper studies a family of recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, that are characterized by constant phase increments at regular intervals. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block (2 π) ϕp , where ϕp =p (n - 1) π/n, where n is number of blocks in a rotor period and p = 0, 1, 2, … . The pulse sequence repeats itself every rotor period when n is odd and every two rotor period when n is even. The heteronuclear recoupling pulse sequence consists of a building block (2 π) ϕ1p and (2 π) ϕ2p on channel I and S, where ϕ1p = p (2 n - 3) π/2 n, ϕ2p = p (2 n - 1) π/2 n and n is number of blocks in a rotor period. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for 13Cα -13CO , homonuclear recoupling in a sample of Glycine and 15N -13Cα , heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-13C ,15N ]- Met-Leu-Phe-OH (MLF).
Star polymers rupture induced by constant forces
NASA Astrophysics Data System (ADS)
García, N. A.; Febbo, M.; Vega, D. A.; Milchev, A.
2014-10-01
In this work, we study the breakage process of an unknotted three-arm star-shaped polymer when it is pulled from its free ends by a constant force. The star polymer configuration is described through an array of monomers coupled by anharmonic bonds, while the rupture process is tracked in three-dimensional space by means of Langevin Molecular Dynamics simulations. The interaction between monomers is described by a Morse potential, while a Weeks-Chandler-Anderson energetic contribution accounts for the excluded volume interaction. We explore the effect of the molecular architecture on the distributions of rupture times over a broad interval of pulling forces and star configurations. It was found that the rupture time distribution of the individual star arms is strongly affected by the star configuration imposed by the pulling forces and the length of the arms. We also observed that for large pulling forces the rupture time distributions resemble the dominant features observed for linear polymer chains. The model introduced here provides the basic ingredients to describe the effects of tensile forces on stress-induced degradation of branched macromolecules and polymer networks.
An Alcohol Test for Drifting Constants
NASA Astrophysics Data System (ADS)
Jansen, P.; Bagdonaite, J.; Ubachs, W.; Bethlem, H. L.; Kleiner, I.; Xu, L.-H.
2013-06-01
The Standard Model of physics is built on the fundamental constants of nature, however without providing an explanation for their values, nor requiring their constancy over space and time. Molecular spectroscopy can address this issue. Recently, we found that microwave transitions in methanol are extremely sensitive to a variation of the proton-to-electron mass ratio μ, due to a fortuitous interplay between classically forbidden internal rotation and rotation of the molecule as a whole. In this talk, we will explain the origin of this effect and how the sensitivity coefficients in methanol are calculated. In addition, we set a limit on a possible cosmological variation of μ by comparing transitions in methanol observed in the early Universe with those measured in the laboratory. Based on radio-astronomical observations of PKS1830-211, we deduce a constraint of Δμ/μ=(0.0± 1.0)× 10^{-7} at redshift z = 0.89, corresponding to a look-back time of 7 billion years. While this limit is more constraining and systematically more robust than previous ones, the methanol method opens a new search territory for probing μ-variation on cosmological timescales. P. Jansen, L.-H. Xu, I. Kleiner, W. Ubachs, and H.L. Bethlem Phys. Rev. Lett. {106}(100801) 2011. J. Bagdonaite, P. Jansen, C. Henkel, H.L. Bethlem, K.M. Menten, and W. Ubachs Science {339}(46) 2013.
Simple pendulum determination of the gravitational constant.
Parks, Harold V; Faller, James E
2010-09-10
We determined the Newtonian constant of gravitation G by interferometrically measuring the change in spacing between two free-hanging pendulum masses caused by the gravitational field from large tungsten source masses. We find a value for G of (6.672 34±0.000 14)×10(-11) m3 kg(-1) s(-2). This value is in good agreement with the 1986 Committee on Data for Science and Technology (CODATA) value of (6.672 59±0.000 85)×10(-11) m3 kg(-1) s(-2) [Rev. Mod. Phys. 59, 1121 (1987)] but differs from some more recent determinations as well as the latest CODATA recommendation of (6.674 28±0.000 67)×10(-11) m3 kg(-1) s(-2) [Rev. Mod. Phys. 80, 633 (2008)].
Recoupling pulse sequences with constant phase increments.
Khaneja, Navin; Kumar, Ashutosh
2016-10-01
The paper studies a family of recoupling pulse sequences in magic angle spinning (MAS) solid state NMR, that are characterized by constant phase increments at regular intervals. These pulse sequences can be employed for both homonuclear and heteronuclear recoupling experiments and are robust to dispersion in chemical shifts and rf-inhomogeneity. The homonuclear pulse sequence consists of a building block [Formula: see text] , where ϕ(p)=p(n-1)πn, where n is number of blocks in a rotor period and p=0,1,2,…. The pulse sequence repeats itself every rotor period when n is odd and every two rotor period when n is even. The heteronuclear recoupling pulse sequence consists of a building block [Formula: see text] and [Formula: see text] on channel I and S, where ϕ1(p)=p(2n-3)π2n,ϕ2(p)=p(2n-1)π2n and n is number of blocks in a rotor period. The recoupling pulse sequences mix the z magnetization. Experimental quantification of this method is shown for (13)Cα-(13)CO, homonuclear recoupling in a sample of Glycine and (15)N-(13)Cα, heteronuclear recoupling in Alanine. Application of this method is demonstrated on a sample of tripeptide N-formyl-[U-(13)C,(15)N]- Met-Leu-Phe-OH (MLF). PMID:27569693
On Stochastic Processes with Constant Valuation
NASA Astrophysics Data System (ADS)
Abbas, Ali E.
2009-12-01
In the probability literature, a martingale is often referred to as a fair game. A risk neutral decision maker would be indifferent to engaging in a martingale investment for any number of stages or not engaging into it at all if its expected value is equal to his current wealth. But a risk-averse decision maker would not accept a martingale pay-off in exchange for its expected value since his certain equivalent for uncertain deals is less than their mean. Therefore the traditional martingale sequences that are widely studied in probability and finance are not rational investments for risk averse decision makers. A risk seeking decision maker, on the other hand would welcome a martingale investment, since the certain equivalent is larger than the mean. We introduce a class of stochastic processes whose expected utility is constant and equal to the utility of the current wealth. We refer to such processes as risk-adjusted martingales. We show how to construct such processes for any continuous and strictly monotonic utility function.
A constant daylength during the Precambrian era?
Zahnle, K; Walker, J C
1987-01-01
The semidiurnal atmospheric thermal tide would have been resonant with free oscillations of the atmosphere when the day was approximately 21 h long, c. 600 Ma ago. Very large atmospheric tides would have resulted, with associated surface pressure oscillations in excess of 10 mbar in the tropics. Near resonance the Sun's gravitational torque on the atmospheric tide--accelerating Earth's rotation--would have been comparable in magnitude to the decelerating lunar torque upon the oceanic tides. The balance of the opposing torques may have long maintained a resonant approximately 21 h day, perhaps for much of the Precambrian. Because the timescale of lunar orbital evolution is not directly affected, a constant daylength would result in fewer days/month. The hypothesis is shown not to conflict with the available (stromatolitic) evidence. Escape from the resonance could have followed a relatively abrupt global warming, such as that occurring at the end of the Precambrian. Alternatively, escape may simply have followed a major increase in the rate of oceanic tidal dissipation, brought about by the changing topography of the world's oceans. We integrate the history of the lunar orbit with and without a sustained resonance, finding that the impact of a sustained resonance on the other orbital parameters of the Earth-Moon system would have not been large.
Sign of the induced gravitational constant
NASA Astrophysics Data System (ADS)
Khuri, N. N.
1982-11-01
We study the restrictions that analyticity and positivity impose on ψ(q2), the two-point function constructed with the trace of the energy-momentum tensor of an asymptotically free gauge theory with dynamical symmetry breaking. The Adler-Zee formula for the induced gravitational constant is (16πGind)-1=(112)ψ'(0). We place particular emphasis on the question of the sign of Gind. This sign is related to the distribution and type of zeros of ψ(q2). We prove that for the case of asymptotic freedom ψ has at most two zeros. We investigate all possible cases and show that the Gind is potentially positive in three but each has a different sign of ψ(0), one ψ(0)>0, one ψ(0)<0, and one ψ(0)=0. Thus in the end only one case can survive. We derive convergent sum rules for (Gind)-1 in each case and determine the sign of ψ(0), and the sign of ψ(-Q2) as Q2-->∞. This last sign gives us a check on whether the renormalization procedure is consistent with positivity.
Star polymers rupture induced by constant forces.
García, N A; Febbo, M; Vega, D A; Milchev, A
2014-10-28
In this work, we study the breakage process of an unknotted three-arm star-shaped polymer when it is pulled from its free ends by a constant force. The star polymer configuration is described through an array of monomers coupled by anharmonic bonds, while the rupture process is tracked in three-dimensional space by means of Langevin Molecular Dynamics simulations. The interaction between monomers is described by a Morse potential, while a Weeks-Chandler-Anderson energetic contribution accounts for the excluded volume interaction. We explore the effect of the molecular architecture on the distributions of rupture times over a broad interval of pulling forces and star configurations. It was found that the rupture time distribution of the individual star arms is strongly affected by the star configuration imposed by the pulling forces and the length of the arms. We also observed that for large pulling forces the rupture time distributions resemble the dominant features observed for linear polymer chains. The model introduced here provides the basic ingredients to describe the effects of tensile forces on stress-induced degradation of branched macromolecules and polymer networks. PMID:25362341
More on lensing by a cosmological constant
NASA Astrophysics Data System (ADS)
Ishak, M.; Rindler, W.; Dossett, J.
2010-04-01
The question of whether or not the cosmological constant affects the bending of light around a concentrated mass has been the subject of some recent papers. We present here a simple, specific and transparent example where Λ bending clearly takes place, and where it is clearly neither a coordinate effect nor an aberration effect. We then show that in some recent works using perturbation theory the Λ contribution was missed because of initial too stringent smallness assumptions. Namely, our method has been to insert a Kottler (Schwarzschild with Λ) vacuole into a Friedmann universe, and to calculate the total bending within the vacuole. We assume that no more bending occurs outside. It is important to observe that while the mass contribution to the bending takes place mainly quite near the lens, the Λ bending continues throughout the vacuole. Thus, if one deliberately restricts one's search for Λ bending to the immediate neighbourhood of the lens, one will not find it. Lastly, we show that the Λ bending also follows from standard Weyl focusing, and so again, it cannot be a coordinate effect.
Stunt Barbie - A Laboratory Practicum Combining Constant Velocity and Constant Acceleration
NASA Astrophysics Data System (ADS)
Hertting, Scott
2011-04-01
In preparing to teach the advanced physics course at my high school, I found it useful to work through the end-of-chapter problems in the book used by the advanced class. A problem on motion in one dimension involved a stunt woman in free fall from a tree limb onto a horse running beneath her.2 The problem presents a connected learning opportunity for students because it requires the use of the constant velocity model xf = v*t + xi and the constant acceleration model yf = ½* g* t2 + vyi* t + yi (where g = 9.8 m/s/s) to solve it. I named the stunt woman Barbie and created an activity titled "Stunt Barbie."
The Not so Constant Gravitational "Constant" G as a Function of Quantum Vacuum
NASA Astrophysics Data System (ADS)
Maxmilian Caligiuri, Luigi
Gravitation is still the less understood among the fundamental forces of Nature. The ultimate physical origin of its ruling constant G could give key insights in this understanding. According to the Einstein's Theory of General Relativity, a massive body determines a gravitational potential that alters the speed of light, the clock's rate and the particle size as a function of the distance from its own center. On the other hand, it has been shown that the presence of mass determines a modification of Zero-Point Field (ZPF) energy density within its volume and in the space surrounding it. All these considerations strongly suggest that also the constant G could be expressed as a function of quantum vacuum energy density somehow depending on the distance from the mass whose presence modifies the ZPF energy structure. In this paper, starting from a constitutive medium-based picture of space, it has been formulated a model of gravitational constant G as a function of Planck's time and Quantum Vacuum energy density in turn depending on the radial distance from center of the mass originating the gravitational field, supposed as spherically symmetric. According to this model, in which gravity arises from the unbalanced physical vacuum pressure, gravitational "constant" G is not truly unchanging but slightly varying as a function of the distance from the mass source of gravitational potential itself. An approximate analytical form of such dependence has been discussed. The proposed model, apart from potentially having deep theoretical consequences on the commonly accepted picture of physical reality (from cosmology to matter stability), could also give the theoretical basis for unthinkable applications related, for example, to the field of gravity control and space propulsion.
Reliability concerns with logical constants in Xilinx FPGA designs
Quinn, Heather M; Graham, Paul; Morgan, Keith; Ostler, Patrick; Allen, Greg; Swift, Gary; Tseng, Chen W
2009-01-01
In Xilinx Field Programmable Gate Arrays logical constants, which ground unused inputs and provide constants for designs, are implemented in SEU-susceptible logic. In the past, these logical constants have been shown to cause the user circuit to output bad data and were not resetable through off-line rcconfiguration. In the more recent devices, logical constants are less problematic, though mitigation should still be considered for high reliability applications. In conclusion, we have presented a number of reliability concerns with logical constants in the Xilinx Virtex family. There are two main categories of logical constants: implicit and explicit logical constants. In all of the Virtex devices, the implicit logical constants are implemented using half latches, which in the most recent devices are several orders of magnitudes smaller than configuration bit cells. Explicit logical constants are implemented exclusively using constant LUTs in the Virtex-I and Virtex-II, and use a combination of constant LUTs and architectural posts to the ground plane in the Virtex-4. We have also presented mitigation methods and options for these devices. While SEUs in implicit and some types of explicit logical constants can cause data corrupt, the chance of failure from these components is now much smaller than it was in the Virtex-I device. Therefore, for many cases, mitigation might not be necessary, except under extremely high reliability situations.
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Water systems; constant temperature bottles. 1250...; constant temperature bottles. (a) The water system, whether of the pressure or gravity type, shall be... at all times as to prevent contamination of the water. (e) Constant temperature bottles and...
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Water systems; constant temperature bottles. 1250...; constant temperature bottles. (a) The water system, whether of the pressure or gravity type, shall be... at all times as to prevent contamination of the water. (e) Constant temperature bottles and...
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Water systems; constant temperature bottles. 1250...; constant temperature bottles. (a) The water system, whether of the pressure or gravity type, shall be... at all times as to prevent contamination of the water. (e) Constant temperature bottles and...
Beauty vector meson decay constants from QCD sum rules
NASA Astrophysics Data System (ADS)
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2016-01-01
We present the outcomes of a very recent investigation of the decay constants of nonstrange and strange heavy-light beauty vector mesons, with special emphasis on the ratio of any such decay constant to the decay constant of the corresponding pseudoscalar meson, by means of Borel-transformed QCD sum rules. Our results suggest that both these ratios are below unity.
NASA Astrophysics Data System (ADS)
Woltjer, L.
1987-06-01
En la reunion celebrada en diciembre dei ano pasado informe al Consejo de mi deseo de terminar mi contrato como Director General de la ESO una vez que fuera aprobado el proyecto dei VLT, que se espera sucedera hacia fines de este aAo. Cuando fue renovada mi designacion hace tres aAos, el Consejo conocia mi intencion de no completar los cinco aAos dei contrato debido a mi deseo de disponer de mas tiempo para otras actividades. Ahora, una vez terminada la fase preparatoria para el VLT, Y habiendose presentado el proyecto formalmente al Consejo el dia 31 de marzo, y esperando su muy probable aprobacion antes dei termino de este ano, me parece que el 10 de enero de 1988 presenta una excelente fecha para que se produzca un cambio en la administracion de la ESO.
Does the Newtonian Gravity "Constant" G Vary?
NASA Astrophysics Data System (ADS)
Noerdlinger, Peter D.
2015-08-01
A series of measurements of Newton's gravity constant, G, dating back as far as 1893, yielded widely varying values, the variation greatly exceeding the stated error estimates (Gillies, 1997; Quinn, 2000, Mohr et al 2008). The value of G is usually said to be unrelated to other physics, but we point out that the 8B Solar Neutrino Rate ought to be very sensitive. Improved pulsar timing could also help settle the issue as to whether G really varies. We claim that the variation in measured values over time (1893-2014 C.E.) is a more serious problem than the failure of the error bars to overlap; it appears that challenging or adjusting the error bars hardly masks the underlying disagreement in central values. We have assessed whether variations in the gravitational potential due to (for example) local dark matter (DM) could explain the variations. We find that the required potential fluctuations could transiently accelerate the Solar System and nearby stars to speeds in excess of the Galactic escape speed. Previous theories for the variation in G generally deal with supposed secular variation on a cosmological timescale, or very rapid oscillations whose envelope changes on that scale (Steinhardt and Will 1995). Therefore, these analyses fail to support variations on the timescale of years or spatial scales of order parsecs, which would be required by the data for G. We note that true variations in G would be associated with variations in clock rates (Derevianko and Pospelov 2014; Loeb and Maoz 2015), which could mask changes in orbital dynamics. Geringer-Sameth et al (2014) studied γ-ray emission from the nearby Reticulum dwarf galaxy, which is expected to be free of "ordinary" (stellar, black hole) γ-ray sources and found evidence for DM decay. Bernabei et al (2003) also found evidence for DM penetrating deep underground at Gran Sasso. If, indeed, variations in G can be tied to variations in gravitational potential, we have a new tool to assess the DM density.
Planck’s constant as a natural unit of measurement
NASA Astrophysics Data System (ADS)
Quincey, Paul
2013-09-01
The proposed revision of SI units would embed Planck’s constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck’s constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman’s path integral formulation of quantum mechanics allows a neat visualization of the constant as the circumference of a surveyor’s wheel for measuring action along each path, making Planck’s constant a natural yardstick, almost literally. This approach is shown to have other benefits in the presentation of other basic quantum phenomena.
The constant displacement scheme for tracking particles in heterogeneous aquifers
Wen, X.H.; Gomez-Hernandez, J.J.
1996-01-01
Simulation of mass transport by particle tracking or random walk in highly heterogeneous media may be inefficient from a computational point of view if the traditional constant time step scheme is used. A new scheme which adjusts automatically the time step for each particle according to the local pore velocity, so that each particle always travels a constant distance, is shown to be computationally faster for the same degree of accuracy than the constant time step method. Using the constant displacement scheme, transport calculations in a 2-D aquifer model, with nature log-transmissivity variance of 4, can be 8.6 times faster than using the constant time step scheme.
NASA Astrophysics Data System (ADS)
Massa, Enrico; Nicolaus, Arnold
2011-04-01
This issue of Metrologia collects papers about the results of an international research project aimed at the determination of the Avogadro constant, NA, by counting the atoms in a silicon crystal highly enriched with the isotope 28Si. Fifty years ago, Egidi [1] thought about realizing an atomic mass standard. In 1965, Bonse and Hart [2] operated the first x-ray interferometer, thus paving the way to the achievement of Egidi's dream, and soon Deslattes et al [3] completed the first counting of the atoms in a natural silicon crystal. The present project, outlined by Zosi [4] in 1983, began in 2004 by combining the experiences and capabilities of the BIPM, INRIM, IRMM, NIST, NPL, NMIA, NMIJ and PTB. The start signal, ratified by a memorandum of understanding, was a contract for the production of a silicon crystal highly enriched with 28Si. The enrichment process was undertaken by the Central Design Bureau of Machine Building in St Petersburg. Subsequently, a polycrystal was grown in the Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences in Nizhny Novgorod and a 28Si boule was grown and purified by the Leibniz-Institut für Kristallzüchtung in Berlin. Isotope enrichment made it possible to apply isotope dilution mass spectroscopy, to determine the Avogadro constant with unprecedented accuracy, and to fulfil Egidi's dream. To convey Egidi's 'fantasy' into practice, two 28Si kilogram prototypes shaped as quasi-perfect spheres were manufactured by the Australian Centre for Precision Optics; their isotopic composition, molar mass, mass, volume, density and lattice parameter were accurately determined and their surfaces were chemically and physically characterized at the atomic scale. The paper by Andreas et al reviews the work carried out; it collates all the findings and illustrates how Avogadro's constant was obtained. Impurity concentration and gradients in the enriched crystal were measured by infrared spectroscopy and taken into
NASA Astrophysics Data System (ADS)
Kapko, Vitaliy; Matyushov, Dmitry V.; Angell, C. Austen
2008-04-01
We report constant-volume and constant-pressure simulations of the thermodynamic and dynamic properties of the low-temperature liquid and crystalline phases of the modified Stillinger-Weber (SW) model. We have found an approximately linear temperature increase of the effective Gaussian width of the distribution of inherent structures. This effect comes from non-Gaussianity of the landscape and is consistent with the predictions of the Gaussian excitations model representing the thermodynamics of the configurational manifold as an ensemble of excitations, each carrying an excitation entropy. The SW model provides us with both the configurational and excess entropies, with the difference mostly attributed to vibrational anharmonicity. We therefore can address the distinction between the excess thermodynamic quantities, often used to interpret experiments, and configurational thermodynamics used to describe the dynamics in the Adam-Gibbs (AG) equation. However we are limited computationally to work at temperatures above the "crossover" temperature at which the breakdown in the Adam-Gibbs relation has been identified in laboratory studies. We find a new break in the slope of the constant pressure AG plot (in the same sense but at much higher temperature than with laboratory data) when the excess entropy is used in the AG equation. This break, which we associate with anharmonic vibrational effects, is not seen when the configurational entropy is used. The simulation diffusivity data are equally well fitted by the AG equation and by a new equation, derived within the Gaussian excitations model, that emphasizes enthalpy over entropy as the thermodynamic control variable for transport in viscous liquids. We show that the modified SW model has close links to the behavior observed for bulk metallic glasses, both in its diffusional and in its thermodynamic properties.
NASA Astrophysics Data System (ADS)
Momose, Takamasa; Yamaguchi, Makoto; Shida, Tadamasa
1990-11-01
Following the previous work on the isotropic hyperfine coupling constants (HFCCs) of polyatomic radicals the symmetry adapted cluster expansion-configuration interaction (SAC-CI) theory is applied to calculate anisotropic HFCCs also. The results are compared with available experimental data from diatomic to polyatomic radicals such as the vinoxy. For radicals consisting of only the first row atoms Dunning's double zeta (DZ) basis set is shown to be adequate, but for those containing the second row atoms inclusion of polarization functions is required. Compared with the isotropic HFCC the calculation of the anisotropic HFCC is less formidable. However, ignorance of electron correlation causes serious disagreements with experimental data.
The Hubble constant and dark energy from cosmological distance measures
Ichikawa, Kazuhide; Takahashi, Tomo E-mail: tomot@cc.saga-u.ac.jp
2008-04-15
We study how the determination of the Hubble constant from cosmological distance measures is affected by models of dark energy and vice versa. For this purpose, constraints on the Hubble constant and dark energy are investigated using the cosmological observations of cosmic microwave background, baryon acoustic oscillations and type Ia supernovae. When one investigates dark energy, the Hubble constant is often a nuisance parameter; thus it is usually marginalized over. On the other hand, when one focuses on the Hubble constant, simple dark energy models such as a cosmological constant and a constant equation of state are usually assumed. Since we do not know the nature of dark energy yet, it is interesting to investigate the Hubble constant assuming some types of dark energy and see to what extent the constraint on the Hubble constant is affected by the assumption concerning dark energy. We show that the constraint on the Hubble constant is not affected much by the assumption for dark energy. We furthermore show that this holds true even if we remove the assumption that the universe is flat. We also discuss how the prior on the Hubble constant affects the constraints on dark energy and/or the curvature of the universe.
Strong resetting of the mammalian clock by constant light followed by constant darkness
Chen, Rongmin; Seo, Dong-oh; Bell, Elijah; von Gall, Charlotte; Lee, Choogon
2008-01-01
The mammalian molecular circadian clock in the suprachiasmatic nuclei (SCN) regulates locomotor activity rhythms as well as clocks in peripheral tissues (Reppert and Weaver, 2002; Ko and Takahashi, 2006). Constant light (LL) can induce behavioral and physiological arrhythmicity, by desynchronizing clock cells in the SCN (Ohta et al., 2005). We examined how the disordered clock cells resynchronize by probing the molecular clock and measuring behavior in mice transferred from LL to constant darkness (DD). The circadian locomotor activity rhythms disrupted in LL become robustly rhythmic again from the beginning of DD, and the starting phase of the rhythm in DD is specific, not random, suggesting that the desynchronized clock cells are quickly reset in an unconventional manner by the L:D transition. By measuring mPERIOD protein rhythms, we showed that the SCN and peripheral tissue clocks quickly become rhythmic again in phase with the behavioral rhythms. We propose that this resetting mechanism may be different from conventional phase shifting, which involves light-induction of Period genes (Albrecht et al., 1997; Shearman et al., 1997; Shigeyoshi et al., 1997). Using our functional insights, we could shift the circadian phase of locomotor activity rhythms by 12 hours using a 15-hour LL treatment: essentially producing phase reversal by a single light pulse, a feat that has not been reported previously in wild-type mice and that has potential clinical utility. PMID:19005049
Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms
NASA Astrophysics Data System (ADS)
Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.
2014-12-01
Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).
On multisoliton solutions of the constant astigmatism equation
NASA Astrophysics Data System (ADS)
Hlaváč, Adam
2015-09-01
We introduce an algebraic formula producing infinitely many exact solutions of the constant astigmatism equation {z}{yy}+{(1/z)}{xx}+2=0 from a given seed. A construction of corresponding surfaces of constant astigmatism is then a matter of routine. As a special case, we consider multisoliton solutions of the constant astigmatism equation defined as counterparts of famous multisoliton solutions of the sine-Gordon equation. A few particular examples are surveyed as well.
Laboratory measurement of the complex dielectric constant of soils
NASA Technical Reports Server (NTRS)
Wiebe, M. L.
1971-01-01
The dielectric constant of a material is an extremely important parameter when considering passive radiometric remote sensing applications. This is because the emitted energy measured by a microwave radiometer is dependent on the dielectric constant of the surface being scanned. Two techniques of measuring dielectric constants are described. The first method involves a dielectric located in air. The second method uses basically the same theoretical approach, but the dielectric under consideration is located inside a section of waveguide.
Martynhak, Bruno J; Correia, Diego; Morais, Lívia H; Araujo, Paula; Andersen, Monica L; Lima, Marcelo M S; Louzada, Fernando M; Andreatini, Roberto
2011-09-12
Depressive episodes are associated with disturbances in circadian rhythms, and constant illumination has been reported to induce depressive-like behavior in rodents. Rats kept in constant darkness express the endogenous circadian rhythm, and most animals under constant light conditions lose circadian locomotor rhythmicity. Exposure to constant light in rats during lactation was reported to prevent this loss of circadian rhythm in adulthood. Thus, the aim of the present study was to verify whether exposure to constant light during lactation prevents anhedonia-like behavior induced by constant light in adult rats. In experiment 1, we replicated the anhedonia-like effects of constant light in adult male rats. We showed that this effect is reversed by imipramine treatment in the drinking water. In experiment 2, we subjected rats to constant darkness (neonatal-DD), constant light (neonatal-LL) or to normal light/dark cycle (neonatal-LD) during the neonatal phase and evaluated them after constant light exposure in adulthood. The group exposed to constant light during the neonatal phase did not reduce their sucrose preference and exhibited greater locomotor activity than the other groups. The neonatal-DD group exhibited decreased sucrose preference earlier than controls and had higher serum corticosterone concentrations. Prevention of arrhythymicity might protect neonatal-LL rats from anhedonia-like behavior induced by constant light, whereas constant darkness during the neonatal phase rendered the neonatal-DD group more susceptible to depressive-like behavior. These results corroborate with the literature data indicating that circadian disruption may contribute in mood disorders and that early life stress can influence stress responsivity in adulthood.
Negative Dielectric Constant Material Based on Ion Conducting Materials
NASA Technical Reports Server (NTRS)
Gordon, Keith L. (Inventor); Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Lillehei, Peter T. (Inventor); Harrison, Joycelyn S. (Inventor)
2014-01-01
Metamaterials or artificial negative index materials (NIMs) have generated great attention due to their unique and exotic electromagnetic properties. One exemplary negative dielectric constant material, which is an essential key for creating the NIMs, was developed by doping ions into a polymer, a protonated poly(benzimidazole) (PBI). The doped PBI showed a negative dielectric constant at megahertz (MHz) frequencies due to its reduced plasma frequency and an induction effect. The magnitude of the negative dielectric constant and the resonance frequency were tunable by doping concentration. The highly doped PBI showed larger absolute magnitude of negative dielectric constant at just above its resonance frequency than the less doped PBI.
The 400-Hertz constant-speed electrical generation systems
NASA Technical Reports Server (NTRS)
Mcclung, R.
1982-01-01
Materials illustrating a presentation on 400 Hz constant speed generation systems are presented. The system features are outlined, components and functioning described, and display graphics illustrated.
Static, cylindrically symmetric strings in general relativity with cosmological constant
Linet, B.
1986-07-01
The static, cylindrically symmetric solutions to Einstein's equations with a cosmological term describing cosmic strings are determined. The discussion depends on the sign of the cosmological constant.
Scalar-tensor theory of gravitation with negative coupling constant
NASA Technical Reports Server (NTRS)
Smalley, L. L.; Eby, P. B.
1976-01-01
The possibility of a Brans-Dicke scalar-tensor gravitation theory with a negative coupling constant is considered. The admissibility of a negative-coupling theory is investigated, and a simplified cosmological solution is obtained which allows a negative derivative of the gravitation constant. It is concluded that a Brans-Dicke theory with a negative coupling constant can be a viable alternative to general relativity and that a large negative value for the coupling constant seems to bring the original scalar-tensor theory into close agreement with perihelion-precession results in view of recent observations of small solar oblateness.
Interfacial aqueous solutions dielectric constant measurements using atomic force microscopy
NASA Astrophysics Data System (ADS)
Teschke, O.; Ceotto, G.; de Souza, E. F.
2000-08-01
The exchange of the volume of a region of the electric double layer of a mica surface immersed in aqueous solutions, with a dielectric constant ɛDL, by a nanosized radius tip, with a dielectric constant ɛTip, is responsible for the repulsion at large distances from the surface (starting at ˜100 nm, diffuse layer) and followed by an attraction when the tip is immersed in the inner layer (˜10 nm). The calculated dielectric constant as a function of the distance to the charged interface obtained by fitting the force versus distance curves, allows the mapping of the inner layer dielectric constant profiles with a nanometer resolution.
A simple cosmology with a varying fine structure constant.
Sandvik, Håvard Bunes; Barrow, John D; Magueijo, João
2002-01-21
We investigate the cosmological consequences of a theory in which the electric charge e can vary. In this theory the fine structure "constant," alpha, remains almost constant in the radiation era, undergoes a small increase in the matter era, but approaches a constant value when the universe starts accelerating because of a positive cosmological constant. This model satisfies geonuclear, nucleosynthesis, and cosmic microwave background constraints on time variation in alpha, while fitting the observed accelerating Universe and evidence for small alpha variations in quasar spectra. It also places specific restrictions on the nature of the dark matter. Further tests, involving stellar spectra and Eötvös experiments, are proposed.
[Dichotomizing method applied to calculating equilibrium constant of dimerization system].
Cheng, Guo-zhong; Ye, Zhi-xiang
2002-06-01
The arbitrary trivariate algebraic equations are formed based on the combination principle. The univariata algebraic equation of equilibrium constant kappa for dimerization system is obtained through a series of algebraic transformation, and it depends on the properties of monotonic functions whether the equation is solvable or not. If the equation is solvable, equilibrium constant of dimerization system is obtained by dichotomy and its final equilibrium constant of dimerization system is determined according to the principle of error of fitting. The equilibrium constants of trisulfophthalocyanine and biosulfophthalocyanine obtained with this method are 47,973.4 and 30,271.8 respectively. The results are much better than those reported previously.
Lange, E; Kirsch, M
1988-11-01
There have been forensic-psychiatric observations from 1963 to 1983 concerning the offenders responsibility in case of deliberate arson with 12 out of 147 suits being closely related to (para-)suicide. According the variety of relations we distinguish between fire as pure means of suicide, fire used to take along the living space or people, suicide committed in consequence of arson, furthermore arson as a symbolic suicide, and finally acting alternately with both arson as well as parasuicide.
Are the Truly Constant Constants of Nature? How is the Real Material Space and its Structure?
Luz Montero Garcia, Jose de la; Novoa Blanco, Jesus Francisco
2007-04-28
In a concise and simplified way, some matters of authors' theories -Unified Theory of the Physical and Mathematical Universal Constants and Quantum Cellular Structural Geometry-, an only one theoretical main body MN2. This investigation has as objective the search of the last cells that base the existence, unicity and harmony of matter, as well as its structural-formal and dynamic-functional diversity. The quantitative hypothesis is demonstrated that 'World is one, is one; but it is one Arithmetic-Geometric-Topological-Dimensional and Structural-Cellular-Dynamic one, simultaneously'. In the Frontiers of Fundamental Physics such last cells are the cells of own Real Material Space of whose whole accretion, interactive and staggered all the existing one at all the hierarchic levels arises, cells these below which make no sense to speak of structure and, therefore, of existence. The cells of the Real Material Space are its 'Atoms'. Law of Planetary Systems or '4th Kepler's Law'.
β-Cyclodextrin- para-aminosalicylic acid inclusion complexes
NASA Astrophysics Data System (ADS)
Roik, N. V.; Belyakova, L. A.; Oranskaya, E. I.
2010-11-01
Complex formation of β-cyclodextrin with para-aminosalicylic acid in buffer solutions is studied by UV spectroscopy. It is found that the stoichiometric proportion of the components in the β-cyclodextrin-para-aminosalicylic acid inclusion complex is 1:1. The Ketelar equation is used to calculate the stability constants of the inclusion complexes at different temperatures. The thermodynamic parameters of the complex formation process (ΔG, ΔH, ΔS) are calculated using the van't Hoff equation. The 1:1 β-cyclodextrin-para-aminosalicylic acid inclusion complex is prepared in solid form and its characteristics are determined by IR spectroscopic and x-ray diffraction techniques.
Álvarez-Asencio, R; Thormann, E; Rutland, M W
2013-09-01
A technique has been developed for the calculation of torsional spring constants for AFM cantilevers based on the combination of the normal spring constant and plate/beam theory. It is easy to apply and allow the determination of torsional constants for stiff cantilevers where the thermal power spectrum is difficult to obtain due to the high resonance frequency and low signal/noise ratio. The applicability is shown to be general and this simple approach can thus be used to obtain torsional constants for any beam shaped cantilever.
Constant-Operating-Resistance Hot-Wire Probe
NASA Technical Reports Server (NTRS)
Stainback, P. C.
1985-01-01
Effects of lead-wire-resistance changes with temperature nullified. Constant-operating-resistance hot-wire probe uses two sets of leads. Exposed to identical conditions, comparison of resistance gives change in sensing element itself. Data taken in more convenient manner, with advantage of not having to constantly check for possible changes in lead resistance and consequently readjust potentiometer.
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2010 CFR
2010-04-01
... and protected as to minimize the hazard of contamination of the water supply. (c) On all new or... at all times as to prevent contamination of the water. (e) Constant temperature bottles and other... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Water systems; constant temperature bottles....
21 CFR 1250.42 - Water systems; constant temperature bottles.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and protected as to minimize the hazard of contamination of the water supply. (c) On all new or... at all times as to prevent contamination of the water. (e) Constant temperature bottles and other... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Water systems; constant temperature bottles....
Fundamental Insight on Developing Low Dielectric Constant Polyimides
NASA Technical Reports Server (NTRS)
Simpson, J. O.; SaintClair, A. K.
1997-01-01
Thermally stable, durable, insulative polyimides are in great demand for the fabrication of microelectronic devices. In this investigation dielectric and optical properties have been studied for several series of aromatic polyimides. The effect of polarizability, fluorine content, and free volume on dielectric constant was examined. In general, minimizing polarizability, maximizing free volume and fluorination all lowered dielectric constants in the polyimides studied.
Nuclear Magnetic Resonance Coupling Constants and Electronic Structure in Molecules.
ERIC Educational Resources Information Center
Venanzi, Thomas J.
1982-01-01
Theory of nuclear magnetic resonance spin-spin coupling constants and nature of the three types of coupling mechanisms contributing to the overall spin-spin coupling constant are reviewed, including carbon-carbon coupling (neither containing a lone pair of electrons) and carbon-nitrogen coupling (one containing a lone pair of electrons).…
Measuring Boltzmann's Constant with Carbon Dioxide
ERIC Educational Resources Information Center
Ivanov, Dragia; Nikolov, Stefan
2013-01-01
In this paper we present two experiments to measure Boltzmann's constant--one of the fundamental constants of modern-day physics, which lies at the base of statistical mechanics and thermodynamics. The experiments use very basic theory, simple equipment and cheap and safe materials yet provide very precise results. They are very easy and…
Time constant of the cerebral arterial bed in normal subjects.
Kasprowicz, Magdalena; Diedler, Jennifer; Reinhard, Matthias; Carrera, Emmanuel; Steiner, Luzius A; Smielewski, Peter; Budohoski, Karol P; Haubrich, Christina; Pickard, John D; Czosnyka, Marek
2012-07-01
The time constant of cerebral arterial bed (in brief time constant) is a product of brain arterial compliance (C(a)) and resistance (CVR). We tested the hypothesis that in normal subjects, changes in end-tidal CO(2) (EtCO(2)) affect the value of the time constant. C(a) and CVR were estimated using mathematical transformations of arterial pressure (ABP) and transcranial Doppler (TCD) cerebral blood flow velocity waveforms. Responses of the time constant to controlled changes in EtCO(2) were compared in 34 young volunteers. Hypercapnia shortened the time constant (0.22 s [0.17, 0.26] vs. 0.16 s [0.13, 0.20]; p = 0.000001), while hypocapnia lengthened the time constant (0.22 s [0.17, 0.26] vs. 0.23 s [0.19, 0.32]; p < 0.0032). The time constant was negatively correlated with changes in EtCO(2) (R(partial) = -0.68, p < 0.000001). This was associated with a decrease in CVR when EtCO(2) increased (R(partial) = -0.80, p < 0.000001) and C(a) remained independent of changes in EtCO(2). C(a) was negatively correlated with mean ABP (R(partial) = -0.68, p < 0.000001). In summary, the time constant shortens with increasing EtCO(2). Its potential role in cerebrovascular investigations needs further studies.
Using Constant Time Delay to Teach Braille Word Recognition
ERIC Educational Resources Information Center
Hooper, Jonathan; Ivy, Sarah; Hatton, Deborah
2014-01-01
Introduction: Constant time delay has been identified as an evidence-based practice to teach print sight words and picture recognition (Browder, Ahlbrim-Delzell, Spooner, Mims, & Baker, 2009). For the study presented here, we tested the effectiveness of constant time delay to teach new braille words. Methods: A single-subject multiple baseline…
Thermal conductivity and dielectric constant of silicate materials
NASA Technical Reports Server (NTRS)
Simon, I.; Wechsler, A. E.
1968-01-01
Report on the thermal conductivity and dielectric constant of nonmetallic materials evaluates the mechanisms of heat transfer in evacuated silicate powders and establishes the complex dielectric constant of these materials. Experimental measurements and results are related to postulated lunar surface materials.
Computational study on Kerr constants of neutral and ionized gases
NASA Astrophysics Data System (ADS)
Sato, M.; Kumada, A.; Hidaka, K.
2015-08-01
In order to quantitatively examine the measurement capability of Poisson's field using electro-optic Kerr-effect (EOKE), Kerr constants of neutral molecules and ions are examined by means of first principle calculations. We have systematically computed Kerr constants of neutral molecules and ions of several molecular symmetry groups, with consistent theory level and basis sets. Computed Kerr constants of neutral molecules (N2, CO2, SF6, and CF3I) ranging across two orders of magnitudes are within 50% error of the experimental values, which are comparable to the scattering between experimental values itself. The results show that SF6 has smaller Kerr constant due to its high molecular symmetry compared to those of N2 and CO2. In contrast, CF3I has large Kerr constant due to its permanent dipole. Computed Kerr constants for anions are larger by two orders of magnitude than those of neutral molecules, probably due to the shielding effect. For cations, the opposite holds true; however, due to anisotropic polarizability, computed Kerr constants for some cations are comparable to neutral molecules, while others show smaller values. The ratio of Kerr constants of ions to those of neutral molecules are at most 102; EOKE is valid for measuring electric field in weakly ionized gas whose ionization degree is smaller than 10-3.
A Simple Apparatus for Determining Ionization and Solubility Product Constants.
ERIC Educational Resources Information Center
Gerardi, Gary
1977-01-01
Describes a simple conductivity apparatus for the determination of ionization and solubility product constants of various substances. The uses of the apparatus in determining the ionization constant of a weak monoprotic acid and in measuring the rate of diffusion of ions through a membrane are also presented. (HM)
Evolving Lorentzian wormholes supported by phantom matter and cosmological constant
Cataldo, Mauricio; Campo, Sergio del; Minning, Paul; Salgado, Patricio
2009-01-15
In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made of phantom energy in the presence of a cosmological constant. We derive analytical evolving wormhole geometries by supposing that the radial tension of the phantom matter, which is negative to the radial pressure, and the pressure measured in the tangential directions have barotropic equations of state with constant state parameters. In this case the presence of a cosmological constant ensures accelerated expansion of the wormhole configurations. More specifically, for positive cosmological constant we have wormholes which expand forever and, for negative cosmological constant we have wormholes which expand to a maximum value and then recollapse. At spatial infinity the energy density and the pressures of the anisotropic phantom matter threading the wormholes vanish; thus these evolving wormholes are asymptotically vacuum {lambda}-Friedmann models with either open or closed or flat topologies.
Five constants of information technology adoption in healthcare.
Bernstein, Mariel L; McCreless, Tamuchin; Côté, Murray J
2007-01-01
The healthcare industry has developed a dependence on information technology (IT) for maintaining and improving both clinical and business operations. Whether IT is used for office automation or for reducing medical errors, there are five constants that routinely influence the successful integration of IT in healthcare. These constants are the proper use and maintenance of the IT budget, the role of supportive leadership, the use of project management, the process of implementation, and the significance of end user involvement. These constants challenge healthcare organizations to efficiently and effectively use their financial and human resources when adopting new IT. These constants also shape how the healthcare industry approaches the adoption and utilization of new IT. A collective understanding of these constants and their interrelationships will enable healthcare organizations to better integrate new IT and achieve organizational goals of developing a solid technological infrastructure to truly enhance the delivery of quality healthcare.
A fine tuning free resolution of the cosmological constant problem
Alexander, Stephon; Vaid, Deepak
2009-07-06
In a recent paper we discovered that a fermionic condensate is formed from gravitational interactions due to the covariant coupling of fermions in the presence of a torsion-fermion contact interaction.The condensate gap gives a negative contribution to the bare cosmological constant. In this letter, we show that the cosmological constant problem can be solved without fine tuning of the bare cosmological constant. We demonstrate how a universe with a large initial cosmological constant undergoes inflation, during which time the energy gap grows as the volume of the universe. Eventually the gap becomes large enough to cancel out the bare cosmological term, inflation ends and we end up in a universe with an almost vanishing cosmological term. We provide a detailed numerical analysis of the system of equations governing the self regulating relaxation of the cosmological constant.
Substituent effects and pH profiles for stability constants of arylboronic acid diol esters.
Martínez-Aguirre, Mayte A; Villamil-Ramos, Raul; Guerrero-Alvarez, Jorge A; Yatsimirsky, Anatoly K
2013-05-17
Stability constants of boronic acid diol esters in aqueous solution have been determined potentiometrically for a series of meta-, para-substituted phenylboronic acids and diols of variable acidity. The constants β(11-1) for reactions between neutral forms of reactants producing the anionic ester plus proton follow the Hammett equation with ρ depending on pKa of diol and varying from 2.0 for glucose to 1.29 for 4-nitrocatechol. Observed stability constants (K(obs)) measured by UV-vis and fluorometric titrations at variable pH for esters of 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) generally agree with those expected on the basis of β(11-1) values, but the direct fitting of K(obs) vs pH profiles gives shifted pKa values both for boronic acids and diol as a result of significant interdependence of fitting parameters. The subsituent effects on absorption and fluorescence spectra of Tiron arylboronate esters are characterized. The K(obs) for Tiron determined by (11)B NMR titrations are approximately 1 order of magnitude smaller than those determined by UV-vis titrations under identical conditions. A general equation, which makes possible an estimate of β(11-1) for any pair of boronic acid and diol from their pKa values, is proposed on the basis of established Brönsted-type correlation of Hammett parameters for β(11-1) with acidity of diols. The equation allows one to calculate stability constants expected only on basis of acid-base properties of the components, thus permitting more strict evaluation of contributions of additional factors such as steric or charge effects to the ester stability.
Calculation of individual isotope equilibrium constants for geochemical reactions
Thorstenson, D.C.; Parkhurst, D.L.
2004-01-01
Theory is derived from the work of Urey (Urey H. C. [1947] The thermodynamic properties of isotopic substances. J. Chem. Soc. 562-581) to calculate equilibrium constants commonly used in geochemical equilibrium and reaction-transport models for reactions of individual isotopic species. Urey showed that equilibrium constants of isotope exchange reactions for molecules that contain two or more atoms of the same element in equivalent positions are related to isotope fractionation factors by ?? = (Kex)1/n, where n is the number of atoms exchanged. This relation is extended to include species containing multiple isotopes, for example 13C16O18O and 1H2H18O. The equilibrium constants of the isotope exchange reactions can be expressed as ratios of individual isotope equilibrium constants for geochemical reactions. Knowledge of the equilibrium constant for the dominant isotopic species can then be used to calculate the individual isotope equilibrium constants. Individual isotope equilibrium constants are calculated for the reaction CO2g = CO2aq for all species that can be formed from 12C, 13C, 16O, and 18O; for the reaction between 12C18 O2aq and 1H218Ol; and among the various 1H, 2H, 16O, and 18O species of H2O. This is a subset of a larger number of equilibrium constants calculated elsewhere (Thorstenson D. C. and Parkhurst D. L. [2002] Calculation of individual isotope equilibrium constants for implementation in geochemical models. Water-Resources Investigation Report 02-4172. U.S. Geological Survey). Activity coefficients, activity-concentration conventions for the isotopic variants of H2O in the solvent 1H216Ol, and salt effects on isotope fractionation have been included in the derivations. The effects of nonideality are small because of the chemical similarity of different isotopic species of the same molecule or ion. The temperature dependence of the individual isotope equilibrium constants can be calculated from the temperature dependence of the fractionation
ERIC Educational Resources Information Center
Kahwa, I. A.
1984-01-01
Discusses a graphical procedure which allows the distribution constant of iodine to be determined simultaneously with the trihalide anion stability constant. In addition, the procedure extends the experimental chemistry from distribution equilibria to important thermodynamic and bonding features. Advantages of using the procedure are also…
Larson-Miller Constant of Heat-Resistant Steel
NASA Astrophysics Data System (ADS)
Tamura, Manabu; Abe, Fujio; Shiba, Kiyoyuki; Sakasegawa, Hideo; Tanigawa, Hiroyasu
2013-06-01
Long-term rupture data for 79 types of heat-resistant steels including carbon steel, low-alloy steel, high-alloy steel, austenitic stainless steel, and superalloy were analyzed, and a constant for the Larson-Miller (LM) parameter was obtained in the current study for each material. The calculated LM constant, C, is approximately 20 for heat-resistant steels and alloys except for high-alloy martensitic steels with high creep resistance, for which C ≈ 30 . The apparent activation energy was also calculated, and the LM constant was found to be proportional to the apparent activation energy with a high correlation coefficient, which suggests that the LM constant is a material constant possessing intrinsic physical meaning. The contribution of the entropy change to the LM constant is not small, especially for several martensitic steels with large values of C. Deformation of such martensitic steels should accompany a large entropy change of 10 times the gas constant at least, besides the entropy change due to self-diffusion.
Methodology for extracting local constants from petroleum cracking flows
Chang, Shen-Lin; Lottes, Steven A.; Zhou, Chenn Q.
2000-01-01
A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.
Boson mapping techniques applied to constant gauge fields in QCD
NASA Technical Reports Server (NTRS)
Hess, Peter Otto; Lopez, J. C.
1995-01-01
Pairs of coordinates and derivatives of the constant gluon modes are mapped to new gluon-pair fields and their derivatives. Applying this mapping to the Hamiltonian of constant gluon fields results for large coupling constants into an effective Hamiltonian which separates into one describing a scalar field and another one for a field with spin two. The ground state is dominated by pairs of gluons coupled to color and spin zero with slight admixtures of color zero and spin two pairs. As color group we used SU(2).
Evaluation of atomic constants for optical radiation, volume 1
NASA Technical Reports Server (NTRS)
Kylstra, C. D.; Schneider, R. J.
1974-01-01
Atomic constants for optical radiation are discussed which include transition probabilities, line strengths, and oscillator strengths for both dipole and quadrupole transitions, as well as the associated matrix elements needed for line broadening calculations. Atomic constants were computed for a wide selection of elements and lines. An existing computer program was used, with modifications to include, in an approximate manner, the effect of equivalent electrons, and to enable reordering and restructuring of the output for publication. This program is suitable for fast, low cost computation of the optical constants, using the Coulomb approximation formalism for LS coupling.
Compilation of Henry's law constants, version 3.99
NASA Astrophysics Data System (ADS)
Sander, R.
2014-11-01
Many atmospheric chemicals occur in the gas phase as well as in liquid cloud droplets and aerosol particles. Therefore, it is necessary to understand the distribution between the phases. According to Henry's law, the equilibrium ratio between the abundances in the gas phase and in the aqueous phase is constant for a dilute solution. Henry's law constants of trace gases of potential importance in environmental chemistry have been collected and converted into a uniform format. The compilation contains 14775 values of Henry's law constants for 3214 species, collected from 639 references. It is also available on the internet at http://www.henrys-law.org.
Experimental determination of the effective strong coupling constant
Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch
2007-07-01
We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.
Large numbers hypothesis. IV - The cosmological constant and quantum physics
NASA Technical Reports Server (NTRS)
Adams, P. J.
1983-01-01
In standard physics quantum field theory is based on a flat vacuum space-time. This quantum field theory predicts a nonzero cosmological constant. Hence the gravitational field equations do not admit a flat vacuum space-time. This dilemma is resolved using the units covariant gravitational field equations. This paper shows that the field equations admit a flat vacuum space-time with nonzero cosmological constant if and only if the canonical LNH is valid. This allows an interpretation of the LNH phenomena in terms of a time-dependent vacuum state. If this is correct then the cosmological constant must be positive.
Procedures for determining MATMOD-4V material constants
Lowe, T.C.
1993-11-01
The MATMOD-4V constitutive relations were developed from the original MATMOD model to extend the range of nonelastic deformation behaviors represented to include transient phenomena such as strain softening. Improvements in MATMOD-4V increased the number of independent material constants and the difficulty in determining their values. Though the constitutive relations are conceptually simple, their form and procedures for obtaining their constants can be complex. This paper reviews in detail the experiments, numerical procedures, and assumptions that have been used to determine a complete set of MATMOD-4V constants for high purity aluminum.
Identification of material constants for a composite shell structure
Carne, T.G.; Martinez, D.R.
1987-01-01
A finite element model of a composite shell was created. The model includes uncertain orthotropic elastic constants. To identify these constants, a modal survey was performed on an actual shell. The resulting modal data along with the finite element model of the shell were used in a Bayes estimation algorithm. Values of the elastic constants were estimated which minimized the differences between the test results and the finite element predictions. The estimation procedure employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.
NASA Astrophysics Data System (ADS)
Massa, Enrico; Nicolaus, Arnold
2011-04-01
This issue of Metrologia collects papers about the results of an international research project aimed at the determination of the Avogadro constant, NA, by counting the atoms in a silicon crystal highly enriched with the isotope 28Si. Fifty years ago, Egidi [1] thought about realizing an atomic mass standard. In 1965, Bonse and Hart [2] operated the first x-ray interferometer, thus paving the way to the achievement of Egidi's dream, and soon Deslattes et al [3] completed the first counting of the atoms in a natural silicon crystal. The present project, outlined by Zosi [4] in 1983, began in 2004 by combining the experiences and capabilities of the BIPM, INRIM, IRMM, NIST, NPL, NMIA, NMIJ and PTB. The start signal, ratified by a memorandum of understanding, was a contract for the production of a silicon crystal highly enriched with 28Si. The enrichment process was undertaken by the Central Design Bureau of Machine Building in St Petersburg. Subsequently, a polycrystal was grown in the Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences in Nizhny Novgorod and a 28Si boule was grown and purified by the Leibniz-Institut für Kristallzüchtung in Berlin. Isotope enrichment made it possible to apply isotope dilution mass spectroscopy, to determine the Avogadro constant with unprecedented accuracy, and to fulfil Egidi's dream. To convey Egidi's 'fantasy' into practice, two 28Si kilogram prototypes shaped as quasi-perfect spheres were manufactured by the Australian Centre for Precision Optics; their isotopic composition, molar mass, mass, volume, density and lattice parameter were accurately determined and their surfaces were chemically and physically characterized at the atomic scale. The paper by Andreas et al reviews the work carried out; it collates all the findings and illustrates how Avogadro's constant was obtained. Impurity concentration and gradients in the enriched crystal were measured by infrared spectroscopy and taken into
Vagnini, Michael T; Rutledge, W Caleb; Wagenknecht, Paul S
2010-02-01
Electronic energy transfer can fall into two limiting cases. When the rate of the energy transfer back reaction is much faster than relaxation of the acceptor excited state, equilibrium between the donor and acceptor excited states is achieved and only the equilibrium constant for the energy transfer can be measured. When the rate of the back reaction is much slower than relaxation of the acceptor, the energy transfer is irreversible and only the forward rate constant can be measured. Herein, we demonstrate that with trans-[Cr(d(4)-cyclam)(CN)(2)](+) as the donor and either trans-[Cr([15]ane-ane-N(4))(CN)(2)](+) or trans-[Cr(cyclam)(CN)(2)](+) as the acceptor, both limits can be obtained by control of the donor concentration. The equilibrium constant and rate constant for the case in which trans-[Cr([15]ane-ane-N(4))(CN)(2)](+) is the acceptor are 0.66 and 1.7 x 10(7) M(-1) s(-1), respectively. The equilibrium constant is in good agreement with the value of 0.60 determined using the excited state energy gap between the donor and acceptor species. For the thermoneutral case in which trans-[Cr(cyclam)(CN)(2)](+) is the acceptor, an experimental equilibrium constant of 0.99 was reported previously, and the rate constant has now been measured as 4.0 x 10(7) M(-1) s(-1).
The atoms of space, gravity and the cosmological constant
NASA Astrophysics Data System (ADS)
Padmanabhan, T.
2016-05-01
I describe an approach which connects classical gravity with the quantum microstructure of spacetime. The field equations arise from maximizing the density of states of matter plus geometry. The former is identified using the thermodynamics of null surfaces while the latter arises due to the existence of a zero-point length in the spacetime. The resulting field equations remain invariant when a constant is added to the matter Lagrangian, which is a symmetry of the matter sector. Therefore, the cosmological constant arises as an integration constant. A nonzero value (Λ) of the cosmological constant renders the amount of cosmic information (Ic) accessible to an eternal observer finite and hence is directly related to it. This relation allows us to determine the numerical value of (Λ) from the quantum structure of spacetime.
Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?
Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu
2013-01-17
Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom. PMID:26283432
Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces?
Merlet, Céline; Péan, Clarisse; Rotenberg, Benjamin; Madden, Paul A; Simon, Patrice; Salanne, Mathieu
2013-01-17
Supercapacitors based on an ionic liquid electrolyte and graphite or nanoporous carbon electrodes are simulated using molecular dynamics. We compare a simplified electrode model in which a constant, uniform charge is assigned to each carbon atom with a realistic model in which a constant potential is applied between the electrodes (the carbon charges are allowed to fluctuate). We show that the simulations performed with the simplified model do not provide a correct description of the properties of the system. First, the structure of the adsorbed electrolyte is partly modified. Second, dramatic differences are observed for the dynamics of the system during transient regimes. In particular, upon application of a constant applied potential difference, the increase in the temperature, due to the Joule effect, associated with the creation of an electric current across the cell follows Ohm's law, while unphysically high temperatures are rapidly observed when constant charges are assigned to each carbon atom.
Determining Planck's Constant Using a Light-emitting Diode.
ERIC Educational Resources Information Center
Sievers, Dennis; Wilson, Alan
1989-01-01
Describes a method for making a simple, inexpensive apparatus which can be used to determine Planck's constant. Provides illustrations of a circuit diagram using one or more light-emitting diodes and a BASIC computer program for simplifying calculations. (RT)
Estimates on Bloch constants for planar harmonic mappings
NASA Astrophysics Data System (ADS)
Xinzhong, Huang
2008-01-01
The Schwarz lemma and Bloch constants for planar bounded harmonic mappings are considered. Sharper form and better estimates are obtained. Our results improve the one made by Dorff and Nowak as well as by Chen, Gauthier and Hengartner.
Solving nonlinear heat transfer constant area fin problems
NASA Technical Reports Server (NTRS)
1968-01-01
Tables and graphs were compiled for solving nonlinear heat transfer constant area fin problems. The differential equation describing one-dimensional steady-state temperature distribution and heat flow under three modes of heat transfer with heat generation was investigated.
Anharmonic Potential Constants and Their Dependence Upon Bond Length
DOE R&D Accomplishments Database
Herschbach, D. R.; Laurie, V. W.
1961-01-01
Empirical study of cubic and quartic vibrational force constants for diatomic molecules shows them to be approximately exponential functions of internuclear distance. A family of curves is obtained, determined by the location of the bonded atoms in rows of the periodic table. Displacements between successive curves correspond closely to those in Badger's rule for quadratic force constants (for which the parameters are redetermined to accord with all data now available). Constants for excited electronic and ionic states appear on practically the same curves as those for the ground states. Predictions based on the diatomic correlations agree with the available cubic constants for bond stretching in polyatomic molecules, regardless of the type of bonding involved. Implications of these regularities are discussed. (auth)
Implications of the Cosmological Constant for Spherically Symmetric Mass Distributions
NASA Astrophysics Data System (ADS)
Zubairi, Omair; Weber, Fridolin
2013-04-01
In recent years, scientists have made the discovery that the expansion rate of the Universe is increasing rather than decreasing. This acceleration leads to an additional term in Albert Einstein's field equations which describe general relativity and is known as the cosmological constant. This work explores the aftermath of a non-vanishing cosmological constant for relativistic spherically symmetric mass distributions, which are susceptible to change against Einstein's field equations. We introduce a stellar structure equation known as the Tolman-Oppenhiemer-Volkoff (TOV) equation modified for a cosmological constant, which is derived from Einstein's modified field equations. We solve this modified TOV equation for these spherically symmetric mass distributions and obtain stellar properties such as mass and radius and investigate changes that may occur depending on the value of the cosmological constant.
New Drug May Treat Rare Obesity Disorder Causing Constant Hunger
... page: https://medlineplus.gov/news/fullstory_159982.html New Drug May Treat Rare Obesity Disorder Causing Constant ... been no good replacement for MSH. In the new study, researchers in France and Germany tested an ...
ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS - ALKALINE HYDROLYSIS
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...
ESTIMATION OF PHOSPHATE ESTER HYDROLYSIS RATE CONSTANTS. I. ALKALINE HYDROLYSIS
SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to allow the calculation of alkaline hydrolysis rate constants of phosphate esters in water. The rate is calculated from the energy difference between the initial and transition state...
Constant-frequency, variable-duty-cycle multivibrator
NASA Technical Reports Server (NTRS)
Johnson, J. E.
1969-01-01
Circuit provides a pulse source of constant frequency with a duty cycle that is adjustable by an external input signal. It could serve as a switching mode voltage regulator or as a switching source for control systems.
ELECTRIC HOLDING FURNACE IN THE MALLEABLE FOUNDRY MAINTAINS CONSTANT TEMPERATURES ...
ELECTRIC HOLDING FURNACE IN THE MALLEABLE FOUNDRY MAINTAINS CONSTANT TEMPERATURES FOR IRON PRIOR TO FILLING MOBILE LADLES. - Stockham Pipe & Fittings Company, Malleable Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
Temperature and size-dependent Hamaker constants for metal nanoparticles
NASA Astrophysics Data System (ADS)
Jiang, K.; Pinchuk, P.
2016-08-01
Theoretical values of the Hamaker constant have been calculated for metal nanoparticles using Lifshitz theory. The theory describes the Hamaker constant in terms of the permittivity of the interacting bodies. Metal nanoparticles exhibit an internal size effect that alters the dielectric permittivity of the particle when its size falls below the mean free path of the conducting electrons. This size dependence of the permittivity leads to size-dependence of the Hamaker constant for metal nanoparticles. Additionally, the electron damping and the plasma frequency used to model the permittivity of the particle exhibit temperature-dependence, which lead to temperature dependence of the Hamaker constant. In this work, both the size and temperature dependence for gold, silver, copper, and aluminum nanoparticles is demonstrated. The results of this study might be of interest for studying the colloidal stability of nanoparticles in solution.
ESTIMATION OF CARBOXYLIC ACID ESTER HYDROLYSIS RATE CONSTANTS
SPARC chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid esters from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external...
Recommending a value for the Newtonian gravitational constant.
Wood, Barry M
2014-10-13
The primary objective of the CODATA Task Group on Fundamental Constants is 'to periodically provide the scientific and technological communities with a self-consistent set of internationally recommended values of the basic constants and conversion factors of physics and chemistry based on all of the relevant data available at a given point in time'. I discuss why the availability of these recommended values is important and how it simplifies and improves science. I outline the process of determining the recommended values and introduce the principles that are used to deal with discrepant results. In particular, I discuss the specific challenges posed by the present situation of gravitational constant experimental results and how these principles were applied to the most recent 2010 recommended value. Finally, I speculate about what may be expected for the next recommended value of the gravitational constant scheduled for evaluation in 2014.
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2012 CFR
2012-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year...
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year...
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year...
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2014 CFR
2014-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year...
18 CFR 806.12 - Constant-rate aquifer testing.
Code of Federal Regulations, 2013 CFR
2013-04-01
... withdraw or increase a withdrawal of groundwater shall perform a constant-rate aquifer test in accordance... groundwater availability analysis to determine the availability of water during a 1-in-10-year...
Inexpensive Measurements of the Elastic Constants of Steel
ERIC Educational Resources Information Center
Scott, Bernard
1977-01-01
Describes experiments that utilize unsophisticated equipment to measure the elastic constants of thin flexible strips of material. The attainable accuracy is limited by the measurement of the material's thickness. (MLH)
Dynamics of the cosmological and Newton’s constant
NASA Astrophysics Data System (ADS)
Smolin, Lee
2016-01-01
A modification of general relativity is presented in which Newton’s constant, G, and the cosmological constant, Λ, become a conjugate pair of dynamical variables. These are functions of a global time, hence the theory is presented in the framework of shape dynamics, which trades many-fingered time for a local scale invariance and an overall reparametrization of the global time. As a result, due to the fact that these global dynamical variables are canonically conjugate, the field equations are consistent. The theory predicts a relationship with no free parameters between the rates of change of Newton’s constant and the cosmological constant, in terms of the spatial average of the matter Lagrangian density.
Constant-Magnitude Acceleration on a Curved Path.
ERIC Educational Resources Information Center
Herrick, David L.
1996-01-01
Presents the theory behind a two-dimensional curved path along which the magnitude of the acceleration vector remains constant for an object moving frictionlessly under the influence of gravity. (JRH)
Stoichiometry and Formation Constant Determination by Linear Sweep Voltammetry.
ERIC Educational Resources Information Center
Schultz, Franklin A.
1979-01-01
In this paper an experiment is described in which the equilibrium constants necessary for determining the composition and distribution of lead (II)-oxalate species may be measured by linear sweep voltammetry. (Author/BB)
Dynamics of charged shell with a cosmological constant
NASA Astrophysics Data System (ADS)
Eid, A.
2016-04-01
Using the Darmois-Israel formalism technique, charged thin shell in the presence of a cosmological constant is constructed. An equation governing the behavior of the radial pressure across the junction surface is deduced. The cosmological constant term and the charge term slows down the collapse of matter. The spherical N-shell model with an appropriate initial condition imitates quite well the FRW universe with Λ ≠ 0.
Role of dielectric constant in electrohydrodynamics of conducting fluids
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.
1992-01-01
Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.
Getting through to circadian oscillators: why use constant routines?
NASA Technical Reports Server (NTRS)
Duffy, Jeanne F.; Dijk, Derk-Jan
2002-01-01
Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.
Role of dielectric constant in electrohydrodynamics of conducting fluids
NASA Astrophysics Data System (ADS)
Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.
Electrohydrodynamic (EHD) flows are driven by the interaction of an electric field with variations in electric conductivity or dielectric constant. In reported EHD experiments on the deformation of drops of immiscible dielectric fluids, the role of conductivity has tended to overshadow the role of dielectric constant. Often, large conductivity contrasts were convenient because the conductivities of the dielectric fluid were relatively uncertain. As a result, the observed effects were always qualitatively the same as if there had been no contrast in dielectric constant. Our early experiments studying the EHC deformations of cylindrical streams readily showed the conductivity effect but the dielectric constant effect was not discernible. We have modified our flow chamber and improved our method of observation and can now see an unequivocal dielectric constant effect which is in agreement with the prior theory. In this paper we first give a brief description of the physics of charge buildup at the interface of an immersed spherical drop or flowing cylindrical sample stream and then show how these charge distributions lead to interface distortions and accompanying viscous flows which constitute EHD. We next review theory and experiment describing the deformation of spherical drops. We show that in the reported drop deformation experiments, the contrast in dielectric constant was never sufficient to reverse the deformation due to the conductivity contrast. We review our work describing the deformation of a cylindrical stream of one fluid flowing in a parallel flow of another, and we compare the deformation equations with those for spherical drops. Finally, we show a definite experimental dielectric constant effect for cylindrical stream of aqueous polystyrene latex suspension. The dielectric constant varies with the frequency of the imposed electric field, and the associated EHD flow change is very apparent.
The fundamental constants of orthotropic affine plate/slab equations
NASA Technical Reports Server (NTRS)
Brunelle, E. J.
1984-01-01
The global constants associated with orthotropic slab/plate equations are discussed, and the rotational behavior of the modulus/compliance components associated with orthotropic slabs/plates are addressed. It is concluded that one cluster constant is less than or equal to unity for all physically possible materials. Rotationally anomalous behavior is found in two materials, and a simple inequality which can be used to identify regular or anomalous behavior is presented and discussed in detail.
Constants of motion of the four-particle Calogero model
Saghatelian, A.
2012-10-15
We present the explicit expressions of the complete set of constants of motion of four-particle Calogero model with excluded center of mass, i.e. of the A{sub 3} rational Calogero model. Then we find the constants of motion of its spherical part, defining two-dimensional 12-center spherical oscillator, with the force centers located at the vertexes of cuboctahedron.
Elastic constant versus temperature behavior of three hardened maraging steels
NASA Technical Reports Server (NTRS)
Ledbetter, H. M.; Austin, M. W.
1985-01-01
Elastic constants of three maraging steels were determined by measuring ultrasonic velocities. Annealed steels show slightly lower bulk moduli and considerably lower shear moduli than hardened steels. All the elastic constants (Young's modulus, shear modulus, bulk modulus and Poisson's ratio) show regular temperature behavior between 76 and 400 K. Young's modulus and the shear modulus increase with increasing yield strength, but the bulk modulus and Poisson's ratio are relatively unchanged. Elastic anisotropy is quite small.
Effect of a positive cosmological constant on cosmic strings
Bhattacharya, Sourav; Lahiri, Amitabha
2008-09-15
We study cosmic Nielsen-Olesen strings in space-times with a positive cosmological constant. For the free cosmic string in a cylindrically symmetric space-time, we calculate the contribution of the cosmological constant to the angle deficit, and to the bending of null geodesics. For a cosmic string in a Schwarzschild-de Sitter space-time, we use Kruskal patches around the inner and outer horizons to show that a thin string can pierce them.
Constant Entropy Properties for an Approximate Model of Equilibrium Air
NASA Technical Reports Server (NTRS)
Hansen, C. Frederick; Hodge, Marion E.
1961-01-01
Approximate analytic solutions for properties of equilibrium air up to 15,000 K have been programmed for machine computation. Temperature, compressibility, enthalpy, specific heats, and speed of sound are tabulated as constant entropy functions of temperature. The reciprocal of acoustic impedance and its integral with respect to pressure are also given for the purpose of evaluating the Riemann constants for one-dimensional, isentropic flow.
Computational calculation of equilibrium constants: addition to carbonyl compounds.
Gómez-Bombarelli, Rafael; González-Pérez, Marina; Pérez-Prior, María Teresa; Calle, Emilio; Casado, Julio
2009-10-22
Hydration reactions are relevant for understanding many organic mechanisms. Since the experimental determination of hydration and hemiacetalization equilibrium constants is fairly complex, computational calculations now offer a useful alternative to experimental measurements. In this work, carbonyl hydration and hemiacetalization constants were calculated from the free energy differences between compounds in solution, using absolute and relative approaches. The following conclusions can be drawn: (i) The use of a relative approach in the calculation of hydration and hemiacetalization constants allows compensation of systematic errors in the solvation energies. (ii) On average, the methodology proposed here can predict hydration constants within +/- 0.5 log K(hyd) units for aldehydes. (iii) Hydration constants can be calculated for ketones and carboxylic acid derivatives within less than +/- 1.0 log K(hyd), on average, at the CBS-Q level of theory. (iv) The proposed methodology can predict hemiacetal formation constants accurately at the MP2 6-31++G(d,p) level using a common reference. If group references are used, the results obtained using the much cheaper DFT-B3LYP 6-31++G(d,p) level are almost as accurate. (v) In general, the best results are obtained if a common reference for all compounds is used. The use of group references improves the results at the lower levels of theory, but at higher levels, this becomes unnecessary. PMID:19761202
Computational Calculation of Equilibrium Constants: Addition to Carbonyl Compounds
NASA Astrophysics Data System (ADS)
Gómez-Bombarelli, Rafael; González-Pérez, Marina; Pérez-Prior, María Teresa; Calle, Emilio; Casado, Julio
2009-09-01
Hydration reactions are relevant for understanding many organic mechanisms. Since the experimental determination of hydration and hemiacetalization equilibrium constants is fairly complex, computational calculations now offer a useful alternative to experimental measurements. In this work, carbonyl hydration and hemiacetalization constants were calculated from the free energy differences between compounds in solution, using absolute and relative approaches. The following conclusions can be drawn: (i) The use of a relative approach in the calculation of hydration and hemiacetalization constants allows compensation of systematic errors in the solvation energies. (ii) On average, the methodology proposed here can predict hydration constants within ± 0.5 log Khyd units for aldehydes. (iii) Hydration constants can be calculated for ketones and carboxylic acid derivatives within less than ± 1.0 log Khyd, on average, at the CBS-Q level of theory. (iv) The proposed methodology can predict hemiacetal formation constants accurately at the MP2 6-31++G(d,p) level using a common reference. If group references are used, the results obtained using the much cheaper DFT-B3LYP 6-31++G(d,p) level are almost as accurate. (v) In general, the best results are obtained if a common reference for all compounds is used. The use of group references improves the results at the lower levels of theory, but at higher levels, this becomes unnecessary.
PECVD of low-dielectric constant films for ULSI
NASA Astrophysics Data System (ADS)
Shimogaki, Yukihiro
1998-10-01
We studied the reduction mechanism of the dielectric constant of F-doped silicon oxide films prepared by PECVD from SiH_4/N_2O/CF4 mixture. From the estimation of the dielectric constant at various frequencies, ranging from 1MHz to 100THz, using CV measurement, Kramers-Kronig relation and the square of the refractive index, we suggest that the dielectric constant due to ionic and electronic polarization is not the dominant factor in decreasing the dielectric constant. It is important to remove -OH in films to obtain very low dielectric constant F-doped silicon oxide films, because Si-OH is the main factor of the orientational polarization in silicon oxide films made by PECVD. To investigate the reaction mechanism which controls the film structure, we changed the residence time of gas in chamber by varying the flow rate. When the residence time in chamber decreases, the film deposition rate increases. We tried to explain flow rate dependency of the deposition rate using a simple CSTR (continuous stirred tank reactor) model. It can be concluded that there are two paths to deposit the films. One route is a deposition by the precursors with poor step coverage profile, and the other route is deposition through intermediates formed by gas phase reactions that contribute to have better step coverage. The overall gas phase reaction rate constant was estimated from these kinetic studies. Same approach was also carried out on the PECVD of C:F film deposition.
Spectral Sensitivity Measured with Electroretinogram Using a Constant Response Method
Rocha, Fernando Allan de Farias; Gomes, Bruno Duarte; Silveira, Luiz Carlos de Lima; Martins, Sonia Limara; Aguiar, Renata Genaro; de Souza, John Manuel; Ventura, Dora Fix
2016-01-01
A new method is presented to determine the retinal spectral sensitivity function S(λ) using the electroretinogram (ERG). S(λ)s were assessed in three different species of myomorph rodents, Gerbils (Meriones unguiculatus), Wistar rats (Ratus norvegicus), and mice (Mus musculus). The method, called AC Constant Method, is based on a computerized automatic feedback system that adjusts light intensity to maintain a constant-response amplitude to a flickering stimulus throughout the spectrum, as it is scanned from 300 to 700 nm, and back. The results are presented as the reciprocal of the intensity at each wavelength required to maintain a constant peak to peak response amplitude. The resulting S(λ) had two peaks in all three rodent species, corresponding to ultraviolet and M cones, respectively: 359 nm and 511 nm for mice, 362 nm and 493 nm for gerbils, and 362 nm and 502 nm for rats. Results for mouse and gerbil were similar to literature reports of S(λ) functions obtained with other methods, confirming that the ERG associated to the AC Constant-Response Method was effective to obtain reliable S(λ) functions. In addition, due to its fast data collection time, the AC Constant Response Method has the advantage of keeping the eye in a constant light adapted state. PMID:26800521
Dielectric constant of liquid alkanes and hydrocarbon mixtures
NASA Technical Reports Server (NTRS)
Sen, A. D.; Anicich, V. G.; Arakelian, T.
1992-01-01
The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.
How does Planck’s constant influence the macroscopic world?
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng
2016-09-01
In physics, Planck’s constant is a fundamental physical constant accounting for the energy-quantization phenomenon in the microscopic world. The value of Planck’s constant also determines in which length scale the quantum phenomenon will become conspicuous. Some students think that if Planck’s constant were to have a larger value than it has now, the quantum effect would only become observable in a world with a larger size, whereas the macroscopic world might remain almost unchanged. After reasoning from some basic physical principles and theories, we found that doubling Planck’s constant might result in a radical change on the geometric sizes and apparent colors of macroscopic objects, the solar spectrum and luminosity, the climate and gravity on Earth, as well as energy conversion between light and materials such as the efficiency of solar cells and light-emitting diodes. From the discussions in this paper, students can appreciate how Planck’s constant affects various aspects of the world in which we are living now.
Dielectric constant of liquid alkanes and hydrocarbon mixtures.
Sen, A D; Anicich, V G; Arakelian, T
1992-01-01
The complex dielectric constants of n-alkanes with two to seven carbon atoms have been measured. The measurements were conducted using a slotted-line technique at 1.2 GHz and at atmospheric pressure. The temperature was varied from the melting point to the boiling point of the respective alkanes. The real part of the dielectric constant was found to decrease with increasing temperature and correlate with the change in the molar volume. An upper limit to all the loss tangents was established at 0.001. The complex dielectric constants of a few mixtures of liquid alkanes were also measured at room temperature. For a pentane-octane mixture the real part of the dielectric constant could be explained by the Clausius-Mosotti theory. For the mixtures of n-hexane-ethylacetate and n-hexane-acetone the real part of the dielectric constants could be explained by the Onsager theory extended to mixtures. The dielectric constant of the n-hexane-acetone mixture displayed deviations from the Onsager theory at the highest fractions of acetone. The dipole moments of ethylacetate and acetone were determined for dilute mixtures using the Onsager theory and were found to be in agreement with their accepted gas-phase values. The loss tangents of the mixtures exhibited a linear relationship with the volume fraction for low concentrations of the polar liquids.
Is the possible fine-structure constant drift also a test of a time-dependent Planck constant?
NASA Astrophysics Data System (ADS)
Öztas, A. M.; Smith, M. L.
2011-12-01
The recent publication of spatial and distance variation of the fine-structure constant, α, derived from astronomical data of quasar emissions (QE) is exciting. The decreasing value of α over time, derived from data obtained from the Very Large Telescope (VLT) in Chile, encourages the search for other possible running constants. We surmise that emissions from distant supernovae, type Ia (SNe Ia), which are more blue than predictions are best explained by a decreasing Planck constant with increasing lookback time. We present some results from our theoretical work and comparison to the astronomical observations and suggest that both α and h might be running constants. More data are required to answer several questions about the origin of the "drifting" α and the possible time dependence of h. Astronomical tools such as SNe and QE may be the best means to secure the exacting data needed to confirm or deny these hypotheses.
NASA Technical Reports Server (NTRS)
Choi, Sung H.; Salem, J. A.; Nemeth, N. N.
1998-01-01
High-temperature slow-crack-growth behaviour of hot-pressed silicon carbide was determined using both constant-stress-rate ("dynamic fatigue") and constant-stress ("static fatigue") testing in flexure at 1300 C in air. Slow crack growth was found to be a governing mechanism associated with failure of the material. Four estimation methods such as the individual data, the Weibull median, the arithmetic mean and the median deviation methods were used to determine the slow crack growth parameters. The four estimation methods were in good agreement for the constant-stress-rate testing with a small variation in the slow-crack-growth parameter, n, ranging from 28 to 36. By contrast, the variation in n between the four estimation methods was significant in the constant-stress testing with a somewhat wide range of n= 16 to 32.
NASA Astrophysics Data System (ADS)
Dehghani, Zeinab Tafti; Mizoguchi, Asao; Kanamori, Hideto
2014-06-01
S_2Cl_2 is a candidate molecule for the detection of ortho-para transition, because the Cl atoms on the skewed position from the rotational principle axes give large off-diagonal terms in the quadrupole interaction, which can mix ortho and para states. In order to estimate the ortho-para mixing in a hyperfine-resolved rotational state, pure rotational transitions were measured by millimeter-wave spectroscopy using two different experimental set-ups. The transitions from the term value around 20 K was measured with a supersonic jet and those around 200 K were measured with a dry ice cooled gas cell. Hundreds of peaks were assigned for the naturally abundant S235Cl2 and S235Cl37Cl isotopic species, and the rotational molecular constants including the fourth-order and sixth-order centrifugal distortion constants were determined. The hyperfine structures were partly resolved in some Q-branch transitions and those spectral patterns were well reproduced with the hyperfine constants determined by the previous FTMW spectroscopy in the cm-wave region. With the new molecular constants determined in this study and the previous hyperfine constants, it becomes possible to predict a more reliable ortho-para mixing ratio and to narrow down the possible candidate transitions in the mm-wave region for the detection of ortho-para transition. Mizoguchi et al., J. Mol. Spectrosc. 250,86-97(2008)
Quantum chemical topology (QCT) descriptors as substitutes for appropriate Hammett constants.
Smith, P J; Popelier, P L A
2005-09-21
A technique called quantum topological molecular similarity (QTMS) was recently proposed [J. Chem. Inf. Comput. Sci., 2001, 41, 764] in order to construct a variety of medicinal, ecological and physical organic QSAR/QSPRs, based on modern ab initio wave functions of geometry optimised molecules, in combination with quantum chemical topology (QCT). The current abundance of computing power can be utilised to inject realistic descriptors into QSAR/QSPRs. In previous work [J. Chem. Soc., Perkin Trans. 2, 2002, 1231] it was proven that a set of Hammett constants (sigma(p), sigma(m), sigma(I) and sigma(p)0) for a sizeable set of mono- and polysubstituted carboxylic acids can be replaced by QCT bond descriptors. Using QTMS and proper statistical validation we examined seven data sets in total. The first three sets (para-substituted phenols (sigma-), substituted toluenes (sigma+) and bromophenethylamines (sigma+)) corroborate that a wider class of Hammett constants can also be replaced by QCT descriptors. A fourth set (benzyl radicals) focuses on non-Hammett behaviour being superimposed on Hammett behaviour. QCT descriptors selectively correlate with Hammett behaviour. The QTMS analysis of the last three sets (toxicity of benzyl alcohols, chromatographic capacity factors of chalcones and herbicidal activity of 5-chloro-2,3-dicyanopyrazines) screens for false positives. This test is successfully passed in that QCT descriptors fail when lipophilicity/hydrophobicity is in charge. Hence, overall, the discriminatory capacity of QCT descriptors is established, in detecting Hammett behaviour and specifically replacing the Hammett constants by more modern and non-empirical descriptors.
Para-Professionals in Further Education: Changing Roles in Vocational Delivery
ERIC Educational Resources Information Center
Scott, Gill
2005-01-01
Roles and structures within further education colleges seem to be in constant change and development; roles are becoming blurred, and lecturers are taking on more management tasks. Alongside this has been the development of para-professional roles, using non-lecturers to undertake teaching tasks. This can allow for the greater involvement of…
Poluektov, N.S.; Perfil'ev, V.A.; Meshkova, S.B.; Mishchenko, V.T.
1987-01-01
A correlation has been observed between the stabilities of uranyl ion complexes (1:1 composition) and the substituent inductive constants in formic and acetic acid derivatives. For substituents which are not directly involved in couples formation the parameters of the Hammett-Taft equation log K/sub 1/ = A + B have the following values: A = 1.311, B = -2.360. For substituents which form a coordination bond with the uranyl ion, A = 7.0077 and B = - 17.321. In the case of complexes formed between the uranyl ion and salicylic acid and its derivatives, there is a correlation between complex stability and sigma/sub m/ and sigma/sub p/ substituent constants for the meta- and para-positions, respectively (A = 12.72, B = -4.41).
CODATA recommended values of the fundamental physical constants: 2002
NASA Astrophysics Data System (ADS)
Mohr, Peter J.; Taylor, Barry N.
2005-01-01
This paper gives the 2002 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. Further, it describes in detail the adjustment of the values of the subset of constants on which the complete 2002 set of recommended values is based. Two noteworthy additions in the 2002 adjustment are recommended values for the bound-state rms charge radii of the proton and deuteron and tests of the exactness of the Josephson and quantum-Hall-effect relations KJ=2e/h and RK=h/e2 , where KJ and RK are the Josephson and von Klitzing constants, respectively, e is the elementary charge, and h is the Planck constant. The 2002 set replaces the previously recommended 1998 CODATA set. The 2002 adjustment takes into account the data considered in the 1998 adjustment as well as the data that became available between 31 December 1998, the closing date of that adjustment, and 31 December 2002, the closing date of the new adjustment. The differences between the 2002 and 1998 recommended values compared to the uncertainties of the latter are generally not unreasonable. The new CODATA set of recommended values may also be found on the World Wide Web at physics.nist.gov/constants.
Separate Einstein-Eddington Spaces and the Cosmological Constant
NASA Astrophysics Data System (ADS)
Azri, Hemza
2016-07-01
In affine variational principle, a symmetric linear connection is taken as a fundamental field. The metric tensor is generated dynamically, and it appears as a canonically conjugate to the connection. From this picture, Einstein's gravity with a cosmological constant can be obtained by a covariant Legendre transformation of the affine Lagrangian. In this talk, we apply this formalism (first proposed by Kijowski) to product spaces and the cosmological constant problem. From pure affine variational principle, we derive the separate Einstein space described by its Ricci tensor. The derived equations spite into two field equations of motion that describe two maximally symmetric spaces with two non independent cosmological constants. We propose that the invariance of the bi-field equations under projections on the separate spaces, may render one of the cosmological constants to zero. We also formulate the model in the presence of matter fields. The resulted separate Einstein-Eddington spaces maybe considered as two states that describe the universe before and after inflation. A possibly interesting affine action for a general perfect fluid is also proposed. It turns out that the condition which leads to zero cosmological constant in the vacuum case, eliminates here the effects of the gravitational mass density of the perfect fluid, and the dynamic of the universe in its final state is governed by only the inertial mass density of the fluid. We present no new solutions to the problems associated with inflation.
Cosmological constant implementing Mach principle in general relativity
NASA Astrophysics Data System (ADS)
Namavarian, Nadereh; Farhoudi, Mehrdad
2016-10-01
We consider the fact that noticing on the operational meaning of the physical concepts played an impetus role in the appearance of general relativity (GR). Thus, we have paid more attention to the operational definition of the gravitational coupling constant in this theory as a dimensional constant which is gained through an experiment. However, as all available experiments just provide the value of this constant locally, this coupling constant can operationally be meaningful only in a local area. Regarding this point, to obtain an extension of GR for the large scale, we replace it by a conformal invariant model and then, reduce this model to a theory for the cosmological scale via breaking down the conformal symmetry through singling out a specific conformal frame which is characterized by the large scale characteristics of the universe. Finally, we come to the same field equations that historically were proposed by Einstein for the cosmological scale (GR plus the cosmological constant) as the result of his endeavor for making GR consistent with the Mach principle. However, we declare that the obtained field equations in this alternative approach do not carry the problem of the field equations proposed by Einstein for being consistent with Mach's principle (i.e., the existence of de Sitter solution), and can also be considered compatible with this principle in the Sciama view.
Elastic constants of Ultrasonic Additive Manufactured Al 3003-H18.
Foster, D R; Dapino, M J; Babu, S S
2013-01-01
Ultrasonic Additive Manufacturing (UAM), also known as Ultrasonic Consolidation (UC), is a layered manufacturing process in which thin metal foils are ultrasonically bonded to a previously bonded foil substrate to create a net part. Optimization of process variables (amplitude, normal load and velocity) is done to minimize voids along the bonded interfaces. This work pertains to the evaluation of bonds in UAM builds through ultrasonic testing of a build's elastic constants. Results from ultrasonic testing on UAM parts indicate orthotropic material symmetry and a reduction of up to 48% in elastic constant values compared to a control sample. The reduction in elastic constant values is attributed to interfacial voids. In addition, the elastic constants in the plane of the Al foils have nearly the same value, while the constants normal to the foil direction have much different values. In contrast, measurements from builds made with Very High Power Ultrasonic Additive Manufacturing (VHP UAM) show a drastic improvement in elastic properties, approaching values similar to that of bulk aluminum.
Critical experiments analysis by ABBN-90 constant system
Tsiboulia, A.; Nikolaev, M.N.; Golubev, V.
1997-06-01
The ABBN-90 is a new version of the well-known Russian group-constant system ABBN. Included constants were calculated based on files of evaluated nuclear data from the BROND-2, ENDF/B-VI, and JENDL-3 libraries. The ABBN-90 is intended for the calculation of different types of nuclear reactors and radiation shielding. Calculations of criticality safety and reactivity accidents are also provided by using this constant set. Validation of the ABBN-90 set was made by using a computerized bank of evaluated critical experiments. This bank includes the results of experiments conducted in Russia and abroad of compact spherical assemblies with different reflectors, fast critical assemblies, and fuel/water-solution criticalities. This report presents the results of the calculational analysis of the whole collection of critical experiments. All calculations were produced with the ABBN-90 group-constant system. Revealed discrepancies between experimental and calculational results and their possible reasons are discussed. The codes and archives INDECS system is also described. This system includes three computerized banks: LEMEX, which consists of evaluated experiments and their calculational results; LSENS, which consists of sensitivity coefficients; and LUND, which consists of group-constant covariance matrices. The INDECS system permits us to estimate the accuracy of neutronics calculations. A discussion of the reliability of such estimations is finally presented. 16 figs.
Spin-rotation and NMR shielding constants in HCl
Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz
2013-12-21
The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of {sup 1}H{sup 35}Cl are C{sub Cl} = −53.914 kHz and C{sub H} = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.
Spectroscopic Constants of the Known Electronic States of Lead Monofluoride
McRaven, C.P.; Sivakumar, P.; Shafer-Ray, N.E.; Hall, G.E.; Sears, T.J.
2010-08-01
Based on measurements made by mass-resolved 1 + 1{prime} + 1{double_prime} resonance-enhanced multiphoton ionization spectroscopy, we have determined new molecular constants describing the rotational and fine structure levels of the B, D, E, and F states of the most abundant isotopic variant {sup 208}Pb{sup 19}F, and we summarize the spectroscopic constants for all the know electronic states of the radical. Many spectroscopic constants for the isotopologues {sup 206}Pb{sup 19}F and {sup 207}Pb{sup 19}F have also been determined. The symmetry of the D-state is found to be {sup 2}{pi}{sub 1/2}, and the F-state is found to be an {Omega} = 3/2 state.
Optimal plane change during constant altitude hypersonic flight
NASA Technical Reports Server (NTRS)
Mease, K. D.; Vinh, N. X.; Kuo, S. H.
1988-01-01
Future spacecraft operating in the vicinity of the earth may have resort to the atmosphere as an aid in effecting orbital change. While a previous treatment of this technique chose constant altitude, speed, and angle-of-attack values in order to maximize the plane change for a fixed amount of propellant consumption during hypersonic flight, the former two parameters are presently released from the constraint of constancy. The general characteristics of the optimal controls are described on the basis of the domain of maneuverability, and numerical solutions are obtained for several specific cases. Under the condition of constant-altitude flight, it is generally not optimal to fly at constant angle-of-attack.
Correction for instrument time constant in determination of reaction kinetics.
Chilton, Marie; Clark, Jared; Thomas, Nathan; Nicholson, Allen; Hansen, Lee D.; Hansen, Clifford W.; Hansen, Jaron
2010-02-01
Rates of reactions can be expressed as dn/dt = kcf(n) where n is moles of reaction, k is a rate constant, c is a proportionality constant, and f(n) is a function of the properties of the sample. When the instrument time constant, ?, and k are sufficiently comparable that measured rates are significantly affected by instrument response, correction for instrument response must be done to obtain accurate reaction kinetics. Correction for instrument response has previously been done by truncating early data or by use of the Tian equation. Both methods can lead to significant errors. We describe a method for simultaneous determination of ?, k, and c by fitting equations describing the combined instrument response and rate law to rates observed as a function of time. The method was tested with data on the heat rate from acid-catalyzed hydrolysis of sucrose.
Radioligand Binding Assays for Determining Dissociation Constants of Phytohormone Receptors.
Hellmuth, Antje; Calderón Villalobos, Luz Irina A
2016-01-01
In receptor-ligand interactions, dissociation constants provide a key parameter for characterizing binding. Here, we describe filter-based radioligand binding assays at equilibrium, either varying ligand concentrations up to receptor saturation or outcompeting ligand from its receptor with increasing concentrations of ligand analogue. Using the auxin coreceptor system, we illustrate how to use a saturation binding assay to determine the apparent dissociation constant (K D (') ) for the formation of a ternary TIR1-auxin-AUX/IAA complex. Also, we show how to determine the inhibitory constant (K i) for auxin binding by the coreceptor complex via a competition binding assay. These assays can be applied broadly to characterize a one-site binding reaction of a hormone to its receptor. PMID:27424743
Cantilever spring constant calibration using laser Doppler vibrometry.
Ohler, Benjamin
2007-06-01
Uncertainty in cantilever spring constants is a critical issue in atomic force microscopy (AFM) force measurements. Though numerous methods exist for calibrating cantilever spring constants, the accuracy of these methods can be limited by both the physical models themselves as well as uncertainties in their experimental implementation. Here we report the results from two of the most common calibration methods, the thermal tune method and the Sader method. These were implemented on a standard AFM system as well as using laser Doppler vibrometry (LDV). Using LDV eliminates some uncertainties associated with optical lever detection on an AFM. It also offers considerably higher signal to noise deflection measurements. We find that AFM and LDV result in similar uncertainty in the calibrated spring constants, about 5%, using either the thermal tune or Sader methods provided that certain limitations of the methods and instrumentation are observed.
CODATA recommended values of the fundamental physical constants: 2006
Mohr, Peter J.; Taylor, Barry N.; Newell, David B.
2008-09-15
This paper gives the 2006 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. Further, it describes in detail the adjustment of the values of the constants, including the selection of the final set of input data based on the results of least-squares analyses. The 2006 adjustment takes into account the data considered in the 2002 adjustment as well as the data that became available between 31 December 2002, the closing date of that adjustment, and 31 December 2006, the closing date of the new adjustment. The new data have led to a significant reduction in the uncertainties of many recommended values. The 2006 set replaces the previously recommended 2002 CODATA set and may also be found on the World Wide Web at physics.nist.gov/constants.
Local surface elastic constants by resonant-ultrasound microscopy
NASA Astrophysics Data System (ADS)
Tian, Jiayong; Ogi, Hirotsugu; Tada, Toyokazu; Hirao, Masahiko; Ledbetter, Hassel
2004-07-01
We report a method—resonant-ultrasound microscopy—for measuring elastic-constant distribution over a solid's surface. Applying an oscillating electric field to a rectangular-parallelepiped oscillator of langasite (La3Ga5SiO14) crystal by a surrounding solenoid coil, we generated and detected vibrations of the crystal without electrodes and without wires. Acoustic coupling of the specimen to the oscillator is only made at an antinodal vibration point on the crystal's bottom surface. The crystal's resonance-frequency shift reflects elastic constants of the specimen in the contacting area. Point-contact measurement permits sensitive, quantitative evaluation of a material's local elastic constants. As an illustrating example, we measured the elastic-stiffness distribution of a Nb-Ti/Cu resin superconductive wire. We compared our measurements with both static-contact and dynamic-contact models.
Magneto-optic constants of hcp and fcc Co films
Osgood, R.M. III,; Riggs, K.T.; Johnson, A.E.; Mattson, J.E.; Sowers, C.H.; Bader, S.D.
1997-08-01
We tabulate the wavelength dependence of the complex magneto-optic constants for epitaxial fcc (001) and hcp (1{bar 1}00) Co films with the magnetization along two different in-plane crystallographic directions. The magneto-optic constants of epitaxial hcp Co films are strongly dependent on crystallographic direction for the same sample, while those of epitaxial fcc Co films are not, as anticipated from the trends in the magnetic anisotropy due to the spin-orbit interaction. Our results for (i) the anisotropic magneto-optic constants, (ii) the magnetic anisotropy, and (iii) the indices of refraction, are compared to other studies of Co. {copyright} {ital 1997} {ital The American Physical Society}
Acoustoelastic constants in dilute two-phase alloys
NASA Technical Reports Server (NTRS)
Salama, K.; Schneider, E.; Chu, S. L.
1986-01-01
Acoustoelastic constants are calculated for two-phase alloys containing dilute concentrations of precipitates in a solid-solution matrix, on the basis of a model in which the precipitates are represented as a dilute elastic suspension of spherical particle inclusions in an infinite matrix. The longitudinal propagation velocity in the alloy is thereby obtained in terms of the precipitates' concentration and the elastic moduli of the two phases. Results are presented which indicate that the acoustoelastic constant of longitudinal waves in a dilute two-phase alloy varies linearly with the concentration of second-phase precipitates, in agreement with recent measurements in aluminum and steel alloys where the acoustoelastic constants changed linearly with the second phase's volume fraction.
Quantum hyperbolic geometry in loop quantum gravity with cosmological constant
NASA Astrophysics Data System (ADS)
Dupuis, Maïté; Girelli, Florian
2013-06-01
Loop quantum gravity (LQG) is an attempt to describe the quantum gravity regime. Introducing a nonzero cosmological constant Λ in this context has been a standing problem. Other approaches, such as Chern-Simons gravity, suggest that quantum groups can be used to introduce Λ into the game. Not much is known when defining LQG with a quantum group. Tensor operators can be used to construct observables in any type of discrete quantum gauge theory with a classical/quantum gauge group. We illustrate this by constructing explicitly geometric observables for LQG defined with a quantum group and show for the first time that they encode a quantized hyperbolic geometry. This is a novel argument pointing out the usefulness of quantum groups as encoding a nonzero cosmological constant. We conclude by discussing how tensor operators provide the right formalism to unlock the LQG formulation with a nonzero cosmological constant.
Atomic force microscopy spring constant determination in viscous liquids.
Pirzer, Tobias; Hugel, Thorsten
2009-03-01
The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this "thermal noise method" is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities. PMID:19334955
Atomic force microscopy spring constant determination in viscous liquids
Pirzer, Tobias; Hugel, Thorsten
2009-03-15
The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this 'thermal noise method' is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.
Cantilever spring constant calibration using laser Doppler vibrometry
Ohler, Benjamin
2007-06-15
Uncertainty in cantilever spring constants is a critical issue in atomic force microscopy (AFM) force measurements. Though numerous methods exist for calibrating cantilever spring constants, the accuracy of these methods can be limited by both the physical models themselves as well as uncertainties in their experimental implementation. Here we report the results from two of the most common calibration methods, the thermal tune method and the Sader method. These were implemented on a standard AFM system as well as using laser Doppler vibrometry (LDV). Using LDV eliminates some uncertainties associated with optical lever detection on an AFM. It also offers considerably higher signal to noise deflection measurements. We find that AFM and LDV result in similar uncertainty in the calibrated spring constants, about 5%, using either the thermal tune or Sader methods provided that certain limitations of the methods and instrumentation are observed.
Probable detection of climatically significant change of the solar constant
NASA Technical Reports Server (NTRS)
Sofia, S.; Endal, A. S.
1980-01-01
It is suggested that the decrease in the solar radius inferred from solar eclipse observations made from 1715 to 1979 reflects a variation of the solar constant that may be of considerable climatic significance. A general, time-averaged relationship between changes in the solar constant and changes in the solar radius is derived based on a model of the contraction and expansion of the convective zone. A preliminary numerical calculation of radius changes due to changes in the mixing length of the solar envelope is presented which indicates that a decrease in solar radius of 0.5 arcsec, as observed in the last 264 years, would correspond to a decrease of 0.7% in the solar constant, a value of large climatic significance. Limitations of the observational method and the numerical approach are pointed out, and required additional theoretical and observational efforts are indicated.
Effective cosmological constant from TeV-scale physics
Klinkhamer, F. R.
2010-10-15
It has been suggested previously that the observed cosmological constant {Lambda} corresponds to the remnant vacuum energy density of dynamical processes taking place at a cosmic age set by the mass scale M{approx}E{sub ew} of ultramassive particles with electroweak interactions. Here, a simple modification of the nondissipative dynamic equations of q-theory is presented, which produces a remnant vacuum energy density (effective cosmological constant) of the correct order of magnitude. Combined with the observed value of {Lambda}, a first estimate of the required value of the energy scale E{sub ew} ranges from 3 to 9 TeV, depending on the number of species of ultramassive particles and assuming a dissipative coupling constant of order unity. If correct, this estimate implies the existence of new TeV-scale physics beyond the standard model.
Non-minimally coupled varying constants quantum cosmologies
Balcerzak, Adam
2015-04-01
We consider gravity theory with varying speed of light and varying gravitational constant. Both constants are represented by non-minimally coupled scalar fields. We examine the cosmological evolution in the near curvature singularity regime. We find that at the curvature singularity the speed of light goes to infinity while the gravitational constant vanishes. This corresponds to the Newton's Mechanics limit represented by one of the vertex of the Bronshtein-Zelmanov-Okun cube [1,2]. The cosmological evolution includes both the pre-big-bang and post-big-bang phases separated by the curvature singularity. We also investigate the quantum counterpart of the considered theory and find the probability of transition of the universe from the collapsing pre-big-bang phase to the expanding post-big-bang phase.
Assessment of preference for varied versus constant reinforcers.
Bowman, L G; Piazza, C C; Fisher, W W; Hagopian, L P; Kogan, J S
1997-01-01
One method that has been demonstrated to improve the effectiveness of reinforcement is stimulus (reinforcer) variation (Egel, 1980). Egel found that bar pressing increased and responding occurred more rapidly during varied reinforcement than during constant reinforcement when identical stimuli were used across phases for 10 individuals with autism. The purpose of the current investigation was to assess the preferences of 7 individuals for varied presentation of slightly lower quality stimuli relative to constant access to the highest quality stimulus. Varied presentation was preferred over constant reinforcer presentation with 4 participants, and the opposite was true for 2 participants. One participant did not demonstrate a preference. These results suggest that stimulus variation may allow less preferred reinforcers to compete effectively with a more highly preferred reinforcer for some individuals. PMID:9316258
The Fine-Structure Constant and Wavelength Calibration
NASA Astrophysics Data System (ADS)
Whitmore, Jonathan
The fine-structure constant is a fundamental constant of the universe--and widely thought to have an unchanging value. However, the past decade has witnessed a controversy unfold over the claimed detection that the fine-structure constant had a different value in the distant past. These astrophysical measurements were made with spectrographs at the world's largest optical telescopes. The spectrographs make precise measurements of the wavelength spacing of absorption lines in the metals in the gas between the quasar background source and our telescopes on Earth. The wavelength spacing gives a snapshot of the atomic physics at the time of the interaction. Whether the fine-structure constant has changed is determined by comparing the atomic physics in the distant past with the atomic physics of today. We present our contribution to the discussion by analyzing three nights data taken with the HIRES instrument (High Resolution Echelle Spectrograph) on the Keck telescope. We provide an independent measurement on the fine-structure constant from the Damped Lyman alpha system at a redshift of z =2.309 (10.8 billion years ago) quasar PHL957. We developed a new method for calibrating the wavelength scale of a quasar exposure to a much higher precision than previously achieved. In our subsequent analysis, we discovered unexpected wavelength calibration errors that has not been taken into account in the previously reported measurements. After characterizing the wavelength miscalibrations on the Keck-HIRES instrument, we obtained several nights of data from the main competing instrument, the VLT (Very Large Telescope) with UVES (Ultraviolet and Visual Echelle Spectrograph). We applied our new wavelength calibration method and uncovered similar in nature systematic errors as found on Keck-HIRES. Finally, we make a detailed Monte Carlo exploration of the effects that these miscalibrations have on making precision fine-structure constant measurements.
Eye position dependency of nystagmus during constant vestibular stimulation.
Bockisch, Christopher J; Khojasteh, Elham; Straumann, Dominik; Hegemann, Stefan C A
2013-04-01
Alexander's law, the eye position dependency of nystagmus due to peripheral vestibular lesions, has been hypothesized to occur due to adaptive changes in the brainstem velocity-to-position neural integrator in response to non-reciprocal vestibular stimulation. We investigated whether it develops during passive head rotations that produce constant nystagmus for >35 s. The yaw rotation stimulus consisted of a 1-s acceleration (100°/s(2)), followed by a lower acceleration ramp (starting at 7.3°/s(2) and increasing at 0.04°/s(2)/s) until 400°/s was reached after 38 s. This stimulus was designed to offset the ~15 s vestibular ocular reflex time constant (and the 150 s adaptation time constant) and produce constant velocity slow phases. In contrast to peripheral lesions, this vestibular stimulation is the result of real head turns and has the push-pull characteristics of natural movements. The procedure was successful, as the average velocity of 31°/s was unchanged over the final 35 s of the acceleration period. In all 10 healthy human subjects, we found a large and stable Alexander's law, with an average velocity-versus-position slope of -0.366 in the first half that was not significantly different in the second half, -0.347. These slopes correspond to integrator time constants of <3 s, are much less than normal time constants (~25 s), and are similar to those observed in patients with peripheral vestibular lesions. Alexander's law also developed, on average, in 10 s. We conclude that Alexander's law is not simply a consequence of non-reciprocal vestibular stimulation.
Constants of motion in stationary axisymmetric gravitational fields
NASA Astrophysics Data System (ADS)
Markakis, C.
2014-07-01
The motion of test particles in stationary axisymmetric gravitational fields is generally non-integrable unless a non-trivial constant of motion, in addition to energy and angular momentum along the symmetry axis, exists. The Carter constant in Kerr-de Sitter space-time is the only example known to date. Proposed astrophysical tests of the black hole no-hair theorem have often involved integrable gravitational fields more general than the Kerr family, but the existence of such fields has been a matter of debate. To elucidate this problem, we treat its Newtonian analogue by systematically searching for non-trivial constants of motion polynomial in the momenta and obtain two theorems. First, solving a set of quadratic integrability conditions, we establish the existence and uniqueness of the family of stationary axisymmetric potentials admitting a quadratic constant. As in Kerr-de Sitter space-time, the mass moments of this class satisfy a `no-hair' recursion relation M2l +2 = a2M2l, and the constant is Noether related to a second-order Killing-Stäckel tensor. Second, solving a new set of quartic integrability conditions, we establish non-existence of quartic constants. Remarkably, a subset of these conditions is satisfied when the mass moments obey a generalized `no-hair' recursion relation M2l +4 = (a2 + b2)M2l +2 - a2b2M2l. The full set of quartic integrability conditions, however, cannot be satisfied non-trivially by any stationary axisymmetric vacuum potential.
Role of dielectric constant in electrohydrodynamics of conducting fluids
NASA Technical Reports Server (NTRS)
Rhodes, Percy H.; Snyder, Robert S.; Roberts, Glyn O.
1994-01-01
Electrohydrodynamic sample distortion during continuous flow electrophoresis is an experiment to be conducted during the second International Microgravity Laboratory (IML-2) in July 1994. The specific objective of this experiment is the distortion caused by the difference in dielectric constant between the sample and surrounding buffer. Although the role of sample conductivity in electrohydrodynamic has been the subject of both flight and ground experiments, the separate role of dielectric constant, independent of sample conductivity, has not been measured. This paper describes some of the laboratory research and model development that will support the flight experiment on IML-2.
Constant magnetic field influence on a heart beat in rats
Lazetic, B.; Pekaric-Nadj, N.; Kasas-Lazetic, K.
1991-03-11
The authors used uretan narcose to implant constant magnets of 50 mT under the skin of rats in head region. The ECG was registrated in the next 6 hours. From it they found much slower heart beat which culminated in the first 105 minutes. After 6 weeks of continual exposure the heart beat of the exposed rats was still slower then in the controls. It is concluded that a chronical exposition to the constant magnetic field affected rats organisms and no regulatory mechanism could prevent it.
Early universe constraints on time variation of fundamental constants
Landau, Susana J.; Mosquera, Mercedes E.; Scoccola, Claudia G.; Vucetich, Hector
2008-10-15
We study the time variation of fundamental constants in the early Universe. Using data from primordial light nuclei abundances, cosmic microwave background, and the 2dFGRS power spectrum, we put constraints on the time variation of the fine structure constant {alpha} and the Higgs vacuum expectation value
Remote Sensing of Salinity: The Dielectric Constant of Sea Water
NASA Technical Reports Server (NTRS)
LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.
2011-01-01
Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.
Periodic versus constant harvesting of discretely reproducing fish populations.
Yakubu, Abdul-Aziz; Fogarty, Michael J
2009-03-01
We use a single-species discrete-time model to demonstrate changes that introduction of the strong Allee mechanism and periodic exploitations have on compensatory and overcompensatory stock dynamics through comparison with corresponding models that lack such constraints. Periodic and constant exploitations simplify complex overcompensatory stock dynamics with or without the Allee effect. Both constant and periodic exploitations force a sudden collapse to extinction of fisheries systems that exhibit the Allee mechanism. However, in the absence of the Allee effect, fisheries systems decline to zero smoothly under high exploitation.
Effects of Cosmological Constant on Clustering of Galaxies
NASA Astrophysics Data System (ADS)
Hameeda, Mir; Upadhyay, Sudhaker; Faizal, Mir; Ali, Ahmed Farag
2016-09-01
In this paper, we analyse the effect of the expansion of the universe on the clustering of galaxies. We evaluate the configurational integral for interacting system of galaxies in an expanding universe by including effects produced by the cosmological constant. The gravitational partition function is obtained using this configuration integral. Thermodynamic quantities, specifically, Helmholtz free energy, entropy, internal energy, pressure and chemical potential are also derived for this system. It is observed that they depend on the modified clustering parameter for this system of galaxies. It is also demonstrated that these thermodynamical quantities get corrected because of the cosmological constant.
Rate constant for reaction of atomic hydrogen with germane
NASA Technical Reports Server (NTRS)
Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.
1990-01-01
Due to the interest in the chemistry of germane in the atmospheres of Jupiter and Saturn, and because previously reported kinetic reaction rate studies at 298 K gave results differing by a factor of 200, laboratory measurements were performed to determine the reaction rate constant for H + GeH4. Results of the study at 298 K, obtained via the direct technique of flash photolysis-resonance fluorescence, yield the reaction rate constant, k = (4.08 + or - 0.22) x 10(exp -12) cu cm/s.
Microwave dielectric constants of silicon, gallium arsenide, and quartz
Seeger, K.
1988-06-01
For a determination of the dielectric constants epsilon of semiconductors, a microwave transmission interference method has been applied. For the first time, a calculation is presented which yields the full interference spectrum, not only the position of the extremal points. A comparison of the theoretical and experimental spectra results in a higher precision than previously obtained. A metal evaporation of the sample faces which are in contact with the waveguide walls turns out to be very important. Relative dielectric constants of 11.6 for silicon, 12.8 for gallium arsenide, and 4.6 for crystalline quartz, all +- 0.05, have been obtained.
Dielectric constants of soils at microwave frequencies-2
NASA Technical Reports Server (NTRS)
Wang, J.; Schmugge, T.; Williams, D.
1978-01-01
The dielectric constants of several soil samples were measured at frequencies of 5 and 19 GHz using the infinite transmission line method. The results of these measurements are presented and discussed with respect to soil types and texture structures. A comparison is made with other measurements at 1.4 GHz. At all three frequencies, the dependence of dielectric constant on soil moisture can be approximated by two straight lines. At low moisture, the slope is less than at high moisture level. The intersection of the two lines is believed to be a function of soil texture.
Critique of Coleman's Theory of the Vanishing Cosmological Constant
NASA Astrophysics Data System (ADS)
Susskind, Leonard
In these lectures I would like to review some of the criticisms to the Coleman worm-hole theory of the vanishing cosmological constant. In particular, I would like to focus on the most fundamental assumption that the path integral over topologies defines a probability for the cosmological constant which has the form EXP(A) with A being the Baum-Hawking-Coleman saddle point. Coleman argues that the euclideam path integral over all geometries may be dominated by special configurations which consist of large smooth "spheres" connected by any number of narrow wormholes. Formally summing up such configurations gives a very divergent expression for the path integral…
Moving-Gradient Furnace With Constant-Temperature Cold Zone
NASA Technical Reports Server (NTRS)
Gernert, Nelson J.; Shaubach, Robert M.
1993-01-01
Outer heat pipe helps in controlling temperature of cold zone of furnace. Part of heat-pipe furnace that includes cold zone surrounded by another heat pipe equipped with heater at one end and water cooling coil at other end. Temperature of heat pipe maintained at desired constant value by controlling water cooling. Serves as constant-temperature heat source or heat sink, as needed, for gradient of temperature as gradient region moved along furnace. Proposed moving-gradient heat-pipe furnace used in terrestrial or spaceborne experiments on directional solidification in growth of crystals.
Flame Chemiluminescence Rate Constants for Quantitative Microgravity Combustion Diagnostics
NASA Technical Reports Server (NTRS)
Luque, Jorge; Smith, Gregory P.; Jeffries, Jay B.; Crosley, David R.; Weiland, Karen (Technical Monitor)
2001-01-01
Absolute excited state concentrations of OH(A), CH(A), and C2(d) were determined in three low pressure premixed methane-air flames. Two dimensional images of chemiluminescence from these states were recorded by a filtered CCD camera, processed by Abel inversion, and calibrated against Rayleigh scattering, Using a previously validated 1-D flame model with known chemistry and excited state quenching rate constants, rate constants are extracted for the reactions CH + O2 (goes to) OH(A) + CO and C2H + O (goes to) CH(A) + CO at flame temperatures. Variations of flame emission intensities with stoichiometry agree well with model predictions.
Determination of Optical Constants of Latex in Concentrated Suspensions
NASA Astrophysics Data System (ADS)
Khaĭrullina, A. Ya.; Oleĭnik, T. V.; Buĭ, L. M.
2000-11-01
The possibility of taking into account concentration effects in the determination of optical constants of latex in the visible and near IR regions of the spectrum is demonstrated, and the limits of applicability of the methods proposed for this purpose are determined. The limiting concentration of particles in suspensions for which these effects should be taken into account depend on the particle size. Using latex as an example, ways of increasing the accuracy of reconstruction of optical constants of weakly absorbing particles of micron and submicron size are shown. Similar concentration effects can take place in the study of blood substituents, proteins, and other weakly absorbing particles in weakly absorbing media.
Cosmological Constant as a Manifestation of the Hierarchy
Chen, Pisin; Gu, Je-An
2007-12-21
There has been the suggestion that the cosmological constant as implied by the dark energy is related to the well-known hierarchy between the Planck scale, M{sub PI}, and the Standard Model scale, M{sub SM}. Here we further propose that the same framework that addresses this hierarchy problem must also address the smallness problem of the cosmological constant. Specifically, we investigate the minimal supersymmetric (SUSY) extension of the Randall-Sundrum model where SUSY-breaking is induced on the TeV brane and transmitted into the bulk. We show that the Casimir energy density of the system indeed conforms with the observed dark energy scale.
Differential Mobility Spectrometry: Preliminary Findings on Determination of Fundamental Constants
NASA Technical Reports Server (NTRS)
Limero, Thomas; Cheng, Patti; Boyd, John
2007-01-01
The electron capture detector (ECD) has been used for 40+ years (1) to derive fundamental constants such as a compound's electron affinity. Given this historical perspective, it is not surprising that differential mobility spectrometry (DMS) might be used in a like manner. This paper will present data from a gas chromatography (GC)-DMS instrument that illustrates the potential capability of this device to derive fundamental constants for electron-capturing compounds. Potential energy curves will be used to provide possible explanation of the data.
Constant mean curvature slicings of Kantowski-Sachs spacetimes
Heinzle, J. Mark
2011-04-15
We investigate existence, uniqueness, and the asymptotic properties of constant mean curvature (CMC) slicings in vacuum Kantowski-Sachs spacetimes with positive cosmological constant. Since these spacetimes violate the strong energy condition, most of the general theorems on CMC slicings do not apply. Although there are in fact Kantowski-Sachs spacetimes with a unique CMC foliation or CMC time function, we prove that there also exist Kantowski-Sachs spacetimes with an arbitrary number of (families of) CMC slicings. The properties of these slicings are analyzed in some detail.
Fractional crystallization of iron meteorites: Constant versus changing partition coefficients
NASA Technical Reports Server (NTRS)
Jones, J. H.
1994-01-01
Analyses of magmatic iron meteorites, plotted on LogC(sub i) vs LogC(sub Ni) diagrams, often form linear arrays. Traditionally, this linearity has been ascribed to fractional crystallization under the assumption of constant partition coefficients (i.e., Rayleigh fractionation). Paradoxically, however, partition coefficients in the Fe-Ni-S-P system are decidedly not constant. This contribution provides a rationale for understanding how trends on LogC(sub i) vs LogC(sub Ni) diagrams can be linear, even when partition coefficients are changing rapidly.
Evolving extrinsic curvature and the cosmological constant problem
NASA Astrophysics Data System (ADS)
Capistrano, Abraão J. S.; Cabral, Luis A.
2016-10-01
The concept of smooth deformation of Riemannian manifolds associated with the extrinsic curvature is explained and applied to the Friedmann-Lemaître-Robertson-Walker cosmology. We show that such deformation can be derived from the Einstein-Hilbert-like dynamical principle may produce an observable effect in the sense of Noether. As a result, we show how the extrinsic curvature compensates both quantitative and qualitative differences between the cosmological constant Λ and the vacuum energy {ρ }{vac} obtaining the observed upper bound for the cosmological constant problem at electroweak scale. The topological characteristics of the extrinsic curvature are discussed showing that the produced extrinsic scalar curvature is an evolving dynamical quantity.
Functionalised graphene sheets as effective high dielectric constant fillers
2011-01-01
A new functionalised graphene sheet (FGS) filled poly(dimethyl)siloxane insulator nanocomposite has been developed with high dielectric constant, making it well suited for applications in flexible electronics. The dielectric permittivity increased tenfold at 10 Hz and 2 wt.% FGS, while preserving low dielectric losses and good mechanical properties. The presence of functional groups on the graphene sheet surface improved the compatibility nanofiller/polymer at the interface, reducing the polarisation process. This study demonstrates that functionalised graphene sheets are ideal nanofillers for the development of new polymer composites with high dielectric constant values. PACS: 78.20.Ci, 72.80.Tm, 62.23.Kn PMID:21867505
High temperature VSCF (Variable Speed Constant Frequency) generator system
NASA Astrophysics Data System (ADS)
Maphet, Thomas Allen; McCabria, Jack Lee; Kouba, Carroll Charles; Mitchell, James Thomas; Kwiecinski, James Robert
1989-04-01
The high temperature VSCF generator program was designed to develop a generating system capable of withstanding constantly high oil-in temperatures of 200 C in an ambient environment of 200 C. This is a requirement due to anticipated new fighter aircraft designs that will not be capable of cooling the oil to 100 C as in today's designs due to size restrictions of the heat exchanger and/or extended operation of the aircraft at supersonic speeds. The generator uses composite material to withstand the constant use of 200 C inlet oil.
Ab initio calculation of the NMR shielding constants for histamine
NASA Astrophysics Data System (ADS)
Mazurek, A. P.; Dobrowolski, J. Cz.; Sadlej, J.
1997-12-01
The gage-independent atomic orbital (GIAO) approach is used within the coupled Hartree-Fock approximation to compute the 1H, 13C and 15N NMR shielding constants in two tautomeric forms of both the histamine molecule and its protonated form. An analysis of the results shows that the protonation on the end of the chain changes its nitrogen shielding constants of the pyridine and pyrrole type. These changes are much higher for the N(3)-H than for the N(1)-H tautomer.
Low power, constant-flow air pump systems
Polito, M.D.; Albert, B.
1994-01-01
A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.
Testing Theories That Predict Time Variation of Fundamental Constants
NASA Astrophysics Data System (ADS)
Landau, Susana J.; Vucetich, Hector
2002-05-01
We consider astronomical and local bounds on the time variation of fundamental constants to test some generic Kaluza-Klein-like models and some particular cases of Beckenstein theory. Bounds on the free parameters of the different theories are obtained. Furthermore, we find that none of the proposed models is able to explain recent results (as from Webb and coworkers in 1999 and 2001) claiming an observed variation of the fine-structure constant from quasar absorption systems at redshifts 0.5
Tsai, Su-Jung Candace; Huang, Rong Fung; Ellenbecker, Michael J
2010-01-01
Tsai et al. (Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods. J Nanopart Res 2009; 11: 147-61) found that the handling of dry nanoalumina and nanosilver inside laboratory fume hoods can cause a significant release of airborne nanoparticles from the hood. Hood design affects the magnitude of release. With traditionally designed fume hoods, the airflow moves horizontally toward the hood cupboard; the turbulent airflow formed in the worker wake region interacts with the vortex in the constant-flow fume hood and this can cause nanoparticles to be carried out with the circulating airflow. Airborne particle concentrations were measured for three hood designs (constant-flow, constant-velocity, and air-curtain hoods) using manual handling of nanoalumina particles. The hood operator's airborne nanoparticle breathing zone exposure was measured over the size range from 5 nm to 20 mum. Experiments showed that the exposure magnitude for a constant-flow hood had high variability. The results for the constant-velocity hood varied by operating conditions, but were usually very low. The performance of the air-curtain hood, a new design with significantly different airflow pattern from traditional hoods, was consistent under all operating conditions and release was barely detected. Fog tests showed more intense turbulent airflow in traditional hoods and that the downward airflow from the double-layered sash to the suction slot of the air-curtain hood did not cause turbulence seen in other hoods. PMID:19933309
NASA Astrophysics Data System (ADS)
Sarma, Garimella R.; Comte-Bellot, Genevieve; Faure, Thierry M.
1998-09-01
Software compensation correction for thermal lag of a hot wire in the application of a constant voltage anemometer (CVA) for turbulence measurements in the boundary layer of a supersonic wind tunnel has been demonstrated. The CVA was used with a fixed compensation setting while measuring the in situ thermal lag (time constant) of the hot wire. Using the measured time constant, corrections are applied to the fixed compensation output of the CVA in postprocessing of the data. To demonstrate the flexibility of the approach it was used for two compensation settings at a test point to obtain the same results from both settings. A unique advantage of this approach is shown to be that for a given compensation setting in the CVA the bandwidth of the measurements for the test remains constant for all of the different test conditions and yields higher productivity. The results of the turbulence levels measured with this method agree with earlier research using other anemometers. Spectral plots of the mass flux and temperature and the measured in situ time constant responses under different conditions of the hot wire have been presented.
Dark Energy and the Cosmological Constant: A Brief Introduction
ERIC Educational Resources Information Center
Harvey, Alex
2009-01-01
The recently observed acceleration of the expansion of the universe is a topic of intense interest. The favoured causes are the "cosmological constant" or "dark energy". The former, which appears in the Einstein equations as the term [lambda]g[subscript [mu]v], provides an extremely simple, well-defined mechanism for the acceleration. However,…
A damped pendulum forced with a constant torque
NASA Astrophysics Data System (ADS)
Coullet, P.; Gilli, J. M.; Monticelli, M.; Vandenberghe, N.
2005-12-01
The dynamics of a damped pendulum driven by a constant torque is studied experimentally and theoretically. We use this simple device to demonstrate some generic dynamical behavior including the loss of equilibrium or saddle node bifurcation with or without hysteresis and the homoclinic bifurcation. A qualitative analysis is developed to emphasize the role of two dimensionless parameters corresponding to damping and forcing.
Exploring Calcium Oxalate Crystallization: A Constant Composition Approach
Kolbach-Mandel, Ann M.; Kleinman, Jack G.; Wesson, Jeffrey A.
2015-01-01
Crystal growth rates have been extensively studied in calcium oxalate monohydrate (COM) crystallization, because COM crystals are the principal component in most kidney stones. Constant composition methods are useful for studying growth rates, but fail to differentiate concurrent nucleation and aggregation events. A constant composition method coupled with particle size determinations that addresses this deficiency was previously published for a calcium phosphate system, and this method was extended to COM crystallization in this report. A seeded constant composition experiment was combined with particle size determination and a separate near-equilibrium aggregation experiment to separate effects of growth rate, nucleation, and aggregation in COM crystal formation and to test the effects of various inhibitors relevant to stone formation. With no inhibitors present, apparent COM growth rates were heavily influenced by secondary nucleation at low seed crystal additions, but growth-related aggregation increased at higher seed crystal densities. Among small molecule inhibitors, citrate demonstrated growth rate inhibition but enhanced growth-related aggregation, while magnesium did not affect COM crystallization. Polyanions (polyaspartate, polyglutamate, or osteopontin) showed strong growth rate inhibition, but large differences in nucleation and aggregation were observed. Polycations (polyarginine) did not affect COM crystal growth or aggregation. Mixtures of polyanions and polycations produced a complicated set of growth rate, nucleation, and aggregation behaviors. These experiments demonstrated the power of combining particle size determinations with constant composition experiments to fully characterize COM crystallization and to obtain detailed knowledge of inhibitor properties that will be critical to understanding kidney stone formation. PMID:26016572
The Constant Comparative Analysis Method Outside of Grounded Theory
ERIC Educational Resources Information Center
Fram, Sheila M.
2013-01-01
This commentary addresses the gap in the literature regarding discussion of the legitimate use of Constant Comparative Analysis Method (CCA) outside of Grounded Theory. The purpose is to show the strength of using CCA to maintain the emic perspective and how theoretical frameworks can maintain the etic perspective throughout the analysis. My…
Constant temperature hot wire anemometry data reduction procedure
NASA Technical Reports Server (NTRS)
Klopfer, G. H.
1974-01-01
The theory and data reduction procedure for constant temperature hot wire anemometry are presented. The procedure is valid for all Mach and Prandtl numbers, but limited to Reynolds numbers based on wire diameter between 0.1 and 300. The fluids are limited to gases which approximate ideal gas behavior. Losses due to radiation, free convection and conduction are included.
Measurements of the gravitational constant - why we need new ideas
NASA Astrophysics Data System (ADS)
Schlamminger, Stephan
2016-03-01
In this presentation, I will summarize measurements of the Newtonian constant of gravitation, big G, that have been carried out in the last 30 years. I will describe key techniques that were used by researchers around the world to determine G. Unfortunately, the data set is inconsistent with itself under the assumption that the gravitational constant does not vary in space or time, an assumption that has been tested by other experiments. Currently, several research groups have reported measurements with relative uncertainties below 2 ×10-5 , however, the relative difference between the smallest and largest reported number exceeds 5 ×10-4 . It is embarrassing that after over 200 years of measuring the gravitational constant, we do not have a better understanding of the numerical value of this constant. Clearly, we need new ideas to tackle this problem and now is the time to come forward with new ideas. The National Science Foundation is currently soliciting proposals for an Ideas Lab on measuring big G. In the second part of the presentation, I will introduce the Ideas Lab on big G and I am hoping to motivate the audience to think about new ideas to measure G and encourage them to apply to participate in the Ideas Lab.
Using an air thermometer to estimate the gas constant
NASA Astrophysics Data System (ADS)
Kinchin, John
2015-03-01
The air thermometer, widely used in physics laboratories to show the relationship between volume and temperature, can also be used to obtain values for the gas constant and hence Avogadro’s number. Using a very low cost, home-made air thermometer can give surprisingly good results in a very short period of time.
Hydrolysis and formation constants at 25/sup 0/C
Phillips, S.L.
1982-05-01
A database consisting of hydrolysis and formation constants for about 20 metals associated with the disposal of nuclear waste is given. Complexing ligands for the various ionic species of these metals include OH, F, Cl, SO/sub 4/, PO/sub 4/ and CO/sub 3/. Table 1 consists of tabulated calculated and experimental values of log K/sub xy/, mainly at 25/sup 0/C and various ionic strengths together with references to the origin of the data. Table 2 consists of a column of recommended stability constants at 25/sup 0/C and zero ionic strength tabulated in the column headed log K/sub xy/(0); other columns contain coefficients for an extended Debye-Huckel equation to permit calculations of stability constants up to 3 ionic strength, and up to 0.7 ionic strength using the Davies equation. Selected stability constants calculated with these coefficients for various ionic strengths agree to an average of +- 2% when compared with published experimental and calculated values.
Temperature and moisture dependence of dielectric constant for silica aerogels
Hrubesh, L.H., LLNL
1997-03-01
The dielectric constants of silica aerogels are among the lowest measured for any solid material. The silica aerogels also exhibit low thermal expansion and are thermally stable to temperatures exceeding 500{degrees}C. However, due to the open porosity and large surface areas for aerogels, their dielectric constants are strongly affected by moisture and temperature. This paper presents data for the dielectric constants of silica aerogels as a function of moisture content at 25{degrees}C, and as a function of temperature, for temperatures in the range from 25{degrees}C to 450{degrees}C. Dielectric constant data are also given for silica aerogels that are heat treated in dry nitrogen at 500{degrees}C, then cooled to 25{degrees}C for measurements in dry air. All measurements are made on bulk aerogel spheres at 22GHz microwave frequency, using a cavity perturbation method. The results of the dependence found here for bulk materials can be inferred to apply also to thin films of silica aerogels having similar nano-structures and densities.
Why Batteries Deliver a Fairly Constant Voltage until Dead
ERIC Educational Resources Information Center
Smith, Garon C.; Hossain, Md. Mainul; MacCarthy, Patrick
2012-01-01
Two characteristics of batteries, their delivery of nearly constant voltage and their rapid failure, are explained through a visual examination of the Nernst equation. Two Galvanic cells are described in detail: (1) a wet cell involving iron and copper salts and (2) a mercury oxide dry cell. A complete description of the wet cell requires a…
Determination of Acidity Constants by Gradient Flow-Injection Titration
ERIC Educational Resources Information Center
Conceicao, Antonio C. L.; Minas da Piedade, Manuel E.
2006-01-01
A three-hour laboratory experiment, designed for an advanced undergraduate course in instrumental analysis that illustrates the application of the gradient chamber flow-injection titration (GCFIT) method with spectrophotometric detection to determine acidity constants is presented. The procedure involves the use of an acid-base indicator to obtain…
Measurement of. cap alpha. /sub s/. [Strong fine structure constant
Clavelli, L.
1983-01-01
We point out that a number of QCD tests, relatively free of obvious nonperturbative corrections and other theoretical problems, are now available in e/sup +/e/sup -/ annihilation. By focusing on these tests, one can see the beginning of a confirmation of the running of the strong-coupling constant predicted by the renormalization group.
The vanishing of the cosmological constant from four-forms
NASA Astrophysics Data System (ADS)
Duncan, M. J.
1990-08-01
Wormholes are not the only objects which can be used by the Baum-Hawking mechanism to neutralize the cosmological constant. A theory containing a four-form can also do the trick. There has been some considerable confusion about the dynamics of four-forms and in this report I provide a resolution to the problems.
Prediction of Rate Constants for Catalytic Reactions with Chemical Accuracy.
Catlow, C Richard A
2016-08-01
Ex machina: A computational method for predicting rate constants for reactions within microporous zeolite catalysts with chemical accuracy has recently been reported. A key feature of this method is a stepwise QM/MM approach that allows accuracy to be achieved while using realistic models with accessible computer resources.
A simple determination of Hubble’s constant
NASA Astrophysics Data System (ADS)
Benedetto, E.; Feoli, A.; Principe, S.
2016-03-01
The aim of this paper is to make a determination of Hubble’s constant from the experimental data on the magnitude and redshift of supernovae. We proposed a very simple approach that could also be very useful from a didactic point of view.
Distillation device supplies cesium vapor at constant pressure
NASA Technical Reports Server (NTRS)
Basiulis, A.; Shefsiek, P. K.
1968-01-01
Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.
Measuring the Gas Constant "R": Propagation of Uncertainty and Statistics
ERIC Educational Resources Information Center
Olsen, Robert J.; Sattar, Simeen
2013-01-01
Determining the gas constant "R" by measuring the properties of hydrogen gas collected in a gas buret is well suited for comparing two approaches to uncertainty analysis using a single data set. The brevity of the experiment permits multiple determinations, allowing for statistical evaluation of the standard uncertainty u[subscript…
Alpha-plutonium's low-temperature elastic constants
NASA Astrophysics Data System (ADS)
Betts, J. B.; Migliori, A.; Ledbetter, H.; Dooley, D.; Miller, D. A.
2006-03-01
Using resonant-ultrasound spectroscopy, we measured alpha-plutonium's polycrystal elastic constants between 18 and 344 K. All elastic constants -- bulk, shear, extension, longitudinal moduli and Poisson ratio -- behave smoothly during cooling, indicating no significant phase transition: electronic, magnetic, or structural. Both principal elastic constants (bulk and shear) increase about 30% upon cooling from 300 to 0 K, a large change among metals, which we attribute to 5f-electron delocalization. From the low-temperature elastic constants, we computed that the Debye temperature equals 205 K, exceeding significantly most previous estimates. From the bulk-modulus/temperature slope dB/dT, we computed that the Gruneisen parameter equals 5.1, intermediate among previous estimates using other approaches. Alpha-plutonium shows an unusually high shear-modulus/bulk-modulus ratio G/B, thus a low Poisson ratio: 0.18. Within 0.5%, the Poisson ratio shows temperature invariance; its small negative slope being opposite expectation. Again, we attribute this exceptional behavior to 5f-electron localization.
Elastic constants of monocrystal iron from 3 to 500 K
NASA Astrophysics Data System (ADS)
Adams, J. J.; Agosta, D. S.; Leisure, R. G.; Ledbetter, H.
2006-12-01
Resonant ultrasound spectroscopy was used to measure the monocrystal elastic constants of iron over a temperature range of 3-500K. All the moduli behave normally as a function of temperature and are well described by the semiempirical Einstein-oscillator model. Values at 300K are bulk modulus=166.2±0.9GPa; shear constant C'=(C11-C12)/2=48.15±0.9GPa; shear constant C44=115.87±0.17GPa. The Poisson ratio (ν100) is 0.3679±0.0005. Representation surfaces of Young's and torsion moduli are presented. The Debye temperature (θD) is 476.3K as calculated from 3K measured elastic constants. A thermodynamic Grüneisen parameter γth=1.65 is calculated. The temperature dependence of the internal friction associated with C' is very different from that associated with C44. Possible reasons for this difference are suggested.
Small field axion inflation with sub-Planckian decay constant
NASA Astrophysics Data System (ADS)
Kadota, Kenji; Kobayashi, Tatsuo; Oikawa, Akane; Omoto, Naoya; Otsuka, Hajime; Tatsuishi, Takuya H.
2016-10-01
We study an axion inflation model recently proposed within the framework of type IIB superstring theory, where we pay a particular attention to a sub-Planckian axion decay constant. Our axion potential can lead to the small field inflation with a small tensor-to-scalar ratio, and a typical reheating temperature can be as low as GeV.
he Ion-Product Constant of Water to 350°
Fisher, J.R.; Barnes, H.L.
1972-01-01
The ion-activity product of water, KW0, has been determined to 350?? along the liquid-vapor curve from conductance measurements made between 100 and 350?? on aqueous solutions in the system acetic acid-ammonium acetate-ammonia. Derivation of KW0 requires data on the limiting equivalent conductivities of acetic acid, ammonia, and ammonium acetate, the ionization constants of acetic acid and ammonia, and of the conductivities of pairs of these solutes at a series of concentrations. The limiting equivalent conductivities were indirectly obtained from literature data on the limiting equivalent conductivities of HCl, NaCl, NaOH, NH4Cl, and NaOAc. The ionization constants of acetic acid were obtained from our conductance measurements combined with literature data; constants for ammonia were obtained from the literature. From our conductivities, values of KW0 were obtained between 100 and 350??; these were combined with well established literature values and the combined set analytically smoothed to provide a consistent set of molal constants from 25 to 350??; respective pK's at 150, 250, and 350?? are: for H2O, 11.64, 11.05, and 11.42; for HOAc, 5.22, 5.95, and 7.68; and for NH4OH, 5.11, 5.91, and 7.30.
A Reciprocal Transformation for the Constant Astigmatism Equation
NASA Astrophysics Data System (ADS)
Hlaváč, Adam; Marvan, Michal
2014-08-01
We introduce a nonlocal transformation to generate exact solutions of the constant astigmatism equation z_{yy} + (1/z)_{xx} + 2 = 0. The transformation is related to the special case of the famous Bäcklund transformation of the sine-Gordon equation with the Bäcklund parameter λ = ±1. It is also a nonlocal symmetry.
Scrutinizing the cosmological constant problem and a possible resolution
NASA Astrophysics Data System (ADS)
Bernard, Denis; LeClair, André
2013-03-01
We suggest a new perspective on the cosmological constant problem by scrutinizing its standard formulation. In classical and quantum mechanics without gravity, there is no definition of the zero point of energy. Furthermore, the Casimir effect only measures how the vacuum energy changes as one varies a geometric modulus. This leads us to propose that the physical vacuum energy in a Friedmann-Lemaître-Robertson-Walker expanding universe only depends on the time variation of the scale factor a(t). Equivalently, requiring that empty Minkowski space is gravitationally stable is a principle that fixes the ambiguity in the zero-point energy. On the other hand, if there is a meaningful bare cosmological constant, this prescription should be viewed as a fine-tuning. We describe two different choices of vacuum, one of which is consistent with the current universe consisting only of matter and vacuum energy. The resulting vacuum energy density ρvac is constant in time and approximately kc2H02, where kc is a momentum cutoff and H0 is the current Hubble constant; for a cutoff close to the Planck scale, values of ρvac in agreement with astrophysical measurements are obtained. Another choice of vacuum is more relevant to the early universe consisting of only radiation and vacuum energy, and we suggest it as a possible model of inflation.
Computer Calculation of First-Order Rate Constants
ERIC Educational Resources Information Center
Williams, Robert C.; Taylor, James W.
1970-01-01
Discusses the computer program used to calculate first-order rate constants. Discussion includes data preparation, weighting options, comparison techniques, infinity point adjustment, least-square fit, Guggenheim calculation, and printed outputs. Exemplifies the utility of the computer program by two experiments: (1) the thermal decomposition of…
Galvanic Cells and the Determination of Equilibrium Constants
ERIC Educational Resources Information Center
Brosmer, Jonathan L.; Peters, Dennis G.
2012-01-01
Readily assembled mini-galvanic cells can be employed to compare their observed voltages with those predicted from the Nernst equation and to determine solubility products for silver halides and overall formation constants for metal-ammonia complexes. Results obtained by students in both an honors-level first-year course in general chemistry and…
Let's Measure the Dielectric Constant of a Piece of Paper!
ERIC Educational Resources Information Center
Karlow, Edwin A.
1991-01-01
Described is a simple circuit with which students can observe the effect of common dielectric materials in a capacitor and measure the dielectric constant of a piece of paper. Discussed are the theory, apparatus construction, and experimental procedures for this activity. (CW)
Signal conditioning circuit apparatus. [with constant input impedance
NASA Technical Reports Server (NTRS)
Holland, V. B. (Inventor)
1975-01-01
A signal conditioning circuit is described including operational amplifier, a variable source of offset potential, and four resistive impedance. The circuit has constant input impedance independent of gain and offset adjustments. Gain change is effected by varying one of the impedances in an amplifier feedback circuit; offset adjustment is effected through variation of the offset potential source.
Free volume model for dielectric constant of polymer films
NASA Astrophysics Data System (ADS)
Eftekhari, Abe; Clair, Anne St.; Stockly, Diane M.; Sprinkle, Danny R.; Singh, Jag J.
1994-06-01
A slow positron flux generator reported in another paper at this conference was used to measure positron lifetime in a series of especially developed fluorine containing thin polyimide films. The positron lifetime spectra was analyzed into 2-components using a standard least square routine. No evidence for positronium formation was observed in any of test films studied. The trapped positron lifetimes were used to calculate the radii of the shallow trap sites. Equating the total volume occupied by the traps with the saturation of the shallow trap sites. Equating the total volume occupied by the traps with the saturation moisture content of Kapton (reference) films, free volume fractions (f) were calculated in all the samples. These free volume fractions affect the dielectric constants (ɛ) of the test films as follows: 1/ɛ= (1-f)/ɛR+f(1-d)/ɛAir+fd/ɛWater Where, ɛR is the dielectric constant of the trap-free medium, ɛAir is the dielectric constant of air, ɛWater is the dielectric constant of water, and d is the moisture uptake inhibition factor. Several examples illustrating the applicability of this model to various types of polymers will be presented.
From Lobatto Quadrature to the Euler Constant "e"
ERIC Educational Resources Information Center
Khattri, Sanjay Kumar
2010-01-01
Based on the Lobatto quadrature, we develop several new closed form approximations to the mathematical constant "e." For validating effectiveness of our approximations, a comparison of our results to the existing approximations is also presented. Another objective of our work is to inspire students to formulate other better approximations by using…
Elastic constants in orthorhombic hen egg-white lysozyme crystals.
Kitajima, N; Tsukashima, S; Fujii, D; Tachibana, M; Koizumi, H; Wako, K; Kojima, K
2014-01-01
The ultrasonic sound velocities of cross-linked orthorhombic hen egg-white lysozyme (HEWL) crystals, including a large amount of water in the crystal, were measured using an ultrasonic pulse-echo method. As a result, seven elastic constants of orthorhombic crystals were observed to be C11 = 5.24 GPa, C22 = 4.87 GPa, C12 = 4.02 GPa, C33 = 5.23 GPa, C44 = 0.30 GPa, C55 = 0.40 GPa, and C66 = 0.43 GPa, respectively. However, C13 and C23 could not be observed because the suitable crystal planes could not be cut from bulk crystals. We conclude that the observed elastic constants of the cross-linked crystals are coincident with those of the intrinsic crystals without cross-linking. Moreover, the characteristics of the elastic constants in orthorhombic HEWL crystals are due to the fact that the shear elastic constants, C44, C55, and C66, are softer than in tetragonal crystals. That is, the shear components, C44, C55, and C66, are one half of those of the tetragonal crystals.
Oxygen uptake in maximal effort constant rate and interval running.
Pratt, Daniel; O'Brien, Brendan J; Clark, Bradley
2013-01-01
This study investigated differences in average VO2 of maximal effort interval running to maximal effort constant rate running at lactate threshold matched for time. The average VO2 and distance covered of 10 recreational male runners (VO2max: 4158 ± 390 mL · min(-1)) were compared between a maximal effort constant-rate run at lactate threshold (CRLT), a maximal effort interval run (INT) consisting of 2 min at VO2max speed with 2 minutes at 50% of VO2 repeated 5 times, and a run at the average speed sustained during the interval run (CR submax). Data are presented as mean and 95% confidence intervals. The average VO2 for INT, 3451 (3269-3633) mL · min(-1), 83% VO2max, was not significantly different to CRLT, 3464 (3285-3643) mL · min(-1), 84% VO2max, but both were significantly higher than CR sub-max, 3464 (3285-3643) mL · min(-1), 76% VO2max. The distance covered was significantly greater in CLRT, 4431 (4202-3731) metres, compared to INT and CR sub-max, 4070 (3831-4309) metres. The novel finding was that a 20-minute maximal effort constant rate run uses similar amounts of oxygen as a 20-minute maximal effort interval run despite the greater distance covered in the maximal effort constant-rate run. PMID:24288501
Scattering in an external electric field asymptotically constant in time
Adachi, Tadayoshi; Ishida, Atsuhide
2011-06-15
We show the asymptotic completeness for two-body quantum systems in an external electric field asymptotically non-zero constant in time. One of the main ingredients of this paper is to give some propagation estimates for physical propagators generated by time-dependent Hamiltonians which govern the systems under consideration.
Dielectric-constant-enhanced hall mobility in complex oxides.
Siemons, Wolter; McGuire, Michael A; Cooper, Valentino R; Biegalski, Michael D; Ivanov, Ilia N; Jellison, Gerald E; Boatner, Lynn A; Sales, Brian C; Christen, Hans M
2012-08-01
The high dielectric constant of doped ferroelectric KTa(1-x)Nb(x)O(3) is shown to increase dielectric screening of electron scatterers, and thus to enhance the electronic mobility, overcoming one of the key limitations in the application of functional oxides. These observations are based on transport and optical measurements as well as band structure calculations.
THE NON-CONSTANT CTOD/CTOA IN CRACK PROPAGATION
LAM, POH-SANG
2004-07-19
Unlike the common belief that crack propagation behavior can be predicted successfully by employing fracture criteria based on a constant crack tip opening displacement or angle (CTOD/CTOA), this paper shows that the initially non-constant portion of the CTOD/CTOA plays an essential role in predicting the fracture load for a growing crack. Three- and two-dimensional finite element analyses indicate that a severe underestimate of the experimental load vs. crack extension curve would occur if a constant CTOD/CTOA criterion is used. However, the use of a simplified, bilinear CTOD/CTOA criterion including its non-constant portion will closely duplicate the test data. Furthermore, as a result of using the experimental data from J-integral test with various crack length to specimen width ratios (a/W), it is demonstrated that the CTOD/CTOA is crack tip constraint dependent. The initially higher values of the CTOD/CTOA are in fact a natural consequence of crack growth process which is refl ected by the J-resistance curve and its slope (tearing modulus).
Time optimal paths for a constant speed unicycle
Reister, D.B.
1991-01-01
This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed unicycle. The time optimal paths consist of sequences of arcs of circles and straight lines. The maximum principle introduced concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature of the time optimal paths. 10 refs., 6 figs.
Tuning sum rules with window functions for optical constant evaluation
NASA Astrophysics Data System (ADS)
Rodríguez-de Marcos, Luis V.; Méndez, José A.; Larruquert, Juan I.
2016-07-01
Sum rules are a useful tool to evaluate the global consistency of a set of optical constants. We present a procedure to spectrally tune sum rules to evaluate the local consistency of optical constants. It enables enhancing the weight of a desired spectral range within the sum-rule integral. The procedure consists in multiplying the complex refractive index with an adapted function, which is named window function. Window functions are constructed through integration of Lorentz oscillators. The asymptotic decay of these window functions enables the derivation of a multiplicity of sum rules akin to the inertial sum rule, along with one modified version of f-sum rule. This multiplicity of sum rules combined with the free selection of the photon energy range provides a double way to tune the spectral contribution within the sum rule. Window functions were applied to reported data of SrF2 and of Al films in order to check data consistency over the spectrum. The use of window functions shows that the optical constants of SrF2 are consistent in a broad spectrum. Regarding Al, some spectral ranges are seen to present a lower consistency, even though the standard sum rules with no window function did not detect inconsistencies. Hence window functions are expected to be a helpful tool to evaluate the local consistency of optical constants.
Microcomputer Calculation of Equilibrium Constants from Molecular Parameters of Gases.
ERIC Educational Resources Information Center
Venugopalan, Mundiyath
1989-01-01
Lists a BASIC program which computes the equilibrium constant as a function of temperature. Suggests use by undergraduates taking a one-year calculus-based physical chemistry course. Notes the program provides for up to four species, typically two reactants and two products. (MVL)
Henry's law constants for dimethylsulfide in freshwater and seawater
NASA Technical Reports Server (NTRS)
Dacey, J. W. H.; Wakeham, S. G.; Howes, B. L.
1984-01-01
Distilled water and several waters of varying salinity were subjected, over a 0-32 C temperature range, to measurements for Henry's law constants for dimethylsulfide. Values for distilled water and seawater of the solubility parameters A and C are obtained which support the concept that the concentration of dimethylsulfide in the atmosphere is far from equilibrium with seawater.
A New Application for Radioimmunoassay: Measurement of Thermodynamic Constants.
ERIC Educational Resources Information Center
Angstadt, Carol N.; And Others
1983-01-01
Describes a laboratory experiment in which an equilibrium radioimmunoassay (RIA) is used to estimate thermodynamic parameters such as equilibrium constants. The experiment is simple and inexpensive, and it introduces a technique that is important in the clinical chemistry and research laboratory. Background information, procedures, and results are…
Exploring calcium oxalate crystallization: a constant composition approach.
Kolbach-Mandel, Ann M; Kleinman, Jack G; Wesson, Jeffrey A
2015-10-01
Crystal growth rates have been extensively studied in calcium oxalate monohydrate (COM) crystallization, because COM crystals are the principal component in most kidney stones. Constant composition methods are useful for studying growth rates, but fail to differentiate concurrent nucleation and aggregation events. A constant composition method coupled with particle size determinations that addresses this deficiency was previously published for a calcium phosphate system, and this method was extended to COM crystallization in this report. A seeded constant composition experiment was combined with particle size determination and a separate near-equilibrium aggregation experiment to separate effects of growth rate, nucleation, and aggregation in COM crystal formation and to test the effects of various inhibitors relevant to stone formation. With no inhibitors present, apparent COM growth rates were heavily influenced by secondary nucleation at low seed crystal additions, but growth-related aggregation increased at higher seed crystal densities. Among small molecule inhibitors, citrate demonstrated growth rate inhibition but enhanced growth-related aggregation, while magnesium did not affect COM crystallization. Polyanions (polyaspartate, polyglutamate, or osteopontin) showed strong growth rate inhibition, but large differences in nucleation and aggregation were observed. Polycations (polyarginine) did not affect COM crystal growth or aggregation. Mixtures of polyanions and polycations produced a complicated set of growth rate, nucleation, and aggregation behaviors. These experiments demonstrated the power of combining particle size determinations with constant composition experiments to fully characterize COM crystallization and to obtain detailed knowledge of inhibitor properties that will be critical to understanding kidney stone formation.
Identification of material constants for a composite shell structure
Carne, T.G.; Martinez, D.R.
1987-03-01
One of the basic requirements of an engineering analysis is the development of an adequate mathematical model describing the system. Frequently, comparisons with test data are used as a measure of the model's adequacy, or the test data are directly used to update or modify the model. For nonmetallic structures, the modeling task is often more difficult due to uncertainties in the elastic constants. System identification provides a methodology for systematically updating the mathematical model for improved correlation with test data. In this work a finite element model of a composite shell was created. The model includes uncertain orthotropic elastic constants. To identify these constants, a modal survey was performed on an actual shell. The resulting modal data along with the finite element model of the shell were used in a Bayes estimation algorithm. Values of the elastic constants were estimated which minimized the differences between the test results and the finite element predictions. The estimation procedure employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem.
Some Debye temperatures from single-crystal elastic constant data
Robie, R.A.; Edwards, J.L.
1966-01-01
The mean velocity of sound has been calculated for 14 crystalline solids by using the best recent values of their single-crystal elastic stiffness constants. These mean sound velocities have been used to obtain the elastic Debye temperatures ??De for these materials. Models of the three wave velocity surfaces for calcite are illustrated. ?? 1966 The American Institute of Physics.
Running Newton constant, improved gravitational actions, and galaxy rotation curves
NASA Astrophysics Data System (ADS)
Reuter, M.; Weyer, H.
2004-12-01
A renormalization group (RG) improvement of the Einstein-Hilbert action is performed which promotes Newton’s constant and the cosmological constant to scalar functions on spacetime. They arise from solutions of an exact RG equation by means of a “cutoff identification” which associates RG scales to the points of spacetime. The resulting modified Einstein equations for spherically symmetric, static spacetimes are derived and analyzed in detail. The modifications of the Newtonian limit due to the RG evolution are obtained for the general case. As an application, the viability of a scenario is investigated where strong quantum effects in the infrared cause Newton’s constant to grow at large (astrophysical) distances. For two specific RG trajectories exact vacuum spacetimes modifying the Schwarzschild metric are obtained by means of a solution-generating Weyl transformation. Their possible relevance to the problem of the observed approximately flat galaxy rotation curves is discussed. It is found that a power law running of Newton’s constant with a small exponent of the order 10-6 would account for their non-Keplerian behavior without having to postulate the presence of any dark matter in the galactic halo.
Constant or variable practice: recreating the especial skill effect.
Breslin, Gavin; Hodges, Nicola J; Steenson, Andrew; Williams, A Mark
2012-06-01
An especial skill occurs when performance of a single action from within a class of actions produces an advantage in performance. This advantage in a single action over others in the class is presumed to result from large amounts of practice performing the specific action (Keetch, Schmidt, Lee, & Young, 2005). In an experiment involving the learning of a basketball set shot, practice was manipulated to identify whether an especial skill effect emerges at the free-throw line as a result of constant practice conditions in novice performers. After a pretest, which involved set shots across five distances, participants were randomly assigned to one of two intervention groups. A constant practice group (n=10) performed 300 trials of the set shot at the 15 ft free throw line only, whereas a variable practice group (n=10) performed 300 trials across five distances. Shot accuracy increased for both groups as a result of practice at the 15' distance. However, on the posttest, a significant difference was reported between actual and expected scores for the constant practice group only. This finding provided evidence that an effect similar to that seen for especial skills emerges as a result of constant practice. Although an especial skill effect could result from massive amounts of practice, we show it can emerge as a result of short term repetitive practice, indicating that the type, rather than amount, of practice is important.
Optical constants for Asian dust in midinfrared region
NASA Astrophysics Data System (ADS)
Lee, Kwang-Mog; Park, Joong-Hyun
2014-01-01
Asian dust aerosols are composed of quartz, plagioclase, K-feldspar, calcite, and phyllosilicates. The optical constants for mixtures of these minerals are important not only to understand the effects of Asian dust on climate but also to retrieve the properties of Asian dust. In this work, the optical constants for labradorite and orthoclase, representative minerals of plagioclase and K-feldspar, respectively, are determined for the spectral range of 500-2000 cm-1 using bidirectional reflectance data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer. Assuming an internal mixture of component minerals, the effective refractive indices for Asian dust are calculated using Bruggeman's rule. The results are proposed as optical constants for Asian dust and differ from those for other dust aerosols, such as the refractive indices for "Saharan dust" derived from aerosol samples collected at Barbados. The imaginary refractive index for Asian dust is larger, indicating more absorptive, than the index for Saharan dust in the range of 1000-1300 cm-1. Using the optical constants derived in this study, the brightness temperatures of satellite measurements are simulated for typical loading scenarios of Asian dust aerosols. The simulated brightness temperatures exhibit a notable decrease with wave number in the region of 800-1000 cm-1. The results also corroborate the spectral features of the Atmospheric Infrared Sounder (AIRS) measurements for an Asian dust storm. AIRS brightness temperatures near 1223 cm-1, lower than the maximum near 830 cm-1, can also be simulated using the derived optical constants for Asian dust.
Heavy-meson decay constants from QCD sum rules
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2010-12-22
We sketch a recent sum-rule extraction of the decay constants of the heavy pseudoscalar mesons D, D{sub s}, B, and B{sub s} from the two-point correlator of heavy-light pseudoscalar currents. Our main emphasis lies on the control over all the uncertainties in the decay constants, related both to the input QCD parameters and to the limited accuracy of the method of sum rules. Gaining this control has become possible by application of our new procedure of extracting hadron observables based on a dual threshold depending on the Borel parameter. For the charmed-meson decay constants, we find fD = (206.2{+-}7.3{sub (OPE)}{+-}5.1{sub (syst)}) MeV, fD{sub s} = (245.3{+-}15.7{sub (OPE)}{+-}4.5{sub (syst)}) MeV. For the beauty mesons, the decay constants turn out to be extremely sensitive to the precise value of the {ovr MS} mass of the b-quark, {bar m}{sub b}({bar m}{sub b}). By requiring our sum-rule estimate to match the average of the lattice determinations of f{sub B}, we extract the rather accurate value {bar m}{sub b}({bar m}{sub b}) = (4.245{+-}0.025) GeV. Feeding this parameter value into our sum-rule formalism leads to the beauty-meson decay constants fB = (193.4{+-}12.3{sub (OPE)}{+-}4.3{sub (syst)}) MeV, fB{sub s} = (232.5{+-}18.6{sub (OPE)}{+-}2.4{sub (syst)}) MeV.
NASA Astrophysics Data System (ADS)
Song, Insun
2016-05-01
The one-dimensional diffusion equation was solved to understand the pressure and flow behaviors along a cylindrical rock specimen for experimental boundary conditions of constant upstream pressure and constant downstream storage. The solution consists of a time-constant asymptotic part and a transient part that is a negative exponential function of time. This means that the transient flow exponentially decays with time and is eventually followed by a steady-state condition. For a given rock sample, the transient stage is shortest when the downstream storage is minimized. For this boundary condition, a simple equation was derived from the analytic solution to determine the hydraulic permeability from the initial flow rate during the transient stage. The specific storage of a rock sample can be obtained simply from the total flow into the sample during the entire transient stage if there is no downstream storage. In theory, both of these hydraulic properties could be obtained simultaneously from transient-flow stage measurements without a complicated curve fitting or inversion process. Sensitivity analysis showed that the derived permeability is more reliable for lower-permeability rock samples. In conclusion, the constant head method with no downstream storage might be more applicable to extremely low-permeability rocks if the upstream flow rate is measured precisely upstream.
NASA Technical Reports Server (NTRS)
Vernikos-Danellis, J.; Winget, C. M.; Hetherington, N. W.
1970-01-01
The existence of a biological rhythm in the response of animals to noxious stimuli and drugs is well known. However, the mechanism of this response is not well understood. This study was undertaken to describe the existence of a diurnal rhythm in the hypothalamic-pituitary-adrenocortical system before and after stress in female rats kept in controlled environmental conditions in 12L:12D, 24L:OD, or OL:24D. Plasma ACTH and plasma corticosterone concentrations were compared in unstressed animals. The time pattern in the response to stress was determined at four hourly intervals during a 24 hr period in which plasma ACTH and plasma corticosterone were measured at different time intervals. The stress response varied considerably with time of day in both magnitude and duration. The adrenals of rats exposed to constant light for 45 days atrophied, whereas the adrenals of animals kept in constant dark for the same period did not differ significantly from those of controls kept in 12L:12D. The increase in plasma ACTH in response to stress was greater both in the animals maintained in constant light and in constant dark than in the 12L:12D controls. Homeostatic mechanisms involved in these changes are discussed.
Semi-empirical proton binding constants for natural organic matter
NASA Astrophysics Data System (ADS)
Matynia, Anthony; Lenoir, Thomas; Causse, Benjamin; Spadini, Lorenzo; Jacquet, Thierry; Manceau, Alain
2010-03-01
Average proton binding constants ( KH,i) for structure models of humic (HA) and fulvic (FA) acids were estimated semi-empirically by breaking down the macromolecules into reactive structural units (RSUs), and calculating KH,i values of the RSUs using linear free energy relationships (LFER) of Hammett. Predicted log KH,COOH and log KH,Ph-OH are 3.73 ± 0.13 and 9.83 ± 0.23 for HA, and 3.80 ± 0.20 and 9.87 ± 0.31 for FA. The predicted constants for phenolic-type sites (Ph-OH) are generally higher than those derived from potentiometric titrations, but the difference may not be significant in view of the considerable uncertainty of the acidity constants determined from acid-base measurements at high pH. The predicted constants for carboxylic-type sites agree well with titration data analyzed with Model VI (4.10 ± 0.16 for HA, 3.20 ± 0.13 for FA; Tipping, 1998), the Impermeable Sphere model (3.50-4.50 for HA; Avena et al., 1999), and the Stockholm Humic Model (4.10 ± 0.20 for HA, 3.50 ± 0.40 for FA; Gustafsson, 2001), but differ by about one log unit from those obtained by Milne et al. (2001) with the NICA-Donnan model (3.09 ± 0.51 for HA, 2.65 ± 0.43 for FA), and used to derive recommended generic values. To clarify this ambiguity, 10 high-quality titration data from Milne et al. (2001) were re-analyzed with the new predicted equilibrium constants. The data are described equally well with the previous and new sets of values ( R2 ⩾ 0.98), not necessarily because the NICA-Donnan model is overparametrized, but because titration lacks the sensitivity needed to quantify the full binding properties of humic substances. Correlations between NICA-Donnan parameters are discussed, but general progress is impeded by the unknown number of independent parameters that can be varied during regression of a model fit to titration data. The high consistency between predicted and experimental KH,COOH values, excluding those of Milne et al. (2001), gives faith in the proposed
Hille, Katharina T; Hetz, Stefan K; Rosendahl, Julia; Braun, Hannah-Sophie; Pieper, Robert; Stumpff, Friederike
2016-01-01
Despite the clinical importance of ruminal acidosis, ruminal buffering continues to be poorly understood. In particular, the constants for the dissociation of H2CO3 and the solubility of CO2 (Henry's constant) have never been stringently determined for ruminal fluid. The pH was measured in parallel directly in the rumen and the reticulum in vivo, and in samples obtained via aspiration from 10 fistulated cows on hay- or concentrate-based diets. The equilibrium constants of the bicarbonate system were measured at 38°C both using the Astrup technique and a newly developed method with titration at 2 levels of partial pressure of CO2 (pCO2; 4.75 and 94.98 kPa), yielding mean values of 0.234 ± 0.005 mmol ∙ L(-1) ∙ kPa(-1) and 6.11 ± 0.02 for Henry's constant and the dissociation constant, respectively (n/n = 31/10). Both reticular pH and the pH of samples measured after removal were more alkalic than those measured in vivo in the rumen (by ΔpH = 0.87 ± 0.04 and 0.26 ± 0.04). The amount of acid or base required to shift the pH of ruminal samples to 6.4 or 5.8 (base excess) differed between the 2 feeding groups. Experimental results are compared with the mathematical predictions of an open 2-buffer Henderson-Hasselbalch equilibrium model. Because pCO2 has pronounced effects on ruminal pH and can decrease rapidly in samples removed from the rumen, introduction of a generally accepted protocol for determining the acid-base status of ruminal fluid with standard levels of pCO2 and measurement of base excess in addition to pH should be considered.
Hille, Katharina T; Hetz, Stefan K; Rosendahl, Julia; Braun, Hannah-Sophie; Pieper, Robert; Stumpff, Friederike
2016-01-01
Despite the clinical importance of ruminal acidosis, ruminal buffering continues to be poorly understood. In particular, the constants for the dissociation of H2CO3 and the solubility of CO2 (Henry's constant) have never been stringently determined for ruminal fluid. The pH was measured in parallel directly in the rumen and the reticulum in vivo, and in samples obtained via aspiration from 10 fistulated cows on hay- or concentrate-based diets. The equilibrium constants of the bicarbonate system were measured at 38°C both using the Astrup technique and a newly developed method with titration at 2 levels of partial pressure of CO2 (pCO2; 4.75 and 94.98 kPa), yielding mean values of 0.234 ± 0.005 mmol ∙ L(-1) ∙ kPa(-1) and 6.11 ± 0.02 for Henry's constant and the dissociation constant, respectively (n/n = 31/10). Both reticular pH and the pH of samples measured after removal were more alkalic than those measured in vivo in the rumen (by ΔpH = 0.87 ± 0.04 and 0.26 ± 0.04). The amount of acid or base required to shift the pH of ruminal samples to 6.4 or 5.8 (base excess) differed between the 2 feeding groups. Experimental results are compared with the mathematical predictions of an open 2-buffer Henderson-Hasselbalch equilibrium model. Because pCO2 has pronounced effects on ruminal pH and can decrease rapidly in samples removed from the rumen, introduction of a generally accepted protocol for determining the acid-base status of ruminal fluid with standard levels of pCO2 and measurement of base excess in addition to pH should be considered. PMID:26519978
Fine structure constant and quantized optical transparency of plasmonic nanoarrays.
Kravets, V G; Schedin, F; Grigorenko, A N
2012-01-01
Optics is renowned for displaying quantum phenomena. Indeed, studies of emission and absorption lines, the photoelectric effect and blackbody radiation helped to build the foundations of quantum mechanics. Nevertheless, it came as a surprise that the visible transparency of suspended graphene is determined solely by the fine structure constant, as this kind of universality had been previously reserved only for quantized resistance and flux quanta in superconductors. Here we describe a plasmonic system in which relative optical transparency is determined solely by the fine structure constant. The system consists of a regular array of gold nanoparticles fabricated on a thin metallic sublayer. We show that its relative transparency can be quantized in the near-infrared, which we attribute to the quantized contact resistance between the nanoparticles and the metallic sublayer. Our results open new possibilities in the exploration of universal dynamic conductance in plasmonic nanooptics.
Mud handling improved with a constant-volume riser
Baker, R.J. )
1990-09-24
Marine risers currently deployed by floating drilling units incorporate a telescopic joint to accommodate vessel movement, primarily heave. This vertical telescopic movement changes the internal volume of the riser and causes fluctuations in the return-mud flow rate. Flow fluctuations make accurate measurement of the return mud difficult. The significance is that these measurements are vital for the early detection of well bore influx or downhole mud losses. Erratic mud flow also adversely affects the efficiency of the solids-removal equipment and potentially increases the risk of discharging whole mud to the environment. To overcome these adverse effects, a design for a telescopic joint is proposed (constant volume riser or CVR) in which the internal riser volume remains constant, irrespective of movement, thus permitting a uniform flow rate of mud returns.
Cosmological perturbations of axion with a dynamical decay constant
NASA Astrophysics Data System (ADS)
Kobayashi, Takeshi; Takahashi, Fuminobu
2016-08-01
A QCD axion with a time-dependent decay constant has been known to be able to accommodate high-scale inflation without producing topological defects or too large isocurvature perturbations on CMB scales. We point out that a dynamical decay constant also has the effect of enhancing the small-scale axion isocurvature perturbations. The enhanced axion perturbations can even exceed the periodicity of the axion potential, and thus lead to the formation of axionic domain walls. Unlike the well-studied axionic walls, the walls produced from the enhanced perturbations are not bounded by cosmic strings, and thus would overclose the universe independently of the number of degenerate vacua along the axion potential.
VMATc: VMAT with constant gantry speed and dose rate
NASA Astrophysics Data System (ADS)
Peng, Fei; Jiang, Steve B.; Romeijn, H. Edwin; Epelman, Marina A.
2015-04-01
This article considers the treatment plan optimization problem for Volumetric Modulated Arc Therapy (VMAT) with constant gantry speed and dose rate (VMATc). In particular, we consider the simultaneous optimization of multi-leaf collimator leaf positions and a constant gantry speed and dose rate. We propose a heuristic framework for (approximately) solving this optimization problem that is based on hierarchical decomposition. Specifically, an iterative algorithm is used to heuristically optimize dose rate and gantry speed selection, where at every iteration a leaf position optimization subproblem is solved, also heuristically, to find a high-quality plan corresponding to a given dose rate and gantry speed. We apply our framework to clinical patient cases, and compare the resulting VMATc plans to idealized IMRT, as well as full VMAT plans. Our results suggest that VMATc is capable of producing treatment plans of comparable quality to VMAT, albeit at the expense of long computation time and generally higher total monitor units.
Method of measuring dielectric constant using an oscilloscope
NASA Astrophysics Data System (ADS)
Nogi, Yasuyuki; Watanabe, Masayuki; Suzuki, Kiyomitsu; Ohkuma, Yasunori
2015-09-01
A simple relationship determining the dielectric constant of a material inserted in a parallel-plate capacitor is formulated from Gauss's law for a uniform electric field and the continuity condition of electric flux at the boundary of the material. The relationship suggests that the dielectric constant can be determined from the dependence of the charge stored on the capacitor on the thicknesses of the material and the air layer between the plates. A uniform field is created by applying an ac voltage to the plates, which includes a guard ring. The stored charge is estimated by using an oscilloscope to measure the voltage across a resistor inserted between the power supply and the capacitor. The results of the measurement are given for planar materials such as soda-lime glass, Bakelite, acrylic glass, and Teflon with a thickness of 0.5-1 cm.
Variations in the fine-structure constant constraining gravity theories
NASA Astrophysics Data System (ADS)
Bezerra, V. B.; Cunha, M. S.; Muniz, C. R.; Tahim, M. O.; Vieira, H. S.
2016-08-01
In this paper, we investigate how the fine-structure constant, α, locally varies in the presence of a static and spherically symmetric gravitational source. The procedure consists in calculating the solution and the energy eigenvalues of a massive scalar field around that source, considering the weak-field regime. From this result, we obtain expressions for a spatially variable fine-structure constant by considering suitable modifications in the involved parameters admitting some scenarios of semi-classical and quantum gravities. Constraints on free parameters of the approached theories are calculated from astrophysical observations of the emission spectra of a white dwarf. Such constraints are finally compared with those obtained in the literature.
Defect density and dielectric constant in perovskite solar cells
Samiee, Mehran; Konduri, Siva; Abbas, Hisham A.; Joshi, Pranav; Zhang, Liang; Dalal, Vikram; Ganapathy, Balaji; Kottokkaran, Ranjith; Noack, Max; Kitahara, Andrew
2014-10-13
We report on measurement of dielectric constant, mid-gap defect density, Urbach energy of tail states in CH{sub 3}NH{sub 3}PbI{sub x}Cl{sub 1−x} perovskite solar cells. Midgap defect densities were estimated by measuring capacitance vs. frequency at different temperatures and show two peaks, one at 0.66 eV below the conduction band and one at 0.24 eV below the conduction band. The attempt to escape frequency is in the range of 2 × 10{sup 11}/s. Quantum efficiency data indicate a bandgap of 1.58 eV. Urbach energies of valence and conduction band are estimated to be ∼16 and ∼18 meV. Measurement of saturation capacitance indicates that the relative dielectric constant is ∼18.
Classically exact surface diffusion constants at arbitrary temperature
Voter, A.F.; Cohen, J.M.
1989-05-01
An expression is presented for computing the classical diffusion constant of a point defect (e.g., an adatom) in an infinite lattice of binding sites at arbitrary temperature. The transition state theory diffusion constant is simply multiplied by a dynamical correction factor that is computed from short-time classical trajectories initiated at the site boundaries. The time scale limitations of direct molecular dynamics are thus avoided in the low- and middle-temperature regimes. The expression results from taking the time derivative of the particle mean-square displacement in the lattice-discretized coordinate system. Applications are presented for surface diffusion on fcc(100) and fcc(111) Lennard-Jones crystal faces.
Classically exact surface diffusion constants at arbitrary temperature
Voter, A.F.; Cohen, J.M.
1988-01-01
An expression is presented for computing the classical diffusion constant of a point defect (e.g., adatom) in an infinite lattice of binding sites at arbitrary temperature. The transition state theory diffusion constant is simply multiplied by a dynamical correction factor that is computed from short-time classical trajectories initiated at the site boundaries. The time scale limitations of direct molecular dynamics are thus avoided in the low and middle temperature regimes. The expression resulted from taking the time derivative of the particle mean square displacement in the lattice-discretized coordinate system. Applications are presented for surface diffusion on fcc(100) and fcc(111) Lennard-Jones crystal faces. 14 refs., 3 figs.
Cosmic Explosions, Life in the Universe, and the Cosmological Constant.
Piran, Tsvi; Jimenez, Raul; Cuesta, Antonio J; Simpson, Fergus; Verde, Licia
2016-02-26
Gamma-ray bursts (GRBs) are copious sources of gamma rays whose interaction with a planetary atmosphere can pose a threat to complex life. Using recent determinations of their rate and probability of causing massive extinction, we explore what types of universes are most likely to harbor advanced forms of life. We use cosmological N-body simulations to determine at what time and for what value of the cosmological constant (Λ) the chances of life being unaffected by cosmic explosions are maximized. Life survival to GRBs favors Lambda-dominated universes. Within a cold dark matter model with a cosmological constant, the likelihood of life survival to GRBs is governed by the value of Λ and the age of the Universe. We find that we seem to live in a favorable point in this parameter space that minimizes the exposure to cosmic explosions, yet maximizes the number of main sequence (hydrogen-burning) stars around which advanced life forms can exist.
Semiclassical Calculation of Reaction Rate Constants for Homolytical Dissociations
NASA Technical Reports Server (NTRS)
Cardelino, Beatriz H.
2002-01-01
There is growing interest in extending organometallic chemical vapor deposition (OMCVD) to III-V materials that exhibit large thermal decomposition at their optimum growth temperature, such as indium nitride. The group III nitrides are candidate materials for light-emitting diodes and semiconductor lasers operating into the blue and ultraviolet regions. To overcome decomposition of the deposited compound, the reaction must be conducted at high pressures, which causes problems of uniformity. Microgravity may provide the venue for maintaining conditions of laminar flow under high pressure. Since the selection of optimized parameters becomes crucial when performing experiments in microgravity, efforts are presently geared to the development of computational OMCVD models that will couple the reactor fluid dynamics with its chemical kinetics. In the present study, we developed a method to calculate reaction rate constants for the homolytic dissociation of III-V compounds for modeling OMCVD. The method is validated by comparing calculations with experimental reaction rate constants.
Mega-masers, Dark Energy and the Hubble Constant
Lo, Fred K.Y.
2007-10-15
Powerful water maser emission (water mega-masers) can be found in accretion disks in the nuclei of some galaxies. Besides providing a measure of the mass at the nucleus, such mega-masers can be used to determine the distance to the host galaxy, based on a kinematic model. We will explain the importance of determining the Hubble Constant to high accuracy for constraining the equation of state of Dark Energy and describe the Mega-maser Cosmology Project that has the goal of determining the Hubble Constant to better than 3%. Time permitting, we will also present the scientific capabilities of the current and future NRAO facilities: ALMA, EVLA, VLBA and GBT, for addressing key astrophysical problems
Ground-state rotational constants of 12CH 3D
NASA Astrophysics Data System (ADS)
Chackerian, C.; Guelachvili, G.
1980-12-01
An analysis of ground-state combination differences in the ν2( A1) fundamental band of 12CH 3D ( ν0 = 2200.03896 cm -1) has been made to yield values for the rotational constants B0, D0J, D0JK, H0JJJ, H0JJK, H0JKK, LJJJJ, L0JJJK, and order of magnitude values for L0JJKK and L0JKKK. These constants should be useful in assisting radio searches for this molecule in astrophysical sources. In addition, splittings of A1A2 levels ( J ≥ 17, K = 3) have been measured in both the ground and excited vibrational states of this band.
Gravity-independent constant force resistive exercise unit
NASA Technical Reports Server (NTRS)
Colosky, Jr., Paul E. (Inventor); Ruttley, Tara M. (Inventor)
2004-01-01
This invention describes a novel gravity-independent exercise unit designed for use in microgravity, or on the ground, as a means by which to counter muscle atrophy and bone degradation due to disuse or underuse. Modular resistive packs comprising constant torque springs provide constant force opposing the withdrawal of an exercise cable from the device. In addition to uses within the space program, the compact resistive packs of the CFREU allow the unit to be small enough for easy use as a home gym for personal use, or as a supplement for rehabilitation programs. Resistive packs may be changed conveniently out of the CFREU according to the desired exercise regimen. Thus, the resistive packs replace the need for expensive, heavy, and bulky traditional weight plates. The CFREU may be employed by hospitals, rehabilitation and physical therapy clinics, and other related professional businesses.
Elastic constants of cubic and wurtzite boron nitrides
NASA Astrophysics Data System (ADS)
Nagakubo, A.; Ogi, H.; Sumiya, H.; Kusakabe, K.; Hirao, M.
2013-06-01
We synthesized pure polycrystalline cubic boron nitride (cBN) and wurtzite boron nitride (wBN) by the direct conversion method from hexagonal boron nitride, and measured their longitudinal-wave elastic constants CL between 20 and 300 K using picosecond ultrasound spectroscopy. Their room-temperature values are 945 ± 3 GPa and 930 ± 18 GPa for cBN and wBN, respectively. The shear modulus G of cBN was also determined by combining resonance ultrasound spectroscopy and micromechanics calculation as G = 410 GPa. We performed ab-initio calculations and confirmed that the generalized gradient approximation potential fails to yield correct elastic constants, which indicated the necessity of a hybrid-functional method.
Fundamental Constants as Monitors of Particle Physics and Dark Energy
NASA Astrophysics Data System (ADS)
Thompson, Rodger
2016-03-01
This contribution considers the constraints on particle physics and dark energy parameter space imposed by the astronomical observational constraints on the variation of the proton to electron mass ratio μ and the fine structure constant α. These constraints impose limits on the temporal variation of these parameters on a time scale greater than half the age of the universe, a time scale inaccessible by laboratory facilities such as the Large Hadron Collider. The limits on the variance of μ and α constrain combinations of the QCD Scale, the Higgs VEV and the Yukawa coupling on the particle physics side and a combination of the temporal variation of rolling scalar field and its coupling to the constants on the dark energy side.
Dielectric constant of NiO and LDA+U
NASA Astrophysics Data System (ADS)
Ye, Lin-Hui; Luo, Ning; Peng, Lian-Mao; Weinert, M.; Freeman, A. J.
2013-02-01
The local density approximation (LDA) and generalized gradient approximations (GGA) of density functional theory systematically overestimate the electronic polarizability of materials. We calculate the dielectric constant of NiO by the direct method and find, contrary to previous suggestions, that the LDA+U method reduces the polarization such that ɛ∞ decreases monotonically with increasing U. We illustrate the existence of a linear term in the effective exchange-correlation potential that counteracts the external electric field, thus demonstrating that the decrease of ɛ∞ is intrinsic to the LDA+U correction. The reduction of the polarization is due mostly to reduced orbital mixing between the unoccupied eg states and the occupied 2p states. Our work establishes LDA+U as a viable method for calculating the dielectric constants of correlated materials.
A nuclear data approach for the Hubble constant measurements
Pritychenko, B.
2015-06-09
An extraordinary number of Hubble constant measurements challenges physicists with selection of the best numerical value. The standard U.S. Nuclear Data Program (USNDP) codes and procedures have been applied to resolve this issue. The nuclear data approach has produced the most probable or recommended Hubble constant value of 67.00(770) (km/sec)/Mpc. This recommended value is based on the last 25 years of experimental research and includes contributions from different types of measurements. The present result implies (14.6±1.7) x 10^{9} years as a rough estimate for the age of the Universe. The complete list of recommended results is given and possible implications are discussed.
New process to avoid emissions: Constant pressure in coke ovens
Giertz, J.; Huhn, F.; Hofherr, K.
1995-12-01
A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.
Short and long term variations in the solar constant
NASA Technical Reports Server (NTRS)
Schatten, K. H.
1981-01-01
Short and long term variations in the solar constant are examined theoretically. The variations observed by the Solar Maximum Mission, lasting several days and associated with the passage of sunspot groups, strikingly demonstrates the well known lack of a bright ring effect around sunspots. This suggests that sunspot magnetic fields do not simply block the heat flowing upward into the photosphere. Rather, it is suggested that gravitational draining occurs; this cools sunspots and transports downward the heat that would otherwise flow into the photosphere. A model of sunspot temperature with depth shows modest support when compared with the empirical model of Van't Veer. Secular trends in the solar constant may occur and be associated with the influence of the convection zone magnetic field upon convective heat transport. As a start to understanding this problem, the Schwarzschild criterion has been modified to include the effects of magnetic field.
Contact position sensor using constant contact force control system
NASA Technical Reports Server (NTRS)
Sturdevant, Jay (Inventor)
1995-01-01
A force control system (50) and method are provided for controlling a position contact sensor (10) so as to produce a constant controlled contact force therewith. The system (50) includes a contact position sensor (10) which has a contact probe (12) for contacting the surface of a target to be measured and an output signal (V.sub.o) for providing a position indication thereof. An actuator (30) is provided for controllably driving the contact position sensor (10) in response to an actuation control signal (I). A controller (52) receives the position indication signal (V.sub.o) and generates in response thereto the actuation control signal (I) so as to provide a substantially constant selective force (F) exerted by the contact probe (12). The actuation drive signal (I) is generated further in response to substantially linear approximation curves based on predetermined force and position data attained from the sensor (10) and the actuator (30).
Bacterial Spring Constant in Log-Phase Growth
NASA Astrophysics Data System (ADS)
Jain, Deepti; Nanda, H.; Nath, R.; Chitnis, D. S.; Ganesan, V.
2011-07-01
Atomic Force Microscopy is a powerful tool in studying bacterial systems too. The turgor pressure studies on well known systems like E-coli and Staphylococcus revealed a fascinating fact that the numbers are in tens of atmosphere depending upon the microbial activity. Hence there is no way that one can destroy them by physical means. This is due to the robust nature of the cell wall. Understanding the cell wall structure requires an estimate of spring constant of the cell wall membrane and its variation upon activity. Here we present an experimental estimate of the spring constant of the cell wall (˜10-2 N/m) using force curve measurements on bacteria using an AFM tip. This has a bearing on measuring turgor pressure of bacterium.
History and progress on accurate measurements of the Planck constant.
Steiner, Richard
2013-01-01
The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the
Induced cosmological constant and other features of asymmetric brane embedding
Shtanov, Yuri; Sahni, Varun; Shafieloo, Arman; Toporensky, Alexey E-mail: varun@iucaa.ernet.in E-mail: lesha@xray.sai.msu.ru
2009-04-15
We investigate the cosmological properties of an 'induced gravity' brane scenario in the absence of mirror symmetry with respect to the brane. We find that brane evolution can proceed along one of four distinct branches. By contrast, when mirror symmetry is imposed, only two branches exist, one of which represents the self-accelerating brane, while the other is the so-called normal branch. This model incorporates many of the well-known possibilities of brane cosmology including phantom acceleration (w < -1), self-acceleration, transient acceleration, quiescent singularities, and cosmic mimicry. Significantly, the absence of mirror symmetry also provides an interesting way of inducing a sufficiently small cosmological constant on the brane. A small (positive) {Lambda}-term in this case is induced by a small asymmetry in the values of bulk fundamental constants on the two sides of the brane.
Joule-Thomson Cooler Produces Nearly Constant Temperature
NASA Technical Reports Server (NTRS)
Bard, Steven; Wu, Jiunn-Jeng; Trimble, Curtis A.
1992-01-01
Improved Joule-Thomson cooler maintains nearly constant temperature. Absolute-pressure relief valve helps stabilize temperature of cold head despite variations in atmospheric pressure. Feedback-controlled electrical heater provides additional stabilization. Demand-flow Joule-Thomson valve requires less nitrogen than fixed-orifice Joule-Thomson valve providing same amount of cooling. Provides stable low temperatures required for operation of such devices as tunable diode lasers in laboratory and balloon-borne instruments detecting contaminants in atmosphere.
Protein Dielectric Constants Determined from NMR Chemical Shift Perturbations
Kukic, Predrag; Farrell, Damien; McIntosh, Lawrence P.; E., Bertrand García-Moreno; Jensen, Kristine Steen; Toleikis, Zigmantas; Teilum, Kaare; Nielsen, Jens Erik
2015-01-01
Understanding the connection between protein structure and function requires a quantitative understanding of electrostatic effects. Structure-based electrostatics calculations are essential for this purpose, but their use have been limited by a long-standing discussion on which value to use for the dielectric constants (εeff and εp) required in Coulombic models and Poisson-Boltzmann models. The currently used values for εeff and εp are essentially empirical parameters calibrated against thermodynamic properties that are indirect measurements of protein electric fields. We determine optimal values for εeff and εp by measuring protein electric fields in solution using direct detection of NMR chemical shift perturbations (CSPs). We measured CSPs in fourteen proteins to get a broad and general characterization of electric fields. Coulomb's law reproduces the measured CSPs optimally with a protein dielectric constant (εeff) from 3 to 13, with an optimal value across all proteins of 6.5. However, when the water-protein interface is treated with finite difference Poisson-Boltzmann calculations, the optimal protein dielectric constant (εp) rangedsfrom 2-5 with an optimum of 3. It is striking how similar this value is to the dielectric constant of 2-4 measured for protein powders, and how different it is from the εp of 6-20 used in models based on the Poisson-Boltzmann equation when calculating thermodynamic parameters. Because the value of εp = 3 is obtained by analysis of NMR chemical shift perturbations instead of thermodynamic parameters such as pKa values, it is likely to describe only the electric field and thus represent a more general, intrinsic, and transferable εp common to most folded proteins. PMID:24124752
Observables in loop quantum gravity with a cosmological constant
NASA Astrophysics Data System (ADS)
Dupuis, Maïté; Girelli, Florian
2014-11-01
In many quantum gravity approaches, the cosmological constant is introduced by deforming the gauge group into a quantum group. In three dimensions, the quantization of the Chern-Simons formulation of gravity provided the first example of such a deformation. The Turaev-Viro model, which is an example of a spin-foam model, is also defined in terms of a quantum group. By extension, it is believed that in four dimensions, a quantum group structure could encode the presence of Λ ≠0 . In this article, we introduce by hand the quantum group Uq(s u (2 )) into the loop quantum gravity (LQG) framework; that is, we deal with Uq(s u (2 )) -spin networks. We explore some of the consequences, focusing in particular on the structure of the observables. Our fundamental tools are tensor operators for Uq(s u (2 )). We review their properties and give an explicit realization of the spinorial and vectorial ones. We construct the generalization of the U (N ) formalism in this deformed case, which is given by the quantum group Uq(u (N )). We are then able to build geometrical observables, such as the length, area or angle operators, etc. We show that these operators characterize a quantum discrete hyperbolic geometry in the three-dimensional LQG case. Our results confirm that a quantum group structure in LQG can be a tool to introduce a nonzero cosmological constant into the theory. Our construction is both relevant for three-dimensional Euclidian quantum gravity with a negative cosmological constant and four-dimensional Lorentzian quantum gravity with a positive cosmological constant.
The sharp constant in Markov's inequality for the Laguerre weight
Sklyarov, Vyacheslav P
2009-06-30
We prove that the polynomial of degree n that deviates least from zero in the uniformly weighted metric with Laguerre weight is the extremal polynomial in Markov's inequality for the norm of the kth derivative. Moreover, the corresponding sharp constant does not exceed (8{sup k} n {exclamation_point} k {exclamation_point})/((n-k){exclamation_point} (2k){exclamation_point}). For the derivative of a fixed order this bound is asymptotically sharp as n{yields}{infinity}. Bibliography: 20 items.
Turbine blade having a constant thickness airfoil skin
Marra, John J
2012-10-23
A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.
Decay constants of pseudoscalar mesons containing heavy quarks
Mathur, V. S.; Yamawaki, M. T.
1981-01-01
The QCD sum-rules of Shifman et al. for n-th order moments are applied to the determination of the decay constants of pseudoscalar mesons containing a heavy quark (c or b). The general case when Q/sup 2/, the squared momentum transfer, is non-zero is considered. The stability of the sum-rules against variations in both Q/sup 2/ and n is discussed.
Theoretical study of hyperfine structure constants of Ga isotopes
NASA Astrophysics Data System (ADS)
Wang, Q. M.; Li, J. G.; Fritzsche, S.; Godefroid, M.; Chang, Z. W.; Dong, C. Z.
2012-11-01
The hyperfine structure constants for the ground 4s24p 2P°3/2 and lowest excited states 4s25s 2S1/2 of 71Ga are calculated using the GRASP2K package based on the multi-configuration Dirac-Hartree-Fock method. Furthermore, the magnetic dipole (μ) and the electric quadrupole (Q) moments of the Ga isotopes from 67Ga to 81Ga are derived.
Compact surfaces of constant Gaussian curvature in Randers manifolds
NASA Astrophysics Data System (ADS)
Cui, Ningwei
2016-08-01
The flag curvature of a Finsler surface is called the Gaussian curvature in Finsler geometry. In this paper, we characterize the surfaces of constant Gaussian curvature (CGC) in the Randers 3-manifold. Then we give a classification of the orientable closed CGC surfaces in two Randers space forms, which are the non-Euclidean Minkowski-Randers 3-space (K = 0) and the Bao-Shen sphere (K = 1).
Constant mortality and fertility over age in Hydra
Schaible, Ralf; Scheuerlein, Alexander; Dańko, Maciej J.; Gampe, Jutta; Martínez, Daniel E.; Vaupel, James W.
2015-01-01
Senescence, the increase in mortality and decline in fertility with age after maturity, was thought to be inevitable for all multicellular species capable of repeated breeding. Recent theoretical advances and compilations of data suggest that mortality and fertility trajectories can go up or down, or remain constant with age, but the data are scanty and problematic. Here, we present compelling evidence for constant age-specific death and reproduction rates in Hydra, a basal metazoan, in a set of experiments comprising more than 3.9 million days of observations of individual Hydra. Our data show that 2,256 Hydra from two closely related species in two laboratories in 12 cohorts, with cohort age ranging from 0 to more than 41 y, have extremely low, constant rates of mortality. Fertility rates for Hydra did not systematically decline with advancing age. This falsifies the universality of the theories of the evolution of aging that posit that all species deteriorate with age after maturity. The nonsenescent life history of Hydra implies levels of maintenance and repair that are sufficient to prevent the accumulation of damage for at least decades after maturity, far longer than the short life expectancy of Hydra in the wild. A high proportion of stem cells, constant and rapid cell turnover, few cell types, a simple body plan, and the fact that the germ line is not segregated from the soma are characteristics of Hydra that may make nonsenescence feasible. Nonsenescence may be optimal because lifetime reproduction may be enhanced more by extending adult life spans than by increasing daily fertility. PMID:26644561
Apparatus producing constant cable tension for intermittent demand
Lauritzen, T.
1984-05-23
This invention relates to apparatus for producing constant tension in cable or the like when it is unreeled and reeled from a drum or spool under conditions of intermittent demand. The invention is particularly applicable to the handling of superconductive cable, but the invention is also applicable to the unreeling and reeling of other strands, such as electrical cable, wire, cord, other cables, fish line, wrapping paper and numerous other materials.
Observations from a constant-altitude stratospheric balloon
NASA Technical Reports Server (NTRS)
Mollo-Christensen, Erik; Vermillion, Charles H.; Chan, Paul H.; Mcbrien, Gary E.; Ward, William; Coronado, Patrick
1991-01-01
The paper describes a constant-altitude stratospheric balloon system, called Earthwinds, designed for high-altitude atmospheric observations. Special attention is given to the balloon's variable ballast system for altitude control; reactions of the balloon system to air motions in a stratified atmosphere; instruments for locating the balloon position, controlling the altitude, and making observations of atmospheric movements; balloon dynamics; and the atmospheric phenomena that will be observed by the balloon instruments.
A system concept for wide swath constant incident angle coverage
NASA Technical Reports Server (NTRS)
Claassen, J. P.; Eckerman, J.
1978-01-01
Multiple beam approach readily overcomes radar ambiguity constraints associated with orbital systems and therefore permits imagery over swaths much wider than 100 kilometers. Furthermore, the antenna technique permits imagery at nearly constant incident angles. When frequency scanning is employed, the center angle may be programmed. The redundant use of the antenna aperture during reception results in lower transmitted power and in shorter antenna lengths in comparison to conventional designs. Compatibility of the approach with passive imagery is also considered.
Continuous concentration and constant volume washing of tetraphenylborate slurries
Siler, J.L.
1999-12-08
SRTC has completed filtration testing of tetraphenylborate (TPB) slurries with and without sludge. These tests were slightly different from previous SRS tests in that they used continuous mode concentration and constant volume washing evolutions. The extent of TPB recovery during washing was measured. The resulting washed precipitate slurry, with sludge, was stored at ambient temperature and under a nitrogen-inerted atmosphere to study TPB stability. Samples of both unwashed and washed slurries were submitted for rheology measurements.
Apparatus producing constant cable tension for intermittent demand
Lauritzen, Ted
1985-01-01
The disclosed apparatus produces constant tension in superconducting electrical cable, or some other strand, under conditions of intermittent demand, as the cable is unreeled from a reel or reeled thereon. The apparatus comprises a pivotally supported swing frame on which the reel is rotatably supported, a rotary motor, a drive train connected between the motor and the reel and including an electrically controllable variable torque slip clutch, a servo transducer connected to the swing frame for producing servo input signals corresponding to the position thereof, a servo control system connected between the transducer and the clutch for regulating the torque transmitted by the clutch to maintain the swing frame in a predetermined position, at least one air cylinder connected to the swing frame for counteracting the tension in the cable, and pressure regulating means for supplying a constant air pressure to the cylinder to establish the constant tension in the cable, the servo system and the clutch being effective to produce torque on the reel in an amount sufficient to provide tension in the cable corresponding to the constant force exerted by the air cylinder. The drive train also preferably includes a fail-safe brake operable to its released position by electrical power in common with the servo system, for preventing rotation of the reel if there is a power failure. A shock absorber and biasing springs may also be connected to the swing frame, such springs biasing the frame toward its predetermined position. The tension in the cable may be measured by force measuring devices engageable with the bearings for the reel shaft, such bearings being supported for slight lateral movement. The reel shaft is driven by a Shmidt coupler which accommodates such movement.
Surprising resistivity decrease in manganites with constant electronic density.
Cortés-Gil, R; Ruiz-González, M L; Alonso, J M; Martínez, J L; Hernando, A; Vallet-Regí, M; González-Calbet, J M
2013-12-01
A decrease of eight orders of magnitude in the resistance of (La0.5Ca0.5)zMnO3 has been detected when the electronic density is kept constant while the calcium content is modified by introducing cationic vacancies. This effect is related to the disappearance of the charge ordering state and the emergence of an antiferromagnetic–ferromagnetic transition. Moreover, high values of the colossal magnetoresistance above room temperature are attained. PMID:24200948
Ballast system for maintaining constant pressure in a glove box
NASA Technical Reports Server (NTRS)
Shlichta, Paul J. (Inventor)
1989-01-01
A ballast system is disclosed for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and the gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.
Ballast system for maintaining constant pressure in a glove box
NASA Technical Reports Server (NTRS)
Shlichta, Paul J. (Inventor)
1990-01-01
A ballast system for a glove box including a fixed platform on which is mounted an inflatable bag on top of which resides a cover and a weight. The variable gas volume of the inflatable bag communicates with that of the glove box via a valved tube. The weight and gas volume are selected to maintain a relatively constant pressure in the glove box despite variations in the glove box volume while avoiding the use of complicated valving apparatus.
Direct Determinations of the πNN Coupling Constants
NASA Astrophysics Data System (ADS)
Ericson, T. E. O.; Loiseau, B.
1998-11-01
A novel extrapolation method has been used to deduce directly the charged πN N coupling constant from backward np differential scattering cross sections. The extracted value, g2c = 14.52(0.26) is higher than the indirectly deduced values obtained in nucleon-nucleon energy-dependent partial-wave analyses. Our preliminary direct value from a reanalysis of the GMO sum-rule points to an intermediate value of g2c about 13.97(30).
CONSTRAINING FUNDAMENTAL CONSTANT EVOLUTION WITH H I AND OH LINES
Kanekar, N.; Langston, G. I.; Stocke, J. T.; Carilli, C. L.; Menten, K. M.
2012-02-20
We report deep Green Bank Telescope spectroscopy in the redshifted H I 21 cm and OH 18 cm lines from the z = 0.765 absorption system toward PMN J0134-0931. A comparison between the 'satellite' OH 18 cm line redshifts, or between the redshifts of the H I 21 cm and 'main' OH 18 cm lines, is sensitive to changes in different combinations of three fundamental constants, the fine structure constant {alpha}, the proton-electron mass ratio {mu} {identical_to} m{sub p} /m{sub e} , and the proton g-factor g{sub p} . We find that the satellite OH 18 cm lines are not perfectly conjugate, with both different line shapes and stronger 1612 MHz absorption than 1720 MHz emission. This implies that the satellite lines of this absorber are not suitable to probe fundamental constant evolution. A comparison between the redshifts of the H I 21 cm and OH 18 cm lines, via a multi-Gaussian fit, yields the strong constraint [{Delta}F/F] = [ - 5.2 {+-} 4.3] Multiplication-Sign 10{sup -6}, where F {identical_to} g{sub p} [{mu}{alpha}{sup 2}]{sup 1.57} and the error budget includes contributions from both statistical and systematic errors. We thus find no evidence for a change in the constants between z = 0.765 and the present epoch. Incorporating the constraint [{Delta}{mu}/{mu}] < 3.6 Multiplication-Sign 10{sup -7} from another absorber at a similar redshift and assuming that fractional changes in g{sub p} are much smaller than those in {alpha}, we obtain [{Delta}{alpha}/{alpha}] = (- 1.7 {+-} 1.4) Multiplication-Sign 10{sup -6} over a look-back time of 6.7 Gyr.
Sleep and sleep homeostasis in constant darkness in the rat.
Deboer, Tom; de Boer, Tom
2009-09-01
According to the two-process model of sleep regulation, a homeostatic Process S increases during waking and decreases during sleep. The time course of Process S can be derived on the basis of changes in vigilance states and changes in electroencephalogram slow-wave activity (SWA, activity below 4 Hz) during non-rapid eye movement (NREM) sleep. In most mouse strains, an optimal fit between S and SWA was achieved with one increasing (active during waking and REM sleep) and one decreasing time constant (active during NREM sleep) for Process S. However, in the rat, systematic deviations in the light and dark periods were observed, which were resolved by introducing different decreasing time constants between the light and dark periods. The present study shows that this difference between the rest (light) and active (dark) phases remains, and may even be larger, after animals are adapted to constant dark conditions for at least a week. In addition, the data show that the build-up rate of SWA at the onset of a NREM sleep episode is slow compared with the increase rate under light-dark conditions, and that this build-up rate changes with the circadian phase. The slow build-up rate introduces a systematic error between the simulation of Process S and SWA in NREM sleep. The circadian modulation of the build-up rate may, together with circadian changes in NREM sleep episode duration, be the source of the necessity of introducing a difference in the decreasing time constant between the rest and active phases.
Modified constant modulus algorithm for polarization-switched QPSK.
Johannisson, Pontus; Sjödin, Martin; Karlsson, Magnus; Wymeersch, Henk; Agrell, Erik; Andrekson, Peter A
2011-04-11
By using a generalized cost function, a modified constant modulus algorithm (CMA) that allows polarization demultiplexing and equalization of polarization-switched QPSK is found. An implementation that allows easy switching between the conventional and the modified CMA is described. Using numerical simulations, the suggested algorithm is shown to have similar performance for polarization-switched QPSK as CMA has for polarization-multiplexed QPSK.
Measurement of the dielectric constant of lunar minerals and regolith
NASA Astrophysics Data System (ADS)
Trigwell, S.; Starnes, J.; Brown, C.; White, C.; White, T.; Su, M.; Mahdi, H. H.; Al-Shukri, H. J.; Biris, A.; Non Invasive ProspectingLunar Ores; Minerals
2010-12-01
For long-term lunar exploration, the priorities are excavation and beneficiation of lunar regolith for water, oxygen, energy production, and structural and shielding fabrication. This work is part of a project focusing on the utilization of Ground Penetrating Radar (GPR) to identify the presence of enriched areas of sub-surface minerals for excavation and ore processing. GPR detection of sub-surface minerals depends significantly on the differences in dielectric constant of the various minerals. One of the minerals in lunar regolith of interest is ilmenite for its use in oxygen production and a supply of titanium and iron. Several pure minerals (feldspar, spodumene, olivine, and ilmenite) and lunar simulant JSC-1A were sieved into several size fractions (<25, 25-50, 50-75, and 75-100 µm). A test cell with an attached shaker was constructed in a vacuum chamber and measurements of the dielectric constant of the minerals and simulant were taken as a function of particle size and packing density. The results showed that there was a direct correlation between the measured dielectric constant and packing density and that ilmenite had a much higher dielectric constant than the other minerals. Measurements were also taken on Apollo 14 lunar regolith as a comparison and compared to the literature to validate the results. Mixtures of pure silica powder and ilmenite in various concentrations (2, 5, 10, and 15%) were measured and it was determined that approximately 2-4% ilmenite in the mixtures could be distinguished. Core samples taken on the moon for all Apollo missions showed ilmenite concentrations ranging from 0.3-12%, depending upon whether it was in the mare or highlands regions, and so this data may significantly contribute to the use of GPR for mineral prospecting on the moon.
Atmospheric Boundary-Layer Dynamics with Constant Bowen Ratio
NASA Astrophysics Data System (ADS)
Porporato, Amilcare
2009-08-01
Motivated by the observation that the diurnal evolution of sensible and latent heat fluxes tends to maintain a constant Bowen ratio, we derive approximate solutions of the ordinary differential equations of a simplified atmospheric boundary-layer (ABL) model. Neglecting the early morning transition, the potential temperature and specific humidity of the mixed layer are found to be linearly related to the ABL height. Similar behaviour is followed by the inversion strengths of temperature and humidity at the top of the ABL. The potential temperature of the mixed layer depends on the entrainment parameter and the free-atmosphere temperature lapse rate, while the specific humidity also depends on the free-atmosphere humidity lapse rate and the Bowen ratio. The temporal dynamics appear only implicitly in the evolution of the height of the boundary layer, which in turn depends on the time-integrated surface sensible heat flux. Studying the limiting behaviour of the Bowen ratio for very low and very large values of net available energy, we also show how the tendency to maintain constant Bowen ratio during midday hours stems from its relative insensitivity to the atmospheric conditions for large values of net available energy. The analytical expression for the diurnal evolution of the ABL obtained with constant Bowen ratio is simple and provides a benchmark for the results of more complex models.
Normal and torsional spring constants of atomic force microscope cantilevers
NASA Astrophysics Data System (ADS)
Green, Christopher P.; Lioe, Hadi; Cleveland, Jason P.; Proksch, Roger; Mulvaney, Paul; Sader, John E.
2004-06-01
Two methods commonly used to measure the normal spring constants of atomic force microscope cantilevers are the added mass method of Cleveland et al. [J. P. Cleveland et al., Rev. Sci. Instrum. 64, 403 (1993)], and the unloaded resonance technique of Sader et al. [J. E. Sader, J. W. M. Chon, and P. Mulvaney, Rev. Sci. Instrum. 70, 3967 (1999)]. The added mass method involves measuring the change in resonant frequency of the fundamental mode of vibration upon the addition of known masses to the free end of the cantilever. In contrast, the unloaded resonance technique requires measurement of the unloaded resonant frequency and quality factor of the fundamental mode of vibration, as well as knowledge of the plan view dimensions of the cantilever and properties of the fluid. In many applications, such as frictional force microscopy, the torsional spring constant is often required. Consequently, in this article, we extend both of these techniques to allow simultaneous calibration of both the normal and torsional spring constants. We also investigate the validity and applicability of the unloaded resonance method when a mass is attached to the free end of the cantilever due to its importance in practice.
Curl force dynamics: symmetries, chaos and constants of motion
NASA Astrophysics Data System (ADS)
Berry, M. V.; Shukla, Pragya
2016-06-01
This is a theoretical study of Newtonian trajectories governed by curl forces, i.e. position-dependent but not derivable from a potential, investigating in particular the possible existence of conserved quantities. Although nonconservative and nonhamiltonian, curl forces are not dissipative because volume in the position-velocity state space is preserved. A physical example is the effective forces exerted on small particles by light. When the force has rotational symmetry, for example when generated by an isolated optical vortex, particles spiral outwards and escape, even with an attractive gradient force, however strong. Without rotational symmetry, and for dynamics in the plane, the state space is four-dimensional, and to search for possible constants of motion we introduce the Volume of section: a numerical procedure, in which orbits are plotted as dots in a three-dimensional subspace. For some curl forces, e.g. optical fields with two opposite-strength vortices, the dots lie on a surface, indicating a hidden constant of motion. For other curl forces, e.g. those from four vortices, the dots explore clouds, in an unfamiliar kind of chaos, suggesting that no constant of motion exists. The curl force dynamics generated by optical vortices could be studied experimentally.
Stars in other universes: stellar structure with different fundamental constants
NASA Astrophysics Data System (ADS)
Adams, Fred C.
2008-08-01
Motivated by the possible existence of other universes, with possible variations in the laws of physics, this paper explores the parameter space of fundamental constants that allows for the existence of stars. To make this problem tractable, we develop a semi-analytical stellar structure model that allows for physical understanding of these stars with unconventional parameters, as well as a means to survey the relevant parameter space. In this work, the most important quantities that determine stellar properties—and are allowed to vary—are the gravitational constant G, the fine structure constant α and a composite parameter \\mathcal {C} that determines nuclear reaction rates. Working within this model, we delineate the portion of parameter space that allows for the existence of stars. Our main finding is that a sizable fraction of the parameter space (roughly one-fourth) provides the values necessary for stellar objects to operate through sustained nuclear fusion. As a result, the set of parameters necessary to support stars are not particularly rare. In addition, we briefly consider the possibility that unconventional stars (e.g. black holes, dark matter stars) play the role filled by stars in our universe and constrain the allowed parameter space.
Expressing oceanic turbulence parameters by atmospheric turbulence structure constant.
Baykal, Yahya
2016-02-20
The parameters composing oceanic turbulence are the wavelength, link length, rate of dissipation of kinetic energy per unit mass of fluid, rate of dissipation of mean-squared temperature, Kolmogorov microscale, and the ratio of temperature to salinity contributions to the refractive index spectrum. The required physical entities such as the average intensity and the scintillation index in the oceanic medium are formulated by using the power spectrum of oceanic turbulence, which is described by oceanic turbulence parameters. On the other hand, there exists a rich archive of formulations and results for the above-mentioned physical entities in atmospheric turbulence, where the parameters describing the turbulence are the wavelength, the link length, and the structure constant. In this paper, by equating the spherical wave scintillation index solutions in the oceanic and atmospheric turbulences, we have expressed the oceanic turbulence parameters by an equivalent structure constant used in turbulent atmosphere. Such equivalent structure constant will help ease reaching solutions of similar entities in an oceanic turbulent medium by employing the corresponding existing solutions, which are valid in an atmospheric turbulent medium.
Spectra and Optical Constants of Nitrile Ices Relevant to Titan
NASA Astrophysics Data System (ADS)
Moore, William; Ferrante, R. F.; Hudson, R. L.; Moore, M. H.; Samuelson, R. E.; Anderson, C.
2009-09-01
Spectra and optical constants of nitrile ices known or suspected to be in Titan's atmosphere are presented from 2.5 to 200 microns (4000 to 50 cm-1). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied include: HCN, hydrogen cyanide; HC3N, cyanoacetylene; CH3CN, acetonitrile; C2H5CN, propionitrile; C2N2, cyanogen; and C4N2, dicyanoacetylene. For each of these molecules we have calculated optical constants at a variety of temperatures from 15 to at least 95 K for crystalline-phase nitrile ice. Our results are focused on the crystalline ice phase formed after annealing the amorphous nitrile ice condensed at 50 K. In addition, we have recorded spectra for each nitrile deposited near its vaporization temperature and then cooled to 95 K, in search of metastable phases that would be relevant to Titan. This laboratory effort uses a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference is used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, are determined using Kramers-Kronig (KK) analysis. Our calculation reproduces the complete spectrum, including all interference effects. Support for this work comes from NASA's Cassini Data Analysis and Planetary Atmospheres Programs
Temperature dependencies of Henry's law constants for different plant sesquiterpenes.
Copolovici, Lucian; Niinemets, Ülo
2015-11-01
Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry's law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry's law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry's law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. PMID:26291755
Molecular dynamics simulations of solutions at constant chemical potential
NASA Astrophysics Data System (ADS)
Perego, C.; Salvalaglio, M.; Parrinello, M.
2015-04-01
Molecular dynamics studies of chemical processes in solution are of great value in a wide spectrum of applications, which range from nano-technology to pharmaceutical chemistry. However, these calculations are affected by severe finite-size effects, such as the solution being depleted as the chemical process proceeds, which influence the outcome of the simulations. To overcome these limitations, one must allow the system to exchange molecules with a macroscopic reservoir, thus sampling a grand-canonical ensemble. Despite the fact that different remedies have been proposed, this still represents a key challenge in molecular simulations. In the present work, we propose the Constant Chemical Potential Molecular Dynamics (CμMD) method, which introduces an external force that controls the environment of the chemical process of interest. This external force, drawing molecules from a finite reservoir, maintains the chemical potential constant in the region where the process takes place. We have applied the CμMD method to the paradigmatic case of urea crystallization in aqueous solution. As a result, we have been able to study crystal growth dynamics under constant supersaturation conditions and to extract growth rates and free-energy barriers.
Evaluation of uncertainty in the adjustment of fundamental constants
NASA Astrophysics Data System (ADS)
Bodnar, Olha; Elster, Clemens; Fischer, Joachim; Possolo, Antonio; Toman, Blaza
2016-02-01
Combining multiple measurement results for the same quantity is an important task in metrology and in many other areas. Examples include the determination of fundamental constants, the calculation of reference values in interlaboratory comparisons, or the meta-analysis of clinical studies. However, neither the GUM nor its supplements give any guidance for this task. Various approaches are applied such as weighted least-squares in conjunction with the Birge ratio or random effects models. While the former approach, which is based on a location-scale model, is particularly popular in metrology, the latter represents a standard tool used in statistics for meta-analysis. We investigate the reliability and robustness of the location-scale model and the random effects model with particular focus on resulting coverage or credible intervals. The interval estimates are obtained by adopting a Bayesian point of view in conjunction with a non-informative prior that is determined by a currently favored principle for selecting non-informative priors. Both approaches are compared by applying them to simulated data as well as to data for the Planck constant and the Newtonian constant of gravitation. Our results suggest that the proposed Bayesian inference based on the random effects model is more reliable and less sensitive to model misspecifications than the approach based on the location-scale model.
Pause Point Spectra in DNA Constant-Force Unzipping
Weeks, J. D.; Lucks, J. B.; Kafri, Y.; Danilowicz, C.; Nelson, D. R.; Prentiss, M.
2005-01-01
Under constant applied force, the separation of double-stranded DNA into two single strands is known to proceed through a series of pauses and jumps. Given experimental traces of constant-force unzipping, we present a method whereby the locations of pause points can be extracted in the form of a pause point spectrum. A simple theoretical model of DNA constant-force unzipping is presented, which generates theoretical pause point spectra through Monte Carlo simulation of the unzipping process. The locations of peaks in the experimental and theoretical pause point spectra are found to be nearly coincident below 6000 basepairs for unzipping the bacteriophage λ-genome. The model only requires the sequence, temperature, and a set of empirical basepair binding and stacking energy parameters, and the good agreement with experiment suggests that pause point locations are primarily determined by the DNA sequence. The model is also used to predict pause point spectra for the bacteriophage φX174 genome. The algorithm for extracting the pause point spectrum might also be useful for studying related systems which exhibit pausing behavior such as molecular motors. PMID:15695634
Design of 300A constant current electronic load
NASA Astrophysics Data System (ADS)
Cai, Ying
2016-01-01
Energy efficient and stable power supply is the core of most electronic products. DC electronic load is essential equipment to calibrate the DC regulated power supply. with the development of power industry towards to diversification and complication, the electronic load equipment for testing power supply is put forward higher requirements. Quality of electronic load equipment is mainly reflected in three aspects, measurement accuracy, completeness of measuring project and richness of load characteristic. In the paper, the high power and constant current DC electronic load is designed. Two pieces of D/A converter are used to constitute the 20 D/A conversion unit, to realize the minimum resolution of 0.045 mV. Four magnetic rings of high permeability and magnetic properties consistency, and the corresponding processing unit circuit compose the current sampling unit, which solve a key problem and difficulty of high precision and large current test. The three groups of 600 W power modules in parallel to realize the function of 1800 W power constant current. The electronic load has the 0 ~ 300A constant current characteristic, uncertainty of measurement is 1×10-4, and the maximum load voltage is 5V. After testing, every specifications have reached the design requirements. The load is mainly used for the metrology of DC regulated power supply.
Reaction rate constant for radiative association of CF(.).
Öström, Jonatan; Bezrukov, Dmitry S; Nyman, Gunnar; Gustafsson, Magnus
2016-01-28
Reaction rate constants and cross sections are computed for the radiative association of carbon cations (C(+)) and fluorine atoms (F) in their ground states. We consider reactions through the electronic transition 1(1)Π → X(1)Σ(+) and rovibrational transitions on the X(1)Σ(+) and a(3)Π potentials. Semiclassical and classical methods are used for the direct contribution and Breit-Wigner theory for the resonance contribution. Quantum mechanical perturbation theory is used for comparison. A modified formulation of the classical method applicable to permanent dipoles of unequally charged reactants is implemented. The total rate constant is fitted to the Arrhenius-Kooij formula in five temperature intervals with a relative difference of <3%. The fit parameters will be added to the online database KIDA. For a temperature of 10-250 K, the rate constant is about 10(-21) cm(3) s(-1), rising toward 10(-16) cm(3) s(-1) for a temperature of 30,000 K.
Elastic constants of osmium between 5 and 300 K
NASA Astrophysics Data System (ADS)
Pantea, C.; Stroe, I.; Ledbetter, H.; Betts, J. B.; Zhao, Y.; Daemen, L. L.; Cynn, H.; Migliori, A.
2009-07-01
Using two measurement methods, pulse-echo ultrasound and resonance ultrasound spectroscopy, we measured the elastic constants of both monocrystal and polycrystal osmium between 5 and 300 K. Our measurements help to resolve the current measurement-and-theory controversy concerning whether osmium’s bulk modulus exceeds diamond’s. It does not at any temperature (for osmium, we find a zero-temperature bulk modulus of 410 GPa and a 300 K value of 405 GPa, while diamond’s value being 442 GPa). From the zero-temperature elastic constants, we extract a Debye temperature of 477 K. From Grüneisen’s first rule, we extract a Grüneisen parameter of 2.1, agreeing well with handbook values. Osmium shows near elastic anisotropy and small elastic constant changes with temperature (for example, the bulk modulus increases only about 1.2% upon cooling through the studied temperature interval). In all cases, the Cij(T) measurements agree well with an Einstein-oscillator model. We consider especially the Poisson ratio, which is low and anisotropic ( ν12=0.242 , ν13=0.196 ) and suggests some covalent interatomic bonding, which may account for osmium’s extreme high hardness and the departure of the 5d elements from Friedel’s parabolic bulk-modulus/atomic-number model.
Effects of rectangular microchannel aspect ratio on laminar friction constant
NASA Astrophysics Data System (ADS)
Papautsky, Ian; Gale, Bruce K.; Mohanty, Swomitra K.; Ameel, Timothy A.; Frazier, A. Bruno
1999-08-01
In this paper, the effects of rectangular microchannel aspect ratio on laminar friction constant are described. The behavior of fluids was studied using surface micromachined rectangular metallic pipette arrays. Each array consisted of 5 or 7 pipettes with widths varying from 150 micrometers to 600 micrometers and heights ranging from 22.71 micrometers to 26.35 micrometers . A downstream port for static pressure measurement was used to eliminate entrance effects. A controllable syringe pump was used to provide flow while a differential pressure transducer was used to record the pressure drop. The experimental data obtained for water for flows at Reynolds numbers below 10 showed an approximate 20% increase in the friction constant for a specified driving potential when compared to macroscale predictions from the classical Navier-Stokes theory. When the experimental data are studied as a function of aspect ratio, a 20% increase in the friction constant is evident at low aspect ratios. A similar increase is shown by the currently available experimental data for low Reynolds number (< 100) flows of water.
Curl force dynamics: symmetries, chaos and constants of motion
NASA Astrophysics Data System (ADS)
Berry, M. V.; Shukla, Pragya
2016-06-01
This is a theoretical study of Newtonian trajectories governed by curl forces, i.e. position-dependent but not derivable from a potential, investigating in particular the possible existence of conserved quantities. Although nonconservative and nonhamiltonian, curl forces are not dissipative because volume in the position–velocity state space is preserved. A physical example is the effective forces exerted on small particles by light. When the force has rotational symmetry, for example when generated by an isolated optical vortex, particles spiral outwards and escape, even with an attractive gradient force, however strong. Without rotational symmetry, and for dynamics in the plane, the state space is four-dimensional, and to search for possible constants of motion we introduce the Volume of section: a numerical procedure, in which orbits are plotted as dots in a three-dimensional subspace. For some curl forces, e.g. optical fields with two opposite-strength vortices, the dots lie on a surface, indicating a hidden constant of motion. For other curl forces, e.g. those from four vortices, the dots explore clouds, in an unfamiliar kind of chaos, suggesting that no constant of motion exists. The curl force dynamics generated by optical vortices could be studied experimentally.
Electronic transport in two-dimensional high dielectric constant nanosystems
Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.
2015-04-10
There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screeningmore » length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.« less
Voicing produced by a constant velocity lung source
Howe, M. S.; McGowan, R. S.
2013-01-01
An investigation is made of the influence of subglottal boundary conditions on the prediction of voiced sounds. It is generally assumed in mathematical models of voicing that vibrations of the vocal folds are maintained by a constant subglottal mean pressure pI, whereas voicing is actually initiated by contraction of the chest cavity until the subglottal pressure becomes large enough to separate the vocal folds. The problem is reformulated to determine voicing characteristics in terms of a prescribed volumetric flow rate Qo of air from the lungs—the evolution of the resulting time-dependent subglottal mean pressure p¯_(t) is then governed by glottal mechanics, the aeroacoustics of the vocal tract, and the influence of continued contraction of the lungs. The new problem is analyzed in detail for an idealized mechanical vocal system that permits precise specification of all boundary conditions. Predictions of the glottal volume velocity pulse shape are found to be in good general agreement with the traditional constant-pI theory when pI is set equal to the time averaged value of p¯_(t). But, in all cases examined the constant-pI approximation yields values of the mean flow rates Qo and sound pressure levels that are smaller by as much as 10%. PMID:23556600
Determination of kinetic constants of hybrid textile wastewater treatment system.
Sandhya, S; Sarayu, K; Swaminathan, K
2008-09-01
The present study is related to treatment of textile wastewater in microaerophilic-aerobic hybrid reactor. The study showed the effectiveness of biological treatment of wastewater involving appropriate microorganism and suitable reactors. COD and color were reduced to 82-94%, and 99% respectively for textile wastewater. The reactor was operated at highest loading of 16.4 g COD g l(-1)d(-1) and obtained 80% COD and 72% color removal. Biokinetic models were applied to data obtained from experimental studies in continuously operated hybrid reactor. Treatment efficiencies of the reactor were investigated at different hydraulic retention times (2.3-9.1d) and organic loading rates (2.6-16.4 g COD l(-1)d(-1)). Second-order and a Stover-Kincannon models were best fitted to the hybrid column reactor. The second-order substrate removal rate constant (k(2(S))) was found as 41.44 d(-1) for hybrid reactor. Applying the modified Stover-Kincannon model to the hybrid reactor, the maximum removal rate constant (U(max)) and saturation value constant (K(B)) were found to be 212 g l(-1)d(-1) and 22.89 g l(-1)d(-1), respectively.
Decay Constants of Beauty Mesons from QCD Sum Rules
NASA Astrophysics Data System (ADS)
Lucha, Wolfgang; Melikhov, Dmitri; Simula, Silvano
2014-11-01
Our recently completed analysis of the decay constants of both pseudoscalar and vector beauty mesons reveals that in the bottom-quark sector two specific features of the sum-rule predictions show up: (i) For the input value of the bottom-quark mass in the M̅S̅ scheme m̅b(m̅b) ≈ 4:18 GeV; the sum-rule result fB ≈ 210-220 MeV for the B meson decay constant is substantially larger than the recent lattice-QCD finding fB ≈ 190 MeV: Requiring QCD sum rules to reproduce the lattice-QCD value of fB yields a significantly larger b-quark mass: m̅b(m̅b) = 4:247 GeV: (ii) Whereas QCD sum-rule predictions for the charmed-meson decay constants fD; fDs, fD* and fDs* are practically independent of the choice of renormalization scale, in the beauty sector the results for the decay constants—and especially for the ratio fB* / fB—prove to be very sensitive to the specific scale setting.
[Body temperature and its importance as a vital constant].
Ruiz, Ma Nelia Soto; García, José Ma; Fernández, Blanca Marín
2009-09-01
The authors carried out a theoretical review about body temperature as a decisive vital sign to maintain homeostasis. Emphasis needs be placed on the importance of maintaining a constant temperature within a range of 36.8 degrees C +/- 0.4 degrees C. After a brief review about thermoregulation mechanisms and thermal behavior in living organisms, the authors emphasize human beings' property as a homeo-thermal entity with characteristics which enable him to maintain a relatively constant body temperature in spite of physiological variations which make this temperature fluctuate. Upon evaluation this constant, we distinguish between relative values for superficial and central temperatures, detailing those mechanisms which influence the production or loss of heat that intervene to regulate body temperature by means of physioiogical responses to old and heat. Finally, the authors describe the necessity to maintain boy temperature following Virginia Henderson's fourteen necessities scale, once the factors which could modify it are kno wn in order to comprehend the meaning of measurements and their subsequent interpretation which leads to distinct Nursing diagnoses directed towards achieving independence in resolving this necessity.
Electronic transport in two-dimensional high dielectric constant nanosystems
NASA Astrophysics Data System (ADS)
Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.
2015-04-01
There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.
Deeper Probing of the Fine-structure Constant
NASA Astrophysics Data System (ADS)
Goradia, Shantilal
2008-10-01
In our earlier attempt in [1] to derive fine-structure constant, one subtle reason why the natural logarithm of the age of the universe in Planck times comes out to be slightly greater than the reciprocal of the fine structure constant is that the variable W in Boltzmann's expression should be the age of the universe in Planck times divided by the bit depth for our specific application. Since we cannot decode the nature's bit depth, we cannot come up with the expected value of ALPHA. For an assumed bit depth of 10, the reciprocal of ALPHA goes down by ln10 (2.3) without having a significant impact on the order of magnitude of the baud rate (baud rate = bits per second/bit depth = 10^43 (Planck time/second)/10 = 10^42). Use of terms and equations from informatics in both of author's interrelated abstracts this meeting is meant to engage a wider audience simply. [1] Goradia, Shantilal ``What is Fine-structure Constant?'' http://www.arXiv.org/pdf/physics/0210040v3.
Elastic constants of beryllium: a first-principles investigation.
Dal Corso, Andrea
2016-02-24
We apply several recently introduced projector-augmented wave, ultrasoft, and norm-conserving pseudopotentials (PPs) to the calculation of the elastic constants of beryllium and compare the results with previous theory and experiments. We discuss how the elastic constants depend on the Brillouin zone integration, the PP type, and the exchange and correlation functional. We find that although in percentage terms the elastic constants of beryllium depend on the PPs more than the crystal parameters or the bulk moduli, the differences between the local density approximation (LDA) and the Perdew, Burke, and Ernzerhof (PBE) generalized-gradient approximation are larger than the PP differences. The LDA overestimates compared to experiments, while the PBE values are higher than those of experiments but show a much better agreement. The PBEsol functional gives values that are slightly higher than those from PBE, with differences comparable to the PP uncertainty. We propose a simple formula to rationalize the internal relaxations in hexagonal close-packed crystals and show that Be relaxations are in reasonable agreement with this formula. The effects of internal relaxations on the values of C11 and C12 amount to a few per cent of C11, but up to 50% of C12. PMID:26809146
SINGLE-PHOTON EMISSION COMPUTED TOMOGRAPHY: COMPENSATION FOR CONSTANT ATTENUATION
Gullberg, Grant T.; Budinger, Thomas F.
1980-06-01
A back-projection of filtered projection (BKFIL) reconstruction algorithm is presented that is applicable to single-photon emission computed tomography (ECT) in the presence of a constant attenuating medium such as the brain. The filters used in transmission computed tomography (TCT) - comprised of a ramp multiplied by window functions - are modified so that the single-photon ECT filter is a function of the constant attenuation coefficient. The filters give good reconstruction results with sufficient angular and lateral sampling. With continuous samples the BKFIL algorithm has a point spread function that is the Hankel transform of the window function. The resolution and s tistical properties of the filters are demonstrated by various simulations. Statistical formulas for the reconstructed image show that the square of the percent-root-mean square uncertainty (%RMS) of the reconstruction is inversely proportional to the total measured counts. The results indicate that constant attenuation can be compensated for in single-photon ECT by using an attenuation-dependent filter that reconstructs the transverse section reliably. Computer time requirements are two times that of conventional TCT or positron ECT and there is no increase in memory requirements.
Henry's law constants of some environmentally important aldehydes
Betterton, E.A.; Hoffmann, M.R.
1988-12-01
The Henry's law constants of seven aldehydes have been determined as a function of temperature by bubble-column and by head-space techniques. The compounds were chosen for their potential importance in the polluted troposphere and to allow structure-reactivity patterns to be investigated. The results (at 25/degree/C) are as follows (in units of M atm/sup /minus/1/): chloral, 3.44 /times/ 10/sup 5/; glyoxal, greater than or equal to3 /times/ 10/sup 5/; methylglyoxal, 3.71 /times/ 10/sup 3/; formaldehyde, 2.97 /times/ 10/sup 3/; benzaldehyde, 3.74 /times/ 10/sup 1/; hydroxyacetaldehyde, 4.14 /times/ 10/sup 4/; acetaldehyde, 1.14 /times/ 10/sup 1/. A plot of Taft's parameter, ..sigma..sigma*, vs log H* (the apparent Henry's law constant) gives a straight line with a slope of 1.72. H* for formaldehyde is anomalously high, as expected, but the extremely high value for hydroxyacetaldehyde was unexpected and may indicate that ..cap alpha..-hydroxy-substituted aldehydes could have an usually high affinity for the aqueous phase. The intrinsic Henry's law constants, H, corrected for hydration, do not show a clear structure-reactivity pattern for this series of aldehydes.
Time constant determination for electrical equivalent of biological cells
NASA Astrophysics Data System (ADS)
Dubey, Ashutosh Kumar; Dutta-Gupta, Shourya; Kumar, Ravi; Tewari, Abhishek; Basu, Bikramjit
2009-04-01
The electric field interactions with biological cells are of significant interest in various biophysical and biomedical applications. In order to study such important aspect, it is necessary to evaluate the time constant in order to estimate the response time of living cells in the electric field (E-field). In the present study, the time constant is evaluated by considering the hypothesis of electrical analog of spherical shaped cells and assuming realistic values for capacitance and resistivity properties of cell/nuclear membrane, cytoplasm, and nucleus. In addition, the resistance of cytoplasm and nucleoplasm was computed based on simple geometrical considerations. Importantly, the analysis on the basis of first principles shows that the average values of time constant would be around 2-3 μs, assuming the theoretical capacitance values and the analytically computed resistance values. The implication of our analytical solution has been discussed in reference to the cellular adaptation processes such as atrophy/hypertrophy as well as the variation in electrical transport properties of cellular membrane/cytoplasm/nuclear membrane/nucleoplasm.
Technique for measuring the dielectric constant of thin materials
NASA Technical Reports Server (NTRS)
Sarabandi, K.; Ulaby, F. T.
1988-01-01
A practical technique for measuring the dielectric constant of vegetation leaves and similarly thin materials is presented. A rectangular section of the leaf is placed in the tranverse plane in a rectangular waveguide and the magnitude and phase of the reflection coefficient are measured over the desired frequency band using a vector network analyzer. By treating the leaf as an infinitesimally thin resistive sheet, an explicit expression for its dielectric constant is obtained in terms of the reflection coefficient. Because of the thin-sheet approximation, however, this approach is valid only at frequencies below 1.5 GHz. To extend the technique to higher frequencies, higher order approximations are derived and their accuracies are compared to the exact dielectric-slab solution. For a material whose thickness is 0.5 mm or less, the proposed technique was found to provide accurate values of its dielectric constant up to frequencies of 12 GHz or higher. The technique was used to measure the 8 to 12 GHz dielectric spectrum for vegetation leaves, teflon and rock samples.
Analytical model of infiltration under constant-concentration boundary conditions
NASA Astrophysics Data System (ADS)
Triadis, D.; Broadbridge, P.
2010-03-01
Known integrable models for 1D flow in unsaturated soil have a rescaled soil water diffusivity that is either constant or proportional to C(C - 1)/(C - Θ)2, where Θ is the degree of saturation and C > 1 is constant. With a wider more realistic range of hydraulic conductivity functions than has been used in this context before, a formal series solution is developed for infiltration, subject to constant-concentration boundary conditions. A readily programmed iteration algorithm, applicable for any value of C, is used to construct many coefficients of the infiltration series without requiring any numerical integration. In particular, for either C - 1 small or 1/C small, several infiltration series coefficients are constructed as formal power series in C - 1 or in 1/C, for which we construct a number of terms explicitly. In the limit as the diffusivity approaches a delta function, the infiltration coefficients are obtained in simpler closed form. All but the sorptivity depend on the form of the conductivity function.
Electronic transport in two-dimensional high dielectric constant nanosystems
Ortuño, M.; Somoza, A. M.; Vinokur, V. M.; Baturina, T. I.
2015-04-10
There has been remarkable recent progress in engineering high-dielectric constant two dimensional (2D) materials, which are being actively pursued for applications in nanoelectronics in capacitor and memory devices, energy storage, and high-frequency modulation in communication devices. Yet many of the unique properties of these systems are poorly understood and remain unexplored. Here we report a numerical study of hopping conductivity of the lateral network of capacitors, which models two-dimensional insulators, and demonstrate that 2D long-range Coulomb interactions lead to peculiar size effects. We find that the characteristic energy governing electronic transport scales logarithmically with either system size or electrostatic screening length depending on which one is shorter. Our results are relevant well beyond their immediate context, explaining, for example, recent experimental observations of logarithmic size dependence of electric conductivity of thin superconducting films in the critical vicinity of superconductor-insulator transition where a giant dielectric constant develops. Our findings mark a radical departure from the orthodox view of conductivity in 2D systems as a local characteristic of materials and establish its macroscopic global character as a generic property of high-dielectric constant 2D nanomaterials.
Parameter identification of material constants in a composite shell structure
Martinez, D.R.; Carne, T.G.
1988-01-01
One of the basic requirements in engineering analysis is the development of a mathematical model describing the system. Frequently, comparisons with test data are used as a measurement of the adequacy of the model. An attempt is typically made to update or improve the model to provide a test-verified analysis tool. System identification provides a systematic procedure for accomplishing this task. The terms system identification, parameter estimation, and model correlation all refer to techniques that use test information to update or verify mathematical models. The goal of system identification is to improve the correlation of model predictions with measured test data, and produce accurate, predictive models. For nonmetallic structures the modeling task is often difficult due to uncertainties in the elastic constants. In this work a parameter identification procedure was used to determine the elastic constants of a cylindrical, graphite epoxy composite shell. A finite element model of the shell was created, which included uncertain orthotropic elastic constants. A modal survey test was then performed on the shell. The resulting modal data, along with the finite element model of the shell, were used in a Bayes estimation algorithm. This permitted the use of covariance matrices to weight the confidence in the initial parameter values as well as confidence in the measured test data. The estimation procedure also employed the concept of successive linearization to obtain an approximate solution to the original nonlinear estimation problem. 17 refs., 7 figs.
Vacuum-Assisted, Constant-Force Exercise Device
NASA Technical Reports Server (NTRS)
Hansen, Christopher P.; Jensen, Scott
2006-01-01
The vacuum-assisted, constant-force exercise device (VAC-FED) has been proposed to fill a need for a safe, reliable exercise machine that would provide constant loads that could range from 20 to 250 lb (0.09 to 1.12 kN) with strokes that could range from 6 to 36 in. (0.15 to 0.91 m). The VAC-FED was originally intended to enable astronauts in microgravity to simulate the lifting of free weights, but it could just as well be used on Earth for simulated weight lifting and other constant-force exercises. Because the VAC-FED would utilize atmospheric/vacuum differential pressure instead of weights to generate force, it could weigh considerably less than either a set of free weights or a typical conventional exercise machine based on weights. Also, the use of atmospheric/ vacuum differential pressure to generate force would render the VAC-FED inherently safer, relative to free weights and to conventional exercise machines that utilize springs to generate forces. The overall function of the VAC-FED would be to generate a constant tensile force in an output cable, which would be attached to a bar, handle, or other exercise interface. The primary force generator in the VAC-FED would be a piston in a cylinder. The piston would separate a volume vented to atmosphere at one end of the cylinder from an evacuated volume at the other end of the cylinder (see figure). Hence, neglecting friction at the piston seals, the force generated would be nearly constant equal to the area of the piston multiplied by the atmospheric/vacuum differential pressure. In the vented volume in the cylinder, a direct-force cable would be looped around a pulley on the piston, doubling the stroke and halving the tension. One end of the direct-force cable would be anchored to a cylinder cap; the other end of the direct-force cable would be wrapped around a variable-ratio pulley that would couple tension to the output cable. As its name suggests, the variable-ratio pulley would contain a mechanism that
NASA Technical Reports Server (NTRS)
Schlosser, Herbert
1992-01-01
In this note we present two expressions relating the cohesive energy, E(sub coh), and the zero pressure isothermal bulk modulus, B(sub 0), of the alkali halides. Ag halides and TI halides, with the nearest neighbor distances, d(sub nn). First, we show that the product E(sub coh)d(sub 0) within families of halide crystals with common crystal structure is to a good approximation constant, with maximum rms deviation of plus or minus 2%. Secondly, we demonstrate that within families of halide crystals with a common cation and common crystal structure the product B(sub 0)d(sup 3.5)(sub nn) is a good approximation constant, with maximum rms deviation of plus or minus 1.36%.
Infrared Spectra and Optical Constants of Acetylene and Ethane Ices
NASA Astrophysics Data System (ADS)
Moore, Marla H.; Ferrante, R. F.; Hudson, R. L.; Moore, W. J.
2012-10-01
Hydrocarbon-containing ices have characteristic absorption bands in both the mid- and near-infrared spectral regions, yet accurate optical constants are not available for most of these molecules. Ices with a hydrocarbon component have been identified on several TNOs (1) and the presence of volatiles, such as hydrocarbons, is inferred for intermediate or large TNOs based on sublimation models (2, 3). In our laboratory we recently have undertaken low-temperature spectroscopic studies of C2 hydrocarbons. We report IR spectra for acetylene (C2H2) and ethane (C2H6) ice in both the amorphous and crystalline phases at multiple temperatures. We include measurements of the refractive index at 670 nm for both the amorphous and crystalline phases of each ice. The optical constants, the real (n) and imaginary (k) components of the complex index of refraction, were determined from 7000 - 400 cm-1 (1.4 - 25 microns) at multiple temperatures using a Kramers-Kronig analysis. A goal of the present work is to provide a data base of optical constants of C2 molecules similar to that of Hudgins et al. (4) and Moore et al. (5). These values, as well as our calculated individual band strengths, will have great practical importance for the ongoing analysis of TNO spectra. (1) Brown, M.E. et al., Astron J., 133, 284, 2007. (2) Delsanti, A. et al., A&A, 52, A40, 2010. (3) Schaller, E. L. & Brown, M. E., ApJ, 659, L61, 2007. (4) Hudgins, D. M. et al., ApJS, 86, 713, 1993. (5) Moore, M. H. et al., ApJS, 191, 96, 2010. This work is supported by NASA’s Planetary Atmospheres, Outer Planets, and Cassini Data Analysis programs, and The Goddard Center for Astrobiology.
High dielectric constant polymer nanocomposites for embedded capacitor applications
NASA Astrophysics Data System (ADS)
Lu, Jiongxin
Driven by ever growing demands of miniaturization, increased functionality, high performance and low cost for microelectronic products and packaging, embedded passives will be one of the key emerging techniques for realizing the system integration which offer various advantages over traditional discrete components. Novel materials for embedded capacitor applications are in great demand, for which a high dielectric constant ( k), low dielectric loss and process compatibility with printed circuit boards are the most important prerequisites. To date, no available material satisfies all these prerequisites and research is needed to develop materials for embedded capacitor applications. Conductive filler/polymer composites are likely candidate material because they show a dramatic increase in their dielectric constant close to the percolation threshold. One of the major hurdles for this type of high-k composites is the high dielectric loss inherent in these systems. In this research, material and process innovations were explored to design and develop conductive filler/polymer nanocomposites based on nanoparticles with controlled parameters to fulfill the balance between sufficiently high-k and low dielectric loss, which satisfied the requirements for embedded capacitor applications. This work involved the synthesis of the metal nanoparticles with different parameters including size, size distribution, aggregation and surface properties, and an investigation on how these varied parameters impact the dielectric properties of the high-k nanocomposites incorporated with these metal nanoparticles. The dielectric behaviors of the nanocomposites were studied systematically over a range of frequencies to determine the dependence of dielectric constant, dielectric loss tangent and dielectric strength on these parameters.
Initial conditions of inhomogeneous universe and the cosmological constant problem
NASA Astrophysics Data System (ADS)
Totani, Tomonori
2016-06-01
Deriving the Einstein field equations (EFE) with matter fluid from the action principle is not straightforward, because mass conservation must be added as an additional constraint to make rest-frame mass density variable in reaction to metric variation. This can be avoided by introducing a constraint 0δ(√-g) = to metric variations δ gμν, and then the cosmological constant Λ emerges as an integration constant. This is a removal of one of the four constraints on initial conditions forced by EFE at the birth of the universe, and it may imply that EFE are unnecessarily restrictive about initial conditions. I then adopt a principle that the theory of gravity should be able to solve time evolution starting from arbitrary inhomogeneous initial conditions about spacetime and matter. The equations of gravitational fields satisfying this principle are obtained, by setting four auxiliary constraints on δ gμν to extract six degrees of freedom for gravity. The cost of achieving this is a loss of general covariance, but these equations constitute a consistent theory if they hold in the special coordinate systems that can be uniquely specified with respect to the initial space-like hypersurface when the universe was born. This theory predicts that gravity is described by EFE with non-zero Λ in a homogeneous patch of the universe created by inflation, but Λ changes continuously across different patches. Then both the smallness and coincidence problems of the cosmological constant are solved by the anthropic argument. This is just a result of inhomogeneous initial conditions, not requiring any change of the fundamental physical laws in different patches.
Recent SFR calibrations and the constant SFR approximation
NASA Astrophysics Data System (ADS)
Cerviño, M.; Bongiovanni, A.; Hidalgo, S.
2016-05-01
Aims: Star formation rate (SFR) inferences are based on the so-called constant SFR approximation, where synthesis models are required to provide a calibration. We study the key points of such an approximation with the aim to produce accurate SFR inferences. Methods: We use the intrinsic algebra of synthesis models and explore how the SFR can be inferred from the integrated light without any assumption about the underlying star formation history (SFH). Results: We show that the constant SFR approximation is a simplified expression of deeper characteristics of synthesis models: It characterizes the evolution of single stellar populations (SSPs), from which the SSPs as a sensitivity curve over different measures of the SFH can be obtained. As results, we find that (1) the best age to calibrate SFR indices is the age of the observed system (i.e., about 13 Gyr for z = 0 systems); (2) constant SFR and steady-state luminosities are not required to calibrate the SFR; (3) it is not possible to define a single SFR timescale over which the recent SFH is averaged, and we suggest to use typical SFR indices (ionizing flux, UV fluxes) together with untypical ones (optical or IR fluxes) to correct the SFR for the contribution of the old component of the SFH. We show how to use galaxy colors to quote age ranges where the recent component of the SFH is stronger or softer than the older component. Conclusions: Despite of SFR calibrations are unaffected by this work, the meaning of results obtained by SFR inferences does. In our framework, results such as the correlation of SFR timescales with galaxy colors, or the sensitivity of different SFR indices to variations in the SFH, fit naturally. This framework provides a theoretical guide-line to optimize the available information from data and numerical experiments to improve the accuracy of SFR inferences.
Initial conditions of inhomogeneous universe and the cosmological constant problem
NASA Astrophysics Data System (ADS)
Totani, Tomonori
2016-06-01
Deriving the Einstein field equations (EFE) with matter fluid from the action principle is not straightforward, because mass conservation must be added as an additional constraint to make rest-frame mass density variable in reaction to metric variation. This can be avoided by introducing a constraint 0δ(√‑g) = to metric variations δ gμν, and then the cosmological constant Λ emerges as an integration constant. This is a removal of one of the four constraints on initial conditions forced by EFE at the birth of the universe, and it may imply that EFE are unnecessarily restrictive about initial conditions. I then adopt a principle that the theory of gravity should be able to solve time evolution starting from arbitrary inhomogeneous initial conditions about spacetime and matter. The equations of gravitational fields satisfying this principle are obtained, by setting four auxiliary constraints on δ gμν to extract six degrees of freedom for gravity. The cost of achieving this is a loss of general covariance, but these equations constitute a consistent theory if they hold in the special coordinate systems that can be uniquely specified with respect to the initial space-like hypersurface when the universe was born. This theory predicts that gravity is described by EFE with non-zero Λ in a homogeneous patch of the universe created by inflation, but Λ changes continuously across different patches. Then both the smallness and coincidence problems of the cosmological constant are solved by the anthropic argument. This is just a result of inhomogeneous initial conditions, not requiring any change of the fundamental physical laws in different patches.
Electrical constants of arterially perfused rabbit papillary muscle.
Kléber, A G; Riegger, C B
1987-01-01
1. Right ventricular rabbit papillary muscles were arterially perfused with a mixture of Tyrode solution, bovine erythrocytes, dextran and albumin. In the recording chamber, they were surrounded by a H2O-saturated atmosphere of O2 and CO2 which served as an electrical insulator. 2. Conduction velocity and passive electrical properties were determined from intra- and extracellular potentials measured during excitation and during flow of subthreshold current. 3. The propagation of the action potential was linear along the muscle at a velocity of 55.6 cm/s. The extracellular wave-front voltage was 51.5 mV. 4. The following values for passive cable properties were obtained: (i) a ratio of extra- to intracellular longitudinal resistance of 1.2; (ii) an extracellular specific resistance (Ro) of 63 omega cm; (iii) an intracellular specific resistance (Ri) of 166 omega cm; (iv) a space constant lambda of 0.357 mm; (v) a membrane time constant tau of 2.57 ms. The space constant lambda* recalculated for zero extracellular resistance was 0.528 mm. 5. Arresting perfusion with drop of perfusion pressure was associated with an immediate increase of the extracellular longitudinal resistance by 35% and a decrease of conduction velocity by 13%. 6. The present results demonstrate the important contribution of the extracellular resistance to electrotonic interaction and propagation in densely packed myocardial tissue. Moreover, changes in perfusion pressure are associated with changes in extracellular resistance, probably as a consequence of changes in intravascular volume. PMID:3656162
The cosmological constant problem and re-interpretation of time
NASA Astrophysics Data System (ADS)
Luo, M. J.
2014-07-01
We abandon the interpretation that time is a global parameter in quantum mechanics, replace it by a quantum dynamical variable playing the role of time. This operational re-interpretation of time provides a solution to the cosmological constant problem. The expectation value of the zero-point energy under the new time variable vanishes. The fluctuation of the vacuum energy as the leading contribution to the gravitational effect gives a correct order to the observed "dark energy". The "dark energy" as a mirage is always seen comparable with the matter energy density by an observer using the internal clock time. Conceptual consequences of the re-interpretation of time are also discussed.
Pure odd-order oscillators with constant excitation
NASA Astrophysics Data System (ADS)
Cveticanin, L.
2011-02-01
In this paper the excited vibrations of a truly nonlinear oscillator are analyzed. The excitation is assumed to be constant and the nonlinearity is pure (without a linear term). The mathematical model is a second-order nonhomogeneous differential equation with strong nonlinear term. Using the first integral, the exact value of period of vibration i.e., angular frequency of oscillator described with a pure nonlinear differential equation with constant excitation is analytically obtained. The closed form solution has the form of gamma function. The period of vibration depends on the value of excitation and of the order and coefficient of the nonlinear term. For the case of pure odd-order-oscillators the approximate solution of differential equation is obtained in the form of trigonometric function. The solution is based on the exact value of period of vibration. For the case when additional small perturbation of the pure oscillator acts, the so called 'Cveticanin's averaging method' for a truly nonlinear oscillator is applied. Two special cases are considered: one, when the additional term is a function of distance, and the second, when damping acts. To prove the correctness of the method the obtained results are compared with those for the linear oscillator. Example of pure cubic oscillator with constant excitation and linear damping is widely discussed. Comparing the analytically obtained results with exact numerical ones it is concluded that they are in a good agreement. The investigations reported in the paper are of special interest for those who are dealing with the problem of vibration reduction in the oscillator with constant excitation and pure nonlinear restoring force the examples of which can be found in various scientific and engineering systems. For example, such mechanical systems are seats in vehicles, supports for machines, cutting machines with periodical motion of the cutting tools, presses, etc. The examples can be find in electronics
Reassessment of the calibration constant for the IAsys biosensor.
Hall, D R; Winzor, D J
1999-06-01
A magnitude of 50 are s ng-1 mm2 has been determined for the calibration constant relating biosensor response to the amount of protein bound to the sensor surface of an IAsys cuvette. These studies entailed enzymatic assessment of the extent of lactate dehydrogenase depletion in the liquid phase arising from enzyme binding to a carboxymethyldextran-coated sensor surface, and also estimation of a maximum biosensor response for the electrostatic interaction of ovalbumin with an aminosilane-coated sensor surface. The latter results required correction for contributions to biosensor response resulting from changes in the refractive index of the liquid phase effected by high protein concentrations.
Growing oral biofilms in a constant depth film fermentor (CDFF).
Pratten, Jonathan
2007-08-01
In order to grow organisms in such a manner as to mimic their physiological growth state in vivo, it is often desirable to grow them as biofilms in the laboratory. There are numerous systems available to accomplish this; however, some are more suited to the growth of oral biofilms (dental plaque) than others. The operating parameters of one such model, the constant depth film fermentor (CDFF), are given in this unit. This model is particularly suited to studying the varied biofilms which exist in the oral cavity because environmental factors such as the substratum, nutrient source, and gas flow can be altered.
Balanced anesthesia and constant-rate infusions in horses.
Valverde, Alexander
2013-04-01
Balanced anesthetic techniques are commonly used in equine patients, and include the combination of a volatile anesthetic with at least one injectable anesthetic throughout the maintenance period. Injectable anesthetics used in balanced anesthesia include the α2-agonists, lidocaine, ketamine, and opioids, and those with muscle-relaxant properties such as benzodiazepines and guaifenesin. Administration of these injectable anesthetics is best using constant-rate infusions based on the pharmacokinetics of the drug, which allows steady-state concentrations and predictable pharmacodynamic actions. This review summarizes the different drug combinations used in horses, and provides calculated recommended doses based on the pharmacokinetics of individual drugs. PMID:23498047
Constant strain frequency sweep measurements on granite rock.
Haller, Kristian C E; Hedberg, Claes M
2008-02-15
Like many materials, granite exhibits both nonlinear acoustic distortion and slow nonequilibrium dynamics. Measurements to date have shown a response from both phenomena simultaneously, thus cross-contaminating the results. In this Letter, constant strain frequency sweep measurements eliminate the slow dynamics and, for the first time, permit evaluation of nonlinearity by itself characterized by lower resonance frequencies and a steeper slope. Measurements such as these are necessary for the fundamental understanding of material dynamics, and for the creation and validation of descriptive models.
Rotating and accelerating black holes with a cosmological constant
NASA Astrophysics Data System (ADS)
Chen, Yu; Ng, Cheryl; Teo, Edward
2016-08-01
We propose a new form of the rotating C-metric with cosmological constant, which generalizes the form found by Hong and Teo for the Ricci-flat case. This solution describes the entire class of spherical black holes undergoing rotation and acceleration in dS or AdS space-time. The new form allows us to identify the complete ranges of coordinates and parameters of this solution. We perform a systematic study of its geometrical and physical properties, and of the various limiting cases that arise from it.
Computing classically exact diffusion constants using short-time trajectories
Voter, A. F.
1989-07-10
The classical diffusion constant of a point defect in an infinite lattice of binding sites is shown to be expressible as transition-state-theory rates multiplied by dynamical correction factors computed from short-time classical trajectories initiated at the site boundaries. The expression, which results from time differentiating the lattice-discretized mean-square displacement, is valid at any temperature for which the site lattice is well defined. It thus avoids both the time-scale limitations of direct molecular dynamics and the rare-event requirements of standard dynamical-correction methods.
Acceleration of a slab driven by a constant pressure piston
Diez, J. A.; Thomas, L. P.
1989-08-01
The sequence of shock and rarefaction waves, which occur in a plane layer of ideal gas initially at rest when it is driven toward the vacuum by a very high constant pressure piston, is studied. In the rarefaction flow that relaxes the layer compressed by the first strong shock, a second shock is generated. The time and position of its formation are obtained by an exact analytical expression. The subsequent motion and intensity of the shock wave are approximated by the Chester--Chisnell--Whitham (CCW) method. Then, the Lagrangian distribution of entropy in the layer is analytically derived.
Determination of the Universal Gas Constant, R. A Discovery Laboratory
NASA Astrophysics Data System (ADS)
Moss, David B.; Cornely, Kathleen
2001-09-01
This experiment combines published procedures for the generation of three gases (hydrogen, nitrogen, and oxygen) and adapts them so that they can be used with a single gas-generation and collection apparatus. Working in collaborative groups, students determine density and number density for each gas. By comparing values for these two quantities in a post-lab discussion, students "discover" Avogadro's assertion that equal volumes contain equal numbers of particles and demonstrate that R has a single value for all three gases under consideration and so is truly a universal constant.
Elastic constants of Transversely Isotropically Porous (TIP) materials
Tuchinskii, L.I.; Kalimova, N.L.
1994-11-01
The authors derive formulas describing the dependence of the elastic characteristics of multicapillary materials on the capillary porosity. The investigated materials are classified as transversely isotropic, and the anisotropy in their properties is the result of the directionality of the capillary pores. Analysis of the dependences obtained has shown that the elasticity moduli of these materials may be calculated using formulas suggested for reinforced materials, in which the elastic constants of the fibers are assumed to be equal to zero. The authors derive a relation between the Poisson`s ratios and the capillary porosity.