Sample records for essential cellular components

  1. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    ERIC Educational Resources Information Center

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do…

  2. Regulation of cellular senescence by the essential caveolar component PTRF/Cavin-1

    PubMed Central

    Bai, Lin; Deng, Xiaoli; Li, Juanjuan; Wang, Miao; Li, Qian; An, Wei; A, Deli; Cong, Yu-Sheng

    2011-01-01

    Polymerase I and transcript release factor (PTRF, also known as Cavin-1) is an essential component in the biogenesis and function of caveolae. Here, we show that PTRF expression is increased in senescent human fibroblasts. Importantly, overexpression of PTRF induced features characteristic of cellular senescence, whereas reduced PTRF expression extended the cellular replicative lifespan. Interestingly, we found that PTRF localized primarily to the nuclei of young and quiescent WI-38 human fibroblasts, but translocated to the cytosol and plasma membrane during cellular senescence. Furthermore, electron microscopic analysis demonstrated an increased number of caveolar structures in senescent and PTRF-transfected WI-38 cells. Our data suggest that the role of PTRF in cellular senescence is dependent on its targeting to caveolae and its interaction with caveolin-1, which appeared to be regulated by the phosphorylation of PTRF. Taken together, our findings identify PTRF as a novel regulator of cellular senescence that acts through the p53/p21 and caveolar pathways. PMID:21445100

  3. At a glance: cellular biology for engineers.

    PubMed

    Khoshmanesh, K; Kouzani, A Z; Nahavandi, S; Baratchi, S; Kanwar, J R

    2008-10-01

    Engineering contributions have played an important role in the rise and evolution of cellular biology. Engineering technologies have helped biologists to explore the living organisms at cellular and molecular levels, and have created new opportunities to tackle the unsolved biological problems. There is now a growing demand to further expand the role of engineering in cellular biology research. For an engineer to play an effective role in cellular biology, the first essential step is to understand the cells and their components. However, the stumbling block of this step is to comprehend the information given in the cellular biology literature because it best suits the readers with a biological background. This paper aims to overcome this bottleneck by describing the human cell components as micro-plants that form cells as micro-bio-factories. This concept can accelerate the engineers' comprehension of the subject. In this paper, first the structure and function of different cell components are described. In addition, the engineering attempts to mimic various cell components through numerical modelling or physical implementation are highlighted. Next, the interaction of different cell components that facilitate complicated chemical processes, such as energy generation and protein synthesis, are described. These complex interactions are translated into simple flow diagrams, generally used by engineers to represent multi-component processes.

  4. Rethinking iron regulation and assessment in iron deficiency, the anemia of chronic disease, and obesity: introducing Hepcidin

    USDA-ARS?s Scientific Manuscript database

    Adequate iron availability is essential to human development and overall health. Iron is a key component of oxygen-carrying proteins; a vital player in cellular metabolism, and essential to cell growth and differentiation. Tight regulation of iron at the systemic and cytosolic level is necessary bec...

  5. A simple and fast method for fixation of cultured cell lines that preserves cellular structures containing gamma-tubulin.

    PubMed

    Alvarado-Kristensson, Maria

    2018-01-01

    When using fluorescence microscope techniques to study cells, it is essential that the cell structure and contents are preserved after preparation of the samples, and that the preparation method employed does not create artefacts that can be perceived as cellular structure/components. γ-Tubulin forms filaments that in some cases are immunostained with an anti-γ-tubulin antibody, but this immunostaining is not reproducible [[1], [2

  6. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation

    PubMed Central

    Chang, Jaerak; Lee, Seongju; Blackstone, Craig

    2014-01-01

    Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common autosomal recessive hereditary spastic paraplegia gene products, the SPG15 protein spastizin and the SPG11 protein spatacsin, are pivotal for autophagic lysosome reformation (ALR), a pathway that generates new lysosomes. Lysosomal targeting of spastizin required an intact FYVE domain, which binds phosphatidylinositol 3-phosphate. Loss of spastizin or spatacsin resulted in depletion of free lysosomes, which are competent to fuse with autophagosomes, and an accumulation of autolysosomes, reflecting a failure in ALR. Moreover, spastizin and spatacsin were essential components for the initiation of lysosomal tubulation. Together, these results link dysfunction of the autophagy/lysosomal biogenesis machinery to neurodegeneration. PMID:25365221

  7. Spastic paraplegia proteins spastizin and spatacsin mediate autophagic lysosome reformation.

    PubMed

    Chang, Jaerak; Lee, Seongju; Blackstone, Craig

    2014-12-01

    Autophagy allows cells to adapt to changes in their environment by coordinating the degradation and recycling of cellular components and organelles to maintain homeostasis. Lysosomes are organelles critical for terminating autophagy via their fusion with mature autophagosomes to generate autolysosomes that degrade autophagic materials; therefore, maintenance of the lysosomal population is essential for autophagy-dependent cellular clearance. Here, we have demonstrated that the two most common autosomal recessive hereditary spastic paraplegia gene products, the SPG15 protein spastizin and the SPG11 protein spatacsin, are pivotal for autophagic lysosome reformation (ALR), a pathway that generates new lysosomes. Lysosomal targeting of spastizin required an intact FYVE domain, which binds phosphatidylinositol 3-phosphate. Loss of spastizin or spatacsin resulted in depletion of free lysosomes, which are competent to fuse with autophagosomes, and an accumulation of autolysosomes, reflecting a failure in ALR. Moreover, spastizin and spatacsin were essential components for the initiation of lysosomal tubulation. Together, these results link dysfunction of the autophagy/lysosomal biogenesis machinery to neurodegeneration.

  8. The Predator becomes the Prey: Regulating the Ubiquitin System by Ubiquitylation and Degradation

    PubMed Central

    Weissman, Allan M.; Shabek, Nitzan; Ciechanover, Aaron

    2012-01-01

    Ubiquitylation (also known as ubiquitination) regulates essentially all intracellular processes in eukaryotes through highly specific, and often tightly spatially and temporally regulated, modification of numerous cellular proteins. Although most often associated with proteasomal degradation, ubiquitylation frequently serves non-proteolytic functions. In light of its central roles in cellular regulation, it has not been surprising to find that many of the components of the ubiquitin system itself are regulated by ubiquitylation. This observation has broad implications for pathophysiology. PMID:21860393

  9. Exploration of cellular reaction systems.

    PubMed

    Kirkilionis, Markus

    2010-01-01

    We discuss and review different ways to map cellular components and their temporal interaction with other such components to different non-spatially explicit mathematical models. The essential choices made in the literature are between discrete and continuous state spaces, between rule and event-based state updates and between deterministic and stochastic series of such updates. The temporal modelling of cellular regulatory networks (dynamic network theory) is compared with static network approaches in two first introductory sections on general network modelling. We concentrate next on deterministic rate-based dynamic regulatory networks and their derivation. In the derivation, we include methods from multiscale analysis and also look at structured large particles, here called macromolecular machines. It is clear that mass-action systems and their derivatives, i.e. networks based on enzyme kinetics, play the most dominant role in the literature. The tools to analyse cellular reaction networks are without doubt most complete for mass-action systems. We devote a long section at the end of the review to make a comprehensive review of related tools and mathematical methods. The emphasis is to show how cellular reaction networks can be analysed with the help of different associated graphs and the dissection into modules, i.e. sub-networks.

  10. Building robust functionality in synthetic circuits using engineered feedback regulation.

    PubMed

    Chen, Susan; Harrigan, Patrick; Heineike, Benjamin; Stewart-Ornstein, Jacob; El-Samad, Hana

    2013-08-01

    The ability to engineer novel functionality within cells, to quantitatively control cellular circuits, and to manipulate the behaviors of populations, has many important applications in biotechnology and biomedicine. These applications are only beginning to be explored. In this review, we advocate the use of feedback control as an essential strategy for the engineering of robust homeostatic control of biological circuits and cellular populations. We also describe recent works where feedback control, implemented in silico or with biological components, was successfully employed for this purpose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Chemical composition and phagocyte immunomodulatory activity of Ferula iliensis essential oils.

    PubMed

    Özek, Gulmira; Schepetkin, Igor A; Utegenova, Gulzhakhan A; Kirpotina, Liliya N; Andrei, Spencer R; Özek, Temel; Başer, Kemal Hüsnü Can; Abidkulova, Karime T; Kushnarenko, Svetlana V; Khlebnikov, Andrei I; Damron, Derek S; Quinn, Mark T

    2017-06-01

    Essential oil extracts from Ferula iliensis have been used traditionally in Kazakhstan for treatment of inflammation and other illnesses. Because little is known about the biologic activity of these essential oils that contributes to their therapeutic properties, we analyzed their chemical composition and evaluated their phagocyte immunomodulatory activity. The main components of the extracted essential oils were ( E )-propenyl sec -butyl disulfide (15.7-39.4%) and ( Z )-propenyl sec -butyl disulfide (23.4-45.0%). Ferula essential oils stimulated [Ca 2+ ] i mobilization in human neutrophils and activated ROS production in human neutrophils and murine bone marrow phagocytes. Activation of human neutrophil [Ca 2+ ] i flux by Ferula essential oils was dose-dependently inhibited by capsazepine, a TRPV1 channel antagonist, indicating that TRPV1 channels mediate this response. Furthermore, Ferula essential oils stimulated Ca 2+ influx in TRPV1 channel-transfected HEK293 cells and desensitized the capsaicin-induced response in these cells. Additional molecular modeling with known TRPV1 channel agonists suggested that the active component is likely to be ( Z )-propenyl sec -butyl disulfide. Our results provide a cellular and molecular basis to explain at least part of the beneficial therapeutic properties of FEOs. © Society for Leukocyte Biology.

  12. Lipids, lysosomes, and autophagy

    PubMed Central

    2016-01-01

    Lipids are essential components of a cell providing energy substrates for cellular processes, signaling intermediates, and building blocks for biological membranes. Lipids are constantly recycled and redistributed within a cell. Lysosomes play an important role in this recycling process that involves the recruitment of lipids to lysosomes via autophagy or endocytosis for their degradation by lysosomal hydrolases. The catabolites produced are redistributed to various cellular compartments to support basic cellular function. Several studies demonstrated a bidirectional relationship between lipids and lysosomes that regulate autophagy. While lysosomal degradation pathways regulate cellular lipid metabolism, lipids also regulate lysosome function and autophagy. In this review, we focus on this bidirectional relationship in the context of dietary lipids and provide an overview of recent evidence of how lipid-overload lipotoxicity, as observed in obesity and metabolic syndrome, impairs lysosomal function and autophagy that may eventually lead to cellular dysfunction or cell death. PMID:27330054

  13. Creation of a virtual cutaneous tissue bank

    NASA Astrophysics Data System (ADS)

    LaFramboise, William A.; Shah, Sujal; Hoy, R. W.; Letbetter, D.; Petrosko, P.; Vennare, R.; Johnson, Peter C.

    2000-04-01

    Cellular and non-cellular constituents of skin contain fundamental morphometric features and structural patterns that correlate with tissue function. High resolution digital image acquisitions performed using an automated system and proprietary software to assemble adjacent images and create a contiguous, lossless, digital representation of individual microscope slide specimens. Serial extraction, evaluation and statistical analysis of cutaneous feature is performed utilizing an automated analysis system, to derive normal cutaneous parameters comprising essential structural skin components. Automated digital cutaneous analysis allows for fast extraction of microanatomic dat with accuracy approximating manual measurement. The process provides rapid assessment of feature both within individual specimens and across sample populations. The images, component data, and statistical analysis comprise a bioinformatics database to serve as an architectural blueprint for skin tissue engineering and as a diagnostic standard of comparison for pathologic specimens.

  14. Bioinformatical and in vitro approaches to essential oil-induced matrix metalloproteinase inhibition.

    PubMed

    Zeidán-Chuliá, Fares; Rybarczyk-Filho, José L; Gursoy, Mervi; Könönen, Eija; Uitto, Veli-Jukka; Gursoy, Orhan V; Cakmakci, Lutfu; Moreira, José C F; Gursoy, Ulvi K

    2012-06-01

    Essential oils carry diverse antimicrobial and anti-enzymatic properties. Matrix metalloproteinase (MMP) inhibition characteristics of Salvia fruticosa Miller (Labiatae), Myrtus communis Linnaeus (Myrtaceae), Juniperus communis Linnaeus (Cupressaceae), and Lavandula stoechas Linnaeus (Labiatae) essential oils were evaluated. Chemical compositions of the essential oils were analyzed by gas chromatography-mass spectrometry (GC-MS). Bioinformatical database analysis was performed by STRING 9.0 and STITCH 2.0 databases, and ViaComplex software. Antibacterial activity of essential oils against periodontopathogens was tested by the disc diffusion assay and the agar dilution method. Cellular proliferation and cytotoxicity were determined by commercial kits. MMP-2 and MMP-9 activities were measured by zymography. Bioinformatical database analyses, under a score of 0.4 (medium) and a prior correction of 0.0, gave rise to a model of protein (MMPs and tissue inhibitors of metalloproteinases) vs. chemical (essential oil components) interaction network; where MMPs and essential oil components interconnected through interaction with hydroxyl radicals, molecular oxygen, and hydrogen peroxide. Components from L. stoechas potentially displayed a higher grade of interaction with MMP-2 and -9. Although antibacterial and growth inhibitory effects of essential oils on the tested periodontopathogens were limited, all of them inhibited MMP-2 in vitro at concentrations of 1 and 5 µL/mL. Moreover, same concentrations of M. communis and L. stoechas also inhibited MMP-9. MMP-inhibiting concentrations of essential oils were not cytotoxic against keratinocytes. We propose essential oils of being useful therapeutic agents as MMP inhibitors through a mechanism possibly based on their antioxidant potential.

  15. An essential role for TH2-type response in limiting acute tissue damage during experimental helminth infection.

    USDA-ARS?s Scientific Manuscript database

    Helminths induce potent Th2-type immune responses that can lead to worm expulsion, but it remains undetermined whether components of this response can enhance the wound healing responses elicited as these large multi-cellular parasites traffic thru vital tissues. We used a model of helminth infecti...

  16. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    PubMed Central

    2009-01-01

    Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426

  17. Fluorescence microscopy: A tool to study autophagy

    NASA Astrophysics Data System (ADS)

    Rai, Shashank; Manjithaya, Ravi

    2015-08-01

    Autophagy is a cellular recycling process through which a cell degrades old and damaged cellular components such as organelles and proteins and the degradation products are reused to provide energy and building blocks. Dysfunctional autophagy is reported in several pathological situations. Hence, autophagy plays an important role in both cellular homeostasis and diseased conditions. Autophagy can be studied through various techniques including fluorescence based microscopy. With the advancements of newer technologies in fluorescence microscopy, several novel processes of autophagy have been discovered which makes it an essential tool for autophagy research. Moreover, ability to tag fluorescent proteins with sub cellular targets has enabled us to evaluate autophagy processes in real time under fluorescent microscope. In this article, we demonstrate different aspects of autophagy in two different model organisms i.e. yeast and mammalian cells, with the help of fluorescence microscopy.

  18. Molecular chaperones and photoreceptor function

    PubMed Central

    Kosmaoglou, Maria; Schwarz, Nele; Bett, John S.; Cheetham, Michael E.

    2008-01-01

    Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones. PMID:18490186

  19. Structural and functional insights into sorting nexin 5/6 interaction with bacterial effector IncE.

    PubMed

    Sun, Qingxiang; Yong, Xin; Sun, Xiaodong; Yang, Fan; Dai, Zhonghua; Gong, Yanqiu; Zhou, Liming; Zhang, Xia; Niu, Dawen; Dai, Lunzhi; Liu, Jia-Jia; Jia, Da

    2017-01-01

    The endosomal trafficking pathways are essential for many cellular activities. They are also important targets by many intracellular pathogens. Key regulators of the endosomal trafficking include the retromer complex and sorting nexins (SNXs). Chlamydia trachomatis effector protein IncE directly targets the retromer components SNX5 and SNX6 and suppresses retromer-mediated transport, but the exact mechanism has remained unclear. We present the crystal structure of the PX domain of SNX5 in complex with IncE, showing that IncE binds to a highly conserved hydrophobic groove of SNX5. The unique helical hairpin of SNX5/6 is essential for binding, explaining the specificity of SNX5/6 for IncE. The SNX5/6-IncE interaction is required for cellular localization of IncE and its inhibitory function. Mechanistically, IncE inhibits the association of CI-MPR cargo with retromer-containing endosomal subdomains. Our study provides new insights into the regulation of retromer-mediated transport and illustrates the intricate competition between host and pathogens in controlling cellular trafficking.

  20. Discovery of a proteinaceous cellular receptor for a norovirus

    PubMed Central

    Orchard, Robert C.; Wilen, Craig B.; Doench, John G.; Baldridge, Megan T.; McCune, Broc T.; Lee, Ying-Chiang J.; Lee, Sanghyun; Pruett-Miller, Shondra M.; Nelson, Christopher A.; Fremont, Daved H.; Virgin, Herbert W.

    2017-01-01

    Human noroviruses (NoV) are a leading cause of gastroenteritis globally, yet host factors required for NoV infection are poorly understood. We identified host molecules essential for murine NoV (MNoV) induced cell death including CD300lf as a proteinaceous receptor. CD300lf is essential for MNoV binding and replication in cell lines and primary cells. Additionally, Cd300lf−/− mice are resistant to MNoV infection. Expression of CD300lf in human cells breaks the species barrier restricting MNoV replication. The crystal structure of the CD300lf ectodomain revealed a potential ligand binding cleft composed of residues critical for MNoV infection. Therefore, the presence of a proteinaceous receptor is the primary determinant of MNoV species tropism while other components of cellular machinery required for NoV replication are conserved between humans and mice. PMID:27540007

  1. A STRIPAK complex mediates axonal transport of autophagosomes and dense core vesicles through PP2A regulation

    PubMed Central

    Neufeld, Thomas P.

    2017-01-01

    Autophagy plays an essential role in the cellular homeostasis of neurons, facilitating the clearance of cellular debris. This clearance process is orchestrated through the assembly, transport, and fusion of autophagosomes with lysosomes for degradation. The motor protein dynein drives autophagosome motility from distal sites of assembly to sites of lysosomal fusion. In this study, we identify the scaffold protein CKA (connector of kinase to AP-1) as essential for autophagosome transport in neurons. Together with other core components of the striatin-interacting phosphatase and kinase (STRIPAK) complex, we show that CKA associates with dynein and directly binds Atg8a, an autophagosomal protein. CKA is a regulatory subunit of PP2A, a component of the STRIPAK complex. We propose that the STRIPAK complex modulates dynein activity. Consistent with this hypothesis, we provide evidence that CKA facilitates axonal transport of dense core vesicles and autophagosomes in a PP2A-dependent fashion. In addition, CKA-deficient flies exhibit PP2A-dependent motor coordination defects. CKA function within the STRIPAK complex is crucial to prevent transport defects that may contribute to neurodegeneration. PMID:28100687

  2. An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins

    PubMed Central

    Lange, Heike; Lisowsky, Thomas; Gerber, Jana; Mühlenhoff, Ulrich; Kispal, Gyula; Lill, Roland

    2001-01-01

    Biogenesis of Fe/S clusters involves a number of essential mitochondrial proteins. Here, we identify the essential Erv1p of Saccharomyces cerevisia mitochondria as a novel component that is specifically required for the maturation of Fe/S proteins in the cytosol, but not in mitochondria. Furthermore, Erv1p was found to be important for cellular iron homeostasis. The homologous mammalian protein ALR (‘augmenter of liver regeneration’), also termed hepatopoietin, can functionally replace defects in Erv1p and thus represents the mammalian orthologue of yeast Erv1p. Previously, a fragment of ALR was reported to exhibit an activity as an extracellular hepatotrophic growth factor. Both Erv1p and full-length ALR are located in the mitochondrial intermembrane space and represent the first components of this compartment with a role in the biogenesis of cytosolic Fe/S proteins. It is likely that Erv1p/ALR operates downstream of the mitochondrial ABC transporter Atm1p/ABC7/Sta1, which also executes a specific task in this essential biochemical process. PMID:11493598

  3. An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins.

    PubMed

    Lange, H; Lisowsky, T; Gerber, J; Mühlenhoff, U; Kispal, G; Lill, R

    2001-08-01

    Biogenesis of Fe/S clusters involves a number of essential mitochondrial proteins. Here, we identify the essential Erv1p of Saccharomyces cerevisia mitochondria as a novel component that is specifically required for the maturation of Fe/S proteins in the cytosol, but not in mitochondria. Furthermore, Erv1p was found to be important for cellular iron homeostasis. The homologous mammalian protein ALR ('augmenter of liver regeneration'), also termed hepatopoietin, can functionally replace defects in Erv1p and thus represents the mammalian orthologue of yeast Erv1p. Previously, a fragment of ALR was reported to exhibit an activity as an extracellular hepatotrophic growth factor. Both Erv1p and full-length ALR are located in the mitochondrial intermembrane space and represent the first components of this compartment with a role in the biogenesis of cytosolic Fe/S proteins. It is likely that Erv1p/ALR operates downstream of the mitochondrial ABC transporter Atm1p/ABC7/Sta1, which also executes a specific task in this essential biochemical process.

  4. Important cellular targets for antimicrobial photodynamic therapy.

    PubMed

    Awad, Mariam M; Tovmasyan, Artak; Craik, James D; Batinic-Haberle, Ines; Benov, Ludmil T

    2016-09-01

    The persistent problem of antibiotic resistance has created a strong demand for new methods for therapy and disinfection. Photodynamic inactivation (PDI) of microbes has demonstrated promising results for eradication of antibiotic-resistant strains. PDI is based on the use of a photosensitive compound (photosensitizer, PS), which upon illumination with visible light generates reactive species capable of damaging and killing microorganisms. Since photogenerated reactive species are short lived, damage is limited to close proximity of the PS. It is reasonable to expect that the larger the number of damaged targets is and the greater their variety is, the higher the efficiency of PDI is and the lower the chances for development of resistance are. Exact molecular mechanisms and specific targets whose damage is essential for microbial inactivation have not been unequivocally established. Two main cellular components, DNA and plasma membrane, are regarded as the most important PDI targets. Using Zn porphyrin-based PSs and Escherichia coli as a model Gram-negative microorganism, we demonstrate that efficient photoinactivation of bacteria can be achieved without detectable DNA modification. Among the cellular components which are modified early during illumination and constitute key PDI targets are cytosolic enzymes, membrane-bound protein complexes, and the plasma membrane. As a result, membrane barrier function is lost, and energy and reducing equivalent production is disrupted, which in turn compromises cell defense mechanisms, thus augmenting the photoinduced oxidative injury. In conclusion, high PDI antimicrobial effectiveness does not necessarily require impairment of a specific critical cellular component and can be achieved by inducing damage to multiple cellular targets.

  5. Drosophila as a model system to study autophagy.

    PubMed

    Zirin, Jonathan; Perrimon, Norbert

    2010-12-01

    Originally identified as a response to starvation in yeast, autophagy is now understood to fulfill a variety of roles in higher eukaryotes, from the maintenance of cellular homeostasis to the cellular response to stress, starvation, and infection. Although genetics and biochemical studies in yeast have identified many components involved in autophagy, the findings that some of the essential components of the yeast pathway are missing in higher organisms underscore the need to study autophagy in more complex systems. This review focuses on the use of the fruitfly, Drosophila melanogaster as a model system for analysis of autophagy. Drosophila is an organism well-suited for genetic analysis and represents an intermediate between yeast and mammals with respect to conservation of the autophagy machinery. Furthermore, the complex biology and physiology of Drosophila presents an opportunity to model human diseases in a tissue specific and analogous context.

  6. Intracellular sodium concentration and transport in red cells in essential hypertension, hyperthyroidism, pregnancy and hypokalemia.

    PubMed

    Gless, K H; Sütterlin, U; Schaz, K; Schütz, V; Hunstein, W

    1986-01-01

    Intracellular sodium content ([Nai]), ouabain-sensitive ('Na-K ATPase') and ouabain-insensitive ('passive permeability') sodium efflux, Na-K cotransport and Na-Li ('Na-Na') countertransport were estimated in erythrocytes in 39 control subjects, 20 patients with essential hypertension, 14 patients with hypokalemia of renal or unknown etiology, 13 hyperthyroid patients and 19 pregnant women. In normokalemic essential hypertension there was only a moderate, but significant elevation of the activity of the Na-Li countertransport system. In the group of patients with hypokalemia, there was a significant increase of [Nai], ouabain-insensitive sodium efflux and Na-Li countertransport. In hyperthyroidism, a marked decrease of Na-Li countertransport was associated with a marked elevation of [Nai], in pregnancy an elevation of the Na-Li countertransport with a [Nai] 43% lower than the control values. The ouabain-sensitive sodium efflux was elevated in hyperthyroidism and hypokalemia, in which [Nai] was increased. In the control subjects there was a positive linear correlation between ouabain-sensitive sodium efflux and [Nai]. The sodium component of the Na-K cotransport was decreased to about one third of the unchanged furosemide-sensitive potassium component during pregnancy. The changes of cellular sodium metabolism in essential hypertension are of minor degree as compared to those in the other conditions studied. Cellular sodium metabolism in blood cells is influenced by thyroid hormones and metabolic disorders. Na-Li countertransport, i.e. Na-Na countertransport, seems to be involved in the regulation of [Nai]: an increase of its activity diminishes [Nai] (pregnancy); a decrease elevates [Nai] (hyperthyroidism). Ouabain-sensitive sodium efflux, i.e. 'Na-K ATPase', is mainly regulated by its substrate, [Nai].

  7. Phosphate toxicity: new insights into an old problem

    PubMed Central

    RAZZAQUE, M. Shawkat

    2011-01-01

    Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23–klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review. PMID:20958267

  8. Phosphate toxicity: new insights into an old problem.

    PubMed

    Razzaque, M Shawkat

    2011-02-01

    Phosphorus is an essential nutrient required for critical biological reactions that maintain the normal homoeostatic control of the cell. This element is an important component of different cellular structures, including nucleic acids and cell membranes. Adequate phosphorus balance is vital for maintaining basic cellular functions, ranging from energy metabolism to cell signalling. In addition, many intracellular pathways utilize phosphate ions for important cellular reactions; therefore, homoeostatic control of phosphate is one of the most delicate biological regulations. Impaired phosphorus balance can affect the functionality of almost every human system, including musculoskeletal and cardiovascular systems, ultimately leading to an increase in morbidity and mortality of the affected patients. Human and experimental studies have found that delicate balance among circulating factors, like vitamin D, PTH (parathyroid hormone) and FGF23 (fibroblast growth factor 23), are essential for regulation of physiological phosphate balance. Dysregulation of these factors, either alone or in combination, can induce phosphorus imbalance. Recent studies have shown that suppression of the FGF23-klotho system can lead to hyperphosphataemia with extensive tissue damage caused by phosphate toxicity. The cause and consequences of phosphate toxicity will be briefly summarized in the present review.

  9. Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway

    PubMed Central

    Watt, Kevin I.; Harvey, Kieran F.; Gregorevic, Paul

    2017-01-01

    The integrative control of diverse biological processes such as proliferation, differentiation, apoptosis and metabolism is essential to maintain cellular and tissue homeostasis. Disruption of these underlie the development of many disease states including cancer and diabetes, as well as many of the complications that arise as a consequence of aging. These biological outputs are governed by many cellular signaling networks that function independently, and in concert, to convert changes in hormonal, mechanical and metabolic stimuli into alterations in gene expression. First identified in Drosophila melanogaster as a powerful mediator of cell division and apoptosis, the Hippo signaling pathway is a highly conserved regulator of mammalian organ size and functional capacity in both healthy and diseased tissues. Recent studies have implicated the pathway as an effector of diverse physiological cues demonstrating an essential role for the Hippo pathway as an integrative component of cellular homeostasis. In this review, we will: (a) outline the critical signaling elements that constitute the mammalian Hippo pathway, and how they function to regulate Hippo pathway-dependent gene expression and tissue growth, (b) discuss evidence that shows this pathway functions as an effector of diverse physiological stimuli and (c) highlight key questions in this developing field. PMID:29225579

  10. Free radicals and related reactive species as mediators of tissue injury and disease: implications for Health.

    PubMed

    Kehrer, James P; Klotz, Lars-Oliver

    2015-01-01

    A radical is any molecule that contains one or more unpaired electrons. Radicals are normal products of many metabolic pathways. Some exist in a controlled (caged) form as they perform essential functions. Others exist in a free form and interact with various tissue components. Such interactions can cause both acute and chronic dysfunction, but can also provide essential control of redox regulated signaling pathways. The potential roles of endogenous or xenobiotic-derived free radicals in several human pathologies have stimulated extensive research linking the toxicity of numerous xenobiotics and disease processes to a free radical mechanism. In recent years, improvements in analytical methodologies, as well as the realization that subtle effects induced by free radicals and oxidants are important in modulating cellular signaling, have greatly improved our understanding of the roles of these reactive species in toxic mechanisms and disease processes. However, because free radical-mediated changes are pervasive, and a consequence as well as a cause of injury, whether such species are a major cause of tissue injury and human disease remains unclear. This concern is supported by the fact that the bulk of antioxidant defenses are enzymatic and the findings of numerous studies showing that exogenously administered small molecule antioxidants are unable to affect the course of most toxicities and diseases purported to have a free radical mechanism. This review discusses cellular sources of various radical species and their reactions with vital cellular constituents, and provides examples of selected disease processes that may have a free radical component.

  11. Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity.

    PubMed

    Arruda, Ana Paula; Pers, Benedicte M; Parlakgül, Güneş; Güney, Ekin; Inouye, Karen; Hotamisligil, Gökhan S

    2014-12-01

    Proper function of the endoplasmic reticulum (ER) and mitochondria is crucial for cellular homeostasis, and dysfunction at either site has been linked to pathophysiological states, including metabolic diseases. Although the ER and mitochondria play distinct cellular roles, these organelles also form physical interactions with each other at sites defined as mitochondria-associated ER membranes (MAMs), which are essential for calcium, lipid and metabolite exchange. Here we show that in the liver, obesity leads to a marked reorganization of MAMs resulting in mitochondrial calcium overload, compromised mitochondrial oxidative capacity and augmented oxidative stress. Experimental induction of ER-mitochondria interactions results in oxidative stress and impaired metabolic homeostasis, whereas downregulation of PACS-2 or IP3R1, proteins important for ER-mitochondria tethering or calcium transport, respectively, improves mitochondrial oxidative capacity and glucose metabolism in obese animals. These findings establish excessive ER-mitochondrial coupling as an essential component of organelle dysfunction in obesity that may contribute to the development of metabolic pathologies such as insulin resistance and diabetes.

  12. Redox control of copper homeostasis in cyanobacteria.

    PubMed

    López-Maury, Luis; Giner-Lamia, Joaquín; Florencio, Francisco J

    2012-12-01

    Copper is essential for all living organisms but is toxic when present in excess. Therefore organisms have developed homeostatic mechanism to tightly regulate its cellular concentration. In a recent study we have shown that CopRS two-component system is essential for copper resistance in the cyanobacterium Synechocystis sp PCC 6803. This two-component regulates expression of a heavy-metal RND type copper efflux system (encoded by copBAC) as well as its own expression (in the copMRS operon) in response to an excess of copper in the media. We have also observed that both operons are induced under condition that reduces the photosynthetic electron flow and this induction depends on the presence of the copper-protein, plastocyanin. These findings, together with CopS localization to the thylakoid membrane and its periplasmic domain being able to bind copper directly, suggest that CopS could be involved in copper detection in both the periplasm and the thylakoid lumen.

  13. Sphingolipids from the human fungal pathogen Aspergillus fumigatus.

    PubMed

    Fontaine, Thierry

    2017-10-01

    Sphingolipids (SPLs) are key components of the plasma membrane in yeast and filamentous fungi. These molecules are involved in a number of cellular processes, and particularly, SGLs are essential components of the highly polarized fungal growth where they are required for the formation of the polarisome organization at the hyphal apex. Aspergillus fumigatus, a human fungal pathogen, produce SGLs that are discriminated into neutral cerebrosides, glycosylinositolphosphoceramides (GIPCs) and glycosylphosphatidylinositol (GPI) anchors. In addition to complex hydrophilic head groups of GIPCs, A. fumigatus is, to date, the sole fungus that produces a GPI-anchored polysaccharide. These SPLs follow three different biosynthetic pathways. Genetics blockage leading to the inhibition of any SPL biosynthesis or to the alteration of the structure of SPL induces growth and virulence defects. The complete lipid moiety of SPLs is essential for the lipid microdomain organization and their biosynthetic pathways are potential antifungal targets but remains understudied. Copyright © 2017. Published by Elsevier B.V.

  14. Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer

    PubMed Central

    Bruntz, Ronald C.; Lindsley, Craig W.

    2014-01-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein–coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. PMID:25244928

  15. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.

    PubMed

    Bruntz, Ronald C; Lindsley, Craig W; Brown, H Alex

    2014-10-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall

    PubMed Central

    Billaud, Marie; Lohman, Alexander W.; Johnstone, Scott R.; Biwer, Lauren A.; Mutchler, Stephanie; Isakson, Brant E.

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function. PMID:24671377

  17. Regulation of cellular communication by signaling microdomains in the blood vessel wall.

    PubMed

    Billaud, Marie; Lohman, Alexander W; Johnstone, Scott R; Biwer, Lauren A; Mutchler, Stephanie; Isakson, Brant E

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.

  18. A Model of How Different Biology Experts Explain Molecular and Cellular Mechanisms

    PubMed Central

    Trujillo, Caleb M.; Anderson, Trevor R.; Pelaez, Nancy J.

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. PMID:25999313

  19. Biconnectivity of the cellular metabolism: A cross-species study and its implication for human diseases

    PubMed Central

    Kim, P.; Lee, D.-S.; Kahng, B.

    2015-01-01

    The maintenance of stability during perturbations is essential for living organisms, and cellular networks organize multiple pathways to enable elements to remain connected and communicate, even when some pathways are broken. Here, we evaluated the biconnectivity of the metabolic networks of 506 species in terms of the clustering coefficients and the largest biconnected components (LBCs), wherein a biconnected component (BC) indicates a set of nodes in which every pair is connected by more than one path. Via comparison with the rewired networks, we illustrated how biconnectivity in cellular metabolism is achieved on small and large scales. Defining the biconnectivity of individual metabolic compounds by counting the number of species in which the compound belonged to the LBC, we demonstrated that biconnectivity is significantly correlated with the evolutionary age and functional importance of a compound. The prevalence of diseases associated with each metabolic compound quantifies the compounds vulnerability, i.e., the likelihood that it will cause a metabolic disorder. Moreover, the vulnerability depends on both the biconnectivity and the lethality of the compound. This fact can be used in drug discovery and medical treatments. PMID:26490723

  20. Asymmetric spermatocyte division as a mechanism for controlling sex ratios

    PubMed Central

    Shakes, Diane C.; Neva, Bryan J.; Huynh, Henry; Chaudhuri, Jyotiska; Pires-daSilva, Andre

    2016-01-01

    Although Mendel's first law predicts that crosses between XY (or XO) males and XX females should yield equal numbers of males and females, individuals in a wide variety of metazoans transmit their sex chromosomes unequally and produce broods with highly skewed sex ratios. Here we report two modifications to the cellular program of spermatogenesis which, in combination, help explain why males of the free-living nematode species Rhabditis sp. SB347 sire less than 5% male progeny. First, the spermatogenesis program involves a modified meiosis in which chromatids of the unpaired X chromosome separate prematurely, in meiosis I. Second, during anaphase II, cellular components essential for sperm motility are partitioned almost exclusively to the X-bearing sperm. Our studies reveal a novel cellular mechanism for the differential transmission of X-bearing sperm and suggest R. sp. SB347 as a useful model for studying sex chromosome drive and the evolution of new mating systems. PMID:21245838

  1. Asymmetric spermatocyte division as a mechanism for controlling sex ratios.

    PubMed

    Shakes, Diane C; Neva, Bryan J; Huynh, Henry; Chaudhuri, Jyotiska; Pires-Dasilva, Andre

    2011-01-18

    Although Mendel's first law predicts that crosses between XY (or XO) males and XX females should yield equal numbers of males and females, individuals in a wide variety of metazoans transmit their sex chromosomes unequally and produce broods with highly skewed sex ratios. Here, we report two modifications to the cellular programme of spermatogenesis, which, in combination, help to explain why males of the free-living nematode species Rhabditis sp. SB347 sire <5% male progeny. First, the spermatogenesis programme involves a modified meiosis in which chromatids of the unpaired X chromosome separate prematurely, in meiosis I. Second, during anaphase II, cellular components essential for sperm motility are partitioned almost exclusively to the X-bearing sperm. Our studies reveal a novel cellular mechanism for the differential transmission of X-bearing sperm and suggest Rhabditis sp. SB347 as a useful model for studying sex chromosome drive and the evolution of new mating systems.

  2. Growth regulating properties of isoprene and isoprenoid-based essential oils.

    PubMed

    Jones, Andrew Maxwell P; Shukla, Mukund R; Sherif, Sherif M; Brown, Paula B; Saxena, Praveen K

    2016-01-01

    Essential oils have growth regulating properties comparable to the well-documented methyl jasmonate and may be involved in localized and/or airborne plant communication. Aromatic plants employ large amounts of resources to produce essential oils. Some essential oils are known to contain compounds with plant growth regulating activities. However, the potential capacity of essential oils as airborne molecules able to modulate plant growth/development has remained uninvestigated. Here, we demonstrate that essential oils from eight taxonomically diverse plants applied in their airborne state inhibited auxin-induced elongation of Pisum sativum hypocotyls and Avena sativa coleoptiles. This response was also observed using five monoterpenes commonly found in essential oils as well as isoprene, the basic building block of terpenes. Upon transfer to ambient conditions, A. sativa coleoptiles resumed elongation, demonstrating an antagonistic relationship rather than toxicity. Inclusion of essential oils, monoterpenes, or isoprene into the headspace of culture vessels induced abnormal cellular growth along hypocotyls of Arabidopsis thaliana. These responses were also elicited by methyl jasmonate (MeJA); however, where methyl jasmonate inhibited root growth essential oils did not. Gene expression studies in A. thaliana also demonstrated differences between the MeJA and isoprenoid responses. This series of experiments clearly demonstrate that essential oils and their isoprenoid components interact with endogenous plant growth regulators when applied directly or as volatile components in the headspace. The similarities between isoprenoid and MeJA responses suggest that they may act in plant defence signalling. While further studies are needed to determine the ecological and evolutionary significance, the results of this study and the specialized anatomy associated with aromatic plants suggest that essential oils may act as airborne signalling molecules.

  3. Agent-based modeling of autophagy reveals emergent regulatory behavior of spatio-temporal autophagy dynamics.

    PubMed

    Börlin, Christoph S; Lang, Verena; Hamacher-Brady, Anne; Brady, Nathan R

    2014-09-10

    Autophagy is a vesicle-mediated pathway for lysosomal degradation, essential under basal and stressed conditions. Various cellular components, including specific proteins, protein aggregates, organelles and intracellular pathogens, are targets for autophagic degradation. Thereby, autophagy controls numerous vital physiological and pathophysiological functions, including cell signaling, differentiation, turnover of cellular components and pathogen defense. Moreover, autophagy enables the cell to recycle cellular components to metabolic substrates, thereby permitting prolonged survival under low nutrient conditions. Due to the multi-faceted roles for autophagy in maintaining cellular and organismal homeostasis and responding to diverse stresses, malfunction of autophagy contributes to both chronic and acute pathologies. We applied a systems biology approach to improve the understanding of this complex cellular process of autophagy. All autophagy pathway vesicle activities, i.e. creation, movement, fusion and degradation, are highly dynamic, temporally and spatially, and under various forms of regulation. We therefore developed an agent-based model (ABM) to represent individual components of the autophagy pathway, subcellular vesicle dynamics and metabolic feedback with the cellular environment, thereby providing a framework to investigate spatio-temporal aspects of autophagy regulation and dynamic behavior. The rules defining our ABM were derived from literature and from high-resolution images of autophagy markers under basal and activated conditions. Key model parameters were fit with an iterative method using a genetic algorithm and a predefined fitness function. From this approach, we found that accurate prediction of spatio-temporal behavior required increasing model complexity by implementing functional integration of autophagy with the cellular nutrient state. The resulting model is able to reproduce short-term autophagic flux measurements (up to 3 hours) under basal and activated autophagy conditions, and to measure the degree of cell-to-cell variability. Moreover, we experimentally confirmed two model predictions, namely (i) peri-nuclear concentration of autophagosomes and (ii) inhibitory lysosomal feedback on mTOR signaling. Agent-based modeling represents a novel approach to investigate autophagy dynamics, function and dysfunction with high biological realism. Our model accurately recapitulates short-term behavior and cell-to-cell variability under basal and activated conditions of autophagy. Further, this approach also allows investigation of long-term behaviors emerging from biologically-relevant alterations to vesicle trafficking and metabolic state.

  4. Magmas functions as a ROS regulator and provides cytoprotection against oxidative stress-mediated damages

    PubMed Central

    Srivastava, S; Sinha, D; Saha, P P; Marthala, H; D'Silva, P

    2014-01-01

    Redox imbalance generates multiple cellular damages leading to oxidative stress-mediated pathological conditions such as neurodegenerative diseases and cancer progression. Therefore, maintenance of reactive oxygen species (ROS) homeostasis is most important that involves well-defined antioxidant machinery. In the present study, we have identified for the first time a component of mammalian protein translocation machinery Magmas to perform a critical ROS regulatory function. Magmas overexpression has been reported in highly metabolically active tissues and cancer cells that are prone to oxidative damage. We found that Magmas regulates cellular ROS levels by controlling its production as well as scavenging. Magmas promotes cellular tolerance toward oxidative stress by enhancing antioxidant enzyme activity, thus preventing induction of apoptosis and damage to cellular components. Magmas enhances the activity of electron transport chain (ETC) complexes, causing reduced ROS production. Our results suggest that J-like domain of Magmas is essential for maintenance of redox balance. The function of Magmas as a ROS sensor was found to be independent of its role in protein import. The unique ROS modulatory role of Magmas is highlighted by its ability to increase cell tolerance to oxidative stress even in yeast model organism. The cytoprotective capability of Magmas against oxidative damage makes it an important candidate for future investigation in therapeutics of oxidative stress-related diseases. PMID:25165880

  5. Digital image analysis agrees with visual estimates of adult bone marrow trephine biopsy cellularity.

    PubMed

    Hagiya, A S; Etman, A; Siddiqi, I N; Cen, S; Matcuk, G R; Brynes, R K; Salama, M E

    2018-04-01

    Evaluation of cellularity is an essential component of bone marrow trephine biopsy examination. The standard practice is to report the results as visual estimates (VE). Digital image analysis (DIA) offers the promise of more objective measurements of cellularity. Adult bone marrow trephine biopsy sections were assessed for cellularity by VE. Sections were scanned using an Aperio AT2 Scanscope and analyzed using a Cytonuclear (version 1.4) algorithm on halo software. Intraclass correlation (ICC) was used to assess relatedness between VE and DIA, and between MRI and DIA for a separate subset of patients. Trephine biopsy sections from a subset of patients with bone marrow biopsies uninvolved by malignancy were assessed for age-related changes. Interobserver VE agreement was good to excellent. The ICC value was 0.81 for VE and DIA, and 0.50 for MRI and DIA. Linearity studies showed no statistically significant trend for age-related changes in cellularity in our cohort (r = -.29, P = .06). Agreement was good between VE and DIA. It may be possible to use DIA or VE to measure cellularity in the appropriate clinical scenario. The limited sample size precludes similar determinations for MRI calculations. Further studies examining healthy donors are necessary before making definitive conclusions regarding age and cellularity. © 2017 John Wiley & Sons Ltd.

  6. Membrane permeability and the loss of germination factor from Neurospora crassa at low water activities

    NASA Technical Reports Server (NTRS)

    Charlang, G.; Horowitz, N. H.

    1974-01-01

    Neurospora crassa conidia incubating in buffer at low water activities release a germination-essential component as well as 260-nm absorbing and ninhydrin-positive materials, regardless of whether an electrolyte or nonelectrolyte is used to reduce water activity. Chloroform and antibiotics known to increase cell-membrane permeability have a similar effect. This suggests that membrane damage occurs in media of low water activity and that an increase in permeability is responsible for the release of cellular components. The damage caused in media of low water activity is nonlethal in most cases, and the conidia recover when transferred to nutrient medium.

  7. Protecting the proteome: Eukaryotic cotranslational quality control pathways

    PubMed Central

    2014-01-01

    The correct decoding of messenger RNAs (mRNAs) into proteins is an essential cellular task. The translational process is monitored by several quality control (QC) mechanisms that recognize defective translation complexes in which ribosomes are stalled on substrate mRNAs. Stalled translation complexes occur when defects in the mRNA template, the translation machinery, or the nascent polypeptide arrest the ribosome during translation elongation or termination. These QC events promote the disassembly of the stalled translation complex and the recycling and/or degradation of the individual mRNA, ribosomal, and/or nascent polypeptide components, thereby clearing the cell of improper translation products and defective components of the translation machinery. PMID:24535822

  8. Epithelialization in Wound Healing: A Comprehensive Review

    PubMed Central

    Pastar, Irena; Stojadinovic, Olivera; Yin, Natalie C.; Ramirez, Horacio; Nusbaum, Aron G.; Sawaya, Andrew; Patel, Shailee B.; Khalid, Laiqua; Isseroff, Rivkah R.; Tomic-Canic, Marjana

    2014-01-01

    Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure. PMID:25032064

  9. Insect Cell-Derived Cofactors Become Fully Functional after Proteinase K and Heat Treatment for High-Fidelity Amplification of Glycosylphosphatidylinositol-Anchored Recombinant Scrapie and BSE Prion Proteins

    PubMed Central

    Imamura, Morikazu; Kato, Nobuko; Okada, Hiroyuki; Yoshioka, Miyako; Iwamaru, Yoshifumi; Shimizu, Yoshihisa; Mohri, Shirou; Yokoyama, Takashi; Murayama, Yuichi

    2013-01-01

    The central event in prion infection is the conformational conversion of host-encoded cellular prion protein (PrPC) into the pathogenic isoform (PrPSc). Diverse mammalian species possess the cofactors required for in vitro replication of PrPSc by protein-misfolding cyclic amplification (PMCA), but lower organisms, such as bacteria, yeasts, and insects, reportedly lack the essential cofactors. Various cellular components, such as RNA, lipids, and other identified cofactor molecules, are commonly distributed in both eukaryotes and prokaryotes, but the reasons for the absence of cofactor activity in lower organisms remain to be elucidated. Previously, we reported that brain-derived factors were necessary for the in vitro replication of glycosylphosphatidylinositol-anchored baculovirus-derived recombinant PrP (Bac-PrP). Here, we demonstrate that following protease digestion and heat treatment, insect cell lysates had the functional cofactor activity required for Bac-PrP replication by PMCA. Mammalian PrPSc seeds and Bac-PrPSc generated by PMCA using Bac-PrP and insect cell-derived cofactors showed similar pathogenicity and produced very similar lesions in the brains of inoculated mice. These results suggested that the essential cofactors required for the high-fidelity replication of mammalian PrPSc were present in the insect cells but that the cofactor activity was masked or inhibited in the native state. We suggest that not only RNA, but also DNA, are the key components of PMCA, although other cellular factors were necessary for the expression of the cofactor activity of nucleic acids. PMCA using only insect cell-derived substances (iPMCA) was highly useful for the ultrasensitive detection of PrPSc of some prion strains. PMID:24367521

  10. Polyamines and Hypusination Are Required for Ebolavirus Gene Expression and Replication

    PubMed Central

    Olsen, Michelle E.; Filone, Claire Marie; Rozelle, Dan; Mire, Chad E.; Agans, Krystle N.; Hensley, Lisa

    2016-01-01

    ABSTRACT Ebolavirus (EBOV) is an RNA virus that is known to cause severe hemorrhagic fever in humans and other primates. EBOV successfully enters and replicates in many cell types. This replication is dependent on the virus successfully coopting a number of cellular factors. Many of these factors are currently unidentified but represent potential targets for antiviral therapeutics. Here we show that cellular polyamines are critical for EBOV replication. We found that small-molecule inhibitors of polyamine synthesis block gene expression driven by the viral RNA-dependent RNA polymerase. Short hairpin RNA (shRNA) knockdown of the polyamine pathway enzyme spermidine synthase also resulted in reduced EBOV replication. These findings led us to further investigate spermidine, a polyamine that is essential for the hypusination of eukaryotic initiation factor 5A (eIF5A). Blocking the hypusination of eIF5A (and thereby inhibiting its function) inhibited both EBOV gene expression and viral replication. The mechanism appears to be due to the importance of hypusinated eIF5A for the accumulation of VP30, an essential component of the viral polymerase. The same reduction in hypusinated eIF5A did not alter the accumulation of other viral polymerase components. This action makes eIF5A function an important gate for proper EBOV polymerase assembly and function through the control of a single virus protein. PMID:27460797

  11. In vitro studies of actin filament and network dynamics

    PubMed Central

    Mullins, R Dyche; Hansen, Scott D

    2013-01-01

    Now that many genomes have been sequenced, a central concern of cell biology is to understand how the proteins they encode work together to create living matter. In vitro studies form an essential part of this program because understanding cellular functions of biological molecules often requires isolating them and reconstituting their activities. In particular, many elements of the actin cytoskeleton were first discovered by biochemical methods and their cellular functions deduced from in vitro experiments. We highlight recent advances that have come from in vitro studies, beginning with studies of actin filaments, and ending with multi-component reconstitutions of complex actin-based processes, including force-generation and cell spreading. We describe both scientific results and the technical innovations that made them possible. PMID:23267766

  12. Molecular coordination of Staphylococcus aureus cell division

    PubMed Central

    Cotterell, Bryony E; Walther, Christa G; Fenn, Samuel J; Grein, Fabian; Wollman, Adam JM; Leake, Mark C; Olivier, Nicolas; Cadby, Ashley; Mesnage, Stéphane; Jones, Simon

    2018-01-01

    The bacterial cell wall is essential for viability, but despite its ability to withstand internal turgor must remain dynamic to permit growth and division. Peptidoglycan is the major cell wall structural polymer, whose synthesis requires multiple interacting components. The human pathogen Staphylococcus aureus is a prolate spheroid that divides in three orthogonal planes. Here, we have integrated cellular morphology during division with molecular level resolution imaging of peptidoglycan synthesis and the components responsible. Synthesis occurs across the developing septal surface in a diffuse pattern, a necessity of the observed septal geometry, that is matched by variegated division component distribution. Synthesis continues after septal annulus completion, where the core division component FtsZ remains. The novel molecular level information requires re-evaluation of the growth and division processes leading to a new conceptual model, whereby the cell cycle is expedited by a set of functionally connected but not regularly distributed components. PMID:29465397

  13. Deciphering the Functional Composition of Fusogenic Liposomes

    PubMed Central

    Kolašinac, Rejhana; Kleusch, Christian; Braun, Tobias; Merkel, Rudolf; Csiszár, Agnes

    2018-01-01

    Cationic liposomes are frequently used as carrier particles for nucleic acid delivery. The most popular formulation is the equimolar mixture of two components, a cationic lipid and a neutral phosphoethanolamine. Its uptake pathway has been described as endocytosis. The presence of an aromatic molecule as a third component strongly influences the cellular uptake process and results in complete membrane fusion instead of endocytosis. Here, we systematically varied all three components of this lipid mixture and determined how efficiently the resulting particles fused with the plasma membrane of living mammalian cells. Our results show that an aromatic molecule and a cationic lipid component with conical molecular shape are essential for efficient fusion induction. While a neutral lipid is not mandatory, it can be used to control fusion efficiency and, in the most extreme case, to revert the uptake mechanism back to endocytosis. PMID:29364187

  14. Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback.

    PubMed

    Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J

    2016-04-14

    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress.

  15. Overexpression of human kynurenine-3-monooxygenase protects against 3-hydroxykynurenine-mediated apoptosis through bidirectional nonlinear feedback

    PubMed Central

    Wilson, K; Auer, M; Binnie, M; Zheng, X; Pham, N T; Iredale, J P; Webster, S P; Mole, D J

    2016-01-01

    Kynurenine 3-monooxygenase (KMO) is a critical regulator of inflammation. The preferred KMO substrate, kynurenine, is converted to 3-hydroxykynurenine (3HK), and this product exhibits cytotoxicity through mechanisms that culminate in apoptosis. Here, we report that overexpression of human KMO with orthotopic localisation to mitochondria creates a metabolic environment during which the cell exhibits increased tolerance for exogenous 3HK-mediated cellular injury. Using the selective KMO inhibitor Ro61-8048, we show that KMO enzyme function is essential for cellular protection. Pan-caspase inhibition with Z-VAD-FMK confirmed apoptosis as the mode of cell death. By defining expression of pathway components upstream and downstream of KMO, we observed alterations in other key kynurenine pathway components, particularly tryptophan-2,3-dioxygenase upregulation, through bidirectional nonlinear feedback. KMO overexpression also increased expression of inducible nitric oxide synthase (iNOS). These changes in gene expression are functionally relevant, because siRNA knockdown of the pathway components kynureninase and quinolinate phosphoribosyl transferase caused cells to revert to a state of susceptibility to 3HK-mediated apoptosis. In summary, KMO overexpression, and importantly KMO activity, have metabolic repercussions that fundamentally affect resistance to cell stress. PMID:27077813

  16. Molecular aspects of eye evolution and development: from the origin of retinal cells to the future of regenerative medicine.

    PubMed

    Ohuchi, Hideyo

    2013-01-01

    A central issue of evolutionary developmental biology is how the eye is diverged morphologically and functionally. However, the unifying mechanisms or schemes that govern eye diversification remain unsolved. In this review, I first introduce the concept of evolutionary developmental biology of the eye with a focus on photoreception, the fundamental property of retinal cells. Second, I summarize the early development of vertebrate eyes and the role of a homeobox gene, Lhx1, in subdivision of the retina into 2 domains, the neural retina and retinal pigmented epithelium of the optic primordium. The 2 retinal domains are essential components of the eye as they are found in such prototypic eyes as the extant planarian eye. Finally, I propose the presence of novel retinal cell subtypes with photosensory functions based on our recent work on atypical photopigments (opsins) in vertebrates. Since human diseases are attributable to the aberration of various types of cells due to alterations in gene expression, understanding the precise mechanisms of cellular diversification and unraveling the molecular profiles of cellular subtypes are essential to future regenerative medicine.

  17. Pathogenesis of leptospirosis: cellular and molecular aspects.

    PubMed

    Adler, Ben

    2014-08-27

    Leptospirosis is arguably the most widespread zoonosis; it is also a major cause of economic loss in production animals worldwide. At the level of the host animal or human, the progression of infection and the onset of disease are well documented. However, the mechanisms of pathogenesis at the cellular and molecular level remain poorly understood, mainly as a result of the lack of modern genetic tools for mutagenesis of pathogenic Leptospira spp. The recent development of transposon mutagenesis and the construction of a very small number of directed leptospiral mutants have identified a limited number of essential virulence factors. Perhaps surprisingly, many leptospiral proteins with characteristics consistent with a role in virulence have been shown to not be required for virulence in animal models, consistent with a high degree of functional redundancy in pathogenic Leptospira. A large number of putative adhesins has been reported in Leptospira, which interact with a range of host tissue components; however, almost none of these have been genetically confirmed as having an essential role in pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol.

    PubMed

    Maekawa, Masashi; Fairn, Gregory D

    2015-04-01

    Cholesterol is an essential component of metazoan cellular membranes and it helps to maintain the structural integrity and fluidity of the plasma membrane. Here, we developed a cholesterol biosensor, termed D4H, based on the fourth domain of Clostridium perfringens theta-toxin, which recognizes cholesterol in the cytosolic leaflet of the plasma membrane and organelles. The D4H probe disassociates from the plasma membrane upon cholesterol extraction and after perturbations in cellular cholesterol trafficking. When used in combination with a recombinant version of the biosensor, we show that plasmalemmal phosphatidylserine is essential for retaining cholesterol in the cytosolic leaflet of the plasma membrane. In vitro experiments reveal that 1-stearoy-2-oleoyl phosphatidylserine can induce phase separation in cholesterol-containing lipid bilayers and shield cholesterol from cholesterol oxidase. Finally, the altered transbilayer distribution of cholesterol causes flotillin-1 to relocalize to endocytic organelles. This probe should be useful in the future to study pools of cholesterol in the cytosolic leaflet of the plasma membrane and organelles. © 2015. Published by The Company of Biologists Ltd.

  19. Computational Methods for Biomolecular Electrostatics

    PubMed Central

    Dong, Feng; Olsen, Brett; Baker, Nathan A.

    2008-01-01

    An understanding of intermolecular interactions is essential for insight into how cells develop, operate, communicate and control their activities. Such interactions include several components: contributions from linear, angular, and torsional forces in covalent bonds, van der Waals forces, as well as electrostatics. Among the various components of molecular interactions, electrostatics are of special importance because of their long range and their influence on polar or charged molecules, including water, aqueous ions, and amino or nucleic acids, which are some of the primary components of living systems. Electrostatics, therefore, play important roles in determining the structure, motion and function of a wide range of biological molecules. This chapter presents a brief overview of electrostatic interactions in cellular systems with a particular focus on how computational tools can be used to investigate these types of interactions. PMID:17964951

  20. Cytoskeletal dynamics in fission yeast: a review of models for polarization and division

    PubMed Central

    Drake, Tyler; Vavylonis, Dimitrios

    2010-01-01

    We review modeling studies concerning cytoskeletal activity of fission yeast. Recent models vary in length and time scales, describing a range of phenomena from cellular morphogenesis to polymer assembly. The components of cytoskeleton act in concert to mediate cell-scale events and interactions such as polarization. The mathematical models reduce these events and interactions to their essential ingredients, describing the cytoskeleton by its bulk properties. On a smaller scale, models describe cytoskeletal subcomponents and how bulk properties emerge. PMID:21119765

  1. The functional interactome of GSTP: A regulatory biomolecular network at the interface with the Nrf2 adaption response to oxidative stress.

    PubMed

    Bartolini, Desirée; Galli, Francesco

    2016-04-15

    Glutathione S-transferase P (GSTP), and possibly other members of the subfamily of cytosolic GSTs, are increasingly proposed to have roles far beyond the classical GSH-dependent enzymatic detoxification of electrophilic metabolites and xenobiotics. Emerging evidence suggests that these are essential components of the redox sensing and signaling platform of cells. GSTP monomers physically interact with cellular proteins, such as other cytosolic GSTs, signaling kinases and the membrane peroxidase peroxiredoxin 6. Other interactions reported in literature include that with regulatory proteins such as Fanconi anemia complementation group C protein, transglutaminase 2 and several members of the keratin family of genes. Transcription factors downstream of inflammatory and oxidative stress pathways, namely STAT3 and Nrf2, were recently identified to be further components of this interactome. Together these pieces of evidence suggest the existence of a regulatory biomolecular network in which GSTP represents a node of functional convergence and coordination of signaling and transcription proteins, namely the "GSTP interactome", associated with key cellular processes such as cell cycle regulation and the stress response. These aspects and the methodological approach to explore the cellular interactome(s) are discussed in this review paper. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Kibra and aPKC regulate starvation-induced autophagy in Drosophila.

    PubMed

    Jin, Ahrum; Neufeld, Thomas P; Choe, Joonho

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apical membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Common and distinctive localization patterns of Crumbs polarity complex proteins in the mammalian eye.

    PubMed

    Kim, Jin Young; Song, Ji Yun; Karnam, Santi; Park, Jun Young; Lee, Jamie J H; Kim, Seonhee; Cho, Seo-Hee

    2015-01-01

    Crumbs polarity complex proteins are essential for cellular and tissue polarity, and for adhesion of epithelial cells. In epithelial tissues deletion of any of three core proteins disrupts localization of the other proteins, indicating structural and functional interdependence among core components. Despite previous studies of function and co-localization that illustrated the properties that these proteins share, it is not known whether an individual component of the complex plays a distinct role in a unique cellular and developmental context. In order to investigate this question, we primarily used confocal imaging to determine the expression and subcellular localization of the core Crumbs polarity complex proteins during ocular development. Here we show that in developing ocular tissues core Crumbs polarity complex proteins, Crb, Pals1 and Patj, generally appear in an overlapping pattern with some exceptions. All three core complex proteins localize to the apical junction of the retinal and lens epithelia. Pals1 is also localized in the Golgi of the retinal cells and Patj localizes to the nuclei of the apically located subset of progenitor cells. These findings suggest that core Crumbs polarity complex proteins exert common and independent functions depending on cellular context. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Antifungal Effect of Essential Oils against Fusarium Keratitis Isolates.

    PubMed

    Homa, Mónika; Fekete, Ildikó Pálma; Böszörményi, Andrea; Singh, Yendrembam Randhir Babu; Selvam, Kanesan Panneer; Shobana, Coimbatore Subramanian; Manikandan, Palanisamy; Kredics, László; Vágvölgyi, Csaba; Galgóczy, László

    2015-09-01

    The present study was carried out to investigate the antifungal effects of Cinnamomum zeylanicum, Citrus limon, Juniperus communis, Eucalyptus citriodora, Gaultheria procumbens, Melaleuca alternifolia, Origanum majorana, Salvia sclarea, and Thymus vulgaris essential oils against Fusarium species, the most common etiologic agents of filamentous fungal keratitis in South India. C. zeylanicum essential oil showed strong anti-Fusarium activity, whereas all the other tested essential oils proved to be less effective. The main component of C. zeylanicum essential oil, trans-cinnamaldehyde, was also tested and showed a similar effect as the oil. The in vitro interaction between trans-cinnamaldehyde and natamycin, the first-line therapeutic agent of Fusarium keratitis, was also investigated; an enhanced fungal growth inhibition was observed when these agents were applied in combination. Light and fluorescent microscopic observations revealed that C. zeylanicum essential oil/trans-cinnamaldehyde reduces the cellular metabolism and inhibits the conidia germination. Furthermore, necrotic events were significantly more frequent in the presence of these two compounds. According to our results, C. zeylanicum essential oil/trans-cinnamaldehyde provides a promising basis to develop a novel strategy for the treatment of Fusarium keratitis. Georg Thieme Verlag KG Stuttgart · New York.

  5. Mechanism of the eukaryotic chaperonin: protein folding in the chamber of secrets

    PubMed Central

    Spiess, Christoph; Meyer, Anne S.; Reissmann, Stefanie; Frydman, Judith

    2010-01-01

    Chaperonins are key components of the cellular chaperone machinery. These large, cylindrical complexes contain a central cavity that binds to unfolded polypeptides and sequesters them from the cellular environment. Substrate folding then occurs in this central cavity in an ATP-dependent manner. The eukaryotic chaperonin TCP-1 ring complex (TRiC, also called CCT) is indispensable for cell survival because the folding of an essential subset of cytosolic proteins requires TRiC, and this function cannot be substituted by other chaperones. This specificity indicates that TRiC has evolved structural and mechanistic features that distinguish it from other chaperones. Although knowledge of this unique complex is in its infancy, we review recent advances that open the way to understanding the secrets of its folding chamber. PMID:15519848

  6. Oxidative Stress and the Homeodynamics of Iron Metabolism

    PubMed Central

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  7. The role of the cell wall in fungal pathogenesis

    PubMed Central

    Arana, David M.; Prieto, Daniel; Román, Elvira; Nombela, César; Alonso‐Monge, Rebeca; Pla, Jesús

    2009-01-01

    Summary Fungal infections are a serious health problem. In recent years, basic research is focusing on the identification of fungal virulence factors as promising targets for the development of novel antifungals. The wall, as the most external cellular component, plays a crucial role in the interaction with host cells mediating processes such as adhesion or phagocytosis that are essential during infection. Specific components of the cell wall (called PAMPs) interact with specific receptors in the immune cell (called PRRs), triggering responses whose molecular mechanisms are being elucidated. We review here the main structural carbohydrate components of the fungal wall (glucan, mannan and chitin), how their biogenesis takes place in fungi and the specific receptors that they interact with. Different model fungal pathogens are chosen to illustrate the functional consequences of this interaction. Finally, the identification of the key components will have important consequences in the future and will allow better approaches to treat fungal infections. PMID:21261926

  8. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.

    PubMed

    Dembowski, Jill A; DeLuca, Neal A

    2015-05-01

    Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND) was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics during infection and provides a comprehensive view of how HSV-1 selectively utilizes cellular resources.

  9. The Epidermis of Grhl3-Null Mice Displays Altered Lipid Processing and Cellular Hyperproliferation

    PubMed Central

    Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M

    2005-01-01

    The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin. PMID:19521564

  10. The epidermis of grhl3-null mice displays altered lipid processing and cellular hyperproliferation.

    PubMed

    Ting, Stephen B; Caddy, Jacinta; Wilanowski, Tomasz; Auden, Alana; Cunningham, John M; Elias, Peter M; Holleran, Walter M; Jane, Stephen M

    2005-04-01

    The presence of an impermeable surface barrier is an essential homeostatic mechanism in almost all living organisms. We have recently described a novel gene that is critical for the developmental instruction and repair of the integument in mammals. This gene, Grainy head-like 3 (Grhl3) is a member of a large family of transcription factors that are homologs of the Drosophila developmental gene grainy head (grh). Mice lacking Grhl3 fail to form an adequate skin barrier, and die at birth due to dehydration. These animals are also unable to repair the epidermis, exhibiting failed wound healing in both fetal and adult stages of development. These defects are due, in part, to diminished expression of a Grhl3 target gene, Transglutaminase 1 (TGase 1), which encodes a key enzyme involved in cross-linking of epidermal structural proteins and lipids into the cornified envelope (CE). Remarkably, the Drosophila grh gene plays an analogous role, regulating enzymes involved in the generation of quinones, which are essential for cross-linking structural components of the fly epidermis. In an extension of our initial analyses, we focus this report on additional defects observed in the Grhl3-null epidermis, namely defective extra-cellular lipid processing, altered lamellar lipid architecture and cellular hyperproliferation. These abnormalities suggest that Grhl3 plays diverse mechanistic roles in maintaining homeostasis in the skin.

  11. Platelets Guide Leukocytes to Their Sites of Extravasation

    PubMed Central

    Puhr-Westerheide, Daniel; Pörnbacher, Michaela; Lauber, Kirsten; Krombach, Fritz; Reichel, Christoph Andreas

    2016-01-01

    Effective immune responses require the directed migration of leukocytes from the vasculature to the site of injury or infection. How immune cells “find” their site of extravasation remains largely obscure. Here, we identified a previously unrecognized role of platelets as pathfinders guiding leukocytes to their exit points in the microvasculature: upon onset of inflammation, circulating platelets were found to immediately adhere at distinct sites in venular microvessels enabling these cellular blood components to capture neutrophils and, in turn, inflammatory monocytes via CD40-CD40L-dependent interactions. In this cellular crosstalk, ligation of PSGL-1 by P-selectin leads to ERK1/2 MAPK-dependent conformational changes of leukocyte integrins, which promote the successive extravasation of neutrophils and monocytes to the perivascular tissue. Conversely, blockade of this cellular partnership resulted in misguided, inefficient leukocyte responses. Our experimental data uncover a platelet-directed, spatiotemporally organized, multicellular crosstalk that is essential for effective trafficking of leukocytes to the site of inflammation. PMID:27152726

  12. Iron Homeostasis in Peripheral Nervous System, Still a Black Box?

    PubMed Central

    Taveggia, Carla

    2014-01-01

    Abstract Significance: Iron is the most abundant transition metal in biology and an essential cofactor for many cellular enzymes. Iron homeostasis impairment is also a component of peripheral neuropathies. Recent Advances: During the past years, much effort has been paid to understand the molecular mechanism involved in maintaining systemic iron homeostasis in mammals. This has been stimulated by the evidence that iron dyshomeostasis is an initial cause of several disorders, including genetic and sporadic neurodegenerative disorders. Critical Issues: However, very little has been done to investigate the physiological role of iron in peripheral nervous system (PNS), despite the development of suitable cellular and animal models. Future Directions: To stimulate research on iron metabolism and peripheral neuropathy, we provide a summary of the knowledge on iron homeostasis in the PNS, on its transport across the blood–nerve barrier, its involvement in myelination, and we identify unresolved questions. Furthermore, we comment on the role of iron in iron-related disorder with peripheral component, in demyelinating and metabolic peripheral neuropathies. Antioxid. Redox Signal. 21, 634–648. PMID:24409826

  13. Toxin-Antitoxin Systems as Multilevel Interaction Systems

    PubMed Central

    Goeders, Nathalie; Van Melderen, Laurence

    2014-01-01

    Toxin-antitoxin (TA) systems are small genetic modules usually composed of a toxin and an antitoxin counteracting the activity of the toxic protein. These systems are widely spread in bacterial and archaeal genomes. TA systems have been assigned many functions, ranging from persistence to DNA stabilization or protection against mobile genetic elements. They are classified in five types, depending on the nature and mode of action of the antitoxin. In type I and III, antitoxins are RNAs that either inhibit the synthesis of the toxin or sequester it. In type II, IV and V, antitoxins are proteins that either sequester, counterbalance toxin activity or inhibit toxin synthesis. In addition to these interactions between the antitoxin and toxin components (RNA-RNA, protein-protein, RNA-protein), TA systems interact with a variety of cellular factors, e.g., toxins target essential cellular components, antitoxins are degraded by RNAses or ATP-dependent proteases. Hence, TA systems have the capacity to interact with each other at different levels. In this review, we will discuss the different interactions in which TA systems are involved and their implications in TA system functions and evolution. PMID:24434905

  14. Actin is an essential component of plant gravitropic signaling pathways

    NASA Astrophysics Data System (ADS)

    Braun, Markus; Hauslage, Jens; Limbach, Christoph

    2003-08-01

    A role of the actin cytoskeleton in the different phases of gravitropism in higher plant organs seems obvious, but experimental evidence is still inconclusive and contradictory. In gravitropically tip-growing rhizoids and protonemata, however, it is well documented that actin is an essential component of the tip-growth machinery and is involved either in the cellular mechanisms that lead to gravity sensing and in the processes of the graviresponses that result in the reorientation of the growth direction. All these processes depend on a complexly organized and highly dynamic organization of actin filaments whose diverse functions are coordinated by numerous associated proteins. Actin filaments and myosins mediate the transport of secretory vehicles to the growing tip and precisely control the delivery of cell wall material. In addition, both cell types use a very efficient actomyosin-based system to control and correct the position of their statoliths and to direct sedimenting statoliths to confined graviperception sites at the plasma membrane. The studies presented in this paper provide evidence for the essential role of actin in plant gravity sensing and the gravitropic responses. A unique actin-organizing center exists in the tip of characean rhizoids and protonemata which is associated with and dynamically regulated by a specific set of actin-dynamizing proteins. It is concluded that this highly dynamic apical actin array is an essential prerequisite for gravity sensing and gravity-oriented tip growth.

  15. RNA-Binding Protein FXR1 Regulates p21 and TERC RNA to Bypass p53-Mediated Cellular Senescence in OSCC

    PubMed Central

    Majumder, Mrinmoyee; House, Reniqua; Palanisamy, Nallasivam; Qie, Shuo; Day, Terrence A.; Neskey, David; Diehl, J. Alan

    2016-01-01

    RNA-binding proteins (RBP) regulate numerous aspects of co- and post-transcriptional gene expression in cancer cells. Here, we demonstrate that RBP, fragile X-related protein 1 (FXR1), plays an essential role in cellular senescence by utilizing mRNA turnover pathway. We report that overexpressed FXR1 in head and neck squamous cell carcinoma targets (G-quadruplex (G4) RNA structure within) both mRNA encoding p21 (Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A, Cip1) and the non-coding RNA Telomerase RNA Component (TERC), and regulates their turnover to avoid senescence. Silencing of FXR1 in cancer cells triggers the activation of Cyclin-Dependent Kinase Inhibitors, p53, increases DNA damage, and ultimately, cellular senescence. Overexpressed FXR1 binds and destabilizes p21 mRNA, subsequently reduces p21 protein expression in oral cancer cells. In addition, FXR1 also binds and stabilizes TERC RNA and suppresses the cellular senescence possibly through telomerase activity. Finally, we report that FXR1-regulated senescence is irreversible and FXR1-depleted cells fail to form colonies to re-enter cellular proliferation. Collectively, FXR1 displays a novel mechanism of controlling the expression of p21 through p53-dependent manner to bypass cellular senescence in oral cancer cells. PMID:27606879

  16. Functional characterization of Anaphase Promoting Complex/Cyclosome (APC/C) E3 ubiquitin ligases in tumorigenesis

    PubMed Central

    Zhang, Jinfang; Wan, Lixin; Dai, Xiangpeng; Sun, Yi; Wei, Wenyi

    2014-01-01

    The Anaphase Promoting Complex/Cyclosome (APC/C) is a multi-subunit E3 ubiquitin ligase that primarily governs cell cycle progression. APC/C is composed of at least 14 core subunits and recruits its substrates for ubiquitination via one of the two adaptor proteins, Cdc20 or Cdh1, in M or M/early G1 phase, respectively. Furthermore, recent studies have shed light on crucial functions for APC/C in maintaining genomic integrity, neuronal differentiation, cellular metabolism and tumorigenesis. To gain better insight into the in vivo physiological functions of APC/C in regulating various cellular processes, particularly development and tumorigenesis, a number of mouse models of APC/C core subunits, coactivators or inhibitors have been established and characterized. However, due to their essential role in cell cycle regulation, most of the germline knockout mice targeting the APC/C pathway are embryonic lethal, indicating the need for generating conditional knockout mouse models to assess the role in tumorigenesis for each APC/C signaling component in specific tissues. In this review, we will first provide a brief introduction of the ubiquitin-proteasome system (UPS) and the biochemical activities and cellular functions of the APC/C E3 ligase. We will then focus primarily on characterizing genetic mouse models used to understand the physiological roles of each APC/C signaling component in embryogenesis, cell proliferation, development and carcinogenesis. Finally, we discuss future research directions to further elucidate the physiological contributions of APC/C components during tumorigenesis and validate their potentials as a novel class of anti-cancer targets. PMID:24569229

  17. SSER: Species specific essential reactions database.

    PubMed

    Labena, Abraham A; Ye, Yuan-Nong; Dong, Chuan; Zhang, Fa-Z; Guo, Feng-Biao

    2017-04-19

    Essential reactions are vital components of cellular networks. They are the foundations of synthetic biology and are potential candidate targets for antimetabolic drug design. Especially if a single reaction is catalyzed by multiple enzymes, then inhibiting the reaction would be a better option than targeting the enzymes or the corresponding enzyme-encoding gene. The existing databases such as BRENDA, BiGG, KEGG, Bio-models, Biosilico, and many others offer useful and comprehensive information on biochemical reactions. But none of these databases especially focus on essential reactions. Therefore, building a centralized repository for this class of reactions would be of great value. Here, we present a species-specific essential reactions database (SSER). The current version comprises essential biochemical and transport reactions of twenty-six organisms which are identified via flux balance analysis (FBA) combined with manual curation on experimentally validated metabolic network models. Quantitative data on the number of essential reactions, number of the essential reactions associated with their respective enzyme-encoding genes and shared essential reactions across organisms are the main contents of the database. SSER would be a prime source to obtain essential reactions data and related gene and metabolite information and it can significantly facilitate the metabolic network models reconstruction and analysis, and drug target discovery studies. Users can browse, search, compare and download the essential reactions of organisms of their interest through the website http://cefg.uestc.edu.cn/sser .

  18. Phase separation and the formation of cellular bodies

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Broedersz, Chase P.; Meir, Yigal; Wingreen, Ned S.

    Cellular bodies in eukaryotic cells spontaneously assemble to form cellular compartments. Among other functions, these bodies carry out essential biochemical reactions. Cellular bodies form micron-sized structures, which, unlike canonical cell organelles, are not surrounded by membranes. A recent in vitro experiment has shown that phase separation of polymers in solution can explain the formation of cellular bodies. We constructed a lattice-polymer model to capture the essential mechanism leading to this phase separation. We used both analytical and numerical tools to predict the phase diagram of a system of two interacting polymers, including the concentration of each polymer type in the condensed and dilute phase.

  19. Shc and the mechanotransduction of cellular anchorage and metastasis.

    PubMed

    Terada, Lance S

    2017-02-17

    Tissue cells continually monitor anchorage conditions by gauging the physical properties of their underlying matrix and surrounding environment. The Rho and Ras GTPases are essential components of these mechanosensory pathways. These molecular switches control both cytoskeletal as well as cell fate responses to anchorage conditions and are thus critical to our understanding of how cells respond to their physical environment and, by extension, how malignant cells gainsay these regulatory pathways. Recent studies indicate that 2 proteins produced by the SHC1 gene, thought for the most part to functionally oppose each other, collaborate in their ability to respond to mechanical force by initiating respective Rho and Ras signals. In this review, we focus on the coupling of Shc and GTPases in the cellular response to mechanical anchorage signals, with emphasis on its relevance for cancer.

  20. Revealing 3D Ultrastructure and Morphology of Stem Cell Spheroids by Electron Microscopy.

    PubMed

    Jaros, Josef; Petrov, Michal; Tesarova, Marketa; Hampl, Ales

    2017-01-01

    Cell culture methods have been developed in efforts to produce biologically relevant systems for developmental and disease modeling, and appropriate analytical tools are essential. Knowledge of ultrastructural characteristics represents the basis to reveal in situ the cellular morphology, cell-cell interactions, organelle distribution, niches in which cells reside, and many more. The traditional method for 3D visualization of ultrastructural components, serial sectioning using transmission electron microscopy (TEM), is very labor-intensive due to contentious TEM slice preparation and subsequent image processing of the whole collection. In this chapter, we present serial block-face scanning electron microscopy, together with complex methodology for spheroid formation, contrasting of cellular compartments, image processing, and 3D visualization. The described technique is effective for detailed morphological analysis of stem cell spheroids, organoids, as well as organotypic cell cultures.

  1. Trans-Golgi network/early endosome: a central sorting station for cargo proteins in plant immunity.

    PubMed

    LaMontagne, Erica D; Heese, Antje

    2017-12-01

    In plants, the trans-Golgi network (TGN) functionally overlaps with the early endosome (EE), serving as a central sorting hub to direct newly synthesized and endocytosed cargo to the cell surface or vacuole. Here, we focus on the emerging role of the TGN/EE in sorting of immune cargo proteins for effective plant immunity against pathogenic bacteria and fungi. Specific vesicle coat and regulatory components at the TGN/EE ensure that immune cargoes are correctly sorted and transported to the location of their cellular functions. Our understanding of the identity of immune cargoes and the underlying cellular mechanisms regulating their sorting are still rudimentary, but this knowledge is essential to understanding the physiological contribution of the TGN/EE to effective immune responses. Copyright © 2017. Published by Elsevier Ltd.

  2. Mitochondrial activity in the regulation of stem cell self-renewal and differentiation.

    PubMed

    Khacho, Mireille; Slack, Ruth S

    2017-12-01

    Mitochondria are classically known as the essential energy producers in cells. As such, the activation of mitochondrial metabolism upon cellular differentiation was deemed a necessity to fuel the high metabolic needs of differentiated cells. However, recent studies have revealed a direct role for mitochondrial activity in the regulation of stem cell fate and differentiation. Several components of mitochondrial metabolism and respiration have now been shown to regulate different aspects of stem cell differentiation through signaling, transcriptional, proteomic and epigenetic modulations. In light of these findings mitochondrial metabolism is no longer considered a consequence of cellular differentiation, but rather a key regulatory mechanism of this process. This review will focus on recent progress that defines mitochondria as the epicenters for the regulation of stem cell fate decisions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Mechanical regulation of cardiac development

    PubMed Central

    Lindsey, Stephanie E.; Butcher, Jonathan T.; Yalcin, Huseyin C.

    2014-01-01

    Mechanical forces are essential contributors to and unavoidable components of cardiac formation, both inducing and orchestrating local and global molecular and cellular changes. Experimental animal studies have contributed substantially to understanding the mechanobiology of heart development. More recent integration of high-resolution imaging modalities with computational modeling has greatly improved our quantitative understanding of hemodynamic flow in heart development. Merging these latest experimental technologies with molecular and genetic signaling analysis will accelerate our understanding of the relationships integrating mechanical and biological signaling for proper cardiac formation. These advances will likely be essential for clinically translatable guidance for targeted interventions to rescue malforming hearts and/or reconfigure malformed circulations for optimal performance. This review summarizes our current understanding on the levels of mechanical signaling in the heart and their roles in orchestrating cardiac development. PMID:25191277

  4. Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function.

    PubMed

    Lombardi, Maria L; Lammerding, Jan

    2011-12-01

    Providing a stable physical connection between the nucleus and the cytoskeleton is essential for a wide range of cellular functions and it could also participate in mechanosensing by transmitting intra- and extra-cellular mechanical stimuli via the cytoskeleton to the nucleus. Nesprins and SUN proteins, located at the nuclear envelope, form the LINC (linker of nucleoskeleton and cytoskeleton) complex that connects the nucleus to the cytoskeleton; underlying nuclear lamins contribute to anchoring LINC complex components at the nuclear envelope. Disruption of the LINC complex or loss of lamins can result in disturbed perinuclear actin and intermediate filament networks and causes severe functional defects, including impaired nuclear positioning, cell polarization and cell motility. Recent studies have identified the LINC complex as the major force-transmitting element at the nuclear envelope and suggest that many of the aforementioned defects can be attributed to disturbed force transmission between the nucleus and the cytoskeleton. Thus mutations in nesprins, SUN proteins or lamins, which have been linked to muscular dystrophies and cardiomyopathies, may weaken or completely eliminate LINC complex function at the nuclear envelope and result in impaired intracellular force transmission, thereby disrupting critical cellular functions.

  5. Prions: Beyond a Single Protein

    PubMed Central

    Das, Alvin S.

    2016-01-01

    SUMMARY Since the term protein was first coined in 1838 and protein was discovered to be the essential component of fibrin and albumin, all cellular proteins were presumed to play beneficial roles in plants and mammals. However, in 1967, Griffith proposed that proteins could be infectious pathogens and postulated their involvement in scrapie, a universally fatal transmissible spongiform encephalopathy in goats and sheep. Nevertheless, this novel hypothesis had not been evidenced until 1982, when Prusiner and coworkers purified infectious particles from scrapie-infected hamster brains and demonstrated that they consisted of a specific protein that he called a “prion.” Unprecedentedly, the infectious prion pathogen is actually derived from its endogenous cellular form in the central nervous system. Unlike other infectious agents, such as bacteria, viruses, and fungi, prions do not contain genetic materials such as DNA or RNA. The unique traits and genetic information of prions are believed to be encoded within the conformational structure and posttranslational modifications of the proteins. Remarkably, prion-like behavior has been recently observed in other cellular proteins—not only in pathogenic roles but also serving physiological functions. The significance of these fascinating developments in prion biology is far beyond the scope of a single cellular protein and its related disease. PMID:27226089

  6. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment

    PubMed Central

    Kim, Bong Cho; Lee, Hyung Chul; Lee, Je-Jung; Choi, Chang-Min; Kim, Dong-Kwan; Lee, Jae Cheol; Ko, Young-Gyu; Lee, Jae-Seon

    2012-01-01

    Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence. PMID:23085987

  7. aPKCζ affects directed cell migration through the regulation of myosin light chain phosphorylation

    PubMed Central

    Petrov, Daria; Dahan, Inbal; Cohen-Kfir, Einav; Ravid, Shoshana

    2017-01-01

    ABSTRACT Cell motility is an essential cellular process for a variety of biological events. It requires cross-talk between the signaling and the cytoskeletal systems. Despite the recognized importance of aPKCζ for cell motility, there is little understanding of the mechanism by which aPKCζ mediates extracellular signals to the cytoskeleton. In the present study, we report that aPKCζ is required for the cellular organization of acto-non-muscle myosin II (NMII) cytoskeleton, for proper cell adhesion and directed cell migration. We show that aPKCζ mediates EGF-dependent RhoA activation and recruitment to the cell membrane. We also show that aPKCζ mediates EGF-dependent myosin light chain (MRLC) phosphorylation that is carried out by Rho-associated protein kinase (ROCK), and that aPKCζ is required for EGF-dependent phosphorylation and inhibition of the myosin phosphatase targeting subunit (MYPT). Finally, we show that aPKCζ mediates the spatial organization of the acto-NMII cytoskeleton in response to EGF stimulation. Our data suggest that aPKCζ is an essential component regulator of acto-NMII cytoskeleton organization leading to directed cell migration, and is a mediator of the EGF signal to the cytoskeleton. PMID:27541056

  8. Wig1 prevents cellular senescence by regulating p21 mRNA decay through control of RISC recruitment.

    PubMed

    Kim, Bong Cho; Lee, Hyung Chul; Lee, Je-Jung; Choi, Chang-Min; Kim, Dong-Kwan; Lee, Jae Cheol; Ko, Young-Gyu; Lee, Jae-Seon

    2012-11-14

    Premature senescence, a key strategy used to suppress carcinogenesis, can be driven by p53/p21 proteins in response to various stresses. Here, we demonstrate that Wig1 plays a critical role in this process through regulation of p21 mRNA stability. Wig1 controls the association of Argonaute2 (Ago2), a central component of the RNA-induced silencing complex (RISC), with target p21 mRNA via binding of the stem-loop structure near the microRNA (miRNA) target site. Depletion of Wig1 prohibited miRNA-mediated p21 mRNA decay and resulted in premature senescence. Wig1 plays an essential role in cell proliferation, as demonstrated in tumour xenografts in mice, and Wig1 and p21 mRNA levels are inversely correlated in human normal and cancer tissues. Together, our data indicate a novel role of Wig1 in RISC target accessibility, which is a key step in RNA-mediated gene silencing. In addition, these findings indicate that fine-tuning of p21 levels by Wig1 is essential for the prevention of cellular senescence.

  9. Autophagy in protists

    PubMed Central

    Duszenko, Michael; Ginger, Michael L; Brennand, Ana; Gualdrón-López, Melisa; Colombo, Maria-Isabel; Coombs, Graham H; Coppens, Isabelle; Jayabalasingham, Bamini; Langsley, Gordon; de Castro, Solange Lisboa; Menna-Barreto, Rubem; Mottram, Jeremy C; Navarro, Miguel; Rigden, Daniel J; Romano, Patricia S; Stoka, Veronika; Turk, Boris

    2011-01-01

    Autophagy is the degradative process by which eukaryotic cells digest their own components using acid hydrolases within the lysosome. Originally thought to function almost exclusively in providing starving cells with nutrients taken from their own cellular constituents, autophagy is in fact involved in numerous cellular events including differentiation, turnover of macromolecules and organelles and defense against parasitic invaders. During the past 10–20 years, molecular components of the autophagic machinery have been discovered, revealing a complex interactome of proteins and lipids, which, in a concerted way, induce membrane formation to engulf cellular material and target it for lysosomal degradation. Here, our emphasis is autophagy in protists. We discuss experimental and genomic data indicating that the canonical autophagy machinery characterized in animals and fungi appeared prior to the radiation of major eukaryotic lineages. Moreover, we describe how comparative bioinformatics revealed that this canonical machinery has been subject to moderation, outright loss or elaboration on multiple occasions in protist lineages, most probably as a consequence of diverse lifestyle adaptations. We also review experimental studies illustrating how several pathogenic protists either utilize autophagy mechanisms or manipulate host-cell autophagy in order to establish or maintain infection within a host. The essentiality of autophagy for the pathogenicity of many parasites, and the unique features of some of the autophagy-related proteins involved, suggest possible new targets for drug discovery. Further studies of the molecular details of autophagy in protists will undoubtedly enhance our understanding of the diversity and complexity of this cellular phenomenon and the opportunities it offers as a drug target. PMID:20962583

  10. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System.

    PubMed

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-11-30

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum , linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity.

  11. Coriandrum sativum and Lavandula angustifolia Essential Oils: Chemical Composition and Activity on Central Nervous System

    PubMed Central

    Caputo, Lucia; Souza, Lucéia Fátima; Alloisio, Susanna; Cornara, Laura; De Feo, Vincenzo

    2016-01-01

    The aims of this study are to determine the chemical composition of Lavandula angustifolia Mill. and Coriandrum sativum L. essential oils, to evaluate their cytotoxic effects in SH-SY5Y human neuroblastoma cells, to investigate whether an alteration of adenylate cyclase 1 (ADCY1) and of extracellular signal-regulated kinase (ERK) expression can take part in the molecular mechanisms of the essential oils, and to study their possible neuronal electrophysiological effects. The essential oils were obtained by hydrodistillation, and studied by GC and GC-MS. In the oils from L. angustifolia and C. sativum, linalool was the main component (33.1% and 67.8%, respectively). SH-SY5Y cells were incubated with different concentrations of essential oils and of linalool. Cell viability and effects on ADCY1 and ERK expression were analyzed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide MTT and Western blotting, respectively. Variation in cellular electrophysiology was studied in primary cultures of rat cortical neurons with a multi-electrode array (MEA)-based approach. The essential oils and linalool revealed different cytotoxic activities. Linalool inhibited ADCY1 and ERK expression. Neuronal networks subjected to L. angustifolia and C. sativum essential oils showed a concentration-dependent inhibition of spontaneous electrical activity. PMID:27916876

  12. Manipulating the Cellular Circadian Period of Arginine Vasopressin Neurons Alters the Behavioral Circadian Period.

    PubMed

    Mieda, Michihiro; Okamoto, Hitoshi; Sakurai, Takeshi

    2016-09-26

    As the central pacemaker in mammals, the circadian clock in the suprachiasmatic nucleus (SCN) of the hypothalamus is a heterogeneous structure consisting of multiple types of GABAergic neurons with distinct chemical identities [1, 2]. Although individual cells have a cellular clock driven by autoregulatory transcriptional/translational feedback loops of clock genes, interneuronal communication among SCN clock neurons is likely essential for the SCN to generate a highly robust, coherent circadian rhythm [1]. However, neuronal mechanisms that determine circadian period length remain unclear. The SCN is composed of two subdivisions: a ventral core region containing vasoactive intestinal peptide (VIP)-producing neurons and a dorsal shell region characterized by arginine vasopressin (AVP)-producing neurons. Here we examined whether AVP neurons act as pacemaker cells that regulate the circadian period of behavior rhythm in mice. The deletion of casein kinase 1 delta (CK1δ) specific to AVP neurons, which was expected to lengthen the period of cellular clocks [3-6], lengthened the free-running period of circadian behavior as well. Conversely, the overexpression of CK1δ specific to SCN AVP neurons shortened the free-running period. PER2::LUC imaging in slices confirmed that cellular circadian periods of the SCN shell were lengthened in mice without CK1δ in AVP neurons. Thus, AVP neurons may be an essential component of circadian pacemaker cells in the SCN. Remarkably, the alteration of the shell-core phase relationship in the SCN of these mice did not impair the generation per se of circadian behavior rhythm, thereby underscoring the robustness of the SCN network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Fast kinase domain-containing protein 3 is a mitochondrial protein essential for cellular respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simarro, Maria; Gimenez-Cassina, Alfredo; Kedersha, Nancy

    2010-10-22

    Research highlights: {yields} Five members of the FAST kinase domain-containing proteins are localized to mitochondria in mammalian cells. {yields} The FASTKD3 interactome includes proteins involved in various aspects of mitochondrial metabolism. {yields} Targeted knockdown of FASTKD3 significantly reduces basal and maximal mitochondrial oxygen consumption. -- Abstract: Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated withmore » reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.« less

  14. Cellular and soluble components decrease the viable pathogen counts in milk from dairy cows with subclinical mastitis.

    PubMed

    Koshiishi, Tomoko; Watanabe, Masako; Miyake, Hajime; Hisaeda, Keiichi; Isobe, Naoki

    2017-08-10

    The present study was undertaken to clarify the factors that reduce the viable pathogen count in milk collected from the udders of subclinical mastitic cows during preservation. Milk was centrifuged to divide somatic cells (cellular components, precipitates) and antimicrobial peptides (soluble components, supernatants without fat layer); each fraction was cultured with bacteria, and the number of viable bacteria was assessed prior to and after culture. In 28.8% of milk samples, we noted no viable bacteria immediately after collection; this value increased significantly after a 5-hr incubation of milk with cellular components but not with soluble components (48.1 and 28.8%, respectively). After culture with cellular components, the numbers of bacteria (excluding Staphylococcus aureus and Streptococcus uberis) and yeast decreased dramatically, although the differences were not statistically significant. After cultivation with soluble components, only yeasts showed a tendency toward decreased mean viability, whereas the mean bacterial counts of S. uberis and T. pyogenes tended to increase after 5-hr preservation with soluble components. These results suggest that most pathogens in high somatic cell count (SCC) milk decreased during preservation at 15 to 25°C, due to both the cellular components and antimicrobial components in the milk. Particularly, the cellular components more potently reduced bacterial counts during preservation.

  15. S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component.

    PubMed

    Zheng, Lei; Roeder, Robert G; Luo, Yan

    2003-07-25

    We have isolated and functionally characterized a multicomponent Oct-1 coactivator, OCA-S which is essential for S phase-dependent histone H2B transcription. The p38 component of OCA-S binds directly to Oct-1, exhibits potent transactivation potential, is selectively recruited to the H2B promoter in S phase, and is essential for S phase-specific H2B transcription in vivo and in vitro. Surprisingly, p38 represents a nuclear form of glyceraldehyde-3-phosphate dehydrogenase, and binding to Oct-1, as well as OCA-S function, is stimulated by NAD(+) but inhibited by NADH. OCA-S also interacts with NPAT, a cyclin E/cdk2 substrate that is broadly involved in histone gene transcription. These studies thus link the H2B transcriptional machinery to cell cycle regulators, and possibly to cellular metabolic state (redox status), and set the stage for studies of the underlying mechanisms and the basis for coordinated histone gene expression and coupling to DNA replication.

  16. Cellular uptake of Clostridium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain.

    PubMed

    Haug, Gerd; Wilde, Christian; Leemhuis, Jost; Meyer, Dieter K; Aktories, Klaus; Barth, Holger

    2003-12-30

    The Clostridium botulinum C2 toxin is the prototype of the family of binary actin-ADP-ribosylating toxins. C2 toxin is composed of two separated nonlinked proteins. The enzyme component C2I ADP-ribosylates actin in the cytosol of target cells. The binding/translocation component C2II mediates cell binding of the enzyme component and its translocation from acidic endosomes into the cytosol. After proteolytic activation, C2II forms heptameric pores in endosomal membranes, and most likely, C2I translocates through these pores into the cytosol. For this step, the cellular heat shock protein Hsp90 is essential. We analyzed the effect of methotrexate on the cellular uptake of a fusion toxin in which the enzyme dihydrofolate reductase (DHFR) was fused to the C-terminus of C2I. Here, we report that unfolding of C2I-DHFR is required for cellular uptake of the toxin via the C2IIa component. The C2I-DHFR fusion toxin catalyzed ADP-ribosylation of actin in vitro and was able to intoxicate cultured cells when applied together with C2IIa. Binding of the folate analogue methotrexate favors a stable three-dimensional structure of the dihydrofolate reductase domain. Pretreatment of C2I-DHFR with methotrexate prevented cleavage of C2I-DHFR by trypsin. In the presence of methotrexate, intoxication of cells with C2I-DHFR/C2II was inhibited. The presence of methotrexate diminished the translocation of the C2I-DHFR fusion toxin from endosomal compartments into the cytosol and the direct C2IIa-mediated translocation of C2I-DHFR across cell membranes. Methotrexate had no influence on the intoxication of cells with C2I/C2IIa and did not alter the C2IIa-mediated binding of C2I-DHFR to cells. The data indicate that methotrexate prevented unfolding of the C2I-DHFR fusion toxin, and thereby the translocation of methotrexate-bound C2I-DHFR from endosomes into the cytosol of target cells is inhibited.

  17. Estrogen-Related Receptor α (ERRα) and ERRγ Are Essential Coordinators of Cardiac Metabolism and Function

    PubMed Central

    Wang, Ting; McDonald, Caitlin; Petrenko, Nataliya B.; Leblanc, Mathias; Wang, Tao; Giguere, Vincent; Evans, Ronald M.; Patel, Vickas V.

    2015-01-01

    Almost all cellular functions are powered by a continuous energy supply derived from cellular metabolism. However, it is little understood how cellular energy production is coordinated with diverse energy-consuming cellular functions. Here, using the cardiac muscle system, we demonstrate that nuclear receptors estrogen-related receptor α (ERRα) and ERRγ are essential transcriptional coordinators of cardiac energy production and consumption. On the one hand, ERRα and ERRγ together are vital for intact cardiomyocyte metabolism by directly controlling expression of genes important for mitochondrial functions and dynamics. On the other hand, ERRα and ERRγ influence major cardiomyocyte energy consumption functions through direct transcriptional regulation of key contraction, calcium homeostasis, and conduction genes. Mice lacking both ERRα and cardiac ERRγ develop severe bradycardia, lethal cardiomyopathy, and heart failure featuring metabolic, contractile, and conduction dysfunctions. These results illustrate that the ERR transcriptional pathway is essential to couple cellular energy metabolism with energy consumption processes in order to maintain normal cardiac function. PMID:25624346

  18. Comparative Study of Essential Oils Extracted from Algerian Myrtus communis L. Leaves Using Microwaves and Hydrodistillation

    PubMed Central

    Berka-Zougali, Baya; Ferhat, Mohamed-Amine; Hassani, Aicha; Chemat, Farid; Allaf, Karim S.

    2012-01-01

    Two different extraction methods were used for a comparative study of Algerian Myrtle leaf essential oils: solvent-free-microwave-extraction (SFME) and conventional hydrodistillation (HD). Essential oils analyzed by GC and GC-MS presented 51 components constituting 97.71 and 97.39% of the total oils, respectively. Solvent-Free-Microwave-Extract Essential oils SFME-EO were richer in oxygenated compounds. Their major compounds were 1,8-cineole, followed by α-pinene as against α-pinene, followed by 1,8-cineole for HD. Their antimicrobial activity was investigated on 12 microorganisms. The antioxidant activities were studied with the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging method. Generally, both essential oils showed high antimicrobial and weak antioxidant activities. Microstructure analyses were also undertaken on the solid residue of myrtle leaves by Scanning Electronic Microscopy (SEM); it showed that the SFME-cellular structure undergoes significant modifications compared to the conventional HD residual solid. Comparison between hydrodistillation and SFME presented numerous distinctions. Several advantages with SFME were observed: faster kinetics and higher efficiency with similar yields: 0.32% dry basis, in 30 min as against 180 min for HD. PMID:22606003

  19. Soybean extracts increase cell surface ZIP4 abundance and cellular zinc levels: a potential novel strategy to enhance zinc absorption by ZIP4 targeting.

    PubMed

    Hashimoto, Ayako; Ohkura, Katsuma; Takahashi, Masakazu; Kizu, Kumiko; Narita, Hiroshi; Enomoto, Shuichi; Miyamae, Yusaku; Masuda, Seiji; Nagao, Masaya; Irie, Kazuhiro; Ohigashi, Hajime; Andrews, Glen K; Kambe, Taiho

    2015-12-01

    Dietary zinc deficiency puts human health at risk, so we explored strategies for enhancing zinc absorption. In the small intestine, the zinc transporter ZIP4 functions as an essential component of zinc absorption. Overexpression of ZIP4 protein increases zinc uptake and thereby cellular zinc levels, suggesting that food components with the ability to increase ZIP4 could potentially enhance zinc absorption via the intestine. In the present study, we used mouse Hepa cells, which regulate mouse Zip4 (mZip4) in a manner indistinguishable from that in intestinal enterocytes, to screen for suitable food components that can increase the abundance of ZIP4. Using this ZIP4-targeting strategy, two such soybean extracts were identified that were specifically able to decrease mZip4 endocytosis in response to zinc. These soybean extracts also effectively increased the abundance of apically localized mZip4 in transfected polarized Caco2 and Madin-Darby canine kidney cells and, moreover, two apically localized mZip4 acrodermatitis enteropathica mutants. Soybean components were purified from one extract and soyasaponin Bb was identified as an active component that increased both mZip4 protein abundance and zinc levels in Hepa cells. Finally, we confirmed that soyasaponin Bb is capable of enhancing cell surface endogenous human ZIP4 in human cells. Our results suggest that ZIP4 targeting may represent a new strategy to improve zinc absorption in humans. © 2015 Authors; published by Portland Press Limited.

  20. Connexins, pannexins and their channels in fibroproliferative diseases

    PubMed Central

    Willebrords, Joost; Da Silva, Tereza Cristina; Maes, Michaël; Pereira, Isabel Veloso Alves; Crespo-Yanguas, Sara; Hernandez-Blazquez, Francisco Javier; Dagli, Maria Lúcia Zaidan; Vinken, Mathieu

    2017-01-01

    Cellular and molecular mechanisms of wound healing, tissue repair and fibrogenesis are established in different organs and are essential for the maintenance of function and tissue integrity after cell injury. These mechanisms are also involved in a plethora of fibroproliferative diseases or organ-specific fibrotic disorders, all of which are associated with the excessive deposition of extracellular matrix components. Fibroblasts, which are key cells in tissue repair and fibrogenesis, rely on communicative cellular networks to ensure efficient control of these processes and to prevent abnormal accumulation of extracellular matrix into the tissue. Despite the significant impact on human health, and thus the epidemiologic relevance, there is still no effective treatment for most fibrosis-related diseases. This paper provides an overview of current concepts and mechanisms involved in the participation of cellular communication via connexin-based pores as well as pannexin-based channels in the processes of tissue repair and fibrogenesis in chronic diseases. Understanding these mechanisms may contribute to the development of new therapeutic strategies to clinically manage fibroproliferative diseases and organ-specific fibrotic disorders. PMID:26914707

  1. Ethanol-induced oxidant stress modulates hepatic autophagy and proteasome activity

    PubMed Central

    Donohue, Jr., Terrence M.; Thomes, Paul G.

    2014-01-01

    In this review, we describe research findings on the effects of alcohol exposure on two major catabolic systems in liver cells: the ubiquitin–proteasome system (UPS) and autophagy. These hydrolytic systems are not unique to liver cells; they exist in all eukaryotic tissues and cells. However, because the liver is the principal site of ethanol metabolism, it sustains the greatest damage from heavy drinking. Thus, the focus of this review is to specifically describe how ethanol oxidation modulates the activities of the UPS and autophagy and the mechanisms by which these changes contribute to the pathogenesis of alcohol-induced liver injury. Here, we describe the history and the importance of cellular hydrolytic systems, followed by a description of each catabolic pathway and the differential modulation of each by ethanol exposure. Overall, the evidence for an involvement of these catabolic systems in the pathogenesis of alcoholic liver disease is quite strong. It underscores their importance, not only as effective means of cellular recycling and eventual energy generation, but also as essential components of cellular defense. PMID:25462063

  2. Mutations in SMG9, Encoding an Essential Component of Nonsense-Mediated Decay Machinery, Cause a Multiple Congenital Anomaly Syndrome in Humans and Mice

    PubMed Central

    Shaheen, Ranad; Anazi, Shams; Ben-Omran, Tawfeg; Seidahmed, Mohammed Zain; Caddle, L. Brianna; Palmer, Kristina; Ali, Rehab; Alshidi, Tarfa; Hagos, Samya; Goodwin, Leslie; Hashem, Mais; Wakil, Salma M.; Abouelhoda, Mohamed; Colak, Dilek; Murray, Stephen A.; Alkuraya, Fowzan S.

    2016-01-01

    Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined. PMID:27018474

  3. The GARP complex is required for cellular sphingolipid homeostasis.

    PubMed

    Fröhlich, Florian; Petit, Constance; Kory, Nora; Christiano, Romain; Hannibal-Bach, Hans-Kristian; Graham, Morven; Liu, Xinran; Ejsing, Christer S; Farese, Robert V; Walther, Tobias C

    2015-09-10

    Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. In this study, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2.

  4. Ebselen, a promising antioxidant drug: mechanisms of action and targets of biological pathways.

    PubMed

    Azad, Gajendra Kumar; Tomar, Raghuvir S

    2014-08-01

    Ebselen, an organoselenium compound, mimics glutathione peroxidase activity. It is a multifunctional compound, which catalyzes several essential reactions for the protection of cellular components from oxidative and free radical damage. Based on a number of in vitro and in vivo studies, various mechanisms are proposed to understand the biomedical actions of ebselen in health and diseases. It modulates metallo-proteins, enzymatic cofactors, gene expression, epigenetics, antioxidant defenses and immune systems. Owing to these properties, ebselen is currently under clinical trials for the prevention and treatment of various disorders such as cardiovascular diseases, arthritis, stroke, atherosclerosis, and cancer. A few ebselen-based pharmaceutical agents are under extensive investigation. As ebselen has been shown to have significant cellular toxicity, appropriate studies are needed to redesign the ebselen-based therapy for clinical trials. This review summarizes current understanding of the biochemical and molecular properties, and pharmacological applications of ebselen and future directions in this area of research.

  5. Involvement of autophagy in T cell biology.

    PubMed

    Oral, Ozlem; Yedier, Ozlem; Kilic, Seval; Gozuacik, Devrim

    2017-01-01

    Autophagy is an essential cellular pathway that sequesters various cytoplasmic components, including accumulated proteins, damaged organelles or invading microorganisms and delivers them to lysosomes for degradation. The function of autophagy has been reported in various tissues and systems, including its role in the regulation of cellular immunity. Autophagy plays a fundamental role at various stages of T cell maturation. It regulates the thymocyte selection and the generation of T cell repertoire by presenting intracellular antigens to MHC class molecules. Autophagy is crucial for metabolic regulation of T cells, and therefore supports cell survival and homeostasis, particularly in activated mature T cells. Furthermore, deletion of specific autophagy-related genes induces several immunological alterations including differentiation of activated T cells into regulatory, memory or natural killer T cells. In this review, we emphasize the impact of autophagy on T cell development, activation and differentiation, which is pivotal for the adaptive immune system.

  6. Avanti lipid tools: connecting lipids, technology, and cell biology.

    PubMed

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  7. Steps Toward Understanding Mitochondrial Fe/S Cluster Biogenesis.

    PubMed

    Melber, Andrew; Winge, Dennis R

    2018-01-01

    Iron-sulfur clusters (Fe/S clusters) are essential cofactors required throughout the clades of biology for performing a myriad of unique functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. Although Fe/S clusters can be synthesized in vitro and transferred to a client protein without enzymatic assistance, biology has evolved intricate mechanisms to assemble and transfer Fe/S clusters within the cellular environment. In eukaryotes, the foundation of all cellular clusters starts within the mitochondria. The focus of this review is to detail the mitochondrial Fe/S biogenesis (ISC) pathway along with the Fe/S cluster transfer steps necessary to mature Fe/S proteins. New advances in our understanding of the mitochondrial Fe/S biogenesis machinery will be highlighted. Additionally, we will address various experimental approaches that have been successful in the identification and characterization of components of the ISC pathway. © 2018 Elsevier Inc. All rights reserved.

  8. Nuclear autophagy: An evolutionarily conserved mechanism of nuclear degradation in the cytoplasm.

    PubMed

    Luo, Majing; Zhao, Xueya; Song, Ying; Cheng, Hanhua; Zhou, Rongjia

    2016-11-01

    Macroautophagy/autophagy is a catabolic process that is essential for cellular homeostasis. Studies on autophagic degradation of cytoplasmic components have generated interest in nuclear autophagy. Although its mechanisms and roles have remained elusive, tremendous progress has been made toward understanding nuclear autophagy. Nuclear autophagy is evolutionarily conserved in eukaryotes that may target various nuclear components through a series of processes, including nuclear sensing, nuclear export, autophagic substrate encapsulation and autophagic degradation in the cytoplasm. However, the molecular processes and regulatory mechanisms involved in nuclear autophagy remain largely unknown. Numerous studies have highlighted the importance of nuclear autophagy in physiological and pathological processes such as cancer. This review focuses on current advances in nuclear autophagy and provides a summary of its research history and landmark discoveries to offer new perspectives.

  9. mTORC1 as the main gateway to autophagy

    PubMed Central

    Rabanal-Ruiz, Yoana; Otten, Elsje G.; Korolchuk, Viktor I.

    2017-01-01

    Cells and organisms must coordinate their metabolic activity with changes in their environment to ensure their growth only when conditions are favourable. In order to maintain cellular homoeostasis, a tight regulation between the synthesis and degradation of cellular components is essential. At the epicentre of the cellular nutrient sensing is the mechanistic target of rapamycin complex 1 (mTORC1) which connects environmental cues, including nutrient and growth factor availability as well as stress, to metabolic processes in order to preserve cellular homoeostasis. Under nutrient-rich conditions mTORC1 promotes cell growth by stimulating biosynthetic pathways, including synthesis of proteins, lipids and nucleotides, and by inhibiting cellular catabolism through repression of the autophagic pathway. Its close signalling interplay with the energy sensor AMP-activated protein kinase (AMPK) dictates whether the cell actively favours anabolic or catabolic processes. Underlining the role of mTORC1 in the coordination of cellular metabolism, its deregulation is linked to numerous human diseases ranging from metabolic disorders to many cancers. Although mTORC1 can be modulated by a number of different inputs, amino acids represent primordial cues that cannot be compensated for by any other stimuli. The understanding of how amino acids signal to mTORC1 has increased considerably in the last years; however this area of research remains a hot topic in biomedical sciences. The current ideas and models proposed to explain the interrelationship between amino acid sensing, mTORC1 signalling and autophagy is the subject of the present review. PMID:29233869

  10. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective

    PubMed Central

    Kimura, Tomoki; Kambe, Taiho

    2016-01-01

    Around 3000 proteins are thought to bind zinc in vivo, which corresponds to ~10% of the human proteome. Zinc plays a pivotal role as a structural, catalytic, and signaling component that functions in numerous physiological processes. It is more widely used as a structural element in proteins than any other transition metal ion, is a catalytic component of many enzymes, and acts as a cellular signaling mediator. Thus, it is expected that zinc metabolism and homeostasis have sophisticated regulation, and elucidating the underlying molecular basis of this is essential to understanding zinc functions in cellular physiology and pathogenesis. In recent decades, an increasing amount of evidence has uncovered critical roles of a number of proteins in zinc metabolism and homeostasis through influxing, chelating, sequestrating, coordinating, releasing, and effluxing zinc. Metallothioneins (MT) and Zrt- and Irt-like proteins (ZIP) and Zn transporters (ZnT) are the proteins primarily involved in these processes, and their malfunction has been implicated in a number of inherited diseases such as acrodermatitis enteropathica. The present review updates our current understanding of the biological functions of MTs and ZIP and ZnT transporters from several new perspectives. PMID:26959009

  11. Autophagy Driven by a Master Regulator of Hematopoiesis

    PubMed Central

    Kang, Yoon-A; Sanalkumar, Rajendran; O'Geen, Henriette; Linnemann, Amelia K.; Chang, Chan-Jung; Bouhassira, Eric E.; Farnham, Peggy J.; Keles, Sunduz

    2012-01-01

    Developmental and homeostatic remodeling of cellular organelles is mediated by a complex process termed autophagy. The cohort of proteins that constitute the autophagy machinery functions in a multistep biochemical pathway. Though components of the autophagy machinery are broadly expressed, autophagy can occur in specialized cellular contexts, and mechanisms underlying cell-type-specific autophagy are poorly understood. We demonstrate that the master regulator of hematopoiesis, GATA-1, directly activates transcription of genes encoding the essential autophagy component microtubule-associated protein 1 light chain 3B (LC3B) and its homologs (MAP1LC3A, GABARAP, GABARAPL1, and GATE-16). In addition, GATA-1 directly activates genes involved in the biogenesis/function of lysosomes, which mediate autophagic protein turnover. We demonstrate that GATA-1 utilizes the forkhead protein FoxO3 to activate select autophagy genes. GATA-1-dependent LC3B induction is tightly coupled to accumulation of the active form of LC3B and autophagosomes, which mediate mitochondrial clearance as a critical step in erythropoiesis. These results illustrate a novel mechanism by which a master regulator of development establishes a genetic network to instigate cell-type-specific autophagy. PMID:22025678

  12. Mitochondrial protein acetylation mediates nutrient sensing of mitochondrial protein synthesis and mitonuclear protein balance.

    PubMed

    Di Domenico, Antonella; Hofer, Annette; Tundo, Federica; Wenz, Tina

    2014-11-01

    Changes in nutrient supply require global metabolic reprogramming to optimize the utilization of the nutrients. Mitochondria as a central component of the cellular metabolism play a key role in this adaptive process. Since mitochondria harbor their own genome, which encodes essential enzymes, mitochondrial protein synthesis is a determinant of metabolic adaptation. While regulation of cytoplasmic protein synthesis in response to metabolic challenges has been studied in great detail, mechanisms which adapt mitochondrial translation in response to metabolic challenges remain elusive. Our results suggest that the mitochondrial acetylation status controlled by Sirt3 and its proposed opponent GCN5L1 is an important regulator of the metabolic adaptation of mitochondrial translation. Moreover, both proteins modulate regulators of cytoplasmic protein synthesis as well as the mitonuclear protein balance making Sirt3 and GCN5L1 key players in synchronizing mitochondrial and cytoplasmic translation. Our results thereby highlight regulation of mitochondrial translation as a novel component in the cellular nutrient sensing scheme and identify mitochondrial acetylation as a new regulatory principle for the metabolic competence of mitochondrial protein synthesis. © 2014 International Union of Biochemistry and Molecular Biology.

  13. Control of human adenovirus type 5 gene expression by cellular Daxx/ATRX chromatin-associated complexes

    PubMed Central

    Schreiner, Sabrina; Bürck, Carolin; Glass, Mandy; Groitl, Peter; Wimmer, Peter; Kinkley, Sarah; Mund, Andreas; Everett, Roger D.; Dobner, Thomas

    2013-01-01

    Death domain–associated protein (Daxx) cooperates with X-linked α-thalassaemia retardation syndrome protein (ATRX), a putative member of the sucrose non-fermentable 2 family of ATP-dependent chromatin-remodelling proteins, acting as the core ATPase subunit in this complex, whereas Daxx is the targeting factor, leading to histone deacetylase recruitment, H3.3 deposition and transcriptional repression of cellular promoters. Despite recent findings on the fundamental importance of chromatin modification in host-cell gene regulation, it remains unclear whether adenovirus type 5 (Ad5) transcription is regulated by cellular chromatin remodelling to allow efficient virus gene expression. Here, we focus on the repressive role of the Daxx/ATRX complex during Ad5 replication, which depends on intact protein–protein interaction, as negative regulation could be relieved with a Daxx mutant that is unable to interact with ATRX. To ensure efficient viral replication, Ad5 E1B-55K protein inhibits Daxx and targets ATRX for proteasomal degradation in cooperation with early region 4 open reading frame protein 6 and cellular components of a cullin-dependent E3-ubiquitin ligase. Our studies illustrate the importance and diversity of viral factors antagonizing Daxx/ATRX-mediated repression of viral gene expression and shed new light on the modulation of cellular chromatin remodelling factors by Ad5. We show for the first time that cellular Daxx/ATRX chromatin remodelling complexes play essential roles in Ad gene expression and illustrate the importance of early viral proteins to counteract cellular chromatin remodelling. PMID:23396441

  14. Corticostriatal connectivity and its role in disease

    PubMed Central

    Shepherd, Gordon M. G.

    2014-01-01

    Corticostriatal projections are essential components of forebrain circuits widely involved in motivated behavior. These axonal projections are formed by two distinct classes of cortical neurons, intratelencephalic (IT) and pyramidal tract (PT) type neurons. Convergent evidence points to IT/PT differentiation of the corticostriatal system at all levels of functional organization, from cellular signaling mechanisms to circuit topology. There is also growing evidence for IT/PT imbalance as an etiological factor in neurodevelopmental, neuropsychiatric, and movement disorders – autism, amyotrophic lateral sclerosis, obsessive-compulsive disorder, schizophrenia, Huntington’s and Parkinson’s diseases, and major depression are highlighted here. PMID:23511908

  15. Autophagy in immunity and inflammation

    PubMed Central

    Levine, Beth; Mizushima, Noboru; Virgin, Herbert W.

    2011-01-01

    Autophagy is an essential, homeostatic process by which cells break down their own components. Perhaps the most primordial function of this lysosomal degradation pathway is adaptation to nutrient deprivation. However, in complex multicellular organisms, the core molecular machinery of autophagy — the ‘autophagy proteins’ — orchestrates diverse aspects of cellular and organismal responses to other dangerous stimuli such as infection. Recent developments reveal a crucial role for the autophagy pathway and proteins in immunity and inflammation. They balance the beneficial and detrimental effects of immunity and inflammation, and thereby may protect against infectious, autoimmune and inflammatory diseases. PMID:21248839

  16. Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 12-Hours Post-Exposure to 532 nm, 120 ps Pulsed Laser Light

    DTIC Science & Technology

    2004-04-01

    cycling, anaerobic enzymes and kinase enzymes as well as specific cellular channel or receptor components. However, the most striking revelation of the...degradation. Most notably up-regulated were the genes for the enzymes essential in the ubiquitin-proteoasome pathway (UPP) shown to be up-regulated in response...to oxidative stress in eye tissue (1). These were ubiquitin [2.0], 3 ubiquitin-conjugating enzyme genes E2 [2.3], E2D2 [2.3] and E2D3 [2.8]. Also up

  17. Role of the Z band in the mechanical properties of the heart.

    PubMed

    Goldstein, M A; Schroeter, J P; Michael, L H

    1991-05-01

    In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.

  18. Developmental consequences of cryopreservation of mammalian oocytes and embryos.

    PubMed

    Smith, Gary D; Silva E Silva, Cristine Ane

    2004-08-01

    During the last three decades, significant advances have been made in successful cryopreservation of mammalian preimplantation embryos, and more recently oocytes. The ability to cryopreserve, thaw, and establish pregnancies with supernumerary preimplantation embryos has become an important tool in fertility treatment. Human oocyte cryopreservation has practical application in preserving fertility for individuals at risk of compromised egg quality due to cancer treatments or advanced maternal age. While oocyte/embryo cryopreservation success has increased over time, there is still room for improvement. Oocytes and embryos are susceptible to cryo-damage, which collectively entails cellular damage caused by mechanical, chemical, or thermal forces during the freeze-thaw process. Basic studies focused on understanding cellular structures, their composition, and more importantly their functions, in normal cell developments will continue to be critical in assessing, understanding, and correcting oocyte/embryo cryo-damage. This review will delineate many of the oocyte/embryo intracellular and extracellular structures that are or may be compromised during cryopreservation. A global theme presented throughout this review is that many structural components of the oocyte/embryo also have essential functional roles in development. Compromising these cellular structures, and thus their cellular homeostatic functions, can deleteriously influence initial cryo-survival or compromise subsequent normal development through effects on the oocyte and/or early embryo.

  19. Rapid detection of microbial cell abundance in aquatic systems

    DOE PAGES

    Rocha, Andrea M.; Yuan, Quan; Close, Dan M.; ...

    2016-06-01

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less

  20. Rapid detection of microbial cell abundance in aquatic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Andrea M.; Yuan, Quan; Close, Dan M.

    The detection and quantification of naturally occurring microbial cellular densities is an essential component of environmental systems monitoring. While there are a number of commonly utilized approaches for monitoring microbial abundance, capacitance-based biosensors represent a promising approach because of their low-cost and label-free detection of microbial cells, but are not as well characterized as more traditional methods. Here, we investigate the applicability of enhanced alternating current electrokinetics (ACEK) capacitive sensing as a new application for rapidly detecting and quantifying microbial cellular densities in cultured and environmentally sourced aquatic samples. ACEK capacitive sensor performance was evaluated using two distinct and dynamicmore » systems the Great Australian Bight and groundwater from the Oak Ridge Reservation in Oak Ridge, TN. Results demonstrate that ACEK capacitance-based sensing can accurately determine microbial cell counts throughout cellular concentrations typically encountered in naturally occurring microbial communities (10 3 – 10 6 cells/mL). A linear relationship was observed between cellular density and capacitance change correlations, allowing a simple linear curve fitting equation to be used for determining microbial abundances in unknown samples. As a result, this work provides a foundation for understanding the limits of capacitance-based sensing in natural environmental samples and supports future efforts focusing on evaluating the robustness ACEK capacitance-based within aquatic environments.« less

  1. Kibra and aPKC regulate starvation-induced autophagy in Drosophila

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ahrum; Neufeld, Thomas P.; Choe, Joonho, E-mail: jchoe@kaist.ac.kr

    Autophagy is a bulk degradation system that functions in response to cellular stresses such as metabolic stress, endoplasmic reticulum stress, oxidative stress, and developmental processes. During autophagy, cytoplasmic components are captured in double-membrane vesicles called autophagosomes. The autophagosome fuses with the lysosome, producing a vacuole known as an autolysosome. The cellular components are degraded by lysosomal proteases and recycled. Autophagy is important for maintaining cellular homeostasis, and the process is evolutionarily conserved. Kibra is an upstream regulator of the hippo signaling pathway, which controls organ size by affecting cell growth, proliferation, and apoptosis. Kibra is mainly localized in the apicalmore » membrane domain of epithelial cells and acts as a scaffold protein. We found that Kibra is required for autophagy to function properly. The absence of Kibra caused defects in the formation of autophagic vesicles and autophagic degradation. We also found that the well-known cell polarity protein aPKC interacts with Kibra, and its activity affects autophagy upstream of Kibra. Constitutively active aPKC decreased autophagic vesicle formation and autophagic degradation. We confirmed the interaction between aPKC and Kibra in S2 cells and Drosophila larva. Taken together, our data suggest that Kibra and aPKC are essential for regulating starvation-induced autophagy. - Highlights: • Loss of Kibra causes defects in autophagosome formation and autophagic degradation. • Constitutively-active aPKCs negatively regulate autophagy. • Kibra interacts with aPKC in vitro and in vivo. • Kibra regulates autophagy downstream of aPKC.« less

  2. Analysis of Students' Aptitude to Provide Meaning to Images that Represent Cellular Components at the Molecular Level

    ERIC Educational Resources Information Center

    Dahmani, Hassen-Reda; Schneeberger, Patricia; Kramer, IJsbrand M.

    2009-01-01

    The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or…

  3. Docosahexaenoic Acid Signalolipidomics in Nutrition: Significance in Aging, Neuroinflammation, Macular Degeneration, Alzheimer’s, and Other Neurodegenerative Diseases

    PubMed Central

    Bazan, Nicolas G.; Molina, Miguel F.; Gordon, William C.

    2012-01-01

    Essential polyunsaturated fatty acids (PUFAs) are critical nutritional lipids that must be obtained from the diet to sustain homeostasis. Omega-3 and -6 PUFAs are key components of biomembranes and play important roles in cell integrity, development, maintenance, and function. The essential omega-3 fatty acid family member docosahexaenoic acid (DHA) is avidly retained and uniquely concentrated in the nervous system, particularly in photoreceptors and synaptic membranes. DHA plays a key role in vision, neuroprotection, successful aging, memory, and other functions. In addition, DHA displays anti-inflammatory and inflammatory resolving properties in contrast to the proinflammatory actions of several members of the omega-6 PUFAs family. This review discusses DHA signalolipidomics, comprising the cellular/tissue organization of DHA uptake, its distribution among cellular compartments, the organization and function of membrane domains rich in DHA-containing phospholipids, and the cellular and molecular events revealed by the uncovering of signaling pathways regulated by DHA and docosanoids, the DHA-derived bioactive lipids, which include neuroprotectin D1 (NPD1), a novel DHA-derived stereoselective mediator. NPD1 synthesis agonists include neurotrophins and oxidative stress; NPD1 elicits potent anti-inflammatory actions and prohomeostatic bioactivity, is anti-angiogenic, promotes corneal nerve regeneration, and induces cell survival. In the context of DHA signalolipidomics, this review highlights aging and the evolving studies on the significance of DHA in Alzheimer’s disease, macular degeneration, Parkinson’s disease, and other brain disorders. DHA signalolipidomics in the nervous system offers emerging targets for pharmaceutical intervention and clinical translation. PMID:21756134

  4. bantam miRNA is important for Drosophila blood cell homeostasis and a regulator of proliferation in the hematopoietic progenitor niche

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lam, Victoria; Tokusumi, Tsuyoshi; Tokusumi, Yumiko

    Highlights: • bantam miRNA is endogenously expressed in the hematopoietic progenitor niche. • bantam is necessary and sufficient to induce cellular proliferation in the PSC. • bantam is upstream of the Insulin Receptor signaling pathway. • A model for positive regulation of hematopoietic niche growth is proposed. - Abstract: The Drosophila hematopoietic system is utilized in this study to gain novel insights into the process of growth control of the hematopoietic progenitor niche in blood development. The niche microenvironment is an essential component controlling the balance between progenitor populations and differentiated, mature blood cells and has been shown to leadmore » to hematopoietic malignancies in humans when misregulated. MicroRNAs are one class of regulators associated with blood malignancies; however, there remains a relative paucity of information about the role of miRNAs in the niche. Here we demonstrate that bantam miRNA is endogenously active in the Drosophila hematopoietic progenitor niche, the posterior signaling center (PSC), and functions in the primary hematopoietic organ, the lymph gland, as a positive regulator of growth. Loss of bantam leads to a significant reduction in the PSC and overall lymph gland size, as well as a loss of the progenitor population and correlative premature differentiation of mature hemocytes. Interestingly, in addition to being essential for proper lymph gland development, we have determined bantam to be a novel upstream component of the insulin signaling cascade in the PSC and have unveiled dMyc as one factor central to bantam activity. These important findings identify bantam as a new hematopoietic regulator, place it in an evolutionarily conserved signaling pathway, present one way in which it is regulated, and provide a mechanism through which it facilitates cellular proliferation in the hematopoietic niche.« less

  5. Architecture of a Host-Parasite Interface: Complex Targeting Mechanisms Revealed Through Proteomics.

    PubMed

    Gadelha, Catarina; Zhang, Wenzhu; Chamberlain, James W; Chait, Brian T; Wickstead, Bill; Field, Mark C

    2015-07-01

    Surface membrane organization and composition is key to cellular function, and membrane proteins serve many essential roles in endocytosis, secretion, and cell recognition. The surface of parasitic organisms, however, is a double-edged sword; this is the primary interface between parasites and their hosts, and those crucial cellular processes must be carried out while avoiding elimination by the host immune defenses. For extracellular African trypanosomes, the surface is partitioned such that all endo- and exocytosis is directed through a specific membrane region, the flagellar pocket, in which it is thought the majority of invariant surface proteins reside. However, very few of these proteins have been identified, severely limiting functional studies, and hampering the development of potential treatments. Here we used an integrated biochemical, proteomic and bioinformatic strategy to identify surface components of the human parasite Trypanosoma brucei. This surface proteome contains previously known flagellar pocket proteins as well as multiple novel components, and is significantly enriched in proteins that are essential for parasite survival. Molecules with receptor-like properties are almost exclusively parasite-specific, whereas transporter-like proteins are conserved in model organisms. Validation shows that the majority of surface proteome constituents are bona fide surface-associated proteins and, as expected, most present at the flagellar pocket. Moreover, the largest systematic analysis of trypanosome surface molecules to date provides evidence that the cell surface is compartmentalized into three distinct domains with free diffusion of molecules in each, but selective, asymmetric traffic between. This work provides a paradigm for the compartmentalization of a cell surface and a resource for its analysis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. DDX3 DEAD-box RNA helicase plays a central role in mitochondrial protein quality control in Leishmania

    PubMed Central

    Padmanabhan, Prasad Kottayil; Zghidi-Abouzid, Ouafa; Samant, Mukesh; Dumas, Carole; Aguiar, Bruno Guedes; Estaquier, Jerome; Papadopoulou, Barbara

    2016-01-01

    DDX3 is a highly conserved member of ATP-dependent DEAD-box RNA helicases with multiple functions in RNA metabolism and cellular signaling. Here, we describe a novel function for DDX3 in regulating the mitochondrial stress response in the parasitic protozoan Leishmania. We show that genetic inactivation of DDX3 leads to the accumulation of mitochondrial reactive oxygen species (ROS) associated with a defect in hydrogen peroxide detoxification. Upon stress, ROS production is greatly enhanced, causing mitochondrial membrane potential loss, mitochondrial fragmentation, and cell death. Importantly, this phenotype is exacerbated upon oxidative stress in parasites forced to use the mitochondrial oxidative respiratory machinery. Furthermore, we show that in the absence of DDX3, levels of major components of the unfolded protein response as well as of polyubiquitinated proteins increase in the parasite, particularly in the mitochondrion, as an indicator of mitochondrial protein damage. Consistent with these findings, immunoprecipitation and mass-spectrometry studies revealed potential interactions of DDX3 with key components of the cellular stress response, particularly the antioxidant response, the unfolded protein response, and the AAA-ATPase p97/VCP/Cdc48, which is essential in mitochondrial protein quality control by driving proteosomal degradation of polyubiquitinated proteins. Complementation studies using DDX3 deletion mutants lacking conserved motifs within the helicase core support that binding of DDX3 to ATP is essential for DDX3's function in mitochondrial proteostasis. As a result of the inability of DDX3-depleted Leishmania to recover from ROS damage and to survive various stresses in the host macrophage, parasite intracellular development was impaired. Collectively, these observations support a central role for the Leishmania DDX3 homolog in preventing ROS-mediated damage and in maintaining mitochondrial protein quality control. PMID:27735940

  7. Growth-arresting Activity of Acmella Essential Oil and its Isolated Component D-Limonene (1, 8 P-Mentha Diene) against Trichophyton rubrum (Microbial Type Culture Collection 296).

    PubMed

    Padhan, Diptikanta; Pattnaik, Smaranika; Behera, Ajaya Kumar

    2017-10-01

    Spilanthes acmella is used as a remedy in toothache complaints by the tribal people of Western part of Odisha, India. The objective of this study was to study the growth-arresting activity of an indigenous Acmella essential oil (EO) ( S. acmella Murr, Asteraceae ) and its isolated component, d-limonene against Trichophyton rubrum (microbial type culture collection 296). The EO was extracted from flowers of indigenous S. acmella using Clevenger's apparatus and analyzed by gas chromatography-mass spectrometry (GC-MS). High pressure liquid chromatography (HPLC) was carried out to isolate the major constituent. The isolated fraction was subjected to fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The antidermatophytic activity was screened for using "disc diffusion" and "slant dilution" method followed by optical, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) studies. The molecular dockings were made between d-limonene with cell wall synthesis-related key enzymes (14 methyl deaminase and monooxygenase). The GC-MS analysis EO had inferred the presence of 7 number of major (≥2%) components. The component with highest peak area (%) was found to be 41.02. The HPLC-isolated fraction was identified as d-limonene (1,8 p-Mentha-diene) by FTIR and NMR. Qualitative and quantitative assays had suggested the growth inhibitory activity of Acmella EO and its component. Shrinkage, evacuation, cell wall puncture, and leakage of cellular constituents by the activity of Acmella oil and d-limonene were evidenced from optical, SEM, and TEM studies. The computer simulation had predicted the binding strengths of d-limonene and fluconazole with dermatophyte cell wall enzymes. There could have been synergistic action of all or some of compounds present in indigenous Acmella EO. There was presence of seven number of (d-limonene, ocimene, β-myrcene, cyclohexene, 3-(1, 5-dimethyl-4-hexenyl)-6-methylene, β-caryophyllene, and β-sesquiphellandrene and β-phellandrene) major components in the indigenous Acmella essential oilThe d-limonene content was 41.02% in the indigenous oilThe antidermatophytic activity of Acmella essential oil could have been attributable to its chemotypes. Abbreviations used: °C: Degree centigrade; w/v: Weight/volume; TS: Transverse section; min: minute; Hz: hertz: h: Hr.

  8. Carboxysomes: metabolic modules for CO 2 fixation

    DOE PAGES

    Turmo, Aiko; Gonzalez-Esquer, Cesar Raul; Kerfeld, Cheryl A.

    2017-08-14

    The carboxysome is a bacterial microcompartment encapsulating the enzymes carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase. As the site of CO 2 fixation, it serves an essential role in the carbon dioxide concentrating mechanism of many chemoautotrophs and all cyanobacteria. Carboxysomes and other bacterial microcompartments self-assemble through specific protein–protein interactions that are typically mediated by conserved protein domains. In this review, we frame our current understanding of carboxysomes in the context of their component protein domains with their inherent function as the ‘building blocks’ of carboxysomes. These building blocks are organized in genetic modules (conserved chromosomal loci) that encode for carboxysomes andmore » ancillary proteins essential for the integration of the organelle with the rest of cellular metabolism. This conceptual framework provides the foundation for ‘plug-and-play’ engineering of carboxysomes as CO 2 fixation modules in a variety of biotechnological applications.« less

  9. Extracellular Matrix Degradation and Remodeling in Development and Disease

    PubMed Central

    Lu, Pengfei; Takai, Ken; Weaver, Valerie M.; Werb, Zena

    2011-01-01

    The extracellular matrix (ECM) serves diverse functions and is a major component of the cellular microenvironment. The ECM is a highly dynamic structure, constantly undergoing a remodeling process where ECM components are deposited, degraded, or otherwise modified. ECM dynamics are indispensible during restructuring of tissue architecture. ECM remodeling is an important mechanism whereby cell differentiation can be regulated, including processes such as the establishment and maintenance of stem cell niches, branching morphogenesis, angiogenesis, bone remodeling, and wound repair. In contrast, abnormal ECM dynamics lead to deregulated cell proliferation and invasion, failure of cell death, and loss of cell differentiation, resulting in congenital defects and pathological processes including tissue fibrosis and cancer. Understanding the mechanisms of ECM remodeling and its regulation, therefore, is essential for developing new therapeutic interventions for diseases and novel strategies for tissue engineering and regenerative medicine. PMID:21917992

  10. Chemical composition, antibacterial activity and related mechanism of the essential oil from the leaves of Juniperus rigida Sieb. et Zucc against Klebsiella pneumoniae.

    PubMed

    Meng, Xiaxia; Li, Dengwu; Zhou, Dan; Wang, Dongmei; Liu, Qiaoxiao; Fan, Sufang

    2016-12-24

    Juniperus rigida is used as Tibetan and Mongolian medicine in China for the treatment of rheumatoid arthritis, nephritis, brucellosis and other various inflammatory diseases. To evaluate antibacterial potential of essential oils from J. rigida leaves against Klebsiella pneumoniae and to examine its possible related mechanisms. The study was undertaken in order to scientifically validate the traditional use of J. rigida. The essential oil was extracted from the leaves of J. rigida by supercritical CO 2 fluid extraction technology. Chemical composition of essential oils was analyzed by gas chromatography-mass spectrometry (GC-MS). The antibacterial activity was evaluated against 10 bacteria by the paper disc diffusion method. The minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values of the essential oil were estimated by agar dilution method. The antibacterial mechanism was evaluated by growth curve, the integrity of cell membrane, the SDS-PAGE of protein patterns and scanning electron microscope (SEM). 61 components were identified from the essential oil. Caryophyllene (13.11%) and α-Caryophyllene (11.72%) were found to be the major components. The antibacterial activities of the essential oil were screened and compared against 10 bacteria. The essential oil showed good antibacterial activity against K. pneumoniae, with the biggest diameters of inhibition zones (DIZ) (16.00±0.25mm) and the lowest MIC and MBC values of 3.125mg/mL. The increase in proteins, 260nm absorbing materials of bacterial cells suspension indicated that the cytoplasmic membranes were broken by the essential oil. The SDS-PAGE of bacterial proteins demonstrated that the essential oil could damage bacterial cells through the destruction of cellular proteins. Scanning electron microscopy (SEM) showed that the essential oil damaged the morphology of cell wall and membrane. The essential oil of J. rigida has potential antibacterial activities against K. pneumoniae. The antibacterial mechanism is the essential oil causing the irreversible damage to the cell wall and membrane, leading to the leakage of proteins and 260nm absorbing materials (DNA and RNA). Further phytochemical and pharmacological studies are required for proper scientific validation of the folk use of this plant species. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Bio-printing cell-laden Matrigel–agarose constructs

    PubMed Central

    Fan, Rong; Piou, Marine; Darling, Evan; Cormier, Denis; Sun, Jun; Wan, Jiandi

    2017-01-01

    3D printing of biological architectures that mimic the structural and functional features of in vivo tissues is of great interest in tissue engineering and the development of transplantable organ constructs. Printable bio-inks that are compatible with cellular activities play critical roles in the process of 3D bio-printing. Although a variety of hydrogels have been used as bio-inks for 3D bio-printing, they inherit poor mechanical properties and/or the lack of essential protein components that compromise their performance. Here, a hybrid Matrigel–agarose hydrogel system has been demonstrated that possesses both desired rheological properties for bio-printing and biocompatibility for long-term (11 days) cell culture. The agarose component in the hybrid hydrogel system enables the maintenance of 3D-printed structures, whereas Matrigel provides essential microenvironments for cell growth. When human intestinal epithelial HCT116 cells are encapsulated in the printed Matrigel–agarose constructs, high cell viability and proper cell spreading morphology are observed. Given that Matrigel is used extensively for 3D cell culturing, the developed 3D-printable Matrigel–agarose system will open a new way to construct Matrigel-based 3D constructs for cell culture and tissue engineering. PMID:27638155

  12. Capillary sieving electrophoresis and micellar electrokinetic capillary chromatography produce highly correlated separation of tryptic digests

    PubMed Central

    Dickerson, Jane A.; Dovichi, Norman J.

    2011-01-01

    We perform two-dimensional capillary electrophoresis on fluorescently labeled proteins and peptides. Capillary sieving electrophoresis was performed in the first dimension and micellar electrokinetic capillary chromatography was performed in the second. A cellular homogenate was labeled with the fluorogenic reagent FQ and separated using the system. This homogenate generated a pair of ridges; the first had essentially constant migration time in the CSE dimension, while the second had essentially constant migration time in the MEKC dimension. In addition a few spots were scattered through the electropherogram. The same homogenate was digested using trypsin, and then labeled and subjected to the two dimensional separation. In this case, the two ridges observed from the original two-dimensional separation disappeared, and were replaced by a set of spots that fell along the diagonal. Those spots were identified using a local-maximum algorithm and each was fit using a two-dimensional Gaussian surface by an unsupervised nonlinear least squares regression algorithm. The migration times of the tryptic digest components were highly correlated (r = 0.862). When the slowest migrating components were eliminated from the analysis, the correlation coefficient improved to r = 0.956. PMID:20564272

  13. Challenges in structural approaches to cell modeling

    PubMed Central

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A.

    2016-01-01

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. PMID:27255863

  14. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader

    Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.

  15. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers.

    PubMed

    Sarkar, Sovan

    2013-10-01

    Autophagy is an intracellular degradation pathway essential for cellular and energy homoeostasis. It functions in the clearance of misfolded proteins and damaged organelles, as well as recycling of cytosolic components during starvation to compensate for nutrient deprivation. This process is regulated by mTOR (mammalian target of rapamycin)-dependent and mTOR-independent pathways that are amenable to chemical perturbations. Several small molecules modulating autophagy have been identified that have potential therapeutic application in diverse human diseases, including neurodegeneration. Neurodegeneration-associated aggregation-prone proteins are predominantly degraded by autophagy and therefore stimulating this process with chemical inducers is beneficial in a wide range of transgenic disease models. Emerging evidence indicates that compromised autophagy contributes to the aetiology of various neurodegenerative diseases related to protein conformational disorders by causing the accumulation of mutant proteins and cellular toxicity. Combining the knowledge of autophagy dysfunction and the mechanism of drug action may thus be rational for designing targeted therapy. The present review describes the cellular signalling pathways regulating mammalian autophagy and highlights the potential therapeutic application of autophagy inducers in neurodegenerative disorders.

  16. Cellular plasticity enables adaptation to unforeseen cell-cycle rewiring challenges.

    PubMed

    Katzir, Yair; Stolovicki, Elad; Stern, Shay; Braun, Erez

    2012-01-01

    The fundamental dynamics of the cell cycle, underlying cell growth and reproduction, were previously found to be robust under a wide range of environmental and internal perturbations. This property was commonly attributed to its network structure, which enables the coordinated interactions among hundreds of proteins. Despite significant advances in deciphering the components and autonomous interactions of this network, understanding the interfaces of the cell cycle with other major cellular processes is still lacking. To gain insight into these interfaces, we used the process of genome-rewiring in yeast by placing an essential metabolic gene HIS3 from the histidine biosynthesis pathway, under the exclusive regulation of different cell-cycle promoters. In a medium lacking histidine and under partial inhibition of the HIS3p, the rewired cells encountered an unforeseen multitasking challenge; the cell-cycle regulatory genes were required to regulate the essential histidine-pathway gene in concert with the other metabolic demands, while simultaneously driving the cell cycle through its proper temporal phases. We show here that chemostat cell populations with rewired cell-cycle promoters adapted within a short time to accommodate the inhibition of HIS3p and stabilized a new phenotypic state. Furthermore, a significant fraction of the population was able to adapt and grow into mature colonies on plates under such inhibiting conditions. The adapted state was shown to be stably inherited across generations. These adaptation dynamics were accompanied by a non-specific and irreproducible genome-wide transcriptional response. Adaptation of the cell-cycle attests to its multitasking capabilities and flexible interface with cellular metabolic processes and requirements. Similar adaptation features were found in our previous work when rewiring HIS3 to the GAL system and switching cells from galactose to glucose. Thus, at the basis of cellular plasticity is the emergence of a yet-unknown general, non-specific mechanism allowing fast inherited adaptation to unforeseen challenges.

  17. Implementation of glider guns in the light-sensitive Belousov-Zhabotinsky medium.

    PubMed

    de Lacy Costello, Ben; Toth, Rita; Stone, Christopher; Adamatzky, Andrew; Bull, Larry

    2009-02-01

    In cellular automata models a glider gun is an oscillating pattern of nonquiescent states that periodically emits traveling localizations (gliders). The glider streams can be combined to construct functionally complete systems of logical gates and thus realize universal computation. The glider gun is the only means of ensuring the negation operation without additional external input and therefore is an essential component of a collision-based computing circuit. We demonstrate the existence of glider-gun-like structures in both experimental and numerical studies of an excitable chemical system-the light-sensitive Belousov-Zhabotinsky reaction. These discoveries could provide the basis for future designs of collision-based reaction-diffusion computers.

  18. Enterobactin: An archetype for microbial iron transport

    PubMed Central

    Raymond, Kenneth N.; Dertz, Emily A.; Kim, Sanggoo S.

    2003-01-01

    Bacteria have aggressive acquisition processes for iron, an essential nutrient. Siderophores are small iron chelators that facilitate cellular iron transport. The siderophore enterobactin is a triscatechol derivative of a cyclic triserine lactone. Studies of the chemistry, regulation, synthesis, recognition, and transport of enterobactin make it perhaps the best understood of the siderophore-mediated iron uptake systems, displaying a lot of function packed into this small molecule. However, recent surprises include the isolation of corynebactin, a closely related trithreonine triscatechol derivative lactone first found in Gram-positive bacteria, and the crystal structure of a ferric enterobactin complex of a protein identified as an antibacterial component of the human innate immune system. PMID:12655062

  19. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains.

    PubMed

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C L; Tanaka, Yuetsu; Xia, Zongping

    2016-04-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation.

  20. HTLV-1 Tax Functions as a Ubiquitin E3 Ligase for Direct IKK Activation via Synthesis of Mixed-Linkage Polyubiquitin Chains

    PubMed Central

    Wang, Chong; Long, Wenying; Peng, Chao; Hu, Lin; Zhang, Qiong; Wu, Ailing; Zhang, Xiaoqing; Duan, Xiaotao; Wong, Catherine C. L.; Tanaka, Yuetsu; Xia, Zongping

    2016-01-01

    The HTLV-1 oncoprotein Tax plays a key role in CD4+ T cell transformation by promoting cell proliferation and survival, mainly through permanent activation of the NK-κB pathway and induction of many NF-κB target genes. Elucidating the underlying molecular mechanism is therefore critical in understanding HTLV-1-mediated transformation. Current studies have suggested multiple but controversial mechanisms regarding Tax-induced IKK activation mainly due to blending of primary Tax-induced IKK activation events and secondary IKK activation events induced by cytokines secreted by the primary Tax-induced IKK-NF-κB activation events. We reconstituted Tax-stimulated IKK activation in a cell-free system to dissect the essential cellular components for primary IKK activation by Tax and studied the underlying biochemical mechanism. We found that Tax is a putative E3 ubiquitin ligase, which, together with UbcH2, UhcH5c, or UbcH7, catalyzes the assembly of free mixed-linkage polyubiquitin chains. These free mixed-linkage polyubiquitin chains are then responsible for direct IKK activation by binding to the NEMO subunit of IKK. Our studies revealed the biochemical function of Tax in the process of IKK activation, which utilizes the minimal cellular ubiquitination components for NF-κB activation. PMID:27082114

  1. The Role of Nitric Oxide and Hydrogen Sulfide in Urinary Tract Function.

    PubMed

    Fernandes, Vítor S; Hernández, Medardo

    2016-10-01

    This MiniReview focuses on the role played by nitric oxide (NO) and hydrogen sulfide (H 2 S) in physiology of the upper and lower urinary tract. NO and H 2 S, together with carbon monoxide, belong to the group of gaseous autocrine/paracrine messengers or gasotransmitters, which are employed for intra- and intercellular communication in almost all organ systems. Because they are lipid-soluble gases, gaseous transmitters are not constrained by cellular membranes, so that their storage in vesicles for later release is not possible. Gasotransmitter signals are terminated by falling concentrations upon reduction in production that are caused by reacting with cellular components (essentially reactive oxygen species and NO), binding to cellular components or diffusing away. NO and, more recently, H 2 S have been identified as key mediators in neurotransmission of the urinary tract, involved in the regulation of ureteral smooth muscle activity and urinary flow ureteral resistance, as well as by playing a crucial role in the smooth muscle relaxation of bladder outlet region. Urinary bladder function is also dependent on integration of inhibitory mediators, such as NO, released from the urothelium. In the bladder base and distal ureter, the co-localization of neuronal NO synthase with substance P and calcitonin gene-related peptide in sensory nerves as well as the existence of a high nicotinamide adenine dinucleotide phosphate-diaphorase activity in dorsal root ganglion neurons also suggests the involvement of NO as a sensory neurotransmitter. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  2. Small Molecule Inhibitors of Staphylococcus aureus RnpA Alter Cellular mRNA Turnover, Exhibit Antimicrobial Activity, and Attenuate Pathogenesis

    PubMed Central

    Olson, Patrick D.; Kuechenmeister, Lisa J.; Anderson, Kelsi L.; Daily, Sonja; Beenken, Karen E.; Roux, Christelle M.; Reniere, Michelle L.; Lewis, Tami L.; Weiss, William J.; Pulse, Mark; Nguyen, Phung; Simecka, Jerry W.; Morrison, John M.; Sayood, Khalid; Asojo, Oluwatoyin A.; Smeltzer, Mark S.; Skaar, Eric P.; Dunman, Paul M.

    2011-01-01

    Methicillin-resistant Staphylococcus aureus is estimated to cause more U.S. deaths annually than HIV/AIDS. The emergence of hypervirulent and multidrug-resistant strains has further amplified public health concern and accentuated the need for new classes of antibiotics. RNA degradation is a required cellular process that could be exploited for novel antimicrobial drug development. However, such discovery efforts have been hindered because components of the Gram-positive RNA turnover machinery are incompletely defined. In the current study we found that the essential S. aureus protein, RnpA, catalyzes rRNA and mRNA digestion in vitro. Exploiting this activity, high through-put and secondary screening assays identified a small molecule inhibitor of RnpA-mediated in vitro RNA degradation. This agent was shown to limit cellular mRNA degradation and exhibited antimicrobial activity against predominant methicillin-resistant S. aureus (MRSA) lineages circulating throughout the U.S., vancomycin intermediate susceptible S. aureus (VISA), vancomycin resistant S. aureus (VRSA) and other Gram-positive bacterial pathogens with high RnpA amino acid conservation. We also found that this RnpA-inhibitor ameliorates disease in a systemic mouse infection model and has antimicrobial activity against biofilm-associated S. aureus. Taken together, these findings indicate that RnpA, either alone, as a component of the RNase P holoenzyme, and/or as a member of a more elaborate complex, may play a role in S. aureus RNA degradation and provide proof of principle for RNA catabolism-based antimicrobial therapy. PMID:21347352

  3. A model of how different biology experts explain molecular and cellular mechanisms.

    PubMed

    Trujillo, Caleb M; Anderson, Trevor R; Pelaez, Nancy J

    2015-01-01

    Constructing explanations is an essential skill for all science learners. The goal of this project was to model the key components of expert explanation of molecular and cellular mechanisms. As such, we asked: What is an appropriate model of the components of explanation used by biology experts to explain molecular and cellular mechanisms? Do explanations made by experts from different biology subdisciplines at a university support the validity of this model? Guided by the modeling framework of R. S. Justi and J. K. Gilbert, the validity of an initial model was tested by asking seven biologists to explain a molecular mechanism of their choice. Data were collected from interviews, artifacts, and drawings, and then subjected to thematic analysis. We found that biologists explained the specific activities and organization of entities of the mechanism. In addition, they contextualized explanations according to their biological and social significance; integrated explanations with methods, instruments, and measurements; and used analogies and narrated stories. The derived methods, analogies, context, and how themes informed the development of our final MACH model of mechanistic explanations. Future research will test the potential of the MACH model as a guiding framework for instruction to enhance the quality of student explanations. © 2015 C. M. Trujillo et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. Intersecting transcriptomic profiling technologies and long non-coding RNA function in lung adenocarcinoma: discovery, mechanisms, and therapeutic applications

    PubMed Central

    Castillo, Jonathan; Stueve, Theresa R.; Marconett, Crystal N.

    2017-01-01

    Previously thought of as junk transcripts and pseudogene remnants, long non-coding RNAs (lncRNAs) have come into their own over the last decade as an essential component of cellular activity, regulating a plethora of functions within multicellular organisms. lncRNAs are now known to participate in development, cellular homeostasis, immunological processes, and the development of disease. With the advent of next generation sequencing technology, hundreds of thousands of lncRNAs have been identified. However, movement beyond mere discovery to the understanding of molecular processes has been stymied by the complicated genomic structure, tissue-restricted expression, and diverse regulatory roles lncRNAs play. In this review, we will focus on lncRNAs involved in lung cancer, the most common cause of cancer-related death in the United States and worldwide. We will summarize their various methods of discovery, provide consensus rankings of deregulated lncRNAs in lung cancer, and describe in detail the limited functional analysis that has been undertaken so far. PMID:29113413

  5. The N-terminus of Bunyamwera orthobunyavirus NSs protein is essential for interferon antagonism.

    PubMed

    van Knippenberg, Ingeborg; Carlton-Smith, Charlie; Elliott, Richard M

    2010-08-01

    Bunyamwera virus NSs protein is involved in the inhibition of cellular transcription and the interferon (IFN) response, and it interacts with the Med8 component of Mediator. A spontaneous mutant of a recombinant NSs-deleted Bunyamwera virus (rBUNdelNSs2) was identified and characterized. This mutant virus, termed mBUNNSs22, expresses a 21 aa N-terminally truncated form of NSs. Like rBUNdelNSs2, mBUNNSs22 is attenuated in IFN-deficient cells, and to a greater extent in IFN-competent cells. Both rBUNdelNSs2 and mBUNNSs22 are potent IFN inducers and their growth can be rescued by depleting cellular IRF3. Strikingly, despite encoding an NSs protein that contains the Med8 interaction domain, mBUNNSs22 fails to block RNA polymerase II activity during infection. Overall, our data suggest that both the interaction of NSs with Med8 and a novel unidentified function of the NSs N-terminus, seem necessary for Bunyamwera virus to counteract host antiviral responses.

  6. The Mechanism and Function of Group II Chaperonins

    DOE PAGES

    Lopez, Tom; Dalton, Kevin; Frydman, Judith

    2015-04-30

    We report protein folding in the cell requires the assistance of enzymes collectively called chaperones. Among these, the chaperonins are 1-MDa ring-shaped oligomeric complexes that bind unfolded polypeptides and promote their folding within an isolated chamber in an ATP-dependent manner. Group II chaperonins, found in archaea and eukaryotes, contain a built-in lid that opens and closes over the central chamber. In eukaryotes, the chaperonin TRiC/CCT is hetero-oligomeric, consisting of two stacked rings of eight paralogous subunits each. TRiC facilitates folding of approximately 10% of the eukaryotic proteome, including many cytoskeletal components and cell cycle regulators. Folding of many cellular substratesmore » of TRiC cannot be assisted by any other chaperone. A complete structural and mechanistic understanding of this highly conserved and essential chaperonin remains elusive. However, recent work is beginning to shed light on key aspects of chaperonin function and how their unique properties underlie their contribution to maintaining cellular proteostasis.« less

  7. Genetic interactions between Drosophila melanogaster Atg1 and paxillin reveal a role for paxillin in autophagosome formation.

    PubMed

    Chen, Guang-Chao; Lee, Janice Y; Tang, Hong-Wen; Debnath, Jayanta; Thomas, Sheila M; Settleman, Jeffrey

    2008-01-01

    Autophagy is a conserved cellular process of macromolecule recycling that involves vesicle-mediated degradation of cytoplasmic components. Autophagy plays essential roles in normal cell homeostasis and development, the response to stresses such as nutrient starvation, and contributes to disease processes including cancer and neurodegeneration. Although many of the autophagy components identified from genetic screens in yeast are well conserved in higher organisms, the mechanisms by which this process is regulated in any species are just beginning to be elucidated. In a genetic screen in Drosophila melanogaster, we have identified a link between the focal adhesion protein paxillin and the Atg1 kinase, which has been previously implicated in autophagy. In mammalian cells, we find that paxillin is redistributed from focal adhesions during nutrient deprivation, and paxillin-deficient cells exhibit defects in autophagosome formation. Together, these findings reveal a novel evolutionarily conserved role for paxillin in autophagy.

  8. Protein components of the microRNA pathway and human diseases

    PubMed Central

    Perron, Marjorie P.; Provost, Patrick

    2010-01-01

    Summary MicroRNAs (miRNAs) are key regulators of messenger RNA (mRNA) translation known to be involved in a wide variety of cellular processes. In fact, their individual importance is reflected in the diseases that may arise upon the loss, mutation or dysfunction of specific miRNAs. It has been appreciated only recently that diseases may also develop when the protein components of the miRNA machinery itself are affected. The core enzymes of the major protein complexes involved in miRNA biogenesis and function, such as the ribonucleases III (RNases III) Drosha and Dicer as well as Argonaute 2 (Ago2), appear to be essential. However, the accessory proteins of the miRNA pathway, such as the DiGeorge syndrome critical region gene 8 (DGCR8) protein, Exportin-5 (Exp-5), TAR RNA binding protein (TRBP) and Fragile X mental retardation protein (FMRP), are each related, in various ways, to specific genetic diseases. PMID:19301657

  9. The Role of Biologically Active Ingredients from Chinese Herbal Medicines in the Regulation of Autophagy in Treating Cardiovascular Diseases and Other Chronic Diseases.

    PubMed

    Li, Jie; Gao, Yonghong; Ren, Xiaomeng; Li, Yanda; Wu, Lijun; Yang, Xinyu; Wang, Jie; Shang, Hongcai; Xiong, Xingjiang; Xing, Yanwei

    2017-01-01

    Autophagy, a highly conserved starvation response mechanism with both defensive and protective effects in eukaryotic cells, is a lysosome-mediated degradation process for non-essential or damaged cellular constituents. It plays an important role in the cell survival, differentiation and development to maintain homeostasis. Autophagy is involved in cardiovascular diseases, cerebrovascular diseases, and neurodegenerative diseases, as well as tumours. Thus, modulating autophagy may provide potential therapeutic strategies. Recently, many active components of Chinese herbal medicines (CHM) have been found to modulate autophagy in myocardial cells, cerebral vascular cells, endothelial cells and tumour cells. This paper reviews the advances in studies on the active components of CHM that modulating autophagy in treating cardiovascular diseases and other chronic diseases over the past five years. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Application of Transfer Matrix Approach to Modeling and Decentralized Control of Lattice-Based Structures

    NASA Technical Reports Server (NTRS)

    Cramer, Nick; Swei, Sean Shan-Min; Cheung, Kenny; Teodorescu, Mircea

    2015-01-01

    This paper presents a modeling and control of aerostructure developed by lattice-based cellular materials/components. The proposed aerostructure concept leverages a building block strategy for lattice-based components which provide great adaptability to varying ight scenarios, the needs of which are essential for in- ight wing shaping control. A decentralized structural control design is proposed that utilizes discrete-time lumped mass transfer matrix method (DT-LM-TMM). The objective is to develop an e ective reduced order model through DT-LM-TMM that can be used to design a decentralized controller for the structural control of a wing. The proposed approach developed in this paper shows that, as far as the performance of overall structural system is concerned, the reduced order model can be as e ective as the full order model in designing an optimal stabilizing controller.

  11. Chemotropism and Cell Fusion in Neurospora crassa Relies on the Formation of Distinct Protein Complexes by HAM-5 and a Novel Protein HAM-14

    PubMed Central

    Jonkers, Wilfried; Fischer, Monika S.; Do, Hung P.; Starr, Trevor L.; Glass, N. Louise

    2016-01-01

    In filamentous fungi, communication is essential for the formation of an interconnected, multinucleate, syncytial network, which is constructed via hyphal fusion or fusion of germinated asexual spores (germlings). Anastomosis in filamentous fungi is comparable to other somatic cell fusion events resulting in syncytia, including myoblast fusion during muscle differentiation, macrophage fusion, and fusion of trophoblasts during placental development. In Neurospora crassa, fusion of genetically identical germlings is a highly dynamic and regulated process that requires components of a MAP kinase signal transduction pathway. The kinase pathway components (NRC-1, MEK-2 and MAK-2) and the scaffold protein HAM-5 are recruited to hyphae and germling tips undergoing chemotropic interactions. The MAK-2/HAM-5 protein complex shows dynamic oscillation to hyphae/germling tips during chemotropic interactions, and which is out-of-phase to the dynamic localization of SOFT, which is a scaffold protein for components of the cell wall integrity MAP kinase pathway. In this study, we functionally characterize HAM-5 by generating ham-5 truncation constructs and show that the N-terminal half of HAM-5 was essential for function. This region is required for MAK-2 and MEK-2 interaction and for correct cellular localization of HAM-5 to “fusion puncta.” The localization of HAM-5 to puncta was not perturbed in 21 different fusion mutants, nor did these puncta colocalize with components of the secretory pathway. We also identified HAM-14 as a novel member of the HAM-5/MAK-2 pathway by mining MAK-2 phosphoproteomics data. HAM-14 was essential for germling fusion, but not for hyphal fusion. Colocalization and coimmunoprecipitation data indicate that HAM-14 interacts with MAK-2 and MEK-2 and may be involved in recruiting MAK-2 (and MEK-2) to complexes containing HAM-5. PMID:27029735

  12. Chemotropism and Cell Fusion in Neurospora crassa Relies on the Formation of Distinct Protein Complexes by HAM-5 and a Novel Protein HAM-14.

    PubMed

    Jonkers, Wilfried; Fischer, Monika S; Do, Hung P; Starr, Trevor L; Glass, N Louise

    2016-05-01

    In filamentous fungi, communication is essential for the formation of an interconnected, multinucleate, syncytial network, which is constructed via hyphal fusion or fusion of germinated asexual spores (germlings). Anastomosis in filamentous fungi is comparable to other somatic cell fusion events resulting in syncytia, including myoblast fusion during muscle differentiation, macrophage fusion, and fusion of trophoblasts during placental development. In Neurospora crassa, fusion of genetically identical germlings is a highly dynamic and regulated process that requires components of a MAP kinase signal transduction pathway. The kinase pathway components (NRC-1, MEK-2 and MAK-2) and the scaffold protein HAM-5 are recruited to hyphae and germling tips undergoing chemotropic interactions. The MAK-2/HAM-5 protein complex shows dynamic oscillation to hyphae/germling tips during chemotropic interactions, and which is out-of-phase to the dynamic localization of SOFT, which is a scaffold protein for components of the cell wall integrity MAP kinase pathway. In this study, we functionally characterize HAM-5 by generating ham-5 truncation constructs and show that the N-terminal half of HAM-5 was essential for function. This region is required for MAK-2 and MEK-2 interaction and for correct cellular localization of HAM-5 to "fusion puncta." The localization of HAM-5 to puncta was not perturbed in 21 different fusion mutants, nor did these puncta colocalize with components of the secretory pathway. We also identified HAM-14 as a novel member of the HAM-5/MAK-2 pathway by mining MAK-2 phosphoproteomics data. HAM-14 was essential for germling fusion, but not for hyphal fusion. Colocalization and coimmunoprecipitation data indicate that HAM-14 interacts with MAK-2 and MEK-2 and may be involved in recruiting MAK-2 (and MEK-2) to complexes containing HAM-5. Copyright © 2016 by the Genetics Society of America.

  13. Addition of Escherichia coli K-12 growth observation and gene essentiality data to the EcoCyc database.

    PubMed

    Mackie, Amanda; Paley, Suzanne; Keseler, Ingrid M; Shearer, Alexander; Paulsen, Ian T; Karp, Peter D

    2014-03-01

    The sets of compounds that can support growth of an organism are defined by the presence of transporters and metabolic pathways that convert nutrient sources into cellular components and energy for growth. A collection of known nutrient sources can therefore serve both as an impetus for investigating new metabolic pathways and transporters and as a reference for computational modeling of known metabolic pathways. To establish such a collection for Escherichia coli K-12, we have integrated data on the growth or nongrowth of E. coli K-12 obtained from published observations using a variety of individual media and from high-throughput phenotype microarrays into the EcoCyc database. The assembled collection revealed a substantial number of discrepancies between the high-throughput data sets, which we investigated where possible using low-throughput growth assays on soft agar and in liquid culture. We also integrated six data sets describing 16,119 observations of the growth of single-gene knockout mutants of E. coli K-12 into EcoCyc, which are relevant to antimicrobial drug design, provide clues regarding the roles of genes of unknown function, and are useful for validating metabolic models. To make this information easily accessible to EcoCyc users, we developed software for capturing, querying, and visualizing cellular growth assays and gene essentiality data.

  14. [Outlook for clinical hemorheology].

    PubMed

    Stoltz, J F

    1996-01-01

    Harvey may be considered to be the precursor of modern hemorheology, but it was not until the pioneering work of Loewenhoeck, Poiseuille, Fahraeus and Copley that the essential role of the hemorheological properties of blood and its cellular components was recognized. Before the advent of modern hemorheology in the 70s, studies were mainly focussed on microcirculation and validation of global hemorheological equations applied to blood circulation. Parallel studies on the microrheological properties (erythrocyte deformability and aggregation) explained analytically the non-Newtonian behavior of blood, and the essential contribution of these parameters to the understanding hyperviscosity syndromes. The development of clinical hemorheology in fact started at the international conferences held in Reykjavik (1966) and Heidelberg (1969), and with the initiation of the periodical European Microcirculation (since Nancy in 1960) and Clinical Hemorheology (since Nancy in 1979) Conferences. The current main avenues of research involve flow modelling, studies of cell-cell interaction mechanisms (aggregation and adhesion), in relation to the associated pathophysiological phenomena, such as cellular activation (platelets and leukocytes in particular), gene expression linked to blood flow (e.g. endothelial cells)... Clinically and therapeutically, it is crucial that pathophysiological studies be undertaken on the relationship existing between rheological parameters and objective clinical data (local flow rates, ischemic markers, hemostatic parameters, tissue oxygen, clinical symptoms,...). The main clinical application fields are cardiovascular diseases, thrombosis, diabetes, hypercholesterolemia... Also, studies on new therapeutics or on biomaterials should also be given priority.

  15. Inter-Cellular Exchange of Cellular Components via VE-Cadherin-Dependent Trans-Endocytosis

    PubMed Central

    Sakurai, Takashi; Woolls, Melissa J.; Jin, Suk-Won

    2014-01-01

    Cell-cell communications typically involve receptor-mediated signaling initiated by soluble or cell-bound ligands. Here, we report a unique mode of endocytosis: proteins originating from cell-cell junctions and cytosolic cellular components from the neighboring cell are internalized, leading to direct exchange of cellular components between two adjacent endothelial cells. VE-cadherins form transcellular bridges between two endothelial cells that are the basis of adherence junctions. At such adherens junction sites, we observed the movement of the entire VE-cadherin molecule from one endothelial cell into the other with junctional and cytoplasmic components. This phenomenon, here termed trans-endocytosis, requires the establishment of a VE-cadherin homodimer in trans with internalization proceeding in a Rac1-, and actomyosin-dependent manner. Importantly, the trans-endocytosis is not dependent on any known endocytic pathway including clathrin-dependent endocytosis, macropinocytosis or phagocytosis. This novel form of cell-cell communications, leading to a direct exchange of cellular components, was observed in 2D and 3D-cultured endothelial cells as well as in the developing zebrafish vasculature. PMID:24603875

  16. Molecular Determinants and Dynamics of Hepatitis C Virus Secretion

    PubMed Central

    Coller, Kelly E.; Heaton, Nicholas S.; Berger, Kristi L.; Cooper, Jacob D.; Saunders, Jessica L.; Randall, Glenn

    2012-01-01

    The current model of hepatitis C virus (HCV) production involves the assembly of virions on or near the surface of lipid droplets, envelopment at the ER in association with components of VLDL synthesis, and egress via the secretory pathway. However, the cellular requirements for and a mechanistic understanding of HCV secretion are incomplete at best. We combined an RNA interference (RNAi) analysis of host factors for infectious HCV secretion with the development of live cell imaging of HCV core trafficking to gain a detailed understanding of HCV egress. RNAi studies identified multiple components of the secretory pathway, including ER to Golgi trafficking, lipid and protein kinases that regulate budding from the trans-Golgi network (TGN), VAMP1 vesicles and adaptor proteins, and the recycling endosome. Our results support a model wherein HCV is infectious upon envelopment at the ER and exits the cell via the secretory pathway. We next constructed infectious HCV with a tetracysteine (TC) tag insertion in core (TC-core) to monitor the dynamics of HCV core trafficking in association with its cellular cofactors. In order to isolate core protein movements associated with infectious HCV secretion, only trafficking events that required the essential HCV assembly factor NS2 were quantified. TC-core traffics to the cell periphery along microtubules and this movement can be inhibited by nocodazole. Sub-populations of TC-core localize to the Golgi and co-traffic with components of the recycling endosome. Silencing of the recycling endosome component Rab11a results in the accumulation of HCV core at the Golgi. The majority of dynamic core traffics in association with apolipoprotein E (ApoE) and VAMP1 vesicles. This study identifies many new host cofactors of HCV egress, while presenting dynamic studies of HCV core trafficking in infected cells. PMID:22241992

  17. 454 Transcriptome sequencing suggests a role for two-component signalling in cellularization and differentiation of barley endosperm transfer cells.

    PubMed

    Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede

    2012-01-01

    Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Our findings suggest an integral function for the TCS in ETC differentiation possibly coupled to sequent hormonal regulation by ABA and ethylene.

  18. 454 Transcriptome Sequencing Suggests a Role for Two-Component Signalling in Cellularization and Differentiation of Barley Endosperm Transfer Cells

    PubMed Central

    Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede

    2012-01-01

    Background Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. Principal Findings 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Significance Our findings suggest an integral function for the TCS in ETC differentiation possibly coupled to sequent hormonal regulation by ABA and ethylene. PMID:22848641

  19. CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB.

    PubMed

    Heller, Danielle M; Tavag, Mrinalini; Hochschild, Ann

    2017-09-01

    The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB.

  20. CbtA toxin of Escherichia coli inhibits cell division and cell elongation via direct and independent interactions with FtsZ and MreB

    PubMed Central

    Heller, Danielle M.; Tavag, Mrinalini

    2017-01-01

    The toxin components of toxin-antitoxin modules, found in bacterial plasmids, phages, and chromosomes, typically target a single macromolecule to interfere with an essential cellular process. An apparent exception is the chromosomally encoded toxin component of the E. coli CbtA/CbeA toxin-antitoxin module, which can inhibit both cell division and cell elongation. A small protein of only 124 amino acids, CbtA, was previously proposed to interact with both FtsZ, a tubulin homolog that is essential for cell division, and MreB, an actin homolog that is essential for cell elongation. However, whether or not the toxic effects of CbtA are due to direct interactions with these predicted targets is not known. Here, we genetically separate the effects of CbtA on cell elongation and cell division, showing that CbtA interacts directly and independently with FtsZ and MreB. Using complementary genetic approaches, we identify the functionally relevant target surfaces on FtsZ and MreB, revealing that in both cases, CbtA binds to surfaces involved in essential cytoskeletal filament architecture. We show further that each interaction contributes independently to CbtA-mediated toxicity and that disruption of both interactions is required to alleviate the observed toxicity. Although several other protein modulators are known to target FtsZ, the CbtA-interacting surface we identify represents a novel inhibitory target. Our findings establish CbtA as a dual function toxin that inhibits both cell division and cell elongation via direct and independent interactions with FtsZ and MreB. PMID:28931012

  1. Challenges in structural approaches to cell modeling.

    PubMed

    Im, Wonpil; Liang, Jie; Olson, Arthur; Zhou, Huan-Xiang; Vajda, Sandor; Vakser, Ilya A

    2016-07-31

    Computational modeling is essential for structural characterization of biomolecular mechanisms across the broad spectrum of scales. Adequate understanding of biomolecular mechanisms inherently involves our ability to model them. Structural modeling of individual biomolecules and their interactions has been rapidly progressing. However, in terms of the broader picture, the focus is shifting toward larger systems, up to the level of a cell. Such modeling involves a more dynamic and realistic representation of the interactomes in vivo, in a crowded cellular environment, as well as membranes and membrane proteins, and other cellular components. Structural modeling of a cell complements computational approaches to cellular mechanisms based on differential equations, graph models, and other techniques to model biological networks, imaging data, etc. Structural modeling along with other computational and experimental approaches will provide a fundamental understanding of life at the molecular level and lead to important applications to biology and medicine. A cross section of diverse approaches presented in this review illustrates the developing shift from the structural modeling of individual molecules to that of cell biology. Studies in several related areas are covered: biological networks; automated construction of three-dimensional cell models using experimental data; modeling of protein complexes; prediction of non-specific and transient protein interactions; thermodynamic and kinetic effects of crowding; cellular membrane modeling; and modeling of chromosomes. The review presents an expert opinion on the current state-of-the-art in these various aspects of structural modeling in cellular biology, and the prospects of future developments in this emerging field. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. In vivo gene manipulation reveals the impact of stress-responsive MAPK pathways on tumor progression

    PubMed Central

    Kamiyama, Miki; Naguro, Isao; Ichijo, Hidenori

    2015-01-01

    It has been widely accepted that tumor cells and normal stromal cells in the host environment coordinately modulate tumor progression. Mitogen-activated protein kinase pathways are the representative stress-responsive cascades that exert proper cellular responses to divergent environmental stimuli. Genetically engineered mouse models and chemically induced tumorigenesis models have revealed that components of the MAPK pathway not only regulate the behavior of tumor cells themselves but also that of surrounding normal stromal cells in the host environment during cancer pathogenesis. The individual functions of MAPK pathway components in tumor initiation and progression vary depending on the stimuli and the stromal cell types involved in tumor progression, in addition to the molecular isoforms of the components and the origins of the tumor. Recent studies have indicated that MAPK pathway components synergize with environmental factors (e.g. tobacco smoke and diet) to affect tumor initiation and progression. Moreover, some components play distinct roles in the course of tumor progression, such as before and after the establishment of tumors. Hence, a comprehensive understanding of the multifaceted functions of MAPK pathway components in tumor initiation and progression is essential for the improvement of cancer therapy. In this review, we focus on the reports that utilized knockout, conditional knockout, and transgenic mice of MAPK pathway components to investigate the effects of MAPK pathway components on tumor initiation and progression in the host environment. PMID:25880821

  3. Role of the clathrin adaptor PICALM in normal hematopoiesis and polycythemia vera pathophysiology.

    PubMed

    Ishikawa, Yuichi; Maeda, Manami; Pasham, Mithun; Aguet, Francois; Tacheva-Grigorova, Silvia K; Masuda, Takeshi; Yi, Hai; Lee, Sung-Uk; Xu, Jian; Teruya-Feldstein, Julie; Ericsson, Maria; Mullally, Ann; Heuser, John; Kirchhausen, Tom; Maeda, Takahiro

    2015-04-01

    Clathrin-dependent endocytosis is an essential cellular process shared by all cell types. Despite this, precisely how endocytosis is regulated in a cell-type-specific manner and how this key pathway functions physiologically or pathophysiologically remain largely unknown. PICALM, which encodes the clathrin adaptor protein PICALM, was originally identified as a component of the CALM/AF10 leukemia oncogene. Here we show, by employing a series of conditional Picalm knockout mice, that PICALM critically regulates transferrin uptake in erythroid cells by functioning as a cell-type-specific regulator of transferrin receptor endocytosis. While transferrin receptor is essential for the development of all hematopoietic lineages, Picalm was dispensable for myeloid and B-lymphoid development. Furthermore, global Picalm inactivation in adult mice did not cause gross defects in mouse fitness, except for anemia and a coat color change. Freeze-etch electron microscopy of primary erythroblasts and live-cell imaging of murine embryonic fibroblasts revealed that Picalm function is required for efficient clathrin coat maturation. We showed that the PICALM PIP2 binding domain is necessary for transferrin receptor endocytosis in erythroblasts and absolutely essential for erythroid development from mouse hematopoietic stem/progenitor cells in an erythroid culture system. We further showed that Picalm deletion entirely abrogated the disease phenotype in a Jak2(V617F) knock-in murine model of polycythemia vera. Our findings provide new insights into the regulation of cell-type-specific transferrin receptor endocytosis in vivo. They also suggest a new strategy to block cellular uptake of transferrin-bound iron, with therapeutic potential for disorders characterized by inappropriate red blood cell production, such as polycythemia vera. Copyright© Ferrata Storti Foundation.

  4. Combining Shigella Tn-seq data with gold-standard E. coli gene deletion data suggests rare transitions between essential and non-essential gene functionality.

    PubMed

    Freed, Nikki E; Bumann, Dirk; Silander, Olin K

    2016-09-06

    Gene essentiality - whether or not a gene is necessary for cell growth - is a fundamental component of gene function. It is not well established how quickly gene essentiality can change, as few studies have compared empirical measures of essentiality between closely related organisms. Here we present the results of a Tn-seq experiment designed to detect essential protein coding genes in the bacterial pathogen Shigella flexneri 2a 2457T on a genome-wide scale. Superficial analysis of this data suggested that 481 protein-coding genes in this Shigella strain are critical for robust cellular growth on rich media. Comparison of this set of genes with a gold-standard data set of essential genes in the closely related Escherichia coli K12 BW25113 revealed that an excessive number of genes appeared essential in Shigella but non-essential in E. coli. Importantly, and in converse to this comparison, we found no genes that were essential in E. coli and non-essential in Shigella, implying that many genes were artefactually inferred as essential in Shigella. Controlling for such artefacts resulted in a much smaller set of discrepant genes. Among these, we identified three sets of functionally related genes, two of which have previously been implicated as critical for Shigella growth, but which are dispensable for E. coli growth. The data presented here highlight the small number of protein coding genes for which we have strong evidence that their essentiality status differs between the closely related bacterial taxa E. coli and Shigella. A set of genes involved in acetate utilization provides a canonical example. These results leave open the possibility of developing strain-specific antibiotic treatments targeting such differentially essential genes, but suggest that such opportunities may be rare in closely related bacteria.

  5. Fostering Inflammatory Bowel Disease: Sphingolipid Strategies to Join Forces

    PubMed Central

    Abdel Hadi, Loubna; Di Vito, Clara; Riboni, Laura

    2016-01-01

    Complex sphingolipids are essential structural components of intestinal membranes, providing protection and integrity to the intestinal mucosa and regulating intestinal absorption processes. The role of sphingolipid signaling has been established in numerous cellular events, including intestinal cell survival, growth, differentiation, and apoptosis. A significant body of knowledge demonstrates that intestinal sphingolipids play a crucial role, as such and through their signaling pathways, in immunity and inflammatory disorders. In this review, we report on and discuss the current knowledge on the metabolism, signaling, and functional implications of sphingolipids in inflammatory bowel disease (IBD), focusing on the different aspects of sphingolipid actions on inflammatory responses and on the potential of sphingolipid-targeted molecules as anti-IBD therapeutic agents. PMID:26880864

  6. Cytosolic lipolysis and lipophagy: two sides of the same coin.

    PubMed

    Zechner, Rudolf; Madeo, Frank; Kratky, Dagmar

    2017-11-01

    Fatty acids are the most efficient substrates for energy production in vertebrates and are essential components of the lipids that form biological membranes. Synthesis of triacylglycerols from non-esterified free fatty acids (FFAs) combined with triacylglycerol storage represents a highly efficient strategy to stockpile FFAs in cells and prevent FFA-induced lipotoxicity. Although essentially all vertebrate cells have some capacity to store and utilize triacylglycerols, white adipose tissue is by far the largest triacylglycerol depot and is uniquely able to supply FFAs to other tissues. The release of FFAs from triacylglycerols requires their enzymatic hydrolysis by a process called lipolysis. Recent discoveries thoroughly altered and extended our understanding of lipolysis. This Review discusses how cytosolic 'neutral' lipolysis and lipophagy, which utilizes 'acid' lipolysis in lysosomes, degrade cellular triacylglycerols as well as how these pathways communicate, how they affect lipid metabolism and energy homeostasis and how their dysfunction affects the pathogenesis of metabolic diseases. Answers to these questions will likely uncover novel strategies for the treatment of prevalent metabolic diseases.

  7. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease.

    PubMed

    Payne, Felicity; Lim, Koini; Girousse, Amandine; Brown, Rebecca J; Kory, Nora; Robbins, Ann; Xue, Yali; Sleigh, Alison; Cochran, Elaine; Adams, Claire; Dev Borman, Arundhati; Russel-Jones, David; Gorden, Phillip; Semple, Robert K; Saudek, Vladimir; O'Rahilly, Stephen; Walther, Tobias C; Barroso, Inês; Savage, David B

    2014-06-17

    Phosphatidylcholine (PC) is the major glycerophospholipid in eukaryotic cells and is an essential component in all cellular membranes. The biochemistry of de novo PC synthesis by the Kennedy pathway is well established, but less is known about the physiological functions of PC. We identified two unrelated patients with defects in the Kennedy pathway due to biallellic loss-of-function mutations in phosphate cytidylyltransferase 1 alpha (PCYT1A), the rate-limiting enzyme in this pathway. The mutations lead to a marked reduction in PCYT1A expression and PC synthesis. The phenotypic consequences include some features, such as severe fatty liver and low HDL cholesterol levels, that are predicted by the results of previously reported liver-specific deletion of murine Pcyt1a. Both patients also had lipodystrophy, severe insulin resistance, and diabetes, providing evidence for an additional and essential role for PCYT1A-generated PC in the normal function of white adipose tissue and insulin action.

  8. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease

    PubMed Central

    Payne, Felicity; Lim, Koini; Girousse, Amandine; Brown, Rebecca J.; Kory, Nora; Robbins, Ann; Xue, Yali; Sleigh, Alison; Cochran, Elaine; Adams, Claire; Dev Borman, Arundhati; Russel-Jones, David; Gorden, Phillip; Semple, Robert K.; Saudek, Vladimir; O’Rahilly, Stephen; Walther, Tobias C.; Barroso, Inês; Savage, David B.

    2014-01-01

    Phosphatidylcholine (PC) is the major glycerophospholipid in eukaryotic cells and is an essential component in all cellular membranes. The biochemistry of de novo PC synthesis by the Kennedy pathway is well established, but less is known about the physiological functions of PC. We identified two unrelated patients with defects in the Kennedy pathway due to biallellic loss-of-function mutations in phosphate cytidylyltransferase 1 alpha (PCYT1A), the rate-limiting enzyme in this pathway. The mutations lead to a marked reduction in PCYT1A expression and PC synthesis. The phenotypic consequences include some features, such as severe fatty liver and low HDL cholesterol levels, that are predicted by the results of previously reported liver-specific deletion of murine Pcyt1a. Both patients also had lipodystrophy, severe insulin resistance, and diabetes, providing evidence for an additional and essential role for PCYT1A-generated PC in the normal function of white adipose tissue and insulin action. PMID:24889630

  9. Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation

    PubMed Central

    Haldar, Saptarsi M.; Jeyaraj, Darwin; Anand, Priti; Zhu, Han; Lu, Yuan; Prosdocimo, Domenick A.; Eapen, Betty; Kawanami, Daiji; Okutsu, Mitsuharu; Brotto, Leticia; Fujioka, Hisashi; Kerner, Janos; Rosca, Mariana G.; McGuinness, Owen P.; Snow, Rod J.; Russell, Aaron P.; Gerber, Anthony N.; Bai, Xiaodong; Yan, Zhen; Nosek, Thomas M.; Brotto, Marco; Hoppel, Charles L.; Jain, Mukesh K.

    2012-01-01

    The ability of skeletal muscle to enhance lipid utilization during exercise is a form of metabolic plasticity essential for survival. Conversely, metabolic inflexibility in muscle can cause organ dysfunction and disease. Although the transcription factor Kruppel-like factor 15 (KLF15) is an important regulator of glucose and amino acid metabolism, its endogenous role in lipid homeostasis and muscle physiology is unknown. Here we demonstrate that KLF15 is essential for skeletal muscle lipid utilization and physiologic performance. KLF15 directly regulates a broad transcriptional program spanning all major segments of the lipid-flux pathway in muscle. Consequently, Klf15-deficient mice have abnormal lipid and energy flux, excessive reliance on carbohydrate fuels, exaggerated muscle fatigue, and impaired endurance exercise capacity. Elucidation of this heretofore unrecognized role for KLF15 now implicates this factor as a central component of the transcriptional circuitry that coordinates physiologic flux of all three basic cellular nutrients: glucose, amino acids, and lipids. PMID:22493257

  10. Discovering causal pathways linking genomic events to transcriptional states using Tied Diffusion Through Interacting Events (TieDIE).

    PubMed

    Paull, Evan O; Carlin, Daniel E; Niepel, Mario; Sorger, Peter K; Haussler, David; Stuart, Joshua M

    2013-11-01

    Identifying the cellular wiring that connects genomic perturbations to transcriptional changes in cancer is essential to gain a mechanistic understanding of disease initiation, progression and ultimately to predict drug response. We have developed a method called Tied Diffusion Through Interacting Events (TieDIE) that uses a network diffusion approach to connect genomic perturbations to gene expression changes characteristic of cancer subtypes. The method computes a subnetwork of protein-protein interactions, predicted transcription factor-to-target connections and curated interactions from literature that connects genomic and transcriptomic perturbations. Application of TieDIE to The Cancer Genome Atlas and a breast cancer cell line dataset identified key signaling pathways, with examples impinging on MYC activity. Interlinking genes are predicted to correspond to essential components of cancer signaling and may provide a mechanistic explanation of tumor character and suggest subtype-specific drug targets. Software is available from the Stuart lab's wiki: https://sysbiowiki.soe.ucsc.edu/tiedie. jstuart@ucsc.edu. Supplementary data are available at Bioinformatics online.

  11. Autophagy is essential for the differentiation of porcine PSCs into insulin-producing cells.

    PubMed

    Ren, Lipeng; Yang, Hong; Cui, Yanhua; Xu, Shuanshuan; Sun, Fen; Tian, Na; Hua, Jinlian; Peng, Sha

    2017-07-01

    Porcine pancreatic stem cells (PSCs) are seed cells with potential use for diabetes treatment. Stem cell differentiation requires strict control of protein turnover and lysosomal digestion of organelles. Autophagy is a highly conserved process that controls the turnover of organelles and proteins within cells and contributes to the balance of cellular components. However, whether autophagy plays roles in PSC differentiation remains unknown. In this study, we successfully induced porcine PSCs into insulin-producing cells and found that autophagy was activated during the second induction stage. Inhibition of autophagy in the second stage resulted in reduced differentiational efficiency and impaired glucose-stimulated insulin secretion. Moreover, the expression of active β-catenin increased while autophagy was activated but was suppressed when autophagy was inhibited. Therefore, autophagy is essential to the formation of insulin-producing cells, and the effects of autophagy on differentiation may be regulated by canonical Wnt signalling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes

    PubMed Central

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D.

    2016-01-01

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors. PMID:27005662

  13. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes.

    PubMed

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D

    2016-03-08

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors.

  14. Lipids as Tumoricidal Components of Human α-Lactalbumin Made Lethal to Tumor Cells (HAMLET)

    PubMed Central

    Ho, James C. S.; Storm, Petter; Rydström, Anna; Bowen, Ben; Alsin, Fredrik; Sullivan, Louise; Ambite, Inès; Mok, K. H.; Northen, Trent; Svanborg, Catharina

    2013-01-01

    Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance 13C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein. PMID:23629662

  15. Proteolytic-antiproteolytic balance and its regulation in carcinogenesis

    PubMed Central

    Skrzydlewska, Elzbieta; Sulkowska, Mariola; Koda, Mariusz; Sulkowski, Stanislaw

    2005-01-01

    Cancer development is essentially a tissue remodeling process in which normal tissue is substituted with cancer tissue. A crucial role in this process is attributed to proteolytic degradation of the extracellular matrix (ECM). Degradation of ECM is initiated by proteases, secreted by different cell types, participating in tumor cell invasion and increased expression or activity of every known class of proteases (metallo-, serine-, aspartyl-, and cysteine) has been linked to malignancy and invasion of tumor cells. Proteolytic enzymes can act directly by degrading ECM or indirectly by activating other proteases, which then degrade the ECM. They act in a determined order, resulting from the order of their activation. When proteases exert their action on other proteases, the end result is a cascade leading to proteolysis. Presumable order of events in this complicated cascade is that aspartyl protease (cathepsin D) activates cysteine proteases (e.g., cathepsin B) that can activate pro-uPA. Then active uPA can convert plasminogen into plasmin. Cathepsin B as well as plasmin are capable of degrading several components of tumor stroma and may activate zymogens of matrix metalloproteinases, the main family of ECM degrading proteases. The activities of these proteases are regulated by a complex array of activators, inhibitors and cellular receptors. In physiological conditions the balance exists between proteases and their inhibitors. Proteolytic-antiproteolytic balance may be of major significance in the cancer development. One of the reasons for such a situation is enhanced generation of free radicals observed in many pathological states. Free radicals react with main cellular components like proteins and lipids and in this way modify proteolytic-antiproteolytic balance and enable penetration damaging cellular membrane. All these lead to enhancement of proteolysis and destruction of ECM proteins and in consequence to invasion and metastasis. PMID:15761961

  16. Binding Site Configurations Probe the Structure and Dynamics of the Zinc Finger of NEMO (NF-κB Essential Modulator).

    PubMed

    Godwin, Ryan C; Melvin, Ryan L; Gmeiner, William H; Salsbury, Freddie R

    2017-01-31

    Zinc-finger proteins are regulators of critical signaling pathways for various cellular functions, including apoptosis and oncogenesis. Here, we investigate how binding site protonation states and zinc coordination influence protein structure, dynamics, and ultimately function, as these pivotal regulatory proteins are increasingly important for protein engineering and therapeutic discovery. To better understand the thermodynamics and dynamics of the zinc finger of NEMO (NF-κB essential modulator), as well as the role of zinc, we present results of 20 μs molecular dynamics trajectories, 5 μs for each of four active site configurations. Consistent with experimental evidence, the zinc ion is essential for mechanical stabilization of the functional, folded conformation. Hydrogen bond motifs are unique for deprotonated configurations yet overlap in protonated cases. Correlated motions and principal component analysis corroborate the similarity of the protonated configurations and highlight unique relationships of the zinc-bound configuration. We hypothesize a potential mechanism for zinc binding from results of the thiol configurations. The deprotonated, zinc-bound configuration alone predominantly maintains its tertiary structure throughout all 5 μs and alludes rare conformations potentially important for (im)proper zinc-finger-related protein-protein or protein-DNA interactions.

  17. The humoral pattern recognition molecule PTX3 is a key component of innate immunity against urinary tract infection.

    PubMed

    Jaillon, Sébastien; Moalli, Federica; Ragnarsdottir, Bryndis; Bonavita, Eduardo; Puthia, Manoj; Riva, Federica; Barbati, Elisa; Nebuloni, Manuela; Cvetko Krajinovic, Lidija; Markotic, Alemka; Valentino, Sonia; Doni, Andrea; Tartari, Silvia; Graziani, Giorgio; Montanelli, Alessandro; Delneste, Yves; Svanborg, Catharina; Garlanda, Cecilia; Mantovani, Alberto

    2014-04-17

    Immunity in the urinary tract has distinct and poorly understood pathophysiological characteristics and urinary tract infections (UTIs) are important causes of morbidity and mortality. We investigated the role of the soluble pattern recognition molecule pentraxin 3 (PTX3), a key component of the humoral arm of innate immunity, in UTIs. PTX3-deficient mice showed defective control of UTIs and exacerbated inflammation. Expression of PTX3 was induced in uroepithelial cells by uropathogenic Escherichia coli (UPEC) in a Toll-like receptor 4 (TLR4)- and MyD88-dependent manner. PTX3 enhanced UPEC phagocytosis and phagosome maturation by neutrophils. PTX3 was detected in urine of UTI patients and amounts correlated with disease severity. In cohorts of UTI-prone patients, PTX3 gene polymorphisms correlated with susceptibility to acute pyelonephritis and cystitis. These results suggest that PTX3 is an essential component of innate resistance against UTIs. Thus, the cellular and humoral arms of innate immunity exert complementary functions in mediating resistance against UTIs. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. [Studies on chemical components of essential oil of crude semen sinapis and roasted semen sinapis].

    PubMed

    Chen, Mi-Yu; Lin, Yan-Ni; Wu, Guo-Xin; Wu, Cui-Ping

    2006-07-01

    To study the chemical components of the essential oil of the Semen Sinapis with the different processing methods. The essential oils of the crude Semen Sinapis and the roasted Semen Sinapis were extracted by steam distillation. The chemical components were analyzed by means of GC-MS-DS. The relative content of each component was calculated by area normalization. The main chemical components of the essential oil of the crude Semen Sinapis and the roasted Semen Sinapis were similar. The main chemical components were allyl isothiocyanate and 4-isothio-cyanato-1-butene. The chemical components of the essential oil of the crude Semen Sinapis were more than that of the roasted Semen Sinapis. The effect of different processing methods on the chemical components of the essential oil of Semen Sinapis was significant. Certain chemical components such as isothiocyanato-containing substances, were found in the crude Semen Sinapis.

  19. A meta-analysis to evaluate the cellular processes regulated by the interactome of endogenous and over-expressed estrogen receptor alpha.

    PubMed

    Simões, Joana; Amado, Francisco M; Vitorino, Rui; Helguero, Luisa A

    2015-01-01

    The nature of the proteins complexes that regulate ERα subcellular localization and activity is still an open question in breast cancer biology. Identification of such complexes will help understand development of endocrine resistance in ER+ breast cancer. Mass spectrometry (MS) has allowed comprehensive analysis of the ERα interactome. We have compared six published works analyzing the ERα interactome of MCF-7 and HeLa cells in order to identify a shared or different pathway-related fingerprint. Overall, 806 ERα interacting proteins were identified. The cellular processes were differentially represented according to the ERα purification methodology, indicating that the methodologies used are complementary. While in MCF-7 cells, the interactome of endogenous and over-expressed ERα essentially represents the same biological processes and cellular components, the proteins identified were not over-lapping; thus, suggesting that the biological response may differ as the regulatory/participating proteins in these complexes are different. Interestingly, biological processes uniquely associated to ERα over-expressed in HeLa cell line included L-serine biosynthetic process, cellular amino acid biosynthetic process and cell redox homeostasis. In summary, all the approaches analyzed in this meta-analysis are valid and complementary; in particular, for those cases where the processes occur at low frequency with normal ERα levels, and can be identified when the receptor is over-expressed. However special effort should be put into validating these findings in cells expressing physiological ERα levels.

  20. Cellular compartmentalization of secondary metabolism

    USDA-ARS?s Scientific Manuscript database

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors sh...

  1. The snoRNA domain of vertebrate telomerase RNA functions to localize the RNA within the nucleus.

    PubMed Central

    Lukowiak, A A; Narayanan, A; Li, Z H; Terns, R M; Terns, M P

    2001-01-01

    Telomerase RNA is an essential component of the ribonucleoprotein enzyme involved in telomere length maintenance, a process implicated in cellular senescence and cancer. Vertebrate telomerase RNAs contain a box H/ACA snoRNA motif that is not required for telomerase activity in vitro but is essential in vivo. Using the Xenopus oocyte system, we have found that the box H/ACA motif functions in the subcellular localization of telomerase RNA. We have characterized the transport and biogenesis of telomerase RNA by injecting labeled wild-type and variant RNAs into Xenopus oocytes and assaying nucleocytoplasmic distribution, intranuclear localization, modification, and protein binding. Although yeast telomerase RNA shares characteristics of spliceosomal snRNAs, we show that human telomerase RNA is not associated with Sm proteins or efficiently imported into the nucleus. In contrast, the transport properties of vertebrate telomerase RNA resemble those of snoRNAs; telomerase RNA is retained in the nucleus and targeted to nucleoli. Furthermore, both nuclear retention and nucleolar localization depend on the box H/ACA motif. Our findings suggest that the H/ACA motif confers functional localization of vertebrate telomerase RNAs to the nucleus, the compartment where telomeres are synthesized. We have also found that telomerase RNA localizes to Cajal bodies, intranuclear structures where it is thought that assembly of various cellular RNPs takes place. Our results identify the Cajal body as a potential site of telomerase RNP biogenesis. PMID:11780638

  2. Drosophila Spag is the homolog of RNA polymerase II-associated protein 3 (RPAP3) and recruits the heat shock proteins 70 and 90 (Hsp70 and Hsp90) during the assembly of cellular machineries.

    PubMed

    Benbahouche, Nour El Houda; Iliopoulos, Ioannis; Török, István; Marhold, Joachim; Henri, Julien; Kajava, Andrey V; Farkaš, Robert; Kempf, Tore; Schnölzer, Martina; Meyer, Philippe; Kiss, István; Bertrand, Edouard; Mechler, Bernard M; Pradet-Balade, Bérengère

    2014-02-28

    The R2TP is a recently identified Hsp90 co-chaperone, composed of four proteins as follows: Pih1D1, RPAP3, and the AAA(+)-ATPases RUVBL1 and RUVBL2. In mammals, the R2TP is involved in the biogenesis of cellular machineries such as RNA polymerases, small nucleolar ribonucleoparticles and phosphatidylinositol 3-kinase-related kinases. Here, we characterize the spaghetti (spag) gene of Drosophila, the homolog of human RPAP3. This gene plays an essential function during Drosophila development. We show that Spag protein binds Drosophila orthologs of R2TP components and Hsp90, like its yeast counterpart. Unexpectedly, Spag also interacts and stimulates the chaperone activity of Hsp70. Using null mutants and flies with inducible RNAi, we show that spaghetti is necessary for the stabilization of snoRNP core proteins and target of rapamycin activity and likely the assembly of RNA polymerase II. This work highlights the strong conservation of both the HSP90/R2TP system and its clients and further shows that Spag, unlike Saccharomyces cerevisiae Tah1, performs essential functions in metazoans. Interaction of Spag with both Hsp70 and Hsp90 suggests a model whereby R2TP would accompany clients from Hsp70 to Hsp90 to facilitate their assembly into macromolecular complexes.

  3. Creating Age Asymmetry: Consequences of Inheriting Damaged Goods in Mammalian Cells.

    PubMed

    Moore, Darcie L; Jessberger, Sebastian

    2017-01-01

    Accumulating evidence suggests that mammalian cells asymmetrically segregate cellular components ranging from genomic DNA to organelles and damaged proteins during cell division. Asymmetric inheritance upon mammalian cell division may be specifically important to ensure cellular fitness and propagate cellular potency to individual progeny, for example in the context of somatic stem cell division. We review here recent advances in the field and discuss potential effects and underlying mechanisms that mediate asymmetric segregation of cellular components during mammalian cell division. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. In vitro 3D corneal tissue model with epithelium, stroma, and innervation.

    PubMed

    Wang, Siran; Ghezzi, Chiara E; Gomes, Rachel; Pollard, Rachel E; Funderburgh, James L; Kaplan, David L

    2017-01-01

    The interactions between corneal nerve, epithelium, and stroma are essential for maintaining a healthy cornea. Thus, corneal tissue models that more fully mimic the anatomy, mechanical properties and cellular components of corneal tissue would provide useful systems to study cellular interactions, corneal diseases and provide options for improved drug screening. Here a corneal tissue model was constructed to include the stroma, epithelium, and innervation. Thin silk protein film stacks served as the scaffolding to support the corneal epithelial and stromal layers, while a surrounding silk porous sponge supported neuronal growth. The neurons innervated the stromal and epithelial layers and improved function and viability of the tissues. An air-liquid interface environment of the corneal tissue was also mimicked in vitro, resulting in a positive impact on epithelial maturity. The inclusion of three cell types in co-culture at an air-liquid interface provides an important advance for the field of in vitro corneal tissue engineering, to permit improvements in the study of innervation and corneal tissue development, corneal disease, and tissue responses to environmental factors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn2.

    PubMed

    Rayman, Joseph B; Karl, Kevin A; Kandel, Eric R

    2018-01-02

    Stress granules are non-membranous structures that transiently form in the cytoplasm during cellular stress, where they promote translational repression of non-essential RNAs and modulate cell signaling by sequestering key signal transduction proteins. These and other functions of stress granules facilitate an adaptive cellular response to environmental adversity. A key component of stress granules is the prion-related RNA-binding protein, T cell intracellular antigen-1 (TIA-1). Here, we report that recombinant TIA-1 undergoes rapid multimerization and phase separation in the presence of divalent zinc, which can be reversed by the zinc chelator, TPEN. Similarly, the formation and maintenance of TIA-1-positive stress granules in arsenite-treated cells are inhibited by TPEN. In addition, Zn 2+ is released in cells treated with arsenite, before stress granule formation. These findings suggest that Zn 2+ is a physiological ligand of TIA-1, acting as a stress-inducible second messenger to promote multimerization of TIA-1 and subsequent localization into stress granules. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Stress-induced self-cannibalism: on the regulation of autophagy by endoplasmic reticulum stress.

    PubMed

    Deegan, Shane; Saveljeva, Svetlana; Gorman, Adrienne M; Samali, Afshin

    2013-07-01

    Macroautophagy (autophagy) is a cellular catabolic process which can be described as a self-cannibalism. It serves as an essential protective response during conditions of endoplasmic reticulum (ER) stress through the bulk removal and degradation of unfolded proteins and damaged organelles; in particular, mitochondria (mitophagy) and ER (reticulophagy). Autophagy is genetically regulated and the autophagic machinery facilitates removal of damaged cell components and proteins; however, if the cell stress is acute or irreversible, cell death ensues. Despite these advances in the field, very little is known about how autophagy is initiated and how the autophagy machinery is transcriptionally regulated in response to ER stress. Some three dozen autophagy genes have been shown to be required for the correct assembly and function of the autophagic machinery; however; very little is known about how these genes are regulated by cellular stress. Here, we will review current knowledge regarding how ER stress and the unfolded protein response (UPR) induce autophagy, including description of the different autophagy-related genes which are regulated by the UPR.

  7. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex trunculus digestive cells.

    PubMed

    Zarai, Zied; Boulais, Nicholas; Karray, Aida; Misery, Laurent; Bezzine, Sofiane; Rebai, Tarek; Gargouri, Youssef; Mejdoub, Hafedh

    2011-06-01

    Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. The marine snail digestive phospholipase A2 (mSDPLA2) has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used for immunohistochimical and immunofluorescence analysis in order to determine the cellular location of mSDPLA2. Our results showed essentially that mSDPLA2 was detected inside in specific vesicles tentatively named (mSDPLA2+) granules of the digestive cells. No immunolabelling was observed in secretory zymogene-like cells. This immunocytolocalization indicates that lipid digestion in the snail might occur in specific granules inside the digestive cells. The cellular location of mSDPLA2 suggests that intracellular phospholipids digestion, like other food components digestion of snail diet, occurs in these digestive cells. The hepatopancreas of H. trunculus has been pointed out as the main region for digestion, absorption and storage of lipids.

  8. Nutrient/TOR-dependent regulation of RNA polymerase III controls tissue and organismal growth in Drosophila

    PubMed Central

    Marshall, Lynne; Rideout, Elizabeth J; Grewal, Savraj S

    2012-01-01

    The nutrient/target-of-rapamycin (TOR) pathway has emerged as a key regulator of tissue and organismal growth in metazoans. The signalling components of the nutrient/TOR pathway are well defined; however, the downstream effectors are less understood. Here, we show that the control of RNA polymerase (Pol) III-dependent transcription is an essential target of TOR in Drosophila. We find that TOR activity controls Pol III in growing larvae via inhibition of the repressor Maf1 and, in part, via the transcription factor Drosophila Myc (dMyc). Moreover, we show that loss of the Pol III factor, Brf, leads to reduced tissue and organismal growth and prevents TOR-induced cellular growth. TOR activity in the larval fat body, a tissue equivalent to vertebrate fat or liver, couples nutrition to insulin release from the brain. Accordingly, we find that fat-specific loss of Brf phenocopies nutrient limitation and TOR inhibition, leading to decreased systemic insulin signalling and reduced organismal growth. Thus, stimulation of Pol III is a key downstream effector of TOR in the control of cellular and systemic growth. PMID:22367393

  9. Ultrasensitive response motifs: basic amplifiers in molecular signalling networks

    PubMed Central

    Zhang, Qiang; Bhattacharya, Sudin; Andersen, Melvin E.

    2013-01-01

    Multi-component signal transduction pathways and gene regulatory circuits underpin integrated cellular responses to perturbations. A recurring set of network motifs serve as the basic building blocks of these molecular signalling networks. This review focuses on ultrasensitive response motifs (URMs) that amplify small percentage changes in the input signal into larger percentage changes in the output response. URMs generally possess a sigmoid input–output relationship that is steeper than the Michaelis–Menten type of response and is often approximated by the Hill function. Six types of URMs can be commonly found in intracellular molecular networks and each has a distinct kinetic mechanism for signal amplification. These URMs are: (i) positive cooperative binding, (ii) homo-multimerization, (iii) multistep signalling, (iv) molecular titration, (v) zero-order covalent modification cycle and (vi) positive feedback. Multiple URMs can be combined to generate highly switch-like responses. Serving as basic signal amplifiers, these URMs are essential for molecular circuits to produce complex nonlinear dynamics, including multistability, robust adaptation and oscillation. These dynamic properties are in turn responsible for higher-level cellular behaviours, such as cell fate determination, homeostasis and biological rhythm. PMID:23615029

  10. Exploring the interactome: microfluidic isolation of proteins and interacting partners for quantitative analysis by electron microscopy.

    PubMed

    Giss, Dominic; Kemmerling, Simon; Dandey, Venkata; Stahlberg, Henning; Braun, Thomas

    2014-05-20

    Multimolecular protein complexes are important for many cellular processes. However, the stochastic nature of the cellular interactome makes the experimental detection of complex protein assemblies difficult and quantitative analysis at the single molecule level essential. Here, we present a fast and simple microfluidic method for (i) the quantitative isolation of endogenous levels of untagged protein complexes from minute volumes of cell lysates under close to physiological conditions and (ii) the labeling of specific components constituting these complexes. The method presented uses specific antibodies that are conjugated via a photocleavable linker to magnetic beads that are trapped in microcapillaries to immobilize the target proteins. Proteins are released by photocleavage, eluted, and subsequently analyzed by quantitative transmission electron microscopy at the single molecule level. Additionally, before photocleavage, immunogold can be employed to label proteins that interact with the primary target protein. Thus, the presented method provides a new way to study the interactome and, in combination with single molecule transmission electron microscopy, to structurally characterize the large, dynamic, heterogeneous multimolecular protein complexes formed.

  11. Plant sphingolipids: Their importance in cellular organization and adaption.

    PubMed

    Michaelson, Louise V; Napier, Johnathan A; Molino, Diana; Faure, Jean-Denis

    2016-09-01

    Sphingolipids and their phosphorylated derivatives are ubiquitous bio-active components of cells. They are structural elements in the lipid bilayer and contribute to the dynamic nature of the membrane. They have been implicated in many cellular processes in yeast and animal cells, including aspects of signaling, apoptosis, and senescence. Although sphingolipids have a better defined role in animal systems, they have been shown to be central to many essential processes in plants including but not limited to, pollen development, signal transduction and in the response to biotic and abiotic stress. A fuller understanding of the roles of sphingolipids within plants has been facilitated by classical biochemical studies and the identification of mutants of model species. Recently the development of powerful mass spectrometry techniques hailed the advent of the emerging field of lipidomics enabling more accurate sphingolipid detection and quantitation. This review will consider plant sphingolipid biosynthesis and function in the context of these new developments. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Sigmar1 regulates endoplasmic reticulum stress-induced C/EBP-homologous protein expression in cardiomyocytes.

    PubMed

    Alam, Shafiul; Abdullah, Chowdhury S; Aishwarya, Richa; Orr, A Wayne; Traylor, James; Miriyala, Sumitra; Panchatcharam, Manikandan; Pattillo, Christopher B; Bhuiyan, Md Shenuarin

    2017-08-31

    C/EBP-homologous protein (CHOP) is a ubiquitously expressed stress-inducible transcription factor robustly induced by maladaptive endoplasmic reticulum (ER) stresses in a wide variety of cells. Here, we examined a novel function of Sigma 1 receptor (Sigmar1) in regulating CHOP expression under ER stress in cardiomyocytes. We also defined Sigmar1-dependent activation of the adaptive ER-stress pathway in regulating CHOP expression. We used adenovirus-mediated Sigmar1 overexpression as well as Sigmar1 knockdown by siRNA in neonatal rat ventricular cardiomyocytes (NRCs); to induce ER stress, cardiomyocytes were treated with tunicamycin. Sigmar1-siRNA knockdown significantly increased the expression of CHOP and significantly induced cellular toxicity by sustained activation of ER stress in cardiomyocytes. Sigmar1 overexpression decreased the expression of CHOP and significantly decreased cellular toxicity in cells. Using biochemical and immunocytochemical experiments, we also defined the specific ER-stress pathway associated with Sigmar1-dependent regulation of CHOP expression and cellular toxicity. We found that Sigmar1 overexpression significantly increased inositol requiring kinase 1α (IRE1α) phosphorylation and increased spliced X-box-binding proteins (XBP1s) expression as well as nuclear localization. In contrast, Sigmar1 knockdown significantly decreased IRE1α phosphorylation and decreased XBP1s expression as well as nuclear transport. Taken together, these results indicate that Sigmar1-dependent activation of IRE1α-XBP1s ER-stress response pathways are associated with inhibition of CHOP expression and suppression of cellular toxicity. Hence, Sigmar1 is an essential component of the adaptive ER-stress response pathways eliciting cellular protection in cardiomyocytes. © 2017 The Author(s).

  13. Sigmar1 regulates endoplasmic reticulum stress-induced C/EBP-homologous protein expression in cardiomyocytes

    PubMed Central

    Alam, Shafiul; Abdullah, Chowdhury S.; Aishwarya, Richa; Orr, A. Wayne; Traylor, James; Miriyala, Sumitra; Panchatcharam, Manikandan; Pattillo, Christopher B.

    2017-01-01

    C/EBP-homologous protein (CHOP) is a ubiquitously expressed stress-inducible transcription factor robustly induced by maladaptive endoplasmic reticulum (ER) stresses in a wide variety of cells. Here, we examined a novel function of Sigma 1 receptor (Sigmar1) in regulating CHOP expression under ER stress in cardiomyocytes. We also defined Sigmar1-dependent activation of the adaptive ER-stress pathway in regulating CHOP expression. We used adenovirus-mediated Sigmar1 overexpression as well as Sigmar1 knockdown by siRNA in neonatal rat ventricular cardiomyocytes (NRCs); to induce ER stress, cardiomyocytes were treated with tunicamycin. Sigmar1-siRNA knockdown significantly increased the expression of CHOP and significantly induced cellular toxicity by sustained activation of ER stress in cardiomyocytes. Sigmar1 overexpression decreased the expression of CHOP and significantly decreased cellular toxicity in cells. Using biochemical and immunocytochemical experiments, we also defined the specific ER-stress pathway associated with Sigmar1-dependent regulation of CHOP expression and cellular toxicity. We found that Sigmar1 overexpression significantly increased inositol requiring kinase 1α (IRE1α) phosphorylation and increased spliced X-box-binding proteins (XBP1s) expression as well as nuclear localization. In contrast, Sigmar1 knockdown significantly decreased IRE1α phosphorylation and decreased XBP1s expression as well as nuclear transport. Taken together, these results indicate that Sigmar1-dependent activation of IRE1α-XBP1s ER-stress response pathways are associated with inhibition of CHOP expression and suppression of cellular toxicity. Hence, Sigmar1 is an essential component of the adaptive ER-stress response pathways eliciting cellular protection in cardiomyocytes. PMID:28667101

  14. Coexistence of Phases in a Protein Heterodimer

    PubMed Central

    Krokhotin, Andrey; Liwo, Adam; Niemi, Antti J.; Scheraga, Harold A.

    2012-01-01

    A heterodimer consisting of two or more different kinds of proteins can display an enormous number of distinct molecular architectures. The conformational entropy is an essential ingredient in the Helmholtz free energy and, consequently, these heterodimers can have a very complex phase structure. Here, it is proposed that there is a state of proteins, in which the different components of a heterodimer exist in different phases. For this purpose, the structures in the protein data bank (PDB) have been analyzed, with radius of gyration as the order parameter. Two major classes of heterodimers with their protein components coexisting in different phases have been identified. An example is the PDB structure 3DXC. This is a transcriptionally active dimer. One of the components is an isoform of the intra-cellular domain of the Alzheimer-disease related amyloid precursor protein (AICD), and the other is a nuclear multidomain adaptor protein in the Fe65 family. It is concluded from the radius of gyration that neither of the two components in this dimer is in its own collapsed phase, corresponding to a biologically active protein. The UNRES energy function has been utilized to confirm that, if the two components are separated from each other, each of them collapses. The results presented in this work show that heterodimers whose protein components coexist in different phases, can have intriguing physical properties with potentially important biological consequences. PMID:22830730

  15. Network Medicine: From Cellular Networks to the Human Diseasome

    NASA Astrophysics Data System (ADS)

    Barabasi, Albert-Laszlo

    2014-03-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The tools of network science offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction not only enrich our understanding of complex systems, but are also essential to identify new disease genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases.

  16. Different cellular effects of four anti-inflammatory eye drops on human corneal epithelial cells: independent in active components.

    PubMed

    Qu, Mingli; Wang, Yao; Yang, Lingling; Zhou, Qingjun

    2011-01-01

    To evaluate and compare the cellular effects of four commercially available anti-inflammatory eye drops and their active components on human corneal epithelial cells (HCECs) in vitro. The cellular effects of four eye drops (Bromfenac Sodium Hydrate Eye Drops, Pranoprofen Eye Drops, Diclofenac Sodium Eye Drops, and Tobramycin & Dex Eye Drops) and their corresponding active components were evaluated in an HCEC line with five in vitro assays. Cell proliferation and migration were measured using 3-(4,5)-dimethylthiahiazo (-z-y1)-3 5-di-phenytetrazoliumromide (MTT) assay and transwell migration assay. Cell damage was determined with the lactate dehydrogenase (LDH) assay. Cell viability and median lethal time (LT₅₀) were measured by 7-amino-actinomycin D (7-AAD) staining and flow cytometry analysis. Cellular effects after exposure of HCECs to the four anti-inflammatory eye drops were concentration dependent. The differences of cellular toxicity on cell proliferation became significant at lower concentrations (<0.002%). Diclofenac Sodium Eye Drops showed significant increasing effects on cell damage and viability when compared with the other three solutions. Tobramycin & Dex Eye Drops inhibited the migration of HCECs significantly. Tobramycin & Dex Eye Drops showed the quickest effect on cell viability: the LT₅₀ was 3.28, 9.23, 10.38, and 23.80 min for Tobramycin & Dex Eye Drops, Diclofenac Sodium Eye Drops, Pranoprofen Eye Drops, and Bromfenac Sodium Hydrate Eye Drops, respectively. However, the comparisons of cellular toxicity revealed significant differences between the eye drops and their active components under the same concentration. The corneal epithelial toxicity differences among the active components of the four eye drops became significant as higher concentration (>0.020%). The four anti-inflammatory eye drops showed different cellular effects on HCECs, and the toxicity was not related with their active components, which provides new reference for the clinical application and drug research and development.

  17. The mechanism of protein export enhancement by the SecDF membrane component

    PubMed Central

    Tsukazaki, Tomoya; Nureki, Osamu

    2011-01-01

    Protein transport across membranes is a fundamental and essential cellular activity in all organisms. In bacteria, protein export across the cytoplasmic membrane, driven by dynamic interplays between the protein-conducting SecYEG channel (Sec translocon) and the SecA ATPase, is enhanced by the proton motive force (PMF) and a membrane-integrated Sec component, SecDF. However, the structure and function of SecDF have remained unclear. We solved the first crystal structure of SecDF, consisting of a pseudo-symmetrical 12-helix transmembrane domain and two protruding periplasmic domains. Based on the structural features, we proposed that SecDF functions as a membrane-integrated chaperone, which drives protein movement without using the major energetic currency, ATP, but with remarkable cycles of conformational changes, powered by the proton gradient across the membrane. By a series of biochemical and biophysical approaches, several functionally important residues in the transmembrane region have been identified and our model of the SecDF function has been verified. PMID:27857601

  18. The emerging role of lysosomes in copper homeostasis.

    PubMed

    Polishchuk, Elena V; Polishchuk, Roman S

    2016-09-01

    The lysosomal system operates as a focal point where a number of important physiological processes such as endocytosis, autophagy and nutrient sensing converge. One of the key functions of lysosomes consists of regulating the metabolism/homeostasis of metals. Metal-containing components are carried to the lysosome through incoming membrane flows, while numerous transporters allow metal ions to move across the lysosome membrane. These properties enable lysosomes to direct metal fluxes to the sites where metal ions are either used by cellular components or sequestered. Copper belongs to a group of metals that are essential for the activity of vitally important enzymes, although it is toxic when in excess. Thus, copper uptake, supply and intracellular compartmentalization have to be tightly regulated. An increasing number of publications have indicated that these processes involve lysosomes. Here we review studies that reveal the expanding role of the lysosomal system as a hub for the control of Cu homeostasis and for the regulation of key Cu-dependent processes in health and disease.

  19. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration

    PubMed Central

    Wan, Jijun; Yourshaw, Michael; Mamsa, Hafsa; Rudnik-Schöneborn, Sabine; Menezes, Manoj P.; Hong, Ji Eun; Leong, Derek W.; Senderek, Jan; Salman, Michael S.; Chitayat, David; Seeman, Pavel; von Moers, Arpad; Graul-Neumann, Luitgard; Kornberg, Andrew J.; Castro-Gago, Manuel; Sobrido, María-Jesús; Sanefuji, Masafumi; Shieh, Perry B.; Salamon, Noriko; Kim, Ronald C.; Vinters, Harry V.; Chen, Zugen; Zerres, Klaus; Ryan, Monique M.; Nelson, Stanley F.; Jen, Joanna C.

    2012-01-01

    RNA exosomes are multi-subunit complexes conserved throughout evolution1 and emerging as the major cellular machinery for processing, surveillance, and turnover of a diverse spectrum of coding and non-coding RNA substrates essential for viability2. By exome sequencing, we discovered recessive mutations in exosome component 3 (EXOSC3) in four siblings with infantile spinal motor neuron disease, cerebellar atrophy, progressive microcephaly, and profound global developmental delay, consistent with pontocerebellar hypoplasia type 1 [PCH1; OMIM 607596]3–6. We identified mutations in EXOSC3 in an additional 8 of 12 families with PCH1. Morpholino knockdown of exosc3 in zebrafish embryos caused embryonic maldevelopment with small brain and poor motility, reminiscent of human clinical features and largely rescued by coinjected wildtype but not mutant exosc3 mRNA. These findings represent the first example of an RNA exosome gene responsible for a human disease and further implicate dysregulation of RNA processing in cerebellar and spinal motor neuron maldevelopment and degeneration. PMID:22544365

  20. Biomimetic and bioactive nanofibrous scaffolds from electrospun composite nanofibers

    PubMed Central

    Zhang, YZ; Su, B; Venugopal, J; Ramakrishna, S; Lim, CT

    2007-01-01

    Electrospinning is an enabling technology that can architecturally (in terms of geometry, morphology or topography) and biochemically fabricate engineered cellular scaffolds that mimic the native extracellular matrix (ECM). This is especially important and forms one of the essential paradigms in the area of tissue engineering. While biomimesis of the physical dimensions of native ECM’s major constituents (eg, collagen) is no longer a fabrication-related challenge in tissue engineering research, conveying bioactivity to electrospun nanofibrous structures will determine the efficiency of utilizing electrospun nanofibers for regenerating biologically functional tissues. This can certainly be achieved through developing composite nanofibers. This article gives a brief overview on the current development and application status of employing electrospun composite nanofibers for constructing biomimetic and bioactive tissue scaffolds. Considering that composites consist of at least two material components and phases, this review details three different configurations of nanofibrous composite structures by using hybridizing basic binary material systems as example. These are components blended composite nanofiber, core-shell structured composite nanofiber, and nanofibrous mingled structure. PMID:18203429

  1. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques

    PubMed Central

    Patrizio, Angela; Specht, Christian G.

    2016-01-01

    Abstract. The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function. PMID:27335891

  2. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques.

    PubMed

    Patrizio, Angela; Specht, Christian G

    2016-10-01

    The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function.

  3. Cytoplasmic Domains and Voltage-Dependent Potassium Channel Gating

    PubMed Central

    Barros, Francisco; Domínguez, Pedro; de la Peña, Pilar

    2012-01-01

    The basic architecture of the voltage-dependent K+ channels (Kv channels) corresponds to a transmembrane protein core in which the permeation pore, the voltage-sensing components and the gating machinery (cytoplasmic facing gate and sensor–gate coupler) reside. Usually, large protein tails are attached to this core, hanging toward the inside of the cell. These cytoplasmic regions are essential for normal channel function and, due to their accessibility to the cytoplasmic environment, constitute obvious targets for cell-physiological control of channel behavior. Here we review the present knowledge about the molecular organization of these intracellular channel regions and their role in both setting and controlling Kv voltage-dependent gating properties. This includes the influence that they exert on Kv rapid/N-type inactivation and on activation/deactivation gating of Shaker-like and eag-type Kv channels. Some illustrative examples about the relevance of these cytoplasmic domains determining the possibilities for modulation of Kv channel gating by cellular components are also considered. PMID:22470342

  4. A Structural Framework for a Near-Minimal Form of Life: Mass and Compositional Analysis of the Helical Mollicute Spiroplasma melliferum BC3

    PubMed Central

    Trachtenberg, Shlomo; Schuck, Peter; Phillips, Terry M.; Andrews, S. Brian; Leapman, Richard D.

    2014-01-01

    Spiroplasma melliferum is a wall-less bacterium with dynamic helical geometry. This organism is geometrically well defined and internally well ordered, and has an exceedingly small genome. Individual cells are chemotactic, polar, and swim actively. Their dynamic helicity can be traced at the molecular level to a highly ordered linear motor (composed essentially of the proteins fib and MreB) that is positioned on a defined helical line along the internal face of the cell’s membrane. Using an array of complementary, informationally overlapping approaches, we have taken advantage of this uniquely simple, near-minimal life-form and its helical geometry to analyze the copy numbers of Spiroplasma’s essential parts, as well as to elucidate how these components are spatially organized to subserve the whole living cell. Scanning transmission electron microscopy (STEM) was used to measure the mass-per-length and mass-per-area of whole cells, membrane fractions, intact cytoskeletons and cytoskeletal components. These local data were fit into whole-cell geometric parameters determined by a variety of light microscopy modalities. Hydrodynamic data obtained by analytical ultracentrifugation allowed computation of the hydration state of whole living cells, for which the relative amounts of protein, lipid, carbohydrate, DNA, and RNA were also estimated analytically. Finally, ribosome and RNA content, genome size and gene expression were also estimated (using stereology, spectroscopy and 2D-gel analysis, respectively). Taken together, the results provide a general framework for a minimal inventory and arrangement of the major cellular components needed to support life. PMID:24586297

  5. Cellular angiofibroma with atypia or sarcomatous transformation: clinicopathologic analysis of 13 cases.

    PubMed

    Chen, Eleanor; Fletcher, Christopher D M

    2010-05-01

    Cellular angiofibroma is a mesenchymal neoplasm that is characterized by a bland spindle cell component, morphologically reminiscent of spindle cell lipoma, and thick-walled vessels. The tumor occurs equally in men and women and usually arises in the inguino-scrotal or vulvovaginal regions. An earlier study of 51 cases from our group showed that the tumor follows a benign course without any tendency for recurrence. In 1 case, an intralesional microscopic nodule of pleomorphic liposarcoma was observed. The biologic significance of atypia or sarcomatous transformation in cellular angiofibroma remains uncertain. In this study, we characterized clinicopathologic features in 13 cases of cellular angiofibroma with morphologic atypia or sarcomatous transformation. Thirteen cases with atypia or sarcomatous transformation among 154 usual cellular angiofibromas identified between 1993 and 2009 were retrieved from consultation files. There were 12 females and 1 male ranging in age from 39 to 71 years (median age, 46 y). Tumor size ranged from 1.2 to 7.5 cm. In 11 cases, the tumors occurred in the vulva. One case each occurred in the paratesticular and hip regions. Most tumors were located in subcutaneous tissue. There were 4 cases of cellular angiofibroma with atypia. Three showed severely atypical cells as scattered foci within the cellular angiofibroma. One case showed a discrete nodule of atypical cells. There were 9 cases of cellular angiofibroma with morphologic features of sarcomatous transformation. In each case, abrupt transition to a discrete sarcomatous component was seen. Of these 9 cases, the sarcomatous component in 2 cases showed features of pleomorphic liposarcoma with multivacuolated lipoblasts readily identified. Three of these 9 cases showed discrete nodule(s) closely resembling atypical lipomatous tumor within usual cellular angiofibroma. In the remaining 4 cases, the sarcomatous component was composed of pleomorphic spindle cells arranged in various patterns. By immunohistochemistry, atypical cells and sarcomatous areas showed either multifocal or more diffuse p16 expression compared with either scattered or negative expression in the conventional cellular angiofibroma. The 3 cases with atypical lipomatous tumor-like areas were negative for MDM-2 and CDK4. Follow-up information was available for 7 patients (range from 2 to 75 mo; median: 14 mo). Six patients did not develop recurrence or metastasis. One patient died of metastatic carcinoma of unknown primary site 27 months after the diagnosis of cellular angiofibroma with sarcomatous transformation. Cellular angiofibroma with atypia or morphologic sarcomatous transformation occurs predominantly in the subcutaneous tissue of the vulva and, as yet, shows no evident tendency to recur based on limited clinical follow-up available for 7 cases. The sarcomatous component can show variable features including atypical lipomatous tumor, pleomorphic liposarcoma, and pleomorphic sarcoma NOS. Overexpression of p16 in the atypical cells and sarcomatous component suggests a possible underlying molecular mechanism.

  6. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    PubMed Central

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-01-01

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins. PMID:28800062

  7. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin.

    PubMed

    Takehara, Masaya; Takagishi, Teruhisa; Seike, Soshi; Oda, Masataka; Sakaguchi, Yoshihiko; Hisatsune, Junzo; Ochi, Sadayuki; Kobayashi, Keiko; Nagahama, Masahiro

    2017-08-11

    Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  8. [Cell signaling pathways interaction in cellular proliferation: Potential target for therapeutic interventionism].

    PubMed

    Valdespino-Gómez, Víctor Manuel; Valdespino-Castillo, Patricia Margarita; Valdespino-Castillo, Víctor Edmundo

    2015-01-01

    Nowadays, cellular physiology is best understood by analysing their interacting molecular components. Proteins are the major components of the cells. Different proteins are organised in the form of functional clusters, pathways or networks. These molecules are ordered in clusters of receptor molecules of extracellular signals, transducers, sensors and biological response effectors. The identification of these intracellular signaling pathways in different cellular types has required a long journey of experimental work. More than 300 intracellular signaling pathways have been identified in human cells. They participate in cell homeostasis processes for structural and functional maintenance. Some of them participate simultaneously or in a nearly-consecutive progression to generate a cellular phenotypic change. In this review, an analysis is performed on the main intracellular signaling pathways that take part in the cellular proliferation process, and the potential use of some components of these pathways as target for therapeutic interventionism are also underlined. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.

  9. The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity.

    PubMed

    Rialdi, Alexander; Hultquist, Judd; Jimenez-Morales, David; Peralta, Zuleyma; Campisi, Laura; Fenouil, Romain; Moshkina, Natasha; Wang, Zhen Zhen; Laffleur, Brice; Kaake, Robyn M; McGregor, Michael J; Haas, Kelsey; Pefanis, Evangelos; Albrecht, Randy A; Pache, Lars; Chanda, Sumit; Jen, Joanna; Ochando, Jordi; Byun, Minji; Basu, Uttiya; García-Sastre, Adolfo; Krogan, Nevan; van Bakel, Harm; Marazzi, Ivan

    2017-05-04

    The nuclear RNA exosome is an essential multi-subunit complex that controls RNA homeostasis. Congenital mutations in RNA exosome genes are associated with neurodegenerative diseases. Little is known about the role of the RNA exosome in the cellular response to pathogens. Here, using NGS and human and mouse genetics, we show that influenza A virus (IAV) ribogenesis and growth are suppressed by impaired RNA exosome activity. Mechanistically, the nuclear RNA exosome coordinates the initial steps of viral transcription with RNAPII at host promoters. The viral polymerase complex co-opts the nuclear RNA exosome complex and cellular RNAs en route to 3' end degradation. Exosome deficiency uncouples chromatin targeting of the viral polymerase complex and the formation of cellular:viral RNA hybrids, which are essential RNA intermediates that license transcription of antisense genomic viral RNAs. Our results suggest that evolutionary arms races have shaped the cellular RNA quality control machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Toward the human cellular microRNAome.

    PubMed

    McCall, Matthew N; Kim, Min-Sik; Adil, Mohammed; Patil, Arun H; Lu, Yin; Mitchell, Christopher J; Leal-Rojas, Pamela; Xu, Jinchong; Kumar, Manoj; Dawson, Valina L; Dawson, Ted M; Baras, Alexander S; Rosenberg, Avi Z; Arking, Dan E; Burns, Kathleen H; Pandey, Akhilesh; Halushka, Marc K

    2017-10-01

    MicroRNAs are short RNAs that serve as regulators of gene expression and are essential components of normal development as well as modulators of disease. MicroRNAs generally act cell-autonomously, and thus their localization to specific cell types is needed to guide our understanding of microRNA activity. Current tissue-level data have caused considerable confusion, and comprehensive cell-level data do not yet exist. Here, we establish the landscape of human cell-specific microRNA expression. This project evaluated 8 billion small RNA-seq reads from 46 primary cell types, 42 cancer or immortalized cell lines, and 26 tissues. It identified both specific and ubiquitous patterns of expression that strongly correlate with adjacent superenhancer activity. Analysis of unaligned RNA reads uncovered 207 unknown minor strand (passenger) microRNAs of known microRNA loci and 495 novel putative microRNA loci. Although cancer cell lines generally recapitulated the expression patterns of matched primary cells, their isomiR sequence families exhibited increased disorder, suggesting DROSHA- and DICER1-dependent microRNA processing variability. Cell-specific patterns of microRNA expression were used to de-convolute variable cellular composition of colon and adipose tissue samples, highlighting one use of these cell-specific microRNA expression data. Characterization of cellular microRNA expression across a wide variety of cell types provides a new understanding of this critical regulatory RNA species. © 2017 McCall et al.; Published by Cold Spring Harbor Laboratory Press.

  11. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm.

    PubMed

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S; Subramanian, Hariharan; Dravid, Vinayak P; Backman, Vadim

    2017-06-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass-density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass-density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass-density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass-density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass-density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes.

  12. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes,more » is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.« less

  13. Measuring the Autocorrelation Function of Nanoscale Three-Dimensional Density Distribution in Individual Cells Using Scanning Transmission Electron Microscopy, Atomic Force Microscopy, and a New Deconvolution Algorithm

    PubMed Central

    Li, Yue; Zhang, Di; Capoglu, Ilker; Hujsak, Karl A.; Damania, Dhwanil; Cherkezyan, Lusik; Roth, Eric; Bleher, Reiner; Wu, Jinsong S.; Subramanian, Hariharan; Dravid, Vinayak P.; Backman, Vadim

    2018-01-01

    Essentially all biological processes are highly dependent on the nanoscale architecture of the cellular components where these processes take place. Statistical measures, such as the autocorrelation function (ACF) of the three-dimensional (3D) mass–density distribution, are widely used to characterize cellular nanostructure. However, conventional methods of reconstruction of the deterministic 3D mass–density distribution, from which these statistical measures can be calculated, have been inadequate for thick biological structures, such as whole cells, due to the conflict between the need for nanoscale resolution and its inverse relationship with thickness after conventional tomographic reconstruction. To tackle the problem, we have developed a robust method to calculate the ACF of the 3D mass–density distribution without tomography. Assuming the biological mass distribution is isotropic, our method allows for accurate statistical characterization of the 3D mass–density distribution by ACF with two data sets: a single projection image by scanning transmission electron microscopy and a thickness map by atomic force microscopy. Here we present validation of the ACF reconstruction algorithm, as well as its application to calculate the statistics of the 3D distribution of mass–density in a region containing the nucleus of an entire mammalian cell. This method may provide important insights into architectural changes that accompany cellular processes. PMID:28416035

  14. Lipids as tumoricidal components of human α-lactalbumin made lethal to tumor cells (HAMLET): unique and shared effects on signaling and death.

    PubMed

    Ho, James C S; Storm, Petter; Rydström, Anna; Bowen, Ben; Alsin, Fredrik; Sullivan, Louise; Ambite, Inès; Mok, K H; Northen, Trent; Svanborg, Catharina

    2013-06-14

    Long-chain fatty acids are internalized by receptor-mediated mechanisms or receptor-independent diffusion across cytoplasmic membranes and are utilized as nutrients, building blocks, and signaling intermediates. Here we describe how the association of long-chain fatty acids to a partially unfolded, extracellular protein can alter the presentation to target cells and cellular effects. HAMLET (human α-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded α-lactalbumin and oleic acid (OA). As OA lacks independent tumoricidal activity at concentrations equimolar to HAMLET, the contribution of the lipid has been debated. We show by natural abundance (13)C NMR that the lipid in HAMLET is deprotonated and by chromatography that oleate rather than oleic acid is the relevant HAMLET constituent. Compared with HAMLET, oleate (175 μm) showed weak effects on ion fluxes and gene expression. Unlike HAMLET, which causes metabolic paralysis, fatty acid metabolites were less strongly altered. The functional overlap increased with higher oleate concentrations (500 μm). Cellular responses to OA were weak or absent, suggesting that deprotonation favors cellular interactions of fatty acids. Fatty acids may thus exert some of their essential effects on host cells when in the deprotonated state and when presented in the context of a partially unfolded protein.

  15. P-TEFb, the Super Elongation Complex and Mediator Regulate a Subset of Non-paused Genes during Early Drosophila Embryo Development

    PubMed Central

    Dahlberg, Olle; Shilkova, Olga; Tang, Min; Holmqvist, Per-Henrik; Mannervik, Mattias

    2015-01-01

    Positive Transcription Elongation Factor b (P-TEFb) is a kinase consisting of Cdk9 and Cyclin T that releases RNA Polymerase II (Pol II) into active elongation. It can assemble into a larger Super Elongation Complex (SEC) consisting of additional elongation factors. Here, we use a miRNA-based approach to knock down the maternal contribution of P-TEFb and SEC components in early Drosophila embryos. P-TEFb or SEC depletion results in loss of cells from the embryo posterior and in cellularization defects. Interestingly, the expression of many patterning genes containing promoter-proximal paused Pol II is relatively normal in P-TEFb embryos. Instead, P-TEFb and SEC are required for expression of some non-paused, rapidly transcribed genes in pre-cellular embryos, including the cellularization gene Serendipity-α. We also demonstrate that another P-TEFb regulated gene, terminus, has an essential function in embryo development. Similar morphological and gene expression phenotypes were observed upon knock down of Mediator subunits, providing in vivo evidence that P-TEFb, the SEC and Mediator collaborate in transcription control. Surprisingly, P-TEFb depletion does not affect the ratio of Pol II at the promoter versus the 3’ end, despite affecting global Pol II Ser2 phosphorylation levels. Instead, Pol II occupancy is reduced at P-TEFb down-regulated genes. We conclude that a subset of non-paused, pre-cellular genes are among the most susceptible to reduced P-TEFb, SEC and Mediator levels in Drosophila embryos. PMID:25679530

  16. Essential Role of Lymph Nodes in Contact Hypersensitivity Revealed in Lymphotoxin-α–Deficient Mice

    PubMed Central

    Rennert, Paul D.; Hochman, Paula S.; Flavell, Richard A.; Chaplin, David D.; Jayaraman, Sundararajan; Browning, Jeffrey L.; Fu, Yang-Xin

    2001-01-01

    Lymph nodes (LNs) are important sentinal organs, populated by circulating lymphocytes and antigen-bearing cells exiting the tissue beds. Although cellular and humoral immune responses are induced in LNs by antigenic challenge, it is not known if LNs are essential for acquired immunity. We examined immune responses in mice that lack LNs due to genetic deletion of lymphotoxin ligands or in utero blockade of membrane lymphotoxin. We report that LNs are absolutely required for generating contact hypersensitivity, a T cell–dependent cellular immune response induced by epicutaneous hapten. We show that the homing of epidermal Langerhans cells in response to hapten application is specifically directed to LNs, providing a cellular basis for this unique LN function. In contrast, the spleen cannot mediate contact hypersensitivity because antigen-bearing epidermal Langerhans cells do not access splenic white pulp. Finally, we formally demonstrate that LNs provide a unique environment essential for generating this acquired immune response by reversing the LN defect in lymphotoxin-α−/− mice, thereby restoring the capacity for contact hypersensitivity. PMID:11390430

  17. Does antioxidant properties of the main component of essential oil reflect its antioxidant properties? The comparison of antioxidant properties of essential oils and their main components.

    PubMed

    Dawidowicz, Andrzej L; Olszowy, Małgorzata

    2014-01-01

    This study discusses the similarities and differences between the antioxidant activities of some essential oils: thyme (Thymus vulgaris), basil (Ocimum basilicum), peppermint (Mentha piperita), clove (Caryophyllus aromaticus), summer savory (Satureja hortensis), sage (Salvia hispanica) and lemon (Citrus limon (L.) Burm.) and of their main components (thymol or estragole or menthol or eugenol or carvacrol or camphor or limonene) estimated by using 2,2'-Diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and β-carotene bleaching assays. The obtained data show that the antioxidant properties of essential oil do not always depend on the antioxidant activity of its main component, and that they can be modulated by their other components. The conclusions concerning the interaction of essential oil components depend on the type of method applied for assessing the antioxidant activity. When comparing the antioxidant properties of essential oils and their main components, the concepts of synergism, antagonism and additivity are very relevant.

  18. [Extraction and analysis of chemical components of essential oil in Thymus vulgaris of tissue culture].

    PubMed

    Li, Xiao-Dong; Yang, Li; Xu, Shi-Qian; Li, Jian-Guo; Cheng, Zhi-Hui; Dang, Jian-Zhang

    2011-10-01

    To extract the essential oils from the Seedlings, the Aseptic Seedlings and the Tissue Culture Seedlings of Thymus vulgaris and analyze their chemical components and the relative contents. The essential oils were extracted by steam distillation, the chemical components and the relative contents were identified and analyzed by gas chromatography-mass spectrometry (GC/MS) and peak area normalization method. The main chemical components of essential oil in these three samples had no significant difference, they all contained the main components of essential oil in Thymus vulgaris: Thymol, Carvacrol, o-Cymene, gamma-Terpinene, Caryophyllene et al. and only had a slight difference in the relative content. This study provides important theoretical foundation and data reference for further study on production of essential oil in thyme by tissue culture technology.

  19. Proteomic Dissection of the Mitochondrial DNA Metabolism Apparatus in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAlly A. Mackenzie

    2004-01-06

    This study involves the investigation of nuclear genetic components that regulate mitochondrial genome behavior in higher plants. The approach utilizes the advanced plant model system of Arabidopsis thaliana to identify and functionally characterize multiple components of the mitochondrial DNA replication, recombination and mismatch repair system and their interaction partners. The rationale for the research stems from the central importance of mitochondria to overall cellular metabolism and the essential nature of the mitochondrial genome to mitochondrial function. Relatively little is understood about mitochondrial DNA maintenance and transmission in higher eukaryotes, and the higher plant mitochondrial genome displays unique properties and behavior.more » This investigation has revealed at least three important properties of plant mitochondrial DNA metabolism components. (1) Many are dual targeted to mitochondrial and chloroplasts by novel mechanisms, suggesting that the mitochondria a nd chloroplast share their genome maintenance apparatus. (2)The MSH1 gene, originating as a component of mismatch repair, has evolved uniquely in plants to participate in differential replication of the mitochondrial genome. (3) This mitochondrial differential replication process, termed substoichiometric shifting and also involving a RecA-related gene, appears to represent an adaptive mechanism to expand plant reproductive capacity and is likely present throughout the plant kingdom.« less

  20. The requirement of iron transport for lymphocyte function.

    PubMed

    Lo, Bernice

    2016-01-01

    Iron is essential in multiple cellular processes and is especially critical for cellular respiration and division. A new study identified a mutation affecting the iron import receptor TfR1 as the cause of a human primary immunodeficiency, illuminating the importance of iron in immune cell function.

  1. Proteomic and cellular localisation studies suggest non-tight junction cytoplasmic and nuclear roles for occludin in astrocytes.

    PubMed

    Morgan, Sarah V; Garwood, Claire J; Jennings, Luke; Simpson, Julie E; Castelli, Lydia M; Heath, Paul R; Mihaylov, Simeon R; Vaquéz-Villaseñor, Irina; Minshull, Thomas C; Ince, Paul G; Dickman, Mark J; Hautbergue, Guillaume M; Wharton, Stephen B

    2018-05-08

    Occludin is a component of tight junctions, which are essential structural components of the blood-brain barrier. However, occludin is expressed in cells without tight junctions, implying additional functions. We determined the expression and localisation of occludin in astrocytes in cell culture and in human brain tissue, and sought novel binding partners using a proteomic approach. Expression was investigated by immunocytochemistry and immunoblotting in the 1321N1 astrocytoma cell line and ScienCell human primary astrocytes, and by immunohistochemistry in human autopsy brain tissue. Recombinant N- and C-terminal occludin was used to pull-down proteins from 1321N1 cell lysates and protein-binding partners identified by mass spectrometry analysis. Occludin was expressed in both the cytoplasm and nucleus of astrocytes in vitro and in vivo. Mass spectrometry identified binding to nuclear and cytoplasmic proteins, particularly those related to RNA metabolism and nuclear function. Occludin is expressed in several subcellular compartments of brain cell-types that do not form tight junctions and the expression patterns in cell culture reflect those in human brain tissue, indicating they are suitable model systems. Proteomic analysis suggests that occludin has novel functions in neuroepithelial cells that are unrelated to tight junction formation. Further research will establish the roles of these functions in both cellular physiology and in disease states. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  2. Viral genome methylation as an epigenetic defense against geminiviruses.

    PubMed

    Raja, Priya; Sanville, Bradley C; Buchmann, R Cody; Bisaro, David M

    2008-09-01

    Geminiviruses encapsidate single-stranded DNA genomes that replicate in plant cell nuclei through double-stranded DNA intermediates that associate with cellular histone proteins to form minichromosomes. Like most plant viruses, geminiviruses are targeted by RNA silencing and encode suppressor proteins such as AL2 and L2 to counter this defense. These related proteins can suppress silencing by multiple mechanisms, one of which involves interacting with and inhibiting adenosine kinase (ADK), a cellular enzyme associated with the methyl cycle that generates S-adenosyl-methionine, an essential methyltransferase cofactor. Thus, we hypothesized that the viral genome is targeted by small-RNA-directed methylation. Here, we show that Arabidopsis plants with mutations in genes encoding cytosine or histone H3 lysine 9 (H3K9) methyltransferases, RNA-directed methylation pathway components, or ADK are hypersensitive to geminivirus infection. We also demonstrate that viral DNA and associated histone H3 are methylated in infected plants and that cytosine methylation levels are significantly reduced in viral DNA isolated from methylation-deficient mutants. Finally, we demonstrate that Beet curly top virus L2- mutant DNA present in tissues that have recovered from infection is hypermethylated and that host recovery requires AGO4, a component of the RNA-directed methylation pathway. We propose that plants use chromatin methylation as a defense against DNA viruses, which geminiviruses counter by inhibiting global methylation. In addition, our results establish that geminiviruses can be useful models for genome methylation in plants and suggest that there are redundant pathways leading to cytosine methylation.

  3. Antimycotoxigenic characteristics of Rosmarinus officinalis and Trachyspermum copticum L. essential oils.

    PubMed

    Rasooli, Iraj; Fakoor, Mohammad Hadi; Yadegarinia, Davod; Gachkar, Latif; Allameh, Abdolamir; Rezaei, Mohammad Bagher

    2008-02-29

    Aflatoxin B1 (AFB1) is a highly toxic and carcinogenic metabolite produced by Aspergillus species on food and agricultural commodities. Natural products may regulate the cellular effects of aflatoxins and evidence suggests that aromatic organic compounds of spices can control the production of aflatoxins. With a view to controlling aflatoxin production, the essential oils from Rosmarinus officinalis and Trachyspermum copticum L. were obtained by hydrodistillation. Antifungal activities of the oils were studied with special reference to the inhibition of Aspergillus parasiticus growth and aflatoxin production. Minimal inhibitory (MIC) and minimal fungicidal (MFC) concentrations of the oils were determined. T. copticum L. oil showed a stronger inhibitory effect than R. officinalis on the growth of A. parasiticus. Aflatoxin production was inhibited at 450 ppm of both oils with that of R. officinalis being stronger inhibitor. The oils were analyzed by GC and GC/MS. The major components of R. officinalis and T. copticum L. oils were Piperitone (23.65%), alpha-pinene (14.94%), Limonene (14.89%), 1,8-Cineole (7.43%) and Thymol (37.2%), P-Cymene (32.3%), gamma-Terpinene (27.3%) respectively. It is concluded that the essential oils could be safely used as preservative materials on some kinds of foods to protect them from toxigenic fungal infections.

  4. Carotenoids, versatile components of oxygenic photosynthesis.

    PubMed

    Domonkos, Ildikó; Kis, Mihály; Gombos, Zoltán; Ughy, Bettina

    2013-10-01

    Carotenoids (CARs) are a group of pigments that perform several important physiological functions in all kingdoms of living organisms. CARs serve as protective agents, which are essential structural components of photosynthetic complexes and membranes, and they play an important role in the light harvesting mechanism of photosynthesizing plants and cyanobacteria. The protection against reactive oxygen species, realized by quenching of singlet oxygen and the excited states of photosensitizing molecules, as well as by the scavenging of free radicals, is one of the main biological functions of CARs. X-ray crystallographic localization of CARs revealed that they are present at functionally and structurally important sites of both the PSI and PSII reaction centers. Characterization of a CAR-less cyanobacterial mutant revealed that while the absence of CARs prevents the formation of PSII complexes, it does not abolish the assembly and function of PSI. CAR molecules assist in the formation of protein subunits of the photosynthetic complexes by gluing together their protein components. In addition to their aforementioned indispensable functions, CARs have a substantial role in the formation and maintenance of proper cellular architecture, and potentially also in the protection of the translational machinery under stress conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. [Study on material basis of essential oil from Yin Teng Gu Bi Kang prescription on activating blood circulation].

    PubMed

    Wang, Yuan-Qing; Yan, Jian-Ye; Gong, Li-Min; Luo, Kun; Li, Shun-Xiang; Yang, Yan-Tao; Xie, Yu

    2014-08-01

    To explore the component difference of the serum containing essential oil from Yin Teng Gu Bi Kang prescription in pathologic and physiologic rat models, and to reveal the material basis of its efficacy of activating blood circulation. The essential oils were obtained by CO2 supercritical fluid extraction and the ingredients of the essential oils in vitro and in vivo (under physiological and pathological status) were analyzed by GC-MS to compare differences of the essential oil under physiological and pathological status in rats. 32 components were identified with the main components of Z-ligustilide (39.23%) and d-limonene (21.7%) in the essential oil. In vivo analysis on the essential oil indicated that 16 components were identified, 7 existed originally in essential oil and 9 were metabolites under physiological status; while 22 components were identified, 10 existed originally in essential oil and 12 were metabolites under pathological status (acute blood stasis). There were 7 common prototypes and 8 common metabolites under different physiological status. The absorption and metabolism of essential oils were affected by blood stasis and the compounds migrating to blood may be the effective substance in activating blood circulation.

  6. Correlation of cellular factors and differential scrapie prion permissiveness in ovine microglia

    USDA-ARS?s Scientific Manuscript database

    Prion diseases are fatal neurodegenerative disorders by which the native cellular prion protein (PrP-C) is misfolded into an accumulating, disease-associated isoform (PrP-D). To improve the understanding of prion pathogenesis and develop effective treatments, it is essential to elucidate factors con...

  7. The Endoplasmic Reticulum Coat Protein II Transport Machinery Coordinates Cellular Lipid Secretion and Cholesterol Biosynthesis*

    PubMed Central

    Fryer, Lee G. D.; Jones, Bethan; Duncan, Emma J.; Hutchison, Claire E.; Ozkan, Tozen; Williams, Paul A.; Alder, Olivia; Nieuwdorp, Max; Townley, Anna K.; Mensenkamp, Arjen R.; Stephens, David J.; Dallinga-Thie, Geesje M.; Shoulders, Carol C.

    2014-01-01

    Triglycerides and cholesterol are essential for life in most organisms. Triglycerides serve as the principal energy storage depot and, where vascular systems exist, as a means of energy transport. Cholesterol is essential for the functional integrity of all cellular membrane systems. The endoplasmic reticulum is the site of secretory lipoprotein production and de novo cholesterol synthesis, yet little is known about how these activities are coordinated with each other or with the activity of the COPII machinery, which transports endoplasmic reticulum cargo to the Golgi. The Sar1B component of this machinery is mutated in chylomicron retention disorder, indicating that this Sar1 isoform secures delivery of dietary lipids into the circulation. However, it is not known why some patients with chylomicron retention disorder develop hepatic steatosis, despite impaired intestinal fat malabsorption, and why very severe hypocholesterolemia develops in this condition. Here, we show that Sar1B also promotes hepatic apolipoprotein (apo) B lipoprotein secretion and that this promoting activity is coordinated with the processes regulating apoB expression and the transfer of triglycerides/cholesterol moieties onto this large lipid transport protein. We also show that although Sar1A antagonizes the lipoprotein secretion-promoting activity of Sar1B, both isoforms modulate the expression of genes encoding cholesterol biosynthetic enzymes and the synthesis of cholesterol de novo. These results not only establish that Sar1B promotes the secretion of hepatic lipids but also adds regulation of cholesterol synthesis to Sar1B's repertoire of transport functions. PMID:24338480

  8. Selenium uptake through cystine transporter mediated by glutathione conjugation.

    PubMed

    Tobe, Takao; Ueda, Koji; Aoki, Akira; Okamoto, Yoshinori; Kojima, Nakao; Jinno, Hideto

    2017-01-01

    Selenium (Se) is an essential trace element and is regarded as a protective agent against cancer. In particular, antioxidant effects of selenoenzymes contribute to cancer prevention. Se can also produce reactive oxygen species and, thereby, exert cancer-selective cytotoxicity. Selenodiglutathione (SDG) is a primary Se metabolite conjugated to two glutathione (GSH) moieties. SDG increases intracellular Se accumulation and is more toxic than selenous acid (H 2 SeO 3 ), but the mechanisms for importing Se compounds into cells are not fully understood. Here, we propose a novel mechanism for importing Se, in the form of SDG. Cellular intake of Se compounds was assessed based on Se accumulation, as detected by ICP-MS. SDG incorporation was decreased in the presence of thiols (GSH, cysteine or their oxidized forms, GSSG and cystine), whereas H 2 SeO 3 uptake was increased by addition of GSH or cysteine. Cellular SDG uptake was decreased by pretreatment with specific inhibitors against gamma-glutamyl transpeptidase (GGT) or the cystine/glutamate antiporter (system x c - ). Furthermore, siRNA against xCT, which is the light chain component of system x c - , significantly decreased SDG incorporation. These data suggest an involvement of SDG in Se incorporation, with SDG processed at the cell surface by GGT, leading to formation of selenodicysteine which, in turn, is likely to be imported via xCT. Because GGT and xCT are highly expressed in cancer cells, these mechanisms mediated by the cystine transporter might underlie the cancer-selective toxicity of Se. In addition, the system described in our study appears to represent a physiological transport mechanism for the essential element Se.

  9. Microwave components for cellular portable radiotelephone

    NASA Astrophysics Data System (ADS)

    Muraguchi, Masahiro; Aikawa, Masayoshi

    1995-09-01

    Mobile and personal communication systems are expected to represent a huge market for microwave components in the coming years. A number of components in silicon bipolar, silicon Bi-CMOS, GaAs MESFET, HBT and HEMT are now becoming available for system application. There are tradeoffs among the competing technologies with regard to performance, cost, reliability and time-to-market. This paper describes process selection and requirements of cost and r.f. performances to microwave semiconductor components for digital cellular and cordless telephones. Furthermore, new circuit techniques which were developed by NTT are presented.

  10. Electromagnetic field generated in model of human head by simplified telephone transceiver

    NASA Astrophysics Data System (ADS)

    King, Ronold W. P.

    1995-01-01

    Possible adverse effects of electromagnetic fields on the human body and especially on the nervous system and the brain are of increasing concern, particularly with reference to cellular telephone transceivers held close to the head. An essential step in the study of this problem is the accurate determination of the complete electromagnetic field penetrating through the skull into the brain. Simple analytical formulas are derived from the theory of the horizontal electric dipole over a layered region. These give the components of the electric and magnetic fields on the air-head surface, in the skin-skull layer, and throughout the brain in terms of a planar model with the dimensions and average electrical properties of the human head. The specific absorption rate (SAR) is also determined.

  11. Targeting the Thioredoxin System for Cancer Therapy.

    PubMed

    Zhang, Junmin; Li, Xinming; Han, Xiao; Liu, Ruijuan; Fang, Jianguo

    2017-09-01

    Thioredoxin (Trx) and thioredoxin reductase (TrxR) are essential components of the Trx system which plays pivotal roles in regulating multiple cellular redox signaling pathways. In recent years TrxR/Trx have been increasingly recognized as an important modulator of tumor development, and hence targeting TrxR/Trx is a promising strategy for cancer treatment. In this review we first discuss the structural details of TrxR, the functions of the Trx system, and the rational of targeting TrxR/Trx for cancer treatment. We also highlight small-molecule TrxR/Trx inhibitors that have potential anticancer activity and review their mechanisms of action. Finally, we examine the challenges of developing TrxR/Trx inhibitors as anticancer agents and perspectives for selectively targeting TrxR/Trx. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Structural insights into a StART-like domain in Lam4 and its interaction with sterol ligands.

    PubMed

    Gatta, Alberto T; Sauerwein, Andrea C; Zhuravleva, Anastasia; Levine, Tim P; Matthews, Stephen

    2018-01-15

    Sterols are essential components of cellular membranes and shape their biophysical properties. The recently discovered family of Lipid transfer proteins Anchored at Membrane contact sites (LAMs) has been suggested to carry out intracellular sterol traffic using StART-like domains. Here, we studied the second StART-like domain of Lam4p from S. cerevisiae by NMR. We show that NMR data are consistent with the StART-like domain structure, and that several functionally important regions within the domain exhibit significant conformational dynamics. NMR titration experiments confirm sterol binding to the canonical sterol-binding site and suggest a role of membrane interactions on the thermodynamics and kinetics of sterol binding. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. How technology megatrends are shaping the future of safety, health, and environmental monitoring.

    PubMed

    Brauch, Rob

    2015-05-01

    The Safety, Health and Environmental professional will soon be able to choose from a wider number of solutions that incorporate the latest developments in electronics, cellular and wireless communication, sensors, and software, all of which are driven by and are essential components of three "megatrends"--IoT, Big Data, and Social Networking. This will fundamentally alter the way in which we go about collecting information for risk assessment, exposure assessment, and thus how we implement better and more cost-effective solutions for protecting workers' lives and well-being. The more we become aware of these trends and developments, the better we will be able to integrate them into our sampling strategies and analysis methods, which creates greater value from our daily work as safety and health professionals.

  14. Autophagy up and down by outsmarting the incredible ULK.

    PubMed

    Nazio, Francesca; Cecconi, Francesco

    2017-05-04

    Macroautophagy/autophagy initiation is finely regulated by post-translational modifications of key proteins, to comply with the fast kinetics of the cellular response to several stress stimuli. Phosphorylation and ubiquitination play a central role in controlling autophagy by influencing the activity, recruitment and turnover of autophagic components. Recently, we found that, upon autophagy progression, ULK1 kinase is specifically ubiquitinated by the E3 ligase NEDD4L and then degraded via the proteasome. However, during prolonged autophagy, while the ULK1 protein undergoes this inhibition, ULK1 mRNA is actively transcribed, translated and then inhibited again by MTOR-dependent inhibitory phosphorylation. This regulation is essential to promptly restore the ULK1 protein to its original levels to keep autophagy under a safe and physiological threshold.

  15. Metabolic cooperation between cancer and non-cancerous stromal cells is pivotal in cancer progression.

    PubMed

    Lopes-Coelho, Filipa; Gouveia-Fernandes, Sofia; Serpa, Jacinta

    2018-02-01

    The way cancer cells adapt to microenvironment is crucial for the success of carcinogenesis, and metabolic fitness is essential for a cancer cell to survive and proliferate in a certain organ/tissue. The metabolic remodeling in a tumor niche is endured not only by cancer cells but also by non-cancerous cells that share the same microenvironment. For this reason, tumor cells and stromal cells constitute a complex network of signal and organic compound transfer that supports cellular viability and proliferation. The intensive dual-address cooperation of all components of a tumor sustains disease progression and metastasis. Herein, we will detail the role of cancer-associated fibroblasts, cancer-associated adipocytes, and inflammatory cells, mainly monocytes/macrophages (tumor-associated macrophages), in the remodeling and metabolic adaptation of tumors.

  16. Rubella viruses shift cellular bioenergetics to a more oxidative and glycolytic phenotype with a strain-specific requirement for glutamine.

    PubMed

    Bilz, Nicole C; Jahn, Kristin; Lorenz, Mechthild; Lüdtke, Anja; Hübschen, Judith M; Geyer, Henriette; Mankertz, Annette; Hübner, Denise; Liebert, Uwe G; Claus, Claudia

    2018-06-27

    The flexible regulation of cellular metabolic pathways enables cellular adaptation to changes in energy demand under conditions of stress such as posed by a virus infection. To analyze such an impact on cellular metabolism, rubella virus (RV) was used in this study. RV replication under selected substrate supplementation with glucose, pyruvate, and glutamine as essential nutrients for mammalian cells revealed its requirement for glutamine. The assessment of the mitochondrial respiratory (based on oxygen consumption rate, OCR) and glycolytic (based on extracellular acidification rate, ECAR) rate and capacity by respective stress tests through Seahorse technology enabled determination of the bioenergetic phenotype of RV-infected cells. Irrespective of the cellular metabolic background, RV infection induced a shift of the bioenergetic state of epithelial (Vero and A549) and endothelial (HUVEC) cells to a higher oxidative and glycolytic level. Interestingly there was a RV strain-specific, but genotype-independent demand for glutamine to induce a significant increase in metabolic activity. While glutaminolysis appeared to be rather negligible for RV replication, glutamine could serve as donor of its amide nitrogen in biosynthesis pathways for important metabolites. This study suggests that the capacity of rubella viruses to induce metabolic alterations could evolve differently during natural infection. Thus, changes in cellular bioenergetics represent an important component of virus-host interactions and could complement our understanding of the viral preference for a distinct host cell population. Importance RV pathologies, especially during embryonal development, could be connected with its impact on mitochondrial metabolism. With bioenergetic phenotyping we pursued a rather novel approach in virology. For the first time it was shown that a virus infection could shift the bioenergetics of its infected host cell to a higher energetic state. Notably, the capacity to induce such alterations varied among different RV isolates. Thus, our data adds viral adaptation of cellular metabolic activity to its specific needs as a novel aspect to virus-host evolution. Additionally, this study emphasizes the implementation of different viral strains in the study of virus-host interactions and the use of bioenergetic phenotyping of infected cells as a biomarker for virus-induced pathological alterations. Copyright © 2018 American Society for Microbiology.

  17. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    PubMed

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  18. RTI Essential Components Integrity Rubric

    ERIC Educational Resources Information Center

    National Center on Response to Intervention, 2011

    2011-01-01

    The Response to Intervention (RTI) Essential Components Integrity Rubric is for use by individuals who are responsible for monitoring school-level fidelity of RTI implementation. The rubric is aligned with "Essential Components of RTI: A Closer Look at Response to Intervention" (National Center on Response to Intervention, 2010).…

  19. The essential iron-sulfur protein Rli1 is an important target accounting for inhibition of cell growth by reactive oxygen species.

    PubMed

    Alhebshi, Alawiah; Sideri, Theodora C; Holland, Sara L; Avery, Simon V

    2012-09-01

    Oxidative stress mediated by reactive oxygen species (ROS) is linked to degenerative conditions in humans and damage to an array of cellular components. However, it is unclear which molecular target(s) may be the primary "Achilles' heel" of organisms, accounting for the inhibitory action of ROS. Rli1p (ABCE1) is an essential and highly conserved protein of eukaryotes and archaea that requires notoriously ROS-labile cofactors (Fe-S clusters) for its functions in protein synthesis. In this study, we tested the hypothesis that ROS toxicity is caused by Rli1p dysfunction. In addition to being essential, Rli1p activity (in nuclear ribosomal-subunit export) was shown to be impaired by mild oxidative stress in yeast. Furthermore, prooxidant resistance was decreased by RLI1 repression and increased by RLI1 overexpression. This Rlip1 dependency was abolished during anaerobicity and accentuated in cells expressing a FeS cluster-defective Rli1p construct. The protein's FeS clusters appeared ROS labile during in vitro incubations, but less so in vivo. Instead, it was primarily (55)FeS-cluster supply to Rli1p that was defective in prooxidant-exposed cells. The data indicate that, owing to its essential nature but dependency on ROS-labile FeS clusters, Rli1p function is a primary target of ROS action. Such insight could help inform new approaches for combating oxidative stress-related disease.

  20. Body composition analysis: Cellular level modeling of body component ratios.

    PubMed

    Wang, Z; Heymsfield, S B; Pi-Sunyer, F X; Gallagher, D; Pierson, R N

    2008-01-01

    During the past two decades, a major outgrowth of efforts by our research group at St. Luke's-Roosevelt Hospital is the development of body composition models that include cellular level models, models based on body component ratios, total body potassium models, multi-component models, and resting energy expenditure-body composition models. This review summarizes these models with emphasis on component ratios that we believe are fundamental to understanding human body composition during growth and development and in response to disease and treatments. In-vivo measurements reveal that in healthy adults some component ratios show minimal variability and are relatively 'stable', for example total body water/fat-free mass and fat-free mass density. These ratios can be effectively applied for developing body composition methods. In contrast, other ratios, such as total body potassium/fat-free mass, are highly variable in vivo and therefore are less useful for developing body composition models. In order to understand the mechanisms governing the variability of these component ratios, we have developed eight cellular level ratio models and from them we derived simplified models that share as a major determining factor the ratio of extracellular to intracellular water ratio (E/I). The E/I value varies widely among adults. Model analysis reveals that the magnitude and variability of each body component ratio can be predicted by correlating the cellular level model with the E/I value. Our approach thus provides new insights into and improved understanding of body composition ratios in adults.

  1. Exosome platform for diagnosis and monitoring of traumatic brain injury

    PubMed Central

    Taylor, Douglas D.; Gercel-Taylor, Cicek

    2014-01-01

    We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression. PMID:25135964

  2. Immunohistochemical localization of hepatopancreatic phospholipase A2 in Hexaplex Trunculus digestive cells

    PubMed Central

    2011-01-01

    Background Mammalian sPLA2-IB localization cell are well characterized. In contrast, much less is known about aquatic primitive ones. The aquatic world contains a wide variety of living species and, hence represents a great potential for discovering new lipolytic enzymes and the mode of digestion of lipid food. Results The marine snail digestive phospholipase A2 (mSDPLA2) has been previously purified from snail hepatopancreas. The specific polyclonal antibodies were prepared and used for immunohistochimical and immunofluorescence analysis in order to determine the cellular location of mSDPLA2. Our results showed essentially that mSDPLA2 was detected inside in specific vesicles tentatively named (mSDPLA2+) granules of the digestive cells. No immunolabelling was observed in secretory zymogene-like cells. This immunocytolocalization indicates that lipid digestion in the snail might occur in specific granules inside the digestive cells. Conclusion The cellular location of mSDPLA2 suggests that intracellular phospholipids digestion, like other food components digestion of snail diet, occurs in these digestive cells. The hepatopancreas of H. trunculus has been pointed out as the main region for digestion, absorption and storage of lipids. PMID:21631952

  3. Recapitulation of developmental mechanisms to revascularize the ischemic heart

    PubMed Central

    Dubé, Karina N.; Thomas, Tonia M.; Munshaw, Sonali; Rohling, Mala; Riley, Paul R.

    2017-01-01

    Restoring blood flow after myocardial infarction (MI) is essential for survival of existing and newly regenerated tissue. Endogenous vascular repair processes are deployed following injury but are poorly understood. We sought to determine whether developmental mechanisms of coronary vessel formation are intrinsically reactivated in the adult mouse after MI. Using pulse-chase genetic lineage tracing, we establish that de novo vessel formation constitutes a substantial component of the neovascular response, with apparent cellular contributions from the endocardium and coronary sinus. The adult heart reverts to its former hypertrabeculated state and repeats the process of compaction, which may facilitate endocardium-derived neovascularization. The capacity for angiogenic sprouting of the coronary sinus vein, the adult derivative of the sinus venosus, may also reflect its embryonic origin. The quiescent epicardium is reactivated and, while direct cellular contribution to new vessels is minimal, it supports the directional expansion of the neovessel network toward the infarcted myocardium. Thymosin β4, a peptide with roles in vascular development, was required for endocardial compaction, epicardial vessel expansion, and smooth muscle cell recruitment. Insight into pathways that regulate endogenous vascular repair, drawing on comparisons with development, may reveal novel targets for therapeutically enhancing neovascularization. PMID:29202457

  4. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology.

    PubMed

    Malina, Carl; Larsson, Christer; Nielsen, Jens

    2018-08-01

    Mitochondria are dynamic organelles of endosymbiotic origin that are essential components of eukaryal cells. They contain their own genetic machinery, have multicopy genomes and like their bacterial ancestors they consist of two membranes. However, the majority of the ancestral genome has been lost or transferred to the nuclear genome of the host, preserving only a core set of genes involved in oxidative phosphorylation. Mitochondria perform numerous biological tasks ranging from bioenergetics to production of protein co-factors, including heme and iron-sulfur clusters. Due to the importance of mitochondria in many cellular processes, mitochondrial dysfunction is implicated in a wide variety of human disorders. Much of our current knowledge on mitochondrial function and dysfunction comes from studies using Saccharomyces cerevisiae. This yeast has good fermenting capacity, rendering tolerance to mutations that inactivate oxidative phosphorylation and complete loss of mitochondrial DNA. Here, we review yeast mitochondrial metabolism and function with focus on S. cerevisiae and its contribution in understanding mitochondrial biology. We further review how systems biology studies, including mathematical modeling, has allowed gaining new insight into mitochondrial function, and argue that this approach may enable us to gain a holistic view on how mitochondrial function interacts with different cellular processes.

  5. Engineering lipid structure for recognition of the liquid ordered membrane phase

    DOE PAGES

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; ...

    2016-08-26

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, wemore » found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.« less

  6. Monitoring Extracellular Vesicle Cargo Active Uptake by Imaging Flow Cytometry.

    PubMed

    Ofir-Birin, Yifat; Abou Karam, Paula; Rudik, Ariel; Giladi, Tal; Porat, Ziv; Regev-Rudzki, Neta

    2018-01-01

    Extracellular vesicles are essential for long distance cell-cell communication. They function as carriers of different compounds, including proteins, lipids and nucleic acids. Pathogens, like malaria parasites ( Plasmodium falciparum, Pf ), excel in employing vesicle release to mediate cell communication in diverse processes, particularly in manipulating the host response. Establishing research tools to study the interface between pathogen-derived vesicles and their host recipient cells will greatly benefit the scientific community. Here, we present an imaging flow cytometry (IFC) method for monitoring the uptake of malaria-derived vesicles by host immune cells. By staining different cargo components, we were able to directly track the cargo's internalization over time and measure the kinetics of its delivery. Impressively, we demonstrate that this method can be used to specifically monitor the translocation of a specific protein within the cellular milieu upon internalization of parasitic cargo; namely, we were able to visually observe how uptaken parasitic Pf -DNA cargo leads to translocation of transcription factor IRF3 from the cytosol to the nucleus within the recipient immune cell. Our findings demonstrate that our method can be used to study cellular dynamics upon vesicle uptake in different host-pathogen and pathogen-pathogen systems.

  7. Engineering Lipid Structure for Recognition of the Liquid Ordered Membrane Phase.

    PubMed

    Bordovsky, Stefan S; Wong, Christopher S; Bachand, George D; Stachowiak, Jeanne C; Sasaki, Darryl Y

    2016-11-29

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Here, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L o ) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L d ). The PEG spacer can serve as a buffer to mute headgroup-membrane interactions and thus improve L o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L o phase.

  8. Three-dimensional structures of unligated uridine phosphorylase from Yersinia pseudotuberculosis at 1.4 Å resolution and its complex with an antibacterial drug

    NASA Astrophysics Data System (ADS)

    Balaev, V. V.; Lashkov, A. A.; Gabdulkhakov, A. G.; Dontsova, M. V.; Mironov, A. S.; Betzel, C.; Mikhailov, A. M.

    2015-07-01

    Uridine phosphorylases play an essential role in the cellular metabolism of some antibacterial agents. Acute infectious diseases (bubonic plague, yersiniosis, pseudotuberculosis, etc., caused by bacteria of the genus Yersinia) are treated using both sulfanilamide medicines and antibiotics, including trimethoprim. The action of an antibiotic on a bacterial cell is determined primarily by the character of its interactions with cellular components, including those which are not targets (for example, with pyrimidine phosphorylases). This type of interaction should be taken into account in designing drugs. The three-dimensional structure of uridine phosphorylase from the bacterium Yersinia pseudotuberculosis ( YptUPh) with the free active site was determined for the first time by X-ray crystallography and refined at 1.40 Å resolution (DPI = 0.062 Å; ID PDB: 4OF4). The structure of the complex of YptUPh with the bacteriostatic drug trimethoprim was studied by molecular docking and molecular dynamics methods. The trimethoprim molecule was shown to be buffered by the enzyme YptUPh, resulting in a decrease in the efficiency of the treatment of infectious diseases caused by bacteria of the genus Yersinia with trimethoprim.

  9. In Vitro Analysis of Metabolite Transport Proteins.

    PubMed

    Roell, Marc-Sven; Kuhnert, Franziska; Zamani-Nour, Shirin; Weber, Andreas P M

    2017-01-01

    The photorespiratory cycle is distributed over four cellular compartments, the chloroplast, peroxisomes, cytoplasm, and mitochondria. Shuttling of photorespiratory intermediates between these compartments is essential to maintain the function of photorespiration. Specific transport proteins mediate the transport across biological membranes and represent important components of the cellular metabolism. Although significant progress was made in the last years on identifying and characterizing new transport proteins, the overall picture of intracellular metabolite transporters is still rather incomplete. The photorespiratory cycle requires at least 25 transmembrane transport steps; however to date only plastidic glycolate/glycerate transporter and the accessory 2-oxoglutarate/malate and glutamate/malate transporters as well as the mitochondrial transporter BOU1 have been identified. The characterization of transport proteins and defining their substrates and kinetics are still major challenges.Here we present a detailed set of protocols for the in vitro characterization of transport proteins. We provide protocols for the isolation of recombinant transport protein expressed in E. coli or Saccharomyces cerevisiae and the extraction of total leaf membrane protein for in vitro analysis of transporter proteins. Further we explain the process of reconstituting transport proteins in artificial lipid vesicles and elucidate the details of transport assays.

  10. Osmotic stress adaptation of Paracoccidioides lutzii, Pb01, monitored by proteomics.

    PubMed

    Rodrigues, Leandro Nascimento da Silva; Brito, Wesley de Almeida; Parente, Ana Flávia Alves; Weber, Simone Schneider; Bailão, Alexandre Melo; Casaletti, Luciana; Borges, Clayton Luiz; Soares, Célia Maria de Almeida

    2016-10-01

    The ability to respond to stressful conditions is essential for most living organisms. In pathogenic organisms, this response is required for effective transition from a saprophytic lifestyle to the establishment of pathogenic interactions within a susceptible host. Hyperosmotic stress has been used as a model to study signal transduction and seems to cause many cellular adaptations, including the alteration of protein expression and cellular volume as well as size regulation. In this work, we evaluated the proteomic profile of Paracoccidioides lutzii Pb01 yeast cells during osmotic stress induced by potassium chloride. We performed a high accuracy proteomic technique (NanoUPLC-MS(E)) to identify differentially expressed proteins during osmotic shock. The data describe an osmoadaptative response of this fungus when subjected to this treatment. Proteins involved in the synthesis of cell wall components were modulated, which suggested cell wall remodeling. In addition, alterations in the energy metabolism were observed. Furthermore, proteins involved in amino acid metabolism and hydrogen peroxide detoxification were modulated during osmotic stress. Our study suggests that P. lutzii Pb01. presents a vast osmoadaptative response that is composed of different proteins that act together to minimize the effects caused by osmotic stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Dynein Regulators Are Important for Ecotropic Murine Leukemia Virus Infection

    PubMed Central

    Valle-Tenney, Roger; Opazo, Tatiana; Cancino, Jorge; Goff, Stephen P.

    2016-01-01

    ABSTRACT During the early steps of infection, retroviruses must direct the movement of the viral genome into the nucleus to complete their replication cycle. This process is mediated by cellular proteins that interact first with the reverse transcription complex and later with the preintegration complex (PIC), allowing it to reach and enter the nucleus. For simple retroviruses, such as murine leukemia virus (MLV), the identities of the cellular proteins involved in trafficking of the PIC in infection are unknown. To identify cellular proteins that interact with the MLV PIC, we developed a replication-competent MLV in which the integrase protein was tagged with a FLAG epitope. Using a combination of immunoprecipitation and mass spectrometry, we established that the microtubule motor dynein regulator DCTN2/p50/dynamitin interacts with the MLV preintegration complex early in infection, suggesting a direct interaction between the incoming viral particles and the dynein complex regulators. Further experiments showed that RNA interference (RNAi)-mediated silencing of either DCTN2/p50/dynamitin or another dynein regulator, NudEL, profoundly reduced the efficiency of infection by ecotropic, but not amphotropic, MLV reporters. We propose that the cytoplasmic dynein regulators are a critical component of the host machinery needed for infection by the retroviruses entering the cell via the ecotropic envelope pathway. IMPORTANCE Retroviruses must access the chromatin of host cells to integrate the viral DNA, but before this crucial event, they must reach the nucleus. The movement through the cytoplasm—a crowded environment where diffusion is slow—is thought to utilize retrograde transport along the microtubule network by the dynein complex. Different viruses use different components of this multisubunit complex. We found that the preintegration complex of murine leukemia virus (MLV) interacts with the dynein complex and that regulators of this complex are essential for infection. Our study provides the first insight into the requirements for retrograde transport of the MLV preintegration complex. PMID:27194765

  12. Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes

    PubMed Central

    Terrados, Gloria; Finkernagel, Florian; Stielow, Bastian; Sadic, Dennis; Neubert, Juliane; Herdt, Olga; Krause, Michael; Scharfe, Maren; Jarek, Michael; Suske, Guntram

    2012-01-01

    The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes. PMID:22684502

  13. Drosophila melanogaster cellular repressor of E1A-stimulated genes is a lysosomal protein essential for fly development

    PubMed Central

    Kowalewski-Nimmerfall, Elisabeth; Schähs, Philipp; Maresch, Daniel; Rendic, Dubravko; Krämer, Helmut; Mach, Lukas

    2014-01-01

    Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be substantially reduced by RNAi-mediated silencing of cathepsin L. In contrast to mammalian cells, lysosomal delivery of dCREG does not depend on its carbohydrate moiety. Furthermore, depletion of the putative D. melanogaster lysosomal sorting receptor lysosomal enzyme receptor protein did not compromise cellular retention of dCREG. We also investigated the developmental consequences of dCREG ablation in whole D. melanogaster flies. Ubiquitous depletion of dCREG proved lethal at the late pupal stage once a knock-down efficiency of > 95% was achieved. These results demonstrate that dCREG is essential for proper completion of fly development. PMID:25173815

  14. Drosophila melanogaster cellular repressor of E1A-stimulated genes is a lysosomal protein essential for fly development.

    PubMed

    Kowalewski-Nimmerfall, Elisabeth; Schähs, Philipp; Maresch, Daniel; Rendic, Dubravko; Krämer, Helmut; Mach, Lukas

    2014-12-01

    Mammalian cellular repressor of E1A-stimulated genes is a lysosomal glycoprotein implicated in cellular growth and differentiation. The genome of the fruit fly Drosophila melanogaster encodes a putative orthologue (dCREG), suggesting evolutionarily conserved physiological functions of this protein. In D. melanogaster S2 cells, dCREG was found to localize in lysosomes. Further studies revealed that intracellular dCREG is subject of proteolytic maturation. Processing and turnover could be substantially reduced by RNAi-mediated silencing of cathepsin L. In contrast to mammalian cells, lysosomal delivery of dCREG does not depend on its carbohydrate moiety. Furthermore, depletion of the putative D. melanogaster lysosomal sorting receptor lysosomal enzyme receptor protein did not compromise cellular retention of dCREG. We also investigated the developmental consequences of dCREG ablation in whole D. melanogaster flies. Ubiquitous depletion of dCREG proved lethal at the late pupal stage once a knock-down efficiency of >95% was achieved. These results demonstrate that dCREG is essential for proper completion of fly development. Copyright © 2014. Published by Elsevier B.V.

  15. Biological effects of weightlessness and clinostatic conditions registered in cells of root meristem and cap of higher plants

    NASA Astrophysics Data System (ADS)

    Sytnik, K. M.; Kordyum, E. L.; Belyavskaya, N. A.; Nedukha, E. M.; Tarasenko, V. A.

    Research in cellular reproduction, differentiation and vital activity, i.e. processes underlying the development and functioning of organisms, plants included, is essential for solving fundamental and applied problems of space biology. Detailed anatomical analysis of roots of higher plants grown on board the Salyut 6 orbital research station show that under conditions of weightlessness for defined duration mitosis, cytokinesis and tissue differentiation in plant vegetative organs occur essentially normally. At the same time, certain rearrangements in the structural organization of cellular organelles - mainly the plastid apparatus, mitochondria, Golgi apparatus and nucleus - are established in the root meristem and cap of the experimental plants. This is evidence for considerable changes in cellular metabolism. The structural changes in the subcellular level arising under spaceflight conditions are partially absent in clinostat experiments designed to simulate weightlessness. Various clinostatic conditions have different influences on the cell structural and functional organization than does space flight. It is suggested that alterations of cellular metabolism under weightlessness and clinostatic conditions occur within existing genetic programs.

  16. Case Study: The Mystery of the Seven Deaths--A Case Study in Cellular Respiration

    ERIC Educational Resources Information Center

    Gazdik, Michaela

    2014-01-01

    Cellular respiration, the central component of cellular metabolism, can be a difficult concept for many students to fully understand. In this interrupted, problem-based case study, students explore the purpose of cellular respiration as they play the role of medical examiner, analyzing autopsy evidence to determine the mysterious cause of death…

  17. A method for reducing environmental pollution by using essential oils in rodent pest management program.

    PubMed

    Jokić, Goran; Blažić, Tanja; Đurović-Pejčev, Rada; Đorđević, Tijana; Đedović, Suzana; Vukša, Marina

    2017-08-01

    Strong-smelling plant extracts, such as essential oils, have a variety of feeding effects on mammals. Considering current concerns over long-term health issues and environmental effects of chemicals, plant-based products with repellent or antifungal activities may represent good solutions for improvement of rodent pest control programs. The present study was therefore focused on examining the effects of bergamot, lavender, and thyme essential oils as additional bait components on daily intakes of cereal-based baits by wild house mice. Lavender essential oil, containing linalool and linalyl acetate as main components, and thyme essential oil with a prevailing thymol component had no effects on house mice diet. Bergamot essential oil, whose main components were linalool, limonene, and linalyl acetate, showed a repellent effect on house mouse diet.

  18. Sensitivity of Candida albicans to essential oils: are they an alternative to antifungal agents?

    PubMed

    Bona, E; Cantamessa, S; Pavan, M; Novello, G; Massa, N; Rocchetti, A; Berta, G; Gamalero, E

    2016-12-01

    Candida albicans is an important opportunistic pathogen, responsible for the majority of yeast infections in humans. Essential oils, extracted from aromatic plants, are well-known antimicrobial agents, characterized by a broad spectrum of activities, including antifungal properties. The aim of this work was to assess the sensitivity of 30 different vaginal isolated strains of C. albicans to 12 essential oils, compared to the three main used drugs (clotrimazole, fluconazole and itraconazole). Thirty strains of C. albicans were isolated from vaginal swab on CHROMagar ™ Candida. The agar disc diffusion method was employed to determine the sensitivity to the essential oils. The antifungal activity of the essential oils and antifungal drugs (clotrimazole, itraconazole and fluconazole) were investigated using a microdilution method. Transmission and scanning electron microscopy analyses were performed to get a deep inside on cellular damages. Mint, basil, lavender, tea tree oil, winter savory and oregano essential oils inhibited both the growth and the activity of C. albicans more efficiently than clotrimazole. Damages induced by essential oils at the cellular level were stronger than those caused by clotrimazole. Candida albicans is more sensitive to different essential oils compared to the main used drugs. Moreover, the essential oil affected mainly the cell wall and the membranes of the yeast. The results of this work support the research for new alternatives or complementary therapies against vaginal candidiasis. © 2016 The Society for Applied Microbiology.

  19. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    PubMed

    Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H

    2016-09-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  20. The role of HFE genotype in macrophage phenotype.

    PubMed

    Nixon, Anne M; Neely, Elizabeth; Simpson, Ian A; Connor, James R

    2018-02-01

    Iron regulation is essential for cellular energy production. Loss of cellular iron homeostasis has critical implications for both normal function and disease progression. The H63D variant of the HFE gene is the most common gene variant in Caucasians. The resulting mutant protein alters cellular iron homeostasis and is associated with a number of neurological diseases and cancer. In the brain, microglial and infiltrating macrophages are critical to maintaining iron homeostasis and modulating inflammation associated with the pathogenic process in multiple diseases. This study addresses whether HFE genotype affects macrophage function and the implications of these findings for disease processes. Bone marrow macrophages were isolated from wildtype and H67D HFE knock-in mice. The H67D gene variant in mice is the human equivalent of the H63D variant. Upon differentiation, the macrophages were used to analyze iron regulatory proteins, cellular iron release, migration, phagocytosis, and cytokine expression. The results of this study demonstrate that the H67D HFE genotype significantly impacts a number of critical macrophage functions. Specifically, fundamental activities such as proliferation in response to iron exposure, L-ferritin expression in response to iron loading, secretion of BMP6 and cytokines, and migration and phagocytic activity were all found to be impacted by genotype. Furthermore, we demonstrated that exposure to apo-Tf (iron-poor transferrin) can increase the release of iron from macrophages. In normal conditions, 70% of circulating transferrin is unsaturated. Therefore, the ability of apo-Tf to induce iron release could be a major regulatory mechanism for iron release from macrophages. These studies demonstrate that the HFE genotype impacts fundamental components of macrophage phenotype that could alter their role in degenerative and reparative processes in neurodegenerative disorders.

  1. Cynaropicrin targets the trypanothione redox system in Trypanosoma brucei.

    PubMed

    Zimmermann, Stefanie; Oufir, Mouhssin; Leroux, Alejandro; Krauth-Siegel, R Luise; Becker, Katja; Kaiser, Marcel; Brun, Reto; Hamburger, Matthias; Adams, Michael

    2013-11-15

    In mice cynaropicrin (CYN) potently inhibits the proliferation of Trypanosoma brucei-the causative agent of Human African Trypanosomiasis-by a so far unknown mechanism. We hypothesized that CYNs α,β-unsaturated methylene moieties act as Michael acceptors for glutathione (GSH) and trypanothione (T(SH)2), the main low molecular mass thiols essential for unique redox metabolism of these parasites. The analysis of this putative mechanism and the effects of CYN on enzymes of the T(SH)2 redox metabolism including trypanothione reductase, trypanothione synthetase, glutathione-S-transferase, and ornithine decarboxylase are shown. A two step extraction protocol with subsequent UPLC-MS/MS analysis was established to quantify intra-cellular CYN, T(SH)2, GSH, as well as GS-CYN and T(S-CYN)2 adducts in intact T. b. rhodesiense cells. Within minutes of exposure to CYN, the cellular GSH and T(SH)2 pools were entirely depleted, and the parasites entered an apoptotic stage and died. CYN also showed inhibition of the ornithine decarboxylase similar to the positive control eflornithine. Significant interactions with the other enzymes involved in the T(SH)2 redox metabolism were not observed. Alongside many other biological activities sesquiterpene lactones including CYN have shown antitrypanosomal effects, which have been postulated to be linked to formation of Michael adducts with cellular nucleophiles. Here the interaction of CYN with biological thiols in a cellular system in general, and with trypanosomal T(SH)2 redox metabolism in particular, thus offering a molecular explanation for the antitrypanosomal activity is demonstrated. At the same time, the study provides a novel extraction and analysis protocol for components of the trypanosomal thiol metabolism. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    PubMed

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  3. MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development | Office of Cancer Genomics

    Cancer.gov

    Protein-protein interactions (PPIs) mediate the transmission and regulation of oncogenic signals that are essential to cellular proliferation and survival, and thus represent potential targets for anti-cancer therapeutic discovery. Despite their significance, there is no method to experimentally disrupt and interrogate the essentiality of individual endogenous PPIs. The ability to computationally predict or infer PPI essentiality would help prioritize PPIs for drug discovery and help advance understanding of cancer biology.

  4. Autophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora

    PubMed Central

    Werner, Antonia; Herzog, Britta; Frey, Stefan; Pöggeler, Stefanie

    2016-01-01

    In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL) conjugation systems are essential for the expansion of the autophagosomal membrane: the UBL protein ATG8 is conjugated to the lipid phosphatidylethanolamine and the UBL protein ATG12 is coupled to ATG5. We recently showed that in the homothallic ascomycete Sordaria macrospora autophagy-related genes encoding components of the conjugation systems are required for fruiting-body development and/or are essential for viability. In the present work, we cloned and characterized the S. macrospora (Sm)atg12 gene. Two-hybrid analysis revealed that SmATG12 can interact with SmATG7 and SmATG3. To examine its role in S. macrospora, we replaced the open reading frame of Smatg12 with a hygromycin resistance cassette and generated a homokaryotic ΔSmatg12 knockout strain, which displayed slower vegetative growth under nutrient starvation conditions and was unable to form fruiting bodies. In the hyphae of S. macrospora EGFP-labeled SmATG12 was detected in the cytoplasm and as punctate structures presumed to be phagophores or phagophore assembly sites. Delivery of EGFP-labelled SmATG8 to the vacuole was entirely dependent on SmATG12. PMID:27309377

  5. Autophagy-Associated Protein SmATG12 Is Required for Fruiting-Body Formation in the Filamentous Ascomycete Sordaria macrospora.

    PubMed

    Werner, Antonia; Herzog, Britta; Frey, Stefan; Pöggeler, Stefanie

    2016-01-01

    In filamentous fungi, autophagy functions as a catabolic mechanism to overcome starvation and to control diverse developmental processes under normal nutritional conditions. Autophagy involves the formation of double-membrane vesicles, termed autophagosomes that engulf cellular components and bring about their degradation via fusion with vacuoles. Two ubiquitin-like (UBL) conjugation systems are essential for the expansion of the autophagosomal membrane: the UBL protein ATG8 is conjugated to the lipid phosphatidylethanolamine and the UBL protein ATG12 is coupled to ATG5. We recently showed that in the homothallic ascomycete Sordaria macrospora autophagy-related genes encoding components of the conjugation systems are required for fruiting-body development and/or are essential for viability. In the present work, we cloned and characterized the S. macrospora (Sm)atg12 gene. Two-hybrid analysis revealed that SmATG12 can interact with SmATG7 and SmATG3. To examine its role in S. macrospora, we replaced the open reading frame of Smatg12 with a hygromycin resistance cassette and generated a homokaryotic ΔSmatg12 knockout strain, which displayed slower vegetative growth under nutrient starvation conditions and was unable to form fruiting bodies. In the hyphae of S. macrospora EGFP-labeled SmATG12 was detected in the cytoplasm and as punctate structures presumed to be phagophores or phagophore assembly sites. Delivery of EGFP-labelled SmATG8 to the vacuole was entirely dependent on SmATG12.

  6. The AAA+ ATPase p97, a cellular multitool

    PubMed Central

    Stach, Lasse

    2017-01-01

    The AAA+ (ATPases associated with diverse cellular activities) ATPase p97 is essential to a wide range of cellular functions, including endoplasmic reticulum-associated degradation, membrane fusion, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) activation and chromatin-associated processes, which are regulated by ubiquitination. p97 acts downstream from ubiquitin signaling events and utilizes the energy from ATP hydrolysis to extract its substrate proteins from cellular structures or multiprotein complexes. A multitude of p97 cofactors have evolved which are essential to p97 function. Ubiquitin-interacting domains and p97-binding domains combine to form bi-functional cofactors, whose complexes with p97 enable the enzyme to interact with a wide range of ubiquitinated substrates. A set of mutations in p97 have been shown to cause the multisystem proteinopathy inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia. In addition, p97 inhibition has been identified as a promising approach to provoke proteotoxic stress in tumors. In this review, we will describe the cellular processes governed by p97, how the cofactors interact with both p97 and its ubiquitinated substrates, p97 enzymology and the current status in developing p97 inhibitors for cancer therapy. PMID:28819009

  7. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae.

    PubMed

    Lucia, Alejandro; Gonzalez Audino, Paola; Seccacini, Emilia; Licastro, Susana; Zerba, Eduardo; Masuh, Hector

    2007-09-01

    In the search for new alternatives for the control of Aedes aegypti the larvicidal activity of Eucalyptus grandis essential oil and pine resin essential oil (turpentine) and their major components (alpha- and beta-pinene and 1,8-cineole) was determined. Gas chromatography-mass spectroscopy analysis of E. grandis essential oil revealed that its major components are alpha-pinene and 1,8-cineole. Similar analysis of turpentine obtained by distillation of the resin pitch of conifers showed that alpha- and beta-pinene are the only major components. Third and early 4th instars of the CIPEIN-susceptible strain of Ae. aegypti were exposed to acetonic solutions of E. grandis essential oil, turpentine, and their major components for 24 h. Turpentine, with an LC50 of 14.7 ppm, was more active than the essential oil of E. grandis (LC50: 32.4 ppm). Larvicidal activity of the essential oil components showed that alpha- and beta-pinene present low LC50 values (15.4 and 12.1 ppm, respectively), whereas pure 1,8-cineole showed an LC50 of 57.2 ppm. These results suggest that alpha-pinene in E. grandis and alpha- and beta-pinene in turpentine serve as the principal larvicidal components of both oils. Results obtained on larvicidal effects of essential oil of Eucalyptus grandis and turpentine could be considered a contribution to the search for new biodegradable larvicides of natural origin.

  8. Integration of Proteomic, Transcriptional, and Interactome Data Reveals Hidden Signaling Components

    PubMed Central

    Huang, Shao-shan Carol; Fraenkel, Ernest

    2009-01-01

    Cellular signaling and regulatory networks underlie fundamental biological processes such as growth, differentiation, and response to the environment. Although there are now various high-throughput methods for studying these processes, knowledge of them remains fragmentary. Typically, the vast majority of hits identified by transcriptional, proteomic, and genetic assays lie outside of the expected pathways. These unexpected components of the cellular response are often the most interesting, because they can provide new insights into biological processes and potentially reveal new therapeutic approaches. However, they are also the most difficult to interpret. We present a technique, based on the Steiner tree problem, that uses previously reported protein-protein and protein-DNA interactions to determine how these hits are organized into functionally coherent pathways, revealing many components of the cellular response that are not readily apparent in the original data. Applied simultaneously to phosphoproteomic and transcriptional data for the yeast pheromone response, it identifies changes in diverse cellular processes that extend far beyond the expected pathways. PMID:19638617

  9. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis

    PubMed Central

    Kehr, Sebastian; Malinouski, Mikalai; Finney, Lydia; Vogt, Stefan; Labunskyy, Vyacheslav M.; Kasaikina, Marina V.; Carlson, Bradley A.; Zhou, You; Hatfield, Dolph L.; Gladyshev, Vadim N.

    2009-01-01

    Selenium (Se) is a trace element with important roles in human health. Several selenoproteins have essential functions in development. However, the cellular and tissue distribution of Se remains largely unknown because of the lack of analytical techniques that image this element with sufficient sensitivity and resolution. Herein, we report that X-ray fluorescence microscopy (XFM) can be used to visualize and quantify the tissue, cellular and subcellular topography of Se. We applied this technique to characterize the role of Se in spermatogenesis and identified a dramatic Se enrichment specifically in late spermatids, a pattern that was not seen in any other elemental maps. This enrichment was due to elevated levels of the mitochondrial form of glutathione peroxidase 4 and was fully dependent on the supplies of Se by Selenoprotein P. High-resolution scans revealed that Se concentrated near the lumen side of elongating spermatids, where structural components of sperm are formed. During spermatogenesis, maximal Se associated with decreased phosphorus, whereas Zn did not change. In sperm, Se was primarily in the midpiece and co-localized with Cu and Fe. XFM allowed quantification of Se in the midpiece (0.8 fg) and head (0.14 fg) of individual sperm cells, revealing the ability of sperm cells to handle the amounts of this element well above its toxic levels. Overall, the use of XFM allowed visualization of tissue and cellular Se and provided important insights in the role of this and other trace elements in spermatogenesis. PMID:19379757

  10. Regulation of RNA polymerase III transcription during transformation of human IMR90 fibroblasts with defined genetic elements.

    PubMed

    Durrieu-Gaillard, Stéphanie; Dumay-Odelot, Hélène; Boldina, Galina; Tourasse, Nicolas J; Allard, Delphine; André, Fabrice; Macari, Françoise; Choquet, Armelle; Lagarde, Pauline; Drutel, Guillaume; Leste-Lasserre, Thierry; Petitet, Marion; Lesluyes, Tom; Lartigue-Faustin, Lydia; Dupuy, Jean-William; Chibon, Frédéric; Roeder, Robert G; Joubert, Dominique; Vagner, Stéphan; Teichmann, Martin

    2018-01-01

    RNA polymerase (Pol) III transcribes small untranslated RNAs that are essential for cellular homeostasis and growth. Its activity is regulated by inactivation of tumor suppressor proteins and overexpression of the oncogene c-MYC, but the concerted action of these tumor-promoting factors on Pol III transcription has not yet been assessed. In order to comprehensively analyse the regulation of Pol III transcription during tumorigenesis we employ a model system that relies on the expression of five genetic elements to achieve cellular transformation. Expression of these elements in six distinct transformation intermediate cell lines leads to the inactivation of TP53, RB1, and protein phosphatase 2A, as well as the activation of RAS and the protection of telomeres by TERT, thereby conducting to full tumoral transformation of IMR90 fibroblasts. Transformation is accompanied by moderately enhanced levels of a subset of Pol III-transcribed RNAs (7SK; MRP; H1). In addition, mRNA and/or protein levels of several Pol III subunits and transcription factors are upregulated, including increased protein levels of TFIIIB and TFIIIC subunits, of SNAPC1 and of Pol III subunits. Strikingly, the expression of POLR3G and of SNAPC1 is strongly enhanced during transformation in this cellular transformation model. Collectively, our data indicate that increased expression of several components of the Pol III transcription system accompanied by a 2-fold increase in steady state levels of a subset of Pol III RNAs is sufficient for sustaining tumor formation.

  11. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin

    DOE PAGES

    Liu, Yao; Zhu, Wenhan; Tan, Yunhao; ...

    2017-01-27

    Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H 95E XXH 99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cellmore » rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Furthermore, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.« less

  12. SEURAT-1 liver gold reference compounds: a mechanism-based review.

    PubMed

    Jennings, Paul; Schwarz, Michael; Landesmann, Brigitte; Maggioni, Silvia; Goumenou, Marina; Bower, David; Leonard, Martin O; Wiseman, Jeffrey S

    2014-12-01

    There is an urgent need for the development of alternative methods to replace animal testing for the prediction of repeat dose chemical toxicity. To address this need, the European Commission and Cosmetics Europe have jointly funded a research program for 'Safety Evaluation Ultimately Replacing Animal Testing.' The goal of this program was the development of in vitro cellular systems and associated computational capabilities for the prediction of hepatic, cardiac, renal, neuronal, muscle, and skin toxicities. An essential component of this effort is the choice of appropriate reference compounds that can be used in the development and validation of assays. In this review, we focus on the selection of reference compounds for liver pathologies in the broad categories of cytotoxicity and lipid disorders. Mitochondrial impairment, oxidative stress, and apoptosis are considered under the category of cytotoxicity, while steatosis, cholestasis, and phospholipidosis are considered under the category of lipid dysregulation. We focused on four compound classes capable of initiating such events, i.e., chemically reactive compounds, compounds with specific cellular targets, compounds that modulate lipid regulatory networks, and compounds that disrupt the plasma membrane. We describe the molecular mechanisms of these compounds and the cellular response networks which they elicit. This information will be helpful to both improve our understanding of mode of action and help in the selection of appropriate mechanistic biomarkers, allowing us to progress the development of animal-free models with improved predictivity to the human situation.

  13. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children

    PubMed Central

    2014-01-01

    Intercellular interactions are essential for basic cellular activities and errors in either receiving or transferring these signals have shown to cause pathological conditions. These signals are not only regulated by membrane surface molecules but also by soluble secreted proteins, thereby allowing for an exquisite coordination of cell functions. Exosomes are released by cells upon fusion of multivesicular bodies (MVB) with the plasma membrane. Their envelope reflects their cellular origin and their surface and internal contents include important signaling components. Exosomes contain a wide variety of proteins, lipids, RNAs, non-transcribed RNAs, miRNAs and small RNAs that are representative to their cellular origin and shuttle from donor cells to recipient cells. The exosome formation cargo content and delivery is of immense biological interest because exosomes are believed to play major roles in various pathological conditions, and therefore provide unique opportunities for biomarker discovery and development of non-invasive diagnostics when examined in biological fluids such as urine and blood plasma. For example, circulating miRNAs in exosomes have been applied as functional biomarkers for diagnosis and outcomes prediction, while synthetic miRNAs in polymer-based nanoparticles are applicable for therapeutics. This review provides insights into the composition and functional properties of exosomes, and focuses on their potential value as diagnostic markers in the context of cardiovascular disease risk estimates in children who suffer from conditions associated with heightened prevalence of adverse cardiovascular disease, namely obesity and sleep-disordered-breathing. PMID:24912806

  14. Rad51 Interacts with Non-structural 3 Protein of Hepatitis C Virus and Regulates Viral Production

    PubMed Central

    Son, Kidong; Nguyen, Tram T. T.; Choi, Jae-Woong; Pham, Long V.; Luong, Trang T. D.; Lim, Yun-Sook; Hwang, Soon B.

    2017-01-01

    Hepatitis C virus (HCV) is a leading cause of chronic liver disease affecting over 170 million people worldwide. Chronic infection with HCV progresses to liver fibrosis, cirrhosis, and hepatocellular carcinoma. HCV exploits host cellular factors for viral propagation. To investigate the cellular factors required for HCV propagation, we screened a siRNA library targeting human cell cycle genes using cell culture grown HCV-infected cells. In the present study, we selected and characterized a gene encoding Rad51. Rad51, a member of a conserved recombinase family, is an essential factor for homologous recombination and repair of double-strand DNA breaks. We demonstrated that siRNA-mediated knockdown of Rad51 significantly inhibited HCV propagation without affecting HCV RNA replication. Silencing of Rad51 impaired secretion of infectious HCV particles and thus intracellular viruses were accumulated. We showed that HCV NS3 specifically interacted with Rad51 and accumulated Rad51 in the cytosol. Furthermore, Rad51 was coprecipitated with NS3 and HCV RNA. By employing membrane flotation and protease protection assays, we also demonstrated that Rad51 was co-fractionated with HCV NS3 on the lipid raft. These data indicate that Rad51 may be a component of the HCV RNA replication complex. Collectively, these data suggest that HCV may exploit cellular Rad51 to promote viral propagation and thus Rad51 may be a potential therapeutic target for HCV. PMID:28729862

  15. Analysis of Students' Aptitude to Provide Meaning to Images that Represent Cellular Components at the Molecular Level

    PubMed Central

    Dahmani, Hassen-Reda; Schneeberger, Patricia

    2009-01-01

    The number of experimentally derived structures of cellular components is rapidly expanding, and this phenomenon is accompanied by the development of a new semiotic system for teaching. The infographic approach is shifting from a schematic toward a more realistic representation of cellular components. By realistic we mean artist-prepared or computer graphic images that closely resemble experimentally derived structures and are characterized by a low level of styling and simplification. This change brings about a new challenge for teachers: designing course instructions that allow students to interpret these images in a meaningful way. To determine how students deal with this change, we designed several image-based, in-course assessments. The images were highly relevant for the cell biology course but did not resemble any of the images in the teaching documents. We asked students to label the cellular components, describe their function, or both. What we learned from these tests is that realistic images, with a higher apparent level of complexity, do not deter students from investigating their meaning. When given a choice, the students do not necessarily choose the most simplified representation, and they were sensitive to functional indications embedded in realistic images. PMID:19723817

  16. Polycaprolactone nanowire surfaces as interfaces for cardiovascular applications

    NASA Astrophysics Data System (ADS)

    Leszczak, Victoria

    Cardiovascular disease is the leading killer of people worldwide. Current treatments include organ transplants, surgery, metabolic products and mechanical/synthetic implants. Of these, mechanical and synthetic implants are the most promising. However, rejection of cardiovascular implants continues to be a problem, eliciting a need for understanding the mechanisms behind tissue-material interaction. Recently, bioartificial implants, consisting of synthetic tissue engineering scaffolds and cells, have shown great promise for cardiovascular repair. An ideal cardiovascular implant surface must be capable of adhering cells and providing appropriate physiological responses while the native tissue integrates with the scaffold. However, the success of these implants is not only dependent on tissue integration but also hemocompatibility (interaction of material with blood components), a property that depends on the surface of the material. A thorough understanding of the interaction of cardiovascular cells and whole blood and its components with the material surface is essential in order to have a successful application which promotes healing as well as native tissue integration and regeneration. The purpose of this research is to study polymeric nanowire surfaces as potential interfaces for cardiovascular applications by investigating cellular response as well as hemocompatibility.

  17. Single-Molecule Real-Time 3D Imaging of the Transcription Cycle by Modulation Interferometry.

    PubMed

    Wang, Guanshi; Hauver, Jesse; Thomas, Zachary; Darst, Seth A; Pertsinidis, Alexandros

    2016-12-15

    Many essential cellular processes, such as gene control, employ elaborate mechanisms involving the coordination of large, multi-component molecular assemblies. Few structural biology tools presently have the combined spatial-temporal resolution and molecular specificity required to capture the movement, conformational changes, and subunit association-dissociation kinetics, three fundamental elements of how such intricate molecular machines work. Here, we report a 3D single-molecule super-resolution imaging study using modulation interferometry and phase-sensitive detection that achieves <2 nm axial localization precision, well below the few-nanometer-sized individual protein components. To illustrate the capability of this technique in probing the dynamics of complex macromolecular machines, we visualize the movement of individual multi-subunit E. coli RNA polymerases through the complete transcription cycle, dissect the kinetics of the initiation-elongation transition, and determine the fate of σ 70 initiation factors during promoter escape. Modulation interferometry sets the stage for single-molecule studies of several hitherto difficult-to-investigate multi-molecular transactions that underlie genome regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase

    PubMed Central

    Fukuoh, Atsushi; Cannino, Giuseppe; Gerards, Mike; Buckley, Suzanne; Kazancioglu, Selena; Scialo, Filippo; Lihavainen, Eero; Ribeiro, Andre; Dufour, Eric; Jacobs, Howard T

    2014-01-01

    The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number. PMID:24952591

  19. Boswellia sacra essential oil induces tumor cell-specific apoptosis and suppresses tumor aggressiveness in cultured human breast cancer cells

    PubMed Central

    2011-01-01

    Background Gum resins obtained from trees of the Burseraceae family (Boswellia sp.) are important ingredients in incense and perfumes. Extracts prepared from Boswellia sp. gum resins have been shown to possess anti-inflammatory and anti-neoplastic effects. Essential oil prepared by distillation of the gum resin traditionally used for aromatic therapy has also been shown to have tumor cell-specific anti-proliferative and pro-apoptotic activities. The objective of this study was to optimize conditions for preparing Boswellea sacra essential oil with the highest biological activity in inducing tumor cell-specific cytotoxicity and suppressing aggressive tumor phenotypes in human breast cancer cells. Methods Boswellia sacra essential oil was prepared from Omani Hougari grade resins through hydrodistillation at 78 or 100 oC for 12 hours. Chemical compositions were identified by gas chromatography-mass spectrometry; and total boswellic acids contents were quantified by high-performance liquid chromatography. Boswellia sacra essential oil-mediated cell viability and death were studied in established human breast cancer cell lines (T47D, MCF7, MDA-MB-231) and an immortalized normal human breast cell line (MCF10-2A). Apoptosis was assayed by genomic DNA fragmentation. Anti-invasive and anti-multicellular tumor properties were evaluated by cellular network and spheroid formation models, respectively. Western blot analysis was performed to study Boswellia sacra essential oil-regulated proteins involved in apoptosis, signaling pathways, and cell cycle regulation. Results More abundant high molecular weight compounds, including boswellic acids, were present in Boswellia sacra essential oil prepared at 100 oC hydrodistillation. All three human breast cancer cell lines were sensitive to essential oil treatment with reduced cell viability and elevated cell death, whereas the immortalized normal human breast cell line was more resistant to essential oil treatment. Boswellia sacra essential oil hydrodistilled at 100 oC was more potent than the essential oil prepared at 78 oC in inducing cancer cell death, preventing the cellular network formation (MDA-MB-231) cells on Matrigel, causing the breakdown of multicellular tumor spheroids (T47D cells), and regulating molecules involved in apoptosis, signal transduction, and cell cycle progression. Conclusions Similar to our previous observations in human bladder cancer cells, Boswellia sacra essential oil induces breast cancer cell-specific cytotoxicity. Suppression of cellular network formation and disruption of spheroid development of breast cancer cells by Boswellia sacra essential oil suggest that the essential oil may be effective for advanced breast cancer. Consistently, the essential oil represses signaling pathways and cell cycle regulators that have been proposed as therapeutic targets for breast cancer. Future pre-clinical and clinical studies are urgently needed to evaluate the safety and efficacy of Boswellia sacra essential oil as a therapeutic agent for treating breast cancer. PMID:22171782

  20. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy.

    PubMed

    Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun

    2015-06-02

    Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.

  1. Interaction between core protein of classical swine fever virus with cellular IQGAP1 proetin appears essential for virulence in swine

    USDA-ARS?s Scientific Manuscript database

    Here we show that IQGAP1, a cellular protein that plays a pivotal role as a regulator of the cytoskeleton affecting cell adhesion, polarization and migration, interacts with Classical Swine Fever Virus (CSFV) Core protein. Sequence analyses identified a defined set of residues within CSFV Core prote...

  2. Using Primary Literature in an Undergraduate Assignment: Demonstrating Connections among Cellular Processes

    ERIC Educational Resources Information Center

    Yeong, Foong May

    2015-01-01

    Learning basic cell biology in an essential module can be daunting to second-year undergraduates, given the depth of information that is provided in major molecular and cell biology textbooks. Moreover, lectures on cellular pathways are organised into sections, such that at the end of lectures, students might not see how various processes are…

  3. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms.

    PubMed

    García-García, Jorge D; Sánchez-Thomas, Rosina; Moreno-Sánchez, Rafael

    2016-01-01

    Free-living microorganisms may become suitable models for recovery of non-essential and essential heavy metals from wastewater bodies and soils by using and enhancing their accumulating and/or leaching abilities. This review analyzes the variety of different mechanisms developed mainly in bacteria, protists and microalgae to accumulate heavy metals, being the most relevant those involving phytochelatin and metallothionein biosyntheses; phosphate/polyphosphate metabolism; compartmentalization of heavy metal-complexes into vacuoles, chloroplasts and mitochondria; and secretion of malate and other organic acids. Cyanide biosynthesis for extra-cellular heavy metal bioleaching is also examined. These metabolic/cellular processes are herein analyzed at the transcriptional, kinetic and metabolic levels to provide mechanistic basis for developing genetically engineered microorganisms with greater capacities and efficiencies for heavy metal recovery, recycling of heavy metals, biosensing of metal ions, and engineering of metalloenzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mapping of Chikungunya Virus Interactions with Host Proteins Identified nsP2 as a Highly Connected Viral Component

    PubMed Central

    Bouraï, Mehdi; Lucas-Hourani, Marianne; Gad, Hans Henrik; Drosten, Christian; Jacob, Yves; Tafforeau, Lionel; Cassonnet, Patricia; Jones, Louis M.; Judith, Delphine; Couderc, Thérèse; Lecuit, Marc; André, Patrice; Kümmerer, Beate Mareike; Lotteau, Vincent; Desprès, Philippe; Vidalain, Pierre-Olivier

    2012-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that has been responsible for an epidemic outbreak of unprecedented magnitude in recent years. Since then, significant efforts have been made to better understand the biology of this virus, but we still have poor knowledge of CHIKV interactions with host cell components at the molecular level. Here we describe the extensive use of high-throughput yeast two-hybrid (HT-Y2H) assays to characterize interactions between CHIKV and human proteins. A total of 22 high-confidence interactions, which essentially involved the viral nonstructural protein nsP2, were identified and further validated in protein complementation assay (PCA). These results were integrated to a larger network obtained by extensive mining of the literature for reports on alphavirus-host interactions. To investigate the role of cellular proteins interacting with nsP2, gene silencing experiments were performed in cells infected by a recombinant CHIKV expressing Renilla luciferase as a reporter. Collected data showed that heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and ubiquilin 4 (UBQLN4) participate in CHIKV replication in vitro. In addition, we showed that CHIKV nsP2 induces a cellular shutoff, as previously reported for other Old World alphaviruses, and determined that among binding partners identified by yeast two-hybrid methods, the tetratricopeptide repeat protein 7B (TTC7B) plays a significant role in this activity. Altogether, this report provides the first interaction map between CHIKV and human proteins and describes new host cell proteins involved in the replication cycle of this virus. PMID:22258240

  5. Neural and behavioral mechanisms of proactive and reactive inhibition

    PubMed Central

    Meyer, Heidi C.

    2016-01-01

    Response inhibition is an important component of adaptive behavior. Substantial prior research has focused on reactive inhibition, which refers to the cessation of a motor response that is already in progress. More recently, a growing number of studies have begun to examine mechanisms underlying proactive inhibition, whereby preparatory processes result in a response being withheld before it is initiated. It has become apparent that proactive inhibition is an essential component of the overall ability to regulate behavior and has implications for the success of reactive inhibition. Moreover, successful inhibition relies on learning the meaning of specific environmental cues that signal when a behavioral response should be withheld. Proactive inhibitory control is mediated by stopping goals, which reflect the desired outcome of inhibition and include information about how and when inhibition should be implemented. However, little is known about the circuits and cellular processes that encode and represent features in the environment that indicate the necessity for proactive inhibition or how these representations are implemented in response inhibition. In this article, we will review the brain circuits and systems involved in implementing inhibitory control through both reactive and proactive mechanisms. We also comment on possible cellular mechanisms that may contribute to inhibitory control processes, noting that substantial further research is necessary in this regard. Furthermore, we will outline a number of ways in which the temporal dynamics underlying the generation of the proactive inhibitory signal may be particularly important for parsing out the neurobiological correlates that contribute to the learning processes underlying various aspects of inhibitory control. PMID:27634142

  6. Circadian Rhythm Connections to Oxidative Stress: Implications for Human Health

    PubMed Central

    Wilking, Melissa; Ndiaye, Mary; Mukhtar, Hasan

    2013-01-01

    Abstract Significance: Oxygen and circadian rhythmicity are essential in a myriad of physiological processes to maintain homeostasis, from blood pressure and sleep/wake cycles, down to cellular signaling pathways that play critical roles in health and disease. If the human body or cells experience significant stress, their ability to regulate internal systems, including redox levels and circadian rhythms, may become impaired. At cellular as well as organismal levels, impairment in redox regulation and circadian rhythms may lead to a number of adverse effects, including the manifestation of a variety of diseases such as heart diseases, neurodegenerative conditions, and cancer. Recent Advances: Researchers have come to an understanding as to the basics of the circadian rhythm mechanism, as well as the importance of the numerous species of oxidative stress components. The effects of oxidative stress and dysregulated circadian rhythms have been a subject of intense investigations since they were first discovered, and recent investigations into the molecular mechanisms linking the two have started to elucidate the bases of their connection. Critical Issues: While much is known about the mechanics and importance of oxidative stress systems and circadian rhythms, the front where they interact has had very little research focused on it. This review discusses the idea that these two systems are together intricately involved in the healthy body, as well as in disease. Future Directions: We believe that for a more efficacious management of diseases that have both circadian rhythm and oxidative stress components in their pathogenesis, targeting both systems in tandem would be far more successful. Antioxid. Redox Signal. 19, 192–208 PMID:23198849

  7. Spreading the news: subcellular and organellar reactive oxygen species production and signalling.

    PubMed

    Mignolet-Spruyt, Lorin; Xu, Enjun; Idänheimo, Niina; Hoeberichts, Frank A; Mühlenbock, Per; Brosché, Mikael; Van Breusegem, Frank; Kangasjärvi, Jaakko

    2016-06-01

    As plants are sessile organisms that have to attune their physiology and morphology continuously to varying environmental challenges in order to survive and reproduce, they have evolved complex and integrated environment-cell, cell-cell, and cell-organelle signalling circuits that regulate and trigger the required adjustments (such as alteration of gene expression). Although reactive oxygen species (ROS) are essential components of this network, their pathways are not yet completely unravelled. In addition to the intrinsic chemical properties that define the array of interaction partners, mobility, and stability, ROS signalling specificity is obtained via the spatiotemporal control of production and scavenging at different organellar and subcellular locations (e.g. chloroplasts, mitochondria, peroxisomes, and apoplast). Furthermore, these cellular compartments may crosstalk to relay and further fine-tune the ROS message. Hence, plant cells might locally and systemically react upon environmental or developmental challenges by generating spatiotemporally controlled dosages of certain ROS types, each with specific chemical properties and interaction targets, that are influenced by interorganellar communication and by the subcellular location and distribution of the involved organelles, to trigger the suitable acclimation responses in association with other well-established cellular signalling components (e.g. reactive nitrogen species, phytohormones, and calcium ions). Further characterization of this comprehensive ROS signalling matrix may result in the identification of new targets and key regulators of ROS signalling, which might be excellent candidates for engineering or breeding stress-tolerant plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Changes in the topography of cellular components in pea root statocytes exposed to high gradient magnetic fields

    NASA Astrophysics Data System (ADS)

    Belyavskaya, Ninel A.; Polishchuk, Olexandr V.; Kondrachuk, Alexander V.

    2005-08-01

    High-gradient magnetic field (HGMF) is one of methods, by which gravitropism in plants is studied. The aim of our study was elucidation of HGMF effects on topography of cellular components in root statocytes of 4- day Pisum sativum L. seedlings in comparison to gravistimulation. Under gravistimulation during 5, 30 and 60 min seedlings were rotated 45o; magnetostimulation was carried out along gap between two NdFeB magnets (0.7 T). Morphometric measurements were made from images of whole statocytes, for upper, middle and lower thirds of cells, and proximal and distal halves of cells. Morphometric analysis revealed that HGMF resulted in the redistribution of all cellular components in statocytes. The correlation in the amyloplast distribution between gravistimulation and magnetostimulation was established.

  9. A Novel Hybrid Yeast-Human Network Analysis Reveals an Essential Role for FNBP1L in Antibacterial Autophagy1

    PubMed Central

    Huett, Alan; Ng, Aylwin; Cao, Zhifang; Kuballa, Petric; Komatsu, Masaaki; Daly, Mark J.; Podolsky, Daniel K.; Xavier, Ramnik J.

    2009-01-01

    Autophagy is a conserved cellular process required for the removal of defective organelles, protein aggregates, and intracellular pathogens. We used a network analysis strategy to identify novel human autophagy components based upon the yeast interactome centered on the core yeast autophagy proteins. This revealed the potential involvement of 14 novel mammalian genes in autophagy, several of which have known or predicted roles in membrane organization or dynamics. We selected one of these membrane interactors, FNBP1L (formin binding protein 1-like), an F-BAR-containing protein (also termed Toca-1), for further study based upon a predicted interaction with ATG3. We confirmed the FNBP1L/ATG3 interaction biochemically and mapped the FNBP1L domains responsible. Using a functional RNA interference approach, we determined that FNBP1L is essential for autophagy of the intracellular pathogen Salmonella enterica serovar Typhimurium and show that the autophagy process serves to restrict the growth of intracellular bacteria. However, FNBP1L appears dispensable for other forms of autophagy induced by serum starvation or rapamycin. We present a model where FNBP1L is essential for autophagy of intracellular pathogens and identify FNBP1L as a differentially used molecule in specific autophagic contexts. By using network biology to derive functional biological information, we demonstrate the utility of integrated genomics to novel molecule discovery in autophagy. PMID:19342671

  10. The response regulator Npun_F1278 is essential for scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme ATCC 29133.

    PubMed

    Naurin, Sejuti; Bennett, Janine; Videau, Patrick; Philmus, Benjamin; Soule, Tanya

    2016-08-01

    Following exposure to long-wavelength ultraviolet radiation (UVA), some cyanobacteria produce the indole-alkaloid sunscreen scytonemin. The genomic region associated with scytonemin biosynthesis in the cyanobacterium Nostoc punctiforme includes 18 cotranscribed genes. A two-component regulatory system (Npun_F1277/Npun_F1278) directly upstream from the biosynthetic genes was identified through comparative genomics and is likely involved in scytonemin regulation. In this study, the response regulator (RR), Npun_F1278, was evaluated for its ability to regulate scytonemin biosynthesis using a mutant strain of N. punctiforme deficient in this gene, hereafter strain Δ1278. Following UVA radiation, the typical stimulus to initiate scytonemin biosynthesis, Δ1278 was incapable of producing scytonemin. A phenotypic characterization of Δ1278 suggests that aside from the ability to produce scytonemin, the deletion of the Npun_F1278 gene does not affect the cellular morphology, cellular differentiation capability, or lipid-soluble pigment complement of Δ1278 compared to the wildtype. The mutant, however, had a slower specific growth rate under white light and produced ~2.5-fold more phycocyanin per cell under UVA than the wildtype. Since Δ1278 does not produce scytonemin, this study demonstrates that the RR gene, Npun_F1278, is essential for scytonemin biosynthesis in N. punctiforme. While most of the evaluated effects of this gene appear to be specific for scytonemin, this regulator may also influence the overall health of the cell and phycobiliprotein synthesis, directly or indirectly. This is the first study to identify a regulatory gene involved in the biosynthesis of the sunscreen scytonemin and posits a link between cell growth, pigment synthesis, and sunscreen production. © 2016 Phycological Society of America.

  11. Biallelic UFM1 and UFC1 mutations expand the essential role of ufmylation in brain development.

    PubMed

    Nahorski, Michael S; Maddirevula, Sateesh; Ishimura, Ryosuke; Alsahli, Saud; Brady, Angela F; Begemann, Anaïs; Mizushima, Tsunehiro; Guzmán-Vega, Francisco J; Obata, Miki; Ichimura, Yoshinobu; Alsaif, Hessa S; Anazi, Shams; Ibrahim, Niema; Abdulwahab, Firdous; Hashem, Mais; Monies, Dorota; Abouelhoda, Mohamed; Meyer, Brian F; Alfadhel, Majid; Eyaid, Wafa; Zweier, Markus; Steindl, Katharina; Rauch, Anita; Arold, Stefan T; Woods, C Geoffrey; Komatsu, Masaaki; Alkuraya, Fowzan S

    2018-06-02

    The post-translational modification of proteins through the addition of UFM1, also known as ufmylation, plays a critical developmental role as revealed by studies in animal models. The recent finding that biallelic mutations in UBA5 (the E1-like enzyme for ufmylation) cause severe early-onset encephalopathy with progressive microcephaly implicates ufmylation in human brain development. More recently, a homozygous UFM1 variant was proposed as a candidate aetiology of severe early-onset encephalopathy with progressive microcephaly. Here, we establish a locus for severe early-onset encephalopathy with progressive microcephaly based on two families, and map the phenotype to a novel homozygous UFM1 mutation. This mutation has a significantly diminished capacity to form thioester intermediates with UBA5 and with UFC1 (the E2-like enzyme for ufmylation), with resulting impaired ufmylation of cellular proteins. Remarkably, in four additional families where eight children have severe early-onset encephalopathy with progressive microcephaly, we identified two biallelic UFC1 mutations, which impair UFM1-UFC1 intermediate formation with resulting widespread reduction of cellular ufmylation, a pattern similar to that observed with UFM1 mutation. The striking resemblance between UFM1- and UFC1-related clinical phenotype and biochemical derangements strongly argues for an essential role for ufmylation in human brain development. The hypomorphic nature of UFM1 and UFC1 mutations and the conspicuous depletion of biallelic null mutations in the components of this pathway in human genome databases suggest that it is necessary for embryonic survival, which is consistent with the embryonic lethal nature of knockout models for the orthologous genes.

  12. NPC1L1 and Cholesterol Transport

    PubMed Central

    Betters, Jenna L.; Yu, Liqing

    2010-01-01

    The polytopic transmembrane protein, Niemann-Pick C1-Like 1 (NPC1L1), is enriched in the apical membrane of small intestine absorptive enterocytes where it mediates extracellular sterol transport across the brush border membrane. It is essential for intestinal sterol absorption and is the molecular target of ezetimibe, a potent cholesterol absorption inhibitor that lowers blood cholesterol in humans. NPC1L1 is also highly expressed in human liver. The hepatic function of NPC1L1 may be to limit excessive biliary cholesterol loss. NPC1L1-dependent sterol uptake seems to be a clathrin-mediated endocytic process and is regulated by cellular cholesterol content. Recently, NPC1L1 inhibition has been shown to have beneficial effects on components of the metabolic syndrome, such as obesity, insulin resistance, fatty liver, in addition to atherosclerosis. PMID:20307540

  13. There Is No Simple Model of the Plasma Membrane Organization

    PubMed Central

    Bernardino de la Serna, Jorge; Schütz, Gerhard J.; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure. PMID:27747212

  14. Bartonella and Brucella—Weapons and Strategies for Stealth Attack

    PubMed Central

    Ben-Tekaya, Houchaima; Gorvel, Jean-Pierre; Dehio, Christoph

    2013-01-01

    Bartonella spp. and Brucella spp. are closely related α-proteobacterial pathogens that by distinct stealth-attack strategies cause chronic infections in mammals including humans. Human infections manifest by a broad spectrum of clinical symptoms, ranging from mild to fatal disease. Both pathogens establish intracellular replication niches and subvert diverse pathways of the host’s immune system. Several virulence factors allow them to adhere to, invade, proliferate, and persist within various host-cell types. In particular, type IV secretion systems (T4SS) represent essential virulence factors that transfer effector proteins tailored to recruit host components and modulate cellular processes to the benefit of the bacterial intruders. This article puts the remarkable features of these two pathogens into perspective, highlighting the mechanisms they use to hijack signaling and trafficking pathways of the host as the basis for their stealthy infection strategies. PMID:23906880

  15. Autophagic Regulation of Lipid Homeostasis in Cardiometabolic Syndrome.

    PubMed

    Yang, Mingjie; Zhang, Yingmei; Ren, Jun

    2018-01-01

    As an important protein quality control process, autophagy is essential for the degradation and removal of long-lived or injured cellular components and organelles. Autophagy is known to participate in a number of pathophysiological processes including cardiometabolic syndrome. Recent findings have shown compelling evidence for the intricate interplay between autophagy and lipid metabolism. Autophagy serves as a major regulator of lipid homeostasis while lipid can also influence autophagosome formation and autophagic signaling. Lipophagy is a unique form of selective autophagy and functions as a fundamental mechanism for clearance of lipid excess in atherosclerotic plaques. Ample of evidence has denoted a novel therapeutic potential for autophagy in deranged lipid metabolism and management of cardiometabolic diseases such as atherosclerosis and diabetic cardiomyopathy. Here we will review the interplays between cardiac autophagy and lipid metabolism in an effort to seek new therapeutic options for cardiometabolic diseases.

  16. Molecular Basis for Group B β -hemolytic Streptococcal Disease

    NASA Astrophysics Data System (ADS)

    Hellerqvist, Carl G.; Sundell, Hakan; Gettins, Peter

    1987-01-01

    Group B β -hemolytic Streptococcus (GBS) is a major pathogen affecting newborns. We have investigated the molecular mechanism underlying the respiratory distress induced in sheep after intravenous injection of a toxin produced by this organism. The pathophysiological response is characterized by pulmonary hypertension, followed by granulocytopenia and increased pulmonary vascular permeability to protein. 31P NMR studies of GBS toxin and model components before and after reductive alkaline hydrolysis demonstrated that phosphodiester residues are an integral part of the GBS toxin. Reductive alkaline treatment cleaves phosphate esters from secondary and primary alcohols and renders GBS toxin nontoxic in the sheep model and inactive as a mediator of elastase release in vitro from isolated human granulocytes. We propose that the interaction of cellular receptors with mannosyl phosphodiester groups plays an essential role in the pathophysiological response to GBS toxin.

  17. Transient complex peroxisomal interactions

    PubMed Central

    Bonekamp, Nina A.; Schrader, Michael

    2012-01-01

    Mitochondria and peroxisomes are ubiquitous subcellular organelles that fulfill essential metabolic functions, rendering them indispensable for human development and health. Both are highly dynamic organelles that can undergo remarkable changes in morphology and number to accomplish cellular needs. While mitochondrial dynamics are also regulated by frequent fusion events, the fusion of mature peroxisomes in mammalian cells remained a matter of debate. In our recent study, we clarified systematically that there is no complete fusion of mature peroxisomes analogous to mitochondria. Moreover, in contrast to key division components such as DLP1, Fis1 or Mff, mitochondrial fusion proteins were not localized to peroxisomes. However, we discovered and characterized novel transient, complex interactions between individual peroxisomes which may contribute to the homogenization of the often heterogeneous peroxisomal compartment, e.g., by distribution of metabolites, signals or other “molecular information” via interperoxisomal contact sites. PMID:23336019

  18. There Is No Simple Model of the Plasma Membrane Organization.

    PubMed

    Bernardino de la Serna, Jorge; Schütz, Gerhard J; Eggeling, Christian; Cebecauer, Marek

    2016-01-01

    Ever since technologies enabled the characterization of eukaryotic plasma membranes, heterogeneities in the distributions of its constituents were observed. Over the years this led to the proposal of various models describing the plasma membrane organization such as lipid shells, picket-and-fences, lipid rafts, or protein islands, as addressed in numerous publications and reviews. Instead of emphasizing on one model we in this review give a brief overview over current models and highlight how current experimental work in one or the other way do not support the existence of a single overarching model. Instead, we highlight the vast variety of membrane properties and components, their influences and impacts. We believe that highlighting such controversial discoveries will stimulate unbiased research on plasma membrane organization and functionality, leading to a better understanding of this essential cellular structure.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, Clare L; Marquardt, Drew; Dies, Hannah

    Rafts, or functional domains, are transient nano- or mesoscopic structures in the exoplasmic leaflet of the plasma membrane, and are thought to be essential for many cellular processes. Using neutron diffraction and computer modelling, we present evidence for the existence of highly ordered lipid domains in the cholesterol-rich (32.5 mol%) liquid-ordered (lo) phase of dipalmitoylphosphatidylcholine membranes. The liquid ordered phase in one-component lipid membranes has previously been thought to be a homogeneous phase. The presence of highly ordered lipid domains embedded in a disordered lipid matrix implies non-uniform distribution of cholesterol between the two phases. The experimental results are inmore » excellent agreement with recent computer simulations of DPPC/cholesterol complexes [Meinhardt, Vink and Schmid (2013). Proc Natl Acad Sci USA 110(12): 4476 4481], which reported the existence of nanometer size lo domains in a liquid disordered lipid environment.« less

  20. Modulation of intestinal sulfur assimilation metabolism regulates iron homeostasis

    PubMed Central

    Hudson, Benjamin H.; Hale, Andrew T.; Irving, Ryan P.; Li, Shenglan; York, John D.

    2018-01-01

    Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis. PMID:29507250

  1. Differentiation of essential oils in Atractylodes lancea and Atractylodes koreana by gas chromatography with mass spectrometry.

    PubMed

    Liu, Qiutao; Zhang, Shanshan; Yang, Xihui; Wang, Ruilin; Guo, Weiying; Kong, Weijun; Yang, Meihua

    2016-12-01

    Atractylodes rhizome is a valuable traditional Chinese medicinal herb that comprises complex several species whose essential oils are the primary pharmacologically active component. Essential oils of Atractylodes lancea and Atractylodes koreana were extracted by hydrodistillation, and the yield was determined. The average yield of essential oil obtained from A. lancea (2.91%) was higher than that from A. koreana (2.42%). The volatile components of the essential oils were then identified by a gas chromatography with mass spectrometry method that demonstrated good precision. The method showed clear differences in the numbers and contents of volatile components between the two species. 41 and 45 volatile components were identified in A. lancea and A. koreana, respectively. Atractylon (48.68%) was the primary volatile component in A. lancea, while eudesma-4(14)-en-11-ol (11.81%) was major in A. koreana. However, the most significant difference between A. lancea and A. koreana was the major component of atractylon and atractydin. Principal component analysis was utilized to reveal the correlation between volatile components and species, and the analysis was used to successfully discriminate between A. lancea and A. koreana samples. These results suggest that different species of Atractylodes rhizome may yield essential oils that differ significantly in content and composition. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [Comparison of Chemical Components of Essential Oil from Ocimum basilicum var. pilosum Extracted by Supercritical CO2 Fluid and Steam Distillation].

    PubMed

    Wang, Zhao-yu; Zheng, Jia-huan; Shi, Sheng-ying; Luo, Zhi-xiong; Ni, Shun-yu; Lin, Jing-ming

    2015-11-01

    To compare the chemical components of essential oil prepared by steam distillation extraction (SD) and supercritical CO2 fluid extraction (SFE-CO2) from Ocimum basilicum var. pilosum whole plant. The essential oil of Ocimum basilicum var. pilosum were extracted by SD and SFE-CO2. The chemical components of essential oil were separated and analyzed by gas chromatography-mass spectrometry( GC-MS). Their relative contents were determined by normalization of peak area. 40 and 42 compounds were detected in the essential oil prepared by SD and SFE-CO2 respectively. 25 compounds were common. Thereare significant differences of the chemical components between the Ocimum basilicum var. pilosum essential oil prepared by SD and thatby SFE-CO2. Different methods showed different extraction efficiency with a special compound. It might be a good idea to unite several methods in the modern traditional Chinese medicine industry.

  3. Instabilities in rapid solidification of multi-component alloys

    NASA Astrophysics Data System (ADS)

    Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    Rapid solidification of multi-component liquids occurs in many modern applications such as additive manufacturing. In the present work the interface departures from equilibrium consist of the segregation coefficient and liquidus slope depending on front speed, the one-sided, frozen-temperature approximation, and the alloy behaving as the superposition of individual components. Linear-stability theory is applied, showing that the cellular and oscillatory instabilities of the binary case are modified. The addition of components tends to destabilize the interface while the addition of a single large-diffusivity material can entirely suppress the oscillatory mode. Multiple minima in the neutral curve for the cellular mode occur.

  4. Application of PLE for the determination of essential oil components from Thymus vulgaris L.

    PubMed

    Dawidowicz, Andrzej L; Rado, Ewelina; Wianowska, Dorota; Mardarowicz, Marek; Gawdzik, Jan

    2008-08-15

    Essential plants, due to their long presence in human history, their status in culinary arts, their use in medicine and perfume manufacture, belong to frequently examined stock materials in scientific and industrial laboratories. Because of a large number of freshly cut, dried or frozen plant samples requiring the determination of essential oil amount and composition, a fast, safe, simple, efficient and highly automatic sample preparation method is needed. Five sample preparation methods (steam distillation, extraction in the Soxhlet apparatus, supercritical fluid extraction, solid phase microextraction and pressurized liquid extraction) used for the isolation of aroma-active components from Thymus vulgaris L. are compared in the paper. The methods are mainly discussed with regard to the recovery of components which typically exist in essential oil isolated by steam distillation. According to the obtained data, PLE is the most efficient sample preparation method in determining the essential oil from the thyme herb. Although co-extraction of non-volatile ingredients is the main drawback of this method, it is characterized by the highest yield of essential oil components and the shortest extraction time required. Moreover, the relative peak amounts of essential components revealed by PLE are comparable with those obtained by steam distillation, which is recognized as standard sample preparation method for the analysis of essential oils in aromatic plants.

  5. Composition and antimicrobial activities of Lippia multiflora Moldenke, Mentha x piperita L. and Ocimum basilicum L. essential oils and their major monoterpene alcohols alone and in combination.

    PubMed

    Bassolé, Imaël Henri Nestor; Lamien-Meda, Aline; Bayala, Balé; Tirogo, Souleymane; Franz, Chlodwig; Novak, Johannes; Nebié, Roger Charles; Dicko, Mamoudou Hama

    2010-11-03

    Essential oils from leaves of Lippia multiflora, Mentha x piperita and Ocimum basilicum from Burkina Faso were analysed by GC-FID and GC-MS. Major components were p-cymene, thymol, b-caryophyllene, carvacrol and carvone for L. multiflora, menthol and iso-menthone for M. x piperita and, linalool and eugenol for O. basilicum. The essential oils and their major monoterpene alcohols were tested against nine bacterial strains using the disc diffusion and broth microdilution methods. The essential oils with high phenolic contents were the most effective antimicrobials. The checkerboard method was used to quantify the efficacy of paired combinations of essential oils and their major components. The best synergetic effects among essential oils and major components were obtained with combinations involving O. basilicum essential oil and eugenol, respectively. As phenolic components are characterized by a strong spicy aroma, this study suggests that the selection of certain combinations of EOs could help to reduce the amount of essential oils and consequently reduce any adverse sensory impact in food.

  6. Comparison of mitochondrial and nucleolar RNase MRP reveals identical RNA components with distinct enzymatic activities and protein components.

    PubMed

    Lu, Qiaosheng; Wierzbicki, Sara; Krasilnikov, Andrey S; Schmitt, Mark E

    2010-03-01

    RNase MRP is a ribonucleoprotein endoribonuclease found in three cellular locations where distinct substrates are processed: the mitochondria, the nucleolus, and the cytoplasm. Cytoplasmic RNase MRP is the nucleolar enzyme that is transiently relocalized during mitosis. Nucleolar RNase MRP (NuMRP) was purified to homogeneity, and we extensively purified the mitochondrial RNase MRP (MtMRP) to a single RNA component identical to the NuMRP RNA. Although the protein components of the NuMRP were identified by mass spectrometry successfully, none of the known NuMRP proteins were found in the MtMRP preparation. Only trace amounts of the core NuMRP protein, Pop4, were detected in MtMRP by Western blot. In vitro activity of the two enzymes was compared. MtMRP cleaved only mitochondrial ORI5 substrate, while NuMRP cleaved all three substrates. However, the NuMRP enzyme cleaved the ORI5 substrate at sites different than the MtMRP enzyme. In addition, enzymatic differences in preferred ionic strength confirm these enzymes as distinct entities. Magnesium was found to be essential to both enzymes. We tested a number of reported inhibitors including puromycin, pentamidine, lithium, and pAp. Puromycin inhibition suggested that it binds directly to the MRP RNA, reaffirming the role of the RNA component in catalysis. In conclusion, our study confirms that the NuMRP and MtMRP enzymes are distinct entities with differing activities and protein components but a common RNA subunit, suggesting that the RNA must be playing a crucial role in catalytic activity.

  7. Velocity landscape correlation resolves multiple flowing protein populations from fluorescence image time series.

    PubMed

    Pandžić, Elvis; Abu-Arish, Asmahan; Whan, Renee M; Hanrahan, John W; Wiseman, Paul W

    2018-02-16

    Molecular, vesicular and organellar flows are of fundamental importance for the delivery of nutrients and essential components used in cellular functions such as motility and division. With recent advances in fluorescence/super-resolution microscopy modalities we can resolve the movements of these objects at higher spatio-temporal resolutions and with better sensitivity. Previously, spatio-temporal image correlation spectroscopy has been applied to map molecular flows by correlation analysis of fluorescence fluctuations in image series. However, an underlying assumption of this approach is that the sampled time windows contain one dominant flowing component. Although this was true for most of the cases analyzed earlier, in some situations two or more different flowing populations can be present in the same spatio-temporal window. We introduce an approach, termed velocity landscape correlation (VLC), which detects and extracts multiple flow components present in a sampled image region via an extension of the correlation analysis of fluorescence intensity fluctuations. First we demonstrate theoretically how this approach works, test the performance of the method with a range of computer simulated image series with varying flow dynamics. Finally we apply VLC to study variable fluxing of STIM1 proteins on microtubules connected to the plasma membrane of Cystic Fibrosis Bronchial Epithelial (CFBE) cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Nuclear pore complex integrity requires Lnp1, a regulator of cortical endoplasmic reticulum

    PubMed Central

    Casey, Amanda K.; Chen, Shuliang; Novick, Peter; Ferro-Novick, Susan; Wente, Susan R.

    2015-01-01

    The nuclear envelope (NE) and endoplasmic reticulum (ER) are components of the same contiguous membrane system and yet have distinct cellular functions. Mounting evidence suggests roles for some ER proteins in the NE for proper nuclear pore complex (NPC) structure and function. In this study, we identify a NE role in Saccharomyces cerevisiae for Lnp1 and Sey1, proteins required for proper cortical ER formation. Both lnp1Δ and sey1Δ mutants exhibit synthetic genetic interactions with mutants in genes encoding key NPC structural components. Both Lnp1 and Sey1 physically associate with other ER components that have established NPC roles, including Rtn1, Yop1, Pom33, and Per33. Of interest, lnp1Δ rtn1Δ mutants but not rtn1Δ sey1Δ mutants exhibit defects in NPC distribution. Furthermore, the essential NPC assembly factor Ndc1 has altered interactions in the absence of Sey1. Lnp1 dimerizes in vitro via its C-terminal zinc finger motif, a property that is required for proper ER structure but not NPC integrity. These findings suggest that Lnp1's role in NPC integrity is separable from functions in the ER and is linked to Ndc1 and Rtn1 interactions. PMID:26041935

  9. Evolutionary tabu search strategies for the simultaneous registration of multiple atomic structures in cryo-EM reconstructions.

    PubMed

    Rusu, Mirabela; Birmanns, Stefan

    2010-04-01

    A structural characterization of multi-component cellular assemblies is essential to explain the mechanisms governing biological function. Macromolecular architectures may be revealed by integrating information collected from various biophysical sources - for instance, by interpreting low-resolution electron cryomicroscopy reconstructions in relation to the crystal structures of the constituent fragments. A simultaneous registration of multiple components is beneficial when building atomic models as it introduces additional spatial constraints to facilitate the native placement inside the map. The high-dimensional nature of such a search problem prevents the exhaustive exploration of all possible solutions. Here we introduce a novel method based on genetic algorithms, for the efficient exploration of the multi-body registration search space. The classic scheme of a genetic algorithm was enhanced with new genetic operations, tabu search and parallel computing strategies and validated on a benchmark of synthetic and experimental cryo-EM datasets. Even at a low level of detail, for example 35-40 A, the technique successfully registered multiple component biomolecules, measuring accuracies within one order of magnitude of the nominal resolutions of the maps. The algorithm was implemented using the Sculptor molecular modeling framework, which also provides a user-friendly graphical interface and enables an instantaneous, visual exploration of intermediate solutions. (c) 2009 Elsevier Inc. All rights reserved.

  10. Basic studies on the role of components of Bacillus megaterium as flotation biocollectors in sulphide mineral separation.

    PubMed

    Vasanthakumar, Balasubramanian; Ravishankar, Honnavar; Subramanian, Sankaran

    2014-03-01

    Studies were carried out to assess the utility of the cellular and extracellular constituents of Bacillus megaterium for the flotation of sphalerite and galena minerals. Based on the flotation results on the individual minerals, it was observed that sphalerite was preferentially floated compared to galena. A maximum selectivity index (SI) value of 11.7 was achieved in the presence of the soluble fraction of the thermolysed cells, which was higher than that obtained with the intact cells (SI of 6.5) and the insoluble fraction of the thermolysed cells (SI of 9.6). The results of the various enzymatic treatment tests revealed that extracellular DNA played a vital role in the selective flotation of sphalerite. A noteworthy finding was that the single-stranded DNA (ssDNA) had a higher biocollector capacity vis-à-vis the double-stranded DNA (dsDNA), leading to better flotation efficiency. About 95 % recovery of sphalerite could be achieved from the mineral mixture by the combined addition of the ssDNA with the non-DNA components of the bacterial cells, resulting in a maximum SI of 19.1. Calcium and phosphate components of the nutrient media were found to be essential for better selectivity of separation of sphalerite. The mechanisms of microbe-mineral interaction are discussed.

  11. PhosphoregDB: The tissue and sub-cellular distribution of mammalian protein kinases and phosphatases

    PubMed Central

    Forrest, Alistair RR; Taylor, Darrin F; Fink, J Lynn; Gongora, M Milena; Flegg, Cameron; Teasdale, Rohan D; Suzuki, Harukazu; Kanamori, Mutsumi; Kai, Chikatoshi; Hayashizaki, Yoshihide; Grimmond, Sean M

    2006-01-01

    Background Protein kinases and protein phosphatases are the fundamental components of phosphorylation dependent protein regulatory systems. We have created a database for the protein kinase-like and phosphatase-like loci of mouse that integrates protein sequence, interaction, classification and pathway information with the results of a systematic screen of their sub-cellular localization and tissue specific expression data mined from the GNF tissue atlas of mouse. Results The database lets users query where a specific kinase or phosphatase is expressed at both the tissue and sub-cellular levels. Similarly the interface allows the user to query by tissue, pathway or sub-cellular localization, to reveal which components are co-expressed or co-localized. A review of their expression reveals 30% of these components are detected in all tissues tested while 70% show some level of tissue restriction. Hierarchical clustering of the expression data reveals that expression of these genes can be used to separate the samples into tissues of related lineage, including 3 larger clusters of nervous tissue, developing embryo and cells of the immune system. By overlaying the expression, sub-cellular localization and classification data we examine correlations between class, specificity and tissue restriction and show that tyrosine kinases are more generally expressed in fewer tissues than serine/threonine kinases. Conclusion Together these data demonstrate that cell type specific systems exist to regulate protein phosphorylation and that for accurate modelling and for determination of enzyme substrate relationships the co-location of components needs to be considered. PMID:16504016

  12. [Advances in microbial genome reduction and modification].

    PubMed

    Wang, Jianli; Wang, Xiaoyuan

    2013-08-01

    Microbial genome reduction and modification are important strategies for constructing cellular chassis used for synthetic biology. This article summarized the essential genes and the methods to identify them in microorganisms, compared various strategies for microbial genome reduction, and analyzed the characteristics of some microorganisms with the minimized genome. This review shows the important role of genome reduction in constructing cellular chassis.

  13. Induction of autophagy improves embryo viability in cloned mouse embryos

    PubMed Central

    Shen, XingHui; Zhang, Na; Wang, ZhenDong; Bai, GuangYu; Zheng, Zhong; Gu, YanLi; Wu, YanShuang; Liu, Hui; Zhou, DongJie; Lei, Lei

    2015-01-01

    Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P < 0.05). Furthermore, the treatment of rapamycin and pp242 accelerates active DNA demethylation indicated by the conversion of 5 mC to 5 hmC, and treatment of rapamycin improves degradation of maternal mRNA as well. Thus, our findings reveal that autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT. PMID:26643778

  14. Chemoprevention by thyme oils of Aspergillus parasiticus growth and aflatoxin production.

    PubMed

    Rasooli, Iraj; Owlia, Parviz

    2005-12-01

    The essential oils from Thymus eriocalyx and Thymus X-porlock obtained by hydrodistillation were analyzed by GC/MS. The major components of T. eriocalyx and T. X-porlock oils were thymol (63.8, 31.7%), beta-phellandrene (13.30, 38.7%), cis-sabinene hydroxide (8.1, 9.6%), 1,8-cineole (2, 1.7%), and beta-pinene (1.31, 2%), respectively. Antifungal activities of the oils were studied with special reference to the inhibition of Aspergillus parasiticus growth and aflatoxin production. Minimal inhibitory (MIC) and minimal fungicidal (MFC) concentrations of the oils were determined. Static effects of the above oils against A. parasiticus were at 250 ppm and lethal effects of T. eriocalyx and T. X-porlock were 500 and 1000 ppm of the oils, respectively. Aflatoxin production was inhibited at 250 ppm of both oils with that of T. eriocalyx being stronger inhibitor. Transmission electron microscopy (TEM) of A. parasiticus exposed to MIC level (250 ppm) of the oils showed irreversible damage to cell wall, cell membrane, and cellular organelles. It is concluded that the essential oils could be safely used as preservative materials on some kinds of foods at low concentrations to protect them from fungal infections.

  15. Formalizing Knowledge in Multi-Scale Agent-Based Simulations

    PubMed Central

    Somogyi, Endre; Sluka, James P.; Glazier, James A.

    2017-01-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused. PMID:29338063

  16. Formalizing Knowledge in Multi-Scale Agent-Based Simulations.

    PubMed

    Somogyi, Endre; Sluka, James P; Glazier, James A

    2016-10-01

    Multi-scale, agent-based simulations of cellular and tissue biology are increasingly common. These simulations combine and integrate a range of components from different domains. Simulations continuously create, destroy and reorganize constituent elements causing their interactions to dynamically change. For example, the multi-cellular tissue development process coordinates molecular, cellular and tissue scale objects with biochemical, biomechanical, spatial and behavioral processes to form a dynamic network. Different domain specific languages can describe these components in isolation, but cannot describe their interactions. No current programming language is designed to represent in human readable and reusable form the domain specific knowledge contained in these components and interactions. We present a new hybrid programming language paradigm that naturally expresses the complex multi-scale objects and dynamic interactions in a unified way and allows domain knowledge to be captured, searched, formalized, extracted and reused.

  17. [Study on the chemical components, antimicrobial and antitumor activities of the essential oil from the leaves of Zanthoxylum avicennae].

    PubMed

    Zhang, Da-Shuai; Zhong, Qiong-Xin; Song, Xin-Ming; Liu, Wen-Jie; Wang, Jing; Zhang, Qiong-Yu

    2012-08-01

    To study the chemical constituents, antimicrobial activity and antitumor activity of the essential oil from Zanthoxylum avicennae. The essential oil from the leaves of Zanthoxylum avicennae was extracted by steam distillation. The components of the essential oil were separated and identified by GC-MS. 72 components were identified and accounted for 98.15% of the all peak area. The essential oil exhibited strong antitumor activity against K-562 human tumor cell lines with IC50 of 1.76 microg/mL. It also exhibited moderate antimicrobial activity against three bacteria. The essential oil of Zanthoxylum avicennae contains various active constituents. This result provides scientific reference for the pharmacological further research of Zanthoxylum avicennae.

  18. Crosstalk between the nucleolus and the DNA damage response.

    PubMed

    Ogawa, L M; Baserga, S J

    2017-02-28

    Nucleolar function and the cellular response to DNA damage have long been studied as distinct disciplines. New research and a new appreciation for proteins holding multiple functional roles, however, is beginning to change the way we think about the crosstalk among distinct cellular processes. Here, we focus on the crosstalk between the DNA damage response and the nucleolus, including a comprehensive review of the literature that reveals a role for conventional DNA repair proteins in ribosome biogenesis, and conversely, ribosome biogenesis proteins in DNA repair. Furthermore, with recent advances in nucleolar proteomics and a growing list of proteins that localize to the nucleolus, it is likely that we will continue to identify new DNA repair proteins with a nucleolar-specific role. Given the importance of ribosome biogenesis and DNA repair in essential cellular processes and the role that they play in diverse pathologies, continued elucidation of the overlap between these two disciplines will be essential to the advancement of both fields and to the development of novel therapeutics.

  19. Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation

    PubMed Central

    2013-01-01

    Background Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol yield, assuming higher compatibility with normal cellular functionality. Previous work identified ssk1E330N…K356N as causative allele in strain CBS6412, which displayed the lowest glycerol/ethanol ratio. Results We have now identified a unique segregant, 26B, that shows similar low glycerol/high ethanol production as the superior parent, but lacks the ssk1E330N…K356N allele. Using segregants from the backcross of 26B with the inferior parent strain, we applied pooled-segregant whole-genome sequence analysis and identified three minor quantitative trait loci (QTLs) linked to low glycerol/high ethanol production. Within these QTLs, we identified three novel alleles of known regulatory and structural genes of glycerol metabolism, smp1R110Q,P269Q, hot1P107S,H274Y and gpd1L164P as causative genes. All three genes separately caused a significant drop in the glycerol/ethanol production ratio, while gpd1L164P appeared to be epistatically suppressed by other alleles in the superior parent. The order of potency in reducing the glycerol/ethanol ratio of the three alleles was: gpd1L164P > hot1P107S,H274Y ≥ smp1R110Q,P269Q. Conclusions Our results show that natural yeast strains harbor multiple specific alleles of genes controlling essential functions, that are apparently compatible with survival in the natural environment. These newly identified alleles can be used as gene tools for engineering industrial yeast strains with multiple subtle changes, minimizing the risk of negatively affecting other essential functions. The gene tools act at the transcriptional, regulatory or structural gene level, distributing the impact over multiple targets and thus further minimizing possible side-effects. In addition, the results suggest polygenic analysis of complex traits as a promising new avenue to identify novel components involved in cellular functions, including those important in industrial applications. PMID:23759206

  20. Surviving anoxia in marine sediments: The metabolic response of ubiquitous benthic foraminifera (Ammonia tepida).

    PubMed

    LeKieffre, Charlotte; Spangenberg, Jorge E; Mabilleau, Guillaume; Escrig, Stéphane; Meibom, Anders; Geslin, Emmanuelle

    2017-01-01

    High input of organic carbon and/or slowly renewing bottom waters frequently create periods with low dissolved oxygen concentrations on continental shelves and in coastal areas; such events can have strong impacts on benthic ecosystems. Among the meiofauna living in these environments, benthic foraminifera are often the most tolerant to low oxygen levels. Indeed, some species are able to survive complete anoxia for weeks to months. One known mechanism for this, observed in several species, is denitrification. For other species, a state of highly reduced metabolism, essentially a state of dormancy, has been proposed but never demonstrated. Here, we combined a 4 weeks feeding experiment, using 13C-enriched diatom biofilm, with correlated TEM and NanoSIMS imaging, plus bulk analysis of concentration and stable carbon isotopic composition of total organic matter and individual fatty acids, to study metabolic differences in the intertidal species Ammonia tepida exposed to oxic and anoxic conditions. Strongly contrasting cellular-level dynamics of ingestion and transfer of the ingested biofilm components were observed between the two conditions. Under oxic conditions, within a few days, intact diatoms were ingested, degraded, and their components assimilated, in part for biosynthesis of different cellular components: 13C-labeled lipid droplets formed after a few days and were subsequently lost (partially) through respiration. In contrast, in anoxia, fewer diatoms were initially ingested and these were not assimilated or metabolized further, but remained visible within the foraminiferal cytoplasm even after 4 weeks. Under oxic conditions, compound specific 13C analyses showed substantial de novo synthesis by the foraminifera of specific polyunsaturated fatty acids (PUFAs), such as 20:4(n-6). Very limited PUFA synthesis was observed under anoxia. Together, our results show that anoxia induced a greatly reduced rate of heterotrophic metabolism in Ammonia tepida on a time scale of less than 24 hours, these observations are consistent with a state of dormancy.

  1. Surviving anoxia in marine sediments: The metabolic response of ubiquitous benthic foraminifera (Ammonia tepida)

    PubMed Central

    Spangenberg, Jorge E.; Mabilleau, Guillaume; Escrig, Stéphane; Meibom, Anders; Geslin, Emmanuelle

    2017-01-01

    High input of organic carbon and/or slowly renewing bottom waters frequently create periods with low dissolved oxygen concentrations on continental shelves and in coastal areas; such events can have strong impacts on benthic ecosystems. Among the meiofauna living in these environments, benthic foraminifera are often the most tolerant to low oxygen levels. Indeed, some species are able to survive complete anoxia for weeks to months. One known mechanism for this, observed in several species, is denitrification. For other species, a state of highly reduced metabolism, essentially a state of dormancy, has been proposed but never demonstrated. Here, we combined a 4 weeks feeding experiment, using 13C-enriched diatom biofilm, with correlated TEM and NanoSIMS imaging, plus bulk analysis of concentration and stable carbon isotopic composition of total organic matter and individual fatty acids, to study metabolic differences in the intertidal species Ammonia tepida exposed to oxic and anoxic conditions. Strongly contrasting cellular-level dynamics of ingestion and transfer of the ingested biofilm components were observed between the two conditions. Under oxic conditions, within a few days, intact diatoms were ingested, degraded, and their components assimilated, in part for biosynthesis of different cellular components: 13C-labeled lipid droplets formed after a few days and were subsequently lost (partially) through respiration. In contrast, in anoxia, fewer diatoms were initially ingested and these were not assimilated or metabolized further, but remained visible within the foraminiferal cytoplasm even after 4 weeks. Under oxic conditions, compound specific 13C analyses showed substantial de novo synthesis by the foraminifera of specific polyunsaturated fatty acids (PUFAs), such as 20:4(n-6). Very limited PUFA synthesis was observed under anoxia. Together, our results show that anoxia induced a greatly reduced rate of heterotrophic metabolism in Ammonia tepida on a time scale of less than 24 hours, these observations are consistent with a state of dormancy. PMID:28562648

  2. The autophagy interaction network of the aging model Podospora anserina.

    PubMed

    Philipp, Oliver; Hamann, Andrea; Osiewacz, Heinz D; Koch, Ina

    2017-03-27

    Autophagy is a conserved molecular pathway involved in the degradation and recycling of cellular components. It is active either as response to starvation or molecular damage. Evidence is emerging that autophagy plays a key role in the degradation of damaged cellular components and thereby affects aging and lifespan control. In earlier studies, it was found that autophagy in the aging model Podospora anserina acts as a longevity assurance mechanism. However, only little is known about the individual components controlling autophagy in this aging model. Here, we report a biochemical and bioinformatics study to detect the protein-protein interaction (PPI) network of P. anserina combining experimental and theoretical methods. We constructed the PPI network of autophagy in P. anserina based on the corresponding networks of yeast and human. We integrated PaATG8 interaction partners identified in an own yeast two-hybrid analysis using ATG8 of P. anserina as bait. Additionally, we included age-dependent transcriptome data. The resulting network consists of 89 proteins involved in 186 interactions. We applied bioinformatics approaches to analyze the network topology and to prove that the network is not random, but exhibits biologically meaningful properties. We identified hub proteins which play an essential role in the network as well as seven putative sub-pathways, and interactions which are likely to be evolutionary conserved amongst species. We confirmed that autophagy-associated genes are significantly often up-regulated and co-expressed during aging of P. anserina. With the present study, we provide a comprehensive biological network of the autophagy pathway in P. anserina comprising PPI and gene expression data. It is based on computational prediction as well as experimental data. We identified sub-pathways, important hub proteins, and evolutionary conserved interactions. The network clearly illustrates the relation of autophagy to aging processes and enables further specific studies to understand autophagy and aging in P. anserina as well as in other systems.

  3. Cellular structures with interconnected microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaefer, Robert Shahram; Ghoniem, Nasr M.; Williams, Brian

    A method for fabricating a cellular tritium breeder component includes obtaining a reticulated carbon foam skeleton comprising a network of interconnected ligaments. The foam skeleton is then melt-infiltrated with a tritium breeder material, for example, lithium zirconate or lithium titanate. The foam skeleton is then removed to define a cellular breeder component having a network of interconnected tritium purge channels. In an embodiment the ligaments of the foam skeleton are enlarged by adding carbon using chemical vapor infiltration (CVI) prior to melt-infiltration. In an embodiment the foam skeleton is coated with a refractory material, for example, tungsten, prior to meltmore » infiltration.« less

  4. Cellular fatty acids and aldehydes of oral Eubacterium.

    PubMed

    Itoh, U; Sato, M; Tsuchiya, H; Namikawa, I

    1995-02-01

    The cellular fatty acids and aldehydes of oral Eubacterium species were determined by gas chromatography-mass spectrometry. E. brachy and E. lentum contained mainly branched-chain fatty acids, whereas the others contained straight-chain acids. E. brachy, E. lentum, E. yurii ssp. yurii, E. yurii spp. margaretiae, E. limosum, E. plauti and E. aerofaciens also contained aldehydes with even carbon numbers. In addition to species-specific components, the compositional ratios of fatty acids and aldehydes characterized each individual species. The 10 species tested were divided into 5 groups by the principal component analysis. Cellular fatty acids and aldehydes would be chemical markers for interspecies differentiation of oral Eubacterium.

  5. Essential Oil of Aristolochia trilobata: Synthesis, Routes of Exposure, Acute Toxicity, Binary Mixtures and Behavioral Effects on Leaf-Cutting Ants.

    PubMed

    de Oliveira, Bruna Maria S; Melo, Carlisson R; Alves, Péricles B; Santos, Abraão A; Santos, Ane Caroline C; Santana, Alisson da S; Araújo, Ana Paula A; Nascimento, Pedro E S; Blank, Arie F; Bacci, Leandro

    2017-02-25

    Plants of the genus Aristolochia have been frequently reported as important medicinal plants. Despite their high bioactive potential, to date, there are no reports of their effects on leaf-cutting ants. Therefore, the present study aimed to evaluate the insecticidal activity of the essential oil of Aristolochia trilobata and its major components on Atta sexdens and Acromyrmex balzani , two species of leaf-cutting ants. The bioassays were performed regarding routes of exposure, acute toxicity, binary mixtures of the major components and behavioral effects. Twenty-five components were identified in the essential oil of A. trilobata using a gas chromatographic system equipped with a mass spectrometer and a flame ionization detector. The components found in higher proportions were sulcatyl acetate, limonene, p -cymene and linalool. The essential oil of A. trilobata and its individual major components were efficient against A. balzani and A. sexdens workers when applied by fumigation. These components showed fast and efficient insecticidal activity on ants. The components acted synergistically and additively on A. balzani and A. sexdens , respectively, and caused a strong repellency/irritability in the ants. Thus, our results demonstrate the great potential of the essential oil of A. trilobata and its major components for the development of new insecticides.

  6. Antimicrobial Activity of Some Essential Oils—Present Status and Future Perspectives

    PubMed Central

    Chouhan, Sonam; Sharma, Kanika

    2017-01-01

    Extensive documentation on the antimicrobial properties of essential oils and their constituents has been carried out by several workers. Although the mechanism of action of a few essential oil components has been elucidated in many pioneering works in the past, detailed knowledge of most of the compounds and their mechanism of action is still lacking. This knowledge is particularly important for the determination of the effect of essential oils on different microorganisms, how they work in combination with other antimicrobial compounds, and their interaction with food matrix components. Also, recent studies have demonstrated that nanoparticles (NPs) functionalized with essential oils have significant antimicrobial potential against multidrug- resistant pathogens due to an increase in chemical stability and solubility, decreased rapid evaporation and minimized degradation of active essential oil components. The application of encapsulated essential oils also supports their controlled and sustained release, which enhances their bioavailability and efficacy against multidrug-resistant pathogens. In the recent years, due to increasingly negative consumer perceptions of synthetic preservatives, interest in essential oils and their application in food preservation has been amplified. Moreover, the development of resistance to different antimicrobial agents by bacteria, fungi, viruses, parasites, etc. is a great challenge to the medical field for treating the infections caused by them, and hence, there is a pressing need to look for new and novel antimicrobials. To overcome these problems, nano-encapsulation of essential oils and exploiting the synergies between essential oils, constituents of essential oils, and antibiotics along with essential oils have been recommended as an answer to this problem. However, less is known about the interactions that lead to additive, synergistic, or antagonistic effects. A contributing role of this knowledge could be the design of new and more potent antimicrobial blends, and understanding of the interplay between the components of crude essential oils. This review is written with the purpose of giving an overview of current knowledge about the antimicrobial properties of essential oils and their mechanisms of action, components of essential oils, nano-encapsulated essential oils, and synergistic combinations of essential oils so as to find research areas that can facilitate applications of essential oils to overcome the problem of multidrug-resistant micro-organisms. PMID:28930272

  7. Integration of Mobil Satellite and Cellular Systems

    NASA Technical Reports Server (NTRS)

    Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.

  8. Walnut extract inhibits LPS-induced activation of BV-2 microglia via internalization of TLR4: possible involvement of phospholipase D2

    USDA-ARS?s Scientific Manuscript database

    Walnuts are a rich source of essential fatty acids, including the polyunsaturated fatty acids alpha-linolenic acid (ALA) and linoleic acid (LA). Essential fatty acids have been shown to modulate a number of cellular processes in the brain, including the activation state of microglia. Microglial acti...

  9. The influence of purge times on the yields of essential oil components extracted from plants by pressurized liquid extraction.

    PubMed

    Wianowska, Dorota

    2014-01-01

    The influence of different purge times on the yield of the main essential oil constituents of rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris L.), and chamomile (Chamomilla recutita L.) was investigated. The pressurized liquid extraction process was performed by applying different extraction temperatures and solvents. The results presented in the paper show that the estimated yield of essential oil components extracted from the plants in the pressurized liquid extraction process is purge time-dependent. The differences in the estimated yields are mainly connected with the evaporation of individual essential oil components and the applied solvent during the purge; the more volatile an essential oil constituent is, the greater is its loss during purge time, and the faster the evaporation of the solvent during the purge process is, the higher the concentration of less volatile essential oil components in the pressurized liquid extraction receptacle. The effect of purge time on the estimated yield of individual essential oil constituents is additionally differentiated by the extraction temperature and the extraction ability of the applied solvent.

  10. Super-Resolution Microscopy: Shedding Light on the Cellular Plasma Membrane.

    PubMed

    Stone, Matthew B; Shelby, Sarah A; Veatch, Sarah L

    2017-06-14

    Lipids and the membranes they form are fundamental building blocks of cellular life, and their geometry and chemical properties distinguish membranes from other cellular environments. Collective processes occurring within membranes strongly impact cellular behavior and biochemistry, and understanding these processes presents unique challenges due to the often complex and myriad interactions between membrane components. Super-resolution microscopy offers a significant gain in resolution over traditional optical microscopy, enabling the localization of individual molecules even in densely labeled samples and in cellular and tissue environments. These microscopy techniques have been used to examine the organization and dynamics of plasma membrane components, providing insight into the fundamental interactions that determine membrane functions. Here, we broadly introduce the structure and organization of the mammalian plasma membrane and review recent applications of super-resolution microscopy to the study of membranes. We then highlight some inherent challenges faced when using super-resolution microscopy to study membranes, and we discuss recent technical advancements that promise further improvements to super-resolution microscopy and its application to the plasma membrane.

  11. Prying into the Prion Hypothesis for Parkinson's Disease.

    PubMed

    Brundin, Patrik; Melki, Ronald

    2017-10-11

    In Parkinson's disease, intracellular α-synuclein inclusions form in neurons. We suggest that prion-like behavior of α-synuclein is a key component in Parkinson's disease pathogenesis. Although multiple molecular changes are involved in the triggering of the disease process, we propose that neuron-to-neuron transfer is a crucial event that is essential for Lewy pathology to spread from one brain region to another. In this review, we describe key findings in human postmortem brains, cultured cells, and animal models of disease that support the idea that α-synuclein can act as a prion. We consider potential triggers of the α-synuclein misfolding and why the aggregates escape cellular degradation under disease conditions. We also discuss whether different strains of α-synuclein fibrils can underlie differences in cellular and regional distribution of aggregates in different synucleinopathies. Our conclusion is that α-synuclein probably acts as a prion in human diseases, and a deeper understanding of this step in the pathogenesis of Parkinson's disease can facilitate the development of disease-modifying therapies in the future. Dual Perspectives Companion Paper: Parkinson's Disease Is Not Simply a Prion Disorder, by D. James Surmeier, José A. Obeso, and Glenda M. Halliday. Copyright © 2017 the authors 0270-6474/17/379808-11$15.00/0.

  12. Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine

    DOE PAGES

    Sun, Jie; Jakobsson, Eric; Wang, Yingxiao; ...

    2015-01-19

    In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interiormore » structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.« less

  13. Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jie; Jakobsson, Eric; Wang, Yingxiao

    In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interiormore » structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.« less

  14. Oral supplementation with docosahexaenoic acid and uridine-5'-monophosphate increases dendritic spine density in adult gerbil hippocampus.

    PubMed

    Sakamoto, Toshimasa; Cansev, Mehmet; Wurtman, Richard J

    2007-11-28

    Docosahexaenoic acid (DHA), an omega-3 polyunsaturated fatty acid, is an essential component of membrane phosphatides and has been implicated in cognitive functions. Low levels of circulating or brain DHA are associated with various neurocognitive disorders including Alzheimer's disease (AD), while laboratory animals, including animal models of AD, can exhibit improved cognitive ability with a diet enriched in DHA. Various cellular mechanisms have been proposed for DHA's behavioral effects, including increases in cellular membrane fluidity, promotion of neurite extension and inhibition of apoptosis. However, there is little direct evidence that DHA affects synaptic structure in living animals. Here we show that oral supplementation with DHA substantially increases the number of dendritic spines in adult gerbil hippocampus, particularly when animals are co-supplemented with a uridine source, uridine-5'-monophosphate (UMP), which increases brain levels of the rate-limiting phosphatide precursor CTP. The increase in dendritic spines (>30%) is accompanied by parallel increases in membrane phosphatides and in pre- and post-synaptic proteins within the hippocampus. Hence, oral DHA may promote neuronal membrane synthesis to increase the number of synapses, particularly when co-administered with UMP. Our findings provide a possible explanation for the effects of DHA on behavior and also suggest a strategy to treat cognitive disorders resulting from synapse loss.

  15. Microbial Degradation of Cellular Kinases Impairs Innate Immune Signaling and Paracrine TNFα Responses

    PubMed Central

    Barth, Kenneth; Genco, Caroline Attardo

    2016-01-01

    The NFκB and MAPK signaling pathways are critical components of innate immunity that orchestrate appropriate immune responses to control and eradicate pathogens. Their activation results in the induction of proinflammatory mediators, such as TNFα a potent bioactive molecule commonly secreted by recruited inflammatory cells, allowing for paracrine signaling at the site of an infection. In this study we identified a novel mechanism by which the opportunistic pathogen Porphyromonas gingivalis dampens innate immune responses by disruption of kinase signaling and degradation of inflammatory mediators. The intracellular immune kinases RIPK1, TAK1, and AKT were selectively degraded by the P. gingivalis lysine-specific gingipain (Kgp) in human endothelial cells, which correlated with dysregulated innate immune signaling. Kgp was also observed to attenuate endothelial responsiveness to TNFα, resulting in a reduction in signal flux through AKT, ERK and NFκB pathways, as well as a decrease in downstream proinflammatory mRNA induction of cytokines, chemokines and adhesion molecules. A deficiency in Kgp activity negated decreases to host cell kinase protein levels and responsiveness to TNFα. Given the essential role of kinase signaling in immune responses, these findings highlight a unique mechanism of pathogen-induced immune dysregulation through inhibition of cell activation, paracrine signaling, and dampened cellular proinflammatory responses. PMID:27698456

  16. Plasma membrane calcium ATPases: From generic Ca(2+) sump pumps to versatile systems for fine-tuning cellular Ca(2.).

    PubMed

    Strehler, Emanuel E

    2015-04-24

    The plasma membrane calcium ATPases (PMCAs) are ATP-driven primary ion pumps found in all eukaryotic cells. They are the major high-affinity calcium extrusion system for expulsion of Ca(2+) ions from the cytosol and help restore the low resting levels of intracellular [Ca(2+)] following the temporary elevation of Ca(2+) generated during Ca(2+) signaling. Due to their essential role in the maintenance of cellular Ca(2+) homeostasis they were initially thought to be "sump pumps" for Ca(2+) removal needed by all cells to avoid eventual calcium overload. The discovery of multiple PMCA isoforms and alternatively spliced variants cast doubt on this simplistic assumption, and revealed instead that PMCAs are integral components of highly regulated multi-protein complexes fulfilling specific roles in calcium-dependent signaling originating at the plasma membrane. Biochemical, genetic, and physiological studies in gene-manipulated and mutant animals demonstrate the important role played by specific PMCAs in distinct diseases including those affecting the peripheral and central nervous system, cardiovascular disease, and osteoporosis. Human PMCA gene mutations and allelic variants associated with specific disorders continue to be discovered and underline the crucial role of different PMCAs in particular cells, tissues and organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A Functional Study of AUXILIN-LIKE1 and 2, Two Putative Clathrin Uncoating Factors in Arabidopsis[OPEN

    PubMed Central

    Adamowski, Maciek; Kania, Urszula

    2018-01-01

    Clathrin-mediated endocytosis (CME) is a cellular trafficking process in which cargoes and lipids are internalized from the plasma membrane into vesicles coated with clathrin and adaptor proteins. CME is essential for many developmental and physiological processes in plants, but its underlying mechanism is not well characterized compared with that in yeast and animal systems. Here, we searched for new factors involved in CME in Arabidopsis thaliana by performing tandem affinity purification of proteins that interact with clathrin light chain, a principal component of the clathrin coat. Among the confirmed interactors, we found two putative homologs of the clathrin-coat uncoating factor auxilin previously described in non-plant systems. Overexpression of AUXILIN-LIKE1 and AUXILIN-LIKE2 in Arabidopsis caused an arrest of seedling growth and development. This was concomitant with inhibited endocytosis due to blocking of clathrin recruitment after the initial step of adaptor protein binding to the plasma membrane. By contrast, auxilin-like1/2 loss-of-function lines did not present endocytosis-related developmental or cellular phenotypes under normal growth conditions. This work contributes to the ongoing characterization of the endocytotic machinery in plants and provides a robust tool for conditionally and specifically interfering with CME in Arabidopsis. PMID:29511054

  18. A novel power-efficient high-speed clock management unit using quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Abutaleb, M. M.

    2017-04-01

    Quantum-dot cellular automata (QCA) is one of the most attractive alternatives for complementary metal-oxide semiconductor technology. The QCA widely supports a new paradigm in the field of nanotechnology that has the potential for high density, low power, and high speed. The clock manager is an essential building block in the new microwave and radio frequency integrated circuits. This paper describes a novel QCA-based clock management unit (CMU) that provides innovative clocking capabilities. The proposed CMU is achieved by utilizing edge-triggered D-type flip-flops (D-FFs) in the design of frequency synthesizer and phase splitter. Edge-triggered D-FF structures proposed in this paper have the successful QCA implementation and simulation with the least complexity and power dissipation as compared to earlier structures. The frequency synthesizer is used to generate new clock frequencies from the reference clock frequency based on a combination of power-of-two frequency dividers. The phase splitter is integrated with the frequency synthesizer to generate four clock signals that are 90o out of phase with each other. This paper demonstrates that the proposed QCA CMU structure has a superior performance. Furthermore, the proposed CMU is straightforwardly scalable due to the use of modular component architecture.

  19. The contribution of oxidative stress to drug-induced organ toxicity and its detection in vitro and in vivo.

    PubMed

    Pereira, Claudia V; Nadanaciva, Sashi; Oliveira, Paulo J; Will, Yvonne

    2012-02-01

    Nowadays the 'redox hypothesis' is based on the fact that thiol/disulfide couples such as glutathione (GSH/GSSG), cysteine (Cys/CySS) and thioredoxin ((Trx-(SH)2/Trx-SS)) are functionally organized in redox circuits controlled by glutathione pools, thioredoxins and other control nodes, and they are not in equilibrium relative to each other. Although ROS can be important intermediates of cellular signaling pathways, disturbances in the normal cellular redox can result in widespread damage to several cell components. Moreover, oxidative stress has been linked to a variety of age-related diseases. In recent years, oxidative stress has also been identified to contribute to drug-induced liver, heart, renal and brain toxicity. This review provides an overview of current in vitro and in vivo methods that can be deployed throughout the drug discovery process. In addition, animal models and noninvasive biomarkers are described. Reducing post-market drug withdrawals is essential for all pharmaceutical companies in a time of increased patient welfare and tight budgets. Predictive screens positioned early in the drug discovery process will help to reduce such liabilities. Although new and more efficient assays and models are being developed, the hunt for biomarkers and noninvasive techniques is still in progress.

  20. Short telomeres: from dyskeratosis congenita to sporadic aplastic anemia and malignancy.

    PubMed

    Gramatges, Maria M; Bertuch, Alison A

    2013-12-01

    Telomeres are DNA-protein structures that form a protective cap on chromosome ends. As such, they prevent the natural ends of linear chromosomes from being subjected to DNA repair activities that would result in telomere fusion, degradation, or recombination. Both the DNA and protein components of the telomere are required for this essential function, because insufficient telomeric DNA length, loss of the terminal telomeric DNA structure, or deficiency of key telomere-associated factors may elicit a DNA damage response and result in cellular senescence or apoptosis. In the setting of failed checkpoint mechanisms, such DNA-protein defects can also lead to genomic instability through telomere fusions or recombination. Thus, as shown in both model systems and in humans, defects in telomere biology are implicated in cellular and organismal aging as well as in tumorigenesis. Bone marrow failure and malignancy are 2 life-threatening disease manifestations in the inherited telomere biology disorder dyskeratosis congenita. We provide an overview of basic telomere structure and maintenance. We outline the telomere biology defects observed in dyskeratosis congenita, focusing on recent discoveries in this field. Last, we review the evidence of how telomere biology may impact sporadic aplastic anemia and the risk for various cancers. Copyright © 2013 Mosby, Inc. All rights reserved.

  1. Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection.

    PubMed

    Simpson-Holley, Martha; Colgrove, Robert C; Nalepa, Grzegorz; Harper, J Wade; Knipe, David M

    2005-10-01

    Herpes simplex virus 1 (HSV-1) replicates in the nucleus of host cells and radically alters nuclear architecture as part of its replication process. Replication compartments (RCs) form, and host chromatin is marginalized. Chromatin is later dispersed, and RCs spread past it to reach the nuclear edge. Using a lamin A-green fluorescent protein fusion, we provide direct evidence that the nuclear lamina is disrupted during HSV-1 infection and that the UL31 and UL34 proteins are required for this. We show nuclear expansion from 8 h to 24 h postinfection and place chromatin rearrangement and disruption of the lamina in the context of this global change in nuclear architecture. We show HSV-1-induced disruption of the localization of Cdc14B, a cellular protein and component of a putative nucleoskeleton. We also show that UL31 and UL34 are required for nuclear expansion. Studies with inhibitors of globular actin (G-actin) indicate that G-actin plays an essential role in nuclear expansion and chromatin dispersal but not in lamina alterations induced by HSV-1 infection. From analyses of HSV infections under various conditions, we conclude that nuclear expansion and chromatin dispersal are dispensable for optimal replication, while lamina rearrangement is associated with efficient replication.

  2. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4

    PubMed Central

    Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao

    2017-01-01

    Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2. PMID:28252030

  3. Abiotic and biotic factors responsible for antimonite oxidation in Agrobacterium tumefaciens GW4

    NASA Astrophysics Data System (ADS)

    Li, Jingxin; Yang, Birong; Shi, Manman; Yuan, Kai; Guo, Wei; Wang, Qian; Wang, Gejiao

    2017-03-01

    Antimonite [Sb(III)]-oxidizing bacteria can transform the toxic Sb(III) into the less toxic antimonate [Sb(V)]. Recently, the cytoplasmic Sb(III)-oxidase AnoA and the periplasmic arsenite [As(III)] oxidase AioAB were shown to responsible for bacterial Sb(III) oxidation, however, disruption of each gene only partially decreased Sb(III) oxidation efficiency. This study showed that in Agrobacterium tumefaciens GW4, Sb(III) induced cellular H2O2 content and H2O2 degradation gene katA. Gene knock-out/complementation of katA, anoA, aioA and anoA/aioA and Sb(III) oxidation and growth experiments showed that katA, anoA and aioA were essential for Sb(III) oxidation and resistance and katA was also essential for H2O2 resistance. Furthermore, linear correlations were observed between cellular H2O2 and Sb(V) content in vivo and chemical H2O2 and Sb(V) content in vitro (R2 = 0.93 and 0.94, respectively). These results indicate that besides the biotic factors, the cellular H2O2 induced by Sb(III) also catalyzes bacterial Sb(III) oxidation as an abiotic oxidant. The data reveal a novel mechanism that bacterial Sb(III) oxidation is associated with abiotic (cellular H2O2) and biotic (AnoA and AioAB) factors and Sb(III) oxidation process consumes cellular H2O2 which contributes to microbial detoxification of both Sb(III) and cellular H2O2.

  4. A global interaction network maps a wiring diagram of cellular function

    PubMed Central

    Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles

    2017-01-01

    We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008

  5. Static and dynamic superheated water extraction of essential oil components from Thymus vulgaris L.

    PubMed

    Dawidowicz, Andrzej L; Rado, Ewelina; Wianowska, Dorota

    2009-09-01

    Superheated water extraction (SWE) performed in both static and dynamic condition (S-SWE and D-SWE, respectively) was applied for the extraction of essential oil from Thymus vulgaris L. The influence of extraction pressure, temperature, time, and flow rate on the total yield of essential oil and the influence of extraction temperature on the extraction of some chosen components are discussed in the paper. The SWE extracts are related to PLE extracts with n-hexane and essential oil obtained by steam distillation. The superheated water extraction in dynamic condition seems to be a feasible option for the extraction of essential oil components from T. vulgaris L.

  6. Biaryl amide compounds reduce the inflammatory response in macrophages by regulating Dectin-1.

    PubMed

    Hyung, Kyeong Eun; Lee, Mi Ji; Lee, Yun-Jung; Lee, Do Ik; Min, Hye Young; Park, So-Young; Min, Kyung Hoon; Hwang, Kwang Woo

    2016-03-01

    Macrophages are archetypal innate immune cells that play crucial roles in the recognition and phagocytosis of invading pathogens, which they identify using pattern recognition receptors (PRRs). Dectin-1 is essential for antifungal immune responses, recognizing the fungal cellular component β-glucan, and its role as a PRR has been of increasing interest. Previously, we discovered and characterized a novel biaryl amide compound, MPS 03, capable of inhibiting macrophage phagocytosis of zymosan. Therefore, in this study we aimed to identify other biaryl amide compounds with greater effectiveness than MPS 03, and elucidate their cellular mechanisms. Several MPS 03 derivatives were screened, four of which reduced zymosan phagocytosis in a similar manner to MPS 03. To establish whether such phagocytosis inhibition influenced the production of inflammatory mediators, pro-inflammatory cytokine and nitric oxide (NO) levels were measured. The production of TNF-α, IL-6, IL-12, and NO was significantly reduced in a dose-dependent manner. Moreover, the inflammation-associated MAPK signaling pathway was also affected by biaryl amide compounds. To investigate the underlying cellular mechanism, PRR expression was measured. MPS 03 and its derivatives were found to inhibit zymosan phagocytosis by decreasing Dectin-1 expression. Furthermore, when macrophages were stimulated by zymosan after pretreatment with biaryl amide compounds, downstream transcription factors such as NFAT, AP-1, and NF-κB were downregulated. In conclusion, biaryl amide compounds reduce zymosan-induced inflammatory responses by downregulating Dectin-1 expression. Therefore, such compounds could be used to inhibit Dectin-1 in immunological experiments and possibly regulate excessive inflammatory responses. Copyright © 2016. Published by Elsevier B.V.

  7. Gold(I) NHC Complexes: Antiproliferative Activity, Cellular Uptake, Inhibition of Mammalian and Bacterial Thioredoxin Reductases, and Gram-Positive Directed Antibacterial Effects.

    PubMed

    Schmidt, Claudia; Karge, Bianka; Misgeld, Rainer; Prokop, Aram; Franke, Raimo; Brönstrup, Mark; Ott, Ingo

    2017-02-03

    Gold complexes with N-heterocyclic carbene (NHC) ligands represent a promising class of metallodrugs for the treatment of cancer or infectious diseases. In this report, the synthesis and the biological evaluation of halogen-containing NHC-Au I -Cl complexes are described. The complexes 1 and 5 a-5 f displayed good cytotoxic activity against tumor cells, and cellular uptake studies suggested that an intact Au-NHC fragment is essential for the accumulation of high amounts of both the metal and the NHC ligand. However, the bioavailability was negatively affected by serum components of the cell culture media and was influenced by likely transformations of the complex. One example (5 d) efficiently induced apoptosis in vincristine- and daunorubicin-resistant P-glycoprotein overexpressing Nalm-6 leukemia cells. Cellular uptake studies with this compound showed that both the wild-type and resistant Nalm-6 cells accumulated comparable amounts of gold, indicating that the gold drug was not excreted by P-glycoprotein or other efflux transporters. The effective inhibition of mammalian and bacterial thioredoxin reductases (TrxR) was confirmed for all of the gold complexes. Antibacterial screening of the gold complexes showed a particularly high activity against Gram-positive strains, reflecting their high dependence on an intact Trx/TrxR system. This result is of particular interest as the inhibition of bacterial TrxR represents a relatively little explored mechanism of new anti-infectives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species.

    PubMed

    Hadi, S M; Ullah, M F; Shamim, U; Bhatt, S H; Azmi, A S

    2010-01-01

    Catalytic therapy is a cancer treatment modality based on the generation of reactive oxygen species (ROS) through administration of ascorbate/medicinal herbal extracts and copper. It is known that antioxidants such as ascorbate also exhibit prooxidant activity in the presence of transition metals such as copper. Based on our work and that in the literature, in this review we propose a mechanism for the cytotoxic action of ascorbate against cancer cells. It involves redox cycling of exogenous/endogenous copper ions and the consequent generation of ROS leading to oxidative DNA breakage. Using human peripheral lymphocytes and the Comet assay, we have shown that ascorbic acid is able to cause oxidative breakage in cellular DNA. Such DNA degradation is inhibited by neocuproine (a Cu(I) sequestering agent) and scavengers of ROS indicating that the cellular DNA breakage involves the generation of Cu(I) and formation of ROS. Similar results are also obtained with plant polyphenol antioxidants that are important constituents of medicinal herbal extracts. Copper is an essential component of chromatin and can take part in redox reactions. It is well established that tissue, cellular and serum copper levels are considerably elevated in various malignancies. Therefore, cancer cells may be more subject to electron transfer between copper ions and ascorbate/plant polyphenols to generate ROS. In this review we cite evidence to indicate that in catalytic therapy cytotoxic action against cancer cells involves redox cycling of exogenous/endogenous copper ions. Copyright © 2010 S. Karger AG, Basel.

  9. WNK1 is an unexpected autophagy inhibitor.

    PubMed

    Gallolu Kankanamalage, Sachith; Lee, A-Young; Wichaidit, Chonlarat; Lorente-Rodriguez, Andres; Shah, Akansha M; Stippec, Steve; Whitehurst, Angelique W; Cobb, Melanie H

    2017-05-04

    Autophagy is a cellular degradation pathway that is essential to maintain cellular physiology, and deregulation of autophagy leads to multiple diseases in humans. In a recent study, we discovered that the protein kinase WNK1 (WNK lysine deficient protein kinase 1) is an inhibitor of autophagy. The loss of WNK1 increases both basal and starvation-induced autophagy. In addition, the depletion of WNK1 increases the activation of the class III phosphatidylinositol 3-kinase (PtdIns3K) complex, which is required to induce autophagy. Moreover, the loss of WNK1 increases the expression of ULK1 (unc-51 like kinase 1), which is upstream of the PtdIns3K complex. It also increases the pro-autophagic phosphorylation of ULK1 at Ser555 and the activation of AMPK (AMP-activated protein kinase), which is responsible for that phosphorylation. The inhibition of AMPK by compound C decreases the magnitude of autophagy induction following WNK1 loss; however, it does not prevent autophagy induction. We found that the UVRAG (UV radiation resistance associated gene), which is a component of the PtdIns3K, binds to the N-terminal region of WNK1. Moreover, WNK1 partially colocalizes with UVRAG and this colocalization decreases when autophagy is stimulated in cells. The loss of WNK1 also alters the cellular distribution of UVRAG. The depletion of the downstream target of WNK1, OXSR1/OSR1 (oxidative-stress responsive 1) has no effect on autophagy, whereas the depletion of its relative STK39/SPAK (serine/threonine kinase 39) induces autophagy under nutrient-rich and starved conditions.

  10. The Iowa Flood Center's River Stage Sensors—Technical Details

    NASA Astrophysics Data System (ADS)

    Niemeier, J. J.; Kruger, A.; Ceynar, D.; Fahim Rezaei, H.

    2012-12-01

    The Iowa Flood Center (IFC), along with support from the Iowa Department of Transportation (DOT) and the Iowa Department of Natural Resources (DNR) have developed a bridge-mounted river stage sensor. Each sensor consists of an ultrasonic distance measuring module, cellular modem, a GPS unit that provides accurate time and an embedded controller that orchestrates the sensors' operation. A sensor is powered by a battery and solar panel along with a solar charge controller. All the components are housed in/on a sturdy metal box that is then mounted on the side of a bridge. Additionally, each sensor incorporates a water-intrusion sensor and an internal temperature sensor. In operation, the microcontroller wakes, and turns on the electronics every 15 minutes and then measures the distance between the ultrasonic sensor and the water surface. Several measurements are averaged and transmitted along with system health information (battery voltage, state of water intrusion sensor, and internal temperature) via cellular modem to remote servers on the internet. The microcontroller then powers the electronics down and enters a sleep/power savings mode. The sensor's firmware allows the remote server to adjust the measurement rate to 5, 15, and 60 minutes. Further, sensors maintain a 24-day buffer of previous measurements. If a sensor could not successfully transmit its data because of cellular network connection problems, it will transmit the backlog on subsequent transmissions. We paid meticulous attention to all engineering aspects and sensors are very robust and have operated essentially continuously through two Iowa winters and summers, including the 2012 record-breaking warm summer.

  11. Hexavalent chrome: threshold concept for carcinogenicity.

    PubMed

    Jones, R E

    1990-03-01

    Certain hexavalent chromium (Cr6+) compounds when administered via inhalation at high doses have the potential to induce lung tumors in humans and experimental animals. Trivalent chromium (Cr3+) is an essential human and animal nutrient at levels of 50 to 200 micrograms/day. Recent data have shown that the human body is able to reduce Cr6+ to Cr3+. This reduction occurs in bodily fluids such as gastric juice, epithelial lining fluid of the respiratory tract, blood, and other fluids. Secondary reduction occurs at the cellular level by the cytosol, mitochondria, and microsomes. Thus, at low levels of exposure hexavalent chromium ions are reduced before the 6+ ions can interact with DNA unless the dose is sufficient to overwhelm the body's reduction capacity. This paper summarizes the available data concerning the reducing ability of the body and formulates the steps in the mechanism of cancer induction. These steps include: (1) only certain Cr6+ compounds have the capacity to interact with cellular components; (2) Cr6+ is reduced by body fluids and excess Cr6+ enters the cell (Cr3+ is poorly absorbed across membranes); (3) cellular organelles and the cytoplasm reduce Cr6+ to Cr3+; (4) excess Cr6+ can enter the nucleus; (5) Cr6+ reduction through 5+ and 4+ to 3+ has a potential to interact with the DNA molecule; and (6) if unrepaired, this DNA damage can lead to cancer induction. On the basis of current evidence Cr6+ has a threshold for carcinogenic potential in humans that is greater than the current TLV.

  12. Structure-activity modelling of essential oils, their components, and key molecular parameters and descriptors.

    PubMed

    Owen, Lucy; Laird, Katie; Wilson, Philippe B

    2018-04-01

    Many essential oil components are known to possess broad spectrum antimicrobial activity, including against antibiotic resistant bacteria. These compounds may be a useful source of new and novel antimicrobials. However, there is limited research on the structure-activity relationship (SAR) of essential oil compounds, which is important for target identification and lead optimization. This study aimed to elucidate SARs of essential oil components from experimental and literature sources. Minimum Inhibitory Concentrations (MICs) of essential oil components were determined against Escherichia coli and Staphylococcus aureus using a microdilution method and then compared to those in published in literature. Of 12 essential oil components tested, carvacrol and cuminaldehyde were most potent with MICs of 1.98 and 2.10 mM, respectively. The activity of 21 compounds obtained from the literature, MICs ranged from 0.004 mM for limonene to 36.18 mM for α-terpineol. A 3D qualitative SAR model was generated from MICs using FORGE software by consideration of electrostatic and steric parameters. An r 2 value of 0.807 for training and cross-validation sets was achieved with the model developed. Ligand efficiency was found to correlate well to the observed activity (r 2  = 0.792), while strongly negative electrostatic regions were present in potent molecules. These descriptors may be useful for target identification of essential oils or their major components in antimicrobial/drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip.

    PubMed

    Dauth, Stephanie; Maoz, Ben M; Sheehy, Sean P; Hemphill, Matthew A; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M; Budnik, Bogdan; Parker, Kevin Kit

    2017-03-01

    Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the connection and communication of several brain regions, underlining the importance of developing multiregional brain in vitro models. We introduced a novel brain-on-a-chip model, implementing essential in vivo features, such as different brain areas and their functional connections. Copyright © 2017 the American Physiological Society.

  14. Neurons derived from different brain regions are inherently different in vitro: a novel multiregional brain-on-a-chip

    PubMed Central

    Dauth, Stephanie; Maoz, Ben M.; Sheehy, Sean P.; Hemphill, Matthew A.; Murty, Tara; Macedonia, Mary Kate; Greer, Angie M.; Budnik, Bogdan

    2017-01-01

    Brain in vitro models are critically important to developing our understanding of basic nervous system cellular physiology, potential neurotoxic effects of chemicals, and specific cellular mechanisms of many disease states. In this study, we sought to address key shortcomings of current brain in vitro models: the scarcity of comparative data for cells originating from distinct brain regions and the lack of multiregional brain in vitro models. We demonstrated that rat neurons from different brain regions exhibit unique profiles regarding their cell composition, protein expression, metabolism, and electrical activity in vitro. In vivo, the brain is unique in its structural and functional organization, and the interactions and communication between different brain areas are essential components of proper brain function. This fact and the observation that neurons from different areas of the brain exhibit unique behaviors in vitro underline the importance of establishing multiregional brain in vitro models. Therefore, we here developed a multiregional brain-on-a-chip and observed a reduction of overall firing activity, as well as altered amounts of astrocytes and specific neuronal cell types compared with separately cultured neurons. Furthermore, this multiregional model was used to study the effects of phencyclidine, a drug known to induce schizophrenia-like symptoms in vivo, on individual brain areas separately while monitoring downstream effects on interconnected regions. Overall, this work provides a comparison of cells from different brain regions in vitro and introduces a multiregional brain-on-a-chip that enables the development of unique disease models incorporating essential in vivo features. NEW & NOTEWORTHY Due to the scarcity of comparative data for cells from different brain regions in vitro, we demonstrated that neurons isolated from distinct brain areas exhibit unique behaviors in vitro. Moreover, in vivo proper brain function is dependent on the connection and communication of several brain regions, underlining the importance of developing multiregional brain in vitro models. We introduced a novel brain-on-a-chip model, implementing essential in vivo features, such as different brain areas and their functional connections. PMID:28031399

  15. Ick Ciliary Kinase Is Essential for Planar Cell Polarity Formation in Inner Ear Hair Cells and Hearing Function.

    PubMed

    Okamoto, Shio; Chaya, Taro; Omori, Yoshihiro; Kuwahara, Ryusuke; Kubo, Shun; Sakaguchi, Hirofumi; Furukawa, Takahisa

    2017-02-22

    Cellular asymmetries play crucial roles in development and organ function. The planar cell polarity (PCP) signaling pathway is involved in the establishment of cellular asymmetry within the plane of a cell sheet. Inner ear sensory hair cells (HCs), which have several rows of staircase-like stereocilia and one kinocilium located at the vertex of the stereocilia protruding from the apical surface of each HC, exhibit a typical form of PCP. Although connections between cilia and PCP signaling in vertebrate development have been reported, their precise nature is not well understood. During inner ear development, several ciliary proteins are known to play a role in PCP formation. In the current study, we investigated a functional role for intestinal cell kinase (Ick), which regulates intraflagellar transport (IFT) at the tip of cilia, in the mouse inner ear. A lack of Ick in the developing inner ear resulted in PCP defects in the cochlea, including misorientation or misshaping of stereocilia and aberrant localization of the kinocilium and basal body in the apical and middle turns, leading to auditory dysfunction. We also observed abnormal ciliary localization of Ift88 in both HCs and supporting cells. Together, our results show that Ick ciliary kinase is essential for PCP formation in inner ear HCs, suggesting that ciliary transport regulation is important for PCP signaling. SIGNIFICANCE STATEMENT The cochlea in the inner ear is the hearing organ. Planar cell polarity (PCP) in hair cells (HCs) in the cochlea is essential for mechanotransduction and refers to the asymmetric structure consisting of stereociliary bundles and the kinocilium on the apical surface of the cell body. We reported previously that a ciliary kinase, Ick, regulates intraflagellar transport (IFT). Here, we found that loss of Ick leads to abnormal localization of the IFT component in kinocilia, PCP defects in HCs, and hearing dysfunction. Our study defines the association of ciliary transport regulation with PCP formation in HCs and hearing function. Copyright © 2017 the authors 0270-6474/17/372073-13$15.00/0.

  16. Invasion of Epithelial Cells and Proteolysis of Cellular Focal Adhesion Components by Distinct Types of Porphyromonas gingivalis Fimbriae

    PubMed Central

    Nakagawa, Ichiro; Inaba, Hiroaki; Yamamura, Taihei; Kato, Takahiro; Kawai, Shinji; Ooshima, Takashi; Amano, Atsuo

    2006-01-01

    Porphyromonas gingivalis fimbriae are classified into six types (types I to V and Ib) based on the fimA genes encoding FimA (a subunit of fimbriae), and they play a critical role in bacterial interactions with host tissues. In this study, we compared the efficiencies of P. gingivalis strains with distinct types of fimbriae for invasion of epithelial cells and for degradation of cellular focal adhesion components, paxillin, and focal adhesion kinase (FAK). Six representative strains with the different types of fimbriae were tested, and P. gingivalis with type II fimbriae (type II P. gingivalis) adhered to and invaded epithelial cells at significantly greater levels than the other strains. There were negligible differences in gingipain activities among the six strains; however, type II P. gingivalis apparently degraded intracellular paxillin in association with a loss of phosphorylation 30 min after infection. Degradation was blocked with cytochalasin D or in mutants with fimA disrupted. Paxillin was degraded by the mutant with Lys-gingipain disrupted, and this degradation was prevented by inhibition of Arg-gingipain activity by Nα-p-tosyl-l-lysine chloromethyl ketone. FAK was also degraded by type II P. gingivalis. Cellular focal adhesions with green fluorescent protein-paxillin macroaggregates were clearly destroyed, and this was associated with cellular morphological changes and microtubule disassembly. In an in vitro wound closure assay, type II P. gingivalis significantly inhibited cellular migration and proliferation compared to the cellular migration and proliferation observed with the other types. These results suggest that type II P. gingivalis efficiently invades epithelial cells and degrades focal adhesion components with Arg-gingipain, which results in cellular impairment during wound healing and periodontal tissue regeneration. PMID:16790749

  17. Cellular stress created by intermediary metabolite imbalances.

    PubMed

    Lee, Sang Jun; Trostel, Andrei; Le, Phuoc; Harinarayanan, Rajendran; Fitzgerald, Peter C; Adhya, Sankar

    2009-11-17

    Small molecules generally activate or inhibit gene transcription as externally added substrates or as internally accumulated end-products, respectively. Rarely has a connection been made that links an intracellular intermediary metabolite as a signal of gene expression. We report that a perturbation in the critical step of a metabolic pathway--the D-galactose amphibolic pathway--changes the dynamics of the pathways leading to accumulation of the intermediary metabolite UDP-galactose. This accumulation causes cell stress and transduces signals that alter gene expression so as to cope with the stress by restoring balance in the metabolite pool. This underscores the importance of studying the global effects of alterations in the level of intermediary metabolites in causing stress and coping with it by transducing signals to genes to reach a stable state of equilibrium (homeostasis). Such studies are an essential component in the integration of metabolomics, proteomics, and transcriptomics.

  18. pH-programmable DNA logic arrays powered by modular DNAzyme libraries.

    PubMed

    Elbaz, Johann; Wang, Fuan; Remacle, Francoise; Willner, Itamar

    2012-12-12

    Nature performs complex information processing circuits, such the programmed transformations of versatile stem cells into targeted functional cells. Man-made molecular circuits are, however, unable to mimic such sophisticated biomachineries. To reach these goals, it is essential to construct programmable modular components that can be triggered by environmental stimuli to perform different logic circuits. We report on the unprecedented design of artificial pH-programmable DNA logic arrays, constructed by modular libraries of Mg(2+)- and UO(2)(2+)-dependent DNAzyme subunits and their substrates. By the appropriate modular design of the DNA computation units, pH-programmable logic arrays of various complexities are realized, and the arrays can be erased, reused, and/or reprogrammed. Such systems may be implemented in the near future for nanomedical applications by pH-controlled regulation of cellular functions or may be used to control biotransformations stimulated by bacteria.

  19. Human Milk Banking.

    PubMed

    Haiden, Nadja; Ziegler, Ekhard E

    2016-01-01

    Human milk banks play an essential role by providing human milk to infants who would otherwise not be able to receive human milk. The largest group of recipients are premature infants who derive very substantial benefits from it. Human milk protects premature infants from necrotizing enterocolitis and from sepsis, two devastating medical conditions. Milk banks collect, screen, store, process, and distribute human milk. Donating women usually nurse their own infants and have a milk supply that exceeds their own infants' needs. Donor women are carefully selected and are screened for HIV-1, HIV-2, human T-cell leukemia virus 1 and 2, hepatitis B, hepatitis C, and syphilis. In the milk bank, handling, storing, processing, pooling, and bacterial screening follow standardized algorithms. Heat treatment of human milk diminishes anti-infective properties, cellular components, growth factors, and nutrients. However, the beneficial effects of donor milk remain significant and donor milk is still highly preferable in comparison to formula. © 2017 S. Karger AG, Basel.

  20. The addition of choline to parenteral nutrition.

    PubMed

    Buchman, Alan L

    2009-11-01

    Choline is a quaternary amine endogenously synthesized from the amino acid methionine or absorbed via the portal circulation. It is ubiquitous in the diet, although it has a greater presence in organ meats. Choline is an essential component of all cell membranes, and has been considered a required dietary nutrient since 1998 by the US Institute of Medicine's Food and Nutrition Board. Choline is necessary for DNA repair, mediated by its role as a methyl donor. It also serves as the precursor for the neurotransmitter acetylcholine. Evidence has accumulated that hepatic steatosis, which occurs during parenteral nutrition therapy, develops as a result of choline deficiency because endogenous production of choline from parenterally infused methionine is deficient. In addition, memory deficits and skeletal muscle abnormalities have been described, and choline deficiency appears to activate cellular apoptosis. Provision of intravenous choline ameliorates hepatic steatosis associated with parenteral nutrition infusion.

  1. Microtubules are an intracellular target of the plant terpene citral.

    PubMed

    Chaimovitsh, David; Abu-Abied, Mohamad; Belausov, Eduard; Rubin, Baruch; Dudai, Nativ; Sadot, Einat

    2010-02-01

    Citral is a component of plant essential oils that possesses several biological activities. It has known medicinal traits, and is used as a food additive and in cosmetics. Citral has been suggested to have potential in weed management, but its precise mode of action at the cellular level is unknown. Here we investigated the immediate response of plant cells to citral at micromolar concentrations. It was found that microtubules of Arabidopsis seedlings were disrupted within minutes after exposure to citral in the gaseous phase, whereas actin filaments remained intact. The effect of citral on plant microtubules was both time- and dose-dependent, and recovery only occurred many hours after a short exposure of several minutes to citral. Citral was also able to disrupt animal microtubules, albeit less efficiently. In addition, polymerization of microtubules in vitro was inhibited in the presence of citral. Taken together, our results suggest that citral is a potent, volatile, anti-microtubule compound.

  2. Alteration in lipid composition of plasma membranes of sensitive and resistant Guerin carcinoma cells due to the action of free and liposomal form of cisplatin.

    PubMed

    Naleskina, L A; Todor, I N; Nosko, M M; Lukianova, N Y; Pivnyuk, V M; Chekhun, V F

    2013-09-01

    To study in vivo changes of lipid composition of plasma membranes of sensitive and resistant to cisplatin Guerin carcinoma cells under influence of free and liposomal cisplatin forms. The isolation of plasma membranes from parental (sensitive) and resistant to cisplatin Guerin carcinoma cells was by differential ultracentrifugation in sucrose density gradient. Lipids were detected by method of thin-layer chromatography. It was determined that more effective action of cisplatin liposomal form on resistant cells is associated with essential abnormalities of conformation of plasma membrane due to change of lipid components and architectonics of rafts. It results in the increase of membrane fluidity. Reconstructions in lipid composition of plasma membranes of cisplatin-resistant Guerin carcinoma cells provide more intensive delivery of drug into the cells, increase of its concentration and more effective interaction with cellular structural elements.

  3. Epigenetic regulation of female puberty.

    PubMed

    Lomniczi, Alejandro; Wright, Hollis; Ojeda, Sergio R

    2015-01-01

    Substantial progress has been made in recent years toward deciphering the molecular and genetic underpinnings of the pubertal process. The availability of powerful new methods to interrogate the human genome has led to the identification of genes that are essential for puberty to occur. Evidence has also emerged suggesting that the initiation of puberty requires the coordinated activity of gene sets organized into functional networks. At a cellular level, it is currently thought that loss of transsynaptic inhibition, accompanied by an increase in excitatory inputs, results in the pubertal activation of GnRH release. This concept notwithstanding, a mechanism of epigenetic repression targeting genes required for the pubertal activation of GnRH neurons was recently identified as a core component of the molecular machinery underlying the central restraint of puberty. In this chapter we will discuss the potential contribution of various mechanisms of epigenetic regulation to the hypothalamic control of female puberty. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Three-dimensional Organization of Layered Apical Cytoskeletal Networks Associated with Mouse Airway Tissue Development

    NASA Astrophysics Data System (ADS)

    Tateishi, Kazuhiro; Nishida, Tomoki; Inoue, Kanako; Tsukita, Sachiko

    2017-03-01

    The cytoskeleton is an essential cellular component that enables various sophisticated functions of epithelial cells by forming specialized subcellular compartments. However, the functional and structural roles of cytoskeletons in subcellular compartmentalization are still not fully understood. Here we identified a novel network structure consisting of actin filaments, intermediate filaments, and microtubules directly beneath the apical membrane in mouse airway multiciliated cells and in cultured epithelial cells. Three-dimensional imaging by ultra-high voltage electron microscopy and immunofluorescence revealed that the morphological features of each network depended on the cell type and were spatiotemporally integrated in association with tissue development. Detailed analyses using Odf2 mutant mice, which lack ciliary basal feet and apical microtubules, suggested a novel contribution of the intermediate filaments to coordinated ciliary beating. These findings provide a new perspective for viewing epithelial cell differentiation and tissue morphogenesis through the structure and function of apical cytoskeletal networks.

  5. From Embryonic Development to Human Diseases: The Functional Role of Caveolae/Caveolin

    PubMed Central

    Sohn, Jihee; Brick, Rachel M.; Tuan, Rocky S.

    2017-01-01

    Caveolae, an almost ubiquitous, structural component of the plasma membrane, play a critical role in many functions essential for proper cell function, including membrane trafficking, signal transduction, extracellular matrix remodeling, and tissue regeneration. Three main types of caveolin proteins have been identified from caveolae since the discovery of caveolin-1 in the early 1990s. All three (Cav-1, Cav-2, and Cav-3) play crucial roles in mammalian physiology, and can effect pathogenesis in a wide range of human diseases. While many biological activities of caveolins have been uncovered since its discovery, their role and regulation in embryonic develop remain largely poorly understood, although there is increasing evidence that caveolins may be linked to lung and brain birth defects. Further investigations are clearly needed to decipher how caveolae/caveolins mediate cellular functions and activities of normal embryogenesis and how their perturbations contribute to developmental disorders. PMID:26991990

  6. SON is a spliceosome-associated factor required for mitotic progression.

    PubMed

    Huen, Michael S Y; Sy, Shirley M H; Leung, Ka Man; Ching, Yick-Pang; Tipoe, George L; Man, Cornelia; Dong, Shuo; Chen, Junjie

    2010-07-01

    The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division. © 2010 Landes Bioscience

  7. SON is a spliceosome-associated factor required for mitotic progression

    PubMed Central

    Sy, Shirley MH; Leung, Ka Man; Ching, Yick-Pang; Tipoe, George L; Man, Cornelia; Dong, Shuo

    2010-01-01

    The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division. PMID:20581448

  8. Lysosome-Dependent Activation of Human Dendritic Cells by the Vaccine Adjuvant QS-21

    PubMed Central

    Welsby, Iain; Detienne, Sophie; N’Kuli, Francisca; Thomas, Séverine; Wouters, Sandrine; Bechtold, Viviane; De Wit, Dominique; Gineste, Romain; Reinheckel, Thomas; Elouahabi, Abdelatif; Courtoy, Pierre J.; Didierlaurent, Arnaud M.; Goriely, Stanislas

    2017-01-01

    The adjuvant properties of the saponin QS-21 have been known for decades. It is a component of the Adjuvant System AS01 that is used in several vaccine candidates. QS-21 strongly potentiates both cellular and humoral immune responses to purified antigens, yet how it activates immune cells is largely unknown. Here, we report that QS-21 directly activated human monocyte-derived dendritic cells (moDCs) and promoted a pro-inflammatory transcriptional program. Cholesterol-dependent QS-21 endocytosis followed by lysosomal destabilization and Syk kinase activation were prerequisites for this response. Cathepsin B, a lysosomal cysteine protease, was essential for moDC activation in vitro and contributed to the adjuvant effects of QS-21 in vivo. Collectively, these findings provide new insights into the pathways involved in the direct activation of antigen-presenting cells by a clinically relevant QS-21 formulation. PMID:28105029

  9. Detection of human Dicer and Argonaute 2 catalytic activity

    PubMed Central

    Perron, Marjorie P.; Landry, Patricia; Plante, Isabelle; Provost, Patrick

    2013-01-01

    The microRNA (miRNA)-guided RNA silencing pathway is a central and well-defined cellular process involved in messenger RNA (mRNA) translational control. This complex regulatory process is achieved by a well orchestrated machinery composed of a relatively few protein components, among which the ribonuclease III (RNase III) Dicer and Argonaute 2 (Ago2) play a central role. These two proteins are essential and it is of particular interest to measure and detect their catalytic activity under various situations and/or conditions. In this chapter, we describe different protocols that aim to study and determine the catalytic activity of Dicer and Ago2 in cell extracts, immune complexes and size-fractionated cell extracts. Another protocol aimed at assessing miRNA binding to Ago2 is also described. These experimental approaches are likely to be useful to researchers investigating the main steps of miRNA biogenesis and function in human health and diseases. PMID:21528451

  10. Addressable Cholesterol Analogs for Live Imaging of Cellular Membranes.

    PubMed

    Rakers, Lena; Grill, David; Matos, Anna L L; Wulff, Stephanie; Wang, Da; Börgel, Jonas; Körsgen, Martin; Arlinghaus, Heinrich F; Galla, Hans-Joachim; Gerke, Volker; Glorius, Frank

    2018-05-01

    Cholesterol is an essential component of most biological membranes and serves important functions in controlling membrane integrity, organization, and signaling. However, probes to follow the dynamic distribution of cholesterol in live cells are scarce and so far show only limited applicability. Herein, we addressed this problem by synthesizing and characterizing a class of versatile and clickable cholesterol-based imidazolium salts. We show that these cholesterol analogs faithfully mimic the biophysical properties of natural cholesterol in phospholipid mono- and bilayers, and that they integrate into the plasma membrane of cultured and primary human cells. The membrane-incorporated cholesterol analogs can be specifically labeled by click chemistry and visualized in live-cell imaging experiments that show a distribution and behavior comparable with that of endogenous membrane cholesterol. These results indicate that the cholesterol analogs can be used to reveal the dynamic distribution of cholesterol in live cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Repair of DNA Damage Induced by the Cytidine Analog Zebularine Requires ATR and ATM in Arabidopsis[OPEN

    PubMed Central

    Liu, Chun-Hsin; Finke, Andreas; Díaz, Mariana; Rozhon, Wilfried; Poppenberger, Brigitte; Baubec, Tuncay; Pecinka, Ales

    2015-01-01

    DNA damage repair is an essential cellular mechanism that maintains genome stability. Here, we show that the nonmethylable cytidine analog zebularine induces a DNA damage response in Arabidopsis thaliana, independent of changes in DNA methylation. In contrast to genotoxic agents that induce damage in a cell cycle stage-independent manner, zebularine induces damage specifically during strand synthesis in DNA replication. The signaling of this damage is mediated by additive activity of ATAXIA TELANGIECTASIA MUTATED AND RAD3-RELATED and ATAXIA TELANGIECTASIA MUTATED kinases, which cause postreplicative cell cycle arrest and increased endoreplication. The repair requires a functional STRUCTURAL MAINTENANCE OF CHROMOSOMES5 (SMC5)-SMC6 complex and is accomplished predominantly by synthesis-dependent strand-annealing homologous recombination. Here, we provide insight into the response mechanism for coping with the genotoxic effects of zebularine and identify several components of the zebularine-induced DNA damage repair pathway. PMID:26023162

  12. Oxygen and Oxygen Toxicity: The Birth of Concepts

    PubMed Central

    Zhu, Hong; Traore, Kassim; Santo, Arben; Trush, Michael A.; Li, Y. Robert

    2018-01-01

    Molecular dioxygen (O2) is an essential element of aerobic life, yet incomplete reduction or excitation of O2 during aerobic metabolisms generates diverse oxygen-containing reactive species, commonly known as reactive oxygen species (ROS). On the one hand, ROS pose a serious threat to aerobic organisms via inducing oxidative damage to cellular constituents. On the other hand, these reactive species, when their generation is under homeostatic control, also play important physiological roles (e.g., constituting an important component of immunity and participating in redox signaling). This article defines oxygen and the key facts about oxygen, and discusses the relationship between oxygen and the emergence of early animals on Earth. The article then describes the discovery of oxygen by three historical figures and examines the birth of the concepts of oxygen toxicity and the underlying free radical mechanisms. The article ends with a brief introduction to the emerging field of ROS-mediated redox signaling and physiological responses. PMID:29707642

  13. DNA stress and strain, in silico, in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Levens, David; Benham, Craig J.

    2011-06-01

    A vast literature has explored the genetic interactions among the cellular components regulating gene expression in many organisms. Early on, in the absence of any biochemical definition, regulatory modules were conceived using the strict formalism of genetics to designate the modifiers of phenotype as either cis- or trans-acting depending on whether the relevant genes were embedded in the same or separate DNA molecules. This formalism distilled gene regulation down to its essence in much the same way that consideration of an ideal gas reveals essential thermodynamic and kinetic principles. Yet just as the anomalous behavior of materials may thwart an engineer who ignores their non-ideal properties, schemes to control and manipulate the genetic and epigenetic programs of cells may falter without a fuller and more quantitative elucidation of the physical and chemical characteristics of DNA and chromatin in vivo.

  14. Interdisciplinary cantilever physics: Elasticity of carrot, celery, and plasticware

    NASA Astrophysics Data System (ADS)

    Pestka, Kenneth A.

    2014-05-01

    This article presents several simple cantilever-based experiments using common household items (celery, carrot, and a plastic spoon) that are appropriate for introductory undergraduate laboratories or independent student projects. By applying Hooke's law and Euler beam theory, students are able to determine Young's modulus, fracture stress, yield stress, strain energy, and sound speed of these apparently disparate materials. In addition, a cellular foam elastic model is introduced—applicable to biologic materials as well as an essential component in the development of advanced engineering composites—that provides a mechanism to determine Young's modulus of the cell wall material found in celery and carrot. These experiments are designed to promote exploration of the similarities and differences between common inorganic and organic materials, fill a void in the typical undergraduate curriculum, and provide a foundation for more advanced material science pursuits within biology, botany, and food science as well as physics and engineering.

  15. A fiber-optic fluorescence microscope using a consumer-grade digital camera for in vivo cellular imaging.

    PubMed

    Shin, Dongsuk; Pierce, Mark C; Gillenwater, Ann M; Williams, Michelle D; Richards-Kortum, Rebecca R

    2010-06-23

    Early detection is an essential component of cancer management. Unfortunately, visual examination can often be unreliable, and many settings lack the financial capital and infrastructure to operate PET, CT, and MRI systems. Moreover, the infrastructure and expense associated with surgical biopsy and microscopy are a challenge to establishing cancer screening/early detection programs in low-resource settings. Improvements in performance and declining costs have led to the availability of optoelectronic components, which can be used to develop low-cost diagnostic imaging devices for use at the point-of-care. Here, we demonstrate a fiber-optic fluorescence microscope using a consumer-grade camera for in vivo cellular imaging. The fiber-optic fluorescence microscope includes an LED light, an objective lens, a fiber-optic bundle, and a consumer-grade digital camera. The system was used to image an oral cancer cell line labeled with 0.01% proflavine. A human tissue specimen was imaged following surgical resection, enabling dysplastic and cancerous regions to be evaluated. The oral mucosa of a healthy human subject was imaged in vivo, following topical application of 0.01% proflavine. The fiber-optic microscope resolved individual nuclei in all specimens and tissues imaged. This capability allowed qualitative and quantitative differences between normal and precancerous or cancerous tissues to be identified. The optical efficiency of the system permitted imaging of the human oral mucosa in real time. Our results indicate this device as a useful tool to assist in the identification of early neoplastic changes in epithelial tissues. This portable, inexpensive unit may be particularly appropriate for use at the point-of-care in low-resource settings.

  16. FRET microscopy in 2010: The legacy of Theodor Förster on the 100th anniversary of his birth

    PubMed Central

    Sun, Yuansheng; Wallrabe, Horst; Seo, Soo-Ah; Periasamy, Ammasi

    2012-01-01

    Theodor Förster would have been 100 years old this year and he would be astounded to see the impact of his scientific achievement – still evolving. Combining his quantitative approach of (Förster) Resonance Energy Transfer (FRET) with the state-of-the-art digital imaging techniques allowed scientists to breach the resolution limits of light (∼200 nm) in light microscopy. Molecular or particle distances within a range of 1-10 nm may be deduced in real time, interactions between two or more components may be proven or disproven – all of vital interest to researchers in many branches of the sciences. While his groundbreaking theory was published in the 1940's, the availability of suitable fluorophores, instruments and analytical tools really spawned a large amount of experimentation in the sciences in the last 20 years, as demonstrated by the exponential increase in publications. These cover basic investigation of cellular processes and the ability to investigate them when they go awry in pathological states, the dynamics involved in the field of genetics, following events in environmental sciences and methods in drug screening. This review covers the essentials of Theodor Förster's theory, describes the elements for successful implementation of FRET microscopy, the challenges and how to overcome them and a leading-edge example how T. Förster' scientific impact is still evolving in many directions. While this review cannot possibly do justice to the burgeoning field of FRET microscopy, a few interesting applications such as 3-color FRET vs. the traditional 2-color method are described– greatly expanding the opportunities of investigating interaction of cellular components – plus an extensive list of references for the interested reader to access. PMID:21344587

  17. Microbial protein: future sustainable food supply route with low environmental footprint.

    PubMed

    Matassa, Silvio; Boon, Nico; Pikaar, Ilje; Verstraete, Willy

    2016-09-01

    Microbial biotechnology has a long history of producing feeds and foods. The key feature of today's market economy is that protein production by conventional agriculture based food supply chains is becoming a major issue in terms of global environmental pollution such as diffuse nutrient and greenhouse gas emissions, land use and water footprint. Time has come to re-assess the current potentials of producing protein-rich feed or food additives in the form of algae, yeasts, fungi and plain bacterial cellular biomass, producible with a lower environmental footprint compared with other plant or animal-based alternatives. A major driver is the need to no longer disintegrate but rather upgrade a variety of low-value organic and inorganic side streams in our current non-cyclic economy. In this context, microbial bioconversions of such valuable matters to nutritive microbial cells and cell components are a powerful asset. The worldwide market of animal protein is of the order of several hundred million tons per year, that of plant protein several billion tons of protein per year; hence, the expansion of the production of microbial protein does not pose disruptive challenges towards the process of the latter. Besides protein as nutritive compounds, also other cellular components such as lipids (single cell oil), polyhydroxybuthyrate, exopolymeric saccharides, carotenoids, ectorines, (pro)vitamins and essential amino acids can be of value for the growing domain of novel nutrition. In order for microbial protein as feed or food to become a major and sustainable alternative, addressing the challenges of creating awareness and achieving public and broader regulatory acceptance are real and need to be addressed with care and expedience. © 2016 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Cell Wall and Secreted Proteins of Candida albicans: Identification, Function, and Expression

    PubMed Central

    Chaffin, W. Lajean; López-Ribot, José Luis; Casanova, Manuel; Gozalbo, Daniel; Martínez, José P.

    1998-01-01

    The cell wall is essential to nearly every aspect of the biology and pathogenicity of Candida albicans. Although it was intially considered an almost inert cellular structure that protected the protoplast against osmotic offense, more recent studies have demonstrated that it is a dynamic organelle. The major components of the cell wall are glucan and chitin, which are associated with structural rigidity, and mannoproteins. The protein component, including both mannoprotein and nonmannoproteins, comprises some 40 or more moieties. Wall proteins may differ in their expression, secretion, or topological location within the wall structure. Proteins may be modified by glycosylation (primarily addition of mannose residues), phosphorylation, and ubiquitination. Among the secreted enzymes are those that are postulated to have substrates within the cell wall and those that find substrates in the extracellular environment. Cell wall proteins have been implicated in adhesion to host tissues and ligands. Fibrinogen, complement fragments, and several extracellular matrix components are among the host proteins bound by cell wall proteins. Proteins related to the hsp70 and hsp90 families of conserved stress proteins and some glycolytic enzyme proteins are also found in the cell wall, apparently as bona fide components. In addition, the expression of some proteins is associated with the morphological growth form of the fungus and may play a role in morphogenesis. Finally, surface mannoproteins are strong immunogens that trigger and modulate the host immune response during candidiasis. PMID:9529890

  19. Inhibitory effects of various essential oils and individual components against extended-spectrum beta-lactamase (ESBL) produced by Klebsiella pneumoniae and their chemical compositions.

    PubMed

    Orhan, Ilkay Erdogan; Ozcelik, Berrin; Kan, Yüksel; Kartal, Murat

    2011-10-01

    In the current study, in vitro inhibitory activity of several essential oils obtained from the cultivated plants, Foeniculum vulgare, Mentha piperita and M. spicata, Ocimum basilicum, Origanum majorana, O. onites, O. vulgare, Satureja cuneifolia, and a number of individual essential oil components of terpene and aromatic types were screened against 10 isolated strains of Klebsiella pneumoniae producing extended-spectrum beta-lactamase (ESBL) enzyme, which makes this microorganism quite resistant against the antibiotics: trimetoprime-sulfametoksazol, sulbactam-ampicilin, clavulonate-amoxicilin, ceftriaxon, cefepime, imipenem, ceftazidime, tobramicine, gentamisine, ofloxacin, and ciprofloksasin. All of the essential oils and the components exerted a remarkable inhibition ranging between 32 and 64 μg/mL against all of these strains as strong as the references (ampicilin and oflaxocin) inhibiting at 32 μg/mL. Besides, chemical compositions of the essential oils were elucidated by gas chromatography-mass spectrometry (GC-MS). The essential oils and the pure components widely found in essential oils screened herein have shown remarkable inhibition against ESBL-producing K. pneumoniae strains, which leads to the suggestion that they may be used as food preservatives for this purpose. Practical Application:  The essential oils obtained from Foeniculum vulgare, Mentha piperita and M. spicata, O.cimum basilicum, Origanum majorana, O. onites, O. vulgare, and Satureja cuneifolia as well as common essential oil components have shown notable inhibitory effects against 10 isolated strains of Klebsiella pneumoniae producing extended-spectrum beta-lactamase (ESBL) enzyme and they might be used as food preservative or ingredient. © 2011 Institute of Food Technologists®

  20. Zn2+ at a cellular crossroads

    PubMed Central

    Liang, Xiaomeng; Dempski, Robert E.; Burdette, Shawn C.

    2016-01-01

    Zinc is an essential micronutrient for cellular homeostasis. Initially proposed to only contribute to cellular viability through structural roles and non-redox catalysis, advances in quantifying changes in nM and pM quantities of Zn2+ have elucidated increasing functions as an important signaling molecule. This includes Zn2+-mediated regulation of transcription factors and subsequent protein expression, storage and release of intracellular compartments of zinc quanta into the extracellular space which modulates plasma membrane protein function, as well as intracellular signaling pathways which contribute to the immune response. This review highlights some recent advances in our understanding of zinc signaling. PMID:27010344

  1. Cellular Components, Including Stem-Like Cells, of Preterm Mother's Mature Milk as Compared with Those in Her Colostrum: A Pilot Study.

    PubMed

    Kaingade, Pankaj; Somasundaram, Indumathi; Sharma, Akshita; Patel, Darshan; Marappagounder, Dhanasekaran

    2017-09-01

    Whether the preterm mothers' mature milk retains the same cellular components as those in colostrum including stem-like cell, cell adhesion molecules, and immune cells. A total of five preterm mothers were recruited for the study having an average age of 30.2 years and gestational age of 29.8 weeks from the Pristine Women's Hospital, Kolhapur. Colostrum milk was collected within 2-5 days and matured milk was collected 20-30 days after delivery from the same mothers. Integral cellular components of 22 markers including stem cells, immune cells, and cell adhesion molecules were measured using flowcytometry. Preterm mature milk was found to possess higher expressions of hematopoietic stem cells, mesenchymal stem-like cells, immune cells, few cell adhesion molecules, and side population cells than colostrum. The increased level of these different cell components in mature milk may be important in the long-term preterm baby's health growth. Further similar research in a larger population of various gestational ages and lactation stages of preterm mothers is warranted to support these pilot findings.

  2. Novel functions of CCM1 delimit the relationship of PTB/PH domains.

    PubMed

    Zhang, Jun; Dubey, Pallavi; Padarti, Akhil; Zhang, Aileen; Patel, Rinkal; Patel, Vipulkumar; Cistola, David; Badr, Ahmed

    2017-10-01

    Three NPXY motifs and one FERM domain in CCM1 makes it a versatile scaffold protein for tethering the signaling components together within the CCM signaling complex (CSC). The cellular role of CCM1 protein remains inadequately expounded. Both phosphotyrosine binding (PTB) and pleckstrin homology (PH) domains were recognized as structurally related but functionally distinct domains. By utilizing molecular cloning, protein binding assays and RT-qPCR to identify novel cellular partners of CCM1 and its cellular expression patterns; by screening candidate PTB/PH proteins and subsequently structurally simulation in combining with current X-ray crystallography and NMR data to defined the essential structure of PTB/PH domain for NPXY-binding and the relationship among PTB, PH and FERM domain(s). We identified a group of 28 novel cellular partners of CCM1, all of which contain either PTB or PH domain(s), and developed a novel classification system for these PTB/PH proteins based on their relationship with different NPXY motifs of CCM1. Our results demonstrated that CCM1 has a wide spectrum of binding to different PTB/PH proteins and perpetuates their specificity to interact with certain PTB/PH domains through selective combination of three NPXY motifs. We also demonstrated that CCM1 can be assembled into oligomers through intermolecular interaction between its F3 lobe in FERM domain and one of the three NPXY motifs. Despite being embedded in FERM domain as F3 lobe, F3 module acts as a fully functional PH domain to interact with NPXY motif. The most salient feature of the study was that both PTB and PH domains are structurally and functionally comparable, suggesting that PTB domain is likely evolved from PH domain with polymorphic structural additions at its N-terminus. A new β1A-strand of the PTB domain was discovered and new minimum structural requirement of PTB/PH domain for NPXY motif-binding was determined. Based on our data, a novel theory of structure, function and relationship of PTB, PH and FERM domains has been proposed, which extends the importance of the NPXY-PTB/PH interaction on the CSC signaling and/or other cell receptors with great potential pointing to new therapeutic strategies. The study provides new insight into the structural characteristics of PTB/PH domains, essential structural elements of PTB/PH domain required for NPXY motif-binding, and function and relationship among PTB, PH and FERM domains. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Essential Oils and Their Components as Modulators of Antibiotic Activity against Gram-Negative Bacteria

    PubMed Central

    Aelenei, Petruta; Miron, Anca; Trifan, Adriana; Bujor, Alexandra; Gille, Elvira; Aprotosoaie, Ana Clara

    2016-01-01

    Gram-negative bacteria cause infections that are difficult to treat due to the emergence of multidrug resistance. This review summarizes the current status of the studies investigating the capacity of essential oils and their components to modulate antibiotic activity against Gram-negative bacteria. Synergistic interactions are particularly discussed with reference to possible mechanisms by which essential oil constituents interact with antibiotics. Special emphasis is given to essential oils and volatile compounds that inhibit efflux pumps, thus reversing drug resistance in Gram-negative bacteria. In addition, indifference and antagonism between essential oils/volatile compounds and conventional antibiotics have also been reported. Overall, this literature review reveals that essential oils and their purified components enhance the efficacy of antibiotics against Gram-negative bacteria, being promising candidates for the development of new effective formulations against Gram-negative bacteria. PMID:28930130

  4. [Chemical components from essential oil of Pandanus amaryllifolius leaves].

    PubMed

    Chen, Xiao-Kai; Ge, Fa-Huan

    2014-04-01

    To analyze the chemical compositions of Pandanus amaryllifolius leaves essential oil extracted by steam distillation. The essential oil of Pandanus amaryllifolius leaves was analyzed by gas chromatography-mass spectrum, and the relative content of each component was determined by area normalization method. 128 peaks were separated and 95 compounds were identified, which weighed 97.75%. The main chemical components of the essential oil were phytol (42.15%), squalene (16.81%), what's more pentadecanal (6.17%), pentadecanoic acid (4.49%), 3, 7, 11, 15-tetramethyl-2-hexadecen-1-ol (3.83%), phytone (2.05%) and the other 74 chemical compositions were firstly identified from the essential oil of Pandanus amaryllifolius leaves. The chemical compositions of Pandanu samaryllifolius leaves essential oil was systematically, deeply isolated and identified for the first time. This experiment has provided scientific foundation for further utilization of Pandanus amaryllifolius leaves.

  5. Mechanisms Underlying the Essential Role of Mitochondrial Membrane Lipids in Yeast Chronological Aging

    PubMed Central

    Medkour, Younes; Dakik, Paméla; McAuley, Mélissa; Mohammad, Karamat; Mitrofanova, Darya

    2017-01-01

    The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging. PMID:28593023

  6. The nociception genes painless and Piezo are required for the cellular immune response of Drosophila larvae to wasp parasitization.

    PubMed

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Schulz, Robert A

    2017-05-13

    In vertebrates, interaction between the nervous system and immune system is important to protect a challenged host from stress inputs from external sources. In this study, we demonstrate that sensory neurons are involved in the cellular immune response elicited by wasp infestation of Drosophila larvae. Multidendritic class IV neurons sense contacts from external stimuli and induce avoidance behaviors for host defense. Our findings show that inactivation of these sensory neurons impairs the cellular response against wasp parasitization. We also demonstrate that the nociception genes encoding the mechanosensory receptors Painless and Piezo, both expressed in class IV neurons, are essential for the normal cellular immune response to parasite challenge. Copyright © 2017. Published by Elsevier Inc.

  7. Endoplasmic Reticulum and the Unfolded Protein Response: Dynamics and Metabolic Integration

    PubMed Central

    Bravo, Roberto; Parra, Valentina; Gatica, Damián; Rodriguez, Andrea E.; Torrealba, Natalia; Paredes, Felipe; Wang, Zhao V.; Zorzano, Antonio; Hill, Joseph A.; Jaimovich, Enrique; Quest, Andrew F.G.; Lavandero, Sergio

    2013-01-01

    The endoplasmic reticulum (ER) is a dynamic intracellular organelle with multiple functions essential for cellular homeostasis, development, and stress responsiveness. In response to cellular stress, a well-established signaling cascade, the unfolded protein response (UPR), is activated. This intricate mechanism is an important means of reestablishing cellular homeostasis and alleviating the inciting stress. Now, emerging evidence has demonstrated that the UPR influences cellular metabolism through diverse mechanisms, including calcium and lipid transfer, raising the prospect of involvement of these processes in the pathogenesis of disease, including neurodegeneration, cancer, diabetes mellitus and cardiovascular disease. Here, we review the distinct functions of the ER and UPR from a metabolic point of view, highlighting their association with prevalent pathologies. PMID:23317820

  8. Endoplasmic Reticulum-Plasma Membrane Contacts Regulate Cellular Excitability.

    PubMed

    Dickson, Eamonn J

    2017-01-01

    Cells that have intrinsic electrical excitability utilize changes in membrane potential to communicate with neighboring cells and initiate cellular cascades. Excitable cells like neurons and myocytes have evolved highly specialized subcellular architectures to translate these electrical signals into cellular events. One such structural specialization is sarco-/endoplasmic reticulum-plasma membrane contact sites. These membrane contact sites are positioned by specific membrane-membrane tethering proteins and contain an ever-expanding list of additional proteins that organize information transfer across the junctional space (~ 15-25 nm distance) to shape membrane identity and control cellular excitability. In this chapter we discuss how contacts between the sarco-/endoplasmic reticulum and plasma membrane are essential for regulated excitation-contraction coupling in striated muscle and control of lipid-dependent ion channels.

  9. Induction of Senescence and Identification of Differentially Expressed Genes in Tomato in Response to Monoterpene

    PubMed Central

    Kumar, Vinay; Kumar, Anil; Irfan, Mohammad; Chakraborty, Niranjan; Chakraborty, Subhra; Datta, Asis

    2013-01-01

    Monoterpenes, which are among the major components of plant essential oils, are known for their ecological roles as well for pharmaceutical properties. Geraniol, an acyclic monoterpene induces cell cycle arrest and apoptosis/senescence in various cancer cells and plants; however, the genes involved in the process and the underlying molecular mechanisms are not well understood. In this study, we demonstrate that treatment of tomato plants with geraniol results in induction of senescence due to a substantial alteration in transcriptome. We have identified several geraniol-responsive protein encoding genes in tomato using suppression subtractive hybridization (SSH) approach. These genes comprise of various components of signal transduction, cellular metabolism, reactive oxygen species (ROS), ethylene signalling, apoptosis and DNA damage response. Upregulation of NADPH oxidase and antioxidant genes, and increase in ROS level after geraniol treatment point towards the involvement of ROS in geraniol-mediated senescence. The delayed onset of seedling death and induced expression of geraniol-responsive genes in geraniol-treated ethylene receptor mutant (Nr) suggest that geraniol-mediated senescence involves both ethylene dependent and independent pathways. Moreover, expression analysis during tomato ripening revealed that geraniol-responsive genes are also associated with the natural organ senescence process. PMID:24098759

  10. Molecular response of canola to salt stress: insights on tolerance mechanisms.

    PubMed

    Shokri-Gharelo, Reza; Noparvar, Pouya Motie

    2018-01-01

    Canola ( Brassica napus L. ) is widely cultivated around the world for the production of edible oils and biodiesel fuel. Despite many canola varieties being described as 'salt-tolerant', plant yield and growth decline drastically with increasing salinity. Although many studies have resulted in better understanding of the many important salt-response mechanisms that control salt signaling in plants, detoxification of ions, and synthesis of protective metabolites, the engineering of salt-tolerant crops has only progressed slowly. Genetic engineering has been considered as an efficient method for improving the salt tolerance of canola but there are many unknown or little-known aspects regarding canola response to salinity stress at the cellular and molecular level. In order to develop highly salt-tolerant canola, it is essential to improve knowledge of the salt-tolerance mechanisms, especially the key components of the plant salt-response network. In this review, we focus on studies of the molecular response of canola to salinity to unravel the different pieces of the salt response puzzle. The paper includes a comprehensive review of the latest studies, particularly of proteomic and transcriptomic analysis, including the most recently identified canola tolerance components under salt stress, and suggests what researchers should focus on in future studies.

  11. Contribution of the Peroxisomal acox Gene to the Dynamic Balance of Daumone Production in Caenorhabditis elegans*

    PubMed Central

    Joo, Hyoe-Jin; Kim, Kwang-Youl; Yim, Yong-Hyeon; Jin, You-Xun; Kim, Heekyeong; Kim, Mun-Young; Paik, Young-Ki

    2010-01-01

    Dauer pheromones or daumones, which are signaling molecules that interrupt development and reproduction (dauer larvae) during unfavorable growth conditions, are essential for cellular homeostasis in Caenorhabditis elegans. According to earlier studies, dauer larva formation in strain N2 is enhanced by a temperature increase, suggesting the involvement of a temperature-dependent component in dauer pheromone biosynthesis or sensing. Several naturally occurring daumone analogs (e.g. daumones 1–3) have been identified, and these molecules are predicted to be synthesized in different physiological settings in this nematode. To elucidate the molecular regulatory system that may influence the dynamic balance of specific daumone production in response to sudden temperature changes, we characterized the peroxisomal acox gene encoding acyl-CoA oxidase, which is predicted to catalyze the first reaction during biosynthesis of the fatty acid component of daumones. Using acox-1(ok2257) mutants and a new, robust analytical method, we quantified the three most abundant daumones in worm bodies and showed that acox likely contributes to the dynamic production of various quantities of three different daumones in response to temperature increase, changes that are critical in C. elegans for coping with the natural environmental changes it faces. PMID:20610393

  12. High content cell-based assay for the inflammatory pathway

    NASA Astrophysics Data System (ADS)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  13. Redox-shuttling between chloroplast and cytosol: integration of intra-chloroplast and extra-chloroplast metabolism.

    PubMed

    Taniguchi, Mitsutaka; Miyake, Hiroshi

    2012-06-01

    Reducing equivalents produced in the chloroplast are essential for many key cellular metabolic enzyme reactions. Two redox shuttle systems transfer reductant out of the chloroplast; these systems consist of metabolite transporters, coupled with stromal and cytosolic dehydrogenase isozymes. The transporters function in the redox shuttle and also operate as key enzymes in carbon/nitrogen metabolism. To maintain adequate levels of reductant and proper metabolic balance, the shuttle systems are finely controlled. Also, in the leaves of C(4) plants, cell-specific division of carbon and nitrogen assimilation includes cell-specific localization of the redox shuttle systems. The redox shuttle systems are tightly linked to cellular metabolic pathways and are essential for maintaining metabolic balance between energy and reducing equivalents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Prevention of coronary heart disease: the role of essential fatty acids.

    PubMed Central

    Sinclair, H. M.

    1980-01-01

    There are 2 classes of essential fatty acids (EFA), the linoleic (n-6) and linolenic (n-3). They are required for the glycerophosphatides (phospholipids) of cellular membranes; the transport and oxidation of cholesterol; the formation of prostaglandins. In deficiency of EFA, cellular membranes are imperfectly formed which causes increased susceptibility to various insults and increased permeability. Low-density lipoproteins (LDL) transport cholesterol mainly as cholesteryl linoleate and supply EFA to tissue. A relative deficiency of EFA (i.e. a high ratio in the body of non-EFA such as long-chain saturated fatty acids to EFA) causes an increase in plasma cholesterol. EFAs cause decreased aggregation of platelets. Atherosclerosis is not caused by increased aggregation of platelets, and can be prevalent in a population in which coronary thrombosis is rare. PMID:7465462

  15. Metallic ions released from stainless steel, nickel-free, and titanium orthodontic alloys: toxicity and DNA damage.

    PubMed

    Ortiz, Antonio José; Fernández, Esther; Vicente, Ascensión; Calvo, José L; Ortiz, Clara

    2011-09-01

    The aims of this study were to determine the amounts of metallic ions that stainless steel, nickel-free, and titanium alloys release to a culture medium, and to evaluate the cellular viability and DNA damage of cultivated human fibroblasts with those mediums. The metals were extracted from 10 samples (each consisting of 4 buccal tubes and 20 brackets) of the 3 orthodontic alloys that were submerged for 30 days in minimum essential medium. Next, the determination of metals was performed by using inductively coupled plasma mass spectrometry, cellular viability was assessed by using the tetrazolium reduction assay (MTT assay) (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide), and DNA damage was determined with the Comet assay. The metals measured in all the samples were Ti(47), Cr(52), Mn(55), Co(59), Ni(60), Mo(92), Fe(56), Cu(63), Zn(66), As(75), Se(78), Cd(111), and Pb(208). The cellular viability of the cultured fibroblasts incubated for 7 days with minimum essential medium, with the stainless steel alloy submerged, was close to 0%. Moreover, high concentrations of titanium, chromium, manganese, cobalt, nickel, molybdenum, iron, copper, and zinc were detected. The nickel-free alloy released lower amounts of ions to the medium. The greatest damage in the cellular DNA, measured as the olive moment, was also produced by the stainless steel alloy followed by the nickel-free alloy. Conversely, the titanium alloy had an increased cellular viability and did not damage the cellular DNA, as compared with the control values. The titanium brackets and tubes are the most biocompatible of the 3 alloys studied. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  16. Non-essential role for cilia in coordinating precise alignment of lens fibres

    PubMed Central

    Sugiyama, Yuki; Shelley, Elizabeth J.; Yoder, Bradley K.; Kozmik, Zbynek; May-Simera, Helen L.; Beales, Philip L.; Lovicu, Frank J.; McAvoy, John W.

    2016-01-01

    The primary cilium, a microtubule-based organelle found in most cells, is a centre for mechano-sensing fluid movement and cellular signalling, notably through the Hedgehog pathway. We recently found that each lens fibre cell has an apically situated primary cilium that is polarised to the side of the cell facing the anterior pole of the lens. The direction of polarity is similar in neighbouring cells so that in the global view, lens fibres exhibit planar cell polarity (PCP) along the equatorial-anterior polar axis. Ciliogenesis has been associated with the establishment of PCP, although the exact relationship between PCP and the role of cilia is still controversial. To test the hypothesis that the primary cilia have a role in coordinating the precise alignment/orientation of the fibre cells, IFT88, a key component of the intraflagellar transport (IFT) complex, was removed specifically from the lens at different developmental stages using several lens-specific Cre-expressing mouse lines (MLR10- and LR-Cre). Irrespective of which Cre-line was adopted, both demonstrated that in IFT88-depleted cells, the ciliary axoneme was absent or substantially shortened, confirming the disruption of primary cilia formation. However no obvious histological defects were detected even when IFT88 was removed from the lens placode as early as E9.5. Specifically, the lens fibres aligned/oriented towards the poles to form the characteristic Y-shaped sutures as normal. Consistent with this, in primary lens epithelial explants prepared from these conditional knockout mouse lenses, the basal bodies still showed polarised localisation at the apical surface of elongating cells upon FGF-induced fibre differentiation. We further investigated the lens phenotype in knockouts of Bardet–Biedl Syndrome (BBS) proteins 4 and 8, the components of the BBSome complex which modulate ciliary function. In these BBS4 and 8 knockout lenses, again we found the pattern of the anterior sutures formed by the apical tips of elongating/migrating fibres were comparable to the control lenses. Taken together, these results indicate that primary cilia do not play an essential role in the precise cellular alignment/orientation of fibre cells. Thus, it appears that in the lens cilia are not required to establish PCP. PMID:26825015

  17. Pathoproteomics of testicular tissue deficient in the GARP component VPS54: the wobbler mouse model of globozoospermia.

    PubMed

    Jockusch, Harald; Holland, Ashling; Staunton, Lisa; Schmitt-John, Thomas; Heimann, Peter; Dowling, Paul; Ohlendieck, Kay

    2014-04-01

    In human globozoospermia, round-headed spermatozoa lack an acrosome and therefore cannot properly interact with oocytes. In the wobbler (WR) mouse, an L967Q missense mutation in the vesicular protein-sorting factor VPS54 causes motor neuron degeneration and globozoospermia. Although electron microscopy of WR testis shows all major components of spermatogenesis, they appear in a deranged morphology that prevents the formation of the acrosome. In order to determine proteome-wide changes, affected testes were analysed by 2D-DIGE and MS. The concentration of 8 proteins was increased and that of 35 proteins decreased as compared to wild type. Mass spectrometric analysis identified proteins with an altered concentration to be associated with metabolite transport, fatty acid metabolism, cellular interactions, microtubule assembly and stress response (chaperones Hsp70-2 and Hsp90α). Minor changes were observed for proteins involved in cell redox homeostasis, cytoskeleton formation, PTMs, detoxification and metabolism. The most dramatically decreased protein in WR testis was identified as fatty acid binding protein FABP3, as confirmed by immunoblot analysis. We conclude that a missense mutation in VPS54, an essential component of the Golgi-associated retrograde protein complex, not only prevents the formation of an acrosome but also initiates a cascade of metabolic abnormalities and a stress reaction. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Essential oils--their antimicrobial activity against Escherichia coli and effect on intestinal cell viability.

    PubMed

    Fabian, Dusan; Dusan, Fabian; Sabol, Marián; Marián, Sabol; Domaracká, Katarína; Katarína, Domaracká; Bujnáková, Dobroslava; Dobroslava, Bujnáková

    2006-12-01

    Essential oils are known to possess antimicrobial activity against a wide spectrum of bacteria. The main objective of this study was to evaluate possible harmful effects of four commonly used essential oils and their major components on intestinal cells. Antimicrobial activity of selected plant extracts against enteroinvasive Escherichia coli was dose dependent. However, doses of essential oils with the ability to completely inhibit bacterial growth (0.05%) showed also relatively high cytotoxicity to intestinal-like cells cultured in vitro. Lower doses of essential oils (0.01%) had only partial antimicrobial activity and their damaging effect on Caco-2 cells was only modest. Cell death assessment based on morphological and viability staining followed by fluorescence microscopy showed that essential oils of cinnamon and clove and their major component eugenol had almost no cytotoxic effect at lower doses. Although essential oil of oregano and its component carvacrol slightly increased the incidence of apoptotic cell death, they showed extensive antimicrobial activity even at lower concentrations. Relatively high cytotoxicity was demonstrated by thyme oil, which increased both apoptotic and necrotic cell death incidence. In contrast, its component thymol showed no cytotoxic effect as well as greatly-reduced ability to inhibit visible growth of the chosen pathogen in the doses used. On the other hand, the addition of all essential oils and their components at lower doses, with the exception of thyme oil, to bacterial suspension significantly reduced the cytotoxic effect of E. coli on Caco-2 cells after 1h culture. In conclusion, it is possible to find appropriate doses of essential oils showing both antimicrobial activity and very low detrimental effect on intestinal cells.

  19. Thioredoxin (Trxo1) interacts with proliferating cell nuclear antigen (PCNA) and its overexpression affects the growth of tobacco cell culture.

    PubMed

    Calderón, Aingeru; Ortiz-Espín, Ana; Iglesias-Fernández, Raquel; Carbonero, Pilar; Pallardó, Federico Vicente; Sevilla, Francisca; Jiménez, Ana

    2017-04-01

    Thioredoxins (Trxs), key components of cellular redox regulation, act by controlling the redox status of many target proteins, and have been shown to play an essential role in cell survival and growth. The presence of a Trx system in the nucleus has received little attention in plants, and the nuclear targets of plant Trxs have not been conclusively identified. Thus, very little is known about the function of Trxs in this cellular compartment. Previously, we studied the intracellular localization of PsTrxo1 and confirmed its presence in mitochondria and, interestingly, in the nucleus under standard growth conditions. In investigating the nuclear function of PsTrxo1 we identified proliferating cellular nuclear antigen (PCNA) as a PsTrxo1 target by means of affinity chromatography techniques using purified nuclei from pea leaves. Such protein-protein interaction was corroborated by dot-blot and bimolecular fluorescence complementation (BiFC) assays, which showed that both proteins interact in the nucleus. Moreover, PsTrxo1 showed disulfide reductase activity on previously oxidized recombinant PCNA protein. In parallel, we studied the effects of PsTrxo1 overexpression on Tobacco Bright Yellow-2 (TBY-2) cell cultures. Microscopy and flow-cytometry analysis showed that PsTrxo1 overexpression increases the rate of cell proliferation in the transformed lines, with a higher percentage of the S phase of the cell cycle at the beginning of the cell culture (days 1 and 3) and at the G2/M phase after longer times of culture (day 9), coinciding with an upregulation of PCNA protein. Furthermore, in PsTrxo1 overexpressed cells there is a decrease in the total cellular glutathione content but maintained nuclear GSH accumulation, especially at the end of the culture, which is accompanied by a higher mitotic index, unlike non-overexpressing cells. These results suggest that Trxo1 is involved in the cell cycle progression of TBY-2 cultures, possibly through its link with cellular PCNA and glutathione. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  20. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans.

    PubMed

    Knowlton, Wendy M; Hubert, Thomas; Wu, Zilu; Chisholm, Andrew D; Jin, Yishi

    2017-01-01

    The role of mitochondria within injured neurons is an area of active interest since these organelles are vital for the production of cellular energy in the form of ATP. Using mechanosensory neurons of the nematode Caenorhabditis elegans to test regeneration after neuronal injury in vivo , we surveyed genes related to mitochondrial function for effects on axon regrowth after laser axotomy. Genes involved in mitochondrial transport, calcium uptake, mitophagy, or fission and fusion were largely dispensable for axon regrowth, with the exception of eat-3/Opa1 . Surprisingly, many genes encoding components of the electron transport chain were dispensable for regrowth, except for the iron-sulfur proteins gas-1, nduf-2.2, nduf-7 , and isp-1 , and the putative oxidoreductase rad-8 . In these mutants, axonal development was essentially normal and axons responded normally to injury by forming regenerative growth cones, but were impaired in subsequent axon extension. Overexpression of nduf-2.2 or isp-1 was sufficient to enhance regrowth, suggesting that mitochondrial function is rate-limiting in axon regeneration. Moreover, loss of function in isp-1 reduced the enhanced regeneration caused by either a gain-of-function mutation in the calcium channel EGL-19 or overexpression of the MAP kinase DLK-1. While the cellular function of RAD-8 remains unclear, our genetic analyses place rad-8 in the same pathway as other electron transport genes in axon regeneration. Unexpectedly, rad-8 regrowth defects were suppressed by altered function in the ubiquinone biosynthesis gene clk-1 . Furthermore, we found that inhibition of the mitochondrial unfolded protein response via deletion of atfs-1 suppressed the defective regrowth in nduf-2.2 mutants. Together, our data indicate that while axon regeneration is not significantly affected by general dysfunction of cellular respiration, it is sensitive to the proper functioning of a select subset of electron transport chain genes, or to the cellular adaptations used by neurons under conditions of injury.

  1. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans

    PubMed Central

    Knowlton, Wendy M.; Hubert, Thomas; Wu, Zilu; Chisholm, Andrew D.; Jin, Yishi

    2017-01-01

    The role of mitochondria within injured neurons is an area of active interest since these organelles are vital for the production of cellular energy in the form of ATP. Using mechanosensory neurons of the nematode Caenorhabditis elegans to test regeneration after neuronal injury in vivo, we surveyed genes related to mitochondrial function for effects on axon regrowth after laser axotomy. Genes involved in mitochondrial transport, calcium uptake, mitophagy, or fission and fusion were largely dispensable for axon regrowth, with the exception of eat-3/Opa1. Surprisingly, many genes encoding components of the electron transport chain were dispensable for regrowth, except for the iron-sulfur proteins gas-1, nduf-2.2, nduf-7, and isp-1, and the putative oxidoreductase rad-8. In these mutants, axonal development was essentially normal and axons responded normally to injury by forming regenerative growth cones, but were impaired in subsequent axon extension. Overexpression of nduf-2.2 or isp-1 was sufficient to enhance regrowth, suggesting that mitochondrial function is rate-limiting in axon regeneration. Moreover, loss of function in isp-1 reduced the enhanced regeneration caused by either a gain-of-function mutation in the calcium channel EGL-19 or overexpression of the MAP kinase DLK-1. While the cellular function of RAD-8 remains unclear, our genetic analyses place rad-8 in the same pathway as other electron transport genes in axon regeneration. Unexpectedly, rad-8 regrowth defects were suppressed by altered function in the ubiquinone biosynthesis gene clk-1. Furthermore, we found that inhibition of the mitochondrial unfolded protein response via deletion of atfs-1 suppressed the defective regrowth in nduf-2.2 mutants. Together, our data indicate that while axon regeneration is not significantly affected by general dysfunction of cellular respiration, it is sensitive to the proper functioning of a select subset of electron transport chain genes, or to the cellular adaptations used by neurons under conditions of injury. PMID:28539870

  2. Antimicrobial activity of Austroeupatorium inulaefolium (H.B.K.) against intracellular and extracellular organisms.

    PubMed

    Bua, A; Usai, D; Donadu, M G; Delgado Ospina, J; Paparella, A; Chaves-Lopez, C; Serio, A; Rossi, C; Zanetti, S; Molicotti, P

    2017-10-11

    The antimicrobial activity of Austroeupatorium inulaefolium (H.B.K.) essential oil was studied in different pathogens species and its cytotoxicity activity was determinated on different cellular lines. Despite the good antibacterial activity of A. inulaefolium, it has been cytotoxic at low concentrations. Consequently it might be interesting to determine the antimicrobial activity and cytotoxicity of the major compounds of this essential oil.

  3. NFAT Signaling and the Tumorigenic Microenvironment of the Prostate

    DTIC Science & Technology

    2017-12-01

    ABSTRACT Although the importance of microenvironment in prostate cancer is widely recognized, the molecular and cellular processes leading from genetic ...non-invasive clinical tests. Second, the illustration of the main cellular and molecular components in the tumorigenic microenvironment provides new...potential of NFATc1 as a novel biomarker for prostate cancer diagnosis/prognosis. We will take advantage of the cellular precision, genetic manipulability

  4. The Colossus of ubiquitylation –decrypting a cellular code

    PubMed Central

    Williamson, Adam; Werner, Achim; Rape, Michael

    2013-01-01

    Ubiquitylation is an essential posttranslational modification that can regulate the stability, activity, or localization of thousands of proteins. The reversible attachment of ubiquitin as well as interpretation of the ubiquitin signal depend on dynamic protein networks that are challenging to analyze. In this perspective, we discuss tools of the trade that have recently been developed to dissect mechanisms of ubiquitin-dependent signaling, thereby revealing the critical features of an important cellular code. PMID:23438855

  5. Understanding D-Ribose and Mitochondrial Function.

    PubMed

    Mahoney, Diane E; Hiebert, John B; Thimmesch, Amanda; Pierce, John T; Vacek, James L; Clancy, Richard L; Sauer, Andrew J; Pierce, Janet D

    2018-01-01

    Mitochondria are important organelles referred to as cellular powerhouses for their unique properties of cellular energy production. With many pathologic conditions and aging, mitochondrial function declines, and there is a reduction in the production of adenosine triphosphate. The energy carrying molecule generated by cellular respiration and by pentose phosphate pathway, an alternative pathway of glucose metabolism. D-ribose is a naturally occurring monosaccharide found in the cells and particularly in the mitochondria is essential in energy production. Without sufficient energy, cells cannot maintain integrity and function. Supplemental D-ribose has been shown to improve cellular processes when there is mitochondrial dysfunction. When individuals take supplemental D-ribose, it can bypass part of the pentose pathway to produce D-ribose-5-phosphate for the production of energy. In this article, we review how energy is produced by cellular respiration, the pentose pathway, and the use of supplemental D-ribose.

  6. Domain 4 (D4) of Perfringolysin O to Visualize Cholesterol in Cellular Membranes-The Update.

    PubMed

    Maekawa, Masashi

    2017-03-03

    The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking) in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine). Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4) of Perfringolysin O (PFO, theta toxin), a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  7. Immunomodulatory activity of Zingiber officinale Roscoe, Salvia officinalis L. and Syzygium aromaticum L. essential oils: evidence for humor- and cell-mediated responses.

    PubMed

    Carrasco, Fábio Ricardo; Schmidt, Gustavo; Romero, Adriano Lopez; Sartoretto, Juliano Luiz; Caparroz-Assef, Silvana Martins; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2009-07-01

    The immunomodulatory effect of ginger, Zingiber officinale (Zingiberaceae), sage, Salvia officinalis (Lamiaceae) and clove, Syzygium aromaticum (Myrtaceae), essential oils were evaluated by studying humor- and cell-mediated immune responses. Essential oils were administered to mice (once a day, orally, for a week) previously immunized with sheep red blood cells (SRBCs). Clove essential oil increased the total white blood cell (WBC) count and enhanced the delayed-type hypersensitivity (DTH) response in mice. Moreover, it restored cellular and humoral immune responses in cyclophosphamide-immunosuppressed mice in a dose-dependent manner. Ginger essential oil recovered the humoral immune response in immunosuppressed mice. Contrary to the ginger essential oil response, sage essential oil did not show any immunomodulatory activity. Our findings establish that the immunostimulatory activity found in mice treated with clove essential oil is due to improvement in humor- and cell-mediated immune response mechanisms.

  8. Light-dependent governance of cell shape dimensions in cyanobacteria.

    PubMed

    Montgomery, Beronda L

    2015-01-01

    The regulation of cellular dimension is important for the function and survival of cells. Cellular dimensions, such as size and shape, are regulated throughout the life cycle of bacteria and can be adapted in response to environmental changes to fine-tune cellular fitness. Cell size and shape are generally coordinated with cell growth and division. Cytoskeletal regulation of cell shape and cell wall biosynthesis and/or deposition occurs in a range of organisms. Photosynthetic organisms, such as cyanobacteria, particularly exhibit light-dependent regulation of morphogenes and generation of reactive oxygen species and other signals that can impact cellular dimensions. Environmental signals initiate adjustments of cellular dimensions, which may be vitally important for optimizing resource acquisition and utilization or for coupling the cellular dimensions with the regulation of subcellular organization to maintain optimal metabolism. Although the involvement of cytoskeletal components in the regulation of cell shape is widely accepted, the signaling factors that regulate cytoskeletal and other distinct components involved in cell shape control, particularly in response to changes in external light cues, remain to be fully elucidated. In this review, factors impacting the inter-coordination of growth and division, the relationship between the regulation of cellular dimensions and central carbon metabolism, and consideration of the effects of specific environment signals, primarily light, on cell dimensions in cyanobacteria will be discussed. Current knowledge about the molecular bases of the light-dependent regulation of cellular dimensions and cell shape in cyanobacteria will be highlighted.

  9. Targeting inflammation in pancreatic cancer: Clinical translation

    PubMed Central

    Steele, Colin William; Kaur Gill, Nina Angharad; Jamieson, Nigel Balfour; Carter, Christopher Ross

    2016-01-01

    Preclinical modelling studies are beginning to aid development of therapies targeted against key regulators of pancreatic cancer progression. Pancreatic cancer is an aggressive, stromally-rich tumor, from which few people survive. Within the tumor microenvironment cellular and extracellular components exist, shielding tumor cells from immune cell clearance, and chemotherapy, enhancing progression of the disease. The cellular component of this microenvironment consists mainly of stellate cells and inflammatory cells. New findings suggest that manipulation of the cellular component of the tumor microenvironment is possible to promote immune cell killing of tumor cells. Here we explore possible immunogenic therapeutic strategies. Additionally extracellular stromal elements play a key role in protecting tumor cells from chemotherapies targeted at the pancreas. We describe the experimental findings and the pitfalls associated with translation of stromally targeted therapies to clinical trial. Finally, we discuss the key inflammatory signal transducers activated subsequent to driver mutations in oncogenic Kras in pancreatic cancer. We present the preclinical findings that have led to successful early trials of STAT3 inhibitors in pancreatic adenocarcinoma. PMID:27096033

  10. A targeted boost-and-sort immunization strategy using Escherichia coli BamA identifies rare growth inhibitory antibodies.

    PubMed

    Vij, Rajesh; Lin, Zhonghua; Chiang, Nancy; Vernes, Jean-Michel; Storek, Kelly M; Park, Summer; Chan, Joyce; Meng, Y Gloria; Comps-Agrar, Laetitia; Luan, Peng; Lee, Sophia; Schneider, Kellen; Bevers, Jack; Zilberleyb, Inna; Tam, Christine; Koth, Christopher M; Xu, Min; Gill, Avinash; Auerbach, Marcy R; Smith, Peter A; Rutherford, Steven T; Nakamura, Gerald; Seshasayee, Dhaya; Payandeh, Jian; Koerber, James T

    2018-05-08

    Outer membrane proteins (OMPs) in Gram-negative bacteria are essential for a number of cellular functions including nutrient transport and drug efflux. Escherichia coli BamA is an essential component of the OMP β-barrel assembly machinery and a potential novel antibacterial target that has been proposed to undergo large (~15 Å) conformational changes. Here, we explored methods to isolate anti-BamA monoclonal antibodies (mAbs) that might alter the function of this OMP and ultimately lead to bacterial growth inhibition. We first optimized traditional immunization approaches but failed to identify mAbs that altered cell growth after screening >3000 hybridomas. We then developed a "targeted boost-and-sort" strategy that combines bacterial cell immunizations, purified BamA protein boosts, and single hybridoma cell sorting using amphipol-reconstituted BamA antigen. This unique workflow improves the discovery efficiency of FACS + mAbs by >600-fold and enabled the identification of rare anti-BamA mAbs with bacterial growth inhibitory activity in the presence of a truncated lipopolysaccharide layer. These mAbs represent novel tools for dissecting the BamA-mediated mechanism of β-barrel folding and our workflow establishes a new template for the efficient discovery of novel mAbs against other highly dynamic membrane proteins.

  11. From Cells to Virus Particles: Quantitative Methods to Monitor RNA Packaging

    PubMed Central

    Ferrer, Mireia; Henriet, Simon; Chamontin, Célia; Lainé, Sébastien; Mougel, Marylène

    2016-01-01

    In cells, positive strand RNA viruses, such as Retroviridae, must selectively recognize their full-length RNA genome among abundant cellular RNAs to assemble and release particles. How viruses coordinate the intracellular trafficking of both RNA and protein components to the assembly sites of infectious particles at the cell surface remains a long-standing question. The mechanisms ensuring packaging of genomic RNA are essential for viral infectivity. Since RNA packaging impacts on several essential functions of retroviral replication such as RNA dimerization, translation and recombination events, there are many studies that require the determination of RNA packaging efficiency and/or RNA packaging ability. Studies of RNA encapsidation rely upon techniques for the identification and quantification of RNA species packaged by the virus. This review focuses on the different approaches available to monitor RNA packaging: Northern blot analysis, ribonuclease protection assay and quantitative reverse transcriptase-coupled polymerase chain reaction as well as the most recent RNA imaging and sequencing technologies. Advantages, disadvantages and limitations of these approaches will be discussed in order to help the investigator to choose the most appropriate technique. Although the review was written with the prototypic simple murine leukemia virus (MLV) and complex human immunodeficiency virus type 1 (HIV-1) in mind, the techniques were described in order to benefit to a larger community. PMID:27556480

  12. Evidence for symbiont-induced alteration of a host's gene expression: irreversible loss of SAM synthetase from Amoeba proteus.

    PubMed

    Choi, J Y; Lee, T W; Jeon, K W; Ahn, T I

    1997-01-01

    Symbiont-bearing xD amoebae no longer produce a 45-kDa cytoplasmic protein that functions as S-adenosylmethionine synthetase in symbiont-free D amoebae. The absence of the protein in xD amoebae is attributable to xD amoeba's failure to transcribe the corresponding gene as a result of harboring bacterial symbionts. However, xD amoebae have about half the level of enzyme activity found in D amoebae, indicating that they use an alternative source for the enzyme. xD amoebae originated from D amoebae by bacterial infection and now depend on their symbionts for survival. xD amoebae exhibit irreversible nucleolar abnormalities when their symbionts are removed, suggesting that X-bacteria supply the needed enzyme. A monoclonal antibody against the 45-kDa protein was produced and used as a probe in cloning its corresponding cDNA. The product of the cDNA was found to have S-adenosylmethionine synthetase activity. These results show how symbiotic X-bacteria may become essential cellular components of amoeba by supplementing a genetic defect for an amoeba's house-keeping gene that is brought about by an action of X-bacteria themselves. This is the first reported example in which symbionts alter the host's gene expression to block the production of an essential protein.

  13. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction.

    PubMed

    Suzuki, Sho W; Onodera, Jun; Ohsumi, Yoshinori

    2011-02-25

    Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg) mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT) cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species) scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA). We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.

  14. Identification of repellent odorants to the body louse, Pediculus humanus corporis, in clove essential oil.

    PubMed

    Iwamatsu, Takuma; Miyamoto, Daisuke; Mitsuno, Hidefumi; Yoshioka, Yoshiaki; Fujii, Takeshi; Sakurai, Takeshi; Ishikawa, Yukio; Kanzaki, Ryohei

    2016-04-01

    The control of body lice is an important issue for human health and welfare because lice act as vectors of disease such as typhus, relapsing fever, and trench fever. Body lice exhibit avoidance behavior to some essential oils, including clove essential oil. Therefore, odorants containing clove essential oil components may potentially be useful in the development of repellents to body lice. However, such odorants that induce avoidance behavior in body lice have not yet been identified from clove essential oil. Here, we established an analysis method to evaluate the avoidance behavior of body lice to specific odorants. The behavioral analysis of the body lice in response to clove essential oil and its constituents revealed that eugenol, a major component of clove essential oil, has strong repellent effect on body lice, whereas the other components failed to induce obvious avoidance behavior. A comparison of the repellent effects of eugenol with those of other structurally related odorants revealed possible moieties that are important for the avoidance effects to body lice. The repellent effect of eugenol to body lice was enhanced by combining it with the other major component of clove essential oil, β-caryophyllene. We conclude that a synthetic blend of eugenol and β-caryophyllene is the most effective repellent to body lice. This finding will be valuable as the potential use of eugenol as body lice repellent.

  15. Mathematical Modeling of Cellular Metabolism.

    PubMed

    Berndt, Nikolaus; Holzhütter, Hermann-Georg

    Cellular metabolism basically consists of the conversion of chemical compounds taken up from the extracellular environment into energy (conserved in energy-rich bonds of organic phosphates) and a wide array of organic molecules serving as catalysts (enzymes), information carriers (nucleic acids), and building blocks for cellular structures such as membranes or ribosomes. Metabolic modeling aims at the construction of mathematical representations of the cellular metabolism that can be used to calculate the concentration of cellular molecules and the rates of their mutual chemical interconversion in response to varying external conditions as, for example, hormonal stimuli or supply of essential nutrients. Based on such calculations, it is possible to quantify complex cellular functions as cellular growth, detoxification of drugs and xenobiotic compounds or synthesis of exported molecules. Depending on the specific questions to metabolism addressed, the methodological expertise of the researcher, and available experimental information, different conceptual frameworks have been established, allowing the usage of computational methods to condense experimental information from various layers of organization into (self-) consistent models. Here, we briefly outline the main conceptual frameworks that are currently exploited in metabolism research.

  16. Design of Efficient Mirror Adder in Quantum- Dot Cellular Automata

    NASA Astrophysics Data System (ADS)

    Mishra, Prashant Kumar; Chattopadhyay, Manju K.

    2018-03-01

    Lower power consumption is an essential demand for portable multimedia system using digital signal processing algorithms and architectures. Quantum dot cellular automata (QCA) is a rising nano technology for the development of high performance ultra-dense low power digital circuits. QCA based several efficient binary and decimal arithmetic circuits are implemented, however important improvements are still possible. This paper demonstrate Mirror Adder circuit design in QCA. We present comparative study of mirror adder cells designed using conventional CMOS technique and mirror adder cells designed using quantum-dot cellular automata. QCA based mirror adders are better in terms of area by order of three.

  17. Connecting Photosynthesis and Cellular Respiration: Preservice Teachers' Conceptions

    ERIC Educational Resources Information Center

    Brown, Mary H.; Schwartz, Renee S.

    2009-01-01

    The biological processes of photosynthesis and plant cellular respiration include multiple biochemical steps, occur simultaneously within plant cells, and share common molecular components. Yet, learners often compartmentalize functions and specialization of cell organelles relevant to these two processes, without considering the interconnections…

  18. Ovarian mucinous tumors arising from mature cystic teratomas--a molecular genetic approach for understanding the cellular origin.

    PubMed

    Fujii, Kaho; Yamashita, Yoriko; Yamamoto, Toshimichi; Takahashi, Koji; Hashimoto, Katsunori; Miyata, Tomoko; Kawai, Kumi; Kikkawa, Fumitaka; Toyokuni, Shinya; Nagasaka, Tetsuro

    2014-04-01

    Mucinous tumors of the ovary are frequently associated with mature cystic teratomas, and it has been speculated that the mucinous tumors arise from teratoma components. The cellular origins of mature cystic teratomas are believed to be post-meiotic ovarian germ cells, and the analysis of microsatellite markers such as short tandem repeats is suitable for determining the cellular origin of tumors. In this study, we analyzed 3 ovarian mature cystic teratomas, all of which were associated with simultaneous ovarian mucinous tumors within the same ovary. Two of the 3 mucinous tumors were intestinal-type and the other was endocervical type. A laser capture microdissection technique was used to separate the epithelial component of the mucinous tumor, the components of the mature cystic teratoma, and control ovarian somatic tissue. Using short tandem repeat analysis based on 6 markers (D20S480, D6S2439, D6S1056, D9S1118, D4S2639, and D17S1290), we could distinguish the germ cell (homozygous) or somatic (heterozygous) origin of a given component in each sample. The epithelial components of the intestinal-type mucinous tumors in cases 1 and 2 were homozygous, and the epithelial component in case 3 (endocervical type) was heterozygous. All teratomatous components were homozygous, and the control components were heterozygous. In addition, we analyzed 3 mature cystic teratomas without mucinous tumors, and all 3 were homozygous in the tumor component. Our data suggest that the origin of mucinous tumors in the ovary may differ among histological subtypes, and intestinal-type mucinous tumors may arise from mature cystic teratomas, although endocervical-type mucinous tumors may not. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Signals for the lysosome: a control center for cellular clearance and energy metabolism

    PubMed Central

    Settembre, Carmine; Fraldi, Alessandro; Medina, Diego L.

    2015-01-01

    Preface For a long time lysosomes were considered merely to be cellular “incinerators” involved in the degradation and recycling of cellular waste. However, there is now compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signaling and energy metabolism. Furthermore, the essential role of lysosomes in the autophagic pathway puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master gene, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy, has revealed how the lysosome adapts to environmental cues, such as starvation, and suggests novel therapeutic strategies for modulating lysosomal function in human disease. PMID:23609508

  20. Epigenetics and Cellular Metabolism

    PubMed Central

    Xu, Wenyi; Wang, Fengzhong; Yu, Zhongsheng; Xin, Fengjiao

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well. PMID:27695375

  1. [Analysis of essential oil extracted from Lactuca sativa seeds growing in Xinjiang by GC-MS].

    PubMed

    Xu, Fang; Wang, Qiang; Haji, Akber Aisa

    2011-12-01

    To analyze the components of essential oil from Lactuca sativa seeds growing in Xinjiang. The components of essential oil from Lactuca sativa seeds were analyzed by gas chromatography-mass spectrometry (GC-MS). 62 components were identified from 71 separated peaks,amounting to total mass fraction 95.07%. The dominant compounds were n-Hexanol (36.31%), n-Hexanal (13.71%), trans-2-Octen-l-ol (8.09%) and 2-n-Pentylfuran (4.41%). The research provides a theoretical basis for the exploitation and use of Lactuca sativa seeds resource.

  2. Localization and Sub-Cellular Shuttling of HTLV-1 Tax with the miRNA Machinery

    PubMed Central

    Van Duyne, Rachel; Guendel, Irene; Klase, Zachary; Narayanan, Aarthi; Coley, William; Jaworski, Elizabeth; Roman, Jessica; Popratiloff, Anastas; Mahieux, Renaud; Kehn-Hall, Kylene; Kashanchi, Fatah

    2012-01-01

    The innate ability of the human cell to silence endogenous retroviruses through RNA sequences encoding microRNAs, suggests that the cellular RNAi machinery is a major means by which the host mounts a defense response against present day retroviruses. Indeed, cellular miRNAs target and hybridize to specific sequences of both HTLV-1 and HIV-1 viral transcripts. However, much like the variety of host immune responses to retroviral infection, the virus itself contains mechanisms that assist in the evasion of viral inhibition through control of the cellular RNAi pathway. Retroviruses can hijack both the enzymatic and catalytic components of the RNAi pathway, in some cases to produce novel viral miRNAs that can either assist in active viral infection or promote a latent state. Here, we show that HTLV-1 Tax contributes to the dysregulation of the RNAi pathway by altering the expression of key components of this pathway. A survey of uninfected and HTLV-1 infected cells revealed that Drosha protein is present at lower levels in all HTLV-1 infected cell lines and in infected primary cells, while other components such as DGCR8 were not dramatically altered. We show colocalization of Tax and Drosha in the nucleus in vitro as well as coimmunoprecipitation in the presence of proteasome inhibitors, indicating that Tax interacts with Drosha and may target it to specific areas of the cell, namely, the proteasome. In the presence of Tax we observed a prevention of primary miRNA cleavage by Drosha. Finally, the changes in cellular miRNA expression in HTLV-1 infected cells can be mimicked by the add back of Drosha or the addition of antagomiRs against the cellular miRNAs which are downregulated by the virus. PMID:22808228

  3. Cellular generators of the cortical auditory evoked potential initial component.

    PubMed

    Steinschneider, M; Tenke, C E; Schroeder, C E; Javitt, D C; Simpson, G V; Arezzo, J C; Vaughan, H G

    1992-01-01

    Cellular generators of the initial cortical auditory evoked potential (AEP) component were determined by analyzing laminar profiles of click-evoked AEPs, current source density, and multiple unit activity (MUA) in primary auditory cortex of awake monkeys. The initial AEP component is a surface-negative wave, N8, that peaks at 8-9 msec and inverts in polarity below lamina 4. N8 is generated by a lamina 4 current sink and a deeper current source. Simultaneous MUA is present from lower lamina 3 to the subjacent white matter. Findings indicate that thalamocortical afferents are a generator of N8 and support a role for lamina 4 stellate cells. Relationships to the human AEP are discussed.

  4. Chemical composition, antioxidant and antimicrobial activities of essential oil from Wedelia prostrata

    PubMed Central

    Dai, Jiali; Zhu, Liang; Yang, Li; Qiu, Jun

    2013-01-01

    The following study deals with the chemical composition, antioxidant and antimicrobial activity of essential oils of Wedelia prostrata and their main constituents in vitro. A total of 70 components representing 99.26 % of the total oil were identified. The main compounds in the oil were limonene (11.38 %) and α-pinene (10.74 %). Antioxidant assays (1,1-diphenyl-2-picrylhydrazyl, superoxide anion radical, and reducing power test) demonstrate moderate activities for the essential oil and its main components (limonene and α-pinene). The essential oil (1000 μg/disc) exhibited promising antimicrobial activity against 10 strains of test microorganisms as a diameter of zones of inhibition (20.8 to 22.2 mm) and MIC values (125 to 250 µg/ml). The activities of limonene and α-pinene were also determined as main components of the oil. α-Pinene showed higher antimicrobial activity than the essential oil with a diameter of zones of inhibition (20.7 to 22.3 mm) and MIC values (62.5 to 125 µg/ml). The antioxidant and antimicrobial properties of the essential oil may be attributed to the synergistic effects of its diverse major and minor components. PMID:26648809

  5. Anthrax Toxin

    DTIC Science & Technology

    1984-10-26

    focused initially on EF because it seemed possible that this component, like cholera toxin, might cause edema in skin through elevation of cellular cAMP...behavior differed from that seen in cells exposed to cholera toxin, where cellular cAMP levels remain elevated upon toxin removal. Studies in CHO cell...LF, the rat bioassay is not likely to be an appropriate system for studying the cellular and molecular mechanisms of action of LF. Therefore, a survey

  6. Longitudinal monitoring of Gaussia and Nano luciferase activities to concurrently assess ER calcium homeostasis and ER stress in vivo.

    PubMed

    Wires, Emily S; Henderson, Mark J; Yan, Xiaokang; Bäck, Susanne; Trychta, Kathleen A; Lutrey, Molly H; Harvey, Brandon K

    2017-01-01

    The endoplasmic reticulum (ER) is essential to many cellular processes including protein processing, lipid metabolism and calcium storage. The ability to longitudinally monitor ER homeostasis in the same organism would offer insight into progressive molecular and cellular adaptations to physiologic or pathologic states, but has been challenging. We recently described the creation of a Gaussia luciferase (GLuc)-based secreted ER calcium-modulated protein (SERCaMP or GLuc-SERCaMP) to longitudinally monitor ER calcium homeostasis. Here we describe a complementary tool to measure the unfolded protein response (UPR), utilizing a UPRE-driven secreted Nano luciferase (UPRE-secNLuc) to examine the activating transcription factor-6 (ATF6) and inositol-requiring enzyme 1 (IRE1) pathways of the UPR. We observed an upregulation of endogenous ATF6- and XBP1-regulated genes following pharmacologically-induced ER stress that was consistent with responsiveness of the UPRE sensor. Both GLuc and NLuc-based reporters have favorable properties for in vivo studies, however, they are not easily used in combination due to overlapping substrate activities. We describe a method to measure the enzymatic activities of both reporters from a single sample and validated the approach using culture medium and rat blood samples to measure GLuc-SERCaMP and UPRE-secNLuc. Measuring GLuc and NLuc activities from the same sample allows for the robust and quantitative measurement of two cellular events or cell populations from a single biological sample. This study is the first to describe the in vivo measurement of UPRE activation by sampling blood, using an approach that allows concurrent interrogation of two components of ER homeostasis.

  7. Microtubule-Actin Cross-Linking Factor 1: Domains, Interaction Partners, and Tissue-Specific Functions.

    PubMed

    Goryunov, Dmitry; Liem, Ronald K H

    2016-01-01

    The cytoskeleton of most eukaryotic cells is composed of three principal filamentous components: actin filaments, microtubules (MTs), and intermediate filaments. It is a highly dynamic system that plays crucial roles in a wide range of cellular processes, including migration, adhesion, cytokinesis, morphogenesis, intracellular traffic and signaling, and structural flexibility. Among the large number of cytoskeleton-associated proteins characterized to date, microtubule-actin cross-linking factor 1 (MACF1) is arguably the most versatile integrator and modulator of cytoskeleton-related processes. MACF1 belongs to the plakin family of proteins, and within it, to the spectraplakin subfamily. These proteins are characterized by the ability to bridge MT and actin cytoskeletal networks in a dynamic fashion, which underlies their involvement in the regulation of cell migration, axonal extension, and vesicular traffic. Studying MACF1 functions has provided insights not only into the regulation of the cytoskeleton but also into molecular mechanisms of both normal cellular physiology and cellular pathology. Multiple MACF1 isoforms exist, composed of a large variety of alternatively spliced domains. Each of these domains mediates a specific set of interactions and functions. These functions are manifested in tissue and cell-specific phenotypes observed in conditional MACF1 knockout mice. The conditional models described to date reveal critical roles of MACF1 in mammalian skin, nervous system, heart muscle, and intestinal epithelia. Complete elimination of MACF1 is early embryonic lethal, indicating an essential role for MACF1 in early development. Further studies of MACF1 domains and their interactions will likely reveal multiple new roles of this protein in various tissues. © 2016 Elsevier Inc. All rights reserved.

  8. The gammaTuRC Nanomachine Mechanism and Future Applications

    NASA Astrophysics Data System (ADS)

    Riehlman, Timothy D.

    The complexity and precision of the eukaryotic cell's cytoskeletal network is unrivaled by any man-made systems, perfected by billions of years of evolution, mastering elegant processes of self-assembly, error correction, and self-repair. Understanding the capabilities of these networks will have important and far reaching applications in human medicine by aiding our understanding of developmental processes, cellular division, and disease mechanisms, and through biomimicry will provide insights for biosynthetic manufacturing at the nanoscale and across scales. My research utilizes cross species techniques from Human to the model organism of Fission Yeast to investigate the structure and mechanisms of the g-tubulin ring complex (gTuRC). The gTuRC is a highly conserved eukaryotic multiprotein complex serving as a microtubule organizing center (MTOC) responsible for microtubule nucleation through templating, regulation of dynamics, and establishment of microtubule polarity. Microtubules are 25 nm diameter dynamic flexible polymers of a/b-tubulin heterodimers that function as scaffolds, force generators, distributors, and intracellular highways. The microtubule cytoskeleton is essential for numerous fundamental cellular processes such as mitotic division of chromosomes and cell division, organelle distribution within the cell, cell signaling, and cell shape. This incredible diversity in functions is made possible in part due to molecular motor Kinesin-like proteins (Klps), which allow expansion into more specialized neural, immune, and ciliated cell functions. Combined, the MTOC, microtubules, and Klps represent ideal microtubule cytoskeleton protein (MCP) modular components for in vitro biomimicry towards generation of adaptable patterned networks for human designed applications. My research investigates the hypothesis that a mechanistic understanding of conserved MTOC gTuRC mechanisms will help us understand dynamic cellular nanomachines and their ability to self-assemble complex structures for applications in biomedicine and new roles in biomimetic nanotechnologies.

  9. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It

    PubMed Central

    Kraft, Mary L.

    2017-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with cholesterol or hemagglutinin. The alternate views of plasma membrane organization suggested by these findings are discussed. PMID:28119913

  10. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It.

    PubMed

    Kraft, Mary L

    2016-01-01

    Sphingolipids are structural components in the plasma membranes of eukaryotic cells. Their metabolism produces bioactive signaling molecules that modulate fundamental cellular processes. The segregation of sphingolipids into distinct membrane domains is likely essential for cellular function. This review presents the early studies of sphingolipid distribution in the plasma membranes of mammalian cells that shaped the most popular current model of plasma membrane organization. The results of traditional imaging studies of sphingolipid distribution in stimulated and resting cells are described. These data are compared with recent results obtained with advanced imaging techniques, including super-resolution fluorescence detection and high-resolution secondary ion mass spectrometry (SIMS). Emphasis is placed on the new insight into the sphingolipid organization within the plasma membrane that has resulted from the direct imaging of stable isotope-labeled lipids in actual cell membranes with high-resolution SIMS. Super-resolution fluorescence techniques have recently revealed the biophysical behaviors of sphingolipids and the unhindered diffusion of cholesterol analogs in the membranes of living cells are ultimately in contrast to the prevailing hypothetical model of plasma membrane organization. High-resolution SIMS studies also conflicted with the prevailing hypothesis, showing sphingolipids are concentrated in micrometer-scale membrane domains, but cholesterol is evenly distributed within the plasma membrane. Reductions in cellular cholesterol decreased the number of sphingolipid domains in the plasma membrane, whereas disruption of the cytoskeleton eliminated them. In addition, hemagglutinin, a transmembrane protein that is thought to be a putative raft marker, did not cluster within sphingolipid-enriched regions in the plasma membrane. Thus, sphingolipid distribution in the plasma membrane is dependent on the cytoskeleton, but not on favorable interactions with cholesterol or hemagglutinin. The alternate views of plasma membrane organization suggested by these findings are discussed.

  11. An in vitro examination of selenium-cadmium antagonism using primary cultures of rainbow trout (Oncorhynchus mykiss) hepatocytes.

    PubMed

    Jamwal, Ankur; Naderi, Mohammad; Niyogi, Som

    2016-02-01

    The present study evaluated the ameliorative properties of selenium (Se) against cadmium (Cd)-induced oxidative stress, using isolated rainbow trout (Oncorhynchus mykiss) hepatocytes in primary culture as the model experimental system. Cadmium (Cd) is known to induce cytotoxic effects by disrupting cellular oxidative homeostasis. On the other hand, selenium (Se) is an essential component of biological antioxidative machinery, and thus may provide protection against the toxic insults of Cd by augmenting the cellular antioxidant response. However, Se, when present above the threshold concentration, can also induce reactive oxygen species (ROS) generation and cause oxidative damage. In this experiment, trout hepatocytes in primary culture were exposed to 100 µM Cd, alone or in combination with different concentrations (25-500 µM) of selenite (SeO3(2-)) or selenomethionine (SeMet) for 48 h. Our findings indicated that both chemical forms of Se, at the lowest concentration used (25 µM), significantly reduced Cd-induced cytotoxicity (measured as cell viability). In contrast, Se at higher concentrations (≥ 50 µM) did not offer any protection against a Cd induced decrease in cell viability. The reduced cytotoxicity of Cd in the presence of 25 µM selenite or SeMet was associated with reduced intracellular ROS production, recovery of the cellular thiol status (ratio of reduced and oxidized glutathione), and amelioration in the activities of major enzymatic antioxidants (superoxide dismutase, catalase, and glutathione peroxidase). Co-treatment of hepatocytes with Cd and pharmacological antioxidants (TEMPO and NAC) also reduced Cd-induced oxidative stress in trout hepatocytes. This provided further evidence that Se likely ameliorates Cd toxicity via different antioxidative mechanisms.

  12. Monomeric cocoa catechins enhance β-cell function by increasing mitochondrial respiration.

    PubMed

    Rowley, Thomas J; Bitner, Benjamin F; Ray, Jason D; Lathen, Daniel R; Smithson, Andrew T; Dallon, Blake W; Plowman, Chase J; Bikman, Benjamin T; Hansen, Jason M; Dorenkott, Melanie R; Goodrich, Katheryn M; Ye, Liyun; O'Keefe, Sean F; Neilson, Andrew P; Tessem, Jeffery S

    2017-11-01

    A hallmark of type 2 diabetes (T2D) is β-cell dysfunction and the eventual loss of functional β-cell mass. Therefore, mechanisms that improve or preserve β-cell function could be used to improve the quality of life of individuals with T2D. Studies have shown that monomeric, oligomeric and polymeric cocoa flavanols have different effects on obesity, insulin resistance and glucose tolerance. We hypothesized that these cocoa flavanols may have beneficial effects on β-cell function. INS-1 832/13-derived β-cells and primary rat islets cultured with a monomeric catechin-rich cocoa flavanol fraction demonstrated enhanced glucose-stimulated insulin secretion, while cells cultured with total cocoa extract and with oligomeric or polymeric procyanidin-rich fraction demonstrated no improvement. The increased glucose-stimulated insulin secretion in the presence of the monomeric catechin-rich fraction corresponded with enhanced mitochondrial respiration, suggesting improvements in β-cell fuel utilization. Mitochondrial complex III, IV and V components are up-regulated after culture with the monomer-rich fraction, corresponding with increased cellular ATP production. The monomer-rich fraction improved cellular redox state and increased glutathione concentration, which corresponds with nuclear factor, erythroid 2 like 2 (Nrf2) nuclear localization and expression of Nrf2 target genes including nuclear respiratory factor 1 (Nrf1) and GA binding protein transcription factor alpha subunit (GABPA), essential genes for increasing mitochondrial function. We propose a model by which monomeric cocoa catechins improve the cellular redox state, resulting in Nrf2 nuclear migration and up-regulation of genes critical for mitochondrial respiration, glucose-stimulated insulin secretion and ultimately improved β-cell function. These results suggest a mechanism by which monomeric cocoa catechins exert their effects as an effective complementary strategy to benefit T2D patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Vibroacoustic disease: biological effects of infrasound and low-frequency noise explained by mechanotransduction cellular signalling.

    PubMed

    Alves-Pereira, Mariana; Castelo Branco, Nuno A A

    2007-01-01

    At present, infrasound (0-20 Hz) and low-frequency noise (20-500 Hz) (ILFN, 0-500 Hz) are agents of disease that go unchecked. Vibroacoustic disease (VAD) is a whole-body pathology that develops in individuals excessively exposed to ILFN. VAD has been diagnosed within several professional groups employed within the aeronautical industry, and in other heavy industries. However, given the ubiquitous nature of ILFN and the absence of legislation concerning ILFN, VAD is increasingly being diagnosed among members of the general population, including children. VAD is associated with the abnormal growth of extra-cellular matrices (collagen and elastin), in the absence of an inflammatory process. In VAD, the end-product of collagen and elastin growth is reinforcement of structural integrity. This is seen in blood vessels, cardiac structures, trachea, lung, and kidney of both VAD patients and ILFN-exposed animals. VAD is, essentially, a mechanotransduction disease. Inter- and intra-cellular communication is achieved through both biochemical and mechanotranduction signalling. When the structural components of tissue are altered, as is seen in ILFN-exposed specimens, the mechanically mediated signalling is, at best, impaired. Common medical diagnostic tests, such as EKG, EEG, as well as many blood chemistry analyses, are based on the mal-function of biochemical signalling processes. VAD patients typically present normal values for these tests. However, when echocardiography, brain MRI or histological studies are performed, where structural changes can be identified, all consistently show significant changes in VAD patients and ILFN-exposed animals. Frequency-specific effects are not yet known, valid dose-responses have been difficult to identify, and large-scale epidemiological studies are still lacking.

  14. Atg5 is Essential for Cellular Immunity in vivo and recruitment of a p47 GTPase to the Toxoplasma gondii Parasitophorous Vacuole in Macrophages

    PubMed Central

    Zhao, Zijiang; Fux, Blima; Goodwin, Megan; Dunay, Ildiko R.; Strong, David; Miller, Brian C.; Cadwell, Ken; Delgado-Vargas, Monica; Ponpuak, Marisa; Green, Karen G.; Schmidt, Robert E.; Mizushima, Noboru; Deretic, Vojo; Sibley, L. David; Virgin, Herbert W.

    2008-01-01

    SUMMARY The physiologic importance of autophagy proteins for control of mammalian bacterial and parasitic infection in vivo is unknown. We show that expression of the essential autophagy protein Atg5 in granulocytes and macrophages is required for in vivo resistance to infection with L. monocytogenes and T. gondii. In primary macrophages, Atg5 was not required for IFNγ/LPS-mediated transcription, induction of nitric oxide, or inhibition of T. gondii replication. However, Atg5 was required for IFNγ/LPS-induced damage to the T. gondii parasitophorous vacuole membrane and parasite clearance. While we did not detect autophagosomes enveloping T. gondii, Atg5 was required for recruitment of the IFNγ-inducible p47 GTPase IIGP1 (Irga6) to the vacuole membrane. This work shows that Atg5 expression in phagocytic cells is essential for cellular immunity to intracellular pathogens in vivo and that an autophagy protein can participate in immunity and intracellular killing of pathogens via autophagosome-independent processes such as GTPase trafficking. PMID:18996346

  15. Chemical Components of Four Essential Oils in Aromatherapy Recipe.

    PubMed

    Tadtong, Sarin; Kamkaen, Narisa; Watthanachaiyingcharoen, Rith; Ruangrungsi, Nijsiri

    2015-06-01

    This study focused on characterization of the chemical components of an aromatherapy recipe. The formulation consisted of four blended essential oils; rosemary oil, eucalyptus oil, pine oil and lime oil (volume ratio 6 : 2 : 1 : 1). The single and combination essential oils were identified by gas chromatography-mass spectrometry (GC-MS). The analysis of GC-MS data revealed that several components exist in the mixture. The five most important components of the blended essential oils were 1,8-cineole (35.6 %), α-pinene (11.1%), limonene (9.6%), camphor (8.4%), and camphene (6.6%). The main components of rosemary oil were 1,8-cineole (37.3%), α-pinene (19.3%), camphor (14.7%), camphene (8.8%), and β-pinene (5.5%); of eucalyptus oil 1,8-cineole (82.6%) followed by limonene (7.4%), o-cymene (4.3%), γ-terpinene (2.7%), and α-pinene (1.5%); of pine oil terpinolene (26.7%), α-terpineol (20.50%), 1-terpineol (10.8%), α-pinene (6.0%), and γ-terpineol (5.3%); and of lime oil limonene (62.9%), γ-terpinene (11.5%), α-terpineol (7.6%), terpinolene (6.0%), and α-terpinene (2.8%). The present study provided a theoretical basis for the potential application of blended essential oils to be used as an aromatherapy essential oil recipe. GC-MS serves as a suitable and reliable method for the quality control of the chemical markers.

  16. TopBP1 deficiency causes an early embryonic lethality and induces cellular senescence in primary cells.

    PubMed

    Jeon, Yoon; Ko, Eun; Lee, Kyung Yong; Ko, Min Ji; Park, Seo Young; Kang, Jeeheon; Jeon, Chang Hwan; Lee, Ho; Hwang, Deog Su

    2011-02-18

    TopBP1 plays important roles in chromosome replication, DNA damage response, and other cellular regulatory functions in vertebrates. Although the roles of TopBP1 have been studied mostly in cancer cell lines, its physiological function remains unclear in mice and untransformed cells. We generated conditional knock-out mice in which exons 5 and 6 of the TopBP1 gene are flanked by loxP sequences. Although TopBP1-deficient embryos developed to the blastocyst stage, no homozygous mutant embryos were recovered at E8.5 or beyond, and completely resorbed embryos were frequent at E7.5, indicating that mutant embryos tend to die at the peri-implantation stage. This finding indicated that TopBP1 is essential for cell proliferation during early embryogenesis. Ablation of TopBP1 in TopBP1(flox/flox) mouse embryonic fibroblasts and 3T3 cells using Cre recombinase-expressing retrovirus arrests cell cycle progression at the G(1), S, and G(2)/M phases. The TopBP1-ablated mouse cells exhibit phosphorylation of H2AX and Chk2, indicating that the cells contain DNA breaks. The TopBP1-ablated mouse cells enter cellular senescence. Although RNA interference-mediated knockdown of TopBP1 induced cellular senescence in human primary cells, it induced apoptosis in cancer cells. Therefore, TopBP1 deficiency in untransformed mouse and human primary cells induces cellular senescence rather than apoptosis. These results indicate that TopBP1 is essential for cell proliferation and maintenance of chromosomal integrity.

  17. Absence of cellular hypersensitivity to muscle and thymic antigens in myasthenia gravis.

    PubMed Central

    Behan, W M; Behan, P O; Simpson, J A

    1975-01-01

    Humoral antibodies to skeletal muscle and its components and to thymus have been demonstrated in the sera of patients with myasthenia gravis. A role for cellular hypersensitivity to similar antigens in the pathogenesis of the disease has been suggested by some reports of the presence of cellular immunity. A detailed immunological study using muscle and thymic antigens, including those prepared from the patients' own tissues, failed to confirm these findings. It is suggested that previous reports of cellular hypersensitivity represent the demonstration of an epiphenomenon. PMID:1206412

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nancy Ryan Gray

    Iron-sulfur (FeS) centers are essential for biology and inspirational in chemistry. These protein cofactors are broadly defined as active sites in which Fe is coordinated by S-donor ligands, often in combination with extra non-protein components, for example, additional metal atoms such as Mo and Ni, and soft ligands such as CN{sup -} and CO. Iron-sulfur centers are inherently air sensitive: they are found in essentially all organisms and it is possible that they were integral components of the earliest forms of life, well before oxygen (O{sub 2}) appeared. Proteins containing FeS cofactors perform a variety of biological functions ranging acrossmore » electron transfer, acid-base catalysis, and sensing where they are agents for cell regulation through transcription (DNA) or translation (RNA). They are redox catalysts for radical-based reactions and the activation of H{sub 2}, N{sub 2} and CO{sub 2}, processes that offer scientific and economic challenges for industry. Iron-sulfur centers provide the focus for fundamental investigations of chemical bonding, spectroscopy and paramagnetism, and their functions have numerous implications for health and medicine and applications for technology, including renewable energy. The 2010 Iron-Sulfur Enzymes GRC will bring together researchers from different disciplines for in-depth discussions and presentations of the latest developments. There will be sessions on structural and functional analogues of FeS centers, advances in physical methods, roles of FeS centers in energy and technology, catalysis (including radical-based rearrangements and the activation of nitrogen, hydrogen and carbon), long-range electron transfer, FeS centers in health and disease, cellular regulation, cofactor assembly, their relevance in industry, and experiments and hypotheses relating to the origins of life.« less

  19. Integration of mobile satellite and cellular systems

    NASA Technical Reports Server (NTRS)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  20. Integration of mobile satellite and cellular systems

    NASA Astrophysics Data System (ADS)

    Drucker, Elliott H.; Estabrook, Polly; Pinck, Deborah; Ekroot, Laura

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established. Users equipped for both cellular and satellite service can take advantage of a number of features made possible by such integration, including seamless handoff and universal roaming. To provide maximum benefit at lowest posible cost, the means by which these systems are integrated must be carefully considered. Mobile satellite hub stations must be configured to efficiently interface with cellular Mobile Telephone Switching Offices (MTSO's), and cost effective mobile units that provide both cellular and satellite capability must be developed.

  1. The reticulons: Guardians of the structure and function of the endoplasmic reticulum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Sano, Federica; Bernardoni, Paolo; Piacentini, Mauro, E-mail: mauro.piacentini@uniroma2.it

    2012-07-01

    The endoplasmic reticulum (ER) consists of the nuclear envelope and a peripheral network of tubules and membrane sheets. The tubules are shaped by a specific class of curvature stabilizing proteins, the reticulons and DP1; however it is still unclear how the sheets are assembled. The ER is the cellular compartment responsible for secretory and membrane protein synthesis. The reducing conditions of ER lead to the intra/inter-chain formation of new disulphide bonds into polypeptides during protein folding assessed by enzymatic or spontaneous reactions. Moreover, ER represents the main intracellular calcium storage site and it plays an important role in calcium signalingmore » that impacts many cellular processes. Accordingly, the maintenance of ER function represents an essential condition for the cell, and ER morphology constitutes an important prerogative of it. Furthermore, it is well known that ER undergoes prominent shape transitions during events such as cell division and differentiation. Thus, maintaining the correct ER structure is an essential feature for cellular physiology. Now, it is known that proper ER-associated proteins play a fundamental role in ER tubules formation. Among these ER-shaping proteins are the reticulons (RTN), which are acquiring a relevant position. In fact, beyond the structural role of reticulons, in very recent years new and deeper functional implications of these proteins are emerging in relation to their involvement in several cellular processes.« less

  2. Lippia origanoides chemotype differentiation based on essential oil GC-MS and principal component analysis.

    PubMed

    Stashenko, Elena E; Martínez, Jairo R; Ruíz, Carlos A; Arias, Ginna; Durán, Camilo; Salgar, William; Cala, Mónica

    2010-01-01

    Chromatographic (GC/flame ionization detection, GC/MS) and statistical analyses were applied to the study of essential oils and extracts obtained from flowers, leaves, and stems of Lippia origanoides plants, growing wild in different Colombian regions. Retention indices, mass spectra, and standard substances were used in the identification of 139 substances detected in these essential oils and extracts. Principal component analysis allowed L. origanoides classification into three chemotypes, characterized according to their essential oil major components. Alpha- and beta-phellandrenes, p-cymene, and limonene distinguished chemotype A; carvacrol and thymol were the distinctive major components of chemotypes B and C, respectively. Pinocembrin (5,7-dihydroxyflavanone) was found in L. origanoides chemotype A supercritical fluid (CO(2)) extract at a concentration of 0.83+/-0.03 mg/g of dry plant material, which makes this plant an interesting source of an important bioactive flavanone with diverse potential applications in cosmetic, food, and pharmaceutical products.

  3. Cellular intelligence: Microphenomenology and the realities of being.

    PubMed

    Ford, Brian J

    2017-12-01

    Traditions of Eastern thought conceptualised life in a holistic sense, emphasising the processes of maintaining health and conquering sickness as manifestations of an essentially spiritual principle that was of overriding importance in the conduct of living. Western science, which drove the overriding and partial eclipse of Eastern traditions, became founded on a reductionist quest for ultimate realities which, in the modern scientific world, has embraced the notion that every living process can be successfully modelled by a digital computer system. It is argued here that the essential processes of cognition, response and decision-making inherent in living cells transcend conventional modelling, and microscopic studies of organisms like the shell-building amoebae and the rhodophyte alga Antithamnion reveal a level of cellular intelligence that is unrecognized by science and is not amenable to computer analysis. Copyright © 2017. Published by Elsevier Ltd.

  4. Activation of caspase-1 by the NLRP3 inflammasome regulates the NADPH oxidase NOX2 to control phagosome function

    PubMed Central

    Sokolovska, Anna; Becker, Christine E.; Eddie Ip, WK; Rathinam, Vijay A.K.; Brudner, Matthew; Paquette, Nicholas; Tanne, Antoine; Vanaja, Sivapriya K.; Moore, Kathryn J.; Fitzgerald, Katherine A.; Lacy-Hulbert, Adam; Stuart, Lynda M.

    2013-01-01

    Phagocytosis is a fundamental cellular process that is pivotal for immunity as it coordinates microbial killing, innate immune activation and antigen presentation. An essential step in this process is phagosome acidification, which regulates a number of functions of these organelles that allow them to participate in processes essential to both innate and adaptive immunity. Here we report that acidification of phagosomes containing Gram-positive bacteria is regulated by the NLRP3-inflammasome and caspase-1. Active caspase-1 accumulates on phagosomes and acts locally to control the pH by modulating buffering by the NADPH oxidase NOX2. These data provide insight into a mechanism by which innate immune signals can modify cellular defenses and establish a new function for the NLRP3-inflammasome and caspase-1 in host defense. PMID:23644505

  5. Synthesis, Delivery and Regulation of Eukaryotic Heme and Fe-S Cluster Cofactors

    PubMed Central

    Barupala, Dulmini P.; Dzul, Stephen P.; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L.

    2016-01-01

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. PMID:26785297

  6. Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism

    USDA-ARS?s Scientific Manuscript database

    Cancer-associated fibroblasts (CAFs) are a major cellular component of tumor microenvironment in most solid cancers. Altered cellular metabolism is a hallmark of cancer, and much of the published literature has focused on neoplastic cell-autonomous processes for these adaptations. We demonstrate tha...

  7. [Evaluation of Cellular Effects Caused by Lunar Regolith Simulant Including Fine Particles].

    PubMed

    Horie, Masanori; Miki, Takeo; Honma, Yoshiyuki; Aoki, Shigeru; Morimoto, Yasuo

    2015-06-01

    The National Aeronautics and Space Administration has announced a plan to establish a manned colony on the surface of the moon, and our country, Japan, has declared its participation. The surface of the moon is covered with soil called lunar regolith, which includes fine particles. It is possible that humans will inhale lunar regolith if it is brought into the spaceship. Therefore, an evaluation of the pulmonary effects caused by lunar regolith is important for exploration of the moon. In the present study, we examine the cellular effects of lunar regolith simulant, whose components are similar to those of lunar regolith. We focused on the chemical component and particle size in particular. The regolith simulant was fractionated to < 10 μm, < 25 μm and 10-25 μm by gravitational sedimentation in suspensions. We also examined the cellular effects of fine regolith simulant whose primary particle size is 5.10 μm. These regolith simulants were applied to human lung carcinoma A549 cells at concentrations of 0.1 and 1.0 mg/ml. Cytotoxicity, oxidative stress and immune response were examined after 24 h exposure. Cell membrane damage, mitochondrial dysfunction and induction of Interleukin-8 (IL-8) were observed at the concentration of 1.0 mg/ml. The cellular effects of the regolith simulant at the concentration of 0.1 mg/ml were small, as compared with crystalline silica as a positive control. Secretion of IL-1β and tumor necrosis factor-α (TNF-α) was observed at the concentration of 1.0 mg/ml, but induction of gene expression was not observed at 24 h after exposure. Induction of cellular oxidative stress was small. Although the cellular effects tended to be stronger in the < 10 μm particles, there was no remarkable difference. These results suggest that the chemical components and particle size have little relationship to the cellular effects of lunar regolith simulant such as cell membrane damage, induction of oxidative stress and proinflammatory effect.

  8. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex.

    PubMed

    Feretzaki, Marianna; Billmyre, R Blake; Clancey, Shelly Applen; Wang, Xuying; Heitman, Joseph

    2016-03-01

    RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.

  9. The effect of growth phase and medium on the use of the firefly adenosine triphosphate (ATP) assay for the quantitation of bacteria

    NASA Technical Reports Server (NTRS)

    Bush, V. N.; Picciolo, G. L.; Chappelle, E. W.

    1975-01-01

    Luciferase assay for adenosine triphosphate (ATP) was used as a rapid method to determine the number of bacteria in a urine sample after nonbacterial components were removed. Accurate cellular ATP values, determined when bacteria were grown in an environment similar to that in which they were found, were necessary for the calculation of bacterial titer in urine. Cellular ATP values vary depending on the extraction method, the cell growth phase, and cell growth conditions. ATP per cell values of stationary E. coli grown in urine were two times greater than ATP per cell values of cells grown in trypticase soy broth. Glucose and urea were examined as possible components responsible for the cellular ATP variation.

  10. NMR-based metabonomic analyses of the effects of ultrasmall superparamagnetic particles of iron oxide (USPIO) on macrophage metabolism

    NASA Astrophysics Data System (ADS)

    Feng, Jianghua; Zhao, Jing; Hao, Fuhua; Chen, Chang; Bhakoo, Kishore; Tang, Huiru

    2011-05-01

    The metabonomic changes in murine RAW264.7 macrophage-like cell line induced by ultrasmall superparamagnetic particles of iron oxides (USPIO) have been investigated, by analyzing both the cells and culture media, using high-resolution NMR in conjunction with multivariate statistical methods. Upon treatment with USPIO, macrophage cells showed a significant decrease in the levels of triglycerides, essential amino acids such as valine, isoleucine, and choline metabolites together with an increase of glycerophospholipids, tyrosine, phenylalanine, lysine, glycine, and glutamate. Such cellular responses to USPIO were also detectable in compositional changes of cell media, showing an obvious depletion of the primary nutrition molecules, such as glucose and amino acids and the production of end-products of glycolysis, such as pyruvate, acetate, and lactate and intermediates of TCA cycle such as succinate and citrate. At 48 h treatment, there was a differential response to incubation with USPIO in both cell metabonome and medium components, indicating that USPIO are phagocytosed and released by macrophages. Furthermore, information on cell membrane modification can be derived from the changes in choline-like metabolites. These results not only suggest that NMR-based metabonomic methods have sufficient sensitivity to identify the metabolic consequences of murine RAW264.7 macrophage-like cell line response to USPIO in vitro, but also provide useful information on the effects of USPIO on cellular metabolism.

  11. Functional characterization of CFI-402257, a potent and selective Mps1/TTK kinase inhibitor, for the treatment of cancer.

    PubMed

    Mason, Jacqueline M; Wei, Xin; Fletcher, Graham C; Kiarash, Reza; Brokx, Richard; Hodgson, Richard; Beletskaya, Irina; Bray, Mark R; Mak, Tak W

    2017-03-21

    Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets. Monopolar spindle 1 (Mps1; also known as TTK protein kinase) is a core component of the spindle assembly checkpoint (SAC), a genome-surveillance mechanism that is important for cell survival, and has emerged as a candidate target for anticancer therapy. Here, we report the cellular and antitumor effects of CFI-402257, a potent (Mps1 K i = 0.09 ± 0.02 nM; cellular Mps1 EC 50 = 6.5 ± 0.5 nM), highly selective, and orally active small-molecule inhibitor of Mps1 that was identified through a drug-discovery program. Human cancer cells treated with CFI-402257 exhibit effects consistent with Mps1 kinase inhibition, specifically SAC inactivation, leading to chromosome missegregation, aneuploidy, and ultimately cell death. Oral administration of CFI-402257 in monotherapy or in combination with an anti-programmed cell death 1 (PD-1) antibody in mouse models of human cancer results in inhibition of tumor growth at doses that are well-tolerated. Our findings provide a rationale for the clinical evaluation of CFI-402257 in patients with solid tumors.

  12. Functional characterization of CFI-402257, a potent and selective Mps1/TTK kinase inhibitor, for the treatment of cancer

    PubMed Central

    Mason, Jacqueline M.; Wei, Xin; Fletcher, Graham C.; Kiarash, Reza; Brokx, Richard; Hodgson, Richard; Beletskaya, Irina; Bray, Mark R.; Mak, Tak W.

    2017-01-01

    Loss of cell-cycle control is a hallmark of human cancer. Cell-cycle checkpoints are essential for maintaining genome integrity and balanced growth and division. They are specifically deregulated in cancer cells and contain regulators that represent potential therapeutic targets. Monopolar spindle 1 (Mps1; also known as TTK protein kinase) is a core component of the spindle assembly checkpoint (SAC), a genome-surveillance mechanism that is important for cell survival, and has emerged as a candidate target for anticancer therapy. Here, we report the cellular and antitumor effects of CFI-402257, a potent (Mps1 Ki = 0.09 ± 0.02 nM; cellular Mps1 EC50 = 6.5 ± 0.5 nM), highly selective, and orally active small-molecule inhibitor of Mps1 that was identified through a drug-discovery program. Human cancer cells treated with CFI-402257 exhibit effects consistent with Mps1 kinase inhibition, specifically SAC inactivation, leading to chromosome missegregation, aneuploidy, and ultimately cell death. Oral administration of CFI-402257 in monotherapy or in combination with an anti-programmed cell death 1 (PD-1) antibody in mouse models of human cancer results in inhibition of tumor growth at doses that are well-tolerated. Our findings provide a rationale for the clinical evaluation of CFI-402257 in patients with solid tumors. PMID:28270606

  13. RNA-binding protein HuR autoregulates its expression by promoting alternative polyadenylation site usage

    PubMed Central

    Dai, Weijun; Zhang, Gen; Makeyev, Eugene V.

    2012-01-01

    RNA-binding protein HuR modulates the stability and translational efficiency of messenger RNAs (mRNAs) encoding essential components of the cellular proliferation, growth and survival pathways. Consistent with these functions, HuR levels are often elevated in cancer cells and reduced in senescent and quiescent cells. However, the molecular mechanisms that control HuR expression are poorly understood. Here we show that HuR protein autoregulates its abundance through a negative feedback loop that involves interaction of the nuclear HuR protein with a GU-rich element (GRE) overlapping with the HuR major polyadenylation signal (PAS2). An increase in the cellular HuR protein levels stimulates the expression of long HuR mRNA species containing an AU-rich element (ARE) that destabilizes the mRNAs and thus reduces the protein production output. The PAS2 read-through occurs due to a reduced recruitment of the CstF-64 subunit of the pre-mRNA cleavage stimulation factor in the presence of the GRE-bound HuR. We propose that this mechanism maintains HuR homeostasis in proliferating cells. Since only the nuclear HuR is expected to contribute to the auto-regulation, our model may explain the longstanding observation that the increase in the total HuR expression in cancer cells often correlates with the accumulation of its substantial fraction in the cytoplasm. PMID:21948791

  14. RNA-binding protein HuR autoregulates its expression by promoting alternative polyadenylation site usage.

    PubMed

    Dai, Weijun; Zhang, Gen; Makeyev, Eugene V

    2012-01-01

    RNA-binding protein HuR modulates the stability and translational efficiency of messenger RNAs (mRNAs) encoding essential components of the cellular proliferation, growth and survival pathways. Consistent with these functions, HuR levels are often elevated in cancer cells and reduced in senescent and quiescent cells. However, the molecular mechanisms that control HuR expression are poorly understood. Here we show that HuR protein autoregulates its abundance through a negative feedback loop that involves interaction of the nuclear HuR protein with a GU-rich element (GRE) overlapping with the HuR major polyadenylation signal (PAS2). An increase in the cellular HuR protein levels stimulates the expression of long HuR mRNA species containing an AU-rich element (ARE) that destabilizes the mRNAs and thus reduces the protein production output. The PAS2 read-through occurs due to a reduced recruitment of the CstF-64 subunit of the pre-mRNA cleavage stimulation factor in the presence of the GRE-bound HuR. We propose that this mechanism maintains HuR homeostasis in proliferating cells. Since only the nuclear HuR is expected to contribute to the auto-regulation, our model may explain the longstanding observation that the increase in the total HuR expression in cancer cells often correlates with the accumulation of its substantial fraction in the cytoplasm.

  15. Mitochondrial DNA 3243A>G heteroplasmy is associated with changes in cytoskeletal protein expression and cell mechanics.

    PubMed

    Kandel, Judith; Picard, Martin; Wallace, Douglas C; Eckmann, David M

    2017-06-01

    Mitochondrial and mechanical alterations in cells have both been shown to be hallmarks of human disease. However, little research has endeavoured to establish connections between these two essential features of cells in both functional and dysfunctional situations. In this work, we hypothesized that a specific genetic alteration in mitochondrial function known to cause human disease would trigger changes in cell mechanics. Using a previously characterized set of mitochondrial cybrid cell lines, we examined the relationship between heteroplasmy for the mitochondrial DNA (mtDNA) 3243A>G mutation, the cell cytoskeleton, and resulting cellular mechanical properties. We found that cells with increasing mitochondrial dysfunction markedly differed from one another in gene expression and protein production of various co-regulated cytoskeletal elements. The intracellular positioning and organization of actin also differed across cell lines. To explore the relationship between these changes and cell mechanics, we then measured cellular mechanical properties using atomic force microscopy and found that cell stiffness correlated with gene expression data for known determinants of cell mechanics, γ-actin, α-actinin and filamin A. This work points towards a mechanism linking mitochondrial genetics to single-cell mechanical properties. The transcriptional and structural regulation of cytoskeletal components by mitochondrial function may explain why energetic and mechanical alterations often coexist in clinical conditions. © 2017 The Author(s).

  16. Presenilin-1 affects trafficking and processing of βAPP and is targeted in a complex with nicastrin to the plasma membrane

    PubMed Central

    Kaether, Christoph; Lammich, Sven; Edbauer, Dieter; Ertl, Michaela; Rietdorf, Jens; Capell, Anja; Steiner, Harald; Haass, Christian

    2002-01-01

    Amyloid β-peptide (Aβ) is generated by the consecutive cleavages of β- and γ-secretase. The intramembraneous γ-secretase cleavage critically depends on the activity of presenilins (PS1 and PS2). Although there is evidence that PSs are aspartyl proteases with γ-secretase activity, it remains controversial whether their subcellular localization overlaps with the cellular sites of Aβ production. We now demonstrate that biologically active GFP-tagged PS1 as well as endogenous PS1 are targeted to the plasma membrane (PM) of living cells. On the way to the PM, PS1 binds to nicastrin (Nct), an essential component of the γ-secretase complex. This complex is targeted through the secretory pathway where PS1-bound Nct becomes endoglycosidase H resistant. Moreover, surface-biotinylated Nct can be coimmunoprecipitated with PS1 antibodies, demonstrating that this complex is located to cellular sites with γ-secretase activity. Inactivating PS1 or PS2 function by mutagenesis of one of the critical aspartate residues or by γ-secretase inhibitors results in delayed reinternalization of the β-amyloid precursor protein and its accumulation at the cell surface. Our data suggest that PS is targeted as a biologically active complex with Nct through the secretory pathway to the cell surface and suggest a dual function of PS in γ-secretase processing and in trafficking. PMID:12147673

  17. C-Terminal Fluorescent Labeling Impairs Functionality of DNA Mismatch Repair Proteins

    PubMed Central

    Brieger, Angela; Plotz, Guido; Hinrichsen, Inga; Passmann, Sandra; Adam, Ronja; Zeuzem, Stefan

    2012-01-01

    The human DNA mismatch repair (MMR) process is crucial to maintain the integrity of the genome and requires many different proteins which interact perfectly and coordinated. Germline mutations in MMR genes are responsible for the development of the hereditary form of colorectal cancer called Lynch syndrome. Various mutations mainly in two MMR proteins, MLH1 and MSH2, have been identified so far, whereas 55% are detected within MLH1, the essential component of the heterodimer MutLα (MLH1 and PMS2). Most of those MLH1 variants are pathogenic but the relevance of missense mutations often remains unclear. Many different recombinant systems are applied to filter out disease-associated proteins whereby fluorescent tagged proteins are frequently used. However, dye labeling might have deleterious effects on MutLα's functionality. Therefore, we analyzed the consequences of N- and C-terminal fluorescent labeling on expression level, cellular localization and MMR activity of MutLα. Besides significant influence of GFP- or Red-fusion on protein expression we detected incorrect shuttling of single expressed C-terminal GFP-tagged PMS2 into the nucleus and found that C-terminal dye labeling impaired MMR function of MutLα. In contrast, N-terminal tagged MutLαs retained correct functionality and can be recommended both for the analysis of cellular localization and MMR efficiency. PMID:22348133

  18. Alterations in cerebral metabolism observed in living rodents using fluorescence lifetime microscopy of intrinsic NADH (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Yaseen, Mohammad A.; Sakadžić, Sava; Sutin, Jason; Wu, Weicheng; Fu, Buyin; Boas, David A.

    2017-02-01

    Monitoring cerebral energy metabolism at a cellular level is essential to improve our understanding of healthy brain function and its pathological alterations. In this study, we resolve specific alterations in cerebral metabolism utilizing minimally-invasive 2-Photon fluorescence lifetime imaging (2P-FLIM) measurements of reduced nicotinamide adenine dinucleotide (NADH) fluorescence, collected in vivo from anesthetized rats and mice. Time-resolved lifetime measurements enables distinction of different components contributing to NADH autofluorescence. These components reportedly represent different enzyme-bound formulations of NADH. Our observations from this study confirm the hypothesis that NADH FLIM can identify specific alterations in cerebral metabolism. Using time-correlated single photon counting (TCSPC) equipment and a custom-built multimodal imaging system, 2-photon fluorescence lifetime imaging (FLIM) was performed in cerebral tissue with high spatial and temporal resolution. Multi-exponential fits for NADH fluorescence lifetimes indicate 4 distinct components, or 'species.' We observed distinct variations in the relative proportions of these components before and after pharmacological-induced impairments to several reactions involved in anaerobic glycolysis and aerobic oxidative metabolism. Classification models developed with experimental data correctly predict the metabolic impairments associated with bicuculline-induced focal seizures in separate experiments. Compared to traditional intensity-based NADH measurements, lifetime imaging of NADH is less susceptible to the adverse effects of overlying blood vessels. Evaluating NADH measurements will ultimately lead to a deeper understanding of cerebral energetics and its pathology-related alterations. Such knowledge will likely aid development of therapeutic strategies for neurodegenerative diseases such as Alzheimer's Disease, Parkinson's disease, and stroke.

  19. Evaluating contribution of ionic, osmotic and oxidative stress components towards salinity tolerance in barley

    PubMed Central

    2014-01-01

    Background Salinity tolerance is a physiologically multi-faceted trait attributed to multiple mechanisms. Three barley (Hordeum vulgare) varieties contrasting in their salinity tolerance were used to assess the relative contribution of ionic, osmotic and oxidative stress components towards overall salinity stress tolerance in this species, both at the whole-plant and cellular levels. In addition, transcriptional changes in the gene expression profile were studied for key genes mediating plant ionic and oxidative homeostasis (NHX; RBOH; SOD; AHA and GORK), to compare a contribution of transcriptional and post-translational factors towards the specific components of salinity tolerance. Results Our major findings are two-fold. First, plant tissue tolerance was a dominating component that has determined the overall plant responses to salinity, with root K+ retention ability and reduced sensitivity to stress-induced hydroxyl radical production being the main contributing tolerance mechanisms. Second, it was not possible to infer which cultivars were salinity tolerant based solely on expression profiling of candidate genes at one specific time point. For the genes studied and the time point selected that transcriptional changes in the expression of these specific genes had a small role for barley’s adaptive responses to salinity. Conclusions For better tissue tolerance, sodium sequestration, K+ retention and resistance to oxidative stress all appeared to be crucial. Because these traits are highly interrelated, it is suggested that a major progress in crop breeding for salinity tolerance can be achieved only if these complementary traits are targeted at the same time. This study also highlights the essentiality of post translational modifications in plant adaptive responses to salinity. PMID:24774965

  20. Multiscale Modeling of Cardiac Cellular Energetics

    PubMed Central

    BASSINGTHWAIGHTE, JAMES B.; CHIZECK, HOWARD J.; ATLAS, LES E.; QIAN, HONG

    2010-01-01

    Multiscale modeling is essential to integrating knowledge of human physiology starting from genomics, molecular biology, and the environment through the levels of cells, tissues, and organs all the way to integrated systems behavior. The lowest levels concern biophysical and biochemical events. The higher levels of organization in tissues, organs, and organism are complex, representing the dynamically varying behavior of billions of cells interacting together. Models integrating cellular events into tissue and organ behavior are forced to resort to simplifications to minimize computational complexity, thus reducing the model’s ability to respond correctly to dynamic changes in external conditions. Adjustments at protein and gene regulatory levels shortchange the simplified higher-level representations. Our cell primitive is composed of a set of subcellular modules, each defining an intracellular function (action potential, tricarboxylic acid cycle, oxidative phosphorylation, glycolysis, calcium cycling, contraction, etc.), composing what we call the “eternal cell,” which assumes that there is neither proteolysis nor protein synthesis. Within the modules are elements describing each particular component (i.e., enzymatic reactions of assorted types, transporters, ionic channels, binding sites, etc.). Cell subregions are stirred tanks, linked by diffusional or transporter-mediated exchange. The modeling uses ordinary differential equations rather than stochastic or partial differential equations. This basic model is regarded as a primitive upon which to build models encompassing gene regulation, signaling, and long-term adaptations in structure and function. During simulation, simpler forms of the model are used, when possible, to reduce computation. However, when this results in error, the more complex and detailed modules and elements need to be employed to improve model realism. The processes of error recognition and of mapping between different levels of model form complexity are challenging but are essential for successful modeling of large-scale systems in reasonable time. Currently there is to this end no established methodology from computational sciences. PMID:16093514

  1. Inhibition of melanogenesis by β-caryophyllene from lime mint essential oil in mouse B16 melanoma cells.

    PubMed

    Yang, C-H; Huang, Y-C; Tsai, M-L; Cheng, C-Y; Liu, L-L; Yen, Y-W; Chen, W-L

    2015-10-01

    Volatile essential oils of mint species are used for cosmetics and in skin care products. In this study, we evaluated the main chemical components of the lime mint and the anti-melanogenic properties of its main components. The essential oil was analysed by gas chromatography-mass spectrometry (GC/MS). The anti-melanogenic effects of mint essential oil and β-caryophyllene were investigated in B16F10 murine melanoma cells. The main components of lime mint essential oil were found to be D-limonene (41.10%), D-carvone (8.58%), δ-selinene (6.73%) and β-caryophyllene (6.24%). The lime mint essential oil reduced melanin production in a dose-dependent manner in murine B16F10 cells. β-Caryophyllene, one of the main compounds in lime mint essential oil, could reduce melanogenesis by down-regulating the expression of MITF, TRP-1, TRP-2 and tyrosinase, resulting in a decrease in melanin content decrease. These results reveal that lime mint essential oil and β-caryophyllene are considered to be valuable as potential skin-whitening agents. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Essentialism goes social: belief in social determinism as a component of psychological essentialism.

    PubMed

    Rangel, Ulrike; Keller, Johannes

    2011-06-01

    Individuals tend to explain the characteristics of others with reference to an underlying essence, a tendency that has been termed psychological essentialism. Drawing on current conceptualizations of essentialism as a fundamental mode of social thinking, and on prior studies investigating belief in genetic determinism (BGD) as a component of essentialism, we argue that BGD cannot constitute the sole basis of individuals' essentialist reasoning. Accordingly, we propose belief in social determinism (BSD) as a complementary component of essentialism, which relies on the belief that a person's essential character is shaped by social factors (e.g., upbringing, social background). We developed a scale to measure this social component of essentialism. Results of five correlational studies indicate that (a) BGD and BSD are largely independent, (b) BGD and BSD are related to important correlates of essentialist thinking (e.g., dispositionism, perceived group homogeneity), (c) BGD and BSD are associated with indicators of fundamental epistemic and ideological motives, and (d) the endorsement of each lay theory is associated with vital social-cognitive consequences (particularly stereotyping and prejudice). Two experimental studies examined the idea that the relationship between BSD and prejudice is bidirectional in nature. Study 6 reveals that rendering social-deterministic explanations salient results in increased levels of ingroup favoritism in individuals who chronically endorse BSD. Results of Study 7 show that priming of prejudice enhances endorsement of social-deterministic explanations particularly in persons habitually endorsing prejudiced attitudes. 2011 APA, all rights reserved

  3. Vitamin A

    USDA-ARS?s Scientific Manuscript database

    Vitamin A is essential during embryonic development and, in the adult, it is necessary for vision, immunity, metabolism, cellular proliferation, differentiation, and apoptosis. Recently, additional functions of vitamin A such as regulation of energy balance, insulin signaling and nervous system acti...

  4. Simulation Based Optimization of Complex Monolithic Composite Structures Using Cellular Core Technology

    NASA Astrophysics Data System (ADS)

    Hickmott, Curtis W.

    Cellular core tooling is a new technology which has the capability to manufacture complex integrated monolithic composite structures. This novel tooling method utilizes thermoplastic cellular cores as inner tooling. The semi-rigid nature of the cellular cores makes them convenient for lay-up, and under autoclave temperature and pressure they soften and expand providing uniform compaction on all surfaces including internal features such as ribs and spar tubes. This process has the capability of developing fully optimized aerospace structures by reducing or eliminating assembly using fasteners or bonded joints. The technology is studied in the context of evaluating its capabilities, advantages, and limitations in developing high quality structures. The complex nature of these parts has led to development of a model using the Finite Element Analysis (FEA) software Abaqus and the plug-in COMPRO Common Component Architecture (CCA) provided by Convergent Manufacturing Technologies. This model utilizes a "virtual autoclave" technique to simulate temperature profiles, resin flow paths, and ultimately deformation from residual stress. A model has been developed simulating the temperature profile during curing of composite parts made with the cellular core technology. While modeling of composites has been performed in the past, this project will look to take this existing knowledge and apply it to this new manufacturing method capable of building more complex parts and develop a model designed specifically for building large, complex components with a high degree of accuracy. The model development has been carried out in conjunction with experimental validation. A double box beam structure was chosen for analysis to determine the effects of the technology on internal ribs and joints. Double box beams were manufactured and sectioned into T-joints for characterization. Mechanical behavior of T-joints was performed using the T-joint pull-off test and compared to traditional tooling methods. Components made with the cellular core tooling method showed an improved strength at the joints. It is expected that this knowledge will help optimize the processing of complex, integrated structures and benefit applications in aerospace where lighter, structurally efficient components would be advantageous.

  5. Relevance of the Sea Sand Disruption Method (SSDM) for the biometrical differentiation of the essential-oil composition from conifers.

    PubMed

    Dawidowicz, Andrzej L; Czapczyńska, Natalia B; Wianowska, Dorota

    2013-02-01

    Sea Sand Disruption Method (SSDM) is a simple and cheap sample-preparation procedure allowing the reduction of organic solvent consumption, exclusion of sample component degradation, improvement of extraction efficiency and selectivity, and elimination of additional sample clean-up and pre-concentration step before chromatographic analysis. This article deals with the possibility of SSDM application for the differentiation of essential-oils components occurring in the Scots pine (Pinus sylvestris L.) and cypress (Cupressus sempervirens L.) needles from Madrid (Spain), Laganas (Zakhyntos, Greece), Cala Morell (Menorca, Spain), Lublin (Poland), Helsinki (Finland), and Oradea (Romania). The SSDM results are related to the analogous - obtained applying two other sample preparation methods - steam distillation and Pressurized Liquid Extraction (PLE). The results presented established that the total amount and the composition of essential-oil components revealed by SSDM are equivalent or higher than those obtained by one of the most effective extraction technique, PLE. Moreover, SSDM seems to provide the most representative profile of all essential-oil components as no heat is applied. Thus, this environmentally friendly method is suggested to be used as the main extraction procedure for the differentiation of essential-oil components in conifers for scientific and industrial purposes. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  6. CELLULAR DIFFERENTIATION AND THE AGING PROCESS IN CARTILAGINOUS TISSUES

    PubMed Central

    Shulman, Herbert J.; Meyer, Karl

    1968-01-01

    Primary cell cultures of differentiated chondrocytes were shown to produce chondroitin-4-sulfate as the predominant mucopolysaccharide, with suggestive evidence for the synthesis of keratan sulfate and possibly chondroitin-6-sulfate. Chicken embryonic cartilage was shown to be composed mainly of chondroitin-4-sulfate, with a small amount of chondroitin-6-sulfate, but essentially no keratan sulfate. These findings were compared to the data of others, and a hypothesis explaining the aging process in cartilage in terms of cellular differentiation was presented. PMID:5688079

  7. Chemistry and in vitro antioxidant activity of volatile oil and oleoresins of black pepper (Piper nigrum).

    PubMed

    Kapoor, I P S; Singh, Bandana; Singh, Gurdip; De Heluani, Carola S; De Lampasona, M P; Catalan, Cesar A N

    2009-06-24

    Essential oil and oleoresins (ethanol and ethyl acetate) of Piper nigrum were extracted by using Clevenger and Soxhlet apparatus, respectively. GC-MS analysis of pepper essential oil showed the presence of 54 components representing about 96.6% of the total weight. beta-Caryophylline (29.9%) was found as the major component along with limonene (13.2%), beta-pinene (7.9%), sabinene (5.9%), and several other minor components. The major component of both ethanol and ethyl acetate oleoresins was found to contain piperine (63.9 and 39.0%), with many other components in lesser amounts. The antioxidant activities of essential oil and oleoresins were evaluated against mustard oil by peroxide, p-anisidine, and thiobarbituric acid. Both the oil and oleoresins showed strong antioxidant activity in comparison with butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) but lower than that of propyl gallate (PG). In addition, their inhibitory action by FTC method, scavenging capacity by DPPH (2,2'-diphenyl-1-picrylhydrazyl radical), and reducing power were also determined, proving the strong antioxidant capacity of both the essential oil and oleoresins of pepper.

  8. Modulation of telomere binding proteins: a future area of research for skin protection and anti-aging target.

    PubMed

    Imbert, Isabelle; Botto, Jean-Marie; Farra, Claude D; Domloge, Nouha

    2012-06-01

    Telomere shortening is considered as one of the main characteristics of cellular aging by limiting cellular division. Besides the fundamental advances through the discoveries of telomere and telomerase, which were recognized by a Nobel Prize, telomere protection remains an essential area of research. Recently, it was evidenced that studying the cross-talks between the proteins associated with telomere should provide a better understanding of the mechanistic basis for telomere-associated aging phenotypes. In this review, we discuss the current knowledge on telomere shortening, telomerase activity, and the essential role of telomere binding proteins in telomere stabilization and telomere-end protection. This review highlights the capacity of telomere binding proteins to limit cellular senescence and to maintain skin tissue homeostasis, which is of key importance to reduce accelerated tissue aging. Future studies addressing telomere protection and limitation of DNA damage response in human skin should include investigations on telomere binding proteins. As little is known about the expression of telomere binding proteins in human skin and modulation of their expression with aging, it remains an interesting field of skin research and a key area for future skin protection and anti-aging developments. © 2012 Wiley Periodicals, Inc.

  9. Endothelial cells are essential for the self-renewal and repopulation of Notch-dependent hematopoietic stem cells

    PubMed Central

    Butler, Jason M.; Nolan, Daniel J.; L.Vertes, Eva; Varnum-Finney, Barbara; Kobayashi, Hideki; Hooper, Andrea T.; Seandel, Marco; Shido, Koji; White, Ian A.; Kobayashi, Mariko; Witte, Larry; May, Chad; Shawber, Carrie; Kimura, Yuki; Kitajewski, Jan; Rosenwaks, Zev; Bernstein, Irwin D.; Rafii, Shahin

    2010-01-01

    Bone marrow endothelial cells (ECs) are essential for reconstitution of hematopoiesis, but their role in self-renewal of long term-hematopoietic stem cells (LT-HSCs) is unknown. We have developed angiogenic models to demonstrate that EC-derived angiocrine growth factors support in vitro self-renewal and in vivo repopulation of authentic LT-HSCs. In serum/cytokine-free co-cultures, ECs through direct cellular contact, stimulated incremental expansion of repopulating CD34−Flt3−cKit+Lineage−Sca1+ LT-HSCs, which retained their self-renewal ability, as determined by single cell and serial transplantation assays. Angiocrine expression of Notch-ligands by ECs promoted proliferation and prevented exhaustion of LT-HSCs derived from wild-type, but not Notch1/Notch2 deficient mice. In transgenic notch-reporter (TNR.Gfp) mice, regenerating TNR.Gfp+ LT-HSCs were detected in cellular contact with sinusoidal ECs and interfering with angiocrine, but not perfusion function, of SECs impaired repopulation of TNR.Gfp+ LT-HSCs. ECs establish an instructive vascular niche for clinical scale expansion of LT-HSCs and a cellular platform to identify stem cell-active trophogens. PMID:20207228

  10. Proteomic approaches to understanding the role of the cytoskeleton in host-defense mechanisms

    PubMed Central

    Radulovic, Marko; Godovac-Zimmermann, Jasminka

    2014-01-01

    The cytoskeleton is a cellular scaffolding system whose functions include maintenance of cellular shape, enabling cellular migration, division, intracellular transport, signaling and membrane organization. In addition, in immune cells, the cytoskeleton is essential for phagocytosis. Following the advances in proteomics technology over the past two decades, cytoskeleton proteome analysis in resting and activated immune cells has emerged as a possible powerful approach to expand our understanding of cytoskeletal composition and function. However, so far there have only been a handful of studies of the cytoskeleton proteome in immune cells. This article considers promising proteomics strategies that could augment our understanding of the role of the cytoskeleton in host-defense mechanisms. PMID:21329431

  11. Compartmental genomics in living cells revealed by single-cell nanobiopsy.

    PubMed

    Actis, Paolo; Maalouf, Michelle M; Kim, Hyunsung John; Lohith, Akshar; Vilozny, Boaz; Seger, R Adam; Pourmand, Nader

    2014-01-28

    The ability to study the molecular biology of living single cells in heterogeneous cell populations is essential for next generation analysis of cellular circuitry and function. Here, we developed a single-cell nanobiopsy platform based on scanning ion conductance microscopy (SICM) for continuous sampling of intracellular content from individual cells. The nanobiopsy platform uses electrowetting within a nanopipette to extract cellular material from living cells with minimal disruption of the cellular milieu. We demonstrate the subcellular resolution of the nanobiopsy platform by isolating small subpopulations of mitochondria from single living cells, and quantify mutant mitochondrial genomes in those single cells with high throughput sequencing technology. These findings may provide the foundation for dynamic subcellular genomic analysis.

  12. Emerging Biomimetic Applications of DNA Nanotechnology.

    PubMed

    Shen, Haijing; Wang, Yingqian; Wang, Jie; Li, Zhihao; Yuan, Quan

    2018-06-25

    Re-engineering cellular components and biological processes has received great interest and promised compelling advantages in applications ranging from basic cell biology to biomedicine. With the advent of DNA nanotechnology, the programmable self-assembly ability makes DNA an appealing candidate for rational design of artificial components with different structures and functions. This Forum Article summarizes recent developments of DNA nanotechnology in mimicking the structures and functions of existing cellular components. We highlight key successes in the achievements of DNA-based biomimetic membrane proteins and discuss the assembly behavior of these artificial proteins. Then, we focus on the construction of higher-order structures by DNA nanotechnology to recreate cell-like structures. Finally, we explore the current challenges and speculate on future directions of DNA nanotechnology in biomimetics.

  13. Anticancer activity of essential oils and their chemical components - a review

    PubMed Central

    Bayala, Bagora; Bassole, Imaël HN; Scifo, Riccardo; Gnoula, Charlemagne; Morel, Laurent; Lobaccaro, Jean-Marc A; Simpore, Jacques

    2014-01-01

    Essential oils are widely used in pharmaceutical, sanitary, cosmetic, agriculture and food industries for their bactericidal, virucidal, fungicidal, antiparasitical and insecticidal properties. Their anticancer activity is well documented. Over a hundred essential oils from more than twenty plant families have been tested on more than twenty types of cancers in last past ten years. This review is focused on the activity of essential oils and their components on various types of cancers. For some of them the mechanisms involved in their anticancer activities have been carried out. PMID:25520854

  14. A nanotube based electron microbeam cellular irradiator for radiobiology research

    PubMed Central

    Bordelon, David E.; Zhang, Jian; Graboski, Sarah; Cox, Adrienne; Schreiber, Eric; Zhou, Otto Z.; Chang, Sha

    2008-01-01

    A prototype cellular irradiator utilizing a carbon nanotube (CNT) based field emission electron source has been developed for microscopic image-guided cellular region irradiation. The CNT cellular irradiation system has shown great potential to be a high temporal and spatial resolution research tool to enable researchers to gain a better understanding of the intricate cellular and intercellular microprocesses occurring following radiation deposition, which is essential to improving radiotherapy cancer treatment outcomes. In this paper, initial results of the system development are reported. The relationship between field emission current, the dose rate, and the dose distribution has been investigated. A beam size of 23 μm has been achieved with variable dose rates of 1–100 Gy∕s, and the system dosimetry has been measured using a radiochromic film. Cell irradiation has been demonstrated by the visualization of H2AX phosphorylation at DNA double-strand break sites following irradiation in a rat fibroblast cell monolayer. The prototype single beam cellular irradiator is a preliminary step to a multipixel cell irradiator that is under development. PMID:19123587

  15. Mechanisms for Variation of Cellular P Stoichiometry: Diverse Cellular Phosphorus Allocation Strategies Across Microbial Groups from the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Popendorf, K.; Duhamel, S.

    2016-02-01

    Phosphorus is the least abundant of the three major macronutrients that define the canonical Redfield ratio, but its place in the backbone of nucleic acids and as an energy trafficking molecule lays a lower bound of cellular phosphorus content that is essential for all life. In addition to forming DNA, RNA, and adenosine triphosphate (ATP), significant amounts of cellular phosphorus may also be allocated to the production of phospholipids and polyphosphate. These latter two biochemicals in particular may occur in significant but highly variable amounts across different microbial groups, and the variation in cellular allocation to these biochemicals may be a contributing factor in defining the elemental stoichiometry of microbes. We investigated this variation in cellular phosphorus allocation across the most abundant microbial groups in the P-depleted Sargasso Sea: Prochlorococcus, Synechococcus, and heterotrophic bacteria. By coupling radioisotope tracing of phosphate and ATP with cell sorting flow cytometry and subsequent biochemical extractions, we made novel measurements of the P allocation to DNA, phospholipids, and polyphosphate in individual microbial groups from environmental populations. These results provide new insights into the cellular mechanisms of variation in stoichiometry and different microbial strategies for adaptation to low-P environments.

  16. Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction.

    PubMed

    Courtman, D W; Pereira, C A; Kashef, V; McComb, D; Lee, J M; Wilson, G J

    1994-06-01

    There is evidence to suggest that the cellular components of homografts and bioprosthetic xenografts may contribute to calcification or immunogenic reactions. A four-step detergent and enzymatic extraction process has been developed to remove cellular components from bovine pericardial tissue. The process results in an acellular matrix material consisting primarily of elastin, insoluble collagen, and tightly bound glycosaminoglycans. Light and electron microscopy confirmed that nearly all cellular constituents are removed without ultrastructural evidence of damage to fibrous components. Collagen denaturation temperatures remained unaltered. Biochemical analysis confirmed the retention of collagen and elastin and some differential extraction of glycosaminoglycans. Low strain rate fracture testing and high strain rate viscoelastic characterization showed that, with the exception of slightly increased stress relaxation, the mechanical properties of the fresh tissue were preserved in the pericardial acellular matrix. Crosslinking of the material in glutaraldehyde or poly(glycidyl ether) produced mechanical changes consistent with the same treatments of fresh tissue. The pericardial acellular matrix is a promising approach to the production of biomaterials for heart valve or cardiovascular patching applications.

  17. Chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oil

    PubMed Central

    Mahboubi, M; Kazempour, N

    2011-01-01

    Background and Objectives The aim of this study was to evaluate the chemical composition and antimicrobial activity of Satureja hortensis and Trachyspermum copticum essential oils against different kinds of microorganisms in vitro. Material and Methods The antimicrobial activity was evaluated by micro broth dilution assay and the chemical composition of essential oils was analyzed by GC and GC/MS. Results Thymol, p-cymene, γ-terpinene and carvacrol were the main components of S. hortensis oil while thymol, γ-terpinene, and o-cymene were the major components of T. copticum oil. Two essential oils exhibited strong antimicrobial activity but the antimicrobial activity of T. copticum oil was higher than that of S. hortensis oil. Conclusion Thymol as a main component of oils plays an important role in antimicrobial activity. PMID:22530088

  18. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema

    PubMed Central

    Chiang, Chia-Wen; Wang, Yong; Sun, Peng; Lin, Tsen-Hsuan; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA), increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice. PMID:25017446

  19. Body Fluids Monitor

    NASA Technical Reports Server (NTRS)

    Siconolfi, Steven F. (Inventor)

    2000-01-01

    Method and apparatus are described for determining volumes of body fluids in a subject using bioelectrical response spectroscopy. The human body is represented using an electrical circuit. Intra-cellular water is represented by a resistor in series with a capacitor; extra-cellular water is represented by a resistor in series with two parallel inductors. The parallel inductors represent the resistance due to vascular fluids. An alternating, low amperage, multifrequency signal is applied to determine a subject's impedance and resistance. From these data, statistical regression is used to determine a 1% impedance where the subject's impedance changes by no more than 1% over a 25 kHz interval. Circuit component, of the human body circuit are determined based on the 1% impedance. Equations for calculating total body water, extra-cellular water, total blood volume, and plasma volume are developed based on the circuit components.

  20. BioMog: A Computational Framework for the De Novo Generation or Modification of Essential Biomass Components

    PubMed Central

    Tervo, Christopher J.; Reed, Jennifer L.

    2013-01-01

    The success of genome-scale metabolic modeling is contingent on a model's ability to accurately predict growth and metabolic behaviors. To date, little focus has been directed towards developing systematic methods of proposing, modifying and interrogating an organism's biomass requirements that are used in constraint-based models. To address this gap, the biomass modification and generation (BioMog) framework was created and used to generate lists of biomass components de novo, as well as to modify predefined biomass component lists, for models of Escherichia coli (iJO1366) and of Shewanella oneidensis (iSO783) from high-throughput growth phenotype and fitness datasets. BioMog's de novo biomass component lists included, either implicitly or explicitly, up to seventy percent of the components included in the predefined biomass equations, and the resulting de novo biomass equations outperformed the predefined biomass equations at qualitatively predicting mutant growth phenotypes by up to five percent. Additionally, the BioMog procedure can quantify how many experiments support or refute a particular metabolite's essentiality to a cell, and it facilitates the determination of inconsistent experiments and inaccurate reaction and/or gene to reaction associations. To further interrogate metabolite essentiality, the BioMog framework includes an experiment generation algorithm that allows for the design of experiments to test whether a metabolite is essential. Using BioMog, we correct experimental results relating to the essentiality of thyA gene in E. coli, as well as perform knockout experiments supporting the essentiality of protoheme. With these capabilities, BioMog can be a valuable resource for analyzing growth phenotyping data and component of a model developer's toolbox. PMID:24339916

  1. Targeting bacterial central metabolism for drug development.

    PubMed

    Murima, Paul; McKinney, John D; Pethe, Kevin

    2014-11-20

    Current antibiotics, derived mainly from natural sources, inhibit a narrow spectrum of cellular processes, namely DNA replication, protein synthesis, and cell wall biosynthesis. With the worldwide explosion of drug resistance, there is renewed interest in the investigation of alternate essential cellular processes, including bacterial central metabolic pathways, as a drug target space for the next generation of antibiotics. However, the validation of targets in central metabolism is more complex, as essentiality of such targets can be conditional and/or contextual. Bearing in mind our enhanced understanding of prokaryotic central metabolism, a key question arises: can central metabolism be bacteria's Achilles' heel and a therapeutic target for the development of new classes of antibiotics? In this review, we draw lessons from oncology and attempt to address some of the open questions related to feasibility of targeting bacterial central metabolism as a strategy for developing new antibacterial drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Cellular compartmentalization of secondary metabolism

    PubMed Central

    Kistler, H. Corby; Broz, Karen

    2015-01-01

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported. PMID:25709603

  3. Cellular, ultrastructural and molecular analyses of epidermal cell development in the planarian Schmidtea mediterranea.

    PubMed

    Cheng, Li-Chun; Tu, Kimberly C; Seidel, Chris W; Robb, Sofia M C; Guo, Fengli; Sánchez Alvarado, Alejandro

    2018-01-15

    The epidermis is essential for animal survival, providing both a protective barrier and cellular sensor to external environments. The generally conserved embryonic origin of the epidermis, but the broad morphological and functional diversity of this organ across animals is puzzling. We define the transcriptional regulators underlying epidermal lineage differentiation in the planarian Schmidtea mediterranea, an invertebrate organism that, unlike fruitflies and nematodes, continuously replaces its epidermal cells. We find that Smed-p53, Sox and Pax transcription factors are essential regulators of epidermal homeostasis, and act cooperatively to regulate genes associated with early epidermal precursor cell differentiation, including a tandemly arrayed novel gene family (prog) of secreted proteins. Additionally, we report on the discovery of distinct and previously undescribed secreted organelles whose production is dependent on the transcriptional activity of soxP-3, and which we term Hyman vesicles. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Expansion of Protein Farnesyltransferase Specificity Using “Tunable” Active Site Interactions

    PubMed Central

    Hougland, James L.; Gangopadhyay, Soumyashree A.; Fierke, Carol A.

    2012-01-01

    Post-translational modifications play essential roles in regulating protein structure and function. Protein farnesyltransferase (FTase) catalyzes the biologically relevant lipidation of up to several hundred cellular proteins. Site-directed mutagenesis of FTase coupled with peptide selectivity measurements demonstrates that molecular recognition is determined by a combination of multiple interactions. Targeted randomization of these interactions yields FTase variants with altered and, in some cases, bio-orthogonal selectivity. We demonstrate that FTase specificity can be “tuned” using a small number of active site contacts that play essential roles in discriminating against non-substrates in the wild-type enzyme. This tunable selectivity extends in vivo, with FTase variants enabling the creation of bioengineered parallel prenylation pathways with altered substrate selectivity within a cell. Engineered FTase variants provide a novel avenue for probing both the selectivity of prenylation pathway enzymes and the effects of prenylation pathway modifications on the cellular function of a protein. PMID:22992747

  5. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors.

    PubMed

    Barupala, Dulmini P; Dzul, Stephen P; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L

    2016-02-15

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Characterization of essential proteins based on network topology in proteins interaction networks

    NASA Astrophysics Data System (ADS)

    Bakar, Sakhinah Abu; Taheri, Javid; Zomaya, Albert Y.

    2014-06-01

    The identification of essential proteins is theoretically and practically important as (1) it is essential to understand the minimal surviving requirements for cellular lives, and (2) it provides fundamental for development of drug. As conducting experimental studies to identify essential proteins are both time and resource consuming, here we present a computational approach in predicting them based on network topology properties from protein-protein interaction networks of Saccharomyces cerevisiae. The proposed method, namely EP3NN (Essential Proteins Prediction using Probabilistic Neural Network) employed a machine learning algorithm called Probabilistic Neural Network as a classifier to identify essential proteins of the organism of interest; it uses degree centrality, closeness centrality, local assortativity and local clustering coefficient of each protein in the network for such predictions. Results show that EP3NN managed to successfully predict essential proteins with an accuracy of 95% for our studied organism. Results also show that most of the essential proteins are close to other proteins, have assortativity behavior and form clusters/sub-graph in the network.

  7. Long-distance communication by specialized cellular projections during pigment pattern development and evolution

    PubMed Central

    Eom, Dae Seok; Bain, Emily J; Patterson, Larissa B; Grout, Megan E; Parichy, David M

    2015-01-01

    Changes in gene activity are essential for evolutionary diversification. Yet, elucidating the cellular behaviors that underlie modifications to adult form remains a profound challenge. We use neural crest-derived adult pigmentation of zebrafish and pearl danio to uncover cellular bases for alternative pattern states. We show that stripes in zebrafish require a novel class of thin, fast cellular projection to promote Delta-Notch signaling over long distances from cells of the xanthophore lineage to melanophores. Projections depended on microfilaments and microtubules, exhibited meandering trajectories, and stabilized on target cells to which they delivered membraneous vesicles. By contrast, the uniformly patterned pearl danio lacked such projections, concomitant with Colony stimulating factor 1-dependent changes in xanthophore differentiation that likely curtail signaling available to melanophores. Our study reveals a novel mechanism of cellular communication, roles for differentiation state heterogeneity in pigment cell interactions, and an unanticipated morphogenetic behavior contributing to a striking difference in adult form. DOI: http://dx.doi.org/10.7554/eLife.12401.001 PMID:26701906

  8. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris].

    PubMed

    Kong, Weibao; Wang, Yang; Yang, Hong; Xi, Yuqin; Han, Rui; Niu, Shiquan

    2015-03-04

    We studied the effects of trophic modes related to glucose and light (photoautotrophy, mixotrophy and heterotrophy) on growth, cellular components and carbon metabolic pathway of Chlorella vulgaris. The parameters about growth of algal cells were investigated by using spectroscopy and chromatography techniques. When trophic mode changed from photoautotrophy to mixotrophy and to heterotrophy successively, the concentrations of soluble sugar, lipid and saturated C16/C18 fatty acids in C. vulgaris increased, whereas the concentrations of unsaturated C16, C18 fatty acids, proteins, photosynthetic pigments and 18 relative amino acids decreased. Light and glucose affect the growth, metabolism and the biochemical components biosynthesis of C. vulgaris. Addition of glucose can promote algal biomass accumulation, stimulate the synthesis of carbonaceous components, but inhibit nitrogenous components. Under illumination cultivation, concentration and consumption level of glucose decided the main trophic modes of C. vulgaris. Mixotrophic and heterotrophic cultivation could promote the growth of algal cells.

  9. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes

    PubMed Central

    Gibbons, John G.; Branco, Alan T.; Godinho, Susana A.; Yu, Shoukai; Lemos, Bernardo

    2015-01-01

    Tandemly repeated ribosomal DNA (rDNA) arrays are among the most evolutionary dynamic loci of eukaryotic genomes. The loci code for essential cellular components, yet exhibit extensive copy number (CN) variation within and between species. CN might be partly determined by the requirement of dosage balance between the 5S and 45S rDNA arrays. The arrays are nonhomologous, physically unlinked in mammals, and encode functionally interdependent RNA components of the ribosome. Here we show that the 5S and 45S rDNA arrays exhibit concerted CN variation (cCNV). Despite 5S and 45S rDNA elements residing on different chromosomes and lacking sequence similarity, cCNV between these loci is strong, evolutionarily conserved in humans and mice, and manifested across individual genotypes in natural populations and pedigrees. Finally, we observe that bisphenol A induces rapid and parallel modulation of 5S and 45S rDNA CN. Our observations reveal a novel mode of genome variation, indicate that natural selection contributed to the evolution and conservation of cCNV, and support the hypothesis that 5S CN is partly determined by the requirement of dosage balance with the 45S rDNA array. We suggest that human disease variation might be traced to disrupted rDNA dosage balance in the genome. PMID:25583482

  10. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia

    PubMed Central

    Boisson, Bertrand; Laplantine, Emmanuel; Dobbs, Kerry; Cobat, Aurélie; Tarantino, Nadine; Hazen, Melissa; Lidov, Hart G.W.; Hopkins, Gregory; Du, Likun; Belkadi, Aziz; Chrabieh, Maya; Itan, Yuval; Picard, Capucine; Fournet, Jean-Christophe; Eibel, Hermann; Tsitsikov, Erdyni; Pai, Sung-Yun; Abel, Laurent; Al-Herz, Waleed; Israel, Alain

    2015-01-01

    Inherited, complete deficiency of human HOIL-1, a component of the linear ubiquitination chain assembly complex (LUBAC), underlies autoinflammation, infections, and amylopectinosis. We report the clinical description and molecular analysis of a novel inherited disorder of the human LUBAC complex. A patient with multiorgan autoinflammation, combined immunodeficiency, subclinical amylopectinosis, and systemic lymphangiectasia, is homozygous for a mutation in HOIP, the gene encoding the catalytic component of LUBAC. The missense allele (L72P, in the PUB domain) is at least severely hypomorphic, as it impairs HOIP expression and destabilizes the whole LUBAC complex. Linear ubiquitination and NF-κB activation are impaired in the patient’s fibroblasts stimulated by IL-1β or TNF. In contrast, the patient’s monocytes respond to IL-1β more vigorously than control monocytes. However, the activation and differentiation of the patient’s B cells are impaired in response to CD40 engagement. These cellular and clinical phenotypes largely overlap those of HOIL-1-deficient patients. Clinical differences between HOIL-1- and HOIP-mutated patients may result from differences between the mutations, the loci, or other factors. Our findings show that human HOIP is essential for the assembly and function of LUBAC and for various processes governing inflammation and immunity in both hematopoietic and nonhematopoietic cells. PMID:26008899

  11. Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation

    PubMed Central

    Cicova, Zdenka; Dejung, Mario; Skalicky, Tomas; Eisenhuth, Nicole; Hanselmann, Steffen; Morriswood, Brooke; Figueiredo, Luisa M.; Butter, Falk; Janzen, Christian J.

    2016-01-01

    Trypanosomes are masters of adaptation to different host environments during their complex life cycle. Large-scale proteomic approaches provide information on changes at the cellular level, and in a systematic way. However, detailed work on single components is necessary to understand the adaptation mechanisms on a molecular level. Here, we have performed a detailed characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation factor Tb927.11.2400, identified previously in a SILAC-based comparative proteome study. Tb927.11.2400 shares 38% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form (PCF) stage-specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin-like (TbFlabarinL), and demonstrate that it originates from a gene duplication event, which occurred in the African trypanosomes. TbFlabarinL is not essential for the growth of the parasites under cell culture conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We generated TbFlabarinL-specific antibodies, and showed that it localizes in the flagellum. Co-immunoprecipitation experiments together with a biochemical cell fractionation suggest a dual association of TbFlabarinL with the flagellar membrane and the components of the paraflagellar rod. PMID:27779220

  12. A study on the dynamics of the zraP gene expression profile and its application to the construction of zinc adsorption bacteria.

    PubMed

    Ravikumar, Sambandam; Yoo, Ik-keun; Lee, Sang Yup; Hong, Soon Ho

    2011-11-01

    Zinc ion plays essential roles in biological chemistry. Bacteria acquire Zn(2+) from the environment, and cellular concentration levels are controlled by zinc homeostasis systems. In comparison with other homeostatic systems, the ZraSR two-component system was found to be more efficient in responding to exogenous zinc concentrations. To understand the dynamic response of the bacterium ZraSR two-component system with respect to exogenous zinc concentrations, the genetic circuit of the ZraSR system was integrated with a reporter protein. This study was helpful in the construction of an E. coli system that can display selective metal binding peptides on the surface of the cell in response to exogenous zinc. The engineered bacterial system for monitoring exogenous zinc was successfully employed to detect levels of zinc as low as 0.001 mM, which directly activates the expression of chimeric ompC(t)--zinc binding peptide gene to remove zinc by adsorbing a maximum of 163.6 μmol of zinc per gram of dry cell weight. These results indicate that the engineered bacterial strain developed in the present study can sense the specific heavy metal and activates a cell surface display system that acts to remove the metal.

  13. cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila.

    PubMed

    Hong, Sung-Tae; Bang, Sunhoe; Hyun, Seogang; Kang, Jongkyun; Jeong, Kyunghwa; Paik, Donggi; Chung, Jongkyeong; Kim, Jaeseob

    2008-08-07

    Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.

  14. SUNrises on the International Plant Nucleus Consortium: SEB Salzburg 2012.

    PubMed

    Graumann, Katja; Bass, Hank W; Parry, Geraint

    2013-01-01

    The nuclear periphery is a dynamic, structured environment, whose precise functions are essential for global processes-from nuclear, to cellular, to organismal. Its main components-the nuclear envelope (NE) with inner and outer nuclear membranes (INM and ONM), nuclear pore complexes (NPC), associated cytoskeletal and nucleoskeletal components as well as chromatin are conserved across eukaryotes (Fig. 1). In metazoans in particular, the structure and functions of nuclear periphery components are intensely researched partly because of their involvement in various human diseases. While far less is known about these in plants, the last few years have seen a significant increase in research activity in this area. Plant biologists are not only catching up with the animal field, but recent findings are pushing our advances in this field globally. In recognition of this developing field, the Annual Society of Experimental Biology Meeting in Salzburg kindly hosted a session co-organized by Katja Graumann and David E. Evans (Oxford Brookes University) highlighting new insights into plant nuclear envelope proteins and their interactions. This session brought together leading researchers with expertise in topics such as epigenetics, meiosis, nuclear pore structure and functions, nucleoskeleton and nuclear envelope composition. An open and friendly exchange of ideas was fundamental to the success of the meeting, which resulted in founding the International Plant Nucleus Consortium. This review highlights new developments in plant nuclear envelope research presented at the conference and their importance for the wider understanding of metazoan, yeast and plant nuclear envelope functions and properties.

  15. Antibacterial activity of the essential oil and main components of two Dracocephalum species from Iran.

    PubMed

    Sonboli, Ali; Gholipour, Abbas; Yousefzadi, Morteza

    2012-01-01

    The antibacterial activity of Dracocephalum polychaetum and D. surmandinum essential oils and two main components were investigated. Essential oils of the plants were analysed by GC and GC-MS. Twenty-three components were characterised in the essential oil of D. polychaetum. The oil was rich in oxygenated (73.1%) and hydrocarbon (25.0%) monoterpenes including perilla aldehyde (63.4 %) and limonene (22.1%) as the major constituents. From 25 identified compounds (97.8%) in the oil of D. surmandinum perilla aldehyde (54.3%) and limonene (30.1%) were the main constituents. The bioassays exhibited that all of the Gram-positive and Gram-negative bacteria tested were highly inhibited in the presence of the oils and main components investigated. The most sensitive microorganism to the oils was found to be Staphylococcus epidermidis with the lowest MIC value of 0.3 mgmL(-1). The resistant Gram-negative Pseudomonas aeruginosa was highly inhibited by the oil of D. polychaetum with MIC value of 2.4 mgmL(-1).

  16. Antioxidant and Anticholinesterase Activities of Essential Oils of Cinnamomum griffithii and C. macrocarpum.

    PubMed

    Salleh, Wan Mohd Nuzul Hakimi; Ahmad, Farediah; Yen, Khong Heng

    2015-08-01

    The essential oils of Cinnamomum griffithii and C. macrocarpum were analyzed by GC and GC-MS and evaluated for their antioxidant and anticholinesterase activities. The essential oils of leaf and bark of C. grffithii were characterized by the presence of 30 components, with methyl eugenol (38.5-43.8%) as the major component. A total of 11 components were characterized in.the leaf and bark of C. macrocarpum essential oil with the most abundant component was safrole (54.5-59.5%). The bark oil of C. griffithii demonstrated significant activity on DPPH (IC50 73.4 microg/mL) and a high phenolic content (192.0%), while the leaf oil inhibited oxidation of β-carotene/linoleic acid with an inhibition value of 65.5 μg/mL. Acetylcholinesterase and butyrylcholinesterase inhibition were assessed and the results showed that C. macrocarpun bark oil exhibited significant activity with inhibition values of 55.8% and 66.1%, respectively at a concentration of 1 mg/mL.

  17. Antimicrobial activities of essential oil and hexane extract of Florence fennel [Foeniculum vulgare var. azoricum (Mill.) Thell.] against foodborne microorganisms.

    PubMed

    Cetin, Bülent; Ozer, Hakan; Cakir, Ahmet; Polat, Taşkin; Dursun, Atilla; Mete, Ebru; Oztürk, Erdoğan; Ekinci, Melek

    2010-02-01

    The objective of this study was to determine the chemical compositions of the essential oil and hexane extract isolated from the inflorescence, leaf stems, and aerial parts of Florence fennel and the antimicrobial activities of the essential oil, hexane extract, and their major component, anethole, against a large variety of foodborne microorganisms. Gas chromatography and gas chromatography-mass spectrometry analysis showed that the essential oils obtained from inflorescence, leaf stems, and whole aerial parts contained (E)-anethole (59.28-71.69%), limonene (8.30-10.73%), apiole (trace to 9.23%), beta-fenchyl acetate (3.02-4.80%), and perillene (2.16-3.29%) as the main components. Likewise, the hexane extract of the plant sample exhibited a similar chemical composition, and it contained (E)-anethole (53.00%), limonene (27.16%), gamma-terpinene (4.09%), and perillene (3.78%). However, the hexane extract also contained less volatile components such as n-hexadecanoic acid (1.62%), methyl palmitate (1.17%), and linoleic acid (1.15%). The in vitro antimicrobial assays showed that the essential oil, anethole, and hexane extract were effective against most of the foodborne pathogenic, saprophytic, probiotic, and mycotoxigenic microorganisms tested. The results of the present study revealed that (E)-anethole, the main component of Florence fennel essential oil, is responsible for the antimicrobial activity and that the essential oils as well as the hexane extract can be used as a food preservative. This study is the first report showing the antimicrobial activities of essential oil and hexane extract of Florence fennel against probiotic bacteria.

  18. Metabolic regulation of magnolol on the nuclear receptor, liver X receptor.

    PubMed

    Xie, N A; Hu, Chunyang; Guo, Anran; Liang, Hao; DU, Pengcheng; Yin, Guotian

    2015-05-01

    The aim of the present study was to investigate whether magnolol, the essential component of the traditional Chinese medicine, Magnolia officinalis , can pass through liver X receptor α (LXRα), to subsequently play an important role in the lipid metabolic balance. Using a HepG2 human hepatoma cell line, mammalian cellular one-hybridization and mammalian cell transcriptional activation experiments were performed to detect the combination degree of magnolol at different concentrations with LXRα, and assess the transcriptional activity. In addition, using a THP-1 human monocytic cell line, quantitative polymerase chain reaction was performed to assess the effect on the expression levels of downstream genes. Magnolol was shown to dose-dependently combine with LXRα, and subsequently regulate the transcriptional activity of LXRα. In addition, magnolol was found to adjust the expression of associated LXRα downstream genes in the macrophages. In conclusion, magnolol was demonstrated to affect LXRα, which may outline a new molecular mechanism through which magnolol exerts a lipid-lowering function.

  19. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells

    PubMed Central

    Somervaille, Tim C. P.; Matheny, Christina J.; Spencer, Gary J.; Iwasaki, Masayuki; Rinn, John L.; Witten, Daniela M.; Chang, Howard Y.; Shurtleff, Sheila A.; Downing, James R.; Cleary, Michael L.

    2009-01-01

    Summary The genetic programs that promote retention of self-renewing leukemia stem cells (LSCs) at the apex of cellular hierarchies in acute myeloid leukemia (AML) are not known. In a mouse model of human AML, LSCs exhibit variable frequencies that correlate with the initiating MLL oncogene and are maintained in a self-renewing state by a transcriptional sub-program more akin to that of embryonic stem cells (ESCs) than adult stem cells. The transcription/chromatin regulatory factors Myb, Hmgb3 and Cbx5 are critical components of the program and suffice for Hoxa/Meis-independent immortalization of myeloid progenitors when co-expressed, establishing the cooperative and essential role of an ESC-like LSC maintenance program ancillary to the leukemia initiating MLL/Hox/Meis program. Enriched expression of LSC maintenance and ESC-like program genes in normal myeloid progenitors and poor prognosis human malignancies links the frequency of aberrantly self-renewing progenitor-like cancer stem cells to prognosis in human cancer. PMID:19200802

  20. How synthetic membrane systems contribute to the understanding of lipid-driven endocytosis.

    PubMed

    Schubert, Thomas; Römer, Winfried

    2015-11-01

    Synthetic membrane systems, such as giant unilamellar vesicles and solid supported lipid bilayers, have widened our understanding of biological processes occurring at or through membranes. Artificial systems are particularly suited to study the inherent properties of membranes with regard to their components and characteristics. This review critically reflects the emerging molecular mechanism of lipid-driven endocytosis and the impact of model membrane systems in elucidating the complex interplay of biomolecules within this process. Lipid receptor clustering induced by binding of several toxins, viruses and bacteria to the plasma membrane leads to local membrane bending and formation of tubular membrane invaginations. Here, lipid shape, and protein structure and valency are the essential parameters in membrane deformation. Combining observations of complex cellular processes and their reconstitution on minimal systems seems to be a promising future approach to resolve basic underlying mechanisms. This article is part of a Special Issue entitled: Mechanobiology. Copyright © 2015 Elsevier B.V. All rights reserved.

Top