Sample records for essential design features

  1. Online Patient Education for Chronic Disease Management: Consumer Perspectives.

    PubMed

    Win, Khin Than; Hassan, Naffisah Mohd; Oinas-Kukkonen, Harri; Probst, Yasmine

    2016-04-01

    Patient education plays an important role in chronic disease management. The aim of this study is to identify patients' preferences in regard to the design features of effective online patient education (OPE) and the benefits. A review of the existing literature was conducted in order to identify the benefits of OPE and its essential design features. These design features were empirically tested by conducting survey with patients and caregivers. Reliability analysis, construct validity and regression analysis were performed for data analysis. The results identified patient-tailored information, interactivity, content credibility, clear presentation of content, use of multimedia and interpretability as the essential design features of online patient education websites for chronic disease management.

  2. Prediction of essential proteins based on gene expression programming.

    PubMed

    Zhong, Jiancheng; Wang, Jianxin; Peng, Wei; Zhang, Zhen; Pan, Yi

    2013-01-01

    Essential proteins are indispensable for cell survive. Identifying essential proteins is very important for improving our understanding the way of a cell working. There are various types of features related to the essentiality of proteins. Many methods have been proposed to combine some of them to predict essential proteins. However, it is still a big challenge for designing an effective method to predict them by integrating different features, and explaining how these selected features decide the essentiality of protein. Gene expression programming (GEP) is a learning algorithm and what it learns specifically is about relationships between variables in sets of data and then builds models to explain these relationships. In this work, we propose a GEP-based method to predict essential protein by combing some biological features and topological features. We carry out experiments on S. cerevisiae data. The experimental results show that the our method achieves better prediction performance than those methods using individual features. Moreover, our method outperforms some machine learning methods and performs as well as a method which is obtained by combining the outputs of eight machine learning methods. The accuracy of predicting essential proteins can been improved by using GEP method to combine some topological features and biological features.

  3. 77 FR 43796 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Lost River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... essential to the conservation of the species should be included in the designation and why; (c) Special management considerations or protection that may be needed for the physical and biological features essential... our criteria for being essential for the conservation of the species and, therefore, should be...

  4. Assistive Technology Design in Special Education. Issue Brief 2.

    ERIC Educational Resources Information Center

    Burnette, Jane

    The issue brief discusses technological principles, issues, and design features discovered or used by projects funded by the Office of Special Education Programs (OSEP). Information was obtained from interviews with project directors who were asked about their project experiences, the features and design principles essential to the success of…

  5. 78 FR 14245 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Buena...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... occupied by the species at the time of listing that contain features essential for the conservation of the... listing that are essential to the conservation of the species, and why. (3) Land use designations and... areas proposed are not essential, are appropriate for exclusion under section 4(b)(2) of the Act, or are...

  6. 77 FR 32483 - Endangered and Threatened Wildlife and Plants; Revised Critical Habitat for the Northern Spotted...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-01

    ... consider all public comments on the relevant science and economics, including those comments that suggest... occupied at the time of listing and contain features essential to the conservation of the species such that they should be included in the designation and why; c. Whether these essential features may require...

  7. How to Personalize Learning in K-12 Schools: Five Essential Design Features

    ERIC Educational Resources Information Center

    Lee, Dabae

    2014-01-01

    Personalized learning (PL) is spotlighted as a way to transform K-12 educational systems. PL customizes learning pace, instructional methods, and learning content to individual students. As much as PL sounds promising and complex, little guidance is available to educators and policymakers about how to effectively design PL. Five essential features…

  8. Statistical Analysis of Hurst Exponents of Essential/Nonessential Genes in 33 Bacterial Genomes

    PubMed Central

    Liu, Xiao; Wang, Baojin; Xu, Luo

    2015-01-01

    Methods for identifying essential genes currently depend predominantly on biochemical experiments. However, there is demand for improved computational methods for determining gene essentiality. In this study, we used the Hurst exponent, a characteristic parameter to describe long-range correlation in DNA, and analyzed its distribution in 33 bacterial genomes. In most genomes (31 out of 33) the significance levels of the Hurst exponents of the essential genes were significantly higher than for the corresponding full-gene-set, whereas the significance levels of the Hurst exponents of the nonessential genes remained unchanged or increased only slightly. All of the Hurst exponents of essential genes followed a normal distribution, with one exception. We therefore propose that the distribution feature of Hurst exponents of essential genes can be used as a classification index for essential gene prediction in bacteria. For computer-aided design in the field of synthetic biology, this feature can build a restraint for pre- or post-design checking of bacterial essential genes. Moreover, considering the relationship between gene essentiality and evolution, the Hurst exponents could be used as a descriptive parameter related to evolutionary level, or be added to the annotation of each gene. PMID:26067107

  9. Towards the prediction of essential genes by integration of network topology, cellular localization and biological process information

    PubMed Central

    2009-01-01

    Background The identification of essential genes is important for the understanding of the minimal requirements for cellular life and for practical purposes, such as drug design. However, the experimental techniques for essential genes discovery are labor-intensive and time-consuming. Considering these experimental constraints, a computational approach capable of accurately predicting essential genes would be of great value. We therefore present here a machine learning-based computational approach relying on network topological features, cellular localization and biological process information for prediction of essential genes. Results We constructed a decision tree-based meta-classifier and trained it on datasets with individual and grouped attributes-network topological features, cellular compartments and biological processes-to generate various predictors of essential genes. We showed that the predictors with better performances are those generated by datasets with integrated attributes. Using the predictor with all attributes, i.e., network topological features, cellular compartments and biological processes, we obtained the best predictor of essential genes that was then used to classify yeast genes with unknown essentiality status. Finally, we generated decision trees by training the J48 algorithm on datasets with all network topological features, cellular localization and biological process information to discover cellular rules for essentiality. We found that the number of protein physical interactions, the nuclear localization of proteins and the number of regulating transcription factors are the most important factors determining gene essentiality. Conclusion We were able to demonstrate that network topological features, cellular localization and biological process information are reliable predictors of essential genes. Moreover, by constructing decision trees based on these data, we could discover cellular rules governing essentiality. PMID:19758426

  10. Supporting Homework Compliance in Cognitive Behavioural Therapy: Essential Features of Mobile Apps

    PubMed Central

    Tang, Wei

    2017-01-01

    Cognitive behavioral therapy (CBT) is one of the most effective psychotherapy modalities used to treat depression and anxiety disorders. Homework is an integral component of CBT, but homework compliance in CBT remains problematic in real-life practice. The popularization of the mobile phone with app capabilities (smartphone) presents a unique opportunity to enhance CBT homework compliance; however, there are no guidelines for designing mobile phone apps created for this purpose. Existing literature suggests 6 essential features of an optimal mobile app for maximizing CBT homework compliance: (1) therapy congruency, (2) fostering learning, (3) guiding therapy, (4) connection building, (5) emphasis on completion, and (6) population specificity. We expect that a well-designed mobile app incorporating these features should result in improved homework compliance and better outcomes for its users. PMID:28596145

  11. Spectral feature design in high dimensional multispectral data

    NASA Technical Reports Server (NTRS)

    Chen, Chih-Chien Thomas; Landgrebe, David A.

    1988-01-01

    The High resolution Imaging Spectrometer (HIRIS) is designed to acquire images simultaneously in 192 spectral bands in the 0.4 to 2.5 micrometers wavelength region. It will make possible the collection of essentially continuous reflectance spectra at a spectral resolution sufficient to extract significantly enhanced amounts of information from return signals as compared to existing systems. The advantages of such high dimensional data come at a cost of increased system and data complexity. For example, since the finer the spectral resolution, the higher the data rate, it becomes impractical to design the sensor to be operated continuously. It is essential to find new ways to preprocess the data which reduce the data rate while at the same time maintaining the information content of the high dimensional signal produced. Four spectral feature design techniques are developed from the Weighted Karhunen-Loeve Transforms: (1) non-overlapping band feature selection algorithm; (2) overlapping band feature selection algorithm; (3) Walsh function approach; and (4) infinite clipped optimal function approach. The infinite clipped optimal function approach is chosen since the features are easiest to find and their classification performance is the best. After the preprocessed data has been received at the ground station, canonical analysis is further used to find the best set of features under the criterion that maximal class separability is achieved. Both 100 dimensional vegetation data and 200 dimensional soil data were used to test the spectral feature design system. It was shown that the infinite clipped versions of the first 16 optimal features had excellent classification performance. The overall probability of correct classification is over 90 percent while providing for a reduced downlink data rate by a factor of 10.

  12. Supporting Homework Compliance in Cognitive Behavioural Therapy: Essential Features of Mobile Apps.

    PubMed

    Tang, Wei; Kreindler, David

    2017-06-08

    Cognitive behavioral therapy (CBT) is one of the most effective psychotherapy modalities used to treat depression and anxiety disorders. Homework is an integral component of CBT, but homework compliance in CBT remains problematic in real-life practice. The popularization of the mobile phone with app capabilities (smartphone) presents a unique opportunity to enhance CBT homework compliance; however, there are no guidelines for designing mobile phone apps created for this purpose. Existing literature suggests 6 essential features of an optimal mobile app for maximizing CBT homework compliance: (1) therapy congruency, (2) fostering learning, (3) guiding therapy, (4) connection building, (5) emphasis on completion, and (6) population specificity. We expect that a well-designed mobile app incorporating these features should result in improved homework compliance and better outcomes for its users. ©Wei Tang, David Kreindler. Originally published in JMIR Mental Health (http://mental.jmir.org), 08.06.2017.

  13. How Methodological Features Affect Effect Sizes in Education

    ERIC Educational Resources Information Center

    Cheung, Alan; Slavin, Robert

    2016-01-01

    As evidence-based reform becomes increasingly important in educational policy, it is becoming essential to understand how research design might contribute to reported effect sizes in experiments evaluating educational programs. The purpose of this study was to examine how methodological features such as types of publication, sample sizes, and…

  14. Developing an Essentially Unidimensional Test with Cognitively Designed Items

    ERIC Educational Resources Information Center

    Bryant, Damon U.; Wooten, William

    2006-01-01

    The purpose of this study was to demonstrate how cognitive and measurement principles can be integrated to create an essentially unidimensional test. Two studies were conducted. In Study 1, test questions were created by using the feature integration theory of attention to develop a cognitive model of performance and then manipulating complexity…

  15. High-density capacitors pack more energy in a smaller space

    NASA Astrophysics Data System (ADS)

    Lerner, E. J.

    1985-05-01

    Attention is given to the design features and performance characteristics of novel high density capacitor banks which furnish a tenfold energy increase over conventional capacitors, to values of the order of 100 J/kg or 0.28 J/cu cm. The essential feature of the new design is the replacement of plastic dielectric films interleaved with oil-soaked films by a paperless film system that uses perfluorocarbon rather than oil.

  16. Arts Education Facilities Planner for Grades 9-12.

    ERIC Educational Resources Information Center

    North Carolina State Dept. of Public Instruction, Raleigh. Div. of School Support.

    This document suggests facilities necessary to conduct instruction in arts programs in grades 9-12 and conveys essential features that should be present. As a reference document for school facilities designers, it describes arts education programs and the facilities that support them, with some sections focusing on the concepts and features common…

  17. The Essential Genome of Escherichia coli K-12

    PubMed Central

    2018-01-01

    ABSTRACT Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. PMID:29463657

  18. 78 FR 26581 - Endangered and Threatened Wildlife and Plants; Listing and Designation of Critical Habitat for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... activity, the degree of which can be expected to increase due to the designation, and whether that increase...; (b) What may constitute ``physical or biological features essential to the conservation of the... species and why. (7) Land use designations and current or planned activities in the areas occupied by the...

  19. 77 FR 28846 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for Astragalus...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... data available, after taking into consideration the economic impact, impact on national security, or... agencies), the educational benefits of mapping areas containing essential features that aid in the recovery... exclude any areas will be based on the best scientific data available at the time of the final designation...

  20. 78 FR 15925 - Endangered and Threatened Wildlife and Plants; Endangered Status and Critical Habitat Designation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-13

    ... proposed rules. We particularly seek comments concerning: (1) The species' biology, range, and population... ``physical or biological features essential to the conservation of the species,'' within the geographical...

  1. The Understanding by Design Guide to Advanced Concepts in Creating and Reviewing Units

    ERIC Educational Resources Information Center

    McTighe, Jay; Wiggins, Grant

    2012-01-01

    Regardless of your stage at implementing the design tools and using the improved template for Understanding by Design[R] (UbD), this companion to "The UbD Guide to Creating High-Quality Units" is essential for taking your work to a higher plane. This volume features a set of hands-on modules containing worksheets, models, and self-assessments that…

  2. A Comparison of Parameter Study Creation and Job Submission Tools

    NASA Technical Reports Server (NTRS)

    DeVivo, Adrian; Yarrow, Maurice; McCann, Karen M.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We consider the differences between the available general purpose parameter study and job submission tools. These tools necessarily share many features, but frequently with differences in the way they are designed and implemented For this class of features, we will only briefly outline the essential differences. However we will focus on the unique features which distinguish the ILab parameter study and job submission tool from other packages, and which make the ILab tool easier and more suitable for use in our research and engineering environment.

  3. Recent Development of the Two-Stroke Engine. II - Design Features. 2; Design Features

    NASA Technical Reports Server (NTRS)

    Zeman, J.

    1945-01-01

    Completing the first paper dealing with charging methods and arrangements, the present paper discusses the design forms of two-stroke engines. Features which largely influence piston running are: (a) The shape and surface condition of the sliding parts. (b) The cylinder and piston materials. (c) Heat conditions in the piston, and lubrication. There is little essential difference between four-stroke and two-stroke engines with ordinary pistons. In large engines, for example, are always found separately cast or welded frames in which the stresses are taken up by tie rods. Twin piston and timing piston engines often differ from this design. Examples can be found in many engines of German or foreign make. Their methods of operation will be dealt with in the third part of the present paper, which also includes the bibliography. The development of two-stroke engine design is, of course, mainly concerned with such features as are inherently difficult to master; that is, the piston barrel and the design of the gudgeon pin bearing. Designers of four-stroke engines now-a-days experience approximately the same difficulties, since heat stresses have increased to the point of influencing conditions in the piston barrel. Features which notably affect this are: (a) The material. (b) Prevailing heat conditions.

  4. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1994-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth-order central differences through fast Fourier transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large scale features, such as the total circulation around the roll-up region, are adequately resolved.

  5. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow

    NASA Technical Reports Server (NTRS)

    Weinan, E.; Shu, Chi-Wang

    1992-01-01

    High order essentially non-oscillatory (ENO) schemes, originally designed for compressible flow and in general for hyperbolic conservation laws, are applied to incompressible Euler and Navier-Stokes equations with periodic boundary conditions. The projection to divergence-free velocity fields is achieved by fourth order central differences through Fast Fourier Transforms (FFT) and a mild high-order filtering. The objective of this work is to assess the resolution of ENO schemes for large scale features of the flow when a coarse grid is used and small scale features of the flow, such as shears and roll-ups, are not fully resolved. It is found that high-order ENO schemes remain stable under such situations and quantities related to large-scale features, such as the total circulation around the roll-up region, are adequately resolved.

  6. Virtual and physical toys: open-ended features for non-formal learning.

    PubMed

    Petersson, Eva; Brooks, Anthony

    2006-04-01

    This paper examines the integrated toy--both physical and virtual--as an essential resource for collaborative learning. This learning incorporates rehabilitation, training, and education. The data derived from two different cases. Pedagogical issues related to non-formal learning and open-ended features of design are discussed. Findings suggest that social, material, and expressive affordances constitute a base for an alterative interface to encourage children's play and learning.

  7. Essential Features of Serious Games Design in Higher Education: Linking Learning Attributes to Game Mechanics

    ERIC Educational Resources Information Center

    Lameras, Petros; Arnab, Sylvester; Dunwell, Ian; Stewart, Craig; Clarke, Samantha; Petridis, Panagiotis

    2017-01-01

    This paper consolidates evidence and material from a range of specialist and disciplinary fields to provide an evidence-based review and synthesis on the design and use of serious games in higher education. Search terms identified 165 papers reporting conceptual and empirical evidence on how learning attributes and game mechanics may be planned,…

  8. 77 FR 30988 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Cumberland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... revised totals. The data in this table replaces the data provided in table 3 of the proposed rule at 76 FR... that we designate or revise critical habitat based upon the best scientific data available, after... educational benefits of mapping areas containing essential features that aid in the recovery of the listed...

  9. Technology Helps Students Transcend Part-Whole Concepts

    ERIC Educational Resources Information Center

    Norton, Anderson; Wilkins, Jesse L. M.; Evans, Michael A.; Deater-Deckard, Kirby; Balci, Osman; Chang, Mido

    2014-01-01

    The authors introduce an educational video game (application, or "app"), "CandyFactory Educational Game," designed to promote students' development of partitive understanding of fractions while demonstrating the critical need to promote that development. The app includes essential game features of immediate feedback,…

  10. UDoNC: An Algorithm for Identifying Essential Proteins Based on Protein Domains and Protein-Protein Interaction Networks.

    PubMed

    Peng, Wei; Wang, Jianxin; Cheng, Yingjiao; Lu, Yu; Wu, Fangxiang; Pan, Yi

    2015-01-01

    Prediction of essential proteins which are crucial to an organism's survival is important for disease analysis and drug design, as well as the understanding of cellular life. The majority of prediction methods infer the possibility of proteins to be essential by using the network topology. However, these methods are limited to the completeness of available protein-protein interaction (PPI) data and depend on the network accuracy. To overcome these limitations, some computational methods have been proposed. However, seldom of them solve this problem by taking consideration of protein domains. In this work, we first analyze the correlation between the essentiality of proteins and their domain features based on data of 13 species. We find that the proteins containing more protein domain types which rarely occur in other proteins tend to be essential. Accordingly, we propose a new prediction method, named UDoNC, by combining the domain features of proteins with their topological properties in PPI network. In UDoNC, the essentiality of proteins is decided by the number and the frequency of their protein domain types, as well as the essentiality of their adjacent edges measured by edge clustering coefficient. The experimental results on S. cerevisiae data show that UDoNC outperforms other existing methods in terms of area under the curve (AUC). Additionally, UDoNC can also perform well in predicting essential proteins on data of E. coli.

  11. Structural design and crashworthiness of automobiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murthy, T.K.S.; Brebbia, C.A.

    1987-01-01

    This book contains contributions on the design of automobile structure, particularly from the viewpoint of its crashworthiness, which is an essential feature for the safety of passengers and other road users. The book provides a work of reference on the design of automobile structures and the papers included are the edited versions of some of the papers presented at the 1st International Conference on Computer Aided Design, Manufacture and Operation in the Automotive Industries (COMPAUTO 87) organized by the Computational Mechanics Institute of Southampton, England.

  12. An Analysis of Activities in Saudi Arabian Middle School Science Textbooks and Workbooks for the Inclusion of Essential Features of Inquiry

    ERIC Educational Resources Information Center

    Aldahmash, Abdulwali H.; Mansour, Nasser S.; Alshamrani, Saeed M.; Almohi, Saeed

    2016-01-01

    This study examines Saudi Arabian middle school science textbooks' coverage of the essential features of scientific inquiry. All activities in the middle school science textbooks and workbooks were analyzed by using the scientific inquiry "essential features" rubric. The results indicated that the essential features are included in about…

  13. Robust Control Design for Flight Control

    DTIC Science & Technology

    1989-07-01

    controller may be designed to produce desired responses to pilot commands, responses to external (atmospheric) disturbances may be unusual and...suggested for stabilizing open loop unstable aircraft result in nonminimum phase zeros in the dynamics as seen by the pilot . This issue has not been...stability test it does retain several essential features of the popular single loop test developed by Nyquist. In particular, it identifies a Nyquist

  14. A feature dictionary supporting a multi-domain medical knowledge base.

    PubMed

    Naeymi-Rad, F

    1989-01-01

    Because different terminology is used by physicians of different specialties in different locations to refer to the same feature (signs, symptoms, test results), it is essential that our knowledge development tools provide a means to access a common pool of terms. This paper discusses the design of an online medical dictionary that provides a solution to this problem for developers of multi-domain knowledge bases for MEDAS (Medical Emergency Decision Assistance System). Our Feature Dictionary supports phrase equivalents for features, feature interactions, feature classifications, and translations to the binary features generated by the expert during knowledge creation. It is also used in the conversion of a domain knowledge to the database used by the MEDAS inference diagnostic sessions. The Feature Dictionary also provides capabilities for complex queries across multiple domains using the supported relations. The Feature Dictionary supports three methods for feature representation: (1) for binary features, (2) for continuous valued features, and (3) for derived features.

  15. LARM PKM solutions for torso design in humanoid robots

    NASA Astrophysics Data System (ADS)

    Ceccarelli, Marco

    2014-12-01

    Human-like torso features are essential in humanoid robots. In this paper problems for design and operation of solutions for a robotic torso are discussed by referring to experiences and designs that have been developed at Laboratory of Robotics and Mechatronics (LARM) in Cassino, Italy. A new solution is presented with conceptual views as waist-trunk structure that makes a proper partition of the performance for walking and arm operations as sustained by a torso.

  16. Impact of Hearing Aid Technology on Outcomes in Daily Life II: Speech Understanding and Listening Effort.

    PubMed

    Johnson, Jani A; Xu, Jingjing; Cox, Robyn M

    2016-01-01

    Modern hearing aid (HA) devices include a collection of acoustic signal-processing features designed to improve listening outcomes in a variety of daily auditory environments. Manufacturers market these features at successive levels of technological sophistication. The features included in costlier premium hearing devices are designed to result in further improvements to daily listening outcomes compared with the features included in basic hearing devices. However, independent research has not substantiated such improvements. This research was designed to explore differences in speech-understanding and listening-effort outcomes for older adults using premium-feature and basic-feature HAs in their daily lives. For this participant-blinded, repeated, crossover trial 45 older adults (mean age 70.3 years) with mild-to-moderate sensorineural hearing loss wore each of four pairs of bilaterally fitted HAs for 1 month. HAs were premium- and basic-feature devices from two major brands. After each 1-month trial, participants' speech-understanding and listening-effort outcomes were evaluated in the laboratory and in daily life. Three types of speech-understanding and listening-effort data were collected: measures of laboratory performance, responses to standardized self-report questionnaires, and participant diary entries about daily communication. The only statistically significant superiority for the premium-feature HAs occurred for listening effort in the loud laboratory condition and was demonstrated for only one of the tested brands. The predominant complaint of older adults with mild-to-moderate hearing impairment is difficulty understanding speech in various settings. The combined results of all the outcome measures used in this research suggest that, when fitted using scientifically based practices, both premium- and basic-feature HAs are capable of providing considerable, but essentially equivalent, improvements to speech understanding and listening effort in daily life for this population. For HA providers to make evidence-based recommendations to their clientele with hearing impairment it is essential that further independent research investigates the relative benefit/deficit of different levels of hearing technology across brands and manufacturers in these and other real-world listening domains.

  17. High-speed digital signal normalization for feature identification

    NASA Technical Reports Server (NTRS)

    Ortiz, J. A.; Meredith, B. D.

    1983-01-01

    A design approach for high speed normalization of digital signals was developed. A reciprocal look up table technique is employed, where a digital value is mapped to its reciprocal via a high speed memory. This reciprocal is then multiplied with an input signal to obtain the normalized result. Normalization improves considerably the accuracy of certain feature identification algorithms. By using the concept of pipelining the multispectral sensor data processing rate is limited only by the speed of the multiplier. The breadboard system was found to operate at an execution rate of five million normalizations per second. This design features high precision, a reduced hardware complexity, high flexibility, and expandability which are very important considerations for spaceborne applications. It also accomplishes a high speed normalization rate essential for real time data processing.

  18. The impact of a professional development model on middle school science teachers' efficacy and implementation of inquiry

    NASA Astrophysics Data System (ADS)

    Lotter, Christine; Smiley, Whitney; Thompson, Stephen; Dickenson, Tammiee

    2016-12-01

    This study investigated a professional development model designed to improve teachers' inquiry teaching efficacy as well as the quality of their inquiry instruction through engaging teachers in practice-teaching and reflection sessions. The programme began with a two-week summer Institute focused on both inquiry pedagogy and science content and continued with academic year support for participants' inquiry implementation. An inquiry teaching efficacy instrument was administered 3 times to 25 teacher participants to gauge changes in their personal self-efficacy and outcome expectancy across 5 essential features of classroom inquiry. To examine actual practices, pre/post classroom observations of the teachers' inquiry enactments were evaluated using a quality of inquiry observation protocol. Following the summer Institute, teachers had statistically significant increases in their self-efficacy for teaching inquiry in four of the five essential features and increases in one of the five essential features for outcome expectancy. Teachers' quality of inquiry teaching also increased after the professional development programme. We discuss implications of this PD model for moving teachers towards implementation of new instructional techniques as well as the influence of a supportive school community on teachers' efficacy with inquiry instruction.

  19. 50 CFR 226.216 - Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... palmata) and staghorn (A. cervicornis) corals. 226.216 Section 226.216 Wildlife and Fisheries NATIONAL... (A. cervicornis) corals. Critical habitat is designated for both elkhorn and staghorn corals as... Threatened Corals. The physical feature essential to the conservation of elkhorn and staghorn corals is...

  20. 50 CFR 226.216 - Critical habitat for elkhorn (Acropora palmata) and staghorn (A. cervicornis) corals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... palmata) and staghorn (A. cervicornis) corals. 226.216 Section 226.216 Wildlife and Fisheries NATIONAL... (A. cervicornis) corals. Critical habitat is designated for both elkhorn and staghorn corals as... Threatened Corals. The physical feature essential to the conservation of elkhorn and staghorn corals is...

  1. Water oxidation: High five iron

    NASA Astrophysics Data System (ADS)

    Lloret-Fillol, Julio; Costas, Miquel

    2016-03-01

    The oxidation of water is essential to the sustainable production of fuels using sunlight or electricity, but designing active, stable and earth-abundant catalysts for the reaction is challenging. Now, a complex containing five iron atoms is shown to efficiently oxidize water by mimicking key features of the oxygen-evolving complex in green plants.

  2. How Methodological Features Affect Effect Sizes in Education

    ERIC Educational Resources Information Center

    Cheung, Alan C. K.; Slavin, Robert E.

    2016-01-01

    As evidence becomes increasingly important in educational policy, it is essential to understand how research design might contribute to reported effect sizes in experiments evaluating educational programs. A total of 645 studies from 12 recent reviews of evaluations of preschool, reading, mathematics, and science programs were studied. Effect…

  3. Recent GE BWR fuel experience and design evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, J.E.; Potts, G.A.; Proebstle, R.A.

    1992-01-01

    Reliable fuel operation is essential to the safe, reliable, and economic power production by today's commercial nuclear reactors. GE Nuclear Energy is committed to maximize fuel reliability through the progressive development of improved fuel design features and dedication to provide the maximum quality of the design features and dedication to provide the maximum quality of the design, fabrication, and operation of GE BWR fuel. Over the last 35 years, GE has designed, fabricated, and placed in operation over 82,000 BWR fuel bundles containing over 5 million fuel rods. This experience includes successful commercial reactor operation of fuel assemblies to greatermore » than 45000 MWd/MTU bundle average exposure. This paper reports that this extensive experience base has enabled clear identification and characterization of the active failure mechanisms. With this failure mechanism characterization, mitigating actions have been developed and implemented by GE to provide the highest reliability BWR fuel bundles possible.« less

  4. Impact of Hearing Aid Technology on Outcomes in Daily Life III: Localization.

    PubMed

    Johnson, Jani A; Xu, Jingjing; Cox, Robyn M

    Compared to basic-feature hearing aids, premium-feature hearing aids have more advanced technologies and sophisticated features. The objective of this study was to explore the difference between premium-feature and basic-feature hearing aids in horizontal sound localization in both laboratory and daily life environments. We hypothesized that premium-feature hearing aids would yield better localization performance than basic-feature hearing aids. Exemplars of premium-feature and basic-feature hearing aids from two major manufacturers were evaluated. Forty-five older adults (mean age 70.3 years) with essentially symmetrical mild to moderate sensorineural hearing loss were bilaterally fitted with each of the four pairs of hearing aids. Each pair of hearing aids was worn during a 4-week field trial and then evaluated using laboratory localization tests and a standardized questionnaire. Laboratory localization tests were conducted in a sound-treated room with a 360°, 24-loudspeaker array. Test stimuli were high frequency and low frequency filtered short sentences. The localization test in quiet was designed to assess the accuracy of front/back localization, while the localization test in noise was designed to assess the accuracy of locating sound sources throughout a 360° azimuth in the horizontal plane. Laboratory data showed that unaided localization was not significantly different from aided localization when all hearing aids were combined. Questionnaire data showed that aided localization was significantly better than unaided localization in everyday situations. Regarding the difference between premium-feature and basic-feature hearing aids, laboratory data showed that, overall, the premium-feature hearing aids yielded more accurate localization than the basic-feature hearing aids when high-frequency stimuli were used, and the listening environment was quiet. Otherwise, the premium-feature and basic-feature hearing aids yielded essentially the same performance in other laboratory tests and in daily life. The findings were consistent for both manufacturers. Laboratory tests for two of six major manufacturers showed that premium-feature hearing aids yielded better localization performance than basic-feature hearing aids in one out of four laboratory conditions. There was no difference between the two feature levels in self-reported everyday localization. Effectiveness research with different hearing aid technologies is necessary, and more research with other manufacturers' products is needed. Furthermore, these results confirm previous observations that research findings in laboratory conditions might not translate to everyday life.

  5. Program Evaluation in Gifted Education. Essential Readings in Gifted Education Series

    ERIC Educational Resources Information Center

    Callahan, Carolyn M., Ed.; Reis, Sally M., Ed.

    2004-01-01

    The readings in this ready-reference report on specific program evaluations, offer critical guidance in the development and utilization of instruments for assessing gifted and talented programs, and are designed to stimulate the discussion of issues surrounding the evaluation of gifted programs. Key features include: (1) Carolyn M. Callahan's…

  6. Distributed Item Review: Administrator User Guide. Technical Report #1603

    ERIC Educational Resources Information Center

    Irvin, P. Shawn

    2016-01-01

    The Distributed Item Review (DIR) is a secure and flexible, web-based system designed to present test items to expert reviewers across a broad geographic area for evaluation of important dimensions of quality (e.g., alignment with standards, bias, sensitivity, and student accessibility). The DIR is comprised of essential features that allow system…

  7. Essential Questions to Raise during a Building Project

    ERIC Educational Resources Information Center

    Schneider, Tod

    2005-01-01

    School planning isn't easy. Compromises can inadvertently undermine critical health and safety features. Errors can go undetected until too late, becoming apparent only after the cement is dry. As a school design consultant, the author is often pointing out dysfunctional elements in otherwise fine school buildings. He would much rather catch them…

  8. Flexibility as a Management Principle in Dementia Care: The Adards Example

    ERIC Educational Resources Information Center

    Cohen-Mansfield, Jiska; Bester, Allan

    2006-01-01

    Purpose: Flexibility is an essential ingredient of person-centered care. We illustrate the potential impact of flexibility by portraying a nursing home that uses flexibility in its approach to residents and staff members. Designs and Methods: The paper describes the management strategies, principles, and environmental features used by the Adards…

  9. Unit: Where Humans Came From, Inspection Pack, First Trial Print.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    "Where Humans Came From" is a set of materials designed for use by students (aged 15-16) to assist them in investigating the problem posed in the title. The student book briefly outlines the essential features of four explanations of human origin: special creation (Judeo-Christian, Greek, Australian Aboriginal, American Indian accounts);…

  10. Report of the workshop on evidence-based design of national wildlife health programs

    USGS Publications Warehouse

    Nguyen, Natalie T.; Duff, J. Paul; Gavier-Widén, Dolores; Grillo, Tiggy; He, Hongxuan; Lee, Hang; Ratanakorn, Parntep; Rijks, Jolianne M.; Ryser-Degiorgis, Marie-Pierre; Sleeman, Jonathan M.; Stephen, Craig; Tana, Toni; Uhart, Marcela; Zimmer , Patrick

    2017-05-08

    SummaryThis report summarizes a Wildlife Disease Association sponsored workshop held in 2016. The overall objective of the workshop was to use available evidence and selected subject matter expertise to define the essential functions of a National Wildlife Health Program and the resources needed to deliver a robust and reliable program, including the basic infrastructure, workforce, data and information systems, governance, organizational capacity, and essential features, such as wildlife disease surveillance, diagnostic services, and epidemiological investigation. This workshop also provided the means to begin the process of defining the essential attributes of a national wildlife health program that could be scalable and adaptable to each nation’s needs.

  11. An Analysis of Activities in Saudi Arabian Middle School Science Textbooks and Workbooks for the Inclusion of Essential Features of Inquiry

    NASA Astrophysics Data System (ADS)

    Aldahmash, Abdulwali H.; Mansour, Nasser S.; Alshamrani, Saeed M.; Almohi, Saeed

    2016-12-01

    This study examines Saudi Arabian middle school science textbooks' coverage of the essential features of scientific inquiry. All activities in the middle school science textbooks and workbooks were analyzed by using the scientific inquiry `essential features' rubric. The results indicated that the essential features are included in about 59 % of the analyzed science activities. However, feature 2, `making learner give priority to evidence in responding to questions' and feature 3, `allowing learner to formulate explanations from evidence' appeared more frequently than the other three features (feature 1: engaging learner in scientifically oriented questions, feature 4: helping learner connect explanations to scientific knowledge, and feature 5: helping learner communicate and justify explanations to others), whether in the activities as a whole, or in the activities included in each of the four science domains (physical science, Earth science, life science and chemistry). These features are represented in almost all activities. This means that almost all activities in the middle school science textbooks and the workbooks include features 2 and 3. Meanwhile, the mean level of inclusion of the five essential features of scientific inquiry found in the middle school science textbooks and workbooks as a whole is 2.55. However, results found for features 1, 4, 5 and for in-level inclusion of the inquiry features in each of the science domains indicate that the inclusion of the essential inquiry features is teacher-centred. As a result, neither science textbooks nor workbooks provide students with the opportunity or encouragement to develop their inquiry skills. Consequently, the results suggest important directions for educational administrators and policy-makers in the preparation and use of science educational content.

  12. ICAN: Integrated composites analyzer

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1984-01-01

    The ICAN computer program performs all the essential aspects of mechanics/analysis/design of multilayered fiber composites. Modular, open-ended and user friendly, the program can handle a variety of composite systems having one type of fiber and one matrix as constituents as well as intraply and interply hybrid composite systems. It can also simulate isotropic layers by considering a primary composite system with negligible fiber volume content. This feature is specifically useful in modeling thin interply matrix layers. Hygrothermal conditions and various combinations of in-plane and bending loads can also be considered. Usage of this code is illustrated with a sample input and the generated output. Some key features of output are stress concentration factors around a circular hole, locations of probable delamination, a summary of the laminate failure stress analysis, free edge stresses, microstresses and ply stress/strain influence coefficients. These features make ICAN a powerful, cost-effective tool to analyze/design fiber composite structures and components.

  13. Circuit Design Features of a Stable Two-Cell System.

    PubMed

    Zhou, Xu; Franklin, Ruth A; Adler, Miri; Jacox, Jeremy B; Bailis, Will; Shyer, Justin A; Flavell, Richard A; Mayo, Avi; Alon, Uri; Medzhitov, Ruslan

    2018-02-08

    Cell communication within tissues is mediated by multiple paracrine signals including growth factors, which control cell survival and proliferation. Cells and the growth factors they produce and receive constitute a circuit with specific properties that ensure homeostasis. Here, we used computational and experimental approaches to characterize the features of cell circuits based on growth factor exchange between macrophages and fibroblasts, two cell types found in most mammalian tissues. We found that the macrophage-fibroblast cell circuit is stable and robust to perturbations. Analytical screening of all possible two-cell circuit topologies revealed the circuit features sufficient for stability, including environmental constraint and negative-feedback regulation. Moreover, we found that cell-cell contact is essential for the stability of the macrophage-fibroblast circuit. These findings illustrate principles of cell circuit design and provide a quantitative perspective on cell interactions. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Knowledge Enriched Learning by Converging Knowledge Object & Learning Object

    ERIC Educational Resources Information Center

    Sabitha, Sai; Mehrotra, Deepti; Bansal, Abhay

    2015-01-01

    The most important dimension of learning is the content, and a Learning Management System (LMS) suffices this to a certain extent. The present day LMS are designed to primarily address issues like ease of use, search, content and performance. Many surveys had been conducted to identify the essential features required for the improvement of LMS,…

  15. 76 FR 20179 - Endangered and Threatened Species: Designation of Critical Habitat for Cook Inlet Beluga Whale

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ..., these descriptions are general in nature and, we believe, far less descriptive than those presented in... distribution inlets is more descriptive of the actual distribution of these whales and the essential feature... anadromous fish utilizing these waters would not change the list, but could only add another descriptive...

  16. The Dual Language Program Planner: A Guide for Designing and Implementing Dual Language Programs.

    ERIC Educational Resources Information Center

    Howard, Elizabeth R.; Olague, Natalie; Rogers, David

    This guide offers a framework to facilitate the planning process for dual language programs, assuming at least a basic working knowledge of the central characteristics and essential features of dual language models. It provides an overview of the various models that serve linguistically diverse student populations, defining the term dual language…

  17. Designing human centered GeoVisualization application--the SanaViz--for telehealth users: a case study.

    PubMed

    Joshi, Ashish; de Araujo Novaes, Magdala; Machiavelli, Josiane; Iyengar, Sriram; Vogler, Robert; Johnson, Craig; Zhang, Jiajie; Hsu, Chiehwen E

    2012-01-01

    Public health data is typically organized by geospatial unit. GeoVisualization (GeoVis) allows users to see information visually on a map. Examine telehealth users' perceptions towards existing public health GeoVis applications and obtains users' feedback about features important for the design and development of Human Centered GeoVis application "the SanaViz". We employed a cross sectional study design using mixed methods approach for this pilot study. Twenty users involved with the NUTES telehealth center at Federal University of Pernambuco (UFPE), Recife, Brazil were enrolled. Open and closed ended questionnaires were used to gather data. We performed audio recording for the interviews. Information gathered included socio-demographics, prior spatial skills and perception towards use of GeoVis to evaluate telehealth services. Card sorting and sketching methods were employed. Univariate analysis was performed for the continuous and categorical variables. Qualitative analysis was performed for open ended questions. Existing Public Health GeoVis applications were difficult to use. Results found interaction features zooming, linking and brushing and representation features Google maps, tables and bar chart as most preferred GeoVis features. Early involvement of users is essential to identify features necessary to be part of the human centered GeoVis application "the SanaViz".

  18. Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media

    PubMed Central

    Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang

    2016-01-01

    Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users’ spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last. PMID:27999398

  19. Sci-Fin: Visual Mining Spatial and Temporal Behavior Features from Social Media.

    PubMed

    Pu, Jiansu; Teng, Zhiyao; Gong, Rui; Wen, Changjiang; Xu, Yang

    2016-12-20

    Check-in records are usually available in social services, which offer us the opportunity to capture and analyze users' spatial and temporal behaviors. Mining such behavior features is essential to social analysis and business intelligence. However, the complexity and incompleteness of check-in records bring challenges to achieve such a task. Different from the previous work on social behavior analysis, in this paper, we present a visual analytics system, Social Check-in Fingerprinting (Sci-Fin), to facilitate the analysis and visualization of social check-in data. We focus on three major components of user check-in data: location, activity, and profile. Visual fingerprints for location, activity, and profile are designed to intuitively represent the high-dimensional attributes. To visually mine and demonstrate the behavior features, we integrate WorldMapper and Voronoi Treemap into our glyph-like designs. Such visual fingerprint designs offer us the opportunity to summarize the interesting features and patterns from different check-in locations, activities and users (groups). We demonstrate the effectiveness and usability of our system by conducting extensive case studies on real check-in data collected from a popular microblogging service. Interesting findings are reported and discussed at last.

  20. A new computational strategy for predicting essential genes.

    PubMed

    Cheng, Jian; Wu, Wenwu; Zhang, Yinwen; Li, Xiangchen; Jiang, Xiaoqian; Wei, Gehong; Tao, Shiheng

    2013-12-21

    Determination of the minimum gene set for cellular life is one of the central goals in biology. Genome-wide essential gene identification has progressed rapidly in certain bacterial species; however, it remains difficult to achieve in most eukaryotic species. Several computational models have recently been developed to integrate gene features and used as alternatives to transfer gene essentiality annotations between organisms. We first collected features that were widely used by previous predictive models and assessed the relationships between gene features and gene essentiality using a stepwise regression model. We found two issues that could significantly reduce model accuracy: (i) the effect of multicollinearity among gene features and (ii) the diverse and even contrasting correlations between gene features and gene essentiality existing within and among different species. To address these issues, we developed a novel model called feature-based weighted Naïve Bayes model (FWM), which is based on Naïve Bayes classifiers, logistic regression, and genetic algorithm. The proposed model assesses features and filters out the effects of multicollinearity and diversity. The performance of FWM was compared with other popular models, such as support vector machine, Naïve Bayes model, and logistic regression model, by applying FWM to reciprocally predict essential genes among and within 21 species. Our results showed that FWM significantly improves the accuracy and robustness of essential gene prediction. FWM can remarkably improve the accuracy of essential gene prediction and may be used as an alternative method for other classification work. This method can contribute substantially to the knowledge of the minimum gene sets required for living organisms and the discovery of new drug targets.

  1. Development of an improved GTA (gas tungsten arc) weld temperature monitor fixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollar, D.L.

    1990-05-01

    An initial design weld temperature control fixture was implemented into final closure of an electronic assembly in November 1986. Use of this fixture indicated several areas that could be improved. Review of these areas with the process engineer and the weld operator provided the ideas to be incorporated into the new design Phase 2 fixture. Some primary areas of change and improvement included fixture mobility to provide better accessibility to the weld joint area, automatic timed blow cooling of the weld joint, and a feature to assure proper thermocouple placement. The resulting Phase 2 fixture design provided all of themore » essential weld temperature monitoring features in addition to several significant improvements. Technology developed during this project will pave the way to similar process monitoring of other manual gas tungsten arc (GTA) welding applications. 9 figs.« less

  2. Data mining for materials design: A computational study of single molecule magnet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dam, Hieu Chi; Faculty of Physics, Vietnam National University, 334 Nguyen Trai, Hanoi; Pham, Tien Lam

    2014-01-28

    We develop a method that combines data mining and first principles calculation to guide the designing of distorted cubane Mn{sup 4+} Mn {sub 3}{sup 3+} single molecule magnets. The essential idea of the method is a process consisting of sparse regressions and cross-validation for analyzing calculated data of the materials. The method allows us to demonstrate that the exchange coupling between Mn{sup 4+} and Mn{sup 3+} ions can be predicted from the electronegativities of constituent ligands and the structural features of the molecule by a linear regression model with high accuracy. The relations between the structural features and magnetic propertiesmore » of the materials are quantitatively and consistently evaluated and presented by a graph. We also discuss the properties of the materials and guide the material design basing on the obtained results.« less

  3. Detailed seafloor habitat mapping to enhance marine-resource management

    USGS Publications Warehouse

    Zawada, David G.; Hart, Kristen M.

    2010-01-01

    Pictures of the seafloor capture important information about the sediments, exposed geologic features, submerged aquatic vegetation, and animals found in a given habitat. With the emergence of marine protected areas (MPAs) as a favored tactic for preserving coral reef resources, knowledge of essential habitat components is paramount to designing effective management strategies. Surprisingly, detailed information on seafloor habitat components is not available in many areas that are being considered for MPA designation or that are already designated as MPAs. A task of the U.S. Geological Survey Coral Reef Ecosystem STudies (USGS CREST) project is addressing this issue.

  4. Designing a User-Friendly Microcomputer-Based Laboratory Package through the Factor Analysis of Teacher Evaluations

    ERIC Educational Resources Information Center

    Lavonen, Jari; Juuti, Kalle; Meisalo, Veijo

    2003-01-01

    In this study we analyse how the experiences of chemistry teachers on the use of a Microcomputer-Based Laboratory (MBL), gathered by a Likert-scale instrument, can be utilized to develop the new package "Empirica 2000." We used exploratory factor analysis to identify the essential features in a large set of questionnaire data to see how…

  5. The Incorporation of Market Orientation in the School Culture: An Essential Aspect of School Marketing

    ERIC Educational Resources Information Center

    Oplatka, Izhar; Hemsley-Brown, Jane

    2007-01-01

    Purpose: The purpose of this paper is to present the major features of market orientation (MO) and its benefits for schools, suggests an inventory to measure the degree of MO in a school, and provides strategies to incorporate elements of MO into the school culture. Design/methodology/approach: An instructional, technical approach which is based…

  6. Gaining customer knowledge: obtaining and using customer judgments for hospitalwide quality improvement.

    PubMed

    Nelson, E C; Caldwell, C; Quinn, D; Rose, R

    1991-03-01

    Customer knowledge is an essential feature of hospitalwide quality improvement. All systems and processes have customers. The aim is to use customer knowledge and voice of the customer measurement to plan, design, improve, and monitor these systems and processes continuously. In this way, the hospital stands the best chance of meeting customers' needs and, hopefully, delivering services that are so outstanding that customers will be surprised and delighted. There are many methods, both soft and hard, that can be used to increase customer knowledge. One useful strategy is to use a family of quality measures that reflect the voice of the customer. These measures can generate practical and powerful customer knowledge information that is essential to performing strategic planning, deploying quality policy, designing new services, finding targets for improvements, and monitoring those continuous improvements based on customers' judgments.

  7. The Essential Genome of Escherichia coli K-12.

    PubMed

    Goodall, Emily C A; Robinson, Ashley; Johnston, Iain G; Jabbari, Sara; Turner, Keith A; Cunningham, Adam F; Lund, Peter A; Cole, Jeffrey A; Henderson, Ian R

    2018-02-20

    Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. IMPORTANCE Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in Escherichia coli , we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the E. coli model laboratory organism. This paper is important because it provides a better understanding of the essential genes of E. coli , reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data. Copyright © 2018 Goodall et al.

  8. Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes

    NASA Astrophysics Data System (ADS)

    Malenkov, Mikhail

    2016-03-01

    This report reviews the most important episodes in the history of designing the self-propelled automatic chassis of the first mobile extraterrestrial vehicle in the world, Lunokhod-1. The review considers the issues in designing moon rovers, their essential features, and the particular construction properties of their systems, mechanisms, units, and assemblies. It presents the results of exploiting the chassis of Lunokhod-1 and Lunokhod-2. Analysis of the approaches utilized and engineering solutions reveals their value as well as the consequences of certain defects.

  9. A compact, high temperature nuclear magnetic resonance probe for use in a narrow-bore superconducting magnet

    NASA Astrophysics Data System (ADS)

    Adler, Stuart B.; Michaels, James N.; Reimer, Jeffrey A.

    1990-11-01

    The design of a nuclear magnetic resonance (NMR) probe is reported, that can be used in narrow-bore superconducting solenoids for the observation of nuclear induction at high temperatures. The probe is compact, highly sensitive, and stable in continuous operation at temperatures up to 1050 C. The essential feature of the probe is a water-cooled NMR coil that contains the sample-furnace; this design maximizes sensitivity and circuit stability by maintaining the probe electronics at ambient temperature. The design is demonstrated by showing high temperature O-17 NMR spectra and relaxation measurements in solid barium bismuth oxide and yttria-stabilized zirconia.

  10. Virtual Lead Identification of Farnesyltransferase Inhibitors Based on Ligand and Structure-Based Pharmacophore Techniques

    PubMed Central

    Al-Balas, Qosay A.; Amawi, Haneen A.; Hassan, Mohammad A.; Qandil, Amjad M.; Almaaytah, Ammar M.; Mhaidat, Nizar M.

    2013-01-01

    Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor’s binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski’s “rule of five” and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774) were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection. PMID:24276257

  11. Virtual lead identification of farnesyltransferase inhibitors based on ligand and structure-based pharmacophore techniques.

    PubMed

    Al-Balas, Qosay A; Amawi, Haneen A; Hassan, Mohammad A; Qandil, Amjad M; Almaaytah, Ammar M; Mhaidat, Nizar M

    2013-05-27

    Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor's binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski's "rule of five" and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774) were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection.

  12. Bringing Nature to Schools to Promote Children's Physical Activity.

    PubMed

    Sharma-Brymer, Vinathe; Bland, Derek

    2016-07-01

    Physical activity (PA) is essential for human health and wellbeing across all age, socioeconomic, and ethnic groups. Engagement with the natural world is a new defining criterion for enhancing the benefits of PA, particularly for children and young people. Interacting with nature benefits children's social and emotional wellbeing, develops resilience, and reduces the risk of obesity and type 2 diabetes mellitus across all population groups. Governments around the world are now recognizing the importance of children spending more active time outdoors. However, children's outdoor activities, free play, and nature-related exploration are often structured and supervised by adults due to safety concerns and risks. In this context, schools become more accessible and safe options for children to engage in PA outdoors with the presence of nature features. Research on school designs involving young children has revealed that children prefer nature-related features in school environments. Affordances in nature may increase children's interest in physically active behaviors. Given that present school campuses are designed for operational efficiency and economic reasons, there is a need to re-design schools responding to the positive role of nature on human health. If schools were re-designed to incorporate diverse natural features, children's PA and consequent health and wellbeing would likely improve markedly.

  13. A flexible new method for 3D measurement based on multi-view image sequences

    NASA Astrophysics Data System (ADS)

    Cui, Haihua; Zhao, Zhimin; Cheng, Xiaosheng; Guo, Changye; Jia, Huayu

    2016-11-01

    Three-dimensional measurement is the base part for reverse engineering. The paper developed a new flexible and fast optical measurement method based on multi-view geometry theory. At first, feature points are detected and matched with improved SIFT algorithm. The Hellinger Kernel is used to estimate the histogram distance instead of traditional Euclidean distance, which is immunity to the weak texture image; then a new filter three-principle for filtering the calculation of essential matrix is designed, the essential matrix is calculated using the improved a Contrario Ransac filter method. One view point cloud is constructed accurately with two view images; after this, the overlapped features are used to eliminate the accumulated errors caused by added view images, which improved the camera's position precision. At last, the method is verified with the application of dental restoration CAD/CAM, experiment results show that the proposed method is fast, accurate and flexible for tooth 3D measurement.

  14. 75 FR 16046 - Endangered and Threatened Wildlife and Plants; Listing Casey's June Beetle as Endangered and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... the physical and biological features essential to the conservation of Casey's June beetle, and what special management considerations or protections may be required to maintain or enhance the essential... with... [the Act], on which are found those physical or biological features (I) essential to the...

  15. Quantitative research.

    PubMed

    Watson, Roger

    2015-04-01

    This article describes the basic tenets of quantitative research. The concepts of dependent and independent variables are addressed and the concept of measurement and its associated issues, such as error, reliability and validity, are explored. Experiments and surveys – the principal research designs in quantitative research – are described and key features explained. The importance of the double-blind randomised controlled trial is emphasised, alongside the importance of longitudinal surveys, as opposed to cross-sectional surveys. Essential features of data storage are covered, with an emphasis on safe, anonymous storage. Finally, the article explores the analysis of quantitative data, considering what may be analysed and the main uses of statistics in analysis.

  16. Gaseous Detonation-Driven Fracture of Tubes

    DTIC Science & Technology

    2004-03-01

    understanding, in addition to leading to safer piping system design in nuclear power plants, can also assist accident investigators in learning what type...load, there are derived expressions in the literature from which one can learn about some essential features of mode I dynamic fracture. For a...along a 0.2-mm deep longitudinal groove. Pressure histories were measured by pressure transducers mounted inside the tube, axial and circumferen- tial

  17. Range and Primary Habitats of Hawaiian Insular False Killer Whales: Informing Determination of Critical Habitat

    DTIC Science & Technology

    2012-07-20

    whales Eubalaena glacialis (in 1994), ‘ southern resident ’ killer whales (in 2006), North Pacific right whales E...reviewed evaluation of specific and essential habitat features. For example, for southern resident killer whales , a population that uses both US and...critical habitat for southern resident killer whale . Federal Register 71: 69054−69070 Federal Register (2008) Designation of critical habitat for

  18. Low-contrast underwater living fish recognition using PCANet

    NASA Astrophysics Data System (ADS)

    Sun, Xin; Yang, Jianping; Wang, Changgang; Dong, Junyu; Wang, Xinhua

    2018-04-01

    Quantitative and statistical analysis of ocean creatures is critical to ecological and environmental studies. And living fish recognition is one of the most essential requirements for fishery industry. However, light attenuation and scattering phenomenon are present in the underwater environment, which makes underwater images low-contrast and blurry. This paper tries to design a robust framework for accurate fish recognition. The framework introduces a two stage PCA Network to extract abstract features from fish images. On a real-world fish recognition dataset, we use a linear SVM classifier and set penalty coefficients to conquer data unbalanced issue. Feature visualization results show that our method can avoid the feature distortion in boundary regions of underwater image. Experiments results show that the PCA Network can extract discriminate features and achieve promising recognition accuracy. The framework improves the recognition accuracy of underwater living fishes and can be easily applied to marine fishery industry.

  19. A Novel Multi-Class Ensemble Model for Classifying Imbalanced Biomedical Datasets

    NASA Astrophysics Data System (ADS)

    Bikku, Thulasi; Sambasiva Rao, N., Dr; Rao, Akepogu Ananda, Dr

    2017-08-01

    This paper mainly focuseson developing aHadoop based framework for feature selection and classification models to classify high dimensionality data in heterogeneous biomedical databases. Wide research has been performing in the fields of Machine learning, Big data and Data mining for identifying patterns. The main challenge is extracting useful features generated from diverse biological systems. The proposed model can be used for predicting diseases in various applications and identifying the features relevant to particular diseases. There is an exponential growth of biomedical repositories such as PubMed and Medline, an accurate predictive model is essential for knowledge discovery in Hadoop environment. Extracting key features from unstructured documents often lead to uncertain results due to outliers and missing values. In this paper, we proposed a two phase map-reduce framework with text preprocessor and classification model. In the first phase, mapper based preprocessing method was designed to eliminate irrelevant features, missing values and outliers from the biomedical data. In the second phase, a Map-Reduce based multi-class ensemble decision tree model was designed and implemented in the preprocessed mapper data to improve the true positive rate and computational time. The experimental results on the complex biomedical datasets show that the performance of our proposed Hadoop based multi-class ensemble model significantly outperforms state-of-the-art baselines.

  20. Research on simulated infrared image utility evaluation using deep representation

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiheng; Mu, Chengpo; Yang, Yu; Xu, Lixin

    2018-01-01

    Infrared (IR) image simulation is an important data source for various target recognition systems. However, whether simulated IR images could be used as training data for classifiers depends on the features of fidelity and authenticity of simulated IR images. For evaluation of IR image features, a deep-representation-based algorithm is proposed. Being different from conventional methods, which usually adopt a priori knowledge or manually designed feature, the proposed method can extract essential features and quantitatively evaluate the utility of simulated IR images. First, for data preparation, we employ our IR image simulation system to generate large amounts of IR images. Then, we present the evaluation model of simulated IR image, for which an end-to-end IR feature extraction and target detection model based on deep convolutional neural network is designed. At last, the experiments illustrate that our proposed method outperforms other verification algorithms in evaluating simulated IR images. Cross-validation, variable proportion mixed data validation, and simulation process contrast experiments are carried out to evaluate the utility and objectivity of the images generated by our simulation system. The optimum mixing ratio between simulated and real data is 0.2≤γ≤0.3, which is an effective data augmentation method for real IR images.

  1. Experimental and theoretical description of the optical properties of Myrcia sylvatica essential oil.

    PubMed

    Silva Prado, Andriele da; Leal, Luciano Almeida; de Brito, Patrick Pascoal; de Almeida Fonseca, Antonio Luciano; Blawid, Stefan; Ceschin, Artemis Marti; Veras Mourão, Rosa Helena; da Silva Júnior, Antônio Quaresma; Antonio da Silva Filho, Demétrio; Ribeiro Junior, Luiz Antonio; Ferreira da Cunha, Wiliam

    2017-07-01

    We present an extensive study of the optical properties of Myrcia sylvatica essential oil with the goal of investigating the suitability of its material system for uses in organic photovoltaics. The methods of extraction, experimental analysis, and theoretical modeling are described in detail. The precise composition of the oil in our samples is determined via gas chromatography, mass spectrometry, and X-ray scattering techniques. The measurements indicate that, indeed, the material system of Myrcia sylvatica essential oil may be successfully employed for the design of organic photovoltaic devices. The optical absorption of the molecules that compose the oil are calculated using time-dependent density functional theory and used to explain the measured UV-Vis spectra of the oil. We show that it is sufficient to consider the α-bisabolol/cadalene pair, two of the main constituents of the oil, to obtain the main features of the UV-Vis spectra. This finding is of importance for future works that aim to use Myrcia sylvatica essential oil as a photovoltaic material.

  2. A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Zhao, Haocen; Ye, Zhifeng

    2017-08-01

    Data-fused and user-friendly design of aero-engine accessories is required because of their structural complexity and stringent reliability. This paper gives an overview of a typical aero-engine control system and the development process of key mechatronic devices used. Several essential aspects of modeling and simulation in the process are investigated. Considering the limitations of a single theoretic model, feature-based co-modeling methodology is suggested to satisfy the design requirements and compensate for diversity of component sub-models for these devices. As an example, a stepper motor controlled Fuel Metering Unit (FMU) is modeled in view of the component physical features using two different software tools. An interface is suggested to integrate the single discipline models into the synthesized one. Performance simulation of this device using the co-model and parameter optimization for its key components are discussed. Comparison between delivery testing and the simulation shows that the co-model for the FMU has a high accuracy and the absolute superiority over a single model. Together with its compatible interface with the engine mathematical model, the feature-based co-modeling methodology is proven to be an effective technical measure in the development process of the device.

  3. The Design of a Templated C++ Small Vector Class for Numerical Computing

    NASA Technical Reports Server (NTRS)

    Moran, Patrick J.

    2000-01-01

    We describe the design and implementation of a templated C++ class for vectors. The vector class is templated both for vector length and vector component type; the vector length is fixed at template instantiation time. The vector implementation is such that for a vector of N components of type T, the total number of bytes required by the vector is equal to N * size of (T), where size of is the built-in C operator. The property of having a size no bigger than that required by the components themselves is key in many numerical computing applications, where one may allocate very large arrays of small, fixed-length vectors. In addition to the design trade-offs motivating our fixed-length vector design choice, we review some of the C++ template features essential to an efficient, succinct implementation. In particular, we highlight some of the standard C++ features, such as partial template specialization, that are not supported by all compilers currently. This report provides an inventory listing the relevant support currently provided by some key compilers, as well as test code one can use to verify compiler capabilities.

  4. A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking

    PubMed Central

    Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong

    2018-01-01

    Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262

  5. Design and calibration of a high-frequency oscillatory ventilator.

    PubMed

    Simon, B A; Mitzner, W

    1991-02-01

    High-frequency ventilation (HFV) is a modality of mechanical ventilation which presents difficult technical demands to the clinical or laboratory investigator. The essential features of an ideal HFV system are described, including wide frequency range, control of tidal volume and mean airway pressure, minimal dead space, and high effective internal impedance. The design and performance of a high-frequency oscillatory ventilation system is described which approaches these requirements. The ventilator utilizes a linear motor regulated by a closed loop controller and driving a novel frictionless double-diaphragm piston pump. Finally, the ventilator performance is tested using the impedance model of Venegas [1].

  6. Turbine Design and Analysis for the J-2X Engine Turbopumps

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan; Tran, Ken; Dorney, Daniel J.; Schmauch, Preston

    2008-01-01

    Pratt and Whitney Rocketdyne and NASA Marshall Space Flight Center are developing the advanced upper stage J-2X engine based on the legacy design of the J-2/J-2S family of engines which powered the Apollo missions. The cryogenic propellant turbopumps have been denoted as Mark72-F and Mark72-0 for the fuel and oxidizer side, respectively. Special attention is focused on preserving the essential flight-proven design features while adapting the design to the new turbopump configuration. Advanced 3-D CFD analysis has been employed to verify turbine aero performance at current flow regime boundary conditions and to mitigate risks associated with stresses. A limited amount of redesign and overall configuration modifications allow for a robust design with performance level matching or exceeding requirement.

  7. Single helically folded aromatic oligoamides that mimic the charge surface of double-stranded B-DNA

    NASA Astrophysics Data System (ADS)

    Ziach, Krzysztof; Chollet, Céline; Parissi, Vincent; Prabhakaran, Panchami; Marchivie, Mathieu; Corvaglia, Valentina; Bose, Partha Pratim; Laxmi-Reddy, Katta; Godde, Frédéric; Schmitter, Jean-Marie; Chaignepain, Stéphane; Pourquier, Philippe; Huc, Ivan

    2018-05-01

    Numerous essential biomolecular processes require the recognition of DNA surface features by proteins. Molecules mimicking these features could potentially act as decoys and interfere with pharmacologically or therapeutically relevant protein-DNA interactions. Although naturally occurring DNA-mimicking proteins have been described, synthetic tunable molecules that mimic the charge surface of double-stranded DNA are not known. Here, we report the design, synthesis and structural characterization of aromatic oligoamides that fold into single helical conformations and display a double helical array of negatively charged residues in positions that match the phosphate moieties in B-DNA. These molecules were able to inhibit several enzymes possessing non-sequence-selective DNA-binding properties, including topoisomerase 1 and HIV-1 integrase, presumably through specific foldamer-protein interactions, whereas sequence-selective enzymes were not inhibited. Such modular and synthetically accessible DNA mimics provide a versatile platform to design novel inhibitors of protein-DNA interactions.

  8. Privacy is an essentially contested concept: a multi-dimensional analytic for mapping privacy.

    PubMed

    Mulligan, Deirdre K; Koopman, Colin; Doty, Nick

    2016-12-28

    The meaning of privacy has been much disputed throughout its history in response to wave after wave of new technological capabilities and social configurations. The current round of disputes over privacy fuelled by data science has been a cause of despair for many commentators and a death knell for privacy itself for others. We argue that privacy's disputes are neither an accidental feature of the concept nor a lamentable condition of its applicability. Privacy is essentially contested. Because it is, privacy is transformable according to changing technological and social conditions. To make productive use of privacy's essential contestability, we argue for a new approach to privacy research and practical design, focused on the development of conceptual analytics that facilitate dissecting privacy's multiple uses across multiple contexts.This article is part of the themed issue 'The ethical impact of data science'. © 2016 The Author(s).

  9. Privacy is an essentially contested concept: a multi-dimensional analytic for mapping privacy

    PubMed Central

    Koopman, Colin; Doty, Nick

    2016-01-01

    The meaning of privacy has been much disputed throughout its history in response to wave after wave of new technological capabilities and social configurations. The current round of disputes over privacy fuelled by data science has been a cause of despair for many commentators and a death knell for privacy itself for others. We argue that privacy’s disputes are neither an accidental feature of the concept nor a lamentable condition of its applicability. Privacy is essentially contested. Because it is, privacy is transformable according to changing technological and social conditions. To make productive use of privacy’s essential contestability, we argue for a new approach to privacy research and practical design, focused on the development of conceptual analytics that facilitate dissecting privacy’s multiple uses across multiple contexts. This article is part of the themed issue ‘The ethical impact of data science’. PMID:28336797

  10. EDA-gram: designing electrodermal activity fingerprints for visualization and feature extraction.

    PubMed

    Chaspari, Theodora; Tsiartas, Andreas; Stein Duker, Leah I; Cermak, Sharon A; Narayanan, Shrikanth S

    2016-08-01

    Wearable technology permeates every aspect of our daily life increasing the need of reliable and interpretable models for processing the large amount of biomedical data. We propose the EDA-Gram, a multidimensional fingerprint of the electrodermal activity (EDA) signal, inspired by the widely-used notion of spectrogram. The EDA-Gram is based on the sparse decomposition of EDA from a knowledge-driven set of dictionary atoms. The time axis reflects the analysis frames, the spectral dimension depicts the width of selected dictionary atoms, while intensity values are computed from the atom coefficients. In this way, EDA-Gram incorporates the amplitude and shape of Skin Conductance Responses (SCR), which comprise an essential part of the signal. EDA-Gram is further used as a foundation for signal-specific feature design. Our results indicate that the proposed representation can accentuate fine-grain signal fluctuations, which might not always be apparent through simple visual inspection. Statistical analysis and classification/regression experiments further suggest that the derived features can differentiate between multiple arousal levels and stress-eliciting environments for two datasets.

  11. Irradiation Testing Vehicles for Fast Reactors from Open Test Assemblies to Closed Loops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sienicki, James J.; Grandy, Christopher

    A review of irradiation testing vehicle approaches and designs that have been incorporated into past Sodium-Cooled Fast Reactors (SFRs) or envisioned for incorporation has been carried out. The objective is to understand the essential features of the approaches and designs so that they can inform test vehicle designs for a future U.S. Fast Test Reactor. Fast test reactor designs examined include EBR-II, FFTF, JOYO, BOR-60, PHÉNIX, JHR, and MBIR. Previous designers exhibited great ingenuity in overcoming design and operational challenges especially when the original reactor plant’s mission changed to an irradiation testing mission as in the EBRII reactor plant. Themore » various irradiation testing vehicles can be categorized as: Uninstrumented open assemblies that fit into core locations; Instrumented open test assemblies that fit into special core locations; Self-contained closed loops; and External closed loops. A special emphasis is devoted to closed loops as they are regarded as a very desirable feature of a future U.S. Fast Test Reactor. Closed loops are an important technology for irradiation of fuels and materials in separate controlled environments. The impact of closed loops on the design of fast reactors is also discussed in this report.« less

  12. The Influences of Landscape Features on Visitation of Hospital Green Spaces-A Choice Experiment Approach.

    PubMed

    Chang, Kaowen Grace; Chien, Hungju

    2017-07-05

    Studies have suggested that visiting and viewing landscaping at hospitals accelerates patient's recovery from surgery and help staff's recovery from mental fatigue. To plan and construct such landscapes, we need to unravel landscape features desirable to different groups so that the space can benefit a wide range of hospital users. Using discrete choice modeling, we developed experimental choice sets to investigate how landscape features influence the visitations of different users in a large regional hospital in Taiwan. The empirical survey provides quantitative estimates of the influence of each landscape feature on four user groups, including patients, caregivers, staff, and neighborhood residents. Our findings suggest that different types of features promote visits from specific user groups. Landscape features facilitating physical activities effectively encourage visits across user groups especially for caregivers and staff. Patients in this study specify a strong need for contact with nature. The nearby community favors the features designed for children's play and family activities. People across user groups value the features that provide a mitigated microclimate of comfort, such as a shelter. Study implications and limitations are also discussed. Our study provides information essential for creating a better healing environment in a hospital setting.

  13. Tips for longwall conveyor chain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Courtney, J.C.; Fortune, J.

    1977-03-01

    Mining chain must be capable of sustaining imposed loads of 80 or 90 percent of its minimum breaking strength, and still return to its original dimensions. This means that the chain should behave like an extremely sophisticated spring up to very high load levels, and return to its unloaded state without any plastic stretch or permanent dimensional deformation having taken place. This feature is absolutely essential, not only to enable repeat loadings to be made, but to ensure that constant, precise engagement of the drive and idler sprockets takes place. The mining chain production process, therefore, is carefully designed somore » that the last stage of manufacture introduces these necessary features.« less

  14. Further Studies of Aerodynamic Loads at Spin Entry

    DTIC Science & Technology

    1977-06-30

    the model and the loads on the model for a research coafiguration having certain essential features of a modern fighter-bomber aircraft, since no such...percent at the tip. The model is geometrically similar to that described in reference 3 but approximately 2.4 times larger. The NASA model is designed to...measurements turned out to be extremely time consuming. Even though the V/STOL tunnel staff granted three additional days over the 10 originally scheduled for

  15. Broadband non-reciprocal transmission of sound with invariant frequency

    PubMed Central

    Gu, Zhong-ming; Hu, Jie; Liang, Bin; Zou, Xin-ye; Cheng, Jian-chun

    2016-01-01

    We design and experimentally demonstrate a broadband yet compact acoustic diode (AD) by using an acoustic nonlinear material and a pair of gain and lossy materials. Due to the capabilities of maintaining the original frequency and high forward transmission while blocking backscattered wave, our design is closer to the desired features of a perfect AD and is promising to play the essential diode-like role in realistic acoustic systems, such as ultrasound imaging, noise control and nondestructive testing. Furthermore, our design enables improving the sensitivity and the robustness of device simultaneously by tailoring an individual structural parameter. We envision our design will take a significant step towards the realization of applicable acoustic one-way devices, and inspire the research of non-reciprocal wave manipulation in other fields. PMID:26805712

  16. Using ethnography in implementation research to improve nutrition interventions in populations

    PubMed Central

    Neufeld, Lynnette M.; Pelto, Gretel H.

    2015-01-01

    Abstract ‘Implementation research in nutrition’ is an emerging area of study aimed at building evidence‐based knowledge and sound theory to design and implement programs that will effectively deliver nutrition interventions. This paper describes some of the basic features of ethnography and illustrates its applications in components of the implementation process. We review the central purpose of ethnography, which is to obtain the emic view – the insider's perspective – and how ethnography has historically interfaced with nutrition. We present examples of ethnographic studies in relation to an analytic framework of the implementation process, situating them with respect to landscape analysis, formative research, process evaluation and impact evaluation. These examples, conducted in various parts of the world by different investigators, demonstrate how ethnography provided important, often essential, insights that influenced programming decisions or explained programme outcomes. Key messages Designing, implementing and evaluating interventions requires knowledge about the populations and communities in which interventions are situated, including knowledge from the ‘emic’ (insider's) perspective.Obtaining emic perspectives and analysing them in relation to cultural, economic and structural features of social organisation in societies is a central purpose of ethnography.Ethnography is an essential aspect of implementation research in nutrition, as it provides important insights for making decisions about appropriate interventions and delivery platforms; determining how best to fit aspects of programme design and implementation into different environmental and cultural contexts; opening the ‘black box’ in interventions to understand how delivery and utilisation processes affect programme outcomes or impacts; and understanding how programme impacts were achieved, or not. PMID:26778802

  17. Using ethnography in implementation research to improve nutrition interventions in populations.

    PubMed

    Tumilowicz, Alison; Neufeld, Lynnette M; Pelto, Gretel H

    2015-12-01

    'Implementation research in nutrition' is an emerging area of study aimed at building evidence-based knowledge and sound theory to design and implement programs that will effectively deliver nutrition interventions. This paper describes some of the basic features of ethnography and illustrates its applications in components of the implementation process. We review the central purpose of ethnography, which is to obtain the emic view--the insider's perspective--and how ethnography has historically interfaced with nutrition. We present examples of ethnographic studies in relation to an analytic framework of the implementation process, situating them with respect to landscape analysis, formative research, process evaluation and impact evaluation. These examples, conducted in various parts of the world by different investigators, demonstrate how ethnography provided important, often essential, insights that influenced programming decisions or explained programme outcomes. Key messages Designing, implementing and evaluating interventions requires knowledge about the populations and communities in which interventions are situated, including knowledge from the 'emic' (insider's) perspective. Obtaining emic perspectives and analysing them in relation to cultural, economic and structural features of social organisation in societies is a central purpose of ethnography. Ethnography is an essential aspect of implementation research in nutrition, as it provides important insights for making decisions about appropriate interventions and delivery platforms; determining how best to fit aspects of programme design and implementation into different environmental and cultural contexts; opening the 'black box' in interventions to understand how delivery and utilisation processes affect programme outcomes or impacts; and understanding how programme impacts were achieved, or not. © 2015 John Wiley & Sons Ltd.

  18. Classification of Mls Point Clouds in Urban Scenes Using Detrended Geometric Features from Supervoxel-Based Local Contexts

    NASA Astrophysics Data System (ADS)

    Sun, Z.; Xu, Y.; Hoegner, L.; Stilla, U.

    2018-05-01

    In this work, we propose a classification method designed for the labeling of MLS point clouds, with detrended geometric features extracted from the points of the supervoxel-based local context. To achieve the analysis of complex 3D urban scenes, acquired points of the scene should be tagged with individual labels of different classes. Thus, assigning a unique label to the points of an object that belong to the same category plays an essential role in the entire 3D scene analysis workflow. Although plenty of studies in this field have been reported, this work is still a challenging task. Specifically, in this work: 1) A novel geometric feature extraction method, detrending the redundant and in-salient information in the local context, is proposed, which is proved to be effective for extracting local geometric features from the 3D scene. 2) Instead of using individual point as basic element, the supervoxel-based local context is designed to encapsulate geometric characteristics of points, providing a flexible and robust solution for feature extraction. 3) Experiments using complex urban scene with manually labeled ground truth are conducted, and the performance of proposed method with respect to different methods is analyzed. With the testing dataset, we have obtained a result of 0.92 for overall accuracy for assigning eight semantic classes.

  19. Design-Based Comparison of Spine Surgery Simulators: Optimizing Educational Features of Surgical Simulators.

    PubMed

    Ryu, Won Hyung A; Mostafa, Ahmed E; Dharampal, Navjit; Sharlin, Ehud; Kopp, Gail; Jacobs, W Bradley; Hurlbert, R John; Chan, Sonny; Sutherland, Garnette R

    2017-10-01

    Simulation-based education has made its entry into surgical residency training, particularly as an adjunct to hands-on clinical experience. However, one of the ongoing challenges to wide adoption is the capacity of simulators to incorporate educational features required for effective learning. The aim of this study was to identify strengths and limitations of spine simulators to characterize design elements that are essential in enhancing resident education. We performed a mixed qualitative and quantitative cohort study with a focused survey and interviews of stakeholders in spine surgery pertaining to their experiences on 3 spine simulators. Ten participants were recruited spanning all levels of training and expertise until qualitative analysis reached saturation of themes. Participants were asked to perform lumbar pedicle screw insertion on 3 simulators. Afterward, a 10-item survey was administrated and a focused interview was conducted to explore topics pertaining to the design features of the simulators. Overall impressions of the simulators were positive with regards to their educational benefit, but our qualitative analysis revealed differing strengths and limitations. Main design strengths of the computer-based simulators were incorporation of procedural guidance and provision of performance feedback. The synthetic model excelled in achieving more realistic haptic feedback and incorporating use of actual surgical tools. Stakeholders from trainees to experts acknowledge the growing role of simulation-based education in spine surgery. However, different simulation modalities have varying design elements that augment learning in distinct ways. Characterization of these design characteristics will allow for standardization of simulation curricula in spinal surgery, optimizing educational benefit. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Optical mass memories

    NASA Technical Reports Server (NTRS)

    Bailey, G. A.

    1976-01-01

    Optical and magnetic variants in the design of trillion-bit read/write memories are compared and tabulated. Components and materials suitable for a random access read/write nonmoving memory system are examined, with preference given to holography and photoplastic materials. Advantages and deficiencies of photoplastics are reviewed. Holographic page composer design, essential features of an optical memory with no moving parts, fiche-oriented random access memory design, and materials suitable for an efficient photoplastic fiche are considered. The optical variants offer advantages in lower volume and weight at data transfer rates near 1 Mbit/sec, but power drain is of the same order as for the magnetic variants (tape memory, disk memory). The mechanical properties of photoplastic film materials still leave much to be desired.

  1. Structural features of LC8-induced self-association of swallow.

    PubMed

    Kidane, Ariam I; Song, Yujuan; Nyarko, Afua; Hall, Justin; Hare, Michael; Löhr, Frank; Barbar, Elisar

    2013-09-03

    Cell functions depend on the collective activity of protein networks within which a few proteins, called hubs, participate in a large number of interactions. Dynein light chain LC8, first discovered as a subunit of the motor protein dynein, is considered to have a role broader than that of dynein, and its participation in diverse systems fits the description of a hub. Among its partners is Swallow with which LC8 is essential for proper localization of bicoid mRNA at the anterior cortex of Drosophila oocytes. Why LC8 is essential in this process is not clear, but emerging evidence suggests that LC8 functions by promoting self-association and/or structural organization of its diverse binding partners. This work addresses the energetics and structural features of LC8-induced Swallow self-association distant from LC8 binding. Mutational design based on a hypothetical helical wheel, intermonomer nuclear Overhauser effects assigned to residues expected at interface positions, and circular dichroism spectral characteristics indicate that the LC8-promoted dimer of Swallow is a coiled coil. Secondary chemical shifts and (15)N backbone relaxation identify the boundaries and distinguishing structural features of the coiled coil. Thermodynamic analysis of Swallow polypeptides designed to decouple self-association from LC8 binding reveals that the higher binding affinity of the engineered bivalent Swallow is of purely entropic origin and that the linker separating the coiled coil from the LC8 binding site remains disordered. We speculate that the LC8-promoted coiled coil is critical for bicoid mRNA localization because it favors structural organization of Swallow, which except for the central LC8-promoted coiled coil is primarily disordered.

  2. Structural Features of LC8-Induced Self Association of Swallow†

    PubMed Central

    Kidane, Ariam I.; Song, Yujuan; Nyarko, Afua; Hall, Justin; Hare, Michael; Löhr, Frank; Barbar, Elisar

    2013-01-01

    Cell function depends on the collective activity of protein networks within which a few proteins, called hubs, participate in a large number of interactions. Dynein light chain LC8, first discovered as a subunit of the motor protein dynein, is considered to have a role broader than dynein and its participation in diverse systems fits the description of a hub. Among its partners is Swallow with which LC8 is essential for proper localization of bicoid mRNA at the anterior cortex of Drosophila oocytes. Why LC8 is essential in this process is not clear, but emerging evidence suggests that LC8 functions by promoting self-association and/or structural organization of its diverse binding partners. This work addresses the mechanistic and structural features of LC8-induced Swallow self-association distant from LC8 binding. Mutational design based on a hypothetical helical wheel, inter-monomer NOEs assigned to residues expected at interface positions and circular dichroism spectral characteristics indicate that the LC8-promoted dimer of Swallow is a coiled-coil. Secondary chemical shifts and 15N backbone relaxation identify the boundaries and distinguishing structural features of the coiled-coil. Thermodynamic analysis of Swallow polypeptides designed to decouple self-association from LC8 binding reveals that the higher binding affinity of the engineered bivalent Swallow is of purely entropic origin and that the linker separating the coiled-coil from the LC8 binding site remains disordered. We speculate that the LC8-promoted coiled-coil is critical for bicoid mRNA localization because it could induce structural organization of Swallow, which except for the central LC8-promoted coiled-coil is primarily disordered. PMID:23914803

  3. Inefficient conjunction search made efficient by concurrent spoken delivery of target identity.

    PubMed

    Reali, Florencia; Spivey, Michael J; Tyler, Melinda J; Terranova, Joseph

    2006-08-01

    Visual search based on a conjunction of two features typically elicits reaction times that increase linearly as a function of the number of distractors, whereas search based on a single feature is essentially unaffected by set size. These and related findings have often been interpreted as evidence of a serial search stage that follows a parallel search stage. However, a wide range of studies has been showing a form of blending of these two processes. For example, when a spoken instruction identifies the conjunction target concurrently with the visual display, the effect of set size is significantly reduced, suggesting that incremental linguistic processing of the first feature adjective and then the second feature adjective may facilitate something approximating a parallel extraction of objects during search for the target. Here, we extend these results to a variety of experimental designs. First, we replicate the result with a mixed-trials design (ruling out potential strategies associated with the blocked design of the original study). Second, in a mixed-trials experiment, the order of adjective types in the spoken query varies randomly across conditions. In a third experiment, we extend the effect to a triple-conjunction search task. A fourth (control) experiment demonstrates that these effects are not due to an efficient odd-one-out search that ignores the linguistic input. This series of experiments, along with attractor-network simulations of the phenomena, provide further evidence toward understanding linguistically mediated influences in real-time visual search processing.

  4. Essential pitfalls in "essential” tremor

    PubMed Central

    Espay, AJ; Lang, AE; Erro, R; Merola, A; Fasano, A; Berardelli, A; Bhatia, KP

    2016-01-01

    While essential tremor has been considered the most common movement disorder, it has largely remained a diagnosis of exclusion: many tremor and non-tremor features must be absent for the clinical diagnosis to stand. The clinical features of “essential tremor” overlap with or may be part of other tremor disorders and, not surprisingly, this prevalent familial disorder has remained without a gene identified, without a consistent natural history, and without an acceptable pathology or pathophysiologic underpinning. The collective evidence suggests that under the rubric of essential tremor there exists multiple unique diseases, some of which represent cerebellar dysfunction, but for which there is no intrinsic “essence” other than a common oscillatory behavior on posture and action. One approach may be to use the term “essential tremor” only as a transitional node in the deep phenotyping of tremor disorders based on historical, phenomenological, and neurophysiological features, to facilitate its etiologic diagnosis or serve for future gene- and biomarker-discovery efforts. This approach deemphasizes essential tremor as a diagnostic entity and facilitates the understanding of the underlying disorders in order to develop biologically tailored diagnostic and therapeutic strategies. PMID:28116753

  5. WebQuests: a new instructional strategy for nursing education.

    PubMed

    Lahaie, Ulysses

    2007-01-01

    A WebQuest is a model or framework for designing effective Web-based instructional strategies featuring inquiry-oriented activities. It is an innovative approach to learning that is enhanced by the use of evolving instructional technology. WebQuests have invigorated the primary school (grades K through 12) educational sector around the globe, yet there is sparse evidence in the literature of WebQuests at the college and university levels. WebQuests are congruent with pedagogical approaches and cognitive activities commonly used in nursing education. They are simple to construct using a step-by-step approach, and nurse educators will find many related resources on the Internet to help them get started. Included in this article are a discussion of the critical attributes and main features of WebQuests, construction tips, recommended Web sites featuring essential resources, a discussion of WebQuest-related issues identified in the literature, and some suggestions for further research.

  6. An Inexpensive Digital Gradient Controller for HPLC.

    ERIC Educational Resources Information Center

    Brady, James E.; Carr, Peter W.

    1983-01-01

    Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…

  7. Active optics - The NTT and the future

    NASA Astrophysics Data System (ADS)

    Wilson, R. N.; Franza, F.; Giordano, P.; Noethe, L.; Tarenghi, M.

    1988-09-01

    An account is given of the essential design features and advantages of the ESO's NTT system optics, constituting an active telescope in which the optical correction process exhibited in histograms can be performed at will, on-line, so that the intrinsic quality of the telescope can be fully realized. This technology allows the relaxation of low spatial frequency (long-wave) manufacturing tolerances, and accomplishes automatic maintenance with respect to errors due to optics' maladjustment. Linearity, convergence, and orthogonality laws are used by the optical correction process algorithm.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose Reyes

    In recent years it has been recognized that the application of passive safety systems (i.e., those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. In 1991 the IAEA Conference on ''The Safety of Nuclear Power: Strategy for the Future'' noted that for new plants the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate''.

  9. Screw compressor analysis from a vibration point-of-view

    NASA Astrophysics Data System (ADS)

    Hübel, D.; Žitek, P.

    2017-09-01

    Vibrations are a very typical feature of all compressors and are given great attention in the industry. The reason for this interest is primarily the negative influence that it can have on both the operating staff and the entire machine's service life. The purpose of this work is to describe the methodology of screw compressor analysis from a vibration point-of-view. This analysis is an essential part of the design of vibro-diagnostics of screw compressors with regard to their service life.

  10. VACUUM TRAP

    DOEpatents

    Gordon, H.S.

    1959-09-15

    An improved adsorption vacuum trap for use in vacuum systems was designed. The distinguishing feature is the placement of a plurality of torsionally deformed metallic fins within a vacuum jacket extending from the walls to the central axis so that substantially all gas molecules pass through the jacket will impinge upon the fin surfaces. T fins are heated by direct metallic conduction, thereby ol taining a uniform temperature at the adeorbing surfaces so that essentially all of the condensible impurities from the evacuating gas are removed from the vacuum system.

  11. Instantaneous Assessment Of Athletic Performance Using High Speed Video

    NASA Astrophysics Data System (ADS)

    Hubbard, Mont; Alaways, LeRoy W.

    1988-02-01

    We describe the use of high speed video to provide quantitative assessment of motion in athletic performance. Besides the normal requirement for accuracy, an essential feature is that the information be provided rapidly enough so that it my serve as valuable feedback in the learning process. The general considerations which must be addressed in the development of such a computer based system are discussed. These ideas are illustrated specifically through the description of a prototype system which has been designed for the javelin throw.

  12. Optimized hardware framework of MLP with random hidden layers for classification applications

    NASA Astrophysics Data System (ADS)

    Zyarah, Abdullah M.; Ramesh, Abhishek; Merkel, Cory; Kudithipudi, Dhireesha

    2016-05-01

    Multilayer Perceptron Networks with random hidden layers are very efficient at automatic feature extraction and offer significant performance improvements in the training process. They essentially employ large collection of fixed, random features, and are expedient for form-factor constrained embedded platforms. In this work, a reconfigurable and scalable architecture is proposed for the MLPs with random hidden layers with a customized building block based on CORDIC algorithm. The proposed architecture also exploits fixed point operations for area efficiency. The design is validated for classification on two different datasets. An accuracy of ~ 90% for MNIST dataset and 75% for gender classification on LFW dataset was observed. The hardware has 299 speed-up over the corresponding software realization.

  13. The Influences of Landscape Features on Visitation of Hospital Green Spaces—A Choice Experiment Approach

    PubMed Central

    Chang, Kaowen Grace; Chien, Hungju

    2017-01-01

    Studies have suggested that visiting and viewing landscaping at hospitals accelerates patient’s recovery from surgery and help staff’s recovery from mental fatigue. To plan and construct such landscapes, we need to unravel landscape features desirable to different groups so that the space can benefit a wide range of hospital users. Using discrete choice modeling, we developed experimental choice sets to investigate how landscape features influence the visitations of different users in a large regional hospital in Taiwan. The empirical survey provides quantitative estimates of the influence of each landscape feature on four user groups, including patients, caregivers, staff, and neighborhood residents. Our findings suggest that different types of features promote visits from specific user groups. Landscape features facilitating physical activities effectively encourage visits across user groups especially for caregivers and staff. Patients in this study specify a strong need for contact with nature. The nearby community favors the features designed for children’s play and family activities. People across user groups value the features that provide a mitigated microclimate of comfort, such as a shelter. Study implications and limitations are also discussed. Our study provides information essential for creating a better healing environment in a hospital setting. PMID:28678168

  14. Properties of genes essential for mouse development

    PubMed Central

    Kabir, Mitra; Barradas, Ana; Tzotzos, George T.; Hentges, Kathryn E.

    2017-01-01

    Essential genes are those that are critical for life. In the specific case of the mouse, they are the set of genes whose deletion means that a mouse is unable to survive after birth. As such, they are the key minimal set of genes needed for all the steps of development to produce an organism capable of life ex utero. We explored a wide range of sequence and functional features to characterise essential (lethal) and non-essential (viable) genes in mice. Experimental data curated manually identified 1301 essential genes and 3451 viable genes. Very many sequence features show highly significant differences between essential and viable mouse genes. Essential genes generally encode complex proteins, with multiple domains and many introns. These genes tend to be: long, highly expressed, old and evolutionarily conserved. These genes tend to encode ligases, transferases, phosphorylated proteins, intracellular proteins, nuclear proteins, and hubs in protein-protein interaction networks. They are involved with regulating protein-protein interactions, gene expression and metabolic processes, cell morphogenesis, cell division, cell proliferation, DNA replication, cell differentiation, DNA repair and transcription, cell differentiation and embryonic development. Viable genes tend to encode: membrane proteins or secreted proteins, and are associated with functions such as cellular communication, apoptosis, behaviour and immune response, as well as housekeeping and tissue specific functions. Viable genes are linked to transport, ion channels, signal transduction, calcium binding and lipid binding, consistent with their location in membranes and involvement with cell-cell communication. From the analysis of the composite features of essential and viable genes, we conclude that essential genes tend to be required for intracellular functions, and viable genes tend to be involved with extracellular functions and cell-cell communication. Knowledge of the features that are over-represented in essential genes allows for a deeper understanding of the functions and processes implemented during mammalian development. PMID:28562614

  15. How to make a good animation: A grounded cognition model of how visual representation design affects the construction of abstract physics knowledge

    NASA Astrophysics Data System (ADS)

    Chen, Zhongzhou; Gladding, Gary

    2014-06-01

    Visual representations play a critical role in teaching physics. However, since we do not have a satisfactory understanding of how visual perception impacts the construction of abstract knowledge, most visual representations used in instructions are either created based on existing conventions or designed according to the instructor's intuition, which leads to a significant variance in their effectiveness. In this paper we propose a cognitive mechanism based on grounded cognition, suggesting that visual perception affects understanding by activating "perceptual symbols": the basic cognitive unit used by the brain to construct a concept. A good visual representation activates perceptual symbols that are essential for the construction of the represented concept, whereas a bad representation does the opposite. As a proof of concept, we conducted a clinical experiment in which participants received three different versions of a multimedia tutorial teaching the integral expression of electric potential. The three versions were only different by the details of the visual representation design, only one of which contained perceptual features that activate perceptual symbols essential for constructing the idea of "accumulation." On a following post-test, participants receiving this version of tutorial significantly outperformed those who received the other two versions of tutorials designed to mimic conventional visual representations used in classrooms.

  16. Anapoles in Free-Standing III-V Nanodisks Enhancing Second-Harmonic Generation.

    PubMed

    Timofeeva, Maria; Lang, Lukas; Timpu, Flavia; Renaut, Claude; Bouravleuv, Alexei; Shtrom, Igor; Cirlin, George; Grange, Rachel

    2018-06-13

    Nonradiating electromagnetic configurations in nanostructures open new horizons for applications due to two essential features: a lack of energy losses and invisibility to the propagating electromagnetic field. Such radiationless configurations form a basis for new types of nanophotonic devices, in which a strong electromagnetic field confinement can be achieved together with lossless interactions between nearby components. In our work, we present a new design of free-standing disk nanoantennas with nonradiating current distributions for the optical near-infrared range. We show a novel approach to creating nanoantennas by slicing III-V nanowires into standing disks using focused ion-beam milling. We experimentally demonstrate the suppression of the far-field radiation and the associated strong enhancement of the second-harmonic generation from the disk nanoantennas. With a theoretical analysis of the electromagnetic field distribution using multipole expansions in both spherical and Cartesian coordinates, we confirm that the demonstrated nonradiating configurations are anapoles. We expect that the presented procedure of designing and producing disk nanoantennas from nanowires becomes one of the standard approaches to fabricating controlled chains of standing nanodisks with different designs and configurations. These chains can be essential building blocks for new types of lasers and sensors with low power consumption.

  17. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.

    PubMed

    Du, Tianchuan; Liao, Li; Wu, Cathy H; Sun, Bilin

    2016-11-01

    Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the residue-residue contact information of two interacting proteins is not only helpful in annotating functions for proteins, but also critical for structure-based drug design. The prediction of the protein residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov Models, which was used first to extract Fisher score features from protein sequences, stacked autoencoders were deployed to extract and learn hidden abstract features. The deep learning model showed significant improvement over the traditional machine learning model, Support Vector Machines (SVM), with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoencoders could extract novel features, which can be utilized by deep neural networks and other classifiers to enhance learning, out of the Fisher score features. It is further shown that deep neural networks have significant advantages over SVM in making use of the newly extracted features. Copyright © 2016. Published by Elsevier Inc.

  18. Retinal image quality assessment based on image clarity and content

    NASA Astrophysics Data System (ADS)

    Abdel-Hamid, Lamiaa; El-Rafei, Ahmed; El-Ramly, Salwa; Michelson, Georg; Hornegger, Joachim

    2016-09-01

    Retinal image quality assessment (RIQA) is an essential step in automated screening systems to avoid misdiagnosis caused by processing poor quality retinal images. A no-reference transform-based RIQA algorithm is introduced that assesses images based on five clarity and content quality issues: sharpness, illumination, homogeneity, field definition, and content. Transform-based RIQA algorithms have the advantage of considering retinal structures while being computationally inexpensive. Wavelet-based features are proposed to evaluate the sharpness and overall illumination of the images. A retinal saturation channel is designed and used along with wavelet-based features for homogeneity assessment. The presented sharpness and illumination features are utilized to assure adequate field definition, whereas color information is used to exclude nonretinal images. Several publicly available datasets of varying quality grades are utilized to evaluate the feature sets resulting in area under the receiver operating characteristic curve above 0.99 for each of the individual feature sets. The overall quality is assessed by a classifier that uses the collective features as an input vector. The classification results show superior performance of the algorithm in comparison to other methods from literature. Moreover, the algorithm addresses efficiently and comprehensively various quality issues and is suitable for automatic screening systems.

  19. Predicting Essential Genes and Proteins Based on Machine Learning and Network Topological Features: A Comprehensive Review

    PubMed Central

    Zhang, Xue; Acencio, Marcio Luis; Lemke, Ney

    2016-01-01

    Essential proteins/genes are indispensable to the survival or reproduction of an organism, and the deletion of such essential proteins will result in lethality or infertility. The identification of essential genes is very important not only for understanding the minimal requirements for survival of an organism, but also for finding human disease genes and new drug targets. Experimental methods for identifying essential genes are costly, time-consuming, and laborious. With the accumulation of sequenced genomes data and high-throughput experimental data, many computational methods for identifying essential proteins are proposed, which are useful complements to experimental methods. In this review, we show the state-of-the-art methods for identifying essential genes and proteins based on machine learning and network topological features, point out the progress and limitations of current methods, and discuss the challenges and directions for further research. PMID:27014079

  20. A Comparative Study on Selective PPAR Modulators through Quantitative Structure-activity Relationship, Pharmacophore and Docking Analyses.

    PubMed

    Nandy, Ashis; Roy, Kunal; Saha, Achintya

    2018-01-01

    Metabolic syndrome is a matrix of different metabolic disorders which are the leading cause of death in human beings. Peroxysome proliferated activated receptor (PPAR) is a nuclear receptor involved in metabolism of fats and glucose. In order to explore structural requirements for selective PPAR modulators to control lipid and carbohydrate metabolism, the multi-cheminformatics studies have been performed. In silico modeling studies have been performed on a diverse set of PPAR modulators through quantitative structure-activity relationship (QSAR), pharmacophore mapping and docking studies. It is observed that the presence of an amide fragment (-CONHRPh) has a detrimental effect while an aliphatic ether linkage has a beneficial effect on PPARα modulation. On the other hand, the presence of an amide fragment has a positive effect on PPARδ modulation, but the aliphatic ether linkage and substituted aromatic ring in the molecular scaffold are very much essential for imparting potent and selective PPARγ modulation. Negative ionizable features (i.e. polar fragments) must be present in PPARδ and α modulators, but a hydrophobic feature is the prime requirement for PPARγ modulation. Here, the essential structural features have been explored for selective modulation of each subtype of PPAR in order to design new modulators with improved activity/selectivity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Essential Features of Tier 2 Social-Behavioral Interventions

    ERIC Educational Resources Information Center

    Yong, Minglee; Cheney, Douglas A.

    2013-01-01

    The purpose of this study is to identify the essential features of Tier 2 interventions conducted within multitier systems of behavior support in schools. A systematic literature search identified 12 empirical studies that were coded and scored according to a list of Tier 2 specific RE-AIM criteria, related to the Reach, Effectiveness, Adoption,…

  2. A 4 U Laser Heterodyne Radiometer for Methane (CH4) and Carbon Dioxide (CO2) Measurements from an Occultation-Viewing CubSat

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, WIlliam W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; hide

    2017-01-01

    We present a design for a 4 U (20 cm 20 cm 10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor(H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.

  3. Braccio di Ferro: a new haptic workstation for neuromotor rehabilitation.

    PubMed

    Casadio, Maura; Sanguineti, Vittorio; Morasso, Pietro G; Arrichiello, Vincenzo

    2006-01-01

    This technical note describes a new robotic workstation for neurological rehabilitation, shortly named Braccio di Ferro. It has been designed by having in mind the range of forces and the frequency bandwidth that characterize the interaction between a patient and a physical therapist, as well as a number of requirements that we think are essential for allowing a natural haptic interaction: back-driveability, very low friction and inertia, mechanical robustness, the possibility to operate in different planes, and an open software environment, which allows the operator to add new functionalities and design personalized rehabilitation protocols. Braccio di Ferro is an open system and, in the spirit of open source design, is intended to foster the dissemination of robot therapy. Moreover, its combination of features is not present in commercially available systems.

  4. Distilling the essential features of a protein surface for improving protein-ligand docking, scoring, and virtual screening

    NASA Astrophysics Data System (ADS)

    Zavodszky, Maria I.; Sanschagrin, Paul C.; Kuhn, Leslie A.; Korde, Rajesh S.

    2002-12-01

    For the successful identification and docking of new ligands to a protein target by virtual screening, the essential features of the protein and ligand surfaces must be captured and distilled in an efficient representation. Since the running time for docking increases exponentially with the number of points representing the protein and each ligand candidate, it is important to place these points where the best interactions can be made between the protein and the ligand. This definition of favorable points of interaction can also guide protein structure-based ligand design, which typically focuses on which chemical groups provide the most energetically favorable contacts. In this paper, we present an alternative method of protein template and ligand interaction point design that identifies the most favorable points for making hydrophobic and hydrogen-bond interactions by using a knowledge base. The knowledge-based protein and ligand representations have been incorporated in version 2.0 of SLIDE and resulted in dockings closer to the crystal structure orientations when screening a set of 57 known thrombin and glutathione S-transferase (GST) ligands against the apo structures of these proteins. There was also improved scoring enrichment of the dockings, meaning better differentiation between the chemically diverse known ligands and a ˜15,000-molecule dataset of randomly-chosen small organic molecules. This approach for identifying the most important points of interaction between proteins and their ligands can equally well be used in other docking and design techniques. While much recent effort has focused on improving scoring functions for protein-ligand docking, our results indicate that improving the representation of the chemistry of proteins and their ligands is another avenue that can lead to significant improvements in the identification, docking, and scoring of ligands.

  5. Evaluation models and criteria of the quality of hospital websites: a systematic review study

    PubMed Central

    Jeddi, Fatemeh Rangraz; Gilasi, Hamidreza; Khademi, Sahar

    2017-01-01

    Introduction Hospital websites are important tools in establishing communication and exchanging information between patients and staff, and thus should enjoy an acceptable level of quality. The aim of this study was to identify proper models and criteria to evaluate the quality of hospital websites. Methods This research was a systematic review study. The international databases such as Science Direct, Google Scholar, PubMed, Proquest, Ovid, Elsevier, Springer, and EBSCO together with regional database such as Magiran, Scientific Information Database, Persian Journal Citation Report (PJCR) and IranMedex were searched. Suitable keywords including website, evaluation, and quality of website were used. Full text papers related to the research were included. The criteria and sub criteria of the evaluation of website quality were extracted and classified. Results To evaluate the quality of the websites, various models and criteria were presented. The WEB-Q-IM, Mile, Minerva, Seruni Luci, and Web-Qual models were the designed models. The criteria of accessibility, content and apparent features of the websites, the design procedure, the graphics applied in the website, and the page’s attractions have been mentioned in the majority of studies. Conclusion The criteria of accessibility, content, design method, security, and confidentiality of personal information are the essential criteria in the evaluation of all websites. It is suggested that the ease of use, graphics, attractiveness and other apparent properties of websites are considered as the user-friendliness sub criteria. Further, the criteria of speed and accessibility of the website should be considered as sub criterion of efficiency. When determining the evaluation criteria of the quality of websites, attention to major differences in the specific features of any website is essential. PMID:28465807

  6. Evaluation models and criteria of the quality of hospital websites: a systematic review study.

    PubMed

    Jeddi, Fatemeh Rangraz; Gilasi, Hamidreza; Khademi, Sahar

    2017-02-01

    Hospital websites are important tools in establishing communication and exchanging information between patients and staff, and thus should enjoy an acceptable level of quality. The aim of this study was to identify proper models and criteria to evaluate the quality of hospital websites. This research was a systematic review study. The international databases such as Science Direct, Google Scholar, PubMed, Proquest, Ovid, Elsevier, Springer, and EBSCO together with regional database such as Magiran, Scientific Information Database, Persian Journal Citation Report (PJCR) and IranMedex were searched. Suitable keywords including website, evaluation, and quality of website were used. Full text papers related to the research were included. The criteria and sub criteria of the evaluation of website quality were extracted and classified. To evaluate the quality of the websites, various models and criteria were presented. The WEB-Q-IM, Mile, Minerva, Seruni Luci, and Web-Qual models were the designed models. The criteria of accessibility, content and apparent features of the websites, the design procedure, the graphics applied in the website, and the page's attractions have been mentioned in the majority of studies. The criteria of accessibility, content, design method, security, and confidentiality of personal information are the essential criteria in the evaluation of all websites. It is suggested that the ease of use, graphics, attractiveness and other apparent properties of websites are considered as the user-friendliness sub criteria. Further, the criteria of speed and accessibility of the website should be considered as sub criterion of efficiency. When determining the evaluation criteria of the quality of websites, attention to major differences in the specific features of any website is essential.

  7. Multidisciplinary optimization of controlled space structures with global sensitivity equations

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.

    1991-01-01

    A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.

  8. Modeling the Evolution of Beliefs Using an Attentional Focus Mechanism

    PubMed Central

    Marković, Dimitrije; Gläscher, Jan; Bossaerts, Peter; O’Doherty, John; Kiebel, Stefan J.

    2015-01-01

    For making decisions in everyday life we often have first to infer the set of environmental features that are relevant for the current task. Here we investigated the computational mechanisms underlying the evolution of beliefs about the relevance of environmental features in a dynamical and noisy environment. For this purpose we designed a probabilistic Wisconsin card sorting task (WCST) with belief solicitation, in which subjects were presented with stimuli composed of multiple visual features. At each moment in time a particular feature was relevant for obtaining reward, and participants had to infer which feature was relevant and report their beliefs accordingly. To test the hypothesis that attentional focus modulates the belief update process, we derived and fitted several probabilistic and non-probabilistic behavioral models, which either incorporate a dynamical model of attentional focus, in the form of a hierarchical winner-take-all neuronal network, or a diffusive model, without attention-like features. We used Bayesian model selection to identify the most likely generative model of subjects’ behavior and found that attention-like features in the behavioral model are essential for explaining subjects’ responses. Furthermore, we demonstrate a method for integrating both connectionist and Bayesian models of decision making within a single framework that allowed us to infer hidden belief processes of human subjects. PMID:26495984

  9. Building Data and Information Capacity in Environmental Public Health: A Best-Worst Scaling Experiment.

    PubMed

    Wallar, Lauren E; Sargeant, Jan M; McEwen, Scott A; Mercer, Nicola J; Papadopoulos, Andrew

    Environmental public health practitioners rely on information technology (IT) to maintain and improve environmental health. However, current systems have limited capacity. A better understanding of the importance of IT features is needed to enhance data and information capacity. (1) Rank IT features according to the percentage of respondents who rated them as essential to an information management system and (2) quantify the relative importance of a subset of these features using best-worst scaling. Information technology features were initially identified from a previously published systematic review of software evaluation criteria and a list of software options from a private corporation specializing in inspection software. Duplicates and features unrelated to environmental public health were removed. The condensed list was refined by a working group of environmental public health management to a final list of 57 IT features. The essentialness of features was electronically rated by environmental public health managers. Features where 50% to 80% of respondents rated them as essential (n = 26) were subsequently evaluated using best-worst scaling. Ontario, Canada. Environmental public health professionals in local public health. Importance scores of IT features. The majority of IT features (47/57) were considered essential to an information management system by at least half of the respondents (n = 52). The highest-rated features were delivery to printer, software encryption capability, and software maintenance services. Of the 26 features evaluated in the best-worst scaling exercise, the most important features were orientation to all practice areas, off-line capability, and ability to view past inspection reports and results. The development of a single, unified environmental public health information management system that fulfills the reporting and functionality needs of system users is recommended. This system should be implemented by all public health units to support data and information capacity in local environmental public health. This study can be used to guide vendor evaluation, negotiation, and selection in local environmental public health, and provides an example of academia-practice partnerships and the use of best-worst scaling in public health research.

  10. Progress In Fresnel-Köhler Concentrators

    NASA Astrophysics Data System (ADS)

    Mohedano, Rubén; Cvetković, Aleksandra; Benítez, Pablo; Chaves, Julio; Miñano, Juan C.; Zamora, Pablo; Hernandez, Maikel; Vilaplana, Juan

    2011-12-01

    The Fresnel Köhler (FK) concentrator was first presented in 2008. Since then, various CPV companies have adopted this technology as base for their future commercial product. The key for this rapid penetration is a mixture of simplicity (the FK is essentially a Fresnel lens concentrator, a technology that dominates the market) and excellent performance: high concentration without giving up large manufacturing/aiming tolerances, enabling high efficiency even at the array level. All these features together have a great potential to lower energy costs. This work shows recent results and progress regarding this device, covering new design features, measurements and tests along with first performance achievements at the array level (pilot 6.5 Kwp plant). The work also discusses the potential impact of the FK enhanced performance on the Levelized Cost Of Electricity (LCOE).

  11. Design and implementation of a status at a glance user interface for a power distribution expert system

    NASA Technical Reports Server (NTRS)

    Liberman, Eugene M.; Manner, David B.; Dolce, James L.; Mellor, Pamela A.

    1993-01-01

    Expert systems are widely used in health monitoring and fault detection applications. One of the key features of an expert system is that it possesses a large body of knowledge about the application for which it was designed. When the user consults this knowledge base, it is essential that the expert system's reasoning process and its conclusions be as concise as possible. If, in addition, an expert system is part of a process monitoring system, the expert system's conclusions must be combined with current events of the process. Under these circumstances, it is difficult for a user to absorb and respond to all the available information. For example, a user can become distracted and confused if two or more unrelated devices in different parts of the system require attention. A human interface designed to integrate expert system diagnoses with process data and to focus the user's attention to the important matters provides a solution to the 'information overload' problem. This paper will discuss a user interface to the power distribution expert system for Space Station Freedom. The importance of features which simplify assessing system status and which minimize navigating through layers of information will be discussed. Design rationale and implementation choices will also be presented.

  12. Novel Data Reduction Based on Statistical Similarity

    DOE PAGES

    Lee, Dongeun; Sim, Alex; Choi, Jaesik; ...

    2016-07-18

    Applications such as scientific simulations and power grid monitoring are generating so much data quickly that compression is essential to reduce storage requirement or transmission capacity. To achieve better compression, one is often willing to discard some repeated information. These lossy compression methods are primarily designed to minimize the Euclidean distance between the original data and the compressed data. But this measure of distance severely limits either reconstruction quality or compression performance. In this paper, we propose a new class of compression method by redefining the distance measure with a statistical concept known as exchangeability. This approach reduces the storagemore » requirement and captures essential features, while reducing the storage requirement. In this paper, we report our design and implementation of such a compression method named IDEALEM. To demonstrate its effectiveness, we apply it on a set of power grid monitoring data, and show that it can reduce the volume of data much more than the best known compression method while maintaining the quality of the compressed data. Finally, in these tests, IDEALEM captures extraordinary events in the data, while its compression ratios can far exceed 100.« less

  13. 76 FR 55623 - Endangered and Threatened Wildlife and Plants; 12-Month Petition Finding and Proposed Listing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ...We, the U.S. Fish and Wildlife Service (Service), announce a 12-month finding on a petition to list Arctostaphylos franciscana (Franciscan manzanita), as endangered under the Endangered Species Act of 1973, as amended (Act), and to designate critical habitat. After review of all available scientific and commercial information, we find that listing A. franciscana as an endangered species under the Act is warranted. Accordingly, we herein propose to list A. franciscana as an endangered species pursuant to the Act. This proposed rule, if made final, would extend the Act's protections to this species. We believe that critical habitat is not determinable at this time due to lack of knowledge of what physical and biological features are essential to the conservation of the species, or what other areas outside the site that is currently occupied, may be essential for the conservation of the species. The Service seeks data and comments from the public on this proposed listing rule and whether the designation of critical habitat for the species is prudent and determinable.

  14. Development and Evaluation of Sensor Concepts for Ageless Aerospace Vehicles: Report 3 - Design of the Concept Demonstrator

    NASA Technical Reports Server (NTRS)

    Abbott, David; Ables, Jon; Batten, Adam; Carpenter, David; Collings, Tony; Doyle, Briony; Dunlop, John; Edwards, Graeme; Farmer, Tony; Gaffney, Bruce; hide

    2008-01-01

    This report provides an outline of the essential features of a Structural Health Monitoring Concept Demonstrator (CD) that will be constructed during the next eight months. It is emphasized that the design cannot be considered to be complete, and that design work will continue in parallel with construction and testing. A major advantage of the modular design is that small modules of the system can be developed, tested and modified before a commitment is made to full system development. The CD is expected to develop and evolve for a number of years after its initial construction. This first stage will, of necessity, be relatively simple and have limited capabilities. Later developments will improve all aspects of the functionality of the system, including sensing, processing, communications, intelligence and response. The report indicates the directions this later development will take.

  15. A design solution to increasing the sensitivity of pMOS dosimeters: The stacked RADFET approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelleher, A.; Lane, W.; Adams, L.

    1995-02-01

    pMOS Radiation Sensitive Field Effect Transistors (RADFET`S) have applications as integrating dosimeters in laboratories and medicine to measure the amount of radiation dose absorbed. The suitability of these dosimeters to a certain application depends on the sensitivity of the RADFET being used. To date, this sensitivity is limited to the sensitivity of the gate oxide to radiation. The aim of this paper is to introduce a new design approach which will allow greater sensitivities to be achieved than is currently possible. An additional attractive feature of this design approach is that the sensitivity of the dosimeter may be changed dependingmore » on the total dose which is to be measured; essentially a dosimeter with auto-scaling may be achieved. This study introduces this autoscaling concept along with presenting the optimum RADFET device requirements which are necessary for this new design approach.« less

  16. Idealized gas turbine combustor for performance research and validation of large eddy simulations.

    PubMed

    Williams, Timothy C; Schefer, Robert W; Oefelein, Joseph C; Shaddix, Christopher R

    2007-03-01

    This paper details the design of a premixed, swirl-stabilized combustor that was designed and built for the express purpose of obtaining validation-quality data for the development of large eddy simulations (LES) of gas turbine combustors. The combustor features nonambiguous boundary conditions, a geometrically simple design that retains the essential fluid dynamics and thermochemical processes that occur in actual gas turbine combustors, and unrestrictive access for laser and optical diagnostic measurements. After discussing the design detail, a preliminary investigation of the performance and operating envelope of the combustor is presented. With the combustor operating on premixed methane/air, both the equivalence ratio and the inlet velocity were systematically varied and the flame structure was recorded via digital photography. Interesting lean flame blowout and resonance characteristics were observed. In addition, the combustor exhibited a large region of stable, acoustically clean combustion that is suitable for preliminary validation of LES models.

  17. Predicting the performance of fingerprint similarity searching.

    PubMed

    Vogt, Martin; Bajorath, Jürgen

    2011-01-01

    Fingerprints are bit string representations of molecular structure that typically encode structural fragments, topological features, or pharmacophore patterns. Various fingerprint designs are utilized in virtual screening and their search performance essentially depends on three parameters: the nature of the fingerprint, the active compounds serving as reference molecules, and the composition of the screening database. It is of considerable interest and practical relevance to predict the performance of fingerprint similarity searching. A quantitative assessment of the potential that a fingerprint search might successfully retrieve active compounds, if available in the screening database, would substantially help to select the type of fingerprint most suitable for a given search problem. The method presented herein utilizes concepts from information theory to relate the fingerprint feature distributions of reference compounds to screening libraries. If these feature distributions do not sufficiently differ, active database compounds that are similar to reference molecules cannot be retrieved because they disappear in the "background." By quantifying the difference in feature distribution using the Kullback-Leibler divergence and relating the divergence to compound recovery rates obtained for different benchmark classes, fingerprint search performance can be quantitatively predicted.

  18. Integrating a Genetic Algorithm Into a Knowledge-Based System for Ordering Complex Design Processes

    NASA Technical Reports Server (NTRS)

    Rogers, James L.; McCulley, Collin M.; Bloebaum, Christina L.

    1996-01-01

    The design cycle associated with large engineering systems requires an initial decomposition of the complex system into design processes which are coupled through the transference of output data. Some of these design processes may be grouped into iterative subcycles. In analyzing or optimizing such a coupled system, it is essential to be able to determine the best ordering of the processes within these subcycles to reduce design cycle time and cost. Many decomposition approaches assume the capability is available to determine what design processes and couplings exist and what order of execution will be imposed during the design cycle. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature, a genetic algorithm, has been added to DeMAID (Design Manager's Aid for Intelligent Decomposition) to allow the design manager to rapidly examine many different combinations of ordering processes in an iterative subcycle and to optimize the ordering based on cost, time, and iteration requirements. Two sample test cases are presented to show the effects of optimizing the ordering with a genetic algorithm.

  19. Current development of UAV sense and avoid system

    NASA Astrophysics Data System (ADS)

    Zhahir, A.; Razali, A.; Mohd Ajir, M. R.

    2016-10-01

    As unmanned aerial vehicles (UAVs) are now gaining high interests from civil and commercialised market, the automatic sense and avoid (SAA) system is currently one of the essential features in research spotlight of UAV. Several sensor types employed in current SAA research and technology of sensor fusion that offers a great opportunity in improving detection and tracking system are presented here. The purpose of this paper is to provide an overview of SAA system development in general, as well as the current challenges facing UAV researchers and designers.

  20. Fine tuning of transmission features in nanoporous anodic alumina distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel

    2018-01-01

    This study introduces an innovative apodisation strategy to tune the filtering features of distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs). The effective medium of NAA-DBRs, which is modulated in a stepwise fashion by a pulse-like anodisation approach, is apodised following a logarithmic negative function to engineer the transmission features of NAA-DBRs. We investigate the effect of various apodisation parameters such as apodisation amplitude difference, anodisation period, current density offset and pore widening time, to tune and optimise the optical properties of NAA-DBRs in terms of central wavelength position, full width at half maximum and quality of photonic stop band. The transmission features of NAA-DBRs are shown to be fully controllable with precision across the spectral regions by means of the apodisation parameters. Our study demonstrates that an apodisation strategy can significantly narrow the width and enhance the quality of the characteristic photonic stop band of NAA-DBRs. This rationally designed anodisation approach based on the combination of apodisation and stepwise pulse anodisation enables the development of optical filters with tuneable filtering features to be integrated into optical technologies acting as essential photonic elements in devices such as optical sensors and biosensors.

  1. Feature Extraction for Track Section Status Classification Based on UGW Signals

    PubMed Central

    Yang, Yuan; Shi, Lin

    2018-01-01

    Track status classification is essential for the stability and safety of railway operations nowadays, when railway networks are becoming more and more complex and broad. In this situation, monitoring systems are already a key element in applications dedicated to evaluating the status of a certain track section, often determining whether it is free or occupied by a train. Different technologies have already been involved in the design of monitoring systems, including ultrasonic guided waves (UGW). This work proposes the use of the UGW signals captured by a track monitoring system to extract the features that are relevant for determining the corresponding track section status. For that purpose, three features of UGW signals have been considered: the root mean square value, the energy, and the main frequency components. Experimental results successfully validated how these features can be used to classify the track section status into free, occupied and broken. Furthermore, spatial and temporal dependencies among these features were analysed in order to show how they can improve the final classification performance. Finally, a preliminary high-level classification system based on deep learning networks has been envisaged for future works. PMID:29673156

  2. Essential protein discovery based on a combination of modularity and conservatism.

    PubMed

    Zhao, Bihai; Wang, Jianxin; Li, Xueyong; Wu, Fang-Xiang

    2016-11-01

    Essential proteins are indispensable for the survival of a living organism and play important roles in the emerging field of synthetic biology. Many computational methods have been proposed to identify essential proteins by using the topological features of interactome networks. However, most of these methods ignored intrinsic biological meaning of proteins. Researches show that essentiality is tied not only to the protein or gene itself, but also to the molecular modules to which that protein belongs. The results of this study reveal the modularity of essential proteins. On the other hand, essential proteins are more evolutionarily conserved than nonessential proteins and frequently bind each other. That is to say, conservatism is another important feature of essential proteins. Multiple networks are constructed by integrating protein-protein interaction (PPI) networks, time course gene expression data and protein domain information. Based on these networks, a new essential protein identification method is proposed based on a combination of modularity and conservatism of proteins. Experimental results show that the proposed method outperforms other essential protein identification methods in terms of a number essential protein out of top ranked candidates. Copyright © 2016. Published by Elsevier Inc.

  3. Reveal quantum correlation in complementary bases

    PubMed Central

    Wu, Shengjun; Ma, Zhihao; Chen, Zhihua; Yu, Sixia

    2014-01-01

    An essential feature of genuine quantum correlation is the simultaneous existence of correlation in complementary bases. We reveal this feature of quantum correlation by defining measures based on invariance under a basis change. For a bipartite quantum state, the classical correlation is the maximal correlation present in a certain optimum basis, while the quantum correlation is characterized as a series of residual correlations in the mutually unbiased bases. Compared with other approaches to quantify quantum correlation, our approach gives information-theoretical measures that directly reflect the essential feature of quantum correlation. PMID:24503595

  4. Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems

    NASA Astrophysics Data System (ADS)

    Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke

    2016-01-01

    A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.

  5. Acoustic and aerodynamic performance of a 1.5-pressure-ratio, 1.83-meter (6 ft) diameter fan stage for turbofan engines (QF-2)

    NASA Technical Reports Server (NTRS)

    Woodward, R. P.; Lucas, J. G.; Balombin, J. R.

    1977-01-01

    The fan was externally driven by an electric motor. Design features for low-noise generation included the elimination of inlet guide vanes, long axial spacing between the rotor and stator blade rows, and the selection of blade-vane numbers to achieve duct-mode cutoff. The fan QF-2 results were compared with those of another full-scale fan having essentially identical aerodynamic design except for nozzle geometry and the direction of rotation. The fan QF-2 aerodynamic results were also compared with those obtained from a 50.8 cm rotor-tip-diameter model of the reverse rotation fan QF-2 design. Differences in nozzle geometry other than exit area significantly affected the comparison of the results of the full-scale fans.

  6. A review of international pharmacy-based minor ailment services and proposed service design model.

    PubMed

    Aly, Mariyam; García-Cárdenas, Victoria; Williams, Kylie; Benrimoj, Shalom I

    2018-01-05

    The need to consider sustainable healthcare solutions is essential. An innovative strategy used to promote minor ailment care is the utilisation of community pharmacists to deliver minor ailment services (MASs). Promoting higher levels of self-care can potentially reduce the strain on existing resources. To explore the features of international MASs, including their similarities and differences, and consider the essential elements to design a MAS model. A grey literature search strategy was completed in June 2017 to comply with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses standard. This included (1) Google/Yahoo! search engines, (2) targeted websites, and (3) contact with commissioning organisations. Executive summaries, table of contents and title pages of documents were reviewed. Key characteristics of MASs were extracted and a MAS model was developed. A total of 147 publications were included in the review. Key service elements identified included eligibility, accessibility, staff involvement, reimbursement systems. Several factors need to be considered when designing a MAS model; including contextualisation of MAS to the market. Stakeholder engagement, service planning, governance, implementation and review have emerged as key aspects involved with a design model. MASs differ in their structural parameters. Consideration of these parameters is necessary when devising MAS aims and assessing outcomes to promote sustainability and success of the service. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane

    Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importancemore » of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. Furthermore, this undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.« less

  8. Antifogging abilities of model nanotextures

    DOE PAGES

    Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane; ...

    2017-02-27

    Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importancemore » of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. Furthermore, this undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.« less

  9. Antifogging abilities of model nanotextures

    NASA Astrophysics Data System (ADS)

    Mouterde, Timothée; Lehoucq, Gaëlle; Xavier, Stéphane; Checco, Antonio; Black, Charles T.; Rahman, Atikur; Midavaine, Thierry; Clanet, Christophe; Quéré, David

    2017-06-01

    Nanometre-scale features with special shapes impart a broad spectrum of unique properties to the surface of insects. These properties are essential for the animal’s survival, and include the low light reflectance of moth eyes, the oil repellency of springtail carapaces and the ultra-adhesive nature of palmtree bugs. Antireflective mosquito eyes and cicada wings are also known to exhibit some antifogging and self-cleaning properties. In all cases, the combination of small feature size and optimal shape provides exceptional surface properties. In this work, we investigate the underlying antifogging mechanism in model materials designed to mimic natural systems, and explain the importance of the texture’s feature size and shape. While exposure to fog strongly compromises the water-repellency of hydrophobic structures, this failure can be minimized by scaling the texture down to nanosize. This undesired effect even becomes non-measurable if the hydrophobic surface consists of nanocones, which generate antifogging efficiency close to unity and water departure of droplets smaller than 2 μm.

  10. Application of genetic algorithm in integrated setup planning and operation sequencing

    NASA Astrophysics Data System (ADS)

    Kafashi, Sajad; Shakeri, Mohsen

    2011-01-01

    Process planning is an essential component for linking design and manufacturing process. Setup planning and operation sequencing is two main tasks in process planning. Many researches solved these two problems separately. Considering the fact that the two functions are complementary, it is necessary to integrate them more tightly so that performance of a manufacturing system can be improved economically and competitively. This paper present a generative system and genetic algorithm (GA) approach to process plan the given part. The proposed approach and optimization methodology analyses the TAD (tool approach direction), tolerance relation between features and feature precedence relations to generate all possible setups and operations using workshop resource database. Based on these technological constraints the GA algorithm approach, which adopts the feature-based representation, optimizes the setup plan and sequence of operations using cost indices. Case study show that the developed system can generate satisfactory results in optimizing the setup planning and operation sequencing simultaneously in feasible condition.

  11. Accurate in silico prediction of species-specific methylation sites based on information gain feature optimization.

    PubMed

    Wen, Ping-Ping; Shi, Shao-Ping; Xu, Hao-Dong; Wang, Li-Na; Qiu, Jian-Ding

    2016-10-15

    As one of the most important reversible types of post-translational modification, protein methylation catalyzed by methyltransferases carries many pivotal biological functions as well as many essential biological processes. Identification of methylation sites is prerequisite for decoding methylation regulatory networks in living cells and understanding their physiological roles. Experimental methods are limitations of labor-intensive and time-consuming. While in silicon approaches are cost-effective and high-throughput manner to predict potential methylation sites, but those previous predictors only have a mixed model and their prediction performances are not fully satisfactory now. Recently, with increasing availability of quantitative methylation datasets in diverse species (especially in eukaryotes), there is a growing need to develop a species-specific predictor. Here, we designed a tool named PSSMe based on information gain (IG) feature optimization method for species-specific methylation site prediction. The IG method was adopted to analyze the importance and contribution of each feature, then select the valuable dimension feature vectors to reconstitute a new orderly feature, which was applied to build the finally prediction model. Finally, our method improves prediction performance of accuracy about 15% comparing with single features. Furthermore, our species-specific model significantly improves the predictive performance compare with other general methylation prediction tools. Hence, our prediction results serve as useful resources to elucidate the mechanism of arginine or lysine methylation and facilitate hypothesis-driven experimental design and validation. The tool online service is implemented by C# language and freely available at http://bioinfo.ncu.edu.cn/PSSMe.aspx CONTACT: jdqiu@ncu.edu.cnSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. HORIZONTAL BOILING REACTOR SYSTEM

    DOEpatents

    Treshow, M.

    1958-11-18

    Reactors of the boiling water type are described wherein water serves both as the moderator and coolant. The reactor system consists essentially of a horizontal pressure vessel divided into two compartments by a weir, a thermal neutronic reactor core having vertical coolant passages and designed to use water as a moderator-coolant posltioned in one compartment, means for removing live steam from the other compartment and means for conveying feed-water and water from the steam compartment to the reactor compartment. The system further includes auxiliary apparatus to utilize the steam for driving a turbine and returning the condensate to the feed-water inlet of the reactor. The entire system is designed so that the reactor is self-regulating and has self-limiting power and self-limiting pressure features.

  13. Transient analysis techniques in performing impact and crash dynamic studies

    NASA Technical Reports Server (NTRS)

    Pifko, A. B.; Winter, R.

    1989-01-01

    Because of the emphasis being placed on crashworthiness as a design requirement, increasing demands are being made by various organizations to analyze a wide range of complex structures that must perform safely when subjected to severe impact loads, such as those generated in a crash event. The ultimate goal of crashworthiness design and analysis is to produce vehicles with the ability to reduce the dynamic forces experienced by the occupants to specified levels, while maintaining a survivable envelope around them during a specified crash event. DYCAST is a nonlinear structural dynamic finite element computer code that started from the plans systems of a finite element program for static nonlinear structural analysis. The essential features of DYCAST are outlined.

  14. Asset - An application in mission automation for science planning

    NASA Technical Reports Server (NTRS)

    Finnerty, D. F.; Martin, J.; Doms, P. E.

    1987-01-01

    Recent advances in computer technology were used to great advantage in planning science observation sequences for the Voyager 2 encounter with Uranus in 1986. Despite a loss of experienced personnel, a challenging schedule, workforce limitations, and the complex nature of the Uranus encounter itself, the resultant science observation timelines were the most highly optimized of the five Voyager encounters with the outer planets. In part, this was due to the development of a microcomputer-based system, called ASSET (Automated Science Sequence Encounter Timelines generator), which was used to design those science observation timelines. This paper details the development of that system. ASSET demonstrates several features essential to the design of the first expert systems for science planning which will be applied for future missions.

  15. Development of a computerized visual search test.

    PubMed

    Reid, Denise; Babani, Harsha; Jon, Eugenia

    2009-09-01

    Visual attention and visual search are the features of visual perception, essential for attending and scanning one's environment while engaging in daily occupations. This study describes the development of a novel web-based test of visual search. The development information including the format of the test will be described. The test was designed to provide an alternative to existing cancellation tests. Data from two pilot studies will be reported that examined some aspects of the test's validity. To date, our assessment of the test shows that it discriminates between healthy and head-injured persons. More research and development work is required to examine task performance changes in relation to task complexity. It is suggested that the conceptual design for the test is worthy of further investigation.

  16. Discrete structural features among interface residue-level classes.

    PubMed

    Sowmya, Gopichandran; Ranganathan, Shoba

    2015-01-01

    Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs.

  17. Discrete structural features among interface residue-level classes

    PubMed Central

    2015-01-01

    Background Protein-protein interaction (PPI) is essential for molecular functions in biological cells. Investigation on protein interfaces of known complexes is an important step towards deciphering the driving forces of PPIs. Each PPI complex is specific, sensitive and selective to binding. Therefore, we have estimated the relative difference in percentage of polar residues between surface and the interface for each complex in a non-redundant heterodimer dataset of 278 complexes to understand the predominant forces driving binding. Results Our analysis showed ~60% of protein complexes with surface polarity greater than interface polarity (designated as class A). However, a considerable number of complexes (~40%) have interface polarity greater than surface polarity, (designated as class B), with a significantly different p-value of 1.66E-45 from class A. Comprehensive analyses of protein complexes show that interface features such as interface area, interface polarity abundance, solvation free energy gain upon interface formation, binding energy and the percentage of interface charged residue abundance distinguish among class A and class B complexes, while electrostatic visualization maps also help differentiate interface classes among complexes. Conclusions Class A complexes are classical with abundant non-polar interactions at the interface; however class B complexes have abundant polar interactions at the interface, similar to protein surface characteristics. Five physicochemical interface features analyzed from the protein heterodimer dataset are discriminatory among the interface residue-level classes. These novel observations find application in developing residue-level models for protein-protein binding prediction, protein-protein docking studies and interface inhibitor design as drugs. PMID:26679043

  18. SigFlux: a novel network feature to evaluate the importance of proteins in signal transduction networks.

    PubMed

    Liu, Wei; Li, Dong; Zhang, Jiyang; Zhu, Yunping; He, Fuchu

    2006-11-27

    Measuring each protein's importance in signaling networks helps to identify the crucial proteins in a cellular process, find the fragile portion of the biology system and further assist for disease therapy. However, there are relatively few methods to evaluate the importance of proteins in signaling networks. We developed a novel network feature to evaluate the importance of proteins in signal transduction networks, that we call SigFlux, based on the concept of minimal path sets (MPSs). An MPS is a minimal set of nodes that can perform the signal propagation from ligands to target genes or feedback loops. We define SigFlux as the number of MPSs in which each protein is involved. We applied this network feature to the large signal transduction network in the hippocampal CA1 neuron of mice. Significant correlations were simultaneously observed between SigFlux and both the essentiality and evolutionary rate of genes. Compared with another commonly used network feature, connectivity, SigFlux has similar or better ability as connectivity to reflect a protein's essentiality. Further classification according to protein function demonstrates that high SigFlux, low connectivity proteins are abundant in receptors and transcriptional factors, indicating that SigFlux candescribe the importance of proteins within the context of the entire network. SigFlux is a useful network feature in signal transduction networks that allows the prediction of the essentiality and conservation of proteins. With this novel network feature, proteins that participate in more pathways or feedback loops within a signaling network are proved far more likely to be essential and conserved during evolution than their counterparts.

  19. Ordering Design Tasks Based on Coupling Strengths

    NASA Technical Reports Server (NTRS)

    Rogers, J. L.; Bloebaum, C. L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  20. Ordering design tasks based on coupling strengths

    NASA Technical Reports Server (NTRS)

    Rogers, James L., Jr.; Bloebaum, Christina L.

    1994-01-01

    The design process associated with large engineering systems requires an initial decomposition of the complex system into modules of design tasks which are coupled through the transference of output data. In analyzing or optimizing such a coupled system, it is essential to be able to determine which interactions figure prominently enough to significantly affect the accuracy of the system solution. Many decomposition approaches assume the capability is available to determine what design tasks and interactions exist and what order of execution will be imposed during the analysis process. Unfortunately, this is often a complex problem and beyond the capabilities of a human design manager. A new feature for DeMAID (Design Manager's Aid for Intelligent Decomposition) will allow the design manager to use coupling strength information to find a proper sequence for ordering the design tasks. In addition, these coupling strengths aid in deciding if certain tasks or couplings could be removed (or temporarily suspended) from consideration to achieve computational savings without a significant loss of system accuracy. New rules are presented and two small test cases are used to show the effects of using coupling strengths in this manner.

  1. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  2. The fluid mechanics of natural ventilation

    NASA Astrophysics Data System (ADS)

    Linden, Paul

    1999-11-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. Modern buildings have extreme designs with large, tall open plan spaces and large cooling requirements. Natural ventilation offers a means of cooling these buildings and providing good indoor air quality. The essential feature of ventilation is an exchange between an interior space and the external ambient. Recent work shows that in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of buoyancy-driven ventilation are discussed: mixing ventilation in which the interior is at approximately uniform temperature and displacement ventilation where there is strong internal stratification. The dynamics of these flows are considered and the effects of wind on them are examined both experimentally and theoretically. The aim behind this work is to give designers rules and intuition on how air moves within a building and the research shows a fascinating branch of fluid mechanics.

  3. Software-Enabled Distributed Network Governance: The PopMedNet Experience.

    PubMed

    Davies, Melanie; Erickson, Kyle; Wyner, Zachary; Malenfant, Jessica; Rosen, Rob; Brown, Jeffrey

    2016-01-01

    The expanded availability of electronic health information has led to increased interest in distributed health data research networks. The distributed research network model leaves data with and under the control of the data holder. Data holders, network coordinating centers, and researchers have distinct needs and challenges within this model. The concerns of network stakeholders are addressed in the design and governance models of the PopMedNet software platform. PopMedNet features include distributed querying, customizable workflows, and auditing and search capabilities. Its flexible role-based access control system enables the enforcement of varying governance policies. Four case studies describe how PopMedNet is used to enforce network governance models. Trust is an essential component of a distributed research network and must be built before data partners may be willing to participate further. The complexity of the PopMedNet system must be managed as networks grow and new data, analytic methods, and querying approaches are developed. The PopMedNet software platform supports a variety of network structures, governance models, and research activities through customizable features designed to meet the needs of network stakeholders.

  4. Toward the design of alkynylimidazole fluorophores: computational and experimental characterization of spectroscopic features in solution and in poly(methyl methacrylate).

    PubMed

    Barone, Vincenzo; Bellina, Fabio; Biczysko, Malgorzata; Bloino, Julien; Fornaro, Teresa; Latouche, Camille; Lessi, Marco; Marianetti, Giulia; Minei, Pierpaolo; Panattoni, Alessandro; Pucci, Andrea

    2015-10-28

    The possibilities offered by organic fluorophores in the preparation of advanced plastic materials have been increased by designing novel alkynylimidazole dyes, featuring different push and pull groups. This new family of fluorescent dyes was synthesized by means of a one-pot sequential bromination-alkynylation of the heteroaromatic core, and their optical properties were investigated in tetrahydrofuran and in poly(methyl methacrylate). An efficient in silico pre-screening scheme was devised as consisting of a step-by-step procedure employing computational methodologies by simulation of electronic spectra within simple vertical energy and more sophisticated vibronic approaches. Such an approach was also extended to efficiently simulate one-photon absorption and emission spectra of the dyes in the polymer environment for their potential application in luminescent solar concentrators. Besides the specific applications of this novel material, the integration of computational and experimental techniques reported here provides an efficient protocol that can be applied to make a selection among similar dye candidates, which constitute the essential responsive part of those fluorescent plastic materials.

  5. Review of Recent Inkjet-Printed Capacitive Tactile Sensors

    PubMed Central

    Salim, Ahmed

    2017-01-01

    Inkjet printing is an advanced printing technology that has been used to develop conducting layers, interconnects and other features on a variety of substrates. It is an additive manufacturing process that offers cost-effective, lightweight designs and simplifies the fabrication process with little effort. There is hardly sufficient research on tactile sensors and inkjet printing. Advancements in materials science and inkjet printing greatly facilitate the realization of sophisticated tactile sensors. Starting from the concept of capacitive sensing, a brief comparison of printing techniques, the essential requirements of inkjet-printing and the attractive features of state-of-the art inkjet-printed tactile sensors developed on diverse substrates (paper, polymer, glass and textile) are presented in this comprehensive review. Recent trends in inkjet-printed wearable/flexible and foldable tactile sensors are evaluated, paving the way for future research. PMID:29125584

  6. Invited review: study design considerations for clinical research in veterinary radiology and radiation oncology.

    PubMed

    Scrivani, Peter V; Erb, Hollis N

    2013-01-01

    High quality clinical research is essential for advancing knowledge in the areas of veterinary radiology and radiation oncology. Types of clinical research studies may include experimental studies, method-comparison studies, and patient-based studies. Experimental studies explore issues relative to pathophysiology, patient safety, and treatment efficacy. Method-comparison studies evaluate agreement between techniques or between observers. Patient-based studies investigate naturally acquired disease and focus on questions asked in clinical practice that relate to individuals or populations (e.g., risk, accuracy, or prognosis). Careful preplanning and study design are essential in order to achieve valid results. A key point to planning studies is ensuring that the design is tailored to the study objectives. Good design includes a comprehensive literature review, asking suitable questions, selecting the proper sample population, collecting the appropriate data, performing the correct statistical analyses, and drawing conclusions supported by the available evidence. Most study designs are classified by whether they are experimental or observational, longitudinal or cross-sectional, and prospective or retrospective. Additional features (e.g., controlled, randomized, or blinded) may be described that address bias. Two related challenging aspects of study design are defining an important research question and selecting an appropriate sample population. The sample population should represent the target population as much as possible. Furthermore, when comparing groups, it is important that the groups are as alike to each other as possible except for the variables of interest. Medical images are well suited for clinical research because imaging signs are categorical or numerical variables that might be predictors or outcomes of diseases or treatments. © 2013 Veterinary Radiology & Ultrasound.

  7. A Robust Zero-Watermarking Algorithm for Audio

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Zhu, Jie

    2007-12-01

    In traditional watermarking algorithms, the insertion of watermark into the host signal inevitably introduces some perceptible quality degradation. Another problem is the inherent conflict between imperceptibility and robustness. Zero-watermarking technique can solve these problems successfully. Instead of embedding watermark, the zero-watermarking technique extracts some essential characteristics from the host signal and uses them for watermark detection. However, most of the available zero-watermarking schemes are designed for still image and their robustness is not satisfactory. In this paper, an efficient and robust zero-watermarking technique for audio signal is presented. The multiresolution characteristic of discrete wavelet transform (DWT), the energy compression characteristic of discrete cosine transform (DCT), and the Gaussian noise suppression property of higher-order cumulant are combined to extract essential features from the host audio signal and they are then used for watermark recovery. Simulation results demonstrate the effectiveness of our scheme in terms of inaudibility, detection reliability, and robustness.

  8. Identification of PARMA Models and Their Application to the Modeling of River flows

    NASA Astrophysics Data System (ADS)

    Tesfaye, Y. G.; Meerschaert, M. M.; Anderson, P. L.

    2004-05-01

    The generation of synthetic river flow samples that can reproduce the essential statistical features of historical river flows is essential to the planning, design and operation of water resource systems. Most river flow series are periodically stationary; that is, their mean and covariance functions are periodic with respect to time. We employ a periodic ARMA (PARMA) model. The innovation algorithm can be used to obtain parameter estimates for PARMA models with finite fourth moment as well as infinite fourth moment but finite variance. Anderson and Meerschaert (2003) provide a method for model identification when the time series has finite fourth moment. This article, an extension of the previous work by Anderson and Meerschaert, demonstrates the effectiveness of the technique using simulated data. An application to monthly flow data for the Frazier River in British Columbia is also included to illustrate the use of these methods.

  9. Natural Experiments: An Overview of Methods, Approaches, and Contributions to Public Health Intervention Research.

    PubMed

    Craig, Peter; Katikireddi, Srinivasa Vittal; Leyland, Alastair; Popham, Frank

    2017-03-20

    Population health interventions are essential to reduce health inequalities and tackle other public health priorities, but they are not always amenable to experimental manipulation. Natural experiment (NE) approaches are attracting growing interest as a way of providing evidence in such circumstances. One key challenge in evaluating NEs is selective exposure to the intervention. Studies should be based on a clear theoretical understanding of the processes that determine exposure. Even if the observed effects are large and rapidly follow implementation, confidence in attributing these effects to the intervention can be improved by carefully considering alternative explanations. Causal inference can be strengthened by including additional design features alongside the principal method of effect estimation. NE studies often rely on existing (including routinely collected) data. Investment in such data sources and the infrastructure for linking exposure and outcome data is essential if the potential for such studies to inform decision making is to be realized.

  10. Modeling Operations Other Than War: Non-Combatants in Combat Modeling

    DTIC Science & Technology

    1994-09-01

    supposition that non-combatants are an essential feature in OOTW. The model proposal includes a methodology for civilian unit decision making . The model...combatants are an essential feature in OOTW. The model proposal includes a methodology for civilian unit decision making . Thi- model also includes...numerical example demonstrated that the model appeared to perform in an acceptable manner, in that it produced output within a reasonable range. During the

  11. Essential features influencing collaboration in team-based non-specific back pain rehabilitation: Findings from a mixed methods study

    PubMed Central

    Hellman, Therese; Jensen, Irene; Bergström, Gunnar; Brämberg, Elisabeth Björk

    2016-01-01

    ABSTRACT The aim of the study presented in this article was to explore how professionals, without guidelines for implementing interprofessional teamwork, experience the collaboration within team-based rehabilitation for people with back pain and how this collaboration influences their clinical practice. This study employed a mixed methods design. A questionnaire was answered by 383 participants and 17 participants were interviewed. The interviews were analysed using content analysis. The quantitative results showed that the participants were satisfied with their team-based collaboration. Thirty percent reported that staff changes in the past year had influenced their clinical practice, of which 57% reported that these changes had had negative consequences. The qualitative findings revealed that essential features for an effective collaboration were shared basic values and supporting each other. Furthermore, aspects such as having enough time for reflection, staff continuity, and a shared view of the team members’ roles were identified as aspects which influenced the clinical practice. Important clinical implications for nurturing and developing a collaboration in team-based rehabilitation are to create shared basic values and a unified view of all team members’ roles and their contributions to the team. These aspects need to be emphasised on an ongoing basis and not only when the team is formed. PMID:27152534

  12. Assessment of thermal loads in the CERN SPS crab cavities cryomodule1

    NASA Astrophysics Data System (ADS)

    Carra, F.; Apeland, J.; Calaga, R.; Capatina, O.; Capelli, T.; Verdú-Andrés, S.; Zanoni, C.

    2017-07-01

    As a part of the HL-LHC upgrade, a cryomodule is designed to host two crab cavities for a first test with protons in the SPS machine. The evaluation of the cryomodule heat loads is essential to dimension the cryogenic infrastructure of the system. The current design features two cryogenic circuits. The first circuit adopts superfluid helium at 2 K to maintain the cavities in the superconducting state. The second circuit, based on helium gas at a temperature between 50 K and 70 K, is connected to the thermal screen, also serving as heat intercept for all the interfaces between the cold mass and the external environment. An overview of the heat loads to both circuits, and the combined numerical and analytical estimations, is presented. The heat load of each element is detailed for the static and dynamic scenarios, with considerations on the design choices for the thermal optimization of the most critical components.

  13. Synthesis and characterization of transition metal oxide/sulfide nanostructures for electrochemical applications

    NASA Astrophysics Data System (ADS)

    Yilmaz, Gamze

    This thesis is essentially oriented to develop low-cost nanostructured transition metal (nickel and vanadium) oxides and sulfides with high energy density, power density and electrochemical stability via strategies of structural design, hybridization, functionalization and surface engineering. Metal oxide and metal oxide/sulfide hybrid nanostructures in several designs, including hierarchical porous nanostructures, hollow polyhedrons, nanocubes, nanoframes, octopod nanoframes, and nanocages, were synthesized to study the contribution of structural design, compositional engineering, functionalization and surface engineering to the electrochemical properties of the materials. Modulated compositional and structural features disclosed the opportunities of large accessible active sites, facile ion transport, robustness and enhanced electrical conductivity. The best electrochemical performance with merits of highest energy density (38.9 Wh kg-1), power density (7.4 kW kg-1) and electrochemical stability (90.9% after 10000 cycles) was obtained for nickel cobalt layered double hydroxide/cobalt sulfide (NiCo-LDH/Co9S8) hybrid hollow polyhedron structure.

  14. A 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat

    NASA Astrophysics Data System (ADS)

    Wilson, Emily L.; DiGregorio, A. J.; Riot, Vincent J.; Ammons, Mark S.; Bruner, William W.; Carter, Darrell; Mao, Jianping; Ramanathan, Anand; Strahan, Susan E.; Oman, Luke D.; Hoffman, Christine; Garner, Richard M.

    2017-03-01

    We present a design for a 4 U (20 cm  ×  20 cm  ×  10 cm) occultation-viewing laser heterodyne radiometer (LHR) that measures methane (CH4), carbon dioxide (CO2) and water vapor (H2O) in the limb that is designed for deployment on a 6 U CubeSat. The LHR design collects sunlight that has undergone absorption by the trace gas and mixes it with a distributive feedback (DFB) laser centered at 1640 nm that scans across CO2, CH4, and H2O absorption features. Upper troposphere/lower stratosphere measurements of these gases provide key inputs to stratospheric circulation models: measuring stratospheric circulation and its variability is essential for projecting how climate change will affect stratospheric ozone.

  15. Software Package Completed for Alloy Design at the Atomic Level

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo H.; Noebe, Ronald D.; Abel, Phillip B.; Good, Brian S.

    2001-01-01

    As a result of a multidisciplinary effort involving solid-state physics, quantum mechanics, and materials and surface science, the first version of a software package dedicated to the atomistic analysis of multicomponent systems was recently completed. Based on the BFS (Bozzolo, Ferrante, and Smith) method for the calculation of alloy and surface energetics, this package includes modules devoted to the analysis of many essential features that characterize any given alloy or surface system, including (1) surface structure analysis, (2) surface segregation, (3) surface alloying, (4) bulk crystalline material properties and atomic defect structures, and (5) thermal processes that allow us to perform phase diagram calculations. All the modules of this Alloy Design Workbench 1.0 (ADW 1.0) are designed to run in PC and workstation environments, and their operation and performance are substantially linked to the needs of the user and the specific application.

  16. Simultaneous Optical Measurements of Axial and Tangential Steady-State Blade Deflections

    NASA Technical Reports Server (NTRS)

    Kurkov, Anatole P.; Dhadwal, Harbans S.

    1999-01-01

    Currently, the majority of fiber-optic blade instrumentation is being designed and manufactured by aircraft-engine companies for their own use. The most commonly employed probe for optical blade deflection measurements is the spot probe. One of its characteristics is that the incident spot on a blade is not fixed relative to the blade, but changes depending on the blade deformation associated with centrifugal and aerodynamic loading. While there are geometrically more complicated optical probe designs in use by different engine companies, this paper offers an alternate solution derived from a probe-mount design feature that allows one to change the probe axial position until the incident spot contacts either a leading or a trailing edge. By tracing the axial position of either blade edge one is essentially extending the deflection measurement to two dimensions, axial and tangential. The blade deflection measurements were obtained during a wind tunnel test of a fan prototype.

  17. A Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Brennan T.; Welch, Tim; Witt, Adam M.

    The Multi-Year Plan for Research, Development, and Prototype Testing of Standard Modular Hydropower Technology (MYRP) presents a strategy for specifying, designing, testing, and demonstrating the efficacy of standard modular hydropower (SMH) as an environmentally compatible and cost-optimized renewable electricity generation technology. The MYRP provides the context, background, and vision for testing the SMH hypothesis: if standardization, modularity, and preservation of stream functionality become essential and fully realized features of hydropower technology, project design, and regulatory processes, they will enable previously unrealized levels of new project development with increased acceptance, reduced costs, increased predictability of outcomes, and increased value to stakeholders.more » To achieve success in this effort, the MYRP outlines a framework of stakeholder-validated criteria, models, design tools, testing facilities, and assessment protocols that will facilitate the development of next-generation hydropower technologies.« less

  18. Low Substrate Loading Limits Methanogenesis and Leads to High Coulombic Efficiency in Bioelectrochemical Systems

    PubMed Central

    Sleutels, Tom H. J. A.; Molenaar, Sam D.; Heijne, Annemiek Ter; Buisman, Cees J. N.

    2016-01-01

    A crucial aspect for the application of bioelectrochemical systems (BESs) as a wastewater treatment technology is the efficient oxidation of complex substrates by the bioanode, which is reflected in high Coulombic efficiency (CE). To achieve high CE, it is essential to give a competitive advantage to electrogens over methanogens. Factors that affect CE in bioanodes are, amongst others, the type of wastewater, anode potential, substrate concentration and pH. In this paper, we focus on acetate as a substrate and analyze the competition between methanogens and electrogens from a thermodynamic and kinetic point of view. We reviewed experimental data from earlier studies and propose that low substrate loading in combination with a sufficiently high anode overpotential plays a key-role in achieving high CE. Low substrate loading is a proven strategy against methanogenic activity in large-scale reactors for sulfate reduction. The combination of low substrate loading with sufficiently high overpotential is essential because it results in favorable growth kinetics of electrogens compared to methanogens. To achieve high current density in combination with low substrate concentrations, it is essential to have a high specific anode surface area. New reactor designs with these features are essential for BESs to be successful in wastewater treatment in the future. PMID:27681899

  19. Low Substrate Loading Limits Methanogenesis and Leads to High Coulombic Efficiency in Bioelectrochemical Systems.

    PubMed

    Sleutels, Tom H J A; Molenaar, Sam D; Heijne, Annemiek Ter; Buisman, Cees J N

    2016-01-05

    A crucial aspect for the application of bioelectrochemical systems (BESs) as a wastewater treatment technology is the efficient oxidation of complex substrates by the bioanode, which is reflected in high Coulombic efficiency (CE). To achieve high CE, it is essential to give a competitive advantage to electrogens over methanogens. Factors that affect CE in bioanodes are, amongst others, the type of wastewater, anode potential, substrate concentration and pH. In this paper, we focus on acetate as a substrate and analyze the competition between methanogens and electrogens from a thermodynamic and kinetic point of view. We reviewed experimental data from earlier studies and propose that low substrate loading in combination with a sufficiently high anode overpotential plays a key-role in achieving high CE. Low substrate loading is a proven strategy against methanogenic activity in large-scale reactors for sulfate reduction. The combination of low substrate loading with sufficiently high overpotential is essential because it results in favorable growth kinetics of electrogens compared to methanogens. To achieve high current density in combination with low substrate concentrations, it is essential to have a high specific anode surface area. New reactor designs with these features are essential for BESs to be successful in wastewater treatment in the future.

  20. International Continence Society guidelines on urodynamic equipment performance.

    PubMed

    Gammie, Andrew; Clarkson, Becky; Constantinou, Chris; Damaser, Margot; Drinnan, Michael; Geleijnse, Geert; Griffiths, Derek; Rosier, Peter; Schäfer, Werner; Van Mastrigt, Ron

    2014-04-01

    These guidelines provide benchmarks for the performance of urodynamic equipment, and have been developed by the International Continence Society to assist purchasing decisions, design requirements, and performance checks. The guidelines suggest ranges of specification for uroflowmetry, volume, pressure, and EMG measurement, along with recommendations for user interfaces and performance tests. Factors affecting measurement relating to the different technologies used are also described. Summary tables of essential and desirable features are included for ease of reference. It is emphasized that these guidelines can only contribute to good urodynamics if equipment is used properly, in accordance with good practice. © 2014 Wiley Periodicals, Inc.

  1. Rumen Microbiome, Probiotics, and Fermentation Additives.

    PubMed

    McCann, Joshua C; Elolimy, Ahmed A; Loor, Juan J

    2017-11-01

    Fermentation of a variety of feedstuffs by the ruminal microbiome is the distinctive feature of the ruminant digestive tract. The host derives energy and nutrients from microbiome activity; these organisms are essential to survival. Advances in DNA sequencing and bioinformatics have redefined the rumen microbial community. Current research seeks to connect our understanding of the rumen microbiome with nutritional strategies in ruminant livestock systems and their associated digestive disorders. These efforts align with a growing number of products designed to improve ruminal fermentation to benefit the overall efficiency of ruminant livestock production and health. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Computational modeling approaches to quantitative structure-binding kinetics relationships in drug discovery.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2018-03-21

    Simple comparative correlation analyses and quantitative structure-kinetics relationship (QSKR) models highlight the interplay of kinetic rates and binding affinity as an essential feature in drug design and discovery. The choice of the molecular series, and their structural variations, used in QSKR modeling is fundamental to understanding the mechanistic implications of ligand and/or drug-target binding and/or unbinding processes. Here, we discuss the implications of linear correlations between kinetic rates and binding affinity constants and the relevance of the computational approaches to QSKR modeling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. An Approach for Predicting Essential Genes Using Multiple Homology Mapping and Machine Learning Algorithms.

    PubMed

    Hua, Hong-Li; Zhang, Fa-Zhan; Labena, Abraham Alemayehu; Dong, Chuan; Jin, Yan-Ting; Guo, Feng-Biao

    Investigation of essential genes is significant to comprehend the minimal gene sets of cell and discover potential drug targets. In this study, a novel approach based on multiple homology mapping and machine learning method was introduced to predict essential genes. We focused on 25 bacteria which have characterized essential genes. The predictions yielded the highest area under receiver operating characteristic (ROC) curve (AUC) of 0.9716 through tenfold cross-validation test. Proper features were utilized to construct models to make predictions in distantly related bacteria. The accuracy of predictions was evaluated via the consistency of predictions and known essential genes of target species. The highest AUC of 0.9552 and average AUC of 0.8314 were achieved when making predictions across organisms. An independent dataset from Synechococcus elongatus , which was released recently, was obtained for further assessment of the performance of our model. The AUC score of predictions is 0.7855, which is higher than other methods. This research presents that features obtained by homology mapping uniquely can achieve quite great or even better results than those integrated features. Meanwhile, the work indicates that machine learning-based method can assign more efficient weight coefficients than using empirical formula based on biological knowledge.

  4. Competency-based education: programme design and challenges to implementation.

    PubMed

    Gruppen, Larry D; Burkhardt, John C; Fitzgerald, James T; Funnell, Martha; Haftel, Hilary M; Lypson, Monica L; Mullan, Patricia B; Santen, Sally A; Sheets, Kent J; Stalburg, Caren M; Vasquez, John A

    2016-05-01

    Competency-based education (CBE) has been widely cited as an educational framework for medical students and residents, and provides a framework for designing educational programmes that reflect four critical features: a focus on outcomes, an emphasis on abilities, a reduction of emphasis on time-based training, and promotion of learner centredness. Each of these features has implications and potential challenges for implementing CBE. As an experiment in CBE programme design and implementation, the University of Michigan Master of Health Professions Education (UM-MHPE) degree programme was examined for lessons to be learned when putting CBE into practice. The UM-MHPE identifies 12 educational competencies and 20 educational entrustable professional activities (EPAs) that serve as the vehicle for both learning and assessment. The programme also defines distinct roles of faculty members as assessors, mentors and subject-matter experts focused on highly individualised learning plans adapted to each learner. Early experience with implementing the UM-MHPE indicates that EPAs and competencies can provide a viable alternative to traditional courses and a vehicle for rigorous assessment. A high level of individualisation is feasible but carries with it significant costs and makes intentional community building essential. Most significantly, abandoning a time-based framework is a difficult innovation to implement in a university structure that is predicated on time-based education. © 2016 John Wiley & Sons Ltd.

  5. Histopathological Image Classification using Discriminative Feature-oriented Dictionary Learning

    PubMed Central

    Vu, Tiep Huu; Mousavi, Hojjat Seyed; Monga, Vishal; Rao, Ganesh; Rao, UK Arvind

    2016-01-01

    In histopathological image analysis, feature extraction for classification is a challenging task due to the diversity of histology features suitable for each problem as well as presence of rich geometrical structures. In this paper, we propose an automatic feature discovery framework via learning class-specific dictionaries and present a low-complexity method for classification and disease grading in histopathology. Essentially, our Discriminative Feature-oriented Dictionary Learning (DFDL) method learns class-specific dictionaries such that under a sparsity constraint, the learned dictionaries allow representing a new image sample parsimoniously via the dictionary corresponding to the class identity of the sample. At the same time, the dictionary is designed to be poorly capable of representing samples from other classes. Experiments on three challenging real-world image databases: 1) histopathological images of intraductal breast lesions, 2) mammalian kidney, lung and spleen images provided by the Animal Diagnostics Lab (ADL) at Pennsylvania State University, and 3) brain tumor images from The Cancer Genome Atlas (TCGA) database, reveal the merits of our proposal over state-of-the-art alternatives. Moreover, we demonstrate that DFDL exhibits a more graceful decay in classification accuracy against the number of training images which is highly desirable in practice where generous training is often not available. PMID:26513781

  6. In silico modelling of thiazolidine derivatives with antioxidant potency: Models quantify the degree of contribution of molecular fragments towards the free radical scavenging ability

    NASA Astrophysics Data System (ADS)

    De, Biplab; Adhikari, Indrani; Nandy, Ashis; Saha, Achintya; Goswami, Binoy Behari

    2017-06-01

    Design and development of antioxidant supplements constitute an essential aspect of research in order to derive molecules that would help to combat the free radical invasion to the human body and curb oxidative stress related diseases. The present work deals with the development of in silico models for a series of thiazolidine derivatives having antioxidant potential. The objective of the work is to obtain models that would help to design new thazolidine derivatives based on substituent modification and thereby predict their activity profile. The QSAR model thus developed helps in quantification of the extent of contribution of the various molecular fragments towards the activity of the molecules, while the 3D pharmacophore model provides a brief idea of the essential molecular features that help the molecules to interact with the neighbouring free radicals. Both the models have been extensively validated which ensures their predictive ability as well the potential to search molecular databases for selection of thiazolidine derivatives with potent antioxidant activity. The models can thus be utilised effectively for database searching with the aim to isolate active antioxidants belonging to the thiazolidine group.

  7. Developing a semantic web model for medical differential diagnosis recommendation.

    PubMed

    Mohammed, Osama; Benlamri, Rachid

    2014-10-01

    In this paper we describe a novel model for differential diagnosis designed to make recommendations by utilizing semantic web technologies. The model is a response to a number of requirements, ranging from incorporating essential clinical diagnostic semantics to the integration of data mining for the process of identifying candidate diseases that best explain a set of clinical features. We introduce two major components, which we find essential to the construction of an integral differential diagnosis recommendation model: the evidence-based recommender component and the proximity-based recommender component. Both approaches are driven by disease diagnosis ontologies designed specifically to enable the process of generating diagnostic recommendations. These ontologies are the disease symptom ontology and the patient ontology. The evidence-based diagnosis process develops dynamic rules based on standardized clinical pathways. The proximity-based component employs data mining to provide clinicians with diagnosis predictions, as well as generates new diagnosis rules from provided training datasets. This article describes the integration between these two components along with the developed diagnosis ontologies to form a novel medical differential diagnosis recommendation model. This article also provides test cases from the implementation of the overall model, which shows quite promising diagnostic recommendation results.

  8. Multiple Resting-State Networks Are Associated With Tremors and Cognitive Features in Essential Tremor.

    PubMed

    Fang, Weidong; Chen, Huiyue; Wang, Hansheng; Zhang, Han; Liu, Mengqi; Puneet, Munankami; Lv, Fajin; Cheng, Oumei; Wang, Xuefeng; Lu, Xiurong; Luo, Tianyou

    2015-12-01

    The heterogeneous clinical features of essential tremor indicate that the dysfunctions of this syndrome are not confined to motor networks, but extend to nonmotor networks. Currently, these neural network dysfunctions in essential tremor remain unclear. In this study, independent component analysis of resting-state functional MRI was used to study these neural network mechanisms. Thirty-five essential tremor patients and 35 matched healthy controls with clinical and neuropsychological tests were included, and eight resting-state networks were identified. After considering the structure and head-motion factors and testing the reliability of the selected resting-state networks, we assessed the functional connectivity changes within or between resting-state networks. Finally, image-behavior correlation analysis was performed. Compared to healthy controls, essential tremor patients displayed increased functional connectivity in the sensorimotor and salience networks and decreased functional connectivity in the cerebellum network. Additionally, increased functional network connectivity was observed between anterior and posterior default mode networks, and a decreased functional network connectivity was noted between the cerebellum network and the sensorimotor and posterior default mode networks. Importantly, the functional connectivity changes within and between these resting-state networks were correlated with the tremor severity and total cognitive scores of essential tremor patients. The findings of this study provide the first evidence that functional connectivity changes within and between multiple resting-state networks are associated with tremors and cognitive features of essential tremor, and this work demonstrates a potential approach for identifying the underlying neural network mechanisms of this syndrome. © 2015 International Parkinson and Movement Disorder Society.

  9. University of Texas 7.6 meter telescope project

    NASA Astrophysics Data System (ADS)

    Barnes, T. G., III

    1982-10-01

    The University of Texas very large optical telescope design is fundamentally constrained by the requirements of completion by the late 1980s and costs within the range of private philanthropy. In light of these requirements, design studies indicate that the largest possible telescope must incorporate as its essential features a monolithic, 7.6-m diameter primary mirror constructed as either an ultrathin fused silica meniscus (of 10-15 cm thickness) or a borosilicate glass honeycomb (of classical thickness). This primary mirror would be of f/2 Ritchley-Chretien geometry. Light would be relayed from the primary to two f/13.5 Nasmyth foci. The mount would be of alt-azimuth type, housed in a building similar to that employed by the Multiple Mirror Telescope with an adjacent annex containing the mirror aluminizing chamber.

  10. In silico design of ligand triggered RNA switches.

    PubMed

    Findeiß, Sven; Hammer, Stefan; Wolfinger, Michael T; Kühnl, Felix; Flamm, Christoph; Hofacker, Ivo L

    2018-04-13

    This contribution sketches a work flow to design an RNA switch that is able to adapt two structural conformations in a ligand-dependent way. A well characterized RNA aptamer, i.,e., knowing its K d and adaptive structural features, is an essential ingredient of the described design process. We exemplify the principles using the well-known theophylline aptamer throughout this work. The aptamer in its ligand-binding competent structure represents one structural conformation of the switch while an alternative fold that disrupts the binding-competent structure forms the other conformation. To keep it simple we do not incorporate any regulatory mechanism to control transcription or translation. We elucidate a commonly used design process by explicitly dissecting and explaining the necessary steps in detail. We developed a novel objective function which specifies the mechanistics of this simple, ligand-triggered riboswitch and describe an extensive in silico analysis pipeline to evaluate important kinetic properties of the designed sequences. This protocol and the developed software can be easily extended or adapted to fit novel design scenarios and thus can serve as a template for future needs. Copyright © 2018. Published by Elsevier Inc.

  11. Smart wing wind tunnel model design

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Jasmin, Larry; Flanagan, John S.; Appa, Kari; Kudva, Jayanth N.

    1997-05-01

    To verify the predicted benefits of the smart wing concept, two 16% scale wind tunnel models, one conventional and the other incorporating smart wing design features, were designed, fabricated and tested. Meticulous design of the two models was essential to: (1) ensure the required factor of safety of four for operation in the NASA Langley TDT wind tunnel, (2) efficiently integrate the smart actuation systems, (3) quantify the performance improvements, and (4) facilitate eventual scale-up to operational aircraft. Significant challenges were encountered in designing the attachment of the shape memory alloy control surfaces to the wing box, integration of the SMA torque tube in the wing structure, and development of control mechanisms to protect the model and the tunnel in the event of failure of the smart systems. In this paper, detailed design of the two models are presented. First, dynamic scaling of the models based on the geometry and structural details of the full- scale aircraft is presented. Next, results of the stress, divergence and flutter analyses are summarized. Finally some of the challenges of integrating the smart actuators with the model are highlighted.

  12. COMPUTER-AIDED DRUG DISCOVERY AND DEVELOPMENT (CADDD): in silico-chemico-biological approach

    PubMed Central

    Kapetanovic, I.M.

    2008-01-01

    It is generally recognized that drug discovery and development are very time and resources consuming processes. There is an ever growing effort to apply computational power to the combined chemical and biological space in order to streamline drug discovery, design, development and optimization. In biomedical arena, computer-aided or in silico design is being utilized to expedite and facilitate hit identification, hit-to-lead selection, optimize the absorption, distribution, metabolism, excretion and toxicity profile and avoid safety issues. Commonly used computational approaches include ligand-based drug design (pharmacophore, a 3-D spatial arrangement of chemical features essential for biological activity), structure-based drug design (drug-target docking), and quantitative structure-activity and quantitative structure-property relationships. Regulatory agencies as well as pharmaceutical industry are actively involved in development of computational tools that will improve effectiveness and efficiency of drug discovery and development process, decrease use of animals, and increase predictability. It is expected that the power of CADDD will grow as the technology continues to evolve. PMID:17229415

  13. A survey of instabilities within centrifugal pumps and concepts for improving the flow range of pumps in rocket engines

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1992-01-01

    Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential.

  14. Theoretical design study of the MSFC wind-wheel turbine

    NASA Technical Reports Server (NTRS)

    Frost, W.; Kessel, P. A.

    1982-01-01

    A wind wheel turbine (WWT) is studied. Evaluation of the probable performance, possible practical applications, and economic viability as compared to other conventional wind energy systems is discussed. The WWT apparatus is essentially a bladed wheel which is directly exposed to the wind on the upper half and exposed to wind through multiple ducting on the lower half. The multiple ducts consist of a forward duct (front concentrator) and two side ducts (side concentrators). The forced rotation of the wheel is then converted to power through appropriate subsystems. Test results on two simple models, a paper model and a stainless steel model, are reported. Measured values of power coefficients over wind speeds ranging from 4 to 16 m/s are given. An analytical model of a four bladed wheel is also developed. Overall design features of the wind turbine are evaluated and discussed. Turbine sizing is specified for a 5 and 25 kW machine. Suggested improvements to the original design to increase performance and performance predictions for an improved WWT design are given.

  15. Natural extension of fast-slow decomposition for dynamical systems

    NASA Astrophysics Data System (ADS)

    Rubin, J. E.; Krauskopf, B.; Osinga, H. M.

    2018-01-01

    Modeling and parameter estimation to capture the dynamics of physical systems are often challenging because many parameters can range over orders of magnitude and are difficult to measure experimentally. Moreover, selecting a suitable model complexity requires a sufficient understanding of the model's potential use, such as highlighting essential mechanisms underlying qualitative behavior or precisely quantifying realistic dynamics. We present an approach that can guide model development and tuning to achieve desired qualitative and quantitative solution properties. It relies on the presence of disparate time scales and employs techniques of separating the dynamics of fast and slow variables, which are well known in the analysis of qualitative solution features. We build on these methods to show how it is also possible to obtain quantitative solution features by imposing designed dynamics for the slow variables in the form of specified two-dimensional paths in a bifurcation-parameter landscape.

  16. Fibroadenomatosis (fibroadenomatoid mastopathy): a benign breast lesion with composite pathologic features.

    PubMed

    Hanson, C A; Snover, D C; Dehner, L P

    1987-10-01

    A benign breast lesion with the composite histologic features of a fibroadenoma and fibrocystic changes has been referred to previously as fibroadenomatosis or fibroadenomatoid mastopathy; this lesion is distinct from the typical well circumscribed fibroadenoma that may have fibrocystic changes. The purpose of our study was to ascertain the frequency of this change among 200 consecutive breast biopsies and excisions with a coded pathologic diagnosis of fibroadenoma and/or "fibrocystic disease"; we identified these changes in 23 (11.5%) specimens. The lesion was characterized by microscopic fibroadenomatoid foci intermingled with dilated ducts, epitheliosis, and adenosis. It is suggested that fibroadenomatosis is yet another pattern in the complex morphologic spectrum known as benign proliferative breast disease. From our experience, this particular lesion was often appreciated as a unique finding, but the appropriate diagnostic designation was in question. The natural history of fibroadenomatosis is essentially unknown. It may represent a morphologic stage in the development of fibroadenoma(s).

  17. Tier II Interventions within the Framework of School-Wide Positive Behavior Support: Essential Features for Design, Implementation, and Maintenance.

    PubMed

    Anderson, Cynthia M; Borgmeier, Chris

    2010-01-01

    To meet the complex social behavioral and academic needs of all students, schools benefit from having available multiple evidence-based interventions of varying intensity. School-wide positive behavior support provides a framework within which a continuum of evidence-based interventions can be implemented in a school. This framework includes three levels or tiers of intervention; Tier I (primary or universal), Tier II (secondary or targeted), and Tier III (tertiary or individualized) supports. In this paper we review the logic behind school-wide positive behavior support and then focus on Tier II interventions, as this level of support has received the least attention in the literature. We delineate the key features of Tier II interventions as implemented within school-wide positive behavior support, provide guidelines for matching Tier II interventions to school and student needs, and describe how schools plan for implementation and maintenance of selected interventions.

  18. Survey on the novel hybrid aquatic-aerial amphibious aircraft: Aquatic unmanned aerial vehicle (AquaUAV)

    NASA Astrophysics Data System (ADS)

    Yang, Xingbang; Wang, Tianmiao; Liang, Jianhong; Yao, Guocai; Liu, Miao

    2015-04-01

    The aquatic unmanned aerial vehicle (AquaUAV), a kind of vehicle that can operate both in the air and the water, has been regarded as a new breakthrough to broaden the application scenario of UAV. Wide application prospects in military and civil field are more than bright, therefore many institutions have focused on the development of such a vehicle. However, due to the significant difference of the physical properties between the air and the water, it is rather difficult to design a fully-featured AquaUAV. Until now, majority of partially-featured AquaUAVs have been developed and used to verify the feasibility of an aquatic-aerial vehicle. In the present work, we classify the current partially-featured AquaUAV into three categories from the scope of the whole UAV field, i.e., the seaplane UAV, the submarine-launched UAV, and the submersible UAV. Then the recent advancements and common characteristics of the three kinds of AquaUAVs are reviewed in detail respectively. Then the applications of bionics in the design of AquaUAV, the transition mode between the air and the water, the morphing wing structure for air-water adaptation, and the power source and the propulsion type are summarized and discussed. The tradeoff analyses for different transition methods between the air and the water are presented. Furthermore, it indicates that applying the bionics into the design and development of the AquaUAV will be essential and significant. Finally, the significant technical challenges for the AquaUAV to change from a conception to a practical prototype are indicated.

  19. Launch Vehicle Design Process: Characterization, Technical Integration, and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.; Humphries, W. R.

    2001-01-01

    Engineering design is a challenging activity for any product. Since launch vehicles are highly complex and interconnected and have extreme energy densities, their design represents a challenge of the highest order. The purpose of this document is to delineate and clarify the design process associated with the launch vehicle for space flight transportation. The goal is to define and characterize a baseline for the space transportation design process. This baseline can be used as a basis for improving effectiveness and efficiency of the design process. The baseline characterization is achieved via compartmentalization and technical integration of subsystems, design functions, and discipline functions. First, a global design process overview is provided in order to show responsibility, interactions, and connectivity of overall aspects of the design process. Then design essentials are delineated in order to emphasize necessary features of the design process that are sometimes overlooked. Finally the design process characterization is presented. This is accomplished by considering project technical framework, technical integration, process description (technical integration model, subsystem tree, design/discipline planes, decision gates, and tasks), and the design sequence. Also included in the document are a snapshot relating to process improvements, illustrations of the process, a survey of recommendations from experienced practitioners in aerospace, lessons learned, references, and a bibliography.

  20. A Hybrid CMOS-Memristor Neuromorphic Synapse.

    PubMed

    Azghadi, Mostafa Rahimi; Linares-Barranco, Bernabe; Abbott, Derek; Leong, Philip H W

    2017-04-01

    Although data processing technology continues to advance at an astonishing rate, computers with brain-like processing capabilities still elude us. It is envisioned that such computers may be achieved by the fusion of neuroscience and nano-electronics to realize a brain-inspired platform. This paper proposes a high-performance nano-scale Complementary Metal Oxide Semiconductor (CMOS)-memristive circuit, which mimics a number of essential learning properties of biological synapses. The proposed synaptic circuit that is composed of memristors and CMOS transistors, alters its memristance in response to timing differences among its pre- and post-synaptic action potentials, giving rise to a family of Spike Timing Dependent Plasticity (STDP). The presented design advances preceding memristive synapse designs with regards to the ability to replicate essential behaviours characterised in a number of electrophysiological experiments performed in the animal brain, which involve higher order spike interactions. Furthermore, the proposed hybrid device CMOS area is estimated as [Formula: see text] in a [Formula: see text] process-this represents a factor of ten reduction in area with respect to prior CMOS art. The new design is integrated with silicon neurons in a crossbar array structure amenable to large-scale neuromorphic architectures and may pave the way for future neuromorphic systems with spike timing-dependent learning features. These systems are emerging for deployment in various applications ranging from basic neuroscience research, to pattern recognition, to Brain-Machine-Interfaces.

  1. Investigation of Preferential Flow in Low Impact Development Practice

    NASA Astrophysics Data System (ADS)

    Liu, L.; Cao, R.; Wang, C.; Jiang, W.; Wang, J.; Xia, Z.

    2016-12-01

    The characteristics of preferential flow in soil affect Low Impact Development (LID) practices in two aspects. On the one hand, preferential flow may facilitate drainage of stormwater by causing non-uniform movement of water through a small portion of media (such as cracks and holes), and thus leading to much faster transport of water and solutes in one specific direction than others. On the other hand, within a certain ranges, preferential flow may weaken the subgrade capacity of pressure and/or shear stress resistance. Therefore, for the purpose of improving LID practices, there may exist an optimum scenario with a high allowable flowrate and least negative impact of resistance capacity for a soil layer. This project aims to assist the LID design by exploring the features of preferential flow in different soil compositions, studying how different flow paths affect the stability of subgrade, preliminarily analyzing the sensitivity of preferential flow impacting on drainage capacity and subgrade stability in the LID, and further optimizing LID practices. Accordingly, the concepts of Essential Direction Path, Unessential Direction Path and the Sensitivity Coefficient are defined and analyzed to simulate a hypothetical funneling scenario in LID practice. Both irrigation apparatus experiments and numerical models are utilized in this research to investigate the features of preferential flow, effective strength and overall shear strength. The main conclusions include: (1) Investigation of preferential flow characteristics in essential direction path and unessential direction path, respectively; (2) Optimum design of preferential flow in LID practice; (3) Transport capacity determination of preferential flow path in different soils; (4) Study of preferential flow impact on roadbed stability. KEY WORDS: Preferential Flow, Subgrade stability, LID, Sensitivity Coefficient, Funneling Preferential Flow Path

  2. Clinical features and course of refractory anemia with ring sideroblasts associated with marked thrombocytosis

    PubMed Central

    Broseus, Julien; Florensa, Lourdes; Zipperer, Esther; Schnittger, Susanne; Malcovati, Luca; Richebourg, Steven; Lippert, Eric; Cermak, Jaroslav; Evans, Jyoti; Mounier, Morgane; Raya, José Maria; Bailly, François; Gattermann, Norbert; Haferlach, Torsten; Garand, Richard; Allou, Kaoutar; Besses, Carlos; Germing, Ulrich; Haferlach, Claudia; Travaglino, Erica; Luno, Elisa; Pinan, Maria Angeles; Arenillas, Leonor; Rozman, Maria; Perez Sirvent, Maria Luz; Favre, Bernardine; Guy, Julien; Alonso, Esther; Ahwij, Nuhri; Jerez, Andrés; Hermouet, Sylvie; Maynadié, Marc; Cazzola, Mario; Girodon, François

    2012-01-01

    Background Refractory anemia with ring sideroblasts associated with marked thrombocytosis was proposed as a provisional entity in the 2001 World Health Organization classification of myeloid neoplasms and also in the 2008 version, but its existence as a single entity is contested. We wish to define the clinical features of this rare myelodysplastic/myeloproliferative neoplasm and to compare its clinical outcome with that of refractory anemia with ring sideroblasts and essential thrombocythemia. Design and Methods We conducted a collaborative retrospective study across Europe. Our database included 200 patients diagnosed with refractory anemia with ring sideroblasts and marked thrombocytosis. For each of these patients, each patient diagnosed with refractory anemia with ring sideroblasts was matched for age and sex. At the same time, a cohort of 454 patients with essential thrombocythemia was used to compare outcomes of the two diseases. Results In patients with refractory anemia with ring sideroblasts and marked thrombocytosis, depending on the Janus Kinase 2 V617F mutational status (positive or negative) or platelet threshold (over or below 600×109/L), no difference in survival was noted. However, these patients had shorter overall survival and leukemia-free survival with a lower risk of thrombotic complications than did patients with essential thrombocythemia (P<0.001) but better survival (P<0.001) and a higher risk of thrombosis (P=0.039) than patients with refractory anemia with ring sideroblasts. Conclusions The clinical course of refractory anemia with ring sideroblasts and marked thrombocytosis is better than that of refractory anemia with ring sideroblasts and worse than that of essential thrombocythemia. The higher risk of thrombotic events in this disorder suggests that anti-platelet therapy might be considered in this subset of patients. From a clinical point of view, it appears to be important to consider refractory anemia with ring sideroblasts and marked thrombocytosis as a distinct entity. PMID:22532522

  3. Atomic Structure

    NASA Astrophysics Data System (ADS)

    Whelan, Colm T.

    2018-04-01

    A knowledge of atomic theory should be an essential part of every physicist's and chemist's toolkit. This book provides an introduction to the basic ideas that govern our understanding of microscopic matter, and the essential features of atomic structure and spectra are presented in a direct and easily accessible manner. Semi-classical ideas are reviewed and an introduction to the quantum mechanics of one and two electron systems and their interaction with external electromagnetic fields is featured. Multielectron atoms are also introduced, and the key methods for calculating their properties reviewed.

  4. An integrative machine learning strategy for improved prediction of essential genes in Escherichia coli metabolism using flux-coupled features.

    PubMed

    Nandi, Sutanu; Subramanian, Abhishek; Sarkar, Ram Rup

    2017-07-25

    Prediction of essential genes helps to identify a minimal set of genes that are absolutely required for the appropriate functioning and survival of a cell. The available machine learning techniques for essential gene prediction have inherent problems, like imbalanced provision of training datasets, biased choice of the best model for a given balanced dataset, choice of a complex machine learning algorithm, and data-based automated selection of biologically relevant features for classification. Here, we propose a simple support vector machine-based learning strategy for the prediction of essential genes in Escherichia coli K-12 MG1655 metabolism that integrates a non-conventional combination of an appropriate sample balanced training set, a unique organism-specific genotype, phenotype attributes that characterize essential genes, and optimal parameters of the learning algorithm to generate the best machine learning model (the model with the highest accuracy among all the models trained for different sample training sets). For the first time, we also introduce flux-coupled metabolic subnetwork-based features for enhancing the classification performance. Our strategy proves to be superior as compared to previous SVM-based strategies in obtaining a biologically relevant classification of genes with high sensitivity and specificity. This methodology was also trained with datasets of other recent supervised classification techniques for essential gene classification and tested using reported test datasets. The testing accuracy was always high as compared to the known techniques, proving that our method outperforms known methods. Observations from our study indicate that essential genes are conserved among homologous bacterial species, demonstrate high codon usage bias, GC content and gene expression, and predominantly possess a tendency to form physiological flux modules in metabolism.

  5. An enhanced genome-scale metabolic reconstruction of Streptomyces clavuligerus identifies novel strain improvement strategies.

    PubMed

    Toro, León; Pinilla, Laura; Avignone-Rossa, Claudio; Ríos-Estepa, Rigoberto

    2018-05-01

    In this work, we expanded and updated a genome-scale metabolic model of Streptomyces clavuligerus. The model includes 1021 genes and 1494 biochemical reactions; genome-reaction information was curated and new features related to clavam metabolism and to the biomass synthesis equation were incorporated. The model was validated using experimental data from the literature and simulations were performed to predict cellular growth and clavulanic acid biosynthesis. Flux balance analysis (FBA) showed that limiting concentrations of phosphate and an excess of ammonia accumulation are unfavorable for growth and clavulanic acid biosynthesis. The evaluation of different objective functions for FBA showed that maximization of ATP yields the best predictions for cellular behavior in continuous cultures, while the maximization of growth rate provides better predictions for batch cultures. Through gene essentiality analysis, 130 essential genes were found using a limited in silico media, while 100 essential genes were identified in amino acid-supplemented media. Finally, a strain design was carried out to identify candidate genes to be overexpressed or knocked out so as to maximize antibiotic biosynthesis. Interestingly, potential metabolic engineering targets, identified in this study, have not been tested experimentally.

  6. Cognitive search model and a new query paradigm

    NASA Astrophysics Data System (ADS)

    Xu, Zhonghui

    2001-06-01

    This paper proposes a cognitive model in which people begin to search pictures by using semantic content and find a right picture by judging whether its visual content is a proper visualization of the semantics desired. It is essential that human search is not just a process of matching computation on visual feature but rather a process of visualization of the semantic content known. For people to search electronic images in the way as they manually do in the model, we suggest that querying be a semantic-driven process like design. A query-by-design paradigm is prosed in the sense that what you design is what you find. Unlike query-by-example, query-by-design allows users to specify the semantic content through an iterative and incremental interaction process so that a retrieval can start with association and identification of the given semantic content and get refined while further visual cues are available. An experimental image retrieval system, Kuafu, has been under development using the query-by-design paradigm and an iconic language is adopted.

  7. Functional and aesthetic approach to design of bird feeders

    NASA Astrophysics Data System (ADS)

    Kukhta, A.; Kukhta, M.

    2015-10-01

    Anthropogenic objects which load the urban environment negatively affects the human psyche. The alternative is attracting elements of the natural environment into urban environment, of which some of the most frequently identified are birds. Attracting birds in the city is possible by means of feeders and artificial nests, however, both must be harmonious. The aim of this study is to analyze the essential functions of the feeders, and their integration into the environmental design and development of the city. On this basis an original feeder which is convenient for use by birds and attracts people's attention is developed. In this paper we apply comparative analysis of different types of feeders encountered in Tomsk, bird watching, and evaluate usability of different types of feeders from the position of their convenience both for birds and human beings. Historical-cultural analysis for determining features of the architectural and environmental design of Tomsk is carried out, the method allows us to solve engineering problems. In this study the feeder convenient for bird use is designed which blends harmoniously with the architectural design of Tomsk.

  8. Online course design for teaching critical thinking.

    PubMed

    Schaber, Patricia; Shanedling, Janet

    2012-01-01

    Teaching critical thinking (CT) skills, a goal in higher education, is seldom considered in the primary design of either classroom or online courses, and is even less frequently measured in student learning. In health professional education, CT along with clinical reasoning skills is essential for the development of clinical practitioners. This study, measuring CT skill development in an online theory course, supports using a cyclical course design to build higher level processes in student thinking. Eighty-six Masters of Occupational Therapy students in four sections of an occupation-based theory course were evaluated on elements in the Paul and Elder CT Model throughout the course and surveyed for their perceptions in their ability to think critically at course completion. Results of this study demonstrated that the online theory course design contributed to improving critical thinking skills and student's perceived CT skill development as applicable to their future professional practice. In a focus group, eight students identified four effective course design features that contributed to their CT skill development: highly structured learning, timely feedback from instructor, repetition of assignments, and active engagement with the material.

  9. Review and prospect of supersonic business jet design

    NASA Astrophysics Data System (ADS)

    Sun, Yicheng; Smith, Howard

    2017-04-01

    This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.

  10. Cartographic symbol library considering symbol relations based on anti-aliasing graphic library

    NASA Astrophysics Data System (ADS)

    Mei, Yang; Li, Lin

    2007-06-01

    Cartographic visualization represents geographic information with a map form, which enables us retrieve useful geospatial information. In digital environment, cartographic symbol library is the base of cartographic visualization and is an essential component of Geographic Information System as well. Existing cartographic symbol libraries have two flaws. One is the display quality and the other one is relations adjusting. Statistic data presented in this paper indicate that the aliasing problem is a major factor on the symbol display quality on graphic display devices. So, effective graphic anti-aliasing methods based on a new anti-aliasing algorithm are presented and encapsulated in an anti-aliasing graphic library with the form of Component Object Model. Furthermore, cartographic visualization should represent feature relation in the way of correctly adjusting symbol relations besides displaying an individual feature. But current cartographic symbol libraries don't have this capability. This paper creates a cartographic symbol design model to implement symbol relations adjusting. Consequently the cartographic symbol library based on this design model can provide cartographic visualization with relations adjusting capability. The anti-aliasing graphic library and the cartographic symbol library are sampled and the results prove that the two libraries both have better efficiency and effect.

  11. Dystonia and Tremor: The Clinical Syndromes with Isolated Tremor

    PubMed Central

    Albanese, Alberto; Sorbo, Francesca Del

    2016-01-01

    Background Dystonia and tremor share many commonalities. Isolated tremor is part of the phenomenological spectrum of isolated dystonia and of essential tremor. The occurrence of subtle features of dystonia may allow one to differentiate dystonic tremor from essential tremor. Diagnostic uncertainty is enhanced when no features of dystonia are found in patients with a tremor syndrome, raising the question whether the observed phenomenology is an incomplete form of dystonia. Methods Known forms of syndromes with isolated tremor are reviewed. Diagnostic uncertainties between tremor and dystonia are put into perspective. Results The following isolated tremor syndromes are reviewed: essential tremor, head tremor, voice tremor, jaw tremor, and upper-limb tremor. Their varied phenomenology is analyzed and appraised in the light of a possible relationship with dystonia. Discussion Clinicians making a diagnosis of isolated tremor should remain vigilant for the detection of features of dystonia. This is in keeping with the recent view that isolated tremor may be an incomplete phenomenology of dystonia. PMID:27152246

  12. Designing a primary science curriculum in a globalizing world: How do social constructivism and Vietnamese culture meet?

    NASA Astrophysics Data System (ADS)

    Hằng, Ngô Vũ Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert

    2017-09-01

    The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that is, the description of the design of a formal, written curriculum for primary science education in which features of social constructivist approaches to learning are synthesized with essential aspects of Vietnamese culture. The written design comprises learning aims, a framework that is the synthesis of learning functions, learning settings and educational expectations for learning phases, and exemplary curriculum units. Learning aims are formulated to comprehensively develop scientific knowledge, skills, and attitudes toward science for primary students. Derived from these learning aims, the designed framework consists of four learning phases respectively labeled as Engagement, Experience, Exchange, and Follow-up. The designed framework refers to knowledge of the "nature of science" education and characteristics of Vietnamese culture as an example of Confucian heritage culture. The curriculum design aims to serve as an educational product that addresses previously analyzed problems of primary science education in the Vietnamese culture in a globalizing world.

  13. Content validity of the DSM-IV borderline and narcissistic personality disorder criteria sets.

    PubMed

    Blais, M A; Hilsenroth, M J; Castlebury, F D

    1997-01-01

    This study sought to empirically evaluate the content validity of the newly revised DSM-IV narcissistic personality disorder (NPD) and borderline personality disorder (BPD) criteria sets. Using the essential features of each disorder as construct definitions, factor analysis was used to determine how adequately the criteria sets covered the constructs. In addition, this empirical investigation sought to: 1) help define the dimensions underlying these polythetic disorders; 2) identify core features of each diagnosis; and 3) highlight the characteristics that may be most useful in diagnosing these two disorders. Ninety-one outpatients meeting DSM-IV criteria for a personality disorder (PD) were identified through a retrospective analysis of chart information. Records of these 91 patients were independently rated on all of the BPD and NPD symptom criteria for the DSM-IV. Acceptable interrater reliability (kappa estimates) was obtained for both presence or absence of a PD and symptom criteria for BPD and NPD. The factor analysis, performed separately for each disorder, identified a three-factor solution for both the DSM-IV BPD and NPD criteria sets. The results of this study provide strong support for the content validity of the NPD criteria set and moderate support for the content validly of the BPD criteria set. Three domains were found to comprise the BPD criteria set, with the essential features of interpersonal and identity instability forming one domain, and impulsivity and affective instability each identified as separate domains. Factor analysis of the NPD criteria set found three factors basically corresponding to the essential features of grandiosity, lack of empathy, and need for admiration. Therefore, the NPD criteria set adequately covers the essential or defining features of the disorder.

  14. Methodology for Determining Limit Torques for Threaded Fasteners

    NASA Technical Reports Server (NTRS)

    Hissam, Andy

    2011-01-01

    In aerospace design, where minimizing weight is always a priority, achieving the full capacity from fasteners is essential. To do so, the initial bolt preload must be maximized. The benefits of high preload are well documented and include improved fatigue resistance, a stiffer joint, and resistance to loosening. But many factors like elastic interactions and embedment tend to lower the initial preload placed on the bolt. These factors provide additional motivation to maximize the initial preload. But, to maximize bolt preload, you must determine what torque to apply. Determining this torque is greatly complicated by the large preload scatter generally seen with torque control. This paper presents a detailed methodology for generating limit torques for threaded fasteners. This methodology accounts for the large scatter in preload found with torque control, and therefore, addresses the statistical nature of the problem. It also addresses prevailing torque, a feature common in aerospace fasteners. Although prevailing torque provides a desired locking feature, it can also increase preload scatter. In addition, it can limit the amount of preload that can be generated due to the torsion it creates in the bolt. This paper discusses the complications of prevailing torque and how best to handle it. A wide range of torque-tension bolt testing was conducted in support of this research. The results from this research will benefit the design engineer as well as analyst involved in the design of bolted joints, leading to better, more optimized structural designs.

  15. Designing broad phononic band gaps for in-plane modes

    NASA Astrophysics Data System (ADS)

    Li, Yang Fan; Meng, Fei; Li, Shuo; Jia, Baohua; Zhou, Shiwei; Huang, Xiaodong

    2018-03-01

    Phononic crystals are known as artificial materials that can manipulate the propagation of elastic waves, and one essential feature of phononic crystals is the existence of forbidden frequency range of traveling waves called band gaps. In this paper, we have proposed an easy way to design phononic crystals with large in-plane band gaps. We demonstrated that the gap between two arbitrarily appointed bands of in-plane mode can be formed by employing a certain number of solid or hollow circular rods embedded in a matrix material. Topology optimization has been applied to find the best material distributions within the primitive unit cell with maximal band gap width. Our results reveal that the centroids of optimized rods coincide with the point positions generated by Lloyd's algorithm, which deepens our understandings on the formation mechanism of phononic in-plane band gaps.

  16. A hierarchy for modeling high speed propulsion systems

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery such as inlets, ramjets, and scramjets. The discussion is separated into four sections: (1) computational fluid dynamics model for the entire nonlinear system or high order nonlinear models; (2) high order linearized model derived from fundamental physics; (3) low order linear models obtained from other high order models; and (4) low order nonlinear models. Included are special considerations on any relevant control system designs. The methods discussed are for the quasi-one dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, moving normal shocks, hammershocks, subsonic combustion via heat addition, temperature dependent gases, detonation, and thermal choking.

  17. A comparison of two closely-related approaches to aerodynamic design optimization

    NASA Technical Reports Server (NTRS)

    Shubin, G. R.; Frank, P. D.

    1991-01-01

    Two related methods for aerodynamic design optimization are compared. The methods, called the implicit gradient approach and the variational (or optimal control) approach, both attempt to obtain gradients necessary for numerical optimization at a cost significantly less than that of the usual black-box approach that employs finite difference gradients. While the two methods are seemingly quite different, they are shown to differ (essentially) in that the order of discretizing the continuous problem, and of applying calculus, is interchanged. Under certain circumstances, the two methods turn out to be identical. We explore the relationship between these methods by applying them to a model problem for duct flow that has many features in common with transonic flow over an airfoil. We find that the gradients computed by the variational method can sometimes be sufficiently inaccurate to cause the optimization to fail.

  18. Integrated Composite Analyzer (ICAN): Users and programmers manual

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1986-01-01

    The use of and relevant equations programmed in a computer code designed to carry out a comprehensive linear analysis of multilayered fiber composites is described. The analysis contains the essential features required to effectively design structural components made from fiber composites. The inputs to the code are constituent material properties, factors reflecting the fabrication process, and composite geometry. The code performs micromechanics, macromechanics, and laminate analysis, including the hygrothermal response of fiber composites. The code outputs are the various ply and composite properties, composite structural response, and composite stress analysis results with details on failure. The code is in Fortran IV and can be used efficiently as a package in complex structural analysis programs. The input-output format is described extensively through the use of a sample problem. The program listing is also included. The code manual consists of two parts.

  19. An inductively powered telemetry system for temperature, EKG, and activity monitoring

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.; Lund, G. F.; Williams, B. A.

    1978-01-01

    An implant telemetry system for the simultaneous monitoring of temperature, activity, and EKG from small animals, such as rats, was designed with the feature that instead of a battery the system is energized by an inductive field. A 250 kHz resonant coil surrounds the cage (30 x 30 x 20 cm) and provides the approximately 100 microns of power required to operate the implant transmitter while allowing the animal unrestrained movement in the cage. The implant can also be battery operated if desired. RF transmission is in the 8-10 MHz band, which allows the use of a simple, essentially single IC chip, receiver.

  20. An inductively powered telemetry system for temperature, EKG, and activity monitoring

    NASA Technical Reports Server (NTRS)

    Fryer, T. B.; Lund, G. F.; Williams, B. A.

    1978-01-01

    An implant telemetry system for the simultaneous monitoring of temperature, activity, and EKG from small animals, such as rats, has recently been designed with the novel feature that instead of a battery the system is energized by an inductive field. A 250 kHz resonant coil surrounds the cage (30 x 30 x 20 cm) and provides the approximately 100 microwatt of power required to operate the implant transmitter while allowing the animal unrestrained movement in the cage. The implant can also be battery operated if desired. RF transmission is in the 8-10 MHz band, which allows the use of a simple, essentially single IC chip, receiver.

  1. Telomere biology of trypanosomatids: beginning to answer some questions.

    PubMed

    Lira, Cristina B B; Giardini, Miriam A; Neto, Jair L Siqueira; Conte, Fábio F; Cano, Maria Isabel N

    2007-08-01

    Studies of telomere structure and maintenance in trypanosomatids have provided insights into the evolutionary origin and conservation of some telomeric components shared by trypanosomes and vertebrates. For example, trypanosomatid telomeres are maintained by telomerase and consist of the canonical TTAGGG repeats, which in Trypanosoma brucei can form telomeric loops (t-loops). However, the telomeric chromatin of trypanosomatids is composed of organism-specific proteins and other proteins that share little sequence similarity with their vertebrate counterparts. Because telomere maintenance mechanisms are essential for genome stability, we propose that the particular features shown by the trypanosome telomeric chromatin hold the key for the design of antiparasitic drugs.

  2. Identification of Arabidopsis GPAT9 (At5g60620) as an Essential Gene Involved in Triacylglycerol Biosynthesis1[OPEN

    PubMed Central

    Browse, John

    2016-01-01

    The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis. PMID:26586834

  3. Identification of Arabidopsis GPAT9 (At5g60620) as an Essential Gene Involved in Triacylglycerol Biosynthesis.

    PubMed

    Shockey, Jay; Regmi, Anushobha; Cotton, Kimberly; Adhikari, Neil; Browse, John; Bates, Philip D

    2016-01-01

    The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  4. Asynchronous Runtimes in Action: An Introspective Framework for a Next Gen Runtime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suetterlein, Joshua D.; Landwehr, Joshua B.; Marquez, Andres

    2016-05-23

    One of the most critical challenges that new high performance systems face is the lack of system software support for these large scale systems. Investment on system stack components is essential in the development, debugging and optimization of the new emerging programming models. These emerging models have the promise to better utilize the vast hardware resources available in current and future systems. To aid in the development of applications and new system stacks, runtimes, as instances of their respective execution models, need to produce facilities to introspect their inner workings and allow an indepth attribution of performance bottlenecks and computationalmore » patterns. In other words, the runtime systems need to reduce their opacity to observers so that users of a novel program execution model can adapt their designs to fit the intended model usage, regardless of the layer that they are working on. This design/development loop (akin to co-design) enables synergistic opportunities across the entire computational stack. This paper presents the design and implementation of a simple “gray” box performance attribution harness running inside a fine grain runtime system: the Open Community Runtime (OCR). We showcase what such a framework can indicate regarding the runtime behavior while running at scale. To this end, we have designed a set of synthetic scenarios aimed to test the runtime at their best and worst cases. We present an analysis of the most important runtime features, properties and idiosyncrasies that will affect the development of new runtime features, algorithmic selection, and application development.« less

  5. Artifacts and essentialism

    PubMed Central

    Gelman, Susan A.

    2013-01-01

    Psychological essentialism is an intuitive folk belief positing that certain categories have a non-obvious inner “essence” that gives rise to observable features. Although this belief most commonly characterizes natural kind categories, I argue that psychological essentialism can also be extended in important ways to artifact concepts. Specifically, concepts of individual artifacts include the non-obvious feature of object history, which is evident when making judgments regarding authenticity and ownership. Classic examples include famous works of art (e.g., the Mona Lisa is authentic because of its provenance), but ordinary artifacts likewise receive value from their history (e.g., a worn and tattered blanket may have special value if it was one's childhood possession). Moreover, in some cases, object history may be thought to have causal effects on individual artifacts, much as an animal essence has causal effects. I review empirical support for these claims and consider the implications for both artifact concepts and essentialism. This perspective suggests that artifact concepts cannot be contained in a theoretical framework that focuses exclusively on similarity or even function. Furthermore, although there are significant differences between essentialism of natural kinds and essentialism of artifact individuals, the commonalities suggest that psychological essentialism may not derive from folk biology but instead may reflect more domain-general perspectives on the world. PMID:23976903

  6. Pulmonary embolism detection using localized vessel-based features in dual energy CT

    NASA Astrophysics Data System (ADS)

    Dicente Cid, Yashin; Depeursinge, Adrien; Foncubierta Rodríguez, Antonio; Platon, Alexandra; Poletti, Pierre-Alexandre; Müller, Henning

    2015-03-01

    Pulmonary embolism (PE) affects up to 600,000 patients and contributes to at least 100,000 deaths every year in the United States alone. Diagnosis of PE can be difficult as most symptoms are unspecific and early diagnosis is essential for successful treatment. Computed Tomography (CT) images can show morphological anomalies that suggest the existence of PE. Various image-based procedures have been proposed for improving computer-aided diagnosis of PE. We propose a novel method for detecting PE based on localized vessel-based features computed in Dual Energy CT (DECT) images. DECT provides 4D data indexed by the three spatial coordinates and the energy level. The proposed features encode the variation of the Hounsfield Units across the different levels and the CT attenuation related to the amount of iodine contrast in each vessel. A local classification of the vessels is obtained through the classification of these features. Moreover, the localization of the vessel in the lung provides better comparison between patients. Results show that the simple features designed are able to classify pulmonary embolism patients with an AUC (area under the receiver operating curve) of 0.71 on a lobe basis. Prior segmentation of the lung lobes is not necessary because an automatic atlas-based segmentation obtains similar AUC levels (0.65) for the same dataset. The automatic atlas reaches 0.80 AUC in a larger dataset with more control cases.

  7. Theoretical analysis of field emission from a metal diamond cold cathode emitter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lerner, P.; Cutler, P.H.; Miskovsky, N.M.

    Recently, Geis {ital et al.} [J. Vac. Sci. Technol. B {bold 14}, 2060 (1996)] proposed a cold cathode emitter based on a Spindt-type design using a diamond film doped by substitutional nitrogen. The device is characterized by high field emission currents at very low power. Two properties, the rough surface of the metallic injector and the negative electron affinity of the (111) surface of the diamond are essential for its operation. We present a first consistent quantitative theory of the operation of a Geis{endash}Spindt diamond field emitter. Its essential features are predicated on nearly {ital zero-field conditions} in the diamondmore » beyond the depletion layer, {ital quasiballistic transport} in the conduction band, and applicability of a modified {ital Fowler{endash}Nordheim equation} to the transmission of electrons through the Schottky barrier at the metal-diamond interface. Calculated results are in good qualitative and quantitative agreement with the experimental results of Geis {ital et al.} {copyright} {ital 1997 American Vacuum Society.}« less

  8. A Sustainable City Planning Algorithm Based on TLBO and Local Search

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Lin, Li; Huang, Xuanxuan; Liu, Yiming; Zhang, Yonggang

    2017-09-01

    Nowadays, how to design a city with more sustainable features has become a center problem in the field of social development, meanwhile it has provided a broad stage for the application of artificial intelligence theories and methods. Because the design of sustainable city is essentially a constraint optimization problem, the swarm intelligence algorithm of extensive research has become a natural candidate for solving the problem. TLBO (Teaching-Learning-Based Optimization) algorithm is a new swarm intelligence algorithm. Its inspiration comes from the “teaching” and “learning” behavior of teaching class in the life. The evolution of the population is realized by simulating the “teaching” of the teacher and the student “learning” from each other, with features of less parameters, efficient, simple thinking, easy to achieve and so on. It has been successfully applied to scheduling, planning, configuration and other fields, which achieved a good effect and has been paid more and more attention by artificial intelligence researchers. Based on the classical TLBO algorithm, we propose a TLBO_LS algorithm combined with local search. We design and implement the random generation algorithm and evaluation model of urban planning problem. The experiments on the small and medium-sized random generation problem showed that our proposed algorithm has obvious advantages over DE algorithm and classical TLBO algorithm in terms of convergence speed and solution quality.

  9. Deriving Case, Agreement and Voice Phenomena in Syntax

    ERIC Educational Resources Information Center

    Sigurdsson, Einar Freyr

    2017-01-01

    This dissertation places case, agreement and Voice phenomena in syntax. It argues that the derivation is driven by so-called derivational features, that is, structure-building features (Merge) and probe features (Agree) (Heck and Muller 2007 and Muller 2010; see also Chomsky 2000, 2001). Both types are essential in deriving case and agreement in…

  10. 78 FR 16828 - Endangered and Threatened Wildlife and Plants; Status Review of the West Coast Distinct...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-19

    ...; biology and ecology; and habitat selection. (2) Information on the effects of potential threat factors... particular physical or biological features that are essential to the conservation of the species and where such physical or biological features are found; (c) Whether any of these features may require special...

  11. Design of a real-time wind turbine simulator using a custom parallel architecture

    NASA Technical Reports Server (NTRS)

    Hoffman, John A.; Gluck, R.; Sridhar, S.

    1995-01-01

    The design of a new parallel-processing digital simulator is described. The new simulator has been developed specifically for analysis of wind energy systems in real time. The new processor has been named: the Wind Energy System Time-domain simulator, version 3 (WEST-3). Like previous WEST versions, WEST-3 performs many computations in parallel. The modules in WEST-3 are pure digital processors, however. These digital processors can be programmed individually and operated in concert to achieve real-time simulation of wind turbine systems. Because of this programmability, WEST-3 is very much more flexible and general than its two predecessors. The design features of WEST-3 are described to show how the system produces high-speed solutions of nonlinear time-domain equations. WEST-3 has two very fast Computational Units (CU's) that use minicomputer technology plus special architectural features that make them many times faster than a microcomputer. These CU's are needed to perform the complex computations associated with the wind turbine rotor system in real time. The parallel architecture of the CU causes several tasks to be done in each cycle, including an IO operation and the combination of a multiply, add, and store. The WEST-3 simulator can be expanded at any time for additional computational power. This is possible because the CU's interfaced to each other and to other portions of the simulation using special serial buses. These buses can be 'patched' together in essentially any configuration (in a manner very similar to the programming methods used in analog computation) to balance the input/ output requirements. CU's can be added in any number to share a given computational load. This flexible bus feature is very different from many other parallel processors which usually have a throughput limit because of rigid bus architecture.

  12. Using design science and artificial intelligence to improve health communication: ChronologyMD case example.

    PubMed

    Neuhauser, Linda; Kreps, Gary L; Morrison, Kathleen; Athanasoulis, Marcos; Kirienko, Nikolai; Van Brunt, Deryk

    2013-08-01

    This paper describes how design science theory and methods and use of artificial intelligence (AI) components can improve the effectiveness of health communication. We identified key weaknesses of traditional health communication and features of more successful eHealth/AI communication. We examined characteristics of the design science paradigm and the value of its user-centered methods to develop eHealth/AI communication. We analyzed a case example of the participatory design of AI components in the ChronologyMD project intended to improve management of Crohn's disease. eHealth/AI communication created with user-centered design shows improved relevance to users' needs for personalized, timely and interactive communication and is associated with better health outcomes than traditional approaches. Participatory design was essential to develop ChronologyMD system architecture and software applications that benefitted patients. AI components can greatly improve eHealth/AI communication, if designed with the intended audiences. Design science theory and its iterative, participatory methods linked with traditional health communication theory and methods can create effective AI health communication. eHealth/AI communication researchers, developers and practitioners can benefit from a holistic approach that draws from theory and methods in both design sciences and also human and social sciences to create successful AI health communication. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Assessment of thermal loads in the CERN SPS crab cavities cryomodule 1

    DOE PAGES

    Carra, F.; Apeland, J.; Calaga, R.; ...

    2017-07-20

    As a part of the HL-LHC upgrade, we designed a cryomodule to host two crab cavities for a first test with protons in the SPS machine. The evaluation of the cryomodule heat loads is essential to dimension the cryogenic infrastructure of the system. The current design features two cryogenic circuits. The first circuit adopts superfluid helium at 2 K to maintain the cavities in the superconducting state. The second circuit, based on helium gas at a temperature between 50 K and 70 K, is connected to the thermal screen, also serving as heat intercept for all the interfaces between themore » cold mass and the external environment. We present an overview of the heat loads to both circuits, and the combined numerical and analytical estimations. The heat load of each element is detailed for the static and dynamic scenarios, with considerations on the design choices for the thermal optimization of the most critical components.« less

  14. X-ray optics simulation and beamline design for the APS upgrade

    NASA Astrophysics Data System (ADS)

    Shi, Xianbo; Reininger, Ruben; Harder, Ross; Haeffner, Dean

    2017-08-01

    The upgrade of the Advanced Photon Source (APS) to a Multi-Bend Achromat (MBA) will increase the brightness of the APS by between two and three orders of magnitude. The APS upgrade (APS-U) project includes a list of feature beamlines that will take full advantage of the new machine. Many of the existing beamlines will be also upgraded to profit from this significant machine enhancement. Optics simulations are essential in the design and optimization of these new and existing beamlines. In this contribution, the simulation tools used and developed at APS, ranging from analytical to numerical methods, are summarized. Three general optical layouts are compared in terms of their coherence control and focusing capabilities. The concept of zoom optics, where two sets of focusing elements (e.g., CRLs and KB mirrors) are used to provide variable beam sizes at a fixed focal plane, is optimized analytically. The effects of figure errors on the vertical spot size and on the local coherence along the vertical direction of the optimized design are investigated.

  15. Driver face tracking using semantics-based feature of eyes on single FPGA

    NASA Astrophysics Data System (ADS)

    Yu, Ying-Hao; Chen, Ji-An; Ting, Yi-Siang; Kwok, Ngaiming

    2017-06-01

    Tracking driver's face is one of the essentialities for driving safety control. This kind of system is usually designed with complicated algorithms to recognize driver's face by means of powerful computers. The design problem is not only about detecting rate but also from parts damages under rigorous environments by vibration, heat, and humidity. A feasible strategy to counteract these damages is to integrate entire system into a single chip in order to achieve minimum installation dimension, weight, power consumption, and exposure to air. Meanwhile, an extraordinary methodology is also indispensable to overcome the dilemma of low-computing capability and real-time performance on a low-end chip. In this paper, a novel driver face tracking system is proposed by employing semantics-based vague image representation (SVIR) for minimum hardware resource usages on a FPGA, and the real-time performance is also guaranteed at the same time. Our experimental results have indicated that the proposed face tracking system is viable and promising for the smart car design in the future.

  16. Region-Oriented Placement Algorithm for Coarse-Grained Power-Gating FPGA Architecture

    NASA Astrophysics Data System (ADS)

    Li, Ce; Dong, Yiping; Watanabe, Takahiro

    An FPGA plays an essential role in industrial products due to its fast, stable and flexible features. But the power consumption of FPGAs used in portable devices is one of critical issues. Top-down hierarchical design method is commonly used in both ASIC and FPGA design. But, in the case where plural modules are integrated in an FPGA and some of them might be in sleep-mode, current FPGA architecture cannot be fully effective. In this paper, coarse-grained power gating FPGA architecture is proposed where a whole area of an FPGA is partitioned into several regions and power supply is controlled for each region, so that modules in sleep mode can be effectively power-off. We also propose a region oriented FPGA placement algorithm fitted to this user's hierarchical design based on VPR[1]. Simulation results show that this proposed method could reduce power consumption of FPGA by 38% on average by setting unused modules or regions in sleep mode.

  17. Interrupted time series regression for the evaluation of public health interventions: a tutorial.

    PubMed

    Bernal, James Lopez; Cummins, Steven; Gasparrini, Antonio

    2017-02-01

    Interrupted time series (ITS) analysis is a valuable study design for evaluating the effectiveness of population-level health interventions that have been implemented at a clearly defined point in time. It is increasingly being used to evaluate the effectiveness of interventions ranging from clinical therapy to national public health legislation. Whereas the design shares many properties of regression-based approaches in other epidemiological studies, there are a range of unique features of time series data that require additional methodological considerations. In this tutorial we use a worked example to demonstrate a robust approach to ITS analysis using segmented regression. We begin by describing the design and considering when ITS is an appropriate design choice. We then discuss the essential, yet often omitted, step of proposing the impact model a priori. Subsequently, we demonstrate the approach to statistical analysis including the main segmented regression model. Finally we describe the main methodological issues associated with ITS analysis: over-dispersion of time series data, autocorrelation, adjusting for seasonal trends and controlling for time-varying confounders, and we also outline some of the more complex design adaptations that can be used to strengthen the basic ITS design.

  18. Interrupted time series regression for the evaluation of public health interventions: a tutorial

    PubMed Central

    Bernal, James Lopez; Cummins, Steven; Gasparrini, Antonio

    2017-01-01

    Abstract Interrupted time series (ITS) analysis is a valuable study design for evaluating the effectiveness of population-level health interventions that have been implemented at a clearly defined point in time. It is increasingly being used to evaluate the effectiveness of interventions ranging from clinical therapy to national public health legislation. Whereas the design shares many properties of regression-based approaches in other epidemiological studies, there are a range of unique features of time series data that require additional methodological considerations. In this tutorial we use a worked example to demonstrate a robust approach to ITS analysis using segmented regression. We begin by describing the design and considering when ITS is an appropriate design choice. We then discuss the essential, yet often omitted, step of proposing the impact model a priori. Subsequently, we demonstrate the approach to statistical analysis including the main segmented regression model. Finally we describe the main methodological issues associated with ITS analysis: over-dispersion of time series data, autocorrelation, adjusting for seasonal trends and controlling for time-varying confounders, and we also outline some of the more complex design adaptations that can be used to strengthen the basic ITS design. PMID:27283160

  19. De novo design of RNA-binding proteins with a prion-like domain related to ALS/FTD proteinopathies.

    PubMed

    Mitsuhashi, Kana; Ito, Daisuke; Mashima, Kyoko; Oyama, Munenori; Takahashi, Shinichi; Suzuki, Norihiro

    2017-12-04

    Aberrant RNA-binding proteins form the core of the neurodegeneration cascade in spectrums of disease, such as amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD). Six ALS-related molecules, TDP-43, FUS, TAF15, EWSR1, heterogeneous nuclear (hn)RNPA1 and hnRNPA2 are RNA-binding proteins containing candidate mutations identified in ALS patients and those share several common features, including harboring an aggregation-prone prion-like domain (PrLD) containing a glycine/serine-tyrosine-glycine/serine (G/S-Y-G/S)-motif-enriched low-complexity sequence and rich in glutamine and/or asparagine. Additinally, these six molecules are components of RNA granules involved in RNA quality control and become mislocated from the nucleus to form cytoplasmic inclusion bodies (IBs) in the ALS/FTD-affected brain. To reveal the essential mechanisms involved in ALS/FTD-related cytotoxicity associated with RNA-binding proteins containing PrLDs, we designed artificial RNA-binding proteins harboring G/S-Y-G/S-motif repeats with and without enriched glutamine residues and nuclear-import/export-signal sequences and examined their cytotoxicity in vitro. These proteins recapitulated features of ALS-linked molecules, including insoluble aggregation, formation of cytoplasmic IBs and components of RNA granules, and cytotoxicity instigation. These findings indicated that these artificial RNA-binding proteins mimicked features of ALS-linked molecules and allowed the study of mechanisms associated with gain of toxic functions related to ALS/FTD pathogenesis.

  20. From Petascale to Exascale: Eight Focus Areas of R&D Challenges for HPC Simulation Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Springmeyer, R; Still, C; Schulz, M

    2011-03-17

    Programming models bridge the gap between the underlying hardware architecture and the supporting layers of software available to applications. Programming models are different from both programming languages and application programming interfaces (APIs). Specifically, a programming model is an abstraction of the underlying computer system that allows for the expression of both algorithms and data structures. In comparison, languages and APIs provide implementations of these abstractions and allow the algorithms and data structures to be put into practice - a programming model exists independently of the choice of both the programming language and the supporting APIs. Programming models are typically focusedmore » on achieving increased developer productivity, performance, and portability to other system designs. The rapidly changing nature of processor architectures and the complexity of designing an exascale platform provide significant challenges for these goals. Several other factors are likely to impact the design of future programming models. In particular, the representation and management of increasing levels of parallelism, concurrency and memory hierarchies, combined with the ability to maintain a progressive level of interoperability with today's applications are of significant concern. Overall the design of a programming model is inherently tied not only to the underlying hardware architecture, but also to the requirements of applications and libraries including data analysis, visualization, and uncertainty quantification. Furthermore, the successful implementation of a programming model is dependent on exposed features of the runtime software layers and features of the operating system. Successful use of a programming model also requires effective presentation to the software developer within the context of traditional and new software development tools. Consideration must also be given to the impact of programming models on both languages and the associated compiler infrastructure. Exascale programming models must reflect several, often competing, design goals. These design goals include desirable features such as abstraction and separation of concerns. However, some aspects are unique to large-scale computing. For example, interoperability and composability with existing implementations will prove critical. In particular, performance is the essential underlying goal for large-scale systems. A key evaluation metric for exascale models will be the extent to which they support these goals rather than merely enable them.« less

  1. Book review: Principals of soil conservation and management

    USDA-ARS?s Scientific Manuscript database

    Conservation and sustainable management of soil are essential features of humankind’s reverence for Nature. As well they should be, given the essential ecosystem services that soil imparts to our world, such as producing food, moderating climate, storing and cycling water and nutrients, purifying w...

  2. ORION: A Supersynchronous Transfer Orbit mission

    NASA Astrophysics Data System (ADS)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.

    1995-05-01

    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  3. Effects of the amino acid sequence on thermal conduction through β-sheet crystals of natural silk protein.

    PubMed

    Zhang, Lin; Bai, Zhitong; Ban, Heng; Liu, Ling

    2015-11-21

    Recent experiments have discovered very different thermal conductivities between the spider silk and the silkworm silk. Decoding the molecular mechanisms underpinning the distinct thermal properties may guide the rational design of synthetic silk materials and other biomaterials for multifunctionality and tunable properties. However, such an understanding is lacking, mainly due to the complex structure and phonon physics associated with the silk materials. Here, using non-equilibrium molecular dynamics, we demonstrate that the amino acid sequence plays a key role in the thermal conduction process through β-sheets, essential building blocks of natural silks and a variety of other biomaterials. Three representative β-sheet types, i.e. poly-A, poly-(GA), and poly-G, are shown to have distinct structural features and phonon dynamics leading to different thermal conductivities. A fundamental understanding of the sequence effects may stimulate the design and engineering of polymers and biopolymers for desired thermal properties.

  4. ORION: A Supersynchronous Transfer Orbit mission

    NASA Technical Reports Server (NTRS)

    Walters, I. M.; Baker, J. F.; Shurmer, I. M.

    1995-01-01

    ORION F1 was launched on 29th November 1994 on an Atlas IIA launch vehicle. It was designed, built and delivered in-orbit by Matra Marconi Space Systems Plc and was handed over to ORION Satellite Corporation on 20th January 1995 at its on-station longitude of 37.5 deg W. The mission differed significantly from that of any other geostationary communications satellite in that the Transfer Orbit apogee altitude of 123,507 km was over three times geosynchronous (GEO) altitude and one third of the way to the moon. The SuperSynchronous Transfer Orbit (SSTO) mission is significantly different from the standard Geostationary Transfer Orbit (GTO)mission in a number of ways. This paper discusses the essential features of the mission design through its evolution since 1987 and the details of the highly successful mission itself including a detailed account of the attitude determination achieved using the Galileo Earth and Sun Sensor (ESS).

  5. Decision support tool for diagnosing the source of variation

    NASA Astrophysics Data System (ADS)

    Masood, Ibrahim; Azrul Azhad Haizan, Mohamad; Norbaya Jumali, Siti; Ghazali, Farah Najihah Mohd; Razali, Hazlin Syafinaz Md; Shahir Yahya, Mohd; Azlan, Mohd Azwir bin

    2017-08-01

    Identifying the source of unnatural variation (SOV) in manufacturing process is essential for quality control. The Shewhart control chart patterns (CCPs) are commonly used to monitor the SOV. However, a proper interpretation of CCPs associated to its SOV requires a high skill industrial practitioner. Lack of knowledge in process engineering will lead to erroneous corrective action. The objective of this study is to design the operating procedures of computerized decision support tool (DST) for process diagnosis. The DST is an embedded tool in CCPs recognition scheme. Design methodology involves analysis of relationship between geometrical features, manufacturing process and CCPs. The DST contents information about CCPs and its possible root cause error and description on SOV phenomenon such as process deterioration in tool bluntness, offsetting tool, loading error, and changes in materials hardness. The DST will be useful for an industrial practitioner in making effective troubleshooting.

  6. Modelling, analyses and design of switching converters

    NASA Technical Reports Server (NTRS)

    Cuk, S. M.; Middlebrook, R. D.

    1978-01-01

    A state-space averaging method for modelling switching dc-to-dc converters for both continuous and discontinuous conduction mode is developed. In each case the starting point is the unified state-space representation, and the end result is a complete linear circuit model, for each conduction mode, which correctly represents all essential features, namely, the input, output, and transfer properties (static dc as well as dynamic ac small-signal). While the method is generally applicable to any switching converter, it is extensively illustrated for the three common power stages (buck, boost, and buck-boost). The results for these converters are then easily tabulated owing to the fixed equivalent circuit topology of their canonical circuit model. The insights that emerge from the general state-space modelling approach lead to the design of new converter topologies through the study of generic properties of the cascade connection of basic buck and boost converters.

  7. Low loss and flat dispersion Kagome photonic crystal fiber in the terahertz regime

    NASA Astrophysics Data System (ADS)

    Rana, Sohel; Rakin, Adnan Siraj; Hasan, Md. Rabiul; Reza, Md. Salim; Leonhardt, Rainer; Abbott, Derek; Subbaraman, Harish

    2018-03-01

    A novel fiber design based on hexagonal shaped holes incorporated within the core of a Kagome lattice photonic crystal fiber (PCF) is presented. The modal properties of the proposed fiber are evaluated by using a finite element method (FEM) with a perfectly matched layer as boundary condition. Simulation results exhibit an ultra-low effective material loss (EML) of 0.029 cm-1 at an operating frequency of 1.3 THz with an optimized core diameter of 300 μm. A positive, low, and flat dispersion of 0.49 ± 0.06 ps/THz/cm is obtained within a broad frequency range from 1.00 to 1.76 THz. Other essential guiding features of the designed fiber such as power fraction and confinement loss are studied. The fabrication possibilities are also investigated to demonstrate feasibility for a wide range of terahertz applications.

  8. A Veterinary Comparative Counseling Elective Featuring Web-based, Student-created, Client Information Sheets

    PubMed Central

    Miller, Jennifer C.

    2016-01-01

    Objective. To design and implement a course in Companion Animal Comparative Counseling that would expose students (N=38) to essential elements of veterinary therapeutics and provide them with the opportunity to apply their knowledge by writing and posting client information sheets (CIS) on an open web site. Design. The elective course was limited to companion animals. Nine different topics were covered over the semester. Class sessions included a didactic component, trivia questions, and field trips. There were 4 major graded assessments: an examination on foundation knowledge, followed by two comparative counseling assessments and evaluation of group-composed CIS. Attendance and participation were also considered. Assessment. The class learned comparative disease states, how to counsel on common pet prescriptions, where to access informatics about specific veterinary drugs, and how to create their own CIS. Conclusion. As pharmacists, these students may have improved their training in veterinary comparative pharmacy. PMID:26941441

  9. A tunable artificial circadian clock in clock-defective mice

    PubMed Central

    D'Alessandro, Matthew; Beesley, Stephen; Kim, Jae Kyoung; Chen, Rongmin; Abich, Estela; Cheng, Wayne; Yi, Paul; Takahashi, Joseph S.; Lee, Choogon

    2015-01-01

    Self-sustaining oscillations are essential for diverse physiological functions such as the cell cycle, insulin secretion and circadian rhythms. Synthetic oscillators using biochemical feedback circuits have been generated in cell culture. These synthetic systems provide important insight into design principles for biological oscillators, but have limited similarity to physiological pathways. Here we report the generation of an artificial, mammalian circadian clock in vivo, capable of generating robust, tunable circadian rhythms. In mice deficient in Per1 and Per2 genes (thus lacking circadian rhythms), we artificially generate PER2 rhythms and restore circadian sleep/wake cycles with an inducible Per2 transgene. Our artificial clock is tunable as the period and phase of the rhythms can be modulated predictably. This feature, and other design principles of our work, might enhance the study and treatment of circadian dysfunction and broader aspects of physiology involving biological oscillators. PMID:26617050

  10. Pelamis: experience from concept to connection.

    PubMed

    Yemm, Richard; Pizer, David; Retzler, Chris; Henderson, Ross

    2012-01-28

    The development of the Pelamis wave energy converter from its conceptual origins to its commercial deployment is reviewed. The early emphasis on designing for survivability and favourable power absorption characteristics focused attention towards a self-referenced articulated line-absorber in an attenuator orientation. A novel joint and control system allow the machine to be actively tuned to provide a resonant response power amplification in small and moderate seas. In severe seas, the machine is left in its default or natural condition, which is benign and non-resonant. Hydraulic rams at the joints provide the primary power take-off with medium-term storage in high-pressure accumulators yielding smooth electricity generation. Land-based modular construction requiring minimal weather windows for rapid offshore installation is an essential engineering feature necessary for viable commercialization. The second-generation Pelamis designs built for E.ON and ScottishPower Renewables are presented, and the scope for further cost reduction and performance enhancements are explained.

  11. A characteristic length scale causes anomalous size effects and boundary programmability in mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Kettenis, Chris; van Hecke, Martin

    2018-01-01

    The architecture of mechanical metamaterials is designed to harness geometry, nonlinearity and topology to obtain advanced functionalities such as shape morphing, programmability and one-way propagation. Although a purely geometric framework successfully captures the physics of small systems under idealized conditions, large systems or heterogeneous driving conditions remain essentially unexplored. Here we uncover strong anomalies in the mechanics of a broad class of metamaterials, such as auxetics, shape changers or topological insulators; a non-monotonic variation of their stiffness with system size, and the ability of textured boundaries to completely alter their properties. These striking features stem from the competition between rotation-based deformations--relevant for small systems--and ordinary elasticity, and are controlled by a characteristic length scale which is entirely tunable by the architectural details. Our study provides new vistas for designing, controlling and programming the mechanics of metamaterials.

  12. Orthotropic Laminated Open-cell Frameworks Retaining Strong Auxeticity under Large Uniaxial Loading

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiro; Suga, Kaito; Iwata, Naoki; Shibutani, Yoji

    2017-01-01

    Anisotropic materials form inside living tissue and are widely applied in engineered structures, where sophisticated structural and functional design principles are essential to employing these materials. This paper presents a candidate laminated open-cell framework, which is an anisotropic material that shows remarkable mechanical performance. Using additive manufacturing, artificial frameworks are fabricated by lamination of in-plane orthotropic microstructures made of elbowed beam and column members; this fabricated structure features orthogonal anisotropy in three-dimensional space. Uniaxial loading tests reveal strong auxeticity (high negative Poisson’s ratios) in the out-of-plane direction, which is retained reproducibly up to the nonlinear elastic region, and is equal under tensile and compressive loading. Finite element simulations support the observed auxetic behaviors for a unit cell in the periodic framework, which preserve the theoretical elastic properties of an orthogonal solid. These findings open the possibility of conceptual materials design based on geometry.

  13. What do we know and when do we know it?

    NASA Astrophysics Data System (ADS)

    Nicholls, Anthony

    2008-03-01

    Two essential aspects of virtual screening are considered: experimental design and performance metrics. In the design of any retrospective virtual screen, choices have to be made as to the purpose of the exercise. Is the goal to compare methods? Is the interest in a particular type of target or all targets? Are we simulating a `real-world' setting, or teasing out distinguishing features of a method? What are the confidence limits for the results? What should be reported in a publication? In particular, what criteria should be used to decide between different performance metrics? Comparing the field of molecular modeling to other endeavors, such as medical statistics, criminology, or computer hardware evaluation indicates some clear directions. Taken together these suggest the modeling field has a long way to go to provide effective assessment of its approaches, either to itself or to a broader audience, but that there are no technical reasons why progress cannot be made.

  14. Low voltage 30-cm ion thruster development. [including performance and structural integrity (vibration) tests

    NASA Technical Reports Server (NTRS)

    King, H. J.

    1974-01-01

    The basic goal was to advance the development status of the 30-cm electron bombardment ion thruster from a laboratory model to a flight-type engineering model (EM) thruster. This advancement included the more conventional aspects of mechanical design and testing for launch loads, weight reduction, fabrication process development, reliability and quality assurance, and interface definition, as well as a relatively significant improvement in thruster total efficiency. The achievement of this goal was demonstrated by the successful completion of a series of performance and structural integrity (vibration) tests. In the course of the program, essentially every part and feature of the original 30-cm Thruster was critically evaluated. These evaluations, led to new or improved designs for the ion optical system, discharge chamber, cathode isolator vaporizer assembly, main isolator vaporizer assembly, neutralizer assembly, packaging for thermal control, electrical terminations and structure.

  15. User-Defined Data Distributions in High-Level Programming Languages

    NASA Technical Reports Server (NTRS)

    Diaconescu, Roxana E.; Zima, Hans P.

    2006-01-01

    One of the characteristic features of today s high performance computing systems is a physically distributed memory. Efficient management of locality is essential for meeting key performance requirements for these architectures. The standard technique for dealing with this issue has involved the extension of traditional sequential programming languages with explicit message passing, in the context of a processor-centric view of parallel computation. This has resulted in complex and error-prone assembly-style codes in which algorithms and communication are inextricably interwoven. This paper presents a high-level approach to the design and implementation of data distributions. Our work is motivated by the need to improve the current parallel programming methodology by introducing a paradigm supporting the development of efficient and reusable parallel code. This approach is currently being implemented in the context of a new programming language called Chapel, which is designed in the HPCS project Cascade.

  16. Bridging ultrahigh-Q devices and photonic circuits

    NASA Astrophysics Data System (ADS)

    Yang, Ki Youl; Oh, Dong Yoon; Lee, Seung Hoon; Yang, Qi-Fan; Yi, Xu; Shen, Boqiang; Wang, Heming; Vahala, Kerry

    2018-05-01

    Optical microresonators are essential to a broad range of technologies and scientific disciplines. However, many of their applications rely on discrete devices to attain challenging combinations of ultra-low-loss performance (ultrahigh Q) and resonator design requirements. This prevents access to scalable fabrication methods for photonic integration and lithographic feature control. Indeed, finding a microfabrication bridge that connects ultrahigh-Q device functions with photonic circuits is a priority of the microcavity field. Here, an integrated resonator having a record Q factor over 200 million is presented. Its ultra-low-loss and flexible cavity design brings performance to integrated systems that has been the exclusive domain of discrete silica and crystalline microcavity devices. Two distinctly different devices are demonstrated: soliton sources with electronic repetition rates and high-coherence/low-threshold Brillouin lasers. This multi-device capability and performance from a single integrated cavity platform represents a critical advance for future photonic circuits and systems.

  17. A fast button surface defects detection method based on convolutional neural network

    NASA Astrophysics Data System (ADS)

    Liu, Lizhe; Cao, Danhua; Wu, Songlin; Wu, Yubin; Wei, Taoran

    2018-01-01

    Considering the complexity of the button surface texture and the variety of buttons and defects, we propose a fast visual method for button surface defect detection, based on convolutional neural network (CNN). CNN has the ability to extract the essential features by training, avoiding designing complex feature operators adapted to different kinds of buttons, textures and defects. Firstly, we obtain the normalized button region and then use HOG-SVM method to identify the front and back side of the button. Finally, a convolutional neural network is developed to recognize the defects. Aiming at detecting the subtle defects, we propose a network structure with multiple feature channels input. To deal with the defects of different scales, we take a strategy of multi-scale image block detection. The experimental results show that our method is valid for a variety of buttons and able to recognize all kinds of defects that have occurred, including dent, crack, stain, hole, wrong paint and uneven. The detection rate exceeds 96%, which is much better than traditional methods based on SVM and methods based on template match. Our method can reach the speed of 5 fps on DSP based smart camera with 600 MHz frequency.

  18. Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys

    PubMed Central

    Liu, R.; Zhang, Z. J.; Li, L. L.; An, X. H.; Zhang, Z. F.

    2015-01-01

    In this study, the concept of “twinning induced plasticity (TWIP) alloys” is broadened, and the underlying intrinsic microscopic mechanisms of the general TWIP effect are intensively explored. For the first aspect, “TWIP copper alloys” was proposed following the concept of “TWIP steels”, as they share essentially the same strengthening and toughening mechanisms. For the second aspect, three intrinsic features of twinning: i.e. “dynamic development”, “planarity”, as well as “orientation selectivity” were derived from the detailed exploration of the deformation behavior in TWIP copper alloys. These features can be considered the microscopic essences of the general “TWIP effect”. Moreover, the effective cooperation between deformation twinning and dislocation slipping in TWIP copper alloys leads to a desirable tendency: the synchronous improvement of strength and plasticity (SISP). This breakthrough against the traditional trade-off relationship, achieved by the general “TWIP effect”, may provide useful strategies for designing high-performance engineering materials. PMID:25828192

  19. Multitip scanning bio-Kelvin probe

    NASA Astrophysics Data System (ADS)

    Baikie, I. D.; Smith, P. J. S.; Porterfield, D. M.; Estrup, P. J.

    1999-03-01

    We have developed a novel multitip scanning Kelvin probe which can measure changes in biological surface potential ΔVs to within 2 mV and, quasisimultaneously monitor displacement to <1 μm. The control and measurement subcomponents are PC based and incorporate a flexible user interface permitting software control of each individual tip, measurement, and scan parameters. We review the mode of operation and design features of the scanning bio-Kelvin probe including tip steering, signal processing, tip calibration, and novel tip tracking/dithering routines. This system uniquely offers both tip-to-sample spacing control (which is essential to avoid spurious changes in ΔVs due to variations in mean spacing) and a dithering routine to maintain tip orientation to the biological specimen, irrespective of the latter's movement. These features permit long term (>48 h) "active" tracking of the displacement and biopotentials developed along and around a plant shoot in response to an environmental stimulus, e.g., differential illumination (phototropism) or changes in orientation (gravitropism).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Huixian; Wacker, Daniel; Mileni, Mauro

    Opioid receptors mediate the actions of endogenous and exogenous opioids on many physiological processes, including the regulation of pain, respiratory drive, mood, and - in the case of {kappa}-opioid receptor ({kappa}-OR) - dysphoria and psychotomimesis. Here we report the crystal structure of the human {kappa}-OR in complex with the selective antagonist JDTic, arranged in parallel dimers, at 2.9 {angstrom} resolution. The structure reveals important features of the ligand-binding pocket that contribute to the high affinity and subtype selectivity of JDTic for the human {kappa}-OR. Modelling of other important {kappa}-OR-selective ligands, including the morphinan-derived antagonists norbinaltorphimine and 5'-guanidinonaltrindole, and the diterpenemore » agonist salvinorin A analogue RB-64, reveals both common and distinct features for binding these diverse chemotypes. Analysis of site-directed mutagenesis and ligand structure-activity relationships confirms the interactions observed in the crystal structure, thereby providing a molecular explanation for {kappa}-OR subtype selectivity, and essential insights for the design of compounds with new pharmacological properties targeting the human {kappa}-OR.« less

  1. Long-term scale adaptive tracking with kernel correlation filters

    NASA Astrophysics Data System (ADS)

    Wang, Yueren; Zhang, Hong; Zhang, Lei; Yang, Yifan; Sun, Mingui

    2018-04-01

    Object tracking in video sequences has broad applications in both military and civilian domains. However, as the length of input video sequence increases, a number of problems arise, such as severe object occlusion, object appearance variation, and object out-of-view (some portion or the entire object leaves the image space). To deal with these problems and identify the object being tracked from cluttered background, we present a robust appearance model using Speeded Up Robust Features (SURF) and advanced integrated features consisting of the Felzenszwalb's Histogram of Oriented Gradients (FHOG) and color attributes. Since re-detection is essential in long-term tracking, we develop an effective object re-detection strategy based on moving area detection. We employ the popular kernel correlation filters in our algorithm design, which facilitates high-speed object tracking. Our evaluation using the CVPR2013 Object Tracking Benchmark (OTB2013) dataset illustrates that the proposed algorithm outperforms reference state-of-the-art trackers in various challenging scenarios.

  2. Advanced Cell Classifier: User-Friendly Machine-Learning-Based Software for Discovering Phenotypes in High-Content Imaging Data.

    PubMed

    Piccinini, Filippo; Balassa, Tamas; Szkalisity, Abel; Molnar, Csaba; Paavolainen, Lassi; Kujala, Kaisa; Buzas, Krisztina; Sarazova, Marie; Pietiainen, Vilja; Kutay, Ulrike; Smith, Kevin; Horvath, Peter

    2017-06-28

    High-content, imaging-based screens now routinely generate data on a scale that precludes manual verification and interrogation. Software applying machine learning has become an essential tool to automate analysis, but these methods require annotated examples to learn from. Efficiently exploring large datasets to find relevant examples remains a challenging bottleneck. Here, we present Advanced Cell Classifier (ACC), a graphical software package for phenotypic analysis that addresses these difficulties. ACC applies machine-learning and image-analysis methods to high-content data generated by large-scale, cell-based experiments. It features methods to mine microscopic image data, discover new phenotypes, and improve recognition performance. We demonstrate that these features substantially expedite the training process, successfully uncover rare phenotypes, and improve the accuracy of the analysis. ACC is extensively documented, designed to be user-friendly for researchers without machine-learning expertise, and distributed as a free open-source tool at www.cellclassifier.org. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Recognition of speaker-dependent continuous speech with KEAL

    NASA Astrophysics Data System (ADS)

    Mercier, G.; Bigorgne, D.; Miclet, L.; Le Guennec, L.; Querre, M.

    1989-04-01

    A description of the speaker-dependent continuous speech recognition system KEAL is given. An unknown utterance, is recognized by means of the followng procedures: acoustic analysis, phonetic segmentation and identification, word and sentence analysis. The combination of feature-based, speaker-independent coarse phonetic segmentation with speaker-dependent statistical classification techniques is one of the main design features of the acoustic-phonetic decoder. The lexical access component is essentially based on a statistical dynamic programming technique which aims at matching a phonemic lexical entry containing various phonological forms, against a phonetic lattice. Sentence recognition is achieved by use of a context-free grammar and a parsing algorithm derived from Earley's parser. A speaker adaptation module allows some of the system parameters to be adjusted by matching known utterances with their acoustical representation. The task to be performed, described by its vocabulary and its grammar, is given as a parameter of the system. Continuously spoken sentences extracted from a 'pseudo-Logo' language are analyzed and results are presented.

  4. Supporting the Essential Elements with CD-ROM Storybooks

    ERIC Educational Resources Information Center

    Pearman, Cathy J.; Lefever-Davis, Shirley

    2006-01-01

    CD-ROM storybooks can support the development of the five essential elements of reading instruction identified by The National Reading Panel: phonemic awareness, phonics, fluency, vocabulary, and comprehension. Specific features inherent in these texts, audio pronunciation of text, embedded vocabulary definitions and animated graphics can be used…

  5. Naturally occurring bioactive compounds from four repellent essential oils against Bemisia tabaci whiteflies.

    PubMed

    Deletre, Emilie; Chandre, Fabrice; Barkman, Barbara; Menut, Chantal; Martin, Thibaud

    2016-01-01

    In tropical countries, netting is an effective sustainable tool for protecting horticultural crops against Lepidoptera, although not against small pests such as Bemisia tabaci, while smaller mesh netting can be used in temperate regions. A solution is to combine a net with a repellent. Previously we identified repellent essential oils: lemongrass (Cymbopogon citratus), cinnamon (Cinnamomum zeylanicum), cumin (Cuminum cyminum) and citronella (Cymbopogon winternarius). The present study was designed to identify the active compounds of these essential oils, characterise their biological activity and examine their potential for coating nets. We investigated the efficiency and toxicity of nets dipped in different solutions. We then studied the repellent effect with an olfactometer and the irritant effect by videotracking. Geraniol and citronellol were the most promising net coatings owing to their repellent effect. The repellency, irritancy or toxicity varied with the product and concentration, and these features were independent, indicating that the repellent and the irritant/toxic mechanisms were not the same. The combined effects of these different compounds account for the bioactivity of the mixture, suggesting interactions between the compounds. This new sustainable strategy for protecting vegetable crops against whiteflies is discussed, in addition to the use of companion plants that could produce such bioactive compounds. © 2015 Society of Chemical Industry.

  6. The QSPR-THESAURUS: the online platform of the CADASTER project.

    PubMed

    Brandmaier, Stefan; Peijnenburg, Willie; Durjava, Mojca K; Kolar, Boris; Gramatica, Paola; Papa, Ester; Bhhatarai, Barun; Kovarich, Simona; Cassani, Stefano; Roy, Partha Pratim; Rahmberg, Magnus; Öberg, Tomas; Jeliazkova, Nina; Golsteijn, Laura; Comber, Mike; Charochkina, Larisa; Novotarskyi, Sergii; Sushko, Iurii; Abdelaziz, Ahmed; D'Onofrio, Elisa; Kunwar, Prakash; Ruggiu, Fiorella; Tetko, Igor V

    2014-03-01

    The aim of the CADASTER project (CAse Studies on the Development and Application of in Silico Techniques for Environmental Hazard and Risk Assessment) was to exemplify REACH-related hazard assessments for four classes of chemical compound, namely, polybrominated diphenylethers, per and polyfluorinated compounds, (benzo)triazoles, and musks and fragrances. The QSPR-THESAURUS website (http: / /qspr-thesaurus.eu) was established as the project's online platform to upload, store, apply, and also create, models within the project. We overview the main features of the website, such as model upload, experimental design and hazard assessment to support risk assessment, and integration with other web tools, all of which are essential parts of the QSPR-THESAURUS. 2014 FRAME.

  7. Hospital at night: an organizational design that provides safer care at night

    PubMed Central

    2014-01-01

    The reduction in the working hours of doctors represents a challenge to the delivery of medical care to acutely sick patients 24 hours a day. Increasing the number of doctors to support multiple specialty rosters is not the solution for economic or organizational reasons. This paper outlines an alternative, economically viable multidisciplinary solution that has been shown to improve patient outcomes and provides organizational consistency. The change requires strong clinical leadership, with organizational commitment to both cultural and structural change. Careful attention to ensuring the teams possess the appropriate competencies, implementing a reliable process to identify the sickest patients and escalate their care, and structuring rotas efficiently are essential features of success. PMID:25561063

  8. Net-aware bitstreams that upgrade FPGA hardware remotely over the Internet: creating intelligent bitstreams that know where to go, what to do when they get there, and can report back when they're done

    NASA Astrophysics Data System (ADS)

    Casselman, Steve; Schewel, John

    2002-07-01

    Success in the marketplace may well depend upon the ability to upgrade and test hardware designs instantly around the world. An upgrade management strategy requires more than just the bitstream file, email or a JTAG cable. A well-managed methodology, capable of transmitting bitstreams directly into targeted FPGAs over the network or internet is an essential element for a successful FPGA based product strategy. Virtual Computer Corporation"s HOTMan, Bitstream Management Environment combines a feature rich cross-platform API with an Object Oriented Bitstream technique for Remote Upgrading of Hardware over the Internet.

  9. How to ensure sustainable interoperability in heterogeneous distributed systems through architectural approach.

    PubMed

    Pape-Haugaard, Louise; Frank, Lars

    2011-01-01

    A major obstacle in ensuring ubiquitous information is the utilization of heterogeneous systems in eHealth. The objective in this paper is to illustrate how an architecture for distributed eHealth databases can be designed without lacking the characteristic features of traditional sustainable databases. The approach is firstly to explain traditional architecture in central and homogeneous distributed database computing, followed by a possible approach to use an architectural framework to obtain sustainability across disparate systems i.e. heterogeneous databases, concluded with a discussion. It is seen that through a method of using relaxed ACID properties on a service-oriented architecture it is possible to achieve data consistency which is essential when ensuring sustainable interoperability.

  10. Integrated Application of Active Controls (IAAC) technology to an advanced subsonic transpot project-demonstration act system definition

    NASA Technical Reports Server (NTRS)

    Hanks, G. W.; Shomber, H. A.; Crumb, C. B.; Flora, C. C.; Macdonald, K. A. B.; Smith, R. D.; Sassi, A. P.; Dorwart, R. J.

    1982-01-01

    The 1985 ACT airplane is the Final Active Controls Technology (ACT) Airplane with the addition of three-axis fly by wire. Thus it retains all the efficiency features of the full ACT system plus the weight and cost savings accruing from deletion of the mechanical control system. The control system implements the full IAAC spectrum of active controls except flutter-mode control, judged essentially nonbeneficial, and incorporates new control surfaces called flaperons to make the most of wing-load alleviation. This redundant electronic system is conservatively designed to preserve the extreme reliability required of crucial short-period pitch augmentation, which provides more than half of the fuel savings.

  11. Persistence-Driven Durotaxis: Generic, Directed Motility in Rigidity Gradients

    NASA Astrophysics Data System (ADS)

    Novikova, Elizaveta A.; Raab, Matthew; Discher, Dennis E.; Storm, Cornelis

    2017-02-01

    Cells move differently on substrates with different rigidities: the persistence time of their motion is higher on stiffer substrates. We show that this behavior—in and of itself—results in a net flux of cells directed up a soft-to-stiff gradient. Using simple random walk models with varying persistence and stochastic simulations, we characterize the propensity to move in terms of the durotactic index also measured in experiments. A one-dimensional model captures the essential features and highlights the competition between diffusive spreading and linear, wavelike propagation. Persistence-driven durokinesis is generic and may be of use in the design of instructive environments for cells and other motile, mechanosensitive objects.

  12. Essential Features of Responsible Governance of Agricultural Biotechnology

    PubMed Central

    Hartley, Sarah; Wickson, Fern

    2016-01-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge. PMID:27144921

  13. Essential Features of Responsible Governance of Agricultural Biotechnology.

    PubMed

    Hartley, Sarah; Gillund, Frøydis; van Hove, Lilian; Wickson, Fern

    2016-05-01

    Agricultural biotechnology continues to generate considerable controversy. We argue that to address this controversy, serious changes to governance are needed. The new wave of genomic tools and products (e.g., CRISPR, gene drives, RNAi, synthetic biology, and genetically modified [GM] insects and fish), provide a particularly useful opportunity to reflect on and revise agricultural biotechnology governance. In response, we present five essential features to advance more socially responsible forms of governance. In presenting these, we hope to stimulate further debate and action towards improved forms of governance, particularly as these new genomic tools and products continue to emerge.

  14. High-density arrays of x-ray microcalorimeters for Constellation-X

    NASA Astrophysics Data System (ADS)

    Kilbourne, C. A.; Bandler, S. R.; Chervenak, J. A.; Figueroa-Feliciano, E.; Finkbeiner, F. M.; Iyomoto, N.; Kelley, R. L.; Porter, F. S.; Saab, T.; Sadleir, J.

    2005-12-01

    We have been developing x-ray microcalorimeters for the Constellation-X mission. Devices based on superconducting transition edge sensors (TES) have demonstrated the potential to meet the Constellation-X requirements for spectral resolution, speed, and array scale (> 1000 pixels) in a close-packed geometry. In our part of the GSFC/NIST collaboration on this technology development, we have been concentrating on the fabrication of arrays of pixels suitable for the Constellation-X reference configuration. We have fabricated 8x8 arrays with 0.25-mm pixels arranged with 92% fill factor. The pixels are based on Mo/Au TES and Bi/Cu absorbers. We have achieved a resolution of 4.9 eV FWHM at 6 keV in such devices. Studies of the thermal transport in our Bi/Cu absorbers have shown that, while there is room for improvement, for 0.25 mm pixels our existing absorber design is adequate to avoid line-broadening from position dependence caused by thermal diffusion. In order to push closer to the 4-eV requirement and 2-eV goal at 6 keV, we are refining the design of the TES and the interface to the absorber. For the 32x32 arrays ultimately needed for Constellation-X, signal lead routing and heatsinking will drive the design. We have had early successes with experiments in electroplating electrical vias and thermal busses into micro-machined features in silicon substrates. The next steps will be fabricating arrays that have all of the essential features of the required flight design, testing, and then engineering a prototype array for optimum performance.

  15. Multiobjective optimization of hybrid regenerative life support technologies. Topic D: Technology Assessment

    NASA Technical Reports Server (NTRS)

    Manousiouthakis, Vasilios

    1995-01-01

    We developed simple mathematical models for many of the technologies constituting the water reclamation system in a space station. These models were employed for subsystem optimization and for the evaluation of the performance of individual water reclamation technologies, by quantifying their operational 'cost' as a linear function of weight, volume, and power consumption. Then we performed preliminary investigations on the performance improvements attainable by simple hybrid systems involving parallel combinations of technologies. We are developing a software tool for synthesizing a hybrid water recovery system (WRS) for long term space missions. As conceptual framework, we are employing the state space approach. Given a number of available technologies and the mission specifications, the state space approach would help design flowsheets featuring optimal process configurations, including those that feature stream connections in parallel, series, or recycles. We visualize this software tool to function as follows: given the mission duration, the crew size, water quality specifications, and the cost coefficients, the software will synthesize a water recovery system for the space station. It should require minimal user intervention. The following tasks need to be solved for achieving this goal: (1) formulate a problem statement that will be used to evaluate the advantages of a hybrid WRS over a single technology WBS; (2) model several WRS technologies that can be employed in the space station; (3) propose a recycling network design methodology (since the WRS synthesis task is a recycling network design problem, it is essential to employ a systematic method in synthesizing this network); (4) develop a software implementation for this design methodology, design a hybrid system using this software, and compare the resulting WRS with a base-case WRS; and (5) create a user-friendly interface for this software tool.

  16. Accessing microfluidics through feature-based design software for 3D printing.

    PubMed

    Shankles, Peter G; Millet, Larry J; Aufrecht, Jayde A; Retterer, Scott T

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to 'jump-over' channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics.

  17. Accessing microfluidics through feature-based design software for 3D printing

    PubMed Central

    Shankles, Peter G.; Millet, Larry J.; Aufrecht, Jayde A.

    2018-01-01

    Additive manufacturing has been a cornerstone of the product development pipeline for decades, playing an essential role in the creation of both functional and cosmetic prototypes. In recent years, the prospects for distributed and open source manufacturing have grown tremendously. This growth has been enabled by an expanding library of printable materials, low-cost printers, and communities dedicated to platform development. The microfluidics community has embraced this opportunity to integrate 3D printing into the suite of manufacturing strategies used to create novel fluidic architectures. The rapid turnaround time and low cost to implement these strategies in the lab makes 3D printing an attractive alternative to conventional micro- and nanofabrication techniques. In this work, the production of multiple microfluidic architectures using a hybrid 3D printing-soft lithography approach is demonstrated and shown to enable rapid device fabrication with channel dimensions that take advantage of laminar flow characteristics. The fabrication process outlined here is underpinned by the implementation of custom design software with an integrated slicer program that replaces less intuitive computer aided design and slicer software tools. Devices are designed in the program by assembling parameterized microfluidic building blocks. The fabrication process and flow control within 3D printed devices were demonstrated with a gradient generator and two droplet generator designs. Precise control over the printing process allowed 3D microfluidics to be printed in a single step by extruding bridge structures to ‘jump-over’ channels in the same plane. This strategy was shown to integrate with conventional nanofabrication strategies to simplify the operation of a platform that incorporates both nanoscale features and 3D printed microfluidics. PMID:29596418

  18. Inverse problems in complex material design: Applications to non-crystalline solids

    NASA Astrophysics Data System (ADS)

    Biswas, Parthapratim; Drabold, David; Elliott, Stephen

    The design of complex amorphous materials is one of the fundamental problems in disordered condensed-matter science. While impressive developments of ab-initio simulation methods during the past several decades have brought tremendous success in understanding materials property from micro- to mesoscopic length scales, a major drawback is that they fail to incorporate existing knowledge of the materials in simulation methodologies. Since an essential feature of materials design is the synergy between experiment and theory, a properly developed approach to design materials should be able to exploit all available knowledge of the materials from measured experimental data. In this talk, we will address the design of complex disordered materials as an inverse problem involving experimental data and available empirical information. We show that the problem can be posed as a multi-objective non-convex optimization program, which can be addressed using a number of recently-developed bio-inspired global optimization techniques. In particular, we will discuss how a population-based stochastic search procedure can be used to determine the structure of non-crystalline solids (e.g. a-SiH, a-SiO2, amorphous graphene, and Fe and Ni clusters). The work is partially supported by NSF under Grant Nos. DMR 1507166 and 1507670.

  19. What are the essential features of resilience for informal caregivers of people living with dementia? A Delphi consensus examination.

    PubMed

    Joling, Karlijn J; Windle, Gill; Dröes, Rose-Marie; Huisman, Martijn; Hertogh, Cees M P M; Woods, Robert T

    2017-05-01

    Few studies have examined what might enable or prevent resilience in carers of people with dementia. Consequently, there are limited insights as to how it should be understood, defined and measured. This creates challenges for research, and also practice in terms of how it might best be promoted. This study aimed to address these limitations and add new insights, identifying the essential features of resilience in dementia caregiving. A Delphi consensus study was conducted, consulting a multi-disciplinary panel of informal caregivers and experts with relevant professional expertise. Panellists rated the relevance of various statements addressing essential components of resilience; 'adversity' and 'successful caregiving' on a 5-point Likert scale. Based on the median and Inter Quartile Range, the most relevant statements with moderate consensus were proposed in Round 2 in which panellists selected up to five statements in order of importance. Moderate consensus was reached for all statements after two rounds. Patients' behavioural problems and feeling competent as a caregiver were selected by both caregivers and professionals as essential resilience features. Caregivers also emphasized the importance of social support, the quality of the relationship with their relative and enjoying spending time together. Professionals considered coping skills, experiencing positive aspects of caregiving, and a good quality of life of caregivers most relevant. The essential elements of resilience selected from multiple stakeholder perspectives can be used to select appropriate outcomes for intervention studies and give guidance to policy to support caregivers more effectively and better tailored to their needs.

  20. Book Review :The Essential Guide to Rocky Mountain Mushrooms by Habitat

    USDA-ARS?s Scientific Manuscript database

    A mushroom guide book, 'The Essential Guide to Rocky Mountain Mushrooms by Habitat' by Cathy L. Cripps, Vera S. Evenson, and Michael Kou (University of Illinois Press, 260 pages), is reviewed in non-technical fashion from the standpoints of format, comprehensiveness, and clarity. Postive features (...

  1. Help Seeking: Agentic Learners Initiating Feedback

    ERIC Educational Resources Information Center

    Fletcher, Anna Katarina

    2018-01-01

    Effective feedback is an essential tool for making learning explicit and an essential feature of classroom practice that promotes learner autonomy. Yet, it remains a pressing challenge for teachers to scaffold the active involvement of students as critical, reflective and autonomous learners who use feedback constructively. This paper seeks to…

  2. TargetM6A: Identifying N6-Methyladenosine Sites From RNA Sequences via Position-Specific Nucleotide Propensities and a Support Vector Machine.

    PubMed

    Li, Guang-Qing; Liu, Zi; Shen, Hong-Bin; Yu, Dong-Jun

    2016-10-01

    As one of the most ubiquitous post-transcriptional modifications of RNA, N 6 -methyladenosine ( [Formula: see text]) plays an essential role in many vital biological processes. The identification of [Formula: see text] sites in RNAs is significantly important for both basic biomedical research and practical drug development. In this study, we designed a computational-based method, called TargetM6A, to rapidly and accurately target [Formula: see text] sites solely from the primary RNA sequences. Two new features, i.e., position-specific nucleotide/dinucleotide propensities (PSNP/PSDP), are introduced and combined with the traditional nucleotide composition (NC) feature to formulate RNA sequences. The extracted features are further optimized to obtain a much more compact and discriminative feature subset by applying an incremental feature selection (IFS) procedure. Based on the optimized feature subset, we trained TargetM6A on the training dataset with a support vector machine (SVM) as the prediction engine. We compared the proposed TargetM6A method with existing methods for predicting [Formula: see text] sites by performing stringent jackknife tests and independent validation tests on benchmark datasets. The experimental results show that the proposed TargetM6A method outperformed the existing methods for predicting [Formula: see text] sites and remarkably improved the prediction performances, with MCC = 0.526 and AUC = 0.818. We also provided a user-friendly web server for TargetM6A, which is publicly accessible for academic use at http://csbio.njust.edu.cn/bioinf/TargetM6A.

  3. A probabilistic approach to segmentation and classification of neoplasia in uterine cervix images using color and geometric features

    NASA Astrophysics Data System (ADS)

    Srinivasan, Yeshwanth; Hernes, Dana; Tulpule, Bhakti; Yang, Shuyu; Guo, Jiangling; Mitra, Sunanda; Yagneswaran, Sriraja; Nutter, Brian; Jeronimo, Jose; Phillips, Benny; Long, Rodney; Ferris, Daron

    2005-04-01

    Automated segmentation and classification of diagnostic markers in medical imagery are challenging tasks. Numerous algorithms for segmentation and classification based on statistical approaches of varying complexity are found in the literature. However, the design of an efficient and automated algorithm for precise classification of desired diagnostic markers is extremely image-specific. The National Library of Medicine (NLM), in collaboration with the National Cancer Institute (NCI), is creating an archive of 60,000 digitized color images of the uterine cervix. NLM is developing tools for the analysis and dissemination of these images over the Web for the study of visual features correlated with precancerous neoplasia and cancer. To enable indexing of images of the cervix, it is essential to develop algorithms for the segmentation of regions of interest, such as acetowhitened regions, and automatic identification and classification of regions exhibiting mosaicism and punctation. Success of such algorithms depends, primarily, on the selection of relevant features representing the region of interest. We present color and geometric features based statistical classification and segmentation algorithms yielding excellent identification of the regions of interest. The distinct classification of the mosaic regions from the non-mosaic ones has been obtained by clustering multiple geometric and color features of the segmented sections using various morphological and statistical approaches. Such automated classification methodologies will facilitate content-based image retrieval from the digital archive of uterine cervix and have the potential of developing an image based screening tool for cervical cancer.

  4. Simulation of Attacks for Security in Wireless Sensor Network.

    PubMed

    Diaz, Alvaro; Sanchez, Pablo

    2016-11-18

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node's software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work.

  5. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  6. A Quality Assurance Initiative for Commercial-Scale Production in High-Throughput Cryopreservation of Blue Catfish Sperm

    PubMed Central

    Hu, E; Liao, T. W.; Tiersch, T. R.

    2013-01-01

    Cryopreservation of fish sperm has been studied for decades at a laboratory (research) scale. However, high-throughput cryopreservation of fish sperm has recently been developed to enable industrial-scale production. This study treated blue catfish (Ictalurus furcatus) sperm high-throughput cryopreservation as a manufacturing production line and initiated quality assurance plan development. The main objectives were to identify: 1) the main production quality characteristics; 2) the process features for quality assurance; 3) the internal quality characteristics and their specification designs; 4) the quality control and process capability evaluation methods, and 5) the directions for further improvements and applications. The essential product quality characteristics were identified as fertility-related characteristics. Specification design which established the tolerance levels according to demand and process constraints was performed based on these quality characteristics. Meanwhile, to ensure integrity throughout the process, internal quality characteristics (characteristics at each quality control point within process) that could affect fertility-related quality characteristics were defined with specifications. Due to the process feature of 100% inspection (quality inspection of every fish), a specific calculation method, use of cumulative sum (CUSUM) control charts, was applied to monitor each quality characteristic. An index of overall process evaluation, process capacity, was analyzed based on in-control process and the designed specifications, which further integrates the quality assurance plan. With the established quality assurance plan, the process could operate stably and quality of products would be reliable. PMID:23872356

  7. a New Paradigm for Matching - and Aerial Images

    NASA Astrophysics Data System (ADS)

    Koch, T.; Zhuo, X.; Reinartz, P.; Fraundorfer, F.

    2016-06-01

    This paper investigates the performance of SIFT-based image matching regarding large differences in image scaling and rotation, as this is usually the case when trying to match images captured from UAVs and airplanes. This task represents an essential step for image registration and 3d-reconstruction applications. Various real world examples presented in this paper show that SIFT, as well as A-SIFT perform poorly or even fail in this matching scenario. Even if the scale difference in the images is known and eliminated beforehand, the matching performance suffers from too few feature point detections, ambiguous feature point orientations and rejection of many correct matches when applying the ratio-test afterwards. Therefore, a new feature matching method is provided that overcomes these problems and offers thousands of matches by a novel feature point detection strategy, applying a one-to-many matching scheme and substitute the ratio-test by adding geometric constraints to achieve geometric correct matches at repetitive image regions. This method is designed for matching almost nadir-directed images with low scene depth, as this is typical in UAV and aerial image matching scenarios. We tested the proposed method on different real world image pairs. While standard SIFT failed for most of the datasets, plenty of geometrical correct matches could be found using our approach. Comparing the estimated fundamental matrices and homographies with ground-truth solutions, mean errors of few pixels can be achieved.

  8. Passive detection of subpixel obstacles for flight safety

    NASA Astrophysics Data System (ADS)

    Nixon, Matthew D.; Loveland, Rohan C.

    2001-12-01

    Military aircraft fly below 100 ft. above ground level in support of their missions. These aircraft include fixed and rotary wing and may be manned or unmanned. Flying at these low altitudes presents a safety hazard to the aircrew and aircraft, due to the occurrences of obstacles within the aircraft's flight path. The pilot must rely on eyesight and in some cases, infrared sensors to see obstacles. Many conditions can exacerbate visibility creating a situation in which obstacles are essentially invisible, creating a safety hazard, even to an alerted aircrew. Numerous catastrophic accidents have occurred in which aircraft have collided with undetected obstacles. Accidents of this type continue to be a problem for low flying military and commercial aircraft. Unmanned Aerial Vehicles (UAVs) have the same problem, whether operating autonomously or under control of a ground operator. Boeing-SVS has designed a passive, small, low- cost (under $100k) gimbaled, infrared imaging based system with advanced obstacle detection algorithms. Obstacles are detected in the infrared band, and linear features are analyzed by innovative cellular automata based software. These algorithms perform detection and location of sub-pixel linear features. The detection of the obstacles is performed on a frame by frame basis, in real time. Processed images are presented to the aircrew on their display as color enhanced features. The system has been designed such that the detected obstacles are displayed to the aircrew in sufficient time to react and maneuver the aircraft to safety. A patent for this system is on file with the US patent office, and all material herein should be treated accordingly.

  9. SAR processing in the cloud for oil detection in the Arctic

    NASA Astrophysics Data System (ADS)

    Garron, J.; Stoner, C.; Meyer, F. J.

    2016-12-01

    A new world of opportunity is being thawed from the ice of the Arctic, driven by decreased persistent Arctic sea-ice cover, increases in shipping, tourism, natural resource development. Tools that can automatically monitor key sea ice characteristics and potential oil spills are essential for safe passage in these changing waters. Synthetic aperture radar (SAR) data can be used to discriminate sea ice types and oil on the ocean surface and also for feature tracking. Additionally, SAR can image the earth through the night and most weather conditions. SAR data is volumetrically large and requires significant computing power to manipulate. Algorithms designed to identify key environmental features, like oil spills, in SAR imagery require secondary processing, and are computationally intensive, which can functionally limit their application in a real-time setting. Cloud processing is designed to manage big data and big data processing jobs by means of small cycles of off-site computations, eliminating up-front hardware costs. Pairing SAR data with cloud processing has allowed us to create and solidify a processing pipeline for SAR data products in the cloud to compare operational algorithms efficiency and effectiveness when run using an Alaska Satellite Facility (ASF) defined Amazon Machine Image (AMI). The products created from this secondary processing, were compared to determine which algorithm was most accurate in Arctic feature identification, and what operational conditions were required to produce the results on the ASF defined AMI. Results will be used to inform a series of recommendations to oil-spill response data managers and SAR users interested in expanding their analytical computing power.

  10. A design methodology of magentorheological fluid damper using Herschel-Bulkley model

    NASA Astrophysics Data System (ADS)

    Liao, Linqing; Liao, Changrong; Cao, Jianguo; Fu, L. J.

    2003-09-01

    Magnetorheological fluid (MR fluid) is highly concentrated suspension of very small magnetic particle in inorganic oil. The essential behavior of MR fluid is its ability to reversibly change from free-flowing, linear viscous liquids to semi-solids having controllable yield strength in milliseconds when exposed to magnetic field. This feature provides simple, quiet, rapid-response interfaces between electronic controls and mechanical systems. In this paper, a mini-bus MR fluid damper based on plate Poiseuille flow mode is typically analyzed using Herschel-Bulkley model, which can be used to account for post-yield shear thinning or thickening under the quasi-steady flow condition. In the light of various value of flow behavior index, the influences of post-yield shear thinning or thickening on flow velocity profiles of MR fluid in annular damping orifice are examined numerically. Analytical damping coefficient predictions also are compared via the nonlinear Bingham plastic model and Herschel-Bulkley constitutive model. A MR fluid damper, which is designed and fabricated according to design method presented in this paper, has tested by electro-hydraulic servo vibrator and its control system in National Center for Test and Supervision of Coach Quality. The experimental results reveal that the analysis methodology and design theory are reasonable and MR fluid damper can be designed according to the design methodology.

  11. Design of a versatile clinical aberrometer

    NASA Astrophysics Data System (ADS)

    Sheehan, Matthew; Goncharov, Alexander; Dainty, Chris

    2005-09-01

    We have designed an ocular aberrometer based on the Hartmann-Shack (HS) type wavefront sensor for use in optometry clinics. The optical system has enhanced versatility compared with commercial aberrometers, yet it is compact and user-friendly. The system has the capability to sense both on-axis and off-axis aberrations in the eye within an unobstructed 20 degree field. This capability is essential to collect population data for off-axis aberrations. This data will be useful in designing future adaptive optics (AO) systems to improve image quality of eccentric retinal areas, in particular, for multi-conjugate AO systems. The ability of the examiner to control the accommodation demand is a unique feature of the design that commercial instruments are capable of only after modification. The pupil alignment channel is re-combined with the sensing channel in a parallel path and imaged on a single CCD. This makes the instrument more compact, less expensive, and it helps to synchronize the pupil center with the HS spot coordinate system. Another advantage of the optical design is telecentric re-imaging of the HS spots, increasing the robustness to small longitudinal alignment errors. The optical system has been optimized with a ray-tracing program and its prototype is being constructed. Design considerations together with a description of the optical components are presented. Difficulties and future work are outlined.

  12. Thermal stability and unfolding pathways of hyperthermophilic and mesophilic periplasmic binding proteins studied by molecular dynamics simulation.

    PubMed

    Chen, Lin; Li, Xue; Wang, Ruige; Fang, Fengqin; Yang, Wanli; Kan, Wei

    2016-07-01

    The ribose binding protein (RBP), a sugar-binding periplasmic protein, is involved in the transport and signaling processes in both prokaryotes and eukaryotes. Although several cellular and structural studies have been reported, a description of the thermostability of RBP at the molecular level remains elusive. Focused on the hyperthermophilic Thermoytoga maritima RBP (tmRBP) and mesophilic Escherichia coli homolog (ecRBP), we applied molecular dynamics simulations at four different temperatures (300, 380, 450, and 500 K) to obtain a deeper insight into the structural features responsible for the reduced thermostability of the ecRBP. The simulations results indicate that there are distinct structural differences in the unfolding pathway between the two homologs and the ecRBP unfolds faster than the hyperthermophilic homologs at certain temperatures in accordance with the lower thermal stability found experimentally. Essential dynamics analysis uncovers that the essential subspaces of ecRBP and tmRBP are non-overlapping and these two proteins show different directions of motion within the simulations trajectories. Such an understanding is required for designing efficient proteins with characteristics for a particular application.

  13. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation

    PubMed Central

    Horlbeck, Max A; Gilbert, Luke A; Villalta, Jacqueline E; Adamson, Britt; Pak, Ryan A; Chen, Yuwen; Fields, Alexander P; Park, Chong Yon; Corn, Jacob E; Kampmann, Martin; Weissman, Jonathan S

    2016-01-01

    We recently found that nucleosomes directly block access of CRISPR/Cas9 to DNA (Horlbeck et al., 2016). Here, we build on this observation with a comprehensive algorithm that incorporates chromatin, position, and sequence features to accurately predict highly effective single guide RNAs (sgRNAs) for targeting nuclease-dead Cas9-mediated transcriptional repression (CRISPRi) and activation (CRISPRa). We use this algorithm to design next-generation genome-scale CRISPRi and CRISPRa libraries targeting human and mouse genomes. A CRISPRi screen for essential genes in K562 cells demonstrates that the large majority of sgRNAs are highly active. We also find CRISPRi does not exhibit any detectable non-specific toxicity recently observed with CRISPR nuclease approaches. Precision-recall analysis shows that we detect over 90% of essential genes with minimal false positives using a compact 5 sgRNA/gene library. Our results establish CRISPRi and CRISPRa as premier tools for loss- or gain-of-function studies and provide a general strategy for identifying Cas9 target sites. DOI: http://dx.doi.org/10.7554/eLife.19760.001 PMID:27661255

  14. Tremor in dystonia.

    PubMed

    Pandey, Sanjay; Sarma, Neelav

    2016-08-01

    Tremor has been recognized as an important clinical feature in dystonia. Tremor in dystonia may occur in the body part affected by dystonia known as dystonic tremor or unaffected body regions known as tremor associated with dystonia. The most common type of tremor seen in dystonia patients is postural and kinetic which may be mistaken for familial essential tremor. Similarly familial essential tremor patients may have associated dystonia leading to diagnostic uncertainties. The pathogenesis of tremor in dystonia remains speculative, but its neurophysiological features are similar to dystonia which helps in differentiating it from essential tremor patients. Treatment of tremor in dystonia depends upon the site of involvement. Dystonic hand tremor is treated with oral pharmacological therapy and dystonic head, jaw and voice tremor is treated with injection botulinum toxin. Neurosurgical interventions such as deep brain stimulation and lesion surgery should be an option in patients not responding to the pharmacological treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 77 FR 61937 - Endangered and Threatened Wildlife and Plants; Listing Taylor's Checkerspot Butterfly and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... time of listing (or are currently occupied) and that contain features essential to the conservation of... the time of listing are essential for the conservation of the species and why. (8) Land use... butterfly larvae likely fed upon the threatened Castilleja levisecta (golden paintbrush) in historical times...

  16. INITIAL STUDY OF HPAC MODELED DISPERSION DRIVEN BY MM5 WITH AND WITHOUT URBAN CANOPY PARAMETERIZATIONS

    EPA Science Inventory

    Improving the accuracy and capability of transport and dispersion models in urban areas is essential for current and future urban applications. These models must reflect more realistically the presence and details of urban canopy features. Such features markedly influence the flo...

  17. Teacher Self: The Practice of Humanistic Education.

    ERIC Educational Resources Information Center

    Allender, Jerome S.

    This book for teacher educators and teachers emphasizes the challenges of teacher learning as the essential feature of education. It features a collection of narratives that incorporates the personal, emotional, and intellectual commonplaces of teacher learning. It focuses on the continuous process of becoming, as one teacher educator and his…

  18. Essentialism in the Absence of Language? Evidence from Rhesus Monkeys ("Macaca mulatta")

    ERIC Educational Resources Information Center

    Phillips, Webb; Shankar, Maya; Santos, Laurie R.

    2010-01-01

    We explored whether rhesus monkeys (Macaca mulatta) share one important feature of human essentialist reasoning: the capacity to track category membership across radical featural transformations. Specifically, we examined whether monkeys--like children (Keil, 1989)--expect a transformed object to have the internal properties of its original…

  19. Hypnosis and Human Development: Interpersonal Influence of Intrapersonal Processes.

    ERIC Educational Resources Information Center

    Vandenberg, Brian

    1998-01-01

    Examines the relationship between hypnosis and human development. Defines hypnosis within a communications framework, and identifies essential features of hypnosis in the communicative exchanges of the first months of life; this forces a reconsideration of the understanding of the ontogenesis of hypnosis. Identifies four key features of hypnosis,…

  20. Impact of emerging health insurance arrangements on diabetes outcomes and disparities: rationale and study design.

    PubMed

    Wharam, J Frank; Soumerai, Steve; Trinacty, Connie; Eggleston, Emma; Zhang, Fang; LeCates, Robert; Canning, Claire; Ross-Degnan, Dennis

    2013-01-01

    Consumer-directed health plans combine lower premiums with high annual deductibles, Internet-based quality-of-care information, and health savings mechanisms. These plans may encourage members to seek better value for health expenditures but may also decrease essential care. The expansion of high-deductible health plans (HDHPs) represents a natural experiment of tremendous proportion. We designed a pre-post, longitudinal, quasi-experimental study to determine the effect of HDHPs on diabetes quality of care, outcomes, and disparities. We will use a 13-year rolling sample (2001-2013) of members of an HDHP and members of a control group. To reduce selection bias, we will limit participants to those whose employers mandate a single health insurance type. The study will measure rates of monthly hemoglobin A1c, lipid, and albuminuria testing; availability of blood glucose test strips; and rates of retinal examinations, high-severity emergency department visits, and preventable hospitalizations. Results could be used to design health plan features that promote high-quality care and better outcomes among people who have diabetes.

  1. Operator Support System Design forthe Operation of RSG-GAS Research Reactor

    NASA Astrophysics Data System (ADS)

    Santoso, S.; Situmorang, J.; Bakhri, S.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    The components of RSG-GAS main control room are facing the problem of material ageing and technology obsolescence as well, and therefore the need for modernization and refurbishment are essential. The modernization in control room can be applied on the operator support system which bears the function in providing information for assisting the operator in conducting diagnosis and actions. The research purpose is to design an operator support system for RSG-GAS control room. The design was developed based on the operator requirement in conducting task operation scenarios and the reactor operation characteristics. These scenarios include power operation, low power operation and shutdown/scram reactor. The operator support system design is presented in a single computer display which contains structure and support system elements e.g. operation procedure, status of safety related components and operational requirements, operation limit condition of parameters, alarm information, and prognosis function. The prototype was developed using LabView software and consisted of components structure and features of the operator support system. Information of each component in the operator support system need to be completed before it can be applied and integrated in the RSG-GAS main control room.

  2. An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata

    NASA Astrophysics Data System (ADS)

    Khosroshahy, Milad Bagherian; Moaiyeri, Mohammad Hossein; Navi, Keivan; Bagherzadeh, Nader

    Nanotechnologies, notably quantum-dot cellular automata, have achieved major attentions for their prominent features as compared to the conventional CMOS circuitry. Quantum-dot cellular automata, particularly owning to its considerable reduction in size, high switching speed and ultra-low energy consumption, is considered as a potential alternative for the CMOS technology. As the memory unit is one of the most essential components in a digital system, designing a well-optimized QCA random access memory (RAM) cell is an important area of research. In this paper, a new five-input majority gate is presented which is suitable for implementing efficient single-layer QCA circuits. In addition, a new RAM cell with set and reset capabilities is designed based on the proposed majority gate, which has an efficient and low-energy structure. The functionality, performance and energy consumption of the proposed designs are evaluated based on the QCADesigner and QCAPro tools. According to the simulation results, the proposed RAM design leads to on average 38% lower total energy dissipation, 25% smaller area, 20% lower cell count, 28% lower delay and 60% lower QCA cost as compared to its previous counterparts.

  3. Enzyme Sequestration as a Tuning Point in Controlling Response Dynamics of Signalling Networks

    PubMed Central

    Ollivier, Julien F.; Soyer, Orkun S.

    2016-01-01

    Signalling networks result from combinatorial interactions among many enzymes and scaffolding proteins. These complex systems generate response dynamics that are often essential for correct decision-making in cells. Uncovering biochemical design principles that underpin such response dynamics is a prerequisite to understand evolved signalling networks and to design synthetic ones. Here, we use in silico evolution to explore the possible biochemical design space for signalling networks displaying ultrasensitive and adaptive response dynamics. By running evolutionary simulations mimicking different biochemical scenarios, we find that enzyme sequestration emerges as a key mechanism for enabling such dynamics. Inspired by these findings, and to test the role of sequestration, we design a generic, minimalist model of a signalling cycle, featuring two enzymes and a single scaffolding protein. We show that this simple system is capable of displaying both ultrasensitive and adaptive response dynamics. Furthermore, we find that tuning the concentration or kinetics of the sequestering protein can shift system dynamics between these two response types. These empirical results suggest that enzyme sequestration through scaffolding proteins is exploited by evolution to generate diverse response dynamics in signalling networks and could provide an engineering point in synthetic biology applications. PMID:27163612

  4. Graphene for batteries, supercapacitors and beyond

    NASA Astrophysics Data System (ADS)

    El-Kady, Maher F.; Shao, Yuanlong; Kaner, Richard B.

    2016-07-01

    Graphene has recently enabled the dramatic improvement of portable electronics and electric vehicles by providing better means for storing electricity. In this Review, we discuss the current status of graphene in energy storage and highlight ongoing research activities, with specific emphasis placed on the processing of graphene into electrodes, which is an essential step in the production of devices. We calculate the maximum energy density of graphene supercapacitors and outline ways for future improvements. We also discuss the synthesis and assembly of graphene into macrostructures, ranging from 0D quantum dots, 1D wires, 2D sheets and 3D frameworks, to potentially 4D self-folding materials that allow the design of batteries and supercapacitors with many new features that do not exist in current technology.

  5. The surface science of nanocrystals

    NASA Astrophysics Data System (ADS)

    Boles, Michael A.; Ling, Daishun; Hyeon, Taeghwan; Talapin, Dmitri V.

    2016-02-01

    All nanomaterials share a common feature of large surface-to-volume ratio, making their surfaces the dominant player in many physical and chemical processes. Surface ligands -- molecules that bind to the surface -- are an essential component of nanomaterial synthesis, processing and application. Understanding the structure and properties of nanoscale interfaces requires an intricate mix of concepts and techniques borrowed from surface science and coordination chemistry. Our Review elaborates these connections and discusses the bonding, electronic structure and chemical transformations at nanomaterial surfaces. We specifically focus on the role of surface ligands in tuning and rationally designing properties of functional nanomaterials. Given their importance for biomedical (imaging, diagnostics and therapeutics) and optoelectronic (light-emitting devices, transistors, solar cells) applications, we end with an assessment of application-targeted surface engineering.

  6. Velocity Measurements in Nasal Cavities by Means of Stereoscopic Piv - Preliminary Tests

    NASA Astrophysics Data System (ADS)

    Cozzi, Fabio; Felisati, Giovanni; Quadrio, Maurizio

    2017-08-01

    The prediction of detailed flow patterns in human nasal cavities using computational fluid dynamics (CFD) can provide essential information on the potential relationship between patient-specific geometrical characteristics of the nasal anatomy and health problems, and ultimately led to improved surgery. The complex flow structure and the intricate geometry of the nasal cavities make achieving such goals a challenge for CFD specialists. The need for experimental data to validate and improve the numerical simulations is particularly crucial. To this aim an experimental set-up based on Stereo PIV and a silicon phantom of nasal cavities have been designed and realized at Politecnico di Milano. This work describes the main features and challenges of the set-up along with some preliminary results.

  7. Designing action games for appealing to buyers.

    PubMed

    Hsu, Shang Hwa; Lee, Feng-Liang; Wu, Muh-Cherng

    2005-12-01

    This study aims to identify design features for action games that would appeal to game-buyers, rather than game-players. Sixteen frequent-buyers of computer games identified 39 design features that appeal to buyers by contrasting different versions of Pacman games. Twenty-eight versions of Pacman were then evaluated in terms of the identified design features by 45 participants (27 male and 18 female college students). Qnet2000 neural network software was used to determine the relative importance of these design features. The results indicated that the top 10 most important design features could account for more than 50% of "perceived fun" among these 39 design features. The feature of avatar is important to game-buyers, yet not revealed in previous player-oriented studies. Moreover, six design factors underlying the 39 features were identified through factor analysis. These factors included "novelty and powerfulness," "appealing presentation," "interactivity," "challenging," "sense of control," and "rewarding," and could account for 54% of total variance. Among these six factors, appealing presentation has not been emphasized by player-oriented research. Implications of the findings were discussed.

  8. The Basic/Essential Skills Taxonomy. Second Edition--Revised.

    ERIC Educational Resources Information Center

    Snyder, Lester M., Jr.

    This revision of the "Basic/Essential Skills Taxonomy" exhibits changes based on use of the original taxonomy in the field. It features more precise definitions of the levels of key words and phrases, the deletion of some science items that ranged above basic skills, the combination of the language arts sections from the original two parts, and…

  9. Can Colors, Voices, and Images Help Learners Acquire the Grammatical Gender of German Nouns?

    ERIC Educational Resources Information Center

    Dias de Oliveira Santos, Victor

    2015-01-01

    Knowledge of lexical items is arguably the most essential aspect of being able to communicate in a foreign language (Richards, 2000). Many studies have examined effective strategies for retaining the meaning of foreign words, but studies investigating the effectiveness of different methods for the retention of essential grammatical features of…

  10. 50 CFR 26.34 - What are the special regulations concerning public access, use, and recreation for individual...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... parking beyond vehicle control barriers or on grass or other vegetation. We prohibit parking or operating... feature. We may impound any vehicle left parked in violation at the owner's expense (see § 27.31(h) of... service. (h) Essential commercial service vehicles. (1) Essential commercial service vehicles on business...

  11. 50 CFR 26.34 - What are the special regulations concerning public access, use, and recreation for individual...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... parking beyond vehicle control barriers or on grass or other vegetation. We prohibit parking or operating... feature. We may impound any vehicle left parked in violation at the owner's expense (see § 27.31(h) of... service. (h) Essential commercial service vehicles. (1) Essential commercial service vehicles on business...

  12. Designing using manufacturing features

    NASA Astrophysics Data System (ADS)

    Szecsi, T.; Hoque, A. S. M.

    2012-04-01

    This paper presents a design system that enables the composition of a part using manufacturing features. Features are selected from feature libraries. Upon insertion, the system ensures that the feature does not contradict the design-for-manufacture rules. This helps eliminating costly manufacturing problems. The system is developed as an extension to a commercial CAD/CAM system Pro/Engineer.

  13. Viral phylogenomics using an alignment-free method: A three-step approach to determine optimal length of k-mer

    DOE PAGES

    Zhang, Qian; Jun, Se -Ran; Leuze, Michael; ...

    2017-01-19

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral tree of life . However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conservedmore » proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. Lastly, the resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses.« less

  14. Viral phylogenomics using an alignment-free method: A three-step approach to determine optimal length of k-mer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qian; Jun, Se -Ran; Leuze, Michael

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral tree of life . However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conservedmore » proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. Lastly, the resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses.« less

  15. Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine Optimal Length of k-mer

    PubMed Central

    Zhang, Qian; Jun, Se-Ran; Leuze, Michael; Ussery, David; Nookaew, Intawat

    2017-01-01

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral “tree of life”. However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conserved proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. The resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses. PMID:28102365

  16. Exploration of interaction zones of β-tubulin colchicine binding domain of helminths and binding mechanism of anthelmintics.

    PubMed

    Ranjan, Prabodh; Kumar, Sivakumar Prasanth; Kari, Vijayakrishna; Jha, Prakash Chandra

    2017-06-01

    Numerous studies postulated the possible modes of anthelmintic activity by targeting alternate or extended regions of colchicine binding domain of helminth β-tubulin. We present three interaction zones (zones vide -1 to -3) in the colchicine binding domain of Haemonchus contortus (a helminth) β-tubulin homology model and developed zone-wise structure-based pharmacophore models coupled with molecular docking technique to unveil the binding hypotheses. The resulted ten structure-based hypotheses were then refined to essential three point pharmacophore features that captured recurring and crucial non-covalent receptor contacts and proposed three characteristics necessary for optimal zone-2 binding: a conserved pair of H bond acceptor (HBA to form H bond with Asn226 residue) and an aliphatic moiety of molecule separated by 3.75±0.44Å. Further, an aliphatic or a heterocyclic group distant (11.75±1.14Å) to the conserved aliphatic site formed the third feature component in the zone-2 specific anthelmintic pharmacophore model. Alternatively, an additional HBA can be substituted as a third component to establish H bonding with Asn204. We discern that selective zone-2 anthelmintics can be designed effectively by closely adapting the pharmacophore feature patterns and its geometrical constraints. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Acne severity grading: determining essential clinical components and features using a Delphi consensus.

    PubMed

    Tan, Jerry; Wolfe, Barat; Weiss, Jonathan; Stein-Gold, Linda; Bikowski, Joseph; Del Rosso, James; Webster, Guy F; Lucky, Anne; Thiboutot, Diane; Wilkin, Jonathan; Leyden, James; Chren, Mary-Margaret

    2012-08-01

    There are multiple global scales for acne severity grading but no singular standard. Our objective was to determine the essential clinical components (content items) and features (property-related items) for an acne global grading scale for use in research and clinical practice using an iterative method, the Delphi process. Ten acne experts were invited to participate in a Web-based Delphi survey comprising 3 iterative rounds of questions. In round 1, the experts identified the following clinical components (primary acne lesions, number of lesions, extent, regional involvement, secondary lesions, and patient experiences) and features (clinimetric properties, ease of use, categorization of severity based on photographs or text, and acceptance by all stakeholders). In round 2, consensus for inclusion in the scale was established for primary lesions, number, sites, and extent; as well as clinimetric properties and ease of use. In round 3, consensus for inclusion was further established for categorization and acceptance. Patient experiences were excluded and no consensus was achieved for secondary lesions. The Delphi panel consisted solely of the United States (U.S.)-based acne experts. Using an established method for achieving consensus, experts in acne vulgaris concluded that an ideal acne global grading scale would comprise the essential clinical components of primary acne lesions, their quantity, extent, and facial and extrafacial sites of involvement; with features of clinimetric properties, categorization, efficiency, and acceptance. Copyright © 2011 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  18. UV beam shaper alignment sensitivity: grayscale versus binary designs

    NASA Astrophysics Data System (ADS)

    Lizotte, Todd E.

    2008-08-01

    What defines a good flat top beam shaper? What is more important; an ideal flat top profile or ease of alignment and stability? These are the questions designers and fabricators can not easily define, since they are a function of experience. Anyone can generate a theoretical beam shaper design and model it until it is clear that on paper the design looks good and meets the general needs of the end customer. However, the method of fabrication can add a twist that is not fully understood by either party until the beam shaper is actually tested for the first time in a system and also produced in high volume. This paper provides some insight into how grayscale and binary fabrication methods can produce the same style of beam shaper, with similar beam shaping performance; however provide a result wherein each fabricated design has separate degrees of sensitivity for alignment and stability. The paper will explain the design and fabrication approach for the two units and present alignment and testing data to provide a contrast comparison. Further data will show that over twenty sets of each fabricated design there is a consistency to the sensitivity issue. An understanding of this phenomenon is essential when considering the use of beam shapers on production equipment that is dedicated to producing micron-precision features within high value microelectronic and consumer products. We will present our findings and explore potential explanations and solutions.

  19. Essential Information for Post-Encyclopaedic Parliaments: The Italian Case.

    ERIC Educational Resources Information Center

    Rizzoni, Giovanni

    This paper discusses the experiences of the Research Department of the Italian Chamber of Deputies over the past few years. The first section describes the origin of the department in the 1970s, including political factors, basic organizational features, and the salient features of the department's activity. The second section addresses the…

  20. The Next Generation Science Standards and the Life Sciences

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2013-01-01

    Using the life sciences, this article first reviews essential features of the "NRC Framework for K-12 Science Education" that provided a foundation for the new standards. Second, the article describes the important features of life science standards for elementary, middle, and high school levels. Special attention is paid to the teaching…

  1. Simulation of Attacks for Security in Wireless Sensor Network

    PubMed Central

    Diaz, Alvaro; Sanchez, Pablo

    2016-01-01

    The increasing complexity and low-power constraints of current Wireless Sensor Networks (WSN) require efficient methodologies for network simulation and embedded software performance analysis of nodes. In addition, security is also a very important feature that has to be addressed in most WSNs, since they may work with sensitive data and operate in hostile unattended environments. In this paper, a methodology for security analysis of Wireless Sensor Networks is presented. The methodology allows designing attack-aware embedded software/firmware or attack countermeasures to provide security in WSNs. The proposed methodology includes attacker modeling and attack simulation with performance analysis (node’s software execution time and power consumption estimation). After an analysis of different WSN attack types, an attacker model is proposed. This model defines three different types of attackers that can emulate most WSN attacks. In addition, this paper presents a virtual platform that is able to model the node hardware, embedded software and basic wireless channel features. This virtual simulation analyzes the embedded software behavior and node power consumption while it takes into account the network deployment and topology. Additionally, this simulator integrates the previously mentioned attacker model. Thus, the impact of attacks on power consumption and software behavior/execution-time can be analyzed. This provides developers with essential information about the effects that one or multiple attacks could have on the network, helping them to develop more secure WSN systems. This WSN attack simulator is an essential element of the attack-aware embedded software development methodology that is also introduced in this work. PMID:27869710

  2. Minimizing deviant behavior in healthcare organizations: the effects of supportive leadership and job design.

    PubMed

    Chullen, C Logan; Dunford, Benjamin B; Angermeier, Ingo; Boss, R Wayne; Boss, Alan D

    2010-01-01

    In an era when healthcare organizations are beset by intense competition, lawsuits, and increased administrative costs, it is essential that employees perform their jobs efficiently and without distraction. Deviant workplace behavior among healthcare employees is especially threatening to organizational effectiveness, and healthcare managers must understand the antecedents of such behavior to minimize its prevalence. Deviant employee behavior has been categorized into two major types, individual and organizational, according to the intended target of the behavior. Behavior directed at the individual includes such acts as harassment and aggression, whereas behavior directed at the organization includes such acts as theft, sabotage, and voluntary absenteeism, to name a few (Robinson and Bennett 1995). Drawing on theory from organizational behavior, we examined two important features of supportive leadership, leader-member exchange (LMX) and perceived organizational support (POS), and two important features of job design, intrinsic motivation and depersonalization, as predictors of subsequent deviant behavior in a sample of over 1,900 employees within a large US healthcare organization. Employees who reported weaker perceptions of LMX and greater perceptions of depersonalization were more likely to engage in deviant behavior directed at the individual, whereas employees who reported weaker perceptions of POS and intrinsic motivation were more likely to engage in deviant behavior directed at the organization. These findings give rise to specific prescriptions for healthcare managers to prevent or minimize the frequency of deviant behavior in the workplace.

  3. Combining knowledge discovery from databases (KDD) and case-based reasoning (CBR) to support diagnosis of medical images

    NASA Astrophysics Data System (ADS)

    Stranieri, Andrew; Yearwood, John; Pham, Binh

    1999-07-01

    The development of data warehouses for the storage and analysis of very large corpora of medical image data represents a significant trend in health care and research. Amongst other benefits, the trend toward warehousing enables the use of techniques for automatically discovering knowledge from large and distributed databases. In this paper, we present an application design for knowledge discovery from databases (KDD) techniques that enhance the performance of the problem solving strategy known as case- based reasoning (CBR) for the diagnosis of radiological images. The problem of diagnosing the abnormality of the cervical spine is used to illustrate the method. The design of a case-based medical image diagnostic support system has three essential characteristics. The first is a case representation that comprises textual descriptions of the image, visual features that are known to be useful for indexing images, and additional visual features to be discovered by data mining many existing images. The second characteristic of the approach presented here involves the development of a case base that comprises an optimal number and distribution of cases. The third characteristic involves the automatic discovery, using KDD techniques, of adaptation knowledge to enhance the performance of the case based reasoner. Together, the three characteristics of our approach can overcome real time efficiency obstacles that otherwise mitigate against the use of CBR to the domain of medical image analysis.

  4. Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks

    PubMed Central

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347

  5. Experimental Validation of Advanced Dispersed Fringe Sensing (ADFS) Algorithm Using Advanced Wavefront Sensing and Correction Testbed (AWCT)

    NASA Technical Reports Server (NTRS)

    Wang, Xu; Shi, Fang; Sigrist, Norbert; Seo, Byoung-Joon; Tang, Hong; Bikkannavar, Siddarayappa; Basinger, Scott; Lay, Oliver

    2012-01-01

    Large aperture telescope commonly features segment mirrors and a coarse phasing step is needed to bring these individual segments into the fine phasing capture range. Dispersed Fringe Sensing (DFS) is a powerful coarse phasing technique and its alteration is currently being used for JWST.An Advanced Dispersed Fringe Sensing (ADFS) algorithm is recently developed to improve the performance and robustness of previous DFS algorithms with better accuracy and unique solution. The first part of the paper introduces the basic ideas and the essential features of the ADFS algorithm and presents the some algorithm sensitivity study results. The second part of the paper describes the full details of algorithm validation process through the advanced wavefront sensing and correction testbed (AWCT): first, the optimization of the DFS hardware of AWCT to ensure the data accuracy and reliability is illustrated. Then, a few carefully designed algorithm validation experiments are implemented, and the corresponding data analysis results are shown. Finally the fiducial calibration using Range-Gate-Metrology technique is carried out and a <10nm or <1% algorithm accuracy is demonstrated.

  6. Quantum Dynamics in the HMF Model

    NASA Astrophysics Data System (ADS)

    Plestid, Ryan; O'Dell, Duncan

    2017-04-01

    The Hamiltonian Mean Field (HMF) model represents a paradigm in the study of long-range interactions but has never been realized in a lab. Recently Shutz and Morigi (PRL 113) have come close but ultimately fallen short. Their proposal relied on cavity-induced interactions between atoms. If a design using cold atoms is to be successful, an understanding of quantum effects is essential. I will outline the natural quantum generalization of the HMF assuming a BEC by using a generalized Gross-Pitaevskii equation (gGPE). I will show how quantum effects modify features which are well understood in the classical model. More specifically, by working in the semi-classical regime (strong interparticle interactions) we can identify the universal features predicted by catastrophe theory dressed with quantum interference effects. The stationary states of gGPE can be solved exactly and are found to be described by self-consistent Mathieu functions. Finally, I will discuss the connection between the classical description of the dynamics in terms of the Vlassov equation, and the gGPE. We would like to thank the Government of Ontario's OGS program, NSERC, and the Perimeter Institute of Theoretical Physics.

  7. Parallel Key Frame Extraction for Surveillance Video Service in a Smart City.

    PubMed

    Zheng, Ran; Yao, Chuanwei; Jin, Hai; Zhu, Lei; Zhang, Qin; Deng, Wei

    2015-01-01

    Surveillance video service (SVS) is one of the most important services provided in a smart city. It is very important for the utilization of SVS to provide design efficient surveillance video analysis techniques. Key frame extraction is a simple yet effective technique to achieve this goal. In surveillance video applications, key frames are typically used to summarize important video content. It is very important and essential to extract key frames accurately and efficiently. A novel approach is proposed to extract key frames from traffic surveillance videos based on GPU (graphics processing units) to ensure high efficiency and accuracy. For the determination of key frames, motion is a more salient feature in presenting actions or events, especially in surveillance videos. The motion feature is extracted in GPU to reduce running time. It is also smoothed to reduce noise, and the frames with local maxima of motion information are selected as the final key frames. The experimental results show that this approach can extract key frames more accurately and efficiently compared with several other methods.

  8. A cross-site comparison of methods used for hydrogeologic characterization of the Galena-Platteville aquifer in Illinois and Wisconsin, with examples from selected Superfund sites

    USGS Publications Warehouse

    Kay, Robert T.; Mills, Patrick C.; Dunning, Charles P.; Yeskis, Douglas J.; Ursic, James R.; Vendl, Mark

    2004-01-01

    The effectiveness of 28 methods used to characterize the fractured Galena-Platteville aquifer at eight sites in northern Illinois and Wisconsin is evaluated. Analysis of government databases, previous investigations, topographic maps, aerial photographs, and outcrops was essential to understanding the hydrogeology in the area to be investigated. The effectiveness of surface-geophysical methods depended on site geology. Lithologic logging provided essential information for site characterization. Cores were used for stratigraphy and geotechnical analysis. Natural-gamma logging helped identify the effect of lithology on the location of secondary- permeability features. Caliper logging identified large secondary-permeability features. Neutron logs identified trends in matrix porosity. Acoustic-televiewer logs identified numerous secondary-permeability features and their orientation. Borehole-camera logs also identified a number of secondary-permeability features. Borehole ground-penetrating radar identified lithologic and secondary-permeability features. However, the accuracy and completeness of this method is uncertain. Single-point-resistance, density, and normal resistivity logs were of limited use. Water-level and water-quality data identified flow directions and indicated the horizontal and vertical distribution of aquifer permeability and the depth of the permeable features. Temperature, spontaneous potential, and fluid-resistivity logging identified few secondary-permeability features at some sites and several features at others. Flowmeter logging was the most effective geophysical method for characterizing secondary-permeability features. Aquifer tests provided insight into the permeability distribution, identified hydraulically interconnected features, the presence of heterogeneity and anisotropy, and determined effective porosity. Aquifer heterogeneity prevented calculation of accurate hydraulic properties from some tests. Different methods, such as flowmeter logging and slug testing, occasionally produced different interpretations. Aquifer characterization improved with an increase in the number of data points, the period of data collection, and the number of methods used.

  9. Essentialism, social constructionism, and the history of homosexuality.

    PubMed

    Halwani, R

    1998-01-01

    Social constructionism is the view that homosexuality is not an atemporal and acultural phenomenon. Rather, homosexuality exists only within certain cultures and within certain time periods, most obviously Europe and North America after the nineteenth century. Essentialism is the view that homosexuality is an essential feature of human beings and that it could be found, in principle at least, in any culture and in any time. In this paper, I argue that the historical evidence available to us does not show that social constructionism is the correct view, and that essentialism is fully compatible with such evidence. Furthermore, I argue that the historical evidence does not even render social constructionism more probable than essentialism, i.e., both views are equally probable in the face of this evidence.

  10. Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning.

    PubMed

    Jackowski, Konrad; Krawczyk, Bartosz; Woźniak, Michał

    2014-05-01

    Currently, methods of combined classification are the focus of intense research. A properly designed group of combined classifiers exploiting knowledge gathered in a pool of elementary classifiers can successfully outperform a single classifier. There are two essential issues to consider when creating combined classifiers: how to establish the most comprehensive pool and how to design a fusion model that allows for taking full advantage of the collected knowledge. In this work, we address the issues and propose an AdaSS+, training algorithm dedicated for the compound classifier system that effectively exploits local specialization of the elementary classifiers. An effective training procedure consists of two phases. The first phase detects the classifier competencies and adjusts the respective fusion parameters. The second phase boosts classification accuracy by elevating the degree of local specialization. The quality of the proposed algorithms are evaluated on the basis of a wide range of computer experiments that show that AdaSS+ can outperform the original method and several reference classifiers.

  11. Controlling tissue microenvironments: biomimetics, transport phenomena, and reacting systems.

    PubMed

    Fisher, Robert J; Peattie, Robert A

    2007-01-01

    The reconstruction of tissues ex vivo and production of cells capable of maintaining a stable performance for extended time periods in sufficient quantity for synthetic or therapeutic purposes are primary objectives of tissue engineering. The ability to characterize and manipulate the cellular microenvironment is critical for successful implementation of such cell-based bioengineered systems. As a result, knowledge of fundamental biomimetics, transport phenomena, and reaction engineering concepts is essential to system design and development. Once the requirements of a specific tissue microenvironment are understood, the biomimetic system specifications can be identified and a design implemented. Utilization of novel membrane systems that are engineered to possess unique transport and reactive features is one successful approach presented here. The limited availability of tissue or cells for these systems dictates the need for microscale reactors. A capstone illustration based on cellular therapy for type 1 diabetes mellitus via encapsulation techniques is presented as a representative example of this approach, to stress the importance of integrated systems.

  12. Synopsis of a computer program designed to interface a personal computer with the fast data acquisition system of a time-of-flight mass spectrometer

    NASA Technical Reports Server (NTRS)

    Bechtel, R. D.; Mateos, M. A.; Lincoln, K. A.

    1988-01-01

    Briefly described are the essential features of a computer program designed to interface a personal computer with the fast, digital data acquisition system of a time-of-flight mass spectrometer. The instrumentation was developed to provide a time-resolved analysis of individual vapor pulses produced by the incidence of a pulsed laser beam on an ablative material. The high repetition rate spectrometer coupled to a fast transient recorder captures complete mass spectra every 20 to 35 microsecs, thereby providing the time resolution needed for the study of this sort of transient event. The program enables the computer to record the large amount of data generated by the system in short time intervals, and it provides the operator the immediate option of presenting the spectral data in several different formats. Furthermore, the system does this with a high degree of automation, including the tasks of mass labeling the spectra and logging pertinent instrumental parameters.

  13. Aerojet advanced engine concept

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1984-01-01

    The future orbit transfer vehicle (OTV) requirements which dictate the need for a highly versatile, highly reliable, reusable propulsion module are discussed. To attain maximum operational economy, space-basing is essential. This requires a reusable, maintenance free engine. The design features of this space based engine are defined. A new engine cycle and its advantages allow all the maintenance goals to be attained. Rubbing contact and interpropellant seals and purges are eliminated when GO2 is used to drive the LO2 pump. The TPA design has only one moving part. The use of both GH2 and GO2 to drive the turbines lowers the turbine temperatures in addition lower GH2 temperatures and pressures improve chamber cooling and longer life. The use of GO2 as a turbine drive fluid is addressed. Space based engines require an integrated control and health monitoring system to improve system reliability and eliminate all scheduled maintenance. It is concluded that all OTV propulsion requirements can be fulfilled with a single engine. The technological developments required to demonstrate that engine are outlined.

  14. A hierarchy for modeling high speed propulsion systems

    NASA Technical Reports Server (NTRS)

    Hartley, Tom T.; Deabreu, Alex

    1991-01-01

    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery, such as inlets, ramjets, and scramjets. The discussion is separated into four areas: (1) computational fluid dynamics models for the entire nonlinear system or high order nonlinear models; (2) high order linearized models derived from fundamental physics; (3) low order linear models obtained from the other high order models; and (4) low order nonlinear models (order here refers to the number of dynamic states). Included in the discussion are any special considerations based on the relevant control system designs. The methods discussed are for the quasi-one-dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, including moving normal shocks, hammershocks, simple subsonic combustion via heat addition, temperature dependent gases, detonations, and thermal choking. The report also contains a comprehensive list of papers and theses generated by this grant.

  15. What do we know and when do we know it?

    PubMed Central

    2008-01-01

    Two essential aspects of virtual screening are considered: experimental design and performance metrics. In the design of any retrospective virtual screen, choices have to be made as to the purpose of the exercise. Is the goal to compare methods? Is the interest in a particular type of target or all targets? Are we simulating a ‘real-world’ setting, or teasing out distinguishing features of a method? What are the confidence limits for the results? What should be reported in a publication? In particular, what criteria should be used to decide between different performance metrics? Comparing the field of molecular modeling to other endeavors, such as medical statistics, criminology, or computer hardware evaluation indicates some clear directions. Taken together these suggest the modeling field has a long way to go to provide effective assessment of its approaches, either to itself or to a broader audience, but that there are no technical reasons why progress cannot be made. PMID:18253702

  16. Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.

    PubMed

    Leguey, Ignacio; Bielza, Concha; Larrañaga, Pedro; Kastanauskaite, Asta; Rojo, Concepción; Benavides-Piccione, Ruth; DeFelipe, Javier

    2016-09-01

    The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex largely depends on the available knowledge regarding the structure of pyramidal cells. Previous studies have identified several apparently common rules in dendritic geometry. We study the dendritic branching angles of pyramidal cells across layers to further shed light on the principles that determine the geometric shapes of these cells. We find that the dendritic branching angles of pyramidal cells from layers II-VI of the juvenile rat somatosensory cortex suggest common design principles, despite the particular morphological and functional features that are characteristic of pyramidal cells in each cortical layer. J. Comp. Neurol. 524:2567-2576, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. An integrated MEMS infrastructure for fuel processing: hydrogen generation and separation for portable power generation

    NASA Astrophysics Data System (ADS)

    Varady, M. J.; McLeod, L.; Meacham, J. M.; Degertekin, F. L.; Fedorov, A. G.

    2007-09-01

    Portable fuel cells are an enabling technology for high efficiency and ultra-high density distributed power generation, which is essential for many terrestrial and aerospace applications. A key element of fuel cell power sources is the fuel processor, which should have the capability to efficiently reform liquid fuels and produce high purity hydrogen that is consumed by the fuel cells. To this end, we are reporting on the development of two novel MEMS hydrogen generators with improved functionality achieved through an innovative process organization and system integration approach that exploits the advantages of transport and catalysis on the micro/nano scale. One fuel processor design utilizes transient, reverse-flow operation of an autothermal MEMS microreactor with an intimately integrated, micromachined ultrasonic fuel atomizer and a Pd/Ag membrane for in situ hydrogen separation from the product stream. The other design features a simpler, more compact planar structure with the atomized fuel ejected directly onto the catalyst layer, which is coupled to an integrated hydrogen selective membrane.

  18. Designing the modern pump: engineering aspects of continuous subcutaneous insulin infusion software.

    PubMed

    Welsh, John B; Vargas, Steven; Williams, Gary; Moberg, Sheldon

    2010-06-01

    Insulin delivery systems attracted the efforts of biological, mechanical, electrical, and software engineers well before they were commercially viable. The introduction of the first commercial insulin pump in 1983 represents an enduring milestone in the history of diabetes management. Since then, pumps have become much more than motorized syringes and have assumed a central role in diabetes management by housing data on insulin delivery and glucose readings, assisting in bolus estimation, and interfacing smoothly with humans and compatible devices. Ensuring the integrity of the embedded software that controls these devices is critical to patient safety and regulatory compliance. As pumps and related devices evolve, software engineers will face challenges and opportunities in designing pumps that are safe, reliable, and feature-rich. The pumps and related systems must also satisfy end users, healthcare providers, and regulatory authorities. In particular, pumps that are combined with glucose sensors and appropriate algorithms will provide the basis for increasingly safe and precise automated insulin delivery-essential steps to developing a fully closed-loop system.

  19. Characterization of physiochemical properties of polymeric and electrochemical materials for aerospace flight

    NASA Technical Reports Server (NTRS)

    Rock, M.; Kunigahalli, V.; Khan, S.; Mcnair, A.

    1984-01-01

    Nickel-cadmium rechargeable batteries are a vital and reliable energy storage source for aerospace applications. As the demand for longer life and more reliable space batteries increases, the understanding and solving of cell aging factors and mechanisms become essential. Over the years, many cell designs and manufacturing process changes have been developed and implemented. Cells fabricated with various design features were life cycled in a simulated low-Earth orbit regime. Following the test program, a comprehensive electrochemical analysis of cell components was undertaken to study cell degradation mechanisms. Discharge voltage degradation or voltage plateau has been observed during orbit cycling, but, its cause and explanation have been the subject of much discussion. A Hg/HgO reference electrode was used to monitor the reference versus each electrode potential during the discharge of a cycled cell. The results indicate that the negative electrode was responsible for the voltage plateau. Cell analysis revealed large crystals of cadmium hydroxide on the surface of the negative electrode and throughout the separator.

  20. A Systematic Process for Developing High Quality SaaS Cloud Services

    NASA Astrophysics Data System (ADS)

    La, Hyun Jung; Kim, Soo Dong

    Software-as-a-Service (SaaS) is a type of cloud service which provides software functionality through Internet. Its benefits are well received in academia and industry. To fully utilize the benefits, there should be effective methodologies to support the development of SaaS services which provide high reusability and applicability. Conventional approaches such as object-oriented methods do not effectively support SaaS-specific engineering activities such as modeling common features, variability, and designing quality services. In this paper, we present a systematic process for developing high quality SaaS and highlight the essentiality of commonality and variability (C&V) modeling to maximize the reusability. We first define criteria for designing the process model and provide a theoretical foundation for SaaS; its meta-model and C&V model. We clarify the notion of commonality and variability in SaaS, and propose a SaaS development process which is accompanied with engineering instructions. Using the proposed process, SaaS services with high quality can be effectively developed.

  1. FPGA-based design and implementation of arterial pulse wave generator using piecewise Gaussian-cosine fitting.

    PubMed

    Wang, Lu; Xu, Lisheng; Zhao, Dazhe; Yao, Yang; Song, Dan

    2015-04-01

    Because arterial pulse waves contain vital information related to the condition of the cardiovascular system, considerable attention has been devoted to the study of pulse waves in recent years. Accurate acquisition is essential to investigate arterial pulse waves. However, at the stage of developing equipment for acquiring and analyzing arterial pulse waves, specific pulse signals may be unavailable for debugging and evaluating the system under development. To produce test signals that reflect specific physiological conditions, in this paper, an arterial pulse wave generator has been designed and implemented using a field programmable gate array (FPGA), which can produce the desired pulse waves according to the feature points set by users. To reconstruct a periodic pulse wave from the given feature points, a method known as piecewise Gaussian-cosine fitting is also proposed in this paper. Using a test database that contains four types of typical pulse waves with each type containing 25 pulse wave signals, the maximum residual error of each sampling point of the fitted pulse wave in comparison with the real pulse wave is within 8%. In addition, the function for adding baseline drift and three types of noises is integrated into the developed system because the baseline occasionally wanders, and noise needs to be added for testing the performance of the designed circuits and the analysis algorithms. The proposed arterial pulse wave generator can be considered as a special signal generator with a simple structure, low cost and compact size, which can also provide flexible solutions for many other related research purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. 10 CFR 830.3 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...

  3. 10 CFR 830.3 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    .... Critical assembly means special nuclear devices designed and used to sustain nuclear reactions, which may... reaction becomes self-sustaining. Design features means the design features of a nuclear facility specified..., or the environment, including (1) Physical, design, structural, and engineering features; (2) Safety...

  4. What to Build for Middle-Agers to Come? Attractive and Necessary Functions of Exercise-Promotion Mobile Phone Apps: A Cross-Sectional Study

    PubMed Central

    Chien, Yu-Tai; Chen, Yu-Jen; Hsiung, Hsiao-Fang; Chen, Hsiao-Jung; Hsieh, Meng-Hua; Wu, Wen-Jie

    2017-01-01

    Background Physical activity is important for middle-agers to maintain health both in middle age and in old age. Although thousands of exercise-promotion mobile phone apps are available for download, current literature offers little understanding regarding which design features can enhance middle-aged adults’ quality perception toward exercise-promotion apps and which factor may influence such perception. Objectives The aims of this study were to understand (1) which design features of exercise-promotion apps can enhance quality perception of middle-agers, (2) whether their needs are matched by current functions offered in app stores, and (3) whether physical activity (PA) and mobile phone self-efficacy (MPSE) influence quality perception. Methods A total of 105 middle-agers participated and filled out three scales: the International Physical Activity Questionnaire (IPAQ), the MPSE scale, and the need for design features questionnaire. The design features were developed based on the Coventry, Aberdeen, and London—Refined (CALO-RE) taxonomy. Following the Kano quality model, the need for design features questionnaire asked participants to classify design features into five categories: attractive, one-dimensional, must-be, indifferent, and reverse. The quality categorization was conducted based on a voting approach and the categorization results were compared with the findings of a prevalence study to realize whether needs match current availability. In total, 52 multinomial logistic regression models were analyzed to evaluate the effects of PA level and MPSE on quality perception of design features. Results The Kano analysis on the total sample revealed that visual demonstration of exercise instructions is the only attractive design feature, whereas the other 51 design features were perceived with indifference. Although examining quality perception by PA level, 21 features are recommended to low level, 6 features to medium level, but none to high-level PA. In contrast, high-level MPSE is recommended with 14 design features, medium level with 6 features, whereas low-level participants are recommended with 1 feature. The analysis suggests that the implementation of demanded features could be low, as the average prevalence of demanded design features is 20% (4.3/21). Surprisingly, social comparison and social support, most implemented features in current apps, were categorized into the indifferent category. The magnitude of effect is larger for MPSE because it effects quality perception of more design features than PA. Delving into the 52 regression models revealed that high MPSE more likely induces attractive or one- dimensional categorization, suggesting the importance of technological self-efficacy on eHealth care promotion. Conclusions This study is the first to propose middle-agers’ needs in relation to mobile phone exercise-promotion. In addition to the tailor-made recommendations, suggestions are offered to app designers to enhance the performance of persuasive features. An interesting finding on change of quality perception attributed to MPSE is proposed as future research. PMID:28546140

  5. The importance of being kinked: role of Pro residues in the selectivity of the helical antimicrobial peptide P5.

    PubMed

    Bobone, Sara; Bocchinfuso, Gianfranco; Park, Yoonkyung; Palleschi, Antonio; Hahm, Kyung-Soo; Stella, Lorenzo

    2013-12-01

    Antimicrobial peptides (AMPs) are promising compounds for developing new antibiotic drugs against drug-resistant bacteria. Many of them kill bacteria by perturbing their membranes but exhibit no significant toxicity towards eukaryotic cells. The identification of the features responsible for this selectivity is essential for their pharmacological development. AMPs exhibit few conserved features, but a statistical analysis of an AMP sequence database indicated that many α-helical AMPs surprisingly have a helix-breaking Pro residue in the middle of their sequence. To discriminate among the different possible hypotheses for the functional role of this feature, we designed an analogue of the antimicrobial peptide P5, in which the central Pro was deleted (analogue P5Del). Pro removal resulted in a dramatic increase of toxicity. This was explained by the observation that P5Del binds both charged and neutral membranes, whereas P5 has no appreciable affinity towards neutral bilayers. CD and simulative data provided a rationalization of this behavior. In solution P5, due to the presence of Pro, attains compact conformations, in which its apolar residues are partially shielded from the solvent, whereas P5Del is more helical. These structural differences reduce the hydrophobic driving force for association of P5 to neutral membranes, whereas its binding to anionic bilayers can still take place because of electrostatic attraction. After membrane binding, the Pro residue does not preclude the attainment of a membrane-active amphiphilic helical conformation. These findings shed light on the role of Pro residues in the selectivity of AMPs and provide hints for the design of new, highly selective compounds. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.

  6. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics

    PubMed Central

    Banaei, Maryam; Hatami, Javad; Yazdanfar, Abbas; Gramann, Klaus

    2017-01-01

    Neuroarchitecture uses neuroscientific tools to better understand architectural design and its impact on human perception and subjective experience. The form or shape of the built environment is fundamental to architectural design, but not many studies have shown the impact of different forms on the inhabitants’ emotions. This study investigated the neurophysiological correlates of different interior forms on the perceivers’ affective state and the accompanying brain activity. To understand the impact of naturalistic three-dimensional (3D) architectural forms, it is essential to perceive forms from different perspectives. We computed clusters of form features extracted from pictures of residential interiors and constructed exemplary 3D room models based on and representing different formal clusters. To investigate human brain activity during 3D perception of architectural spaces, we used a mobile brain/body imaging (MoBI) approach recording the electroencephalogram (EEG) of participants while they naturally walk through different interior forms in virtual reality (VR). The results revealed a strong impact of curvature geometries on activity in the anterior cingulate cortex (ACC). Theta band activity in ACC correlated with specific feature types (rs (14) = 0.525, p = 0.037) and geometry (rs (14) = −0.579, p = 0.019), providing evidence for a role of this structure in processing architectural features beyond their emotional impact. The posterior cingulate cortex and the occipital lobe were involved in the perception of different room perspectives during the stroll through the rooms. This study sheds new light on the use of mobile EEG and VR in architectural studies and provides the opportunity to study human brain dynamics in participants that actively explore and realistically experience architectural spaces. PMID:29033807

  7. Walking through Architectural Spaces: The Impact of Interior Forms on Human Brain Dynamics.

    PubMed

    Banaei, Maryam; Hatami, Javad; Yazdanfar, Abbas; Gramann, Klaus

    2017-01-01

    Neuroarchitecture uses neuroscientific tools to better understand architectural design and its impact on human perception and subjective experience. The form or shape of the built environment is fundamental to architectural design, but not many studies have shown the impact of different forms on the inhabitants' emotions. This study investigated the neurophysiological correlates of different interior forms on the perceivers' affective state and the accompanying brain activity. To understand the impact of naturalistic three-dimensional (3D) architectural forms, it is essential to perceive forms from different perspectives. We computed clusters of form features extracted from pictures of residential interiors and constructed exemplary 3D room models based on and representing different formal clusters. To investigate human brain activity during 3D perception of architectural spaces, we used a mobile brain/body imaging (MoBI) approach recording the electroencephalogram (EEG) of participants while they naturally walk through different interior forms in virtual reality (VR). The results revealed a strong impact of curvature geometries on activity in the anterior cingulate cortex (ACC). Theta band activity in ACC correlated with specific feature types ( r s (14) = 0.525, p = 0.037) and geometry ( r s (14) = -0.579, p = 0.019), providing evidence for a role of this structure in processing architectural features beyond their emotional impact. The posterior cingulate cortex and the occipital lobe were involved in the perception of different room perspectives during the stroll through the rooms. This study sheds new light on the use of mobile EEG and VR in architectural studies and provides the opportunity to study human brain dynamics in participants that actively explore and realistically experience architectural spaces.

  8. The 1991 3rd NASA Symposium on VLSI Design

    NASA Technical Reports Server (NTRS)

    Maki, Gary K.

    1991-01-01

    Papers from the symposium are presented from the following sessions: (1) featured presentations 1; (2) very large scale integration (VLSI) circuit design; (3) VLSI architecture 1; (4) featured presentations 2; (5) neural networks; (6) VLSI architectures 2; (7) featured presentations 3; (8) verification 1; (9) analog design; (10) verification 2; (11) design innovations 1; (12) asynchronous design; and (13) design innovations 2.

  9. American Thyroid Association statement on the essential elements of interdisciplinary communication of perioperative information for patients undergoing thyroid cancer surgery.

    PubMed

    Carty, Sally E; Doherty, Gerard M; Inabnet, William B; Pasieka, Janice L; Randolph, Gregory W; Shaha, Ashok R; Terris, David J; Tufano, Ralph P; Tuttle, R Michael

    2012-04-01

    Thyroid cancer specialists require specific perioperative information to develop a management plan for patients with thyroid cancer, but there is not yet a model for effective interdisciplinary data communication. The American Thyroid Association Surgical Affairs Committee was asked to define a suggested essential perioperative dataset representing the critical information that should be readily available to participating members of the treatment team. To identify and agree upon a multidisciplinary set of critical perioperative findings requiring communication, we examined diverse best-practice documents relating to thyroidectomy and extracted common features felt to enhance precise, direct communication with nonsurgical caregivers. Suggested essential datasets for the preoperative, intraoperative, and immediate postoperative findings and management of patients undergoing surgery for thyroid cancer were identified and are presented. For operative reporting, the essential features of both a dictated narrative format and a synoptic computer format are modeled in detail. The importance of interdisciplinary communication is discussed with regard to the extent of required resection, the final pathology findings, surgical complications, and other factors that may influence risk stratification, adjuvant treatment, and surveillance. Accurate communication of the important findings and sequelae of thyroidectomy for cancer is critical to individualized risk stratification as well as to the clinical issues of thyroid cancer care that are often jointly managed in the postoperative setting. True interdisciplinary care is essential to providing optimal care and surveillance.

  10. The randomised controlled trial design: unrecognized opportunities for health sciences librarianship.

    PubMed

    Eldredge, Jonathan D

    2003-06-01

    to describe the essential components of the Randomised Controlled Trial (RCT) and its major variations; to describe less conventional applications of the RCT design found in the health sciences literature with potential relevance to health sciences librarianship; to discuss the limited number of RCTs within health sciences librarianship. narrative review supported to a limited extent with PubMed and Library Literature database searches consistent with specific search parameters. In addition, more systematic methods, including handsearching of specific journals, to identify health sciences librarianship RCTs. While many RCTs within the health sciences follow more conventional patterns, some RCTs assume certain unique features. Selected examples illustrate the adaptations of this experimental design to answering questions of possible relevance to health sciences librarians. The author offers several strategies for controlling bias in library and informatics applications of the RCT and acknowledges the potential of the electronic era in providing many opportunities to utilize the blinding aspects of RCTs. RCTs within health sciences librarianship inhabit a limited number of subject domains such as education. This limited scope offers both advantages and disadvantages for making Evidence-Based Librarianship (EBL) a reality. The RCT design offers the potential to answer far more EBL questions than have been addressed by the design to date. Librarians need only extend their horizons through use of the versatile RCT design into new subject domains to facilitate making EBL a reality.

  11. Micro-electro-mechanical systems (MEMS) and agile lensing-based modules for communications, sensing and signal processing

    NASA Astrophysics Data System (ADS)

    Reza, Syed Azer

    This dissertation proposes the use of the emerging Micro-Electro-Mechanical Systems (MEMS) and agile lensing optical device technologies to design novel and powerful signal conditioning and sensing modules for advanced applications in optical communications, physical parameter sensing and RF/optical signal processing. For example, these new module designs have experimentally demonstrated exceptional features such as stable loss broadband operations and high > 60 dB optical dynamic range signal filtering capabilities. The first part of the dissertation describes the design and demonstration of digital MEMS-based signal processing modules for communication systems and sensor networks using the TI DLP (Digital Light Processing) technology. Examples of such modules include optical power splitters, narrowband and broadband variable fiber optical attenuators, spectral shapers and filters. Compared to prior works, these all-digital designs have advantages of repeatability, accuracy, and reliability that are essential for advanced communications and sensor applications. The next part of the dissertation proposes, analyzes and demonstrates the use of analog opto-fluidic agile lensing technology for sensor networks and test and measurement systems. Novel optical module designs for distance sensing, liquid level sensing, three-dimensional object shape sensing and variable photonic delay lines are presented and experimentally demonstrated. Compared to prior art module designs, the proposed analog-mode modules have exceptional performances, particularly for extreme environments (e.g., caustic liquids) where the free-space agile beam-based sensor provide remote non-contact access for physical sensing operations. The dissertation also presents novel modules involving hybrid analog-digital photonic designs that make use of the different optical device technologies to deliver the best features of both analog and digital optical device operations and controls. Digital controls are achieved through the use of the digital MEMS technology and analog controls are realized by employing opto-fluidic agile lensing technology and acousto-optic technology. For example, variable fiber-optic attenuators and spectral filters are proposed using the hybrid design. Compared to prior art module designs, these hybrid designs provide a higher module dynamic range and increased resolution that are critical in various advanced system applications. In summary, the dissertation shows the added power of hybrid optical designs using both the digital and analog photonic signal processing versus just all-digital or all-analog module designs.

  12. Do Particular Design Features Assist People with Aphasia to Comprehend Text? An Exploratory Study

    ERIC Educational Resources Information Center

    Wilson, Lucy; Read, Jennifer

    2016-01-01

    Background: Much of the evidence underlying guidelines for producing accessible information for people with aphasia focuses on client preference for particular design features. There is limited evidence regarding the effects of these features on comprehension. Aims: To examine the effects of specific design features on text comprehension. It was…

  13. Escalator Design Features Evaluation

    DOT National Transportation Integrated Search

    1982-05-01

    This study provides an evaluation of the effectiveness of several special design features associated with escalators in rail transit systems. The objective of the study was to evaluate the effectiveness of three escalator design features: (1) mat ope...

  14. Activating Public Space: How to Promote Physical Activity in Urban Environment

    NASA Astrophysics Data System (ADS)

    Kostrzewska, Małgorzata

    2017-10-01

    Physical activity is an essential component of a healthy lifestyle. The quality and equipment of urban public space plays an important role in promoting physical activity among people (residents, tourists). In order for recreation and sports activities to be undertaken willingly, in a safe and comprehensive manner, certain spatial conditions and requirements must be met. The distinctive feature of contemporary large cities is the disappearance of local, neighbourly relations, and the consequent loneliness, alienation, and atomization of the residents. Thus, the design of public spaces should be an expression of the values of social inclusion and integration. A properly designed urban space would encourage people to leave their homes and integrate, also by undertaking different forms of physical activities. This, in turn, can lead to raising the quality of the space, especially in the context of its “familiarization” and “domestication”. The aim of the research was to identify the architectural and urban features of the public spaces of contemporary cities that can contribute to the promotion of physical activity. The paper presents the research results and the case studies of such spatial solutions and examples of good practices, which invite residents to undertake different forms of physical activities in public spaces. The issue of the integrating, inclusionary, and social function of physical recreation and sport is discussed as well, and so are the possibilities of translating these values into physical characteristics of an urban space. The main conclusions are that taking into account the diverse needs of different social groups, participation in the design and construction process, aesthetic and interesting design, vicinity of the residence, open access for all age groups and the disabled would be the most important spatial determinants of a properly designed, physically activating public space. Strategies of planning the sports and recreation infrastructure should also make sure of their multifunctionality and variability in time to adjust it to the changing needs of the residents.

  15. What to Build for Middle-Agers to Come? Attractive and Necessary Functions of Exercise-Promotion Mobile Phone Apps: A Cross-Sectional Study.

    PubMed

    Liao, Gen-Yih; Chien, Yu-Tai; Chen, Yu-Jen; Hsiung, Hsiao-Fang; Chen, Hsiao-Jung; Hsieh, Meng-Hua; Wu, Wen-Jie

    2017-05-25

    Physical activity is important for middle-agers to maintain health both in middle age and in old age. Although thousands of exercise-promotion mobile phone apps are available for download, current literature offers little understanding regarding which design features can enhance middle-aged adults' quality perception toward exercise-promotion apps and which factor may influence such perception. The aims of this study were to understand (1) which design features of exercise-promotion apps can enhance quality perception of middle-agers, (2) whether their needs are matched by current functions offered in app stores, and (3) whether physical activity (PA) and mobile phone self-efficacy (MPSE) influence quality perception. A total of 105 middle-agers participated and filled out three scales: the International Physical Activity Questionnaire (IPAQ), the MPSE scale, and the need for design features questionnaire. The design features were developed based on the Coventry, Aberdeen, and London-Refined (CALO-RE) taxonomy. Following the Kano quality model, the need for design features questionnaire asked participants to classify design features into five categories: attractive, one-dimensional, must-be, indifferent, and reverse. The quality categorization was conducted based on a voting approach and the categorization results were compared with the findings of a prevalence study to realize whether needs match current availability. In total, 52 multinomial logistic regression models were analyzed to evaluate the effects of PA level and MPSE on quality perception of design features. The Kano analysis on the total sample revealed that visual demonstration of exercise instructions is the only attractive design feature, whereas the other 51 design features were perceived with indifference. Although examining quality perception by PA level, 21 features are recommended to low level, 6 features to medium level, but none to high-level PA. In contrast, high-level MPSE is recommended with 14 design features, medium level with 6 features, whereas low-level participants are recommended with 1 feature. The analysis suggests that the implementation of demanded features could be low, as the average prevalence of demanded design features is 20% (4.3/21). Surprisingly, social comparison and social support, most implemented features in current apps, were categorized into the indifferent category. The magnitude of effect is larger for MPSE because it effects quality perception of more design features than PA. Delving into the 52 regression models revealed that high MPSE more likely induces attractive or one- dimensional categorization, suggesting the importance of technological self-efficacy on eHealth care promotion. This study is the first to propose middle-agers' needs in relation to mobile phone exercise-promotion. In addition to the tailor-made recommendations, suggestions are offered to app designers to enhance the performance of persuasive features. An interesting finding on change of quality perception attributed to MPSE is proposed as future research. ©Gen-Yih Liao, Yu-Tai Chien, Yu-Jen Chen, Hsiao-Fang Hsiung, Hsiao-Jung Chen, Meng-Hua Hsieh, Wen-Jie Wu. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 25.05.2017.

  16. Commerical (terrestrial) and modified solar array design studies for low cost, low power space applications

    NASA Technical Reports Server (NTRS)

    Kolecki, J. C.; Riley, T. J.

    1980-01-01

    The suitability of commercial (terrestrial) solar arrays for use in low Earth orbit is examined. It is shown that commercial solar arrays degrade under thermal cycling because of material flexure, and that certain types of silicones used in the construction of these arrays outgas severely. Based on the results, modifications were made. The modified array retains the essential features of typical commercial arrays and can be easily built by commercial fabrication techniques at low cost. The modified array uses a metal tray for containment, but eliminates the high outgassing potting materials and glass cover sheets. Cells are individually mounted with an adhesive and individually covered with glass cover slips, or clear plastic tape. The modified array is found to withstand severe thermal cycling for long intervals of time.

  17. Subunit vaccines for the prevention of mucosal infection with Chlamydia trachomatis

    PubMed Central

    Yu, Hong; Karunakaran, Karuna P.; Jiang, Xiaozhou; Brunham, Robert C.

    2016-01-01

    Chlamydia trachomatis is the most common preventable cause of tubal infertility in women. In high-income countries, despite public health control efforts, C. trachomatis case rates continue to rise. Most medium and low-income countries lack any Chlamydia control program; therefore, a vaccine is essential for the control of Chlamydia infections. A rationally designed Chlamydia vaccine requires understanding of the immunological correlates of protective immunity, pathological responses to this mucosal pathogen, identification of optimal vaccine antigens and selection of suitable adjuvant delivery systems that engender protective immunity. Fortunately, Chlamydia vaccinology is facilitated by genomic knowledge and by murine models that reproduce many of the features of human C. trachomatis infection. This article reviews recent progress in these areas with a focus on subunit vaccine development. PMID:26938202

  18. Role of the HTLV-1 viral factors in the induction of apoptosis.

    PubMed

    Karimi, Mohammad; Mohammadi, Hamed; Hemmatzadeh, Maryam; Mohammadi, Asadollah; Rafatpanah, Houshang; Baradaran, Behzad

    2017-01-01

    Adult T-cell leukemia (ATL) and HTLV-1-associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) are the two main diseases that are caused by the HTLV-1 virus. One of the features of HTLV-1 infection is its resistance against programmed cell death, which maintains the survival of cells to oncogenic transformation and underlies the viruses' therapeutic resistance. Two main genes by which the virus develops cancer are Tax and HBZ; playing an essential role in angiogenesis in regulating viral transcription and modulating multiple host factors as well as apoptosis pathways. Here we have reviewed by prior research how the apoptosis pathways are suppressed by the Tax and HBZ and new drugs which have been designed to deal with this suppression. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Development and Assessment of Planetary Gear Unit for Experimental Prototype of Vertical Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Urbahs, A.; Urbaha, M.; Carjova, K.

    2017-10-01

    The theoretical calculation for development of planetary gear unit of wind turbine (WT) and its experimental tests are presented in the paper. Development of experimental prototypes from composite materials is essential to determine capability of element and its impact on feature. Two experimental scale prototypes of planetary gear unit for WT were developed for such purposes. Hall transducer, servomechanisms and optical tachometers were used to obtain results, comparison analysis of theoretical and actual data was performed as well as quality assessment of experimental prototypes of planetary gear unit. After kinematic and load analysis as well as control of rotation frequency, it is possible to declare that the unit is able to operate at designated quality. Theoretical calculations and test results obtained are used for industrial WT prototype development.

  20. Universality in the Evolution of Orientation Columns in the Visual Cortex

    PubMed Central

    Kaschube, Matthias; Schnabel, Michael; Löwel, Siegrid; Coppola, David M.; White, Leonard E.; Wolf, Fred

    2011-01-01

    The brain’s visual cortex processes information concerning form, pattern, and motion within functional maps that reflect the layout of neuronal circuits. We analyzed functional maps of orientation preference in the ferret, tree shrew, and galago—three species separated since the basal radiation of placental mammals more than 65 million years ago—and found a common organizing principle. A symmetry-based class of models for the self-organization of cortical networks predicts all essential features of the layout of these neuronal circuits, but only if suppressive long-range interactions dominate development. We show mathematically that orientation-selective long-range connectivity can mediate the required interactions. Our results suggest that self-organization has canalized the evolution of the neuronal circuitry underlying orientation preference maps into a single common design. PMID:21051599

  1. Risks, designs, and research for fire safety in spacecraft

    NASA Technical Reports Server (NTRS)

    Friedman, Robert; Sacksteder, Kurt R.; Urban, David

    1991-01-01

    Current fire protection for spacecraft relies mainly on fire prevention through the use of nonflammable materials and strict storage controls of other materials. The Shuttle also has smoke detectors and fire extinguishers, using technology similar to aircraft practices. While experience has shown that the current fire protection is adequate, future improvements in fire safety technology to meet the challenges of long duration space missions, such as the Space Station Freedom, are essential. All spacecraft fire protection systems, however, must deal with the unusual combustion characteristics and operational problems in the low gravity environment. The features of low gravity combustion that affect spacecraft fire safety, and the issues in fire protection for Freedom that must be addressed eventually to provide effective and conservative fire protection systems are discussed.

  2. 2-Aryl-8-aza-3-deazaadenosine Analogues of 5’-O-[N-(Salicyl)sulfamoyl]adenosine: Nucleoside Antibiotics that Block Siderophore Biosynthesis in Mycobacterium tuberculosis

    PubMed Central

    Krajczyk, Anna; Zeidler, Joanna; Januszczyk, Piotr; Dawadi, Surendra; Boshoff, Helena I.; Barry, Clifton E.; Ostrowski, Tomasz; Aldrich, Courtney C.

    2016-01-01

    A series of 5’-O-[N-(salicyl)sulfamoyl]-2-aryl-8-aza-3-deazaadenosines were designed to block mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) through inhibition of the essential adenylating enzyme MbtA. The synthesis of the 2-aryl-8-aza-3-deazaadenosine nucleosides featured sequential copper-free palladium-catalyzed Sonogashira coupling of a precursor 4-cyano-5-iodo-1,2,3-triazolonucleoside with terminal alkynes and Minakawa-Matsuda annulation reaction. These modified nucleosides were shown to inhibit MbtA with apparent Ki values ranging from 6.1 to 25 nM and to inhibit Mtb growth under iron-deficient conditions with minimum inhibitory concentrations ranging from 12.5 to >50 μM. PMID:27265685

  3. A look at scalable dense linear algebra libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.

    1992-01-01

    We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less

  4. A look at scalable dense linear algebra libraries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, J.J.; Van de Geijn, R.A.; Walker, D.W.

    1992-08-01

    We discuss the essential design features of a library of scalable software for performing dense linear algebra computations on distributed memory concurrent computers. The square block scattered decomposition is proposed as a flexible and general-purpose way of decomposing most, if not all, dense matrix problems. An object- oriented interface to the library permits more portable applications to be written, and is easy to learn and use, since details of the parallel implementation are hidden from the user. Experiments on the Intel Touchstone Delta system with a prototype code that uses the square block scattered decomposition to perform LU factorization aremore » presented and analyzed. It was found that the code was both scalable and efficient, performing at about 14 GFLOPS (double precision) for the largest problem considered.« less

  5. Human motor transfer is determined by the scaling of size and accuracy of movement.

    PubMed

    Kwon, Oh-Sang; Zelaznik, Howard N; Chiu, George; Pizlo, Zygmunt

    2011-01-01

    A transfer of training design was used to examine the role of the Index of Difficulty (ID) on transfer of learning in a sequential Fitts's law task. Specifically, the role of the ratio between the accuracy and size of movement (ID) in transfer was examined. Transfer of skilled movement is better when both the size and accuracy of movement are changed by the same factor (ID is constant) than when only size or accuracy is changed. The authors infer that the size-accuracy ratio is capturing the control strategies employed during practice and thus promotes efficient transfer. Furthermore, efficient transfer is not dependent on maintaining relative timing invariance and thus the authors provide further evidence that relative timing is not an essential feature of movement control.

  6. Synthetic topological Kondo insulator in a pumped optical cavity

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen; Zou, Xu-Bo; Guo, Guang-Can

    2018-02-01

    Motivated by experimental advances on ultracold atoms coupled to a pumped optical cavity, we propose a scheme for synthesizing and observing the Kondo insulator in Fermi gases trapped in optical lattices. The synthetic Kondo phase arises from the screening of localized atoms coupled to mobile ones, which in our proposal is generated via the pumping laser as well as the cavity. By designing the atom-cavity coupling, it can engineer a nearest-neighbor-site Kondo coupling that plays an essential role for supporting topological Kondo phase. Therefore, the cavity-induced Kondo transition is associated with a nontrivial topological features, resulting in the coexistence of the superradiant and topological Kondo state. Our proposal can be realized with current technique, and thus has potential applications in quantum simulation of the topological Kondo insulator in ultracold atoms.

  7. The Semanticscience Integrated Ontology (SIO) for biomedical research and knowledge discovery

    PubMed Central

    2014-01-01

    The Semanticscience Integrated Ontology (SIO) is an ontology to facilitate biomedical knowledge discovery. SIO features a simple upper level comprised of essential types and relations for the rich description of arbitrary (real, hypothesized, virtual, fictional) objects, processes and their attributes. SIO specifies simple design patterns to describe and associate qualities, capabilities, functions, quantities, and informational entities including textual, geometrical, and mathematical entities, and provides specific extensions in the domains of chemistry, biology, biochemistry, and bioinformatics. SIO provides an ontological foundation for the Bio2RDF linked data for the life sciences project and is used for semantic integration and discovery for SADI-based semantic web services. SIO is freely available to all users under a creative commons by attribution license. See website for further information: http://sio.semanticscience.org. PMID:24602174

  8. Product information representation for feature conversion and implementation of group technology automated coding

    NASA Astrophysics Data System (ADS)

    Medland, A. J.; Zhu, Guowang; Gao, Jian; Sun, Jian

    1996-03-01

    Feature conversion, also called feature transformation and feature mapping, is defined as the process of converting features from one view of an object to another view of the object. In a relatively simple implementation, for each application the design features are automatically converted into features specific for that application. All modifications have to be made via the design features. This is the approach that has attracted most attention until now. In the ideal situation, however, conversions directly from application views to the design view, and to other applications views, are also possible. In this paper, some difficulties faced in feature conversion are discussed. A new representation scheme of feature-based parts models has been proposed for the purpose of one-way feature conversion. The parts models consist of five different levels of abstraction, extending from an assembly level and its attributes, single parts and their attributes, single features and their attributes, one containing the geometric reference element and finally one for detailed geometry. One implementation of feature conversion for rotational components within GT (Group Technology) has already been undertaken using an automated coding procedure operating on a design-feature database. This database has been generated by a feature-based design system, and the GT coding scheme used in this paper is a specific scheme created for a textile machine manufacturing plant. Such feature conversion techniques presented here are only in their early stages of development and further research is underway.

  9. The essential oil of turpentine and its major volatile fraction (alpha- and beta-pinenes): a review.

    PubMed

    Mercier, Beatrice; Prost, Josiane; Prost, Michel

    2009-01-01

    This paper provides a summary review of the major biological features concerning the essential oil of turpentine, its origin and use in traditional and modern medicine. More precisely, the safety of this volatile fraction to human health, and the medical, biological and environmental effects of the two major compounds of this fraction (alpha- and beta-pinenes) have been discussed.

  10. Essential Criteria to Characterize Constructivist Teaching: Derived from a Review of the Literature and Applied to Five Constructivist-Teaching Method Articles

    ERIC Educational Resources Information Center

    Baviskar, Sandhya N.; Hartle, R. Todd; Whitney, Tiffany

    2009-01-01

    Constructivism is an important theory of learning that is used to guide the development of new teaching methods, particularly in science education. However, because it is a theory of learning and not of teaching, constructivism is often either misused or misunderstood. Here we describe the four essential features of constructivism: eliciting prior…

  11. Gastrointestinal bleeding detection in wireless capsule endoscopy images using handcrafted and CNN features.

    PubMed

    Xiao Jia; Meng, Max Q-H

    2017-07-01

    Gastrointestinal (GI) bleeding detection plays an essential role in wireless capsule endoscopy (WCE) examination. In this paper, we present a new approach for WCE bleeding detection that combines handcrafted (HC) features and convolutional neural network (CNN) features. Compared with our previous work, a smaller-scale CNN architecture is constructed to lower the computational cost. In experiments, we show that the proposed strategy is highly capable when training data is limited, and yields comparable or better results than the latest methods.

  12. Breast cancer - one term, many entities?

    PubMed

    Bertos, Nicholas R; Park, Morag

    2011-10-01

    Breast cancer, rather than constituting a monolithic entity, comprises heterogeneous tumors with different clinical characteristics, disease courses, and responses to specific treatments. Tumor-intrinsic features, including classical histological and immunopathological classifications as well as more recently described molecular subtypes, separate breast tumors into multiple groups. Tumor-extrinsic features, including microenvironmental configuration, also have prognostic significance and further expand the list of tumor-defining variables. A better understanding of the features underlying heterogeneity, as well as of the mechanisms and consequences of their interactions, is essential to improve targeting of existing therapies and to develop novel agents addressing specific combinations of features.

  13. Space Station: Leadership for the Future

    NASA Technical Reports Server (NTRS)

    Martin, Franklin D.; Finn, Terence T.

    1987-01-01

    No longer limited to occasional spectaculars, space has become an essential, almost commonplace dimension of national life. Among other things, space is an arena of competition with our allies and adversaries, a place of business, a field of research, and an avenue of cooperation with our allies. The space station will play a critical role in each of these endeavors. Perhaps the most significant feature of the space station, essential to its utility for science, commerce, and technology, is the permanent nature of its crew. The space station will build upon the tradition of employing new capabilities to explore further and question deeper, and by providing a permanent presence, the station should significantly increase the opportunities for conducting research in space. Economic productivity is, in part, a function of technical innovation. A major thrust of the station design effort is devoted to enhancing performance through advanced technology. The space station represents the commitment of the United States to a future in space. Perhaps most importantly, as recovery from the loss of Challenger and its crew continues, the space station symbolizes the national determination to remain undeterred by tragedy and to continue exploring the frontiers of space.

  14. Population genetics inside a cell: Mutations and mitochondrial genome maintenance

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha; Shraiman, Boris; Gottschling, Dan

    2012-02-01

    In realistic ecological and evolutionary systems natural selection acts on multiple levels, i.e. it acts on individuals as well as on collection of individuals. An understanding of evolutionary dynamics of such systems is limited in large part due to the lack of experimental systems that can challenge theoretical models. Mitochondrial genomes (mtDNA) are subjected to selection acting on cellular as well as organelle levels. It is well accepted that mtDNA in yeast Saccharomyces cerevisiae is unstable and can degrade over time scales comparable to yeast cell division time. We utilize a recent technology designed in Gottschling lab to extract DNA from populations of aged yeast cells and deep sequencing to characterize mtDNA variation in a population of young and old cells. In tandem, we developed a stochastic model that includes the essential features of mitochondrial biology that provides a null model for expected mtDNA variation. Overall, we find approximately 2% of the polymorphic loci that show significant increase in frequency as cells age providing direct evidence for organelle level selection. Such quantitative study of mtDNA dynamics is absolutely essential to understand the propagation of mtDNA mutations linked to a spectrum of age-related diseases in humans.

  15. Correlation of HIV protease structure with Indinavir resistance: a data mining and neural networks approach

    NASA Astrophysics Data System (ADS)

    Draghici, Sorin; Cumberland, Lonnie T., Jr.; Kovari, Ladislau C.

    2000-04-01

    This paper presents some results of data mining HIV genotypic and structural data. Our aim is to try to relate structural features of HIV enzymes essential to its reproductive abilities to the drug resistance phenomenon. This paper concentrates on the HIV protease enzyme and Indinavir which is one of the FDA approved protease inhibitors. Our starting point was the current list of HIV mutations related to drug resistance. We used the fact that some molecular structures determined through high resolution X-ray crystallography were available for the protease-Indinavir complex. Starting with these structures and the known mutations, we modelled the mutant proteases and studied the pattern of atomic contacts between the protease and the drug. After suitable pre- processing, these patterns have been used as the input of our data mining process. We have used both supervised and unsupervised learning techniques with the aim of understanding the relationship between structural features at a molecular level and resistance to Indinavir. The supervised learning was aimed at predicting IC90 values for arbitrary mutants. The SOFM was aimed at identifying those structural features that are important for drug resistance and discovering a classifier based on such features. We have used validation and cross validation to test the generalization abilities of the learning paradigm we have designed. The straightforward supervised learning was able to learn very successfully but validation results are less than satisfactory. This is due to the insufficient number of patterns in the training set which in turn is due to the scarcity of the available data. The data mining using SOFM was very successful. We have managed to distinguish between resistant and non-resistant mutants using structural features. We have been able to divide all reported HIV mutants into several categories based on their 3- dimensional molecular structures and the pattern of contacts between the mutant protease and Indinavir. Our classifier shows reasonably good prediction performance being able to predict the drug resistance of previously unseen mutants with an accuracy of between 60% and 70%. We believe that this performance can be greatly improved once more data becomes available. The results presented here support the hypothesis that structural features of the molecular structure can be used in antiviral drug treatment selection and drug design.

  16. Biophysical modelling of intra-ring variations in tracheid features and wood density of Pinus pinaster trees exposed to seasonal droughts

    Treesearch

    Sarah Wilkinson; Jerome Ogee; Jean-Christophe Domec; Mark Rayment; Lisa Wingate

    2015-01-01

    Process-based models that link seasonally varying environmental signals to morphological features within tree rings are essential tools to predict tree growth response and commercially important wood quality traits under future climate scenarios. This study evaluated model portrayal of radial growth and wood anatomy observations within a mature maritime pine (Pinus...

  17. Towards a Theory of Mutual Dependency between School Administrators and Teachers: Bargaining Theory as Research Heuristic

    ERIC Educational Resources Information Center

    Elstad, Eyvind

    2008-01-01

    The aim of this article is to contribute to an improved comprehension of the relations between administrators and teachers. The main argument is that mutual dependency is an operational feature of a school organization. I analyse a school case that shows essential features of the interconnections between the parties. An extensive commitment to ICT…

  18. Conversion Discriminative Analysis on Mild Cognitive Impairment Using Multiple Cortical Features from MR Images.

    PubMed

    Guo, Shengwen; Lai, Chunren; Wu, Congling; Cen, Guiyin

    2017-01-01

    Neuroimaging measurements derived from magnetic resonance imaging provide important information required for detecting changes related to the progression of mild cognitive impairment (MCI). Cortical features and changes play a crucial role in revealing unique anatomical patterns of brain regions, and further differentiate MCI patients from normal states. Four cortical features, namely, gray matter volume, cortical thickness, surface area, and mean curvature, were explored for discriminative analysis among three groups including the stable MCI (sMCI), the converted MCI (cMCI), and the normal control (NC) groups. In this study, 158 subjects (72 NC, 46 sMCI, and 40 cMCI) were selected from the Alzheimer's Disease Neuroimaging Initiative. A sparse-constrained regression model based on the l2-1-norm was introduced to reduce the feature dimensionality and retrieve essential features for the discrimination of the three groups by using a support vector machine (SVM). An optimized strategy of feature addition based on the weight of each feature was adopted for the SVM classifier in order to achieve the best classification performance. The baseline cortical features combined with the longitudinal measurements for 2 years of follow-up data yielded prominent classification results. In particular, the cortical thickness produced a classification with 98.84% accuracy, 97.5% sensitivity, and 100% specificity for the sMCI-cMCI comparison; 92.37% accuracy, 84.78% sensitivity, and 97.22% specificity for the cMCI-NC comparison; and 93.75% accuracy, 92.5% sensitivity, and 94.44% specificity for the sMCI-NC comparison. The best performances obtained by the SVM classifier using the essential features were 5-40% more than those using all of the retained features. The feasibility of the cortical features for the recognition of anatomical patterns was certified; thus, the proposed method has the potential to improve the clinical diagnosis of sub-types of MCI and predict the risk of its conversion to Alzheimer's disease.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  20. Toward automatic time-series forecasting using neural networks.

    PubMed

    Yan, Weizhong

    2012-07-01

    Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.

  1. Modeling MultiCoil ICPs

    NASA Astrophysics Data System (ADS)

    Kolobov, V. I.; Vaidya, N.; Krishnan, A.

    1998-10-01

    Plasma processing of 300 mm wafers and flat panels places stringent demands on plasma uniformity across large surfaces. A natural solution towards an uniform plasma in a minimum discharge volume is to maintain the plasma by an array of individual sources. Although the design of the individual sources can differ considerably, there is a common feature for all such devices which have been recently suggested by several groups: their essentially 3D geometry. Engineering design of these devices is a challenging task and computational modeling could be a very useful tool. CFD Research Corp. has developed a comprehensive software for virtual prototyping of ICP sources designed for complex 3D geometries with unstructured solution-adaptive mesh. In this paper we shall present the results of our simulation of the multipole high density source [1] which is an example of MultiCoil ICP. We shall describe the procedure of solving the electromagnetic part of the problem using magnetic vector potential and analyse design issues such as the size of dielectric windows. We shall present results of parametric studies of the source for different geometries, gas pressures and plasma densities for simple argon chemistry. [1] J.Ogle. Proc. VI Int. Workshop on Advanced Plasma Tools and Process Engineering, pp. 85-90, May 1998, Millbrae, USA.

  2. Safety in numbers 3: Authenticity, Building knowledge & skills and Competency development & assessment: the ABC of safe medication dosage calculation problem-solving pedagogy.

    PubMed

    Weeks, Keith W; Meriel Hutton, B; Coben, Diana; Clochesy, John M; Pontin, David

    2013-03-01

    When designing learning and assessment environments it is essential to articulate the underpinning education philosophy, theory, model and learning style support mechanisms that inform their structure and content. We elaborate on original PhD research that articulates the design rationale of authentic medication dosage calculation problem-solving (MDC-PS) learning and diagnostic assessment environments. These environments embody the principles of authenticity, building knowledge and skills and competency assessment and are designed to support development of competence and bridging of the theory-practice gap. Authentic learning and diagnostic assessment environments capture the features and expert practices that are located in real world practice cultures and recreate them in authentic virtual clinical environments. We explore how this provides students with a safe virtual authentic environment to actively experience, practice and undertake MDC-PS learning and assessment activities. We argue that this is integral to the construction and diagnostic assessment of schemata validity (mental constructions and frameworks that are an individual's internal representation of their world), bridging of the theory-practice gap and cognitive and functional competence development. We illustrate these principles through the underpinning pedagogical design of two online virtual authentic learning and diagnostic assessment environments (safeMedicate and eDose™). Copyright © 2012. Published by Elsevier Ltd.

  3. Automated design of image operators that detect interest points.

    PubMed

    Trujillo, Leonardo; Olague, Gustavo

    2008-01-01

    This work describes how evolutionary computation can be used to synthesize low-level image operators that detect interesting points on digital images. Interest point detection is an essential part of many modern computer vision systems that solve tasks such as object recognition, stereo correspondence, and image indexing, to name but a few. The design of the specialized operators is posed as an optimization/search problem that is solved with genetic programming (GP), a strategy still mostly unexplored by the computer vision community. The proposed approach automatically synthesizes operators that are competitive with state-of-the-art designs, taking into account an operator's geometric stability and the global separability of detected points during fitness evaluation. The GP search space is defined using simple primitive operations that are commonly found in point detectors proposed by the vision community. The experiments described in this paper extend previous results (Trujillo and Olague, 2006a,b) by presenting 15 new operators that were synthesized through the GP-based search. Some of the synthesized operators can be regarded as improved manmade designs because they employ well-known image processing techniques and achieve highly competitive performance. On the other hand, since the GP search also generates what can be considered as unconventional operators for point detection, these results provide a new perspective to feature extraction research.

  4. PCASSO: a design for secure communication of personal health information via the internet.

    PubMed

    Baker, D B; Masys, D R

    1999-05-01

    The Internet holds both promise and peril for the communications of person-identifiable health information. Because of technical features designed to promote accessibility and interoperability rather than security, Internet addressing conventions and transport protocols are vulnerable to compromise by malicious persons and programs. In addition, most commonly used personal computer (PC) operating systems currently lack the hardware-based system software protection and process isolation that are essential for ensuring the integrity of trusted applications. Security approaches designed for electronic commerce, that trade known security weaknesses for limited financial liability, are not sufficient for personal health data, where the personal damage caused by unintentional disclosure may be far more serious. To overcome these obstacles, we are developing and evaluating an Internet-based communications system called PCASSO (Patient-centered access to secure systems online) that applies state of the art security to health information. PCASSO includes role-based access control, multi-level security, strong device and user authentication, session-specific encryption and audit trails. Unlike Internet-based electronic commerce 'solutions,' PCASSO secures data end-to-end: in the server; in the data repository; across the network; and on the client. PCASSO is designed to give patients as well as providers access to personal health records via the Internet.

  5. Market Intelligence Guide

    DTIC Science & Technology

    2012-01-05

    learn about the latest designs , trends in fashion, and scientific breakthroughs in chair ergonomics . Using this tradeshow, the Furnishings Commodity...these tools is essential to designing the optimal contract that reaps the most value from the exchange. Therefore, this market intelligence guide is...portfolio matrix) that are transferrable to the not-for-profit sector are absent. Each of these tools is essential to designing the optimal contract that

  6. Temperature and heat flux datasets of a complex object in a fire plume for the validation of fire and thermal response codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jernigan, Dann A.; Blanchat, Thomas K.

    It is necessary to improve understanding and develop temporally- and spatially-resolved integral scale validation data of the heat flux incident to a complex object in addition to measuring the thermal response of said object located within the fire plume for the validation of the SIERRA/FUEGO/SYRINX fire and SIERRA/CALORE codes. To meet this objective, a complex calorimeter with sufficient instrumentation to allow validation of the coupling between FUEGO/SYRINX/CALORE has been designed, fabricated, and tested in the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisonmore » between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. This report presents the data validation steps and processes, the results of the penlight radiant heat experiments (for the purpose of validating the CALORE heat transfer modeling of the complex calorimeter), and the results of the fire tests in FLAME.« less

  7. Accelerator-based conversion (ABC) of weapons plutonium: Plant layout study and related design issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.

    1995-04-01

    In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemicalmore » Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.« less

  8. Heuristic urban transportation network design method, a multilayer coevolution approach

    NASA Astrophysics Data System (ADS)

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain bin; Manan, Mohd Shahrudin Abd; Li, Rong; Wu, Jianjun

    2017-08-01

    The design of urban transportation networks plays a key role in the urban planning process, and the coevolution of urban networks has recently garnered significant attention in literature. However, most of these recent articles are based on networks that are essentially planar. In this research, we propose a heuristic multilayer urban network coevolution model with lower layer network and upper layer network that are associated with growth and stimulate one another. We first use the relative neighbourhood graph and the Gabriel graph to simulate the structure of rail and road networks, respectively. With simulation we find that when a specific number of nodes are added, the total travel cost ratio between an expanded network and the initial lower layer network has the lowest value. The cooperation strength Λ and the changeable parameter average operation speed ratio Θ show that transit users' route choices change dramatically through the coevolution process and that their decisions, in turn, affect the multilayer network structure. We also note that the simulated relation between the Gini coefficient of the betweenness centrality, Θ and Λ have an optimal point for network design. This research could inspire the analysis of urban network topology features and the assessment of urban growth trends.

  9. Platinum–nickel nanowire catalysts with composition-tunable alloying and faceting for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Fangfang; Yu, Gang; Shan, Shiyao

    2017-01-01

    The ability to tune the alloying properties and faceting characteristics of bimetallic nanocatalysts is essential for designing catalysts with enhanced activity and stability through optimizing strain and ligand effects, which is an important frontier for designing advanced materials as catalysts for fuel cell applications. This report describes composition-controlled alloying and faceting of platinum–nickel nanowires (PtNi NWs) for the electrocatalytic oxygen reduction reaction. The PtNi NWs are synthesized by a surfactant-free method and are shown to display bundled morphologies of nano-tetrahedra or nanowires, featuring an ultrathin and irregular helix morphology with composition-tunable facets. Using high-energy synchrotron X-ray diffraction coupled with atomicmore » pair distribution function analysis, lattice expansion and shrinking are revealed, with the Pt : Ni ratio of ~3 : 2 exhibiting a clear expansion, which coincides with the maximum electrocatalytic activity for the ORR. In comparison with PtNi nanoparticles (NPs), the PtNi NWs display remarkably higher electrocatalytic activity and stability as a result of the composition dependent atomic-scale alloying and faceting, demonstrating a new pathway to the design of alloy nanocatalysts with enhanced activity and durability for fuel cells.« less

  10. Designing attractive gamification features for collaborative storytelling websites.

    PubMed

    Hsu, Shang Hwa; Chang, Jen-Wei; Lee, Chun-Chia

    2013-06-01

    Gamification design is considered as the predictor of collaborative storytelling websites' success. Although aforementioned studies have mentioned a broad range of factors that may influence gamification, they neither depicted the actual design features nor relative attractiveness among them. This study aims to identify attractive gamification features for collaborative storytelling websites. We first constructed a hierarchical system structure of gamification design of collaborative storytelling websites and conducted a focus group interview with eighteen frequent users to identify 35gamification features. After that, this study determined the relative attractiveness of these gamification features by administrating an online survey to 6333 collaborative storytelling websites users. The results indicated that the top 10 most attractive gamification features could account for more than 50% of attractiveness among these 35 gamification features. The feature of unpredictable time pressure is important to website users, yet not revealed in previous relevant studies. Implications of the findings were discussed.

  11. iEzy-Drug: A Web Server for Identifying the Interaction between Enzymes and Drugs in Cellular Networking

    PubMed Central

    Min, Jian-Liang; Chou, Kuo-Chen

    2013-01-01

    With the features of extremely high selectivity and efficiency in catalyzing almost all the chemical reactions in cells, enzymes play vitally important roles for the life of an organism and hence have become frequent targets for drug design. An essential step in developing drugs by targeting enzymes is to identify drug-enzyme interactions in cells. It is both time-consuming and costly to do this purely by means of experimental techniques alone. Although some computational methods were developed in this regard based on the knowledge of the three-dimensional structure of enzyme, unfortunately their usage is quite limited because three-dimensional structures of many enzymes are still unknown. Here, we reported a sequence-based predictor, called “iEzy-Drug,” in which each drug compound was formulated by a molecular fingerprint with 258 feature components, each enzyme by the Chou's pseudo amino acid composition generated via incorporating sequential evolution information and physicochemical features derived from its sequence, and the prediction engine was operated by the fuzzy K-nearest neighbor algorithm. The overall success rate achieved by iEzy-Drug via rigorous cross-validations was about 91%. Moreover, to maximize the convenience for the majority of experimental scientists, a user-friendly web server was established, by which users can easily obtain their desired results. PMID:24371828

  12. The essential elements of health impact assessment and healthy public policy: a qualitative study of practitioner perspectives

    PubMed Central

    Harris, Patrick John; Kemp, Lynn Amanda; Sainsbury, Peter

    2012-01-01

    Objectives This study uses critical realist methodology to identify the essential and contingent elements of Health Impact Assessment (HIA) and Healthy Public Policy (HPP) as operationalised by practitioners. Design Data collection—qualitative interviews and a workshop were conducted with HIA and HPP practitioners working in differing contexts. Data analysis Critical realist analytical questions identified the essential elements of HIA and HPP, the relationship between them, and the influences of public policy and other contingencies on the practice of both. Participants Nine interviews were conducted with purposively sampled participants working in Europe, USA and Australasia. 17 self-selected participants who worked in Europe, South East Asia and Australasia attended the workshop. Results The results clarify that HIA and HPP are different but mutually supporting. HIA has four characteristics: assessing a policy proposal to predict population health and equity impacts, a structured process for stakeholder dialogue, making recommendations and flexibly adapting to the policy process. HPP has four characteristics: concern with a broad definition of health, designing policy to improve people's health and reduce health inequities, intersectoral collaboration and influencing the policy cycle from inception to completion. HIA brings to HPP prediction about a policy's broad health impacts, and a structured space for intersectoral engagement, but is one approach within a broader suite of HPP activities. Five features of public policy and seven contingent influences on HIA and HPP practice are identified. Conclusions This study clarifies the core attributes of HIA and HPP as separate yet overlapping while subject to wider influences. This provides the necessary common language to describe the application of both and avoid conflated expectations of either. The findings present the conceptual importance of public policy and the institutional role of public health as distinct and important influences on the practice of HIA and HPP. PMID:23166121

  13. Perceptions and experiences of heart failure patients and clinicians on the use of mobile phone-based telemonitoring.

    PubMed

    Seto, Emily; Leonard, Kevin J; Cafazzo, Joseph A; Barnsley, Jan; Masino, Caterina; Ross, Heather J

    2012-02-10

    Previous trials of heart failure telemonitoring systems have produced inconsistent findings, largely due to diverse interventions and study designs. The objectives of this study are (1) to provide in-depth insight into the effects of telemonitoring on self-care and clinical management, and (2) to determine the features that enable successful heart failure telemonitoring. Semi-structured interviews were conducted with 22 heart failure patients attending a heart function clinic who had used a mobile phone-based telemonitoring system for 6 months. The telemonitoring system required the patients to take daily weight and blood pressure readings, weekly single-lead ECGs, and to answer daily symptom questions on a mobile phone. Instructions were sent to the patient's mobile phone based on their physiological values. Alerts were also sent to a cardiologist's mobile phone, as required. All clinicians involved in the study were also interviewed post-trial (N = 5). The interviews were recorded, transcribed, and then analyzed using a conventional content analysis approach. The telemonitoring system improved patient self-care by instructing the patients in real-time how to appropriately modify their lifestyle behaviors. Patients felt more aware of their heart failure condition, less anxiety, and more empowered. Many were willing to partially fund the use of the system. The clinicians were able to manage their patients' heart failure conditions more effectively, because they had physiological data reported to them frequently to help in their decision-making (eg, for medication titration) and were alerted at the earliest sign of decompensation. Essential characteristics of the telemonitoring system that contributed to improved heart failure management included immediate self-care and clinical feedback (ie, teachable moments), how the system was easy and quick to use, and how the patients and clinicians perceived tangible benefits from telemonitoring. Some clinical concerns included ongoing costs of the telemonitoring system and increased clinical workload. A few patients did not want to be watched long-term while some were concerned they might become dependent on the system. The success of a telemonitoring system is highly dependent on its features and design. The essential system characteristics identified in this study should be considered when developing telemonitoring solutions.

  14. Fundus autofluorescence in chronic essential hypertension.

    PubMed

    Ramezani, Alireza; Saberian, Peyman; Soheilian, Masoud; Parsa, Saeed Alipour; Kamali, Homayoun Koohi; Entezari, Morteza; Shahbazi, Mohammad-Mehdi; Yaseri, Mehdi

    2014-01-01

    To evaluate fundus autofluorescence (FAF) changes in patients with chronic essential hypertension (HTN). In this case-control study, 35 eyes of 35 patients with chronic essential HTN (lasting >5 years) and 31 eyes of 31 volunteers without history of HTN were included. FAF pictures were taken from right eyes of all cases with the Heidelberg retina angiography and then were assessed by two masked retinal specialists. In total, FAF images including 35 images of hypertensive patients and 31 pictures of volunteers, three apparently abnormal patterns were detected. A ring of hyper-autofluorescence in the central macula (doughnut-shaped) was observed in 9 (25.7%) eyes of the hypertensive group but only in 2 (6.5%) eyes of the control group. This difference was statistically significant (P = 0.036) between two groups. Hypo- and/or hyper-autofluorescence patches outside the fovea were the other sign found more in the hypertensive group (22.9%) than in the control group (6.5%); however, the difference was not statistically significant (P = 0.089). The third feature was hypo-autofluorescence around the disk noticed in 11 (31.4%) eyes of hypertensive patients compared to 8 (25.8%) eyes of the controls (P = 0.615). A ring of hyper-autofluorescence in the central macula forming a doughnut-shaped feature may be a FAF sign in patients with chronic essential HTN.

  15. 75 FR 2434 - Special Conditions: Boeing Model 747-8/-8F Series Airplanes; Design Roll Maneuver Requirement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-15

    ... have novel or unusual design features when compared to the state of technology envisioned in the... standards. Additional special conditions will be issued for other novel or unusual design features of the... 747-8/-8F because of a novel or unusual design feature, special conditions are prescribed under the...

  16. Multi-purpose hydrogen isotopes separation plant design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boniface, H.A.; Gnanapragasam, N.V.; Ryland, D.K.

    2015-03-15

    There is a potential interest at AECL's Chalk River Laboratories to remove tritium from moderately tritiated light water and to reclaim tritiated, downgraded heavy water. With only a few limitations, a single CECE (Combined Electrolysis and Catalytic Exchange) process configuration can be designed to remove tritium from heavy water or light water and upgrade heavy water. Such a design would have some restrictions on the nature of the feed-stock and tritium product, but could produce essentially tritium-free light or heavy water that is chemically pure. The extracted tritium is produced as a small quantity of tritiated heavy water. The overallmore » plant capacity is fixed by the total amount of electrolysis and volume of catalyst. In this proposal, with 60 kA of electrolysis a throughput of 15 kg*h{sup -1} light water for detritiation, about 4 kg*h{sup -1} of heavy water for detritiation and about 27 kg*h{sup -1} of 98% heavy water for upgrading can be processed. Such a plant requires about 1,000 liters of AECL isotope exchange catalyst. The general design features and details of this multi-purpose CECE process are described in this paper, based on some practical choices of design criteria. In addition, we outline the small differences that must be accommodated and some compromises that must be made to make the plant capable of such flexible operation. (authors)« less

  17. Tubular space truss structure for SKITTER 2 robot

    NASA Technical Reports Server (NTRS)

    Beecham, Richard; Dejulio, Linda; Delorme, Paul; Eck, Eric; Levy, Avi; Lowery, Joel; Radack, Joe; Sheffield, Randy; Stevens, Scott

    1988-01-01

    The Skitter 2 is a three legged transport vehicle designed to demonstrate the principle of a tripod walker in a multitude of environments. The tubular truss model of Skitter 2 is a proof of principal design. The model will replicate the operational capabilities of Skitter 2 including its ability to self-right itself. The project's focus was on the use of light weight tubular members in the final structural design. A strong design for the body was required as it will undergo the most intense loading. Triangular geometry was used extensively in the body, providing the required structural integrity and eliminating the need for cumbersome shear panels. Both the basic femur and tibia designs also relied on the strong geometry of the triangle. An intense literature search aided in the development of the most suitable weld techniques, joints, linkages, and materials required for a durable design. The hinge design features the use of spherical rod end bearings. In order to obtain a greater range of mobility in the tibia, a four-bar linkage was designed which attaches both to the femur and the tibia. All component designs, specifically the body, femur, and the tibia were optimized using the software package IDEAS 3.8A Supertab. The package provided essential deformation and stress analysis information on each component's design. The final structure incurred only a 0.0544 inch deflection in a maximum (worst case) loading situation. The highest stress experienced by any AL6061-T6 tubular member was 1920 psi. The structural integrity of the final design facilitated the use of Aluminum 6061-T6 tubing. The tubular truss structure of Skitter 2 is an effective and highly durable design. All facets of the design are structurally sound and cost effective.

  18. Electronic camera-management system for 35-mm and 70-mm film cameras

    NASA Astrophysics Data System (ADS)

    Nielsen, Allan

    1993-01-01

    Military and commercial test facilities have been tasked with the need for increasingly sophisticated data collection and data reduction. A state-of-the-art electronic control system for high speed 35 mm and 70 mm film cameras designed to meet these tasks is described. Data collection in today's test range environment is difficult at best. The need for a completely integrated image and data collection system is mandated by the increasingly complex test environment. Instrumentation film cameras have been used on test ranges to capture images for decades. Their high frame rates coupled with exceptionally high resolution make them an essential part of any test system. In addition to documenting test events, today's camera system is required to perform many additional tasks. Data reduction to establish TSPI (time- space-position information) may be performed after a mission and is subject to all of the variables present in documenting the mission. A typical scenario would consist of multiple cameras located on tracking mounts capturing the event along with azimuth and elevation position data. Corrected data can then be reduced using each camera's time and position deltas and calculating the TSPI of the object using triangulation. An electronic camera control system designed to meet these requirements has been developed by Photo-Sonics, Inc. The feedback received from test technicians at range facilities throughout the world led Photo-Sonics to design the features of this control system. These prominent new features include: a comprehensive safety management system, full local or remote operation, frame rate accuracy of less than 0.005 percent, and phase locking capability to Irig-B. In fact, Irig-B phase lock operation of multiple cameras can reduce the time-distance delta of a test object traveling at mach-1 to less than one inch during data reduction.

  19. Examining the design features of a communication-rich, problem-centred mathematics professional development

    NASA Astrophysics Data System (ADS)

    de Araujo, Zandra; Orrill, Chandra Hawley; Jacobson, Erik

    2018-04-01

    While there is considerable scholarship describing principles for effective professional development, there have been few attempts to examine these principles in practice. In this paper, we identify and examine the particular design features of a mathematics professional development experience provided for middle grades teachers over 14 weeks. The professional development was grounded in a set of mathematical tasks that each had one right answer, but multiple solution paths. The facilitator engaged participants in problem solving and encouraged participants to work collaboratively to explore different solution paths. Through analysis of this collaborative learning environment, we identified five design features for supporting teacher learning of important mathematics and pedagogy in a problem-solving setting. We discuss these design features in depth and illustrate them by presenting an elaborated example from the professional development. This study extends the existing guidance for the design of professional development by examining and operationalizing the relationships among research-based features of effective professional development and the enacted features of a particular design.

  20. Factorial design of essential oil extraction from Fagraea fragrans Roxb. flowers and evaluation of its biological activities for perfumery and cosmetic applications.

    PubMed

    Yingngam, B; Brantner, A H

    2015-06-01

    To optimize the extraction yields of essential oil from Fagraea fragrans Roxb. flowers in hydro-distillation using a central composite design (CCD) and to evaluate its biological activities for perfumery and cosmetic applications. Central composite design was applied to study the influences of operational parameters [water to flower weight (X(1)) and distillation time (X(2))] on the yields of essential oil (Y). Chemical compositions of the essential oil extracted from the optimized condition were identified by gas chromatography-mass spectrometry. Antioxidant activities of the essential oil were determined against ABTS(•+) and DPPH(•) radicals, and the cytotoxic effects were assessed on human embryonic kidney (HEK293) cells by the use of the MTT assay. Also, the aromatic properties of the essential oil were evaluated by five healthy trained volunteers. The best conditions to obtain the maximum essential oil yield were 7.5 mL g(-1) (X(1)) and 215 min (X(2)). The experimental yield of the essential oil (0.35 ± 0.02% v/w) was close to the value predicted by a mathematical model (0.35 ± 0.01% v/w). 3-Octadecyne, Z,Z,Z-7,10,13-hexadecatrienal, E-nerolidol, pentadecanal and linalool were the major constituents of the essential oil. The essential oil showed moderate antioxidant capacities with no toxic effects on HEK293 cells at 1-250 μg mL(-1). Also, the essential oil exhibited a very strong aroma and was classified to be top- to middle-notes. The results offer the effectively operational conditions in the extraction of essential oil from F. fragrans using hydro-distillation. The essential oil could be used as a natural fragrance, having antioxidant activity with slight cytotoxicity, for perfumery and cosmetic applications. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  1. Structural Basis of HCV Neutralization by Human Monoclonal Antibodies Resistant to Viral Neutralization Escape

    PubMed Central

    Krey, Thomas; Meola, Annalisa; Keck, Zhen-yong; Damier-Piolle, Laurence; Foung, Steven K. H.; Rey, Felix A.

    2013-01-01

    The high mutation rate of hepatitis C virus allows it to rapidly evade the humoral immune response. However, certain epitopes in the envelope glycoproteins cannot vary without compromising virus viability. Antibodies targeting these epitopes are resistant to viral escape from neutralization and understanding their binding-mode is important for vaccine design. Human monoclonal antibodies HC84-1 and HC84-27 target conformational epitopes overlapping the CD81 receptor-binding site, formed by segments aa434–446 and aa610–619 within the major HCV glycoprotein E2. No neutralization escape was yet observed for these antibodies. We report here the crystal structures of their Fab fragments in complex with a synthetic peptide comprising aa434–446. The structures show that the peptide adopts an α-helical conformation with the main contact residues F442 and Y443 forming a hydrophobic protrusion. The peptide retained its conformation in both complexes, independently of crystal packing, indicating that it reflects a surface feature of the folded glycoprotein that is exposed similarly on the virion. The same residues of E2 are also involved in interaction with CD81, suggesting that the cellular receptor binds the same surface feature and potential escape mutants critically compromise receptor binding. In summary, our results identify a critical structural motif at the E2 surface, which is essential for virus propagation and therefore represents an ideal candidate for structure-based immunogen design for vaccine development. PMID:23696737

  2. A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Guo, Yanzhi; Kuang, Qifan; Pu, Xuemei; Ji, Yue; Zhang, Zhihang; Li, Menglong

    2015-04-01

    The assessment of binding affinity between ligands and the target proteins plays an essential role in drug discovery and design process. As an alternative to widely used scoring approaches, machine learning methods have also been proposed for fast prediction of the binding affinity with promising results, but most of them were developed as all-purpose models despite of the specific functions of different protein families, since proteins from different function families always have different structures and physicochemical features. In this study, we proposed a random forest method to predict the protein-ligand binding affinity based on a comprehensive feature set covering protein sequence, binding pocket, ligand structure and intermolecular interaction. Feature processing and compression was respectively implemented for different protein family datasets, which indicates that different features contribute to different models, so individual representation for each protein family is necessary. Three family-specific models were constructed for three important protein target families of HIV-1 protease, trypsin and carbonic anhydrase respectively. As a comparison, two generic models including diverse protein families were also built. The evaluation results show that models on family-specific datasets have the superior performance to those on the generic datasets and the Pearson and Spearman correlation coefficients ( R p and Rs) on the test sets are 0.740, 0.874, 0.735 and 0.697, 0.853, 0.723 for HIV-1 protease, trypsin and carbonic anhydrase respectively. Comparisons with the other methods further demonstrate that individual representation and model construction for each protein family is a more reasonable way in predicting the affinity of one particular protein family.

  3. Clinical and histologic features of acute-onset erythroderma in dogs with gastrointestinal disease: 18 cases (2005-2015).

    PubMed

    Cain, Christine L; Bradley, Charles W; Mauldin, Elizabeth A

    2017-12-15

    OBJECTIVE To describe the clinical and histologic features of acute erythroderma in dogs with gastrointestinal disease. DESIGN Retrospective case series. ANIMALS 18 dogs with erythroderma and gastrointestinal disease. PROCEDURES Medical records and biopsy specimens were reviewed. Information collected from medical records included signalment, clinical signs, physical examination and diagnostic test results, treatment, and outcome. The Naranjo algorithm was used to estimate the probability of an adverse drug reaction for each dog. RESULTS All dogs had an acute onset of erythematous macules or generalized erythroderma. Histologic features of skin biopsy specimens had 3 patterns representing a progressive spectrum of inflammation. Most dogs had vomiting (n = 17) and hematochezia (10). Signs of gastrointestinal disease became evident before, after, or concurrent with the onset of skin lesions in 10, 3, and 5 dogs, respectively. Inflammatory bowel disease, pancreatitis, and adverse food reaction were diagnosed in 5, 3, and 3 dogs, respectively. The cause of the gastrointestinal signs was not identified for 8 dogs. Eight dogs had a Naranjo score consistent with a possible adverse drug reaction. Treatment of skin lesions included drug withdrawal (n = 15), antihistamines (16), and corticosteroids (14). Signs of gastrointestinal disease and skin lesions resolved at a mean of 4.6 days and 20.8 days, respectively, after onset. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated acute erythroderma may be associated with > 1 gastrointestinal disease or an adverse drug reaction in some dogs. Recognition of the clinical and histologic features of this syndrome is essential for accurate diagnosis.

  4. 77 FR 64023 - Special Conditions: Airbus Model A318, A319, A320, and A321 Series Airplanes; Design Roll...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... airplanes with modification 160023 (Sharklet). These airplanes will have novel or unusual design features..., A320, and A321 series airplanes because of a novel or unusual design feature, special conditions are... model that incorporates the same novel or unusual design feature, or should any other model already...

  5. 78 FR 67291 - Special Conditions: Bombardier Inc., Models BD-500-1A10 and BD-500-1A11 Series Airplanes; Design...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... have a novel or unusual design feature associated with an electronic flight control system that... because of a novel or unusual design feature, special conditions are prescribed under the provisions of... same or similar novel or unusual design feature, the special conditions would also apply to the other...

  6. A prototype analysis of forgiveness.

    PubMed

    Kearns, Jill N; Fincham, Frank D

    2004-07-01

    Many definitions of forgiveness currently exist in the literature. The current research adds to this discussion by utilizing a prototype approach to examine lay conceptions of forgiveness. A prototype approach involves categorizing objects or events in terms of their similarity to a good example, whereas a classical approach requires that there are essential elements that must be present. In Study 1, participants listed the features of forgiveness. Study 2 obtained centrality ratings for these features. In Studies 3 and 4, central features were found to be more salient in memory than peripheral features. Study 5 showed that feature centrality influenced participants' ratings of victims involved in hypothetical transgressions. Thus, the two criteria for demonstrating prototype structure (that participants find it meaningful to judge features in terms of their centrality and that centrality affects cognition) were met.

  7. 76 FR 15798 - Special Conditions: Boeing 747-468, Installation of a Medical Lift

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... a novel or unusual design feature associated with the installation of a medical lift. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. These... airworthiness regulations do not contain adequate or appropriate safety standards for this design feature. Type...

  8. Supporting Active Living Through Community Plans: The Association of Planning Documents With Design Standards and Features.

    PubMed

    Peterson, Erin L; Carlson, Susan A; Schmid, Thomas L; Brown, David R; Galuska, Deborah A

    2018-01-01

    The purpose of this study was to examine the association between the presence of supportive community planning documents in US municipalities with design standards and requirements supportive of active living. Cross-sectional study using data from the 2014 National Survey of Community-Based Policy and Environmental Supports for Healthy Eating and Active Living. Nationally representative sample of US municipalities. Respondents are 2005 local officials. Assessed: (1) The presence of design standards and feature requirements and (2) the association between planning documents and design standards and feature requirements supportive of active living in policies for development. Using logistic regression, significant trends were identified in the presence of design standards and feature requirements by plan and number of supportive objectives present. Prevalence of design standards ranged from 19% (developer dedicated right-of-way for bicycle infrastructure development) to 50% (traffic-calming features in areas with high pedestrian and bicycle volume). Features required in policies for development ranged from 14% (short/medium pedestrian-scale block sizes) to 44% (minimum sidewalk widths of 5 feet) of municipalities. As the number of objectives in municipal plans increased, there was a significant and positive trend ( P < .05) in the prevalence of each design standard and requirement. Municipal planning documents containing objectives supportive of physical activity are associated with design standards and feature requirements supportive of activity-friendly communities.

  9. Toward End-to-End Face Recognition Through Alignment Learning

    NASA Astrophysics Data System (ADS)

    Zhong, Yuanyi; Chen, Jiansheng; Huang, Bo

    2017-08-01

    Plenty of effective methods have been proposed for face recognition during the past decade. Although these methods differ essentially in many aspects, a common practice of them is to specifically align the facial area based on the prior knowledge of human face structure before feature extraction. In most systems, the face alignment module is implemented independently. This has actually caused difficulties in the designing and training of end-to-end face recognition models. In this paper we study the possibility of alignment learning in end-to-end face recognition, in which neither prior knowledge on facial landmarks nor artificially defined geometric transformations are required. Specifically, spatial transformer layers are inserted in front of the feature extraction layers in a Convolutional Neural Network (CNN) for face recognition. Only human identity clues are used for driving the neural network to automatically learn the most suitable geometric transformation and the most appropriate facial area for the recognition task. To ensure reproducibility, our model is trained purely on the publicly available CASIA-WebFace dataset, and is tested on the Labeled Face in the Wild (LFW) dataset. We have achieved a verification accuracy of 99.08\\% which is comparable to state-of-the-art single model based methods.

  10. Reaction-diffusion processes at the nano- and microscales

    NASA Astrophysics Data System (ADS)

    Epstein, Irving R.; Xu, Bing

    2016-04-01

    The bottom-up fabrication of nano- and microscale structures from primary building blocks (molecules, colloidal particles) has made remarkable progress over the past two decades, but most research has focused on structural aspects, leaving our understanding of the dynamic and spatiotemporal aspects at a relatively primitive stage. In this Review, we draw inspiration from living cells to argue that it is now time to move beyond the generation of structures and explore dynamic processes at the nanoscale. We first introduce nanoscale self-assembly, self-organization and reaction-diffusion processes as essential features of cells. Then, we highlight recent progress towards designing and controlling these fundamental features of life in abiological systems. Specifically, we discuss examples of reaction-diffusion processes that lead to such outcomes as self-assembly, self-organization, unique nanostructures, chemical waves and dynamic order to illustrate their ubiquity within a unifying context of dynamic oscillations and energy dissipation. Finally, we suggest future directions for research on reaction-diffusion processes at the nano- and microscales that we find hold particular promise for a new understanding of science at the nanoscale and the development of new kinds of nanotechnologies for chemical transport, chemical communication and integration with living systems.

  11. MR imaging guidance for minimally invasive procedures

    NASA Astrophysics Data System (ADS)

    Wong, Terence Z.; Kettenbach, Joachim; Silverman, Stuart G.; Schwartz, Richard B.; Morrison, Paul R.; Kacher, Daniel F.; Jolesz, Ferenc A.

    1998-04-01

    Image guidance is one of the major challenges common to all minimally invasive procedures including biopsy, thermal ablation, endoscopy, and laparoscopy. This is essential for (1) identifying the target lesion, (2) planning the minimally invasive approach, and (3) monitoring the therapy as it progresses. MRI is an ideal imaging modality for this purpose, providing high soft tissue contrast and multiplanar imaging, capability with no ionizing radiation. An interventional/surgical MRI suite has been developed at Brigham and Women's Hospital which provides multiplanar imaging guidance during surgery, biopsy, and thermal ablation procedures. The 0.5T MRI system (General Electric Signa SP) features open vertical access, allowing intraoperative imaging to be performed. An integrated navigational system permits near real-time control of imaging planes, and provides interactive guidance for positioning various diagnostic and therapeutic probes. MR imaging can also be used to monitor cryotherapy as well as high temperature thermal ablation procedures sing RF, laser, microwave, or focused ultrasound. Design features of the interventional MRI system will be discussed, and techniques will be described for interactive image acquisition and tracking of interventional instruments. Applications for interactive and near-real-time imaging will be presented as well as examples of specific procedures performed using MRI guidance.

  12. Encoding mechano-memories in filamentous-actin networks

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Foucard, Louis; Levine, Alex; Gardel, Margaret L.

    History-dependent adaptation is a central feature of learning and memory. Incorporating such features into `adaptable materials' that can modify their mechanical properties in response to external cues, remains an outstanding challenge in materials science. Here, we study a novel mechanism of mechano-memory in cross-linked F-actin networks, the essential determinants of the mechanical behavior of eukaryotic cells. We find that the non-linear mechanical response of such networks can be reversibly programmed through induction of mechano-memories. In particular, the direction, magnitude, and duration of previously applied shear stresses can be encoded into the network architecture. The `memory' of the forcing history is long-lived, but it can be erased by force applied in the opposite direction. These results demonstrate that F-actin networks can encode analog read-write mechano-memories which can be used for adaptation to mechanical stimuli. We further show that the mechano-memory arises from changes in the nematic order of the constituent filaments. Our results suggest a new mechanism of mechanical sensing in eukaryotic cells and provide a strategy for designing a novel class of materials. S.M. acknowledges U. Chicago MRSEC for support through a Kadanoff-Rice fellowship.

  13. Remote quantum entanglement between two micromechanical oscillators.

    PubMed

    Riedinger, Ralf; Wallucks, Andreas; Marinković, Igor; Löschnauer, Clemens; Aspelmeyer, Markus; Hong, Sungkun; Gröblacher, Simon

    2018-04-01

    Entanglement, an essential feature of quantum theory that allows for inseparable quantum correlations to be shared between distant parties, is a crucial resource for quantum networks 1 . Of particular importance is the ability to distribute entanglement between remote objects that can also serve as quantum memories. This has been previously realized using systems such as warm 2,3 and cold atomic vapours 4,5 , individual atoms 6 and ions 7,8 , and defects in solid-state systems 9-11 . Practical communication applications require a combination of several advantageous features, such as a particular operating wavelength, high bandwidth and long memory lifetimes. Here we introduce a purely micromachined solid-state platform in the form of chip-based optomechanical resonators made of nanostructured silicon beams. We create and demonstrate entanglement between two micromechanical oscillators across two chips that are separated by 20 centimetres . The entangled quantum state is distributed by an optical field at a designed wavelength near 1,550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-optic quantum network operating in the conventional optical telecommunication band. Our results are an important step towards the development of large-area quantum networks based on silicon photonics.

  14. Microporous polymeric 3D scaffolds templated by the layer-by-layer self-assembly.

    PubMed

    Paulraj, Thomas; Feoktistova, Natalia; Velk, Natalia; Uhlig, Katja; Duschl, Claus; Volodkin, Dmitry

    2014-08-01

    Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio-molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer-by-layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 μm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio-molecules using external triggers such as IR-light. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Understanding fuel magnetization and mix using secondary nuclear reactions in magneto-inertial fusion.

    PubMed

    Schmit, P F; Knapp, P F; Hansen, S B; Gomez, M R; Hahn, K D; Sinars, D B; Peterson, K J; Slutz, S A; Sefkow, A B; Awe, T J; Harding, E; Jennings, C A; Chandler, G A; Cooper, G W; Cuneo, M E; Geissel, M; Harvey-Thompson, A J; Herrmann, M C; Hess, M H; Johns, O; Lamppa, D C; Martin, M R; McBride, R D; Porter, J L; Robertson, G K; Rochau, G A; Rovang, D C; Ruiz, C L; Savage, M E; Smith, I C; Stygar, W A; Vesey, R A

    2014-10-10

    Magnetizing the fuel in inertial confinement fusion relaxes ignition requirements by reducing thermal conductivity and changing the physics of burn product confinement. Diagnosing the level of fuel magnetization during burn is critical to understanding target performance in magneto-inertial fusion (MIF) implosions. In pure deuterium fusion plasma, 1.01 MeV tritons are emitted during deuterium-deuterium fusion and can undergo secondary deuterium-tritium reactions before exiting the fuel. Increasing the fuel magnetization elongates the path lengths through the fuel of some of the tritons, enhancing their probability of reaction. Based on this feature, a method to diagnose fuel magnetization using the ratio of overall deuterium-tritium to deuterium-deuterium neutron yields is developed. Analysis of anisotropies in the secondary neutron energy spectra further constrain the measurement. Secondary reactions also are shown to provide an upper bound for the volumetric fuel-pusher mix in MIF. The analysis is applied to recent MIF experiments [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z Pulsed Power Facility, indicating that significant magnetic confinement of charged burn products was achieved and suggesting a relatively low-mix environment. Both of these are essential features of future ignition-scale MIF designs.

  16. Two molecular features contribute to the Argonaute specificity for the microRNA and RNAi pathways in C. elegans.

    PubMed

    Jannot, Guillaume; Boisvert, Marie-Eve L; Banville, Isabelle H; Simard, Martin J

    2008-05-01

    In Caenorhabditis elegans, specific Argonaute proteins are dedicated to the RNAi and microRNA pathways. To uncover how the precise Argonaute selection occurs, we designed dsRNA triggers containing both miRNA and siRNA sequences. While dsRNA carrying nucleotides mismatches can only enter the miRNA pathway, a fully complementary dsRNA successfully rescues let-7 miRNA function and initiates silencing by RNAi. We demonstrated that RDE-1 is essential for RNAi induced by the perfectly paired trigger, yet is not required for silencing by the let-7 miRNA. In contrast, ALG-1/ALG-2 are required for the miRNA function, but not for the siRNA-directed gene silencing. Finally, a dsRNA containing a bulged miRNA and a perfectly paired siRNA can enter both pathways suggesting that the sorting of small RNAs occurs after that the dsRNA trigger has been processed by Dicer. Thus, our data suggest that the selection of Argonaute proteins is affected by two molecular features: (1) the structure of the small RNA duplex; and (2) the Argonautes specific characteristics.

  17. Structural Features of a Hyperthermostable Endo-β-1,3-glucanase in Solution and Adsorbed on “Invisible” Particles

    PubMed Central

    Koutsopoulos, Sotirios; van der Oost, John; Norde, Willem

    2005-01-01

    Conformational characteristics and the adsorption behavior of endo-β-1,3-glucanase from the hyperthermophilic microorganism Pyrococcus furiosus were studied by circular dichroism, steady-state and time-resolved fluorescence spectroscopy, and calorimetry in solution and in the adsorbed state. The adsorption isotherms were determined on two types of surfaces: hydrophobic Teflon and hydrophilic silica particles were specially designed so that they do not interact with light and therefore do not interfere with spectroscopic measurements. We present the most straightforward method to study structural features of adsorbed macromolecules in situ using common spectroscopic techniques. The enzyme was irreversibly adsorbed and immobilized in the adsorbed state even at high temperatures. Adsorption offered further stabilization to the heat-stable enzyme and in the case of adsorption on Teflon its denaturation temperature was measured at 133°C, i.e., the highest experimentally determined for a protein. The maintenance of the active conformation and biological function particularly at high temperatures is important for applications in biocatalysis and biotechnology. With this study we also suggest that nature may employ adsorption as a complementary mode to maintain structural integrity of essential biomolecules at extreme conditions of temperature. PMID:15516527

  18. Re-Defining the Radio Operator: Honing AFSOF’s Edge for the Joint IW Fight

    DTIC Science & Technology

    2011-02-16

    Containment Before Korea. Westport, Connecticut. Greenwood Press. Daft , R. L. (2003). Essentials of Organization Theory and Design , Fourth...Managing Differentiation and Integration, p 213. 25 Ibid. 26 Daft , Essentials of Organization Theory and Design , Fourth Edition, p 18. 27 Ibid...classic 2 organizational and systems design theory to evaluate various approaches AFSOC could take to fill its need for worldwide dedicated airborne

  19. GATOR: Requirements capturing of telephony features

    NASA Technical Reports Server (NTRS)

    Dankel, Douglas D., II; Walker, Wayne; Schmalz, Mark

    1992-01-01

    We are developing a natural language-based, requirements gathering system called GATOR (for the GATherer Of Requirements). GATOR assists in the development of more accurate and complete specifications of new telephony features. GATOR interacts with a feature designer who describes a new feature, set of features, or capability to be implemented. The system aids this individual in the specification process by asking for clarifications when potential ambiguities are present, by identifying potential conflicts with other existing features, and by presenting its understanding of the feature to the designer. Through user interaction with a model of the existing telephony feature set, GATOR constructs a formal representation of the new, 'to be implemented' feature. Ultimately GATOR will produce a requirements document and will maintain an internal representation of this feature to aid in future design and specification. This paper consists of three sections that describe (1) the structure of GATOR, (2) POND, GATOR's internal knowledge representation language, and (3) current research issues.

  20. Structure of a fungal form of aspartate semialdehyde dehydrogenase from Cryptococcus neoformans

    PubMed Central

    Dahal, Gopal; Viola, Ronald E.

    2015-01-01

    Aspartate semialdehyde dehydrogenase (ASADH) functions at a critical junction in the aspartate-biosynthetic pathway and represents a valid target for antimicrobial drug design. This enzyme catalyzes the NADPH-dependent reductive dephosphorylation of β-aspartyl phosphate to produce the key intermediate aspartate semialdehyde. Production of this intermediate represents the first committed step in the biosynthesis of the essential amino acids methionine, isoleucine and threonine in fungi, and also the amino acid lysine in bacteria. The structure of a new fungal form of ASADH from Cryptococcus neoformans has been determined to 2.6 Å resolution. The overall structure of CnASADH is similar to those of its bacterial orthologs, but with some critical differences both in biological assembly and in secondary-structural features that can potentially be exploited for the development of species-selective drugs. PMID:26527262

  1. Features and characterization needs of rubber composite structures

    NASA Technical Reports Server (NTRS)

    Tabaddor, Farhad

    1989-01-01

    Some of the major unique features of rubber composite structures are outlined. The features covered are those related to the material properties, but the analytical features are also briefly discussed. It is essential to recognize these features at the planning stage of any long-range analytical, experimental, or application program. The development of a general and comprehensive program which fully accounts for all the important characteristics of tires, under all the relevant modes of operation, may present a prohibitively expensive and impractical task at the near future. There is therefore a need to develop application methodologies which can utilize the less general models, beyond their theoretical limitations and yet with reasonable reliability, by proper mix of analytical, experimental, and testing activities.

  2. Gamification and Adherence to Web-Based Mental Health Interventions: A Systematic Review.

    PubMed

    Brown, Menna; O'Neill, Noelle; van Woerden, Hugo; Eslambolchilar, Parisa; Jones, Matt; John, Ann

    2016-08-24

    Adherence to effective Web-based interventions for common mental disorders (CMDs) and well-being remains a critical issue, with clear potential to increase effectiveness. Continued identification and examination of "active" technological components within Web-based interventions has been called for. Gamification is the use of game design elements and features in nongame contexts. Health and lifestyle interventions have implemented a variety of game features in their design in an effort to encourage engagement and increase program adherence. The potential influence of gamification on program adherence has not been examined in the context of Web-based interventions designed to manage CMDs and well-being. This study seeks to review the literature to examine whether gaming features predict or influence reported rates of program adherence in Web-based interventions designed to manage CMDs and well-being. A systematic review was conducted of peer-reviewed randomized controlled trials (RCTs) designed to manage CMDs or well-being and incorporated gamification features. Seven electronic databases were searched. A total of 61 RCTs met the inclusion criteria and 47 different intervention programs were identified. The majority were designed to manage depression using cognitive behavioral therapy. Eight of 10 popular gamification features reviewed were in use. The majority of studies utilized only one gamification feature (n=58) with a maximum of three features. The most commonly used feature was story/theme. Levels and game leaders were not used in this context. No studies explicitly examined the role of gamification features on program adherence. Usage data were not commonly reported. Interventions intended to be 10 weeks in duration had higher mean adherence than those intended to be 6 or 8 weeks in duration. Gamification features have been incorporated into the design of interventions designed to treat CMD and well-being. Further research is needed to improve understanding of gamification features on adherence and engagement in order to inform the design of future Web-based health interventions in which adherence to treatment is of concern. Conclusions were limited by varied reporting of adherence and usage data.

  3. Gamification and Adherence to Web-Based Mental Health Interventions: A Systematic Review

    PubMed Central

    O'Neill, Noelle; van Woerden, Hugo; Eslambolchilar, Parisa; Jones, Matt; John, Ann

    2016-01-01

    Background Adherence to effective Web-based interventions for common mental disorders (CMDs) and well-being remains a critical issue, with clear potential to increase effectiveness. Continued identification and examination of “active” technological components within Web-based interventions has been called for. Gamification is the use of game design elements and features in nongame contexts. Health and lifestyle interventions have implemented a variety of game features in their design in an effort to encourage engagement and increase program adherence. The potential influence of gamification on program adherence has not been examined in the context of Web-based interventions designed to manage CMDs and well-being. Objective This study seeks to review the literature to examine whether gaming features predict or influence reported rates of program adherence in Web-based interventions designed to manage CMDs and well-being. Methods A systematic review was conducted of peer-reviewed randomized controlled trials (RCTs) designed to manage CMDs or well-being and incorporated gamification features. Seven electronic databases were searched. Results A total of 61 RCTs met the inclusion criteria and 47 different intervention programs were identified. The majority were designed to manage depression using cognitive behavioral therapy. Eight of 10 popular gamification features reviewed were in use. The majority of studies utilized only one gamification feature (n=58) with a maximum of three features. The most commonly used feature was story/theme. Levels and game leaders were not used in this context. No studies explicitly examined the role of gamification features on program adherence. Usage data were not commonly reported. Interventions intended to be 10 weeks in duration had higher mean adherence than those intended to be 6 or 8 weeks in duration. Conclusions Gamification features have been incorporated into the design of interventions designed to treat CMD and well-being. Further research is needed to improve understanding of gamification features on adherence and engagement in order to inform the design of future Web-based health interventions in which adherence to treatment is of concern. Conclusions were limited by varied reporting of adherence and usage data. PMID:27558893

  4. Direct model reference adaptive control of a flexible robotic manipulator

    NASA Technical Reports Server (NTRS)

    Meldrum, D. R.

    1985-01-01

    Quick, precise control of a flexible manipulator in a space environment is essential for future Space Station repair and satellite servicing. Numerous control algorithms have proven successful in controlling rigid manipulators wih colocated sensors and actuators; however, few have been tested on a flexible manipulator with noncolocated sensors and actuators. In this thesis, a model reference adaptive control (MRAC) scheme based on command generator tracker theory is designed for a flexible manipulator. Quicker, more precise tracking results are expected over nonadaptive control laws for this MRAC approach. Equations of motion in modal coordinates are derived for a single-link, flexible manipulator with an actuator at the pinned-end and a sensor at the free end. An MRAC is designed with the objective of controlling the torquing actuator so that the tip position follows a trajectory that is prescribed by the reference model. An appealing feature of this direct MRAC law is that it allows the reference model to have fewer states than the plant itself. Direct adaptive control also adjusts the controller parameters directly with knowledge of only the plant output and input signals.

  5. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast.

    PubMed

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A

    2016-06-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3' end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. Copyright © 2016 Larson et al.

  6. Performance tests for the NASA Ames Research Center 20 cm x 40 cm oscillating flow wind tunnel

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Giddings, T. A.

    1984-01-01

    An evaluation is presented of initial tests conducted to assess the performance of the NASA Ames 20 cm x 40 cm oscillating flow wind tunnel. The features of the tunnel are described and two aspects of tunnel operation are discussed. The first is an assessment of the steady mainstream and boundary layer flows and the second deals with oscillating mainstream and boundary layer flows. Experimental results indicate that in steady flow the test section mainstream velocity is uniform in the flow direction and in cross section. The freestream turbulence intensity is about 0.2 percent. With minor exceptions the steady turbulent boundary layer generated on the top wall of the test section exhibits the characteristics of a zero pressure gradient turbulent boundary layer generated on a flat plate. The tunnel was designed to generate sinusoidal oscillating mainstream flows. Experiments confirm that the tunnel produces sinusoidal mainstream velocity variations for the range of frequencies (up to 15 Hz). The results of this study demonstrate that the tunnel essentially produces the flows that it was designed to produce.

  7. The dynamical analysis of modified two-compartment neuron model and FPGA implementation

    NASA Astrophysics Data System (ADS)

    Lin, Qianjin; Wang, Jiang; Yang, Shuangming; Yi, Guosheng; Deng, Bin; Wei, Xile; Yu, Haitao

    2017-10-01

    The complexity of neural models is increasing with the investigation of larger biological neural network, more various ionic channels and more detailed morphologies, and the implementation of biological neural network is a task with huge computational complexity and power consumption. This paper presents an efficient digital design using piecewise linearization on field programmable gate array (FPGA), to succinctly implement the reduced two-compartment model which retains essential features of more complicated models. The design proposes an approximate neuron model which is composed of a set of piecewise linear equations, and it can reproduce different dynamical behaviors to depict the mechanisms of a single neuron model. The consistency of hardware implementation is verified in terms of dynamical behaviors and bifurcation analysis, and the simulation results including varied ion channel characteristics coincide with the biological neuron model with a high accuracy. Hardware synthesis on FPGA demonstrates that the proposed model has reliable performance and lower hardware resource compared with the original two-compartment model. These investigations are conducive to scalability of biological neural network in reconfigurable large-scale neuromorphic system.

  8. Computer retina that models the primate retina

    NASA Astrophysics Data System (ADS)

    Shah, Samir; Levine, Martin D.

    1994-06-01

    At the retinal level, the strategies utilized by biological visual systems allow them to outperform machine vision systems, serving to motivate the design of electronic or `smart' sensors based on similar principles. Design of such sensors in silicon first requires a model of retinal information processing which captures the essential features exhibited by biological retinas. In this paper, a simple retinal model is presented, which qualitatively accounts for the achromatic information processing in the primate cone system. The model exhibits many of the properties found in biological retina such as data reduction through nonuniform sampling, adaptation to a large dynamic range of illumination levels, variation of visual acuity with illumination level, and enhancement of spatio temporal contrast information. The model is validated by replicating experiments commonly performed by electrophysiologists on biological retinas and comparing the response of the computer retina to data from experiments in monkeys. In addition, the response of the model to synthetic images is shown. The experiments demonstrate that the model behaves in a manner qualitatively similar to biological retinas and thus may serve as a basis for the development of an `artificial retina.'

  9. Composite 3D-printed metastructures for low-frequency and broadband vibration absorption

    NASA Astrophysics Data System (ADS)

    Matlack, Kathryn H.; Bauhofer, Anton; Krödel, Sebastian; Palermo, Antonio; Daraio, Chiara

    2016-07-01

    Architected materials that control elastic wave propagation are essential in vibration mitigation and sound attenuation. Phononic crystals and acoustic metamaterials use band-gap engineering to forbid certain frequencies from propagating through a material. However, existing solutions are limited in the low-frequency regimes and in their bandwidth of operation because they require impractical sizes and masses. Here, we present a class of materials (labeled elastic metastructures) that supports the formation of wide and low-frequency band gaps, while simultaneously reducing their global mass. To achieve these properties, the metastructures combine local resonances with structural modes of a periodic architected lattice. Whereas the band gaps in these metastructures are induced by Bragg scattering mechanisms, their key feature is that the band-gap size and frequency range can be controlled and broadened through local resonances, which are linked to changes in the lattice geometry. We demonstrate these principles experimentally, using advanced additive manufacturing methods, and inform our designs using finite-element simulations. This design strategy has a broad range of applications, including control of structural vibrations, noise, and shock mitigation.

  10. A Fully Automated and Robust Method to Incorporate Stamping Data in Crash, NVH and Durability Analysis

    NASA Astrophysics Data System (ADS)

    Palaniswamy, Hariharasudhan; Kanthadai, Narayan; Roy, Subir; Beauchesne, Erwan

    2011-08-01

    Crash, NVH (Noise, Vibration, Harshness), and durability analysis are commonly deployed in structural CAE analysis for mechanical design of components especially in the automotive industry. Components manufactured by stamping constitute a major portion of the automotive structure. In CAE analysis they are modeled at a nominal state with uniform thickness and no residual stresses and strains. However, in reality the stamped components have non-uniformly distributed thickness and residual stresses and strains resulting from stamping. It is essential to consider the stamping information in CAE analysis to accurately model the behavior of the sheet metal structures under different loading conditions. Especially with the current emphasis on weight reduction by replacing conventional steels with aluminum and advanced high strength steels it is imperative to avoid over design. Considering this growing need in industry, a highly automated and robust method has been integrated within Altair Hyperworks® to initialize sheet metal components in CAE models with stamping data. This paper demonstrates this new feature and the influence of stamping data for a full car frontal crash analysis.

  11. Interconnections Between RNA-Processing Pathways Revealed by a Sequencing-Based Genetic Screen for Pre-mRNA Splicing Mutants in Fission Yeast

    PubMed Central

    Larson, Amy; Fair, Benjamin Jung; Pleiss, Jeffrey A.

    2016-01-01

    Pre-mRNA splicing is an essential component of eukaryotic gene expression and is highly conserved from unicellular yeasts to humans. Here, we present the development and implementation of a sequencing-based reverse genetic screen designed to identify nonessential genes that impact pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, an organism that shares many of the complex features of splicing in higher eukaryotes. Using a custom-designed barcoding scheme, we simultaneously queried ∼3000 mutant strains for their impact on the splicing efficiency of two endogenous pre-mRNAs. A total of 61 nonessential genes were identified whose deletions resulted in defects in pre-mRNA splicing; enriched among these were factors encoding known or predicted components of the spliceosome. Included among the candidates identified here are genes with well-characterized roles in other RNA-processing pathways, including heterochromatic silencing and 3ʹ end processing. Splicing-sensitive microarrays confirm broad splicing defects for many of these factors, revealing novel functional connections between these pathways. PMID:27172183

  12. Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions.

    PubMed

    Shibata, Naoya; Pennycook, Stephen J; Gosnell, Tim R; Painter, Gayle S; Shelton, William A; Becher, Paul F

    2004-04-15

    Silicon nitride (Si3N4) ceramics are used in numerous applications because of their superior mechanical properties. Their intrinsically brittle nature is a critical issue, but can be overcome by introducing whisker-like microstructural features. However, the formation of such anisotropic grains is very sensitive to the type of cations used as the sintering additives. Understanding the origin of dopant effects, central to the design of high-performance Si3N4 ceramics, has been sought for many years. Here we show direct images of dopant atoms (La) within the nanometre-scale intergranular amorphous films typically found at grain boundaries, using aberration corrected Z-contrast scanning transmission electron microscopy. It is clearly shown that the La atoms preferentially segregate to the amorphous/crystal interfaces. First-principles calculations confirm the strong preference of La for the crystalline surfaces, which is essential for forming elongated grains and a toughened microstructure. Whereas principles of micrometre-scale structural design are currently used to improve the mechanical properties of ceramics, this work represents a step towards the atomic-level structural engineering required for the next generation of ceramics.

  13. Solid cryogen: a cooling system for future MgB2 MRI magnet.

    PubMed

    Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho

    2017-03-02

    An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN 2 ) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB 2 ) superconducting magnet. The rationally designed MgB 2 /SN 2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN 2 cooling system design, a wide temperature distribution on the SN 2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN 2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN 2 cooled MgB 2 superconducting coils for MRI applications.

  14. Solid cryogen: a cooling system for future MgB2 MRI magnet

    NASA Astrophysics Data System (ADS)

    Patel, Dipak; Hossain, Md Shahriar Al; Qiu, Wenbin; Jie, Hyunseock; Yamauchi, Yusuke; Maeda, Minoru; Tomsic, Mike; Choi, Seyong; Kim, Jung Ho

    2017-03-01

    An efficient cooling system and the superconducting magnet are essential components of magnetic resonance imaging (MRI) technology. Herein, we report a solid nitrogen (SN2) cooling system as a valuable cryogenic feature, which is targeted for easy usability and stable operation under unreliable power source conditions, in conjunction with a magnesium diboride (MgB2) superconducting magnet. The rationally designed MgB2/SN2 cooling system was first considered by conducting a finite element analysis simulation, and then a demonstrator coil was empirically tested under the same conditions. In the SN2 cooling system design, a wide temperature distribution on the SN2 chamber was observed due to the low thermal conductivity of the stainless steel components. To overcome this temperature distribution, a copper flange was introduced to enhance the temperature uniformity of the SN2 chamber. In the coil testing, an operating current as high as 200 A was applied at 28 K (below the critical current) without any operating or thermal issues. This work was performed to further the development of SN2 cooled MgB2 superconducting coils for MRI applications.

  15. Innovative power management, attitude determination and control tile for CubeSat standard NanoSatellites

    NASA Astrophysics Data System (ADS)

    Ali, Anwar; Mughal, M. Rizwan; Ali, Haider; Reyneri, Leonardo

    2014-03-01

    Electric power supply (EPS) and attitude determination and control subsystem (ADCS) are the most essential elements of any aerospace mission. Efficient EPS and precise ADCS are the core of any spacecraft mission. So keeping in mind their importance, they have been integrated and developed on a single tile called CubePMT module. Modular power management tiles (PMTs) are already available in the market but they are less efficient, heavier in weight, consume more power and contain less number of subsystems. Commercial of the shelf (COTS) components have been used for CubePMT implementation which are low cost and easily available from the market. CubePMT is developed on the design approach of AraMiS architecture: a project developed at Politecnico di Torino that provides low cost and higher performance space missions with dimensions larger than CubeSats. The feature of AraMiS design approach is its modularity. These modules can be reused for multiple missions which helps in significant reduction of the overall budget, development and testing time. One has just to reassemble the required subsystems to achieve the targeted specific mission.

  16. Overview of the NCC

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey

    2001-01-01

    A multi-disciplinary design/analysis tool for combustion systems is critical for optimizing the low-emission, high-performance combustor design process. Based on discussions between then NASA Lewis Research Center and the jet engine companies, an industry-government team was formed in early 1995 to develop the National Combustion Code (NCC), which is an integrated system of computer codes for the design and analysis of combustion systems. NCC has advanced features that address the need to meet designer's requirements such as "assured accuracy", "fast turnaround", and "acceptable cost". The NCC development team is comprised of Allison Engine Company (Allison), CFD Research Corporation (CFDRC), GE Aircraft Engines (GEAE), NASA Glenn Research Center (LeRC), and Pratt & Whitney (P&W). The "unstructured mesh" capability and "parallel computing" are fundamental features of NCC from its inception. The NCC system is composed of a set of "elements" which includes grid generator, main flow solver, turbulence module, turbulence and chemistry interaction module, chemistry module, spray module, radiation heat transfer module, data visualization module, and a post-processor for evaluating engine performance parameters. Each element may have contributions from several team members. Such a multi-source multi-element system needs to be integrated in a way that facilitates inter-module data communication, flexibility in module selection, and ease of integration. The development of the NCC beta version was essentially completed in June 1998. Technical details of the NCC elements are given in the Reference List. Elements such as the baseline flow solver, turbulence module, and the chemistry module, have been extensively validated; and their parallel performance on large-scale parallel systems has been evaluated and optimized. However the scalar PDF module and the Spray module, as well as their coupling with the baseline flow solver, were developed in a small-scale distributed computing environment. As a result, the validation of the NCC beta version as a whole was quite limited. Current effort has been focused on the validation of the integrated code and the evaluation/optimization of its overall performance on large-scale parallel systems.

  17. The MAX IV storage ring project

    PubMed Central

    Tavares, Pedro F.; Leemann, Simon C.; Sjöström, Magnus; Andersson, Åke

    2014-01-01

    The MAX IV facility, currently under construction in Lund, Sweden, features two electron storage rings operated at 3 GeV and 1.5 GeV and optimized for the hard X-ray and soft X-ray/VUV spectral ranges, respectively. A 3 GeV linear accelerator serves as a full-energy injector into both rings as well as a driver for a short-pulse facility, in which undulators produce X-ray pulses as short as 100 fs. The 3 GeV ring employs a multibend achromat (MBA) lattice to achieve, in a relatively short circumference of 528 m, a bare lattice emittance of 0.33 nm rad, which reduces to 0.2 nm rad as insertion devices are added. The engineering implementation of the MBA lattice raises several technological problems. The large number of strong magnets per achromat calls for a compact design featuring small-gap combined-function magnets grouped into cells and sharing a common iron yoke. The small apertures lead to a low-conductance vacuum chamber design that relies on the chamber itself as a distributed copper absorber for the heat deposited by synchrotron radiation, while non-evaporable getter (NEG) coating provides for reduced photodesorption yields and distributed pumping. Finally, a low main frequency (100 MHz) is chosen for the RF system yielding long bunches, which are further elongated by passively operated third-harmonic Landau cavities, thus alleviating collective effects, both coherent (e.g. resistive wall instabilities) and incoherent (intrabeam scattering). In this paper, we focus on the MAX IV 3 GeV ring and present the lattice design as well as the engineering solutions to the challenges inherent to such a design. As the first realisation of a light source based on the MBA concept, the MAX IV 3 GeV ring offers an opportunity for validation of concepts that are likely to be essential ingredients of future diffraction-limited light sources. PMID:25177978

  18. Supai salt karst features: Holbrook Basin, Arizona

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, J.T.

    1994-12-31

    More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 mmore » depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.« less

  19. Integration of Supportive Design Features and Technology

    ERIC Educational Resources Information Center

    Lazaros, Edward J.; Ahmadi, Reza

    2008-01-01

    Integrating supportive design features and technology into the home are excellent ways to plan to make a home "age-friendly." When an immediate need occurs for eliminating barriers in an existing home, supportive design features and technology will most often need to be examined, and some form of implementation will need to take place. While…

  20. 76 FR 10482 - Special Conditions: Boeing Model 787-8 Airplane; Overhead Flightcrew-Rest Compartment Occupiable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... Boeing Model 787-8 airplane. This airplane will have novel or unusual design features associated with an... standards for this design feature. These special conditions contain the additional safety standards that the... airworthiness standards. Additional special conditions will be issued for other novel or unusual design features...

  1. 78 FR 41684 - Special Conditions: Embraer S.A. Model EMB-550 Airplanes, Sudden Engine Stoppage

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-11

    ... airplane has novel or unusual design features as compared to the state of technology envisioned in the airworthiness standards for transport-category airplanes. These design features include engine size and the... contain adequate or appropriate safety standards for this design feature. These special conditions contain...

  2. 'I will never ever go back': patients' written narratives of health care communication.

    PubMed

    Denniston, Charlotte; Molloy, Elizabeth; Rees, Charlotte E

    2018-07-01

    Although communication with patients is essential to health care, education designed to develop patient-centred communication often ignores patients' voices. Patient stories may offer a means to explore patient experiences to inform patient-centred communication skills education design. Our research questions were: (i) What are the features of patients' health care communication narratives? (ii) What differences exist between patient narratives evaluated as positive and those evaluated as negative? (iii) How do patients narrate emotion in their narratives? This interpretivist research was underpinned by social constructionism. We employed a narrative approach to design an online questionnaire that was advertised to patients in the community. Analysis of the stories that were generated involved analysis of what was written (i.e. framework analysis) and of how it was written (i.e. attending to linguistic features). Participants shared 180 written narratives about previous health care professional (HCP) communication interactions. Narratives commonly included those of female patients seeking help for musculoskeletal or psychological concerns, which most frequently had occurred within the previous 6 months with male general practitioners in community settings. Framework analysis revealed four key themes: (i) patient actions during consultations; (ii) patient actions afterwards; (iii) lasting legacy, and (iv) interpersonal factors. Patients in narratives evaluated as positive actively engaged during and after interactions, had ongoing positive relationships with HCPs and felt valued in these relationships. Patients in narratives evaluated as negative were either passive or active during the interaction, but mostly failed to return to the HCP and felt devalued in their interaction. Further analysis of the linguistic features of select narratives revealed rich constructions of positive and negative emotions emphasising the lasting legacies of these interactions. Analysis of patient narratives provides a detailed way of exploring patients' experiences, emotions and behaviours during and after consultations. Educational implications include emphasising the importance of valuing the patient, and of seeking and acting on patient feedback to calibrate HCPs' patient-centred communication practices. © 2018 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  3. Identification of fuel cycle simulator functionalities for analysis of transition to a new fuel cycle

    DOE PAGES

    Brown, Nicholas R.; Carlsen, Brett W.; Dixon, Brent W.; ...

    2016-06-09

    Dynamic fuel cycle simulation tools are intended to model holistic transient nuclear fuel cycle scenarios. As with all simulation tools, fuel cycle simulators require verification through unit tests, benchmark cases, and integral tests. Model validation is a vital aspect as well. Although compara-tive studies have been performed, there is no comprehensive unit test and benchmark library for fuel cycle simulator tools. The objective of this paper is to identify the must test functionalities of a fuel cycle simulator tool within the context of specific problems of interest to the Fuel Cycle Options Campaign within the U.S. Department of Energy smore » Office of Nuclear Energy. The approach in this paper identifies the features needed to cover the range of promising fuel cycle options identified in the DOE-NE Fuel Cycle Evaluation and Screening (E&S) and categorizes these features to facilitate prioritization. Features were categorized as essential functions, integrating features, and exemplary capabilities. One objective of this paper is to propose a library of unit tests applicable to each of the essential functions. Another underlying motivation for this paper is to encourage an international dialog on the functionalities and standard test methods for fuel cycle simulator tools.« less

  4. An adaptive multi-feature segmentation model for infrared image

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa

    2016-04-01

    Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.

  5. Gradually including potential users: A tool to counter design exclusions.

    PubMed

    Zitkus, Emilene; Langdon, Patrick; Clarkson, P John

    2018-01-01

    The paper describes an iterative development process used to understand the suitability of different inclusive design evaluation tools applied into design practices. At the end of this process, a tool named Inclusive Design Advisor was developed, combining data related to design features of small appliances with ergonomic task demands, anthropometric data and exclusion data. When auditing a new design the tool examines the exclusion that each design feature can cause, followed by objective recommendations directly related to its features. Interactively, it allows designers or clients to balance design changes with the exclusion caused. It presents the type of information that enables designers and clients to discuss user needs and make more inclusive design decisions. Copyright © 2017. Published by Elsevier Ltd.

  6. Usability issues concerning child restraint system harness design.

    PubMed

    Rudin-Brown, Christina M; Kumagai, Jason K; Angel, Harry A; Iwasa-Madge, Kim M; Noy, Y Ian

    2003-05-01

    A study was conducted to assess usability issues relating to child restraint system (CRS) harness design. Four convertible child restraint systems representing a wide variety of design features were used. Forty-two participants installed two child test dummies in both forward- and rear-facing configurations either inside or outside a test vehicle. Observer-scored checklists determined the degree to which each harness was installed correctly. Participant-scored questionnaires evaluated the 'ease-of-use' of various design features. While the percentage of correct installations exceeded 83% for all designs when installed in the forward-facing configuration, in the rear-facing position (that intended for children under 9-10 kg), there was a significant (between 65 and 89%) percentage of incorrect installations for all models. This finding is of particular interest and may be indicative of a more generalized problem with 'convertible' CRS designs when they are used in the rear-facing configuration. Furthermore, while certain design features were perceived by users as providing significantly better protection in the event of a collision, these also tended to be the features that were misused most often. The benefits and costs of various design features are discussed, and a method to test harness design usability is presented.

  7. The development of a core syllabus for the teaching of head and neck anatomy to medical students.

    PubMed

    Tubbs, R Shane; Sorenson, Edward P; Sharma, Amit; Benninger, Brion; Norton, Neil; Loukas, Marios; Moxham, Bernard J

    2014-04-01

    The study of human anatomy has traditionally served as a fundamental component in the basic science education of medical students, yet there exists a remarkable lack of firm guidance on essential features that must be included in a gross anatomy course, which would constitute a "Core Syllabus" of absolutely mandatory structures and related clinical pathologies. While universal agreement on the details of a core syllabus is elusive, there is a general consensus that a core syllabus aims to identify the minimum level of knowledge expected of recently qualified medical graduates in order to carry out clinical procedures safely and effectively, while avoiding overloading students with unnecessary facts that have less immediate application to their future careers as clinicians. This paper aims to identify consensus standards of essential features of Head and Neck anatomy via a Delphi Panel consisting of anatomists and clinicians who evaluated syllabus content structures (greater than 1,000) as "essential", "important", "acceptable", or "not required." The goal is to provide guidance for program/course directors who intend to provide the optimal balance between establishing a comprehensive list of clinically relevant essential structures and an overwhelming litany, which would otherwise overburden trainees in their initial years of medical school with superficial rote learning, which potentially dilutes the key and enduring fundamental lessons that prepare students for training in any medical field. Copyright © 2014 Wiley Periodicals, Inc.

  8. 78 FR 36084 - Special Conditions: The Boeing Company, Model 717-200 Series Airplanes; Seats With Inflatable...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... 717- 200 series airplanes. These airplanes will have a novel or unusual design feature [[Page 36085... series airplanes will incorporate the following novel or unusual design features: inflatable lapbelts on... certain novel or unusual design features on one model series of airplanes. It is not a rule of general...

  9. 78 FR 68775 - Special Conditions: Airbus, Model A350-900 Series Airplane; Composite Fuselage In-Flight Fire...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... Model A350-900 series airplanes. This airplane will have a novel or unusual design features associated... Model A350-900 series because of a novel or unusual design feature, special conditions are prescribed... Airbus Model A350-900 series airplane will incorporate the following novel or unusual design features...

  10. 78 FR 26280 - Special Conditions: Embraer, S.A., Model EMB-550 Airplane; Side-Facing Seats; Installation of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-06

    ... be active during all dynamic tests conducted to show compliance with Sec. 25.562. (2) The design and... novel or unusual design feature(s) associated with multiple place and single place side- facing seats... not contain adequate or appropriate safety standards for this design feature. These proposed special...

  11. 77 FR 69573 - Special Conditions: Embraer S.A., Model EMB-550 Airplane; Electronic Flight Control System...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-20

    ... airplane will have a novel or unusual design feature(s) associated with an electronic flight control system... empennage and control surfaces. The Model EMB-550 airplane is designed for 8 passengers, with a maximum of... flight control design feature within the normal operational envelope in which sidestick deflection in the...

  12. 78 FR 76980 - Special Conditions: Airbus, A350-900 Series Airplane; Interaction of Systems and Structures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-20

    ... series airplanes. These airplanes will have novel or unusual design features when compared to the state...-900 series because of a novel or unusual design feature, special conditions are prescribed under Sec...)(2). Novel or Unusual Design Features The Airbus Model A350-900 series will incorporate the following...

  13. Exploring KM Features of High-Performance Companies

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Wen

    2007-12-01

    For reacting to an increasingly rival business environment, many companies emphasize the importance of knowledge management (KM). It is a favorable way to explore and learn KM features of high-performance companies. However, finding out the critical KM features of high-performance companies is a qualitative analysis problem. To handle this kind of problem, the rough set approach is suitable because it is based on data-mining techniques to discover knowledge without rigorous statistical assumptions. Thus, this paper explored KM features of high-performance companies by using the rough set approach. The results show that high-performance companies stress the importance on both tacit and explicit knowledge, and consider that incentives and evaluations are the essentials to implementing KM.

  14. EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens.

    PubMed

    Peng, Duo; Tarleton, Rick

    2015-10-01

    Recent development of CRISPR-Cas9 genome editing has enabled highly efficient and versatile manipulation of a variety of organisms and adaptation of the CRISPR-Cas9 system to eukaryotic pathogens has opened new avenues for studying these otherwise hard to manipulate organisms. Here we describe a webtool, Eukaryotic Pathogen gRNA Design Tool (EuPaGDT; available at http://grna.ctegd.uga.edu), which identifies guide RNA (gRNA) in input gene(s) to guide users in arriving at well-informed and appropriate gRNA design for many eukaryotic pathogens. Flexibility in gRNA design, accommodating unique eukaryotic pathogen (gene and genome) attributes and high-throughput gRNA design are the main features that distinguish EuPaGDT from other gRNA design tools. In addition to employing an array of known principles to score and rank gRNAs, EuPaGDT implements an effective on-target search algorithm to identify gRNA targeting multi-gene families, which are highly represented in these pathogens and play important roles in host-pathogen interactions. EuPaGDT also identifies and scores microhomology sequences flanking each gRNA targeted cut-site; these sites are often essential for the microhomology-mediated end joining process used for double-stranded break repair in these organisms. EuPaGDT also assists users in designing single-stranded oligonucleotides for homology directed repair. In batch processing mode, EuPaGDT is able to process genome-scale sequences, enabling preparation of gRNA libraries for large-scale screening projects.

  15. Design and Simulation of a MEMS Structure for Electrophoretic and Dielectrophoretic Separation of Particles by Contactless Electrodes

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.

    2007-01-01

    Rapid identification of pathogenic bacterial species is an important factor in combating public health problems such as E. coli contamination. Food and waterborne pathogens account for sickness in 76 million people annually (CDC). Diarrheagenic E. coli is a major source of gastrointestinal illness. Severe sepsis and Septicemia within the hospital environment are also major problems. 75 1,000 cases annually with a 30-50% mortality rate (Crit Care Med, July '01, Vol. 29, 1303-10). Patient risks run the continuum from fever to organ failure and death. Misdiagnosis or inappropriate treatment increases mortality. There exists a need for rapid screening of samples for identification of pathogenic species (Certain E. coli strains are essential for health). Critical to the identification process is the ability to isolate analytes of interest rapidly. This poster discusses novel devices for the separation of particles on the basis of the dielectric properties, mass and surface charge characteristics is presented. Existing designs involve contact between electrode surfaces and analyte medium resulting in contamination of the electrode bearing elements Two different device designs using different bulk micromachining MEMS processes (PolyMUMPS and a PyrexBIGold electrode design) are presented. These designs cover a range of particle sizes from small molecules through eucaryotic cells. The application of separation of bacteria is discussed in detail. Simulation data for electrostatic and microfluidic characteristics are provided. Detailed design characteristics and physical features of the as fabricated PolyMUMPS design are provided. Analysis of the simulation data relative to the expected performance of the devices will be provided and subsequent conclusions discussed.

  16. Innovation in Aerodynamic Design Features of Soviet Missiles

    NASA Technical Reports Server (NTRS)

    Spearman, M. Leroy

    2006-01-01

    Wind tunnel investigations of some tactical and strategic missile systems developed by the former Soviet Union have been included in the basic missile research programs of the NACA/NASA. Studies of the Soviet missiles sometimes revealed innovative design features that resulted in unusual or unexpected aerodynamic characteristics. In some cases these characteristics have been such that the measured performance of the missile exceeds what might have been predicted. In other cases some unusual design features have been found that would alleviate what might otherwise have been a serious aerodynamic problem. In some designs, what has appeared to be a lack of refinement has proven to be a matter of expediency. It is a purpose of this paper to describe some examples of unusual design features of some Soviet missiles and to illustrate the effectiveness of the design features on the aerodynamic behavior of the missile. The paper draws on the experience of the author who for over 60 years was involved in the aerodynamic wind tunnel testing of aircraft and missiles with the NACA/NASA.

  17. Ambient assisted living healthcare frameworks, platforms, standards, and quality attributes.

    PubMed

    Memon, Mukhtiar; Wagner, Stefan Rahr; Pedersen, Christian Fischer; Beevi, Femina Hassan Aysha; Hansen, Finn Overgaard

    2014-03-04

    Ambient Assisted Living (AAL) is an emerging multi-disciplinary field aiming at exploiting information and communication technologies in personal healthcare and telehealth systems for countering the effects of growing elderly population. AAL systems are developed for personalized, adaptive, and anticipatory requirements, necessitating high quality-of-service to achieve interoperability, usability, security, and accuracy. The aim of this paper is to provide a comprehensive review of the AAL field with a focus on healthcare frameworks, platforms, standards, and quality attributes. To achieve this, we conducted a literature survey of state-of-the-art AAL frameworks, systems and platforms to identify the essential aspects of AAL systems and investigate the critical issues from the design, technology, quality-of-service, and user experience perspectives. In addition, we conducted an email-based survey for collecting usage data and current status of contemporary AAL systems. We found that most AAL systems are confined to a limited set of features ignoring many of the essential AAL system aspects. Standards and technologies are used in a limited and isolated manner, while quality attributes are often addressed insufficiently. In conclusion, we found that more inter-organizational collaboration, user-centered studies, increased standardization efforts, and a focus on open systems is needed to achieve more interoperable and synergetic AAL solutions.

  18. Ambient Assisted Living Healthcare Frameworks, Platforms, Standards, and Quality Attributes

    PubMed Central

    Memon, Mukhtiar; Wagner, Stefan Rahr; Pedersen, Christian Fischer; Beevi, Femina Hassan Aysha; Hansen, Finn Overgaard

    2014-01-01

    Ambient Assisted Living (AAL) is an emerging multi-disciplinary field aiming at exploiting information and communication technologies in personal healthcare and telehealth systems for countering the effects of growing elderly population. AAL systems are developed for personalized, adaptive, and anticipatory requirements, necessitating high quality-of-service to achieve interoperability, usability, security, and accuracy. The aim of this paper is to provide a comprehensive review of the AAL field with a focus on healthcare frameworks, platforms, standards, and quality attributes. To achieve this, we conducted a literature survey of state-of-the-art AAL frameworks, systems and platforms to identify the essential aspects of AAL systems and investigate the critical issues from the design, technology, quality-of-service, and user experience perspectives. In addition, we conducted an email-based survey for collecting usage data and current status of contemporary AAL systems. We found that most AAL systems are confined to a limited set of features ignoring many of the essential AAL system aspects. Standards and technologies are used in a limited and isolated manner, while quality attributes are often addressed insufficiently. In conclusion, we found that more inter-organizational collaboration, user-centered studies, increased standardization efforts, and a focus on open systems is needed to achieve more interoperable and synergetic AAL solutions. PMID:24599192

  19. Validation experiments to determine radiation partitioning of heat flux to an object in a fully turbulent fire.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricks, Allen; Blanchat, Thomas K.; Jernigan, Dann A.

    2006-06-01

    It is necessary to improve understanding and develop validation data of the heat flux incident to an object located within the fire plume for the validation of SIERRA/ FUEGO/SYRINX fire and SIERRA/CALORE. One key aspect of the validation data sets is the determination of the relative contribution of the radiative and convective heat fluxes. To meet this objective, a cylindrical calorimeter with sufficient instrumentation to measure total and radiative heat flux had been designed and fabricated. This calorimeter will be tested both in the controlled radiative environment of the Penlight facility and in a fire environment in the FLAME/Radiant Heatmore » (FRH) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisons between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. A significant question of interest to modeling heat flux incident to an object in or near a fire is the contribution of the radiation and convection modes of heat transfer. The series of experiments documented in this test plan is designed to provide data on the radiation partitioning, defined as the fraction of the total heat flux that is due to radiation.« less

  20. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    DOE PAGES

    Knudsen, P.; Ganni, V.; Dixon, K.; ...

    2015-08-10

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less

  1. Performance Testing of Jefferson Lab 12 GeV Helium Screw Compressors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knudsen, P.; Ganni, V.; Dixon, K.

    Oil injected screw compressors have essentially superseded all other types of compressors in modern helium refrigeration systems due to their large displacement capacity, reliability, minimal vibration, and capability of handling helium's high heat of compression. At the present state of compressor system designs for helium refrigeration systems, typically two-thirds of the lost input power is due to the compression system. It is important to understand the isothermal and volumetric efficiencies of these machines to help properly design the compression system to match the refrigeration process. It is also important to identify those primary compressor skid exergetic loss mechanisms which maymore » be reduced, thereby offering the possibility of significantly reducing the input power to helium refrigeration processes which are extremely energy intensive. This paper summarizes the results collected during the commissioning of the new compressor system for Jefferson Lab's (JLab's) 12 GeV upgrade. The compressor skid packages were designed by JLab and built to print by industry. They incorporate a number of modifications not typical of helium screw compressor packages and most importantly allow a very wide range of operation so that JLab's patented Floating Pressure Process can be fully utilized. This paper also summarizes key features of the skid design that allow this process and facilitate the maintenance and reliability of these helium compressor systems.« less

  2. Rhombic-Shaped Nanostructures and Mechanical Properties of 2D DNA Origami Constructed with Different Crossover/Nick Designs.

    PubMed

    Ma, Zhipeng; Huang, Yunfei; Park, Seongsu; Kawai, Kentaro; Kim, Do-Nyun; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Yamada, Hirofumi; Tabata, Osamu

    2018-01-01

    DNA origami methods enable the fabrication of various nanostructures and nanodevices, but their effective use depends on an understanding of their structural and mechanical properties and the effects of basic structural features. Frequency-modulation atomic force microscopy is introduced to directly characterize, in aqueous solution, the crossover regions of sets of 2D DNA origami based on different crossover/nick designs. Rhombic-shaped nanostructures formed under the influence of flexible crossovers placed between DNA helices are observed in DNA origami incorporating crossovers every 3, 4, or 6 DNA turns. The bending rigidity of crossovers is determined to be only one-third of that of the DNA helix, based on interhelical electrostatic forces reported elsewhere, and the measured pitches of the 3-turn crossover design rhombic-shaped nanostructures undergoing negligible bending. To evaluate the robustness of their structural integrity, they are intentionally and simultaneously stressed using force-controlled atomic force microscopy. DNA crossovers are verified to have a stabilizing effect on the structural robustness, while the nicks have an opposite effect. The structural and mechanical properties of DNA origami and the effects of crossovers and nicks revealed in this paper can provide information essential for the design of versatile DNA origami structures that exhibit specified and desirable properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Making Boundaries Great Again: Essentialism and Support for Boundary-Enhancing Initiatives.

    PubMed

    Roberts, Steven O; Ho, Arnold K; Rhodes, Marjorie; Gelman, Susan A

    2017-12-01

    Psychological essentialism entails a focus on category boundaries (e.g., categorizing people as men or women) and an increase in the conceptual distance between those boundaries (e.g., accentuating the differences between men and women). Across eight studies, we demonstrate that essentialism additionally entails an increase in support for boundary-enhancing legislation, policies, and social services, and that it does so under conditions that disadvantage social groups, as well as conditions that benefit them. First, individual differences in essentialism were associated with support for legislation mandating that transgender people use restrooms corresponding with their biological sex, and with support for the boundary-enhancing policies of the 2016 then-presumptive Republican presidential nominee (i.e., Donald Trump). Second, essentialism was associated with support for same-gender classrooms designed to promote student learning, as well as support for services designed to benefit LGBTQ (lesbian, gay, bisexual, transgender, queer) individuals. These findings demonstrate the boundary-enhancing implications of essentialism and their social significance.

  4. An alternative introduction to reading and evaluating the primary literature for beginning graduate students.

    PubMed

    Randall, David C; Baldridge, Bobby R

    2018-06-01

    Students are challenged in transitioning from acquiring knowledge and understanding through reading textbooks to their learning to select, read, evaluate, and synthesize the primary literature. A customary approach to teaching this transition to beginning graduate students is for a faculty member to assign "readings" from the recent literature that promise to become key publications; such assignments generally underscore recent, novel scientific content. We advocate here an alternative approach for coaching students very early in their training: first, to read, analyze, and discuss a paper that highlights critically important features of effective and valid experimental design; and, second, to study a paper that can be shown historically to have fundamentally changed the way in which physiological function is understood. We consider as an example of the first goal a study that purports to demonstrate a principle of thermoregulation, but that interaction between students and instructor reveals the study's lack of an essential control. The second goal requires sufficient time for the publication to concretely validate its contribution(s). The purpose is to identify those essential properties of the selected paper that contributed to its having become a truly exemplary study. We present a 1957 paper by Dr. A. C. Burton ( Am Heart J 54: 801-810, 1957) as an illustration and analyze the study with respect to those attributes that contributed to its lasting importance. These alternative approaches to introduce inexperienced students to the original literature can produce critical insight into the process and can help students inculcate essential practices, guiding them to more productive careers.

  5. Large-scale restoration mitigate land degradation and support the establishment of green infrastructure

    NASA Astrophysics Data System (ADS)

    Tóthmérész, Béla; Mitchley, Jonathan; Jongepierová, Ivana; Baasch, Annett; Fajmon, Karel; Kirmer, Anita; Prach, Karel; Řehounková, Klára; Tischew, Sabine; Twiston-Davies, Grace; Dutoit, Thierry; Buisson, Elise; Jeunatre, Renaud; Valkó, Orsolya; Deák, Balázs; Török, Péter

    2017-04-01

    Sustaining the human well-being and the quality of life, it is essential to develop and support green infrastructure (strategically planned network of natural and semi-natural areas with other environmental features designed and managed to deliver a wide range of ecosystem services). For developing and sustaining green infrastructure the conservation and restoration of biodiversity in natural and traditionally managed habitats is essential. Species-rich landscapes in Europe have been maintained over centuries by various kinds of low-intensity use. Recently, they suffered by losses in extent and diversity due to land degradation by intensification or abandonment. Conservation of landscape-scale biodiversity requires the maintenance of species-rich habitats and the restoration of lost grasslands. We are focusing on landscape-level restoration studies including multiple sites in wide geographical scale (including Czech Republic, France, Germany, Hungary, and UK). In a European-wide perspective we aimed at to address four specific questions: (i) What were the aims and objectives of landscape-scale restoration? (ii) What results have been achieved? (iii) What are the costs of large-scale restoration? (iv) What policy tools are available for the restoration of landscape-scale biodiversity? We conclude that landscape-level restoration offers exciting new opportunities to reconnect long-disrupted ecological processes and to restore landscape connectivity. Generally, these measures enable to enhance the biodiversity at the landscape scale. The development of policy tools to achieve restoration at the landscape scale are essential for the achievement of the ambitious targets of the Convention on Biological Diversity and the European Biodiversity Strategy for ecosystem restoration.

  6. A survey of mass analyzers. [characteristics and features of various instruments and techniques

    NASA Technical Reports Server (NTRS)

    Moore, W. W., Jr.; Tashbar, P. W.

    1973-01-01

    With the increasing applications of mass spectrometry technology to diverse services areas, a need has developed for a consolidated survey of the essential characteristics and features of the various instruments and techniques. This report is one approach to satisfying this need. Information has been collected and consolidated into a format which includes for each approach: (1) a general technique description, (2) instrument features information, and (3) a summary of pertinent advantages and disadvantages. With this information, the potential mass spectrometer user should be able to more efficiently select the most appropriate instrument.

  7. Performance of a Working Face Recognition Machine using Cortical Thought Theory

    DTIC Science & Technology

    1984-12-04

    been considered (2). Recommendations from Bledsoe’s study included research on facial - recognition systems that are "completely automatic (remove the...C. L. Location of some facial features . computer, Palo Alto: Panoramic Research, Aug 1966. 2. Bledsoe, W. W. Man-machine facial recognition : Is...34 image?" It would seem - that the location and size of the features left in this contrast-expanded image contain the essential information of facial

  8. The congenital Zika virus infection: still a puzzle.

    PubMed

    Salomão, José Francisco M

    2018-01-01

    As a new disease, some features of the congenital Zika virus infection are not yet fully understood. The current Brazilian outbreak brought up an unexpected increase in the number of microcephaly cases as this strain is essentially neurotropic and associated with devastating effects on the developing central nervous system. This focus session aims to discuss the several issues related to the epidemiology, diagnosis, clinical features, and treatment of the congenital Zika virus infection.

  9. 10 CFR 1045.17 - Classification levels.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...

  10. 10 CFR 1045.17 - Classification levels.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...

  11. 10 CFR 1045.17 - Classification levels.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...

  12. 10 CFR 1045.17 - Classification levels.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... classification include detailed technical descriptions of critical features of a nuclear explosive design that... classification include designs for specific weapon components (not revealing critical features), key features of uranium enrichment technologies, or specifications of weapon materials. (3) Confidential. The Director of...

  13. Indel PDB: a database of structural insertions and deletions derived from sequence alignments of closely related proteins.

    PubMed

    Hsing, Michael; Cherkasov, Artem

    2008-06-25

    Insertions and deletions (indels) represent a common type of sequence variations, which are less studied and pose many important biological questions. Recent research has shown that the presence of sizable indels in protein sequences may be indicative of protein essentiality and their role in protein interaction networks. Examples of utilization of indels for structure-based drug design have also been recently demonstrated. Nonetheless many structural and functional characteristics of indels remain less researched or unknown. We have created a web-based resource, Indel PDB, representing a structural database of insertions/deletions identified from the sequence alignments of highly similar proteins found in the Protein Data Bank (PDB). Indel PDB utilized large amounts of available structural information to characterize 1-, 2- and 3-dimensional features of indel sites. Indel PDB contains 117,266 non-redundant indel sites extracted from 11,294 indel-containing proteins. Unlike loop databases, Indel PDB features more indel sequences with secondary structures including alpha-helices and beta-sheets in addition to loops. The insertion fragments have been characterized by their sequences, lengths, locations, secondary structure composition, solvent accessibility, protein domain association and three dimensional structures. By utilizing the data available in Indel PDB, we have studied and presented here several sequence and structural features of indels. We anticipate that Indel PDB will not only enable future functional studies of indels, but will also assist protein modeling efforts and identification of indel-directed drug binding sites.

  14. Persistence and uncertainty in the academic career

    PubMed Central

    Petersen, Alexander M.; Riccaboni, Massimo; Stanley, H. Eugene; Pammolli, Fabio

    2012-01-01

    Understanding how institutional changes within academia may affect the overall potential of science requires a better quantitative representation of how careers evolve over time. Because knowledge spillovers, cumulative advantage, competition, and collaboration are distinctive features of the academic profession, both the employment relationship and the procedures for assigning recognition and allocating funding should be designed to account for these factors. We study the annual production ni(t) of a given scientist i by analyzing longitudinal career data for 200 leading scientists and 100 assistant professors from the physics community. Our empirical analysis of individual productivity dynamics shows that (i) there are increasing returns for the top individuals within the competitive cohort, and that (ii) the distribution of production growth is a leptokurtic “tent-shaped” distribution that is remarkably symmetric. Our methodology is general, and we speculate that similar features appear in other disciplines where academic publication is essential and collaboration is a key feature. We introduce a model of proportional growth which reproduces these two observations, and additionally accounts for the significantly right-skewed distributions of career longevity and achievement in science. Using this theoretical model, we show that short-term contracts can amplify the effects of competition and uncertainty making careers more vulnerable to early termination, not necessarily due to lack of individual talent and persistence, but because of random negative production shocks. We show that fluctuations in scientific production are quantitatively related to a scientist’s collaboration radius and team efficiency. PMID:22431620

  15. Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings.

    PubMed

    Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L

    2018-03-01

    Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.

  16. New features and applications of PRESTO, a computer code for the performance of regenerative, superheated steam turbine cycles

    NASA Technical Reports Server (NTRS)

    Choo, Y. K.; Staiger, P. J.

    1982-01-01

    The code was designed to analyze performance at valves-wide-open design flow. The code can model conventional steam cycles as well as cycles that include such special features as process steam extraction and induction and feedwater heating by external heat sources. Convenience features and extensions to the special features were incorporated into the PRESTO code. The features are described, and detailed examples illustrating the use of both the original and the special features are given.

  17. Feedback control of combustion instabilities from within limit cycle oscillations using H∞ loop-shaping and the ν-gap metric

    PubMed Central

    Morgans, Aimee S.

    2016-01-01

    Combustion instabilities arise owing to a two-way coupling between acoustic waves and unsteady heat release. Oscillation amplitudes successively grow, until nonlinear effects cause saturation into limit cycle oscillations. Feedback control, in which an actuator modifies some combustor input in response to a sensor measurement, can suppress combustion instabilities. Linear feedback controllers are typically designed, using linear combustor models. However, when activated from within limit cycle, the linear model is invalid, and such controllers are not guaranteed to stabilize. This work develops a feedback control strategy guaranteed to stabilize from within limit cycle oscillations. A low-order model of a simple combustor, exhibiting the essential features of more complex systems, is presented. Linear plane acoustic wave modelling is combined with a weakly nonlinear describing function for the flame. The latter is determined numerically using a level set approach. Its implication is that the open-loop transfer function (OLTF) needed for controller design varies with oscillation level. The difference between the mean and the rest of the OLTFs is characterized using the ν-gap metric, providing the minimum required ‘robustness margin’ for an H∞ loop-shaping controller. Such controllers are designed and achieve stability both for linear fluctuations and from within limit cycle oscillations. PMID:27493558

  18. Buying in to bioinformatics: an introduction to commercial sequence analysis software

    PubMed Central

    2015-01-01

    Advancements in high-throughput nucleotide sequencing techniques have brought with them state-of-the-art bioinformatics programs and software packages. Given the importance of molecular sequence data in contemporary life science research, these software suites are becoming an essential component of many labs and classrooms, and as such are frequently designed for non-computer specialists and marketed as one-stop bioinformatics toolkits. Although beautifully designed and powerful, user-friendly bioinformatics packages can be expensive and, as more arrive on the market each year, it can be difficult for researchers, teachers and students to choose the right software for their needs, especially if they do not have a bioinformatics background. This review highlights some of the currently available and most popular commercial bioinformatics packages, discussing their prices, usability, features and suitability for teaching. Although several commercial bioinformatics programs are arguably overpriced and overhyped, many are well designed, sophisticated and, in my opinion, worth the investment. If you are just beginning your foray into molecular sequence analysis or an experienced genomicist, I encourage you to explore proprietary software bundles. They have the potential to streamline your research, increase your productivity, energize your classroom and, if anything, add a bit of zest to the often dry detached world of bioinformatics. PMID:25183247

  19. Thermal design verification testing of the Clementine spacecraft: Quick, cheap, and useful

    NASA Technical Reports Server (NTRS)

    Kim, Jeong H.; Hyman, Nelson L.

    1994-01-01

    At this writing, Clementine had successfully fulfilled its moon-mapping mission; at this reading it will have also, with continued good fortune, taken a close look at the asteroid Geographos. The thermal design that made all this possible was indeed formidable in many respects, with very high ratios of requirements-to-available resources and performance-to-cost and mass. There was no question that a test verification of this quite unique and complex design was essential, but it had to be squeezed into an unyielding schedule and executed with bare-bones cost and manpower. After describing the thermal control subsystem's features, we report all the drama, close-calls, and cost-cutting, how objectives were achieved under severe handicap but (thankfully) with little management and documentation interference. Topics include the newly refurbished chamber (ready just in time), the reality level of the engineering model, using the analytical thermal model, the manner of environment simulation, the hand-scratched film heaters, functioning of all three types of heat pipes (but not all heat pipes), and the BMDO sensors' checkout through the chamber window. Test results revealed some surprises and much valuable data, resulting in thermal model and flight hardware refinements. We conclude with the level of correlation between predictions and both test temperatures and flight telemetry.

  20. Buying in to bioinformatics: an introduction to commercial sequence analysis software.

    PubMed

    Smith, David Roy

    2015-07-01

    Advancements in high-throughput nucleotide sequencing techniques have brought with them state-of-the-art bioinformatics programs and software packages. Given the importance of molecular sequence data in contemporary life science research, these software suites are becoming an essential component of many labs and classrooms, and as such are frequently designed for non-computer specialists and marketed as one-stop bioinformatics toolkits. Although beautifully designed and powerful, user-friendly bioinformatics packages can be expensive and, as more arrive on the market each year, it can be difficult for researchers, teachers and students to choose the right software for their needs, especially if they do not have a bioinformatics background. This review highlights some of the currently available and most popular commercial bioinformatics packages, discussing their prices, usability, features and suitability for teaching. Although several commercial bioinformatics programs are arguably overpriced and overhyped, many are well designed, sophisticated and, in my opinion, worth the investment. If you are just beginning your foray into molecular sequence analysis or an experienced genomicist, I encourage you to explore proprietary software bundles. They have the potential to streamline your research, increase your productivity, energize your classroom and, if anything, add a bit of zest to the often dry detached world of bioinformatics. © The Author 2014. Published by Oxford University Press.

  1. Modeling and performance analysis using extended fuzzy-timing Petri nets for networked virtual environments.

    PubMed

    Zhou, Y; Murata, T; Defanti, T A

    2000-01-01

    Despite their attractive properties, networked virtual environments (net-VEs) are notoriously difficult to design, implement, and test due to the concurrency, real-time and networking features in these systems. Net-VEs demand high quality-of-service (QoS) requirements on the network to maintain natural and real-time interactions among users. The current practice for net-VE design is basically trial and error, empirical, and totally lacks formal methods. This paper proposes to apply a Petri net formal modeling technique to a net-VE-NICE (narrative immersive constructionist/collaborative environment), predict the net-VE performance based on simulation, and improve the net-VE performance. NICE is essentially a network of collaborative virtual reality systems called the CAVE-(CAVE automatic virtual environment). First, we introduce extended fuzzy-timing Petri net (EFTN) modeling and analysis techniques. Then, we present EFTN models of the CAVE, NICE, and transport layer protocol used in NICE: transmission control protocol (TCP). We show the possibility analysis based on the EFTN model for the CAVE. Then, by using these models and design/CPN as the simulation tool, we conducted various simulations to study real-time behavior, network effects and performance (latencies and jitters) of NICE. Our simulation results are consistent with experimental data.

  2. A flexible framework for process-based hydraulic and water ...

    EPA Pesticide Factsheets

    Background Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated.Framework Features The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and

  3. The Fisher-Markov selector: fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data.

    PubMed

    Cheng, Qiang; Zhou, Hongbo; Cheng, Jie

    2011-06-01

    Selecting features for multiclass classification is a critically important task for pattern recognition and machine learning applications. Especially challenging is selecting an optimal subset of features from high-dimensional data, which typically have many more variables than observations and contain significant noise, missing components, or outliers. Existing methods either cannot handle high-dimensional data efficiently or scalably, or can only obtain local optimum instead of global optimum. Toward the selection of the globally optimal subset of features efficiently, we introduce a new selector--which we call the Fisher-Markov selector--to identify those features that are the most useful in describing essential differences among the possible groups. In particular, in this paper we present a way to represent essential discriminating characteristics together with the sparsity as an optimization objective. With properly identified measures for the sparseness and discriminativeness in possibly high-dimensional settings, we take a systematic approach for optimizing the measures to choose the best feature subset. We use Markov random field optimization techniques to solve the formulated objective functions for simultaneous feature selection. Our results are noncombinatorial, and they can achieve the exact global optimum of the objective function for some special kernels. The method is fast; in particular, it can be linear in the number of features and quadratic in the number of observations. We apply our procedure to a variety of real-world data, including mid--dimensional optical handwritten digit data set and high-dimensional microarray gene expression data sets. The effectiveness of our method is confirmed by experimental results. In pattern recognition and from a model selection viewpoint, our procedure says that it is possible to select the most discriminating subset of variables by solving a very simple unconstrained objective function which in fact can be obtained with an explicit expression.

  4. Designing augmentative and alternative communication applications: the results of focus groups with speech-language pathologists and parents of children with autism spectrum disorder.

    PubMed

    Boster, Jamie B; McCarthy, John W

    2018-05-01

    The purpose of this study was to gain insight from speech-language pathologists (SLPs) and parents of children with autism spectrum disorder (ASD) regarding appealing features of augmentative and alternative communication (AAC) applications. Two separate 1-hour focus groups were conducted with 8 SLPs and 5 parents of children with ASD to identify appealing design features of AAC Apps, their benefits and potential concerns. Participants were shown novel interface designs for communication mode, play mode and incentive systems. Participants responded to poll questions and provided benefits and drawbacks of the features as part of structured discussion. SLPs and parents identified a range of appealing features in communication mode (customization, animation and colour-coding) as well as in play mode (games and videos). SLPs preferred interfaces that supported motor planning and instruction while parents preferred those features such as character assistants that would appeal to their child. Overall SLPs and parents agreed on features for future AAC Apps. SLPs and parents have valuable input in regards to future AAC app design informed by their experiences with children with ASD. Both groups are key stakeholders in the design process and should be included in future design and research endeavors. Implications for Rehabilitation AAC applications for the iPad are often designed based on previous devices without consideration of new features. Ensuring the design of new interfaces are appealing and beneficial for children with ASD can potentially further support their communication. This study demonstrates how key stakeholders in AAC including speech language pathologists and parents can provide information to support the development of future AAC interface designs. Key stakeholders may be an untapped resource in the development of future AAC interfaces for children with ASD.

  5. Cognitive impairment and pragmatics.

    PubMed

    Gutiérrez-Rexach, Javier; Schatz, Sara

    2016-01-01

    One of the most important ingredients of felicitous conversation exchanges is the adequate expression of illocutionary force and the achievement of perlocutionary effects, which can be considered essential to the functioning of pragmatic competence. The breakdown of illocutionary and perlocutionary functions is one of the most prominent external features of cognitive impairment in Alzheimer's Disease, with devastating psychological and social consequences for patients, their family and caregivers. The study of pragmatic functions is essential for a proper understanding of the linguistic and communicative aspects of Alzheimer's disease.

  6. Peripheral nervous system involvement in essential cryoglobulinemia and nephropathy.

    PubMed

    Valli, G; De Vecchi, A; Gaddi, L; Nobile-Orazio, E; Tarantino, A; Barbieri, S

    1989-01-01

    The clinical and neurophysiological features of 23 patients affected by essential cryoglobulinemia (EC) have been studied. It was possible to perform sural nerve biopsy in 3 cases. Six patients were found to be affected by a peripheral neuropathy, according to the WHO criteria, while in 8 other patients clinical and neurophysiological signs of a milder peripheral nervous system (PNS) involvement were evident. The incidence of PNS involvement seems to be high (60.9%). Neurophysiological and histological studies were indicative of a mainly axonal damage.

  7. Interim Stabilization Equipment Essential and Support Drawing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOCH, M.R.

    The purpose of this document is to list the Interim Stabilization equipment drawings that are classified as Essential or Support drawings. Essential Drawings: Those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment. Support Drawings: Those drawings identified by the facility staff that further describe the design details of structures, systems or components shown on essential drawings.

  8. Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope

    PubMed Central

    Fox, Jessica L.; Fairhall, Adrienne L.; Daniel, Thomas L.

    2010-01-01

    The halteres of dipteran insects are essential sensory organs for flight control. They are believed to detect Coriolis and other inertial forces associated with body rotation during flight. Flies use this information for rapid flight control. We show that the primary afferent neurons of the haltere’s mechanoreceptors respond selectively with high temporal precision to multiple stimulus features. Although we are able to identify many stimulus features contributing to the response using principal component analysis, predictive models using only two features, common across the cell population, capture most of the cells’ encoding activity. However, different sensitivity to these two features permits each cell to respond to sinusoidal stimuli with a different preferred phase. This feature similarity, combined with diverse phase encoding, allows the haltere to transmit information at a high rate about numerous inertial forces, including Coriolis forces. PMID:20133721

  9. Role of Endogenous Factors in Response of Erythrocyte Membrane in Patients with Cardiovascular Diseases under Conditions of Ischemic Exposure.

    PubMed

    Pivovarov, Yu I; Kuznetsova, E E; Koryakina, L B; Gorokhova, V G; Kuril'skaya, T E

    2015-05-01

    We studied specific features of erythrocyte membrane response to short-term occlusion of the brachial artery in patients with cardiovascular pathology. Under ischemic conditions, processes of sorption were primarily intensified in patients with effort angina and processes of hemoglobin binding with erythrocyte membrane predominated in patients with essential hypertension. These changes in the cell membrane were related to modulation of aggregation properties of erythrocytes (in patients with angina) and plasminogen activity (in patients with essential hypertension). They can also be associated with changes in glucose levels (effort angina) and uric acid (essential hypertension) whose effects can be significantly modified by other endogenous factors.

  10. Inverse planning in the age of digital LINACs: station parameter optimized radiation therapy (SPORT)

    NASA Astrophysics Data System (ADS)

    Xing, Lei; Li, Ruijiang

    2014-03-01

    The last few years have seen a number of technical and clinical advances which give rise to a need for innovations in dose optimization and delivery strategies. Technically, a new generation of digital linac has become available which offers features such as programmable motion between station parameters and high dose-rate Flattening Filter Free (FFF) beams. Current inverse planning methods are designed for traditional machines and cannot accommodate these features of new generation linacs without compromising either dose conformality and/or delivery efficiency. Furthermore, SBRT is becoming increasingly important, which elevates the need for more efficient delivery, improved dose distribution. Here we will give an overview of our recent work in SPORT designed to harness the digital linacs and highlight the essential components of SPORT. We will summarize the pros and cons of traditional beamlet-based optimization (BBO) and direct aperture optimization (DAO) and introduce a new type of algorithm, compressed sensing (CS)-based inverse planning, that is capable of automatically removing the redundant segments during optimization and providing a plan with high deliverability in the presence of a large number of station control points (potentially non-coplanar, non-isocentric, and even multi-isocenters). We show that CS-approach takes the interplay between planning and delivery into account and allows us to balance the dose optimality and delivery efficiency in a controlled way and, providing a viable framework to address various unmet demands of the new generation linacs. A few specific implementation strategies of SPORT in the forms of fixed-gantry and rotational arc delivery are also presented.

  11. Wind energy development: methods for assessing risks to birds and bats pre-construction

    USGS Publications Warehouse

    Katzner, Todd E.; Bennett, Victoria; Miller, Tricia A.; Duerr, Adam E.; Braham, Melissa A.; Hale, Amanda

    2016-01-01

    Wind power generation is rapidly expanding. Although wind power is a low-carbon source of energy, it can impact negatively birds and bats, either directly through fatality or indirectly by displacement or habitat loss. Pre-construction risk assessment at wind facilities within the United States is usually required only on public lands. When conducted, it generally involves a 3-tier process, with each step leading to more detailed and rigorous surveys. Preliminary site assessment (U.S. Fish and Wildlife Service, Tier 1) is usually conducted remotely and involves evaluation of existing databases and published materials. If potentially at-risk wildlife are present and the developer wishes to continue the development process, then on-site surveys are conducted (Tier 2) to verify the presence of those species and to assess site-specific features (e.g., topography, land cover) that may influence risk from turbines. The next step in the process (Tier 3) involves quantitative or scientific studies to assess the potential risk of the proposed project to wildlife. Typical Tier-3 research may involve acoustic, aural, observational, radar, capture, tracking, or modeling studies, all designed to understand details of risk to specific species or groups of species at the given site. Our review highlights several features lacking from many risk assessments, particularly the paucity of before-and-after-control- impact (BACI) studies involving modeling and a lack of understanding of cumulative effects of wind facilities on wildlife. Both are essential to understand effective designs for pre-construction monitoring and both would help expand risk assessment beyond eagles.

  12. Needs and Requirements for Future Research Reactors (ORNL Perspectives)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Bryan, Chris; Gehin, Jess C.

    2016-02-10

    The High Flux Isotope Reactor (HFIR) is a vital national and international resource for neutron science research, production of radioisotopes, and materials irradiation. While HFIR is expected to continue operation for the foreseeable future, interest is growing in understanding future research reactors features, needs, and requirements. To clarify, discuss, and compile these needs from the perspective of Oak Ridge National Laboratory (ORNL) research and development (R&D) missions, a workshop, titled “Needs and Requirements for Future Research Reactors”, was held at ORNL on May 12, 2015. The workshop engaged ORNL staff that is directly involved in research using HFIR to collectmore » valuable input on the reactor’s current and future missions. The workshop provided an interactive forum for a fruitful exchange of opinions, and included a mix of short presentations and open discussions. ORNL staff members made 15 technical presentations based on their experience and areas of expertise, and discussed those capabilities of the HFIR and future research reactors that are essential for their current and future R&D needs. The workshop was attended by approximately 60 participants from three ORNL directorates. The agenda is included in Appendix A. This document summarizes the feedback provided by workshop contributors and participants. It also includes information and insights addressing key points that originated from the dialogue started at the workshop. A general overview is provided on the design features and capabilities of high performance research reactors currently in use or under construction worldwide. Recent and ongoing design efforts in the US and internationally are briefly summarized, followed by conclusions and recommendations.« less

  13. Built spaces and features associated with user satisfaction in maternity waiting homes in Malawi.

    PubMed

    McIntosh, Nathalie; Gruits, Patricia; Oppel, Eva; Shao, Amie

    2018-07-01

    To assess satisfaction with maternity waiting home built spaces and features in women who are at risk for underutilizing maternity waiting homes (i.e. residential facilities that temporarily house near-term pregnant mothers close to healthcare facilities that provide obstetrical care). Specifically we wanted to answer the questions: (1) Are built spaces and features associated with maternity waiting home user satisfaction? (2) Can built spaces and features designed to improve hygiene, comfort, privacy and function improve maternity waiting home user satisfaction? And (3) Which built spaces and features are most important for maternity waiting home user satisfaction? A cross-sectional study comparing satisfaction with standard and non-standard maternity waiting home designs. Between December 2016 and February 2017 we surveyed expectant mothers at two maternity waiting homes that differed in their design of built spaces and features. We used bivariate analyses to assess if built spaces and features were associated with satisfaction. We compared ratings of built spaces and features between the two maternity waiting homes using chi-squares and t-tests to assess if design features to improve hygiene, comfort, privacy and function were associated with higher satisfaction. We used exploratory robust regression analysis to examine the relationship between built spaces and features and maternity waiting home satisfaction. Two maternity waiting homes in Malawi, one that incorporated non-standardized design features to improve hygiene, comfort, privacy, and function (Kasungu maternity waiting home) and the other that had a standard maternity waiting home design (Dowa maternity waiting home). 322 expectant mothers at risk for underutilizing maternity waiting homes (i.e. first-time mothers and those with no pregnancy risk factors) who had stayed at the Kasungu or Dowa maternity waiting homes. There were significant differences in ratings of built spaces and features between the two differently designed maternity waiting homes, with the non-standard design having higher ratings for: adequacy of toilets, and ratings of heating/cooling, air and water quality, sanitation, toilets/showers and kitchen facilities, building maintenance, sleep area, private storage space, comfort level, outdoor spaces and overall satisfaction (p = <.0001 for all). The final regression model showed that built spaces and features that are most important for maternity waiting home user satisfaction are toilets/showers, guardian spaces, safety, building maintenance, sleep area and private storage space (R 2  = 0.28). The design of maternity waiting home built spaces and features is associated with user satisfaction in women at risk for underutilizing maternity waiting homes, especially related to toilets/showers, guardian spaces, safety, building maintenance, sleep area and private storage space. Improving maternity waiting home built spaces and features may offer a promising area for improving maternity waiting home satisfaction and reducing barriers to maternity waiting home use. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Tucson Diversion Channel. Phase I. Sport Fields & Picnic Area. Feature Design Memorandum Number 3.

    DTIC Science & Technology

    1983-04-01

    opportunities for picnicking, a variety of field sports and court games , archery, jogging, and bicycling. d. Rapid urban growth in the Tucson metropolitan area...AD’A136 927 TUCSON DIVERSION CHANNEL PHASE I SPORT FIELDS A PICNI IC J AREA FEATURE DESIGN MEMORANDUM NUMBER 3(U) ARMY ENGINEER DISTRICT LOS ANGELES...TUCSON DIVERSION CHMNEL DESIGN EIORANDUK NO. 3 FEATURE DESIGN MNRORANDIJ PHASE I SPORT FIELDS & PICNIC AREA APRIL 1983 t1 US AM CORPS OF

  15. PageRank versatility analysis of multilayer modality-based network for exploring the evolution of oil-water slug flow.

    PubMed

    Gao, Zhong-Ke; Dang, Wei-Dong; Li, Shan; Yang, Yu-Xuan; Wang, Hong-Tao; Sheng, Jing-Ran; Wang, Xiao-Fan

    2017-07-14

    Numerous irregular flow structures exist in the complicated multiphase flow and result in lots of disparate spatial dynamical flow behaviors. The vertical oil-water slug flow continually attracts plenty of research interests on account of its significant importance. Based on the spatial transient flow information acquired through our designed double-layer distributed-sector conductance sensor, we construct multilayer modality-based network to encode the intricate spatial flow behavior. Particularly, we calculate the PageRank versatility and multilayer weighted clustering coefficient to quantitatively explore the inferred multilayer modality-based networks. Our analysis allows characterizing the complicated evolution of oil-water slug flow, from the opening formation of oil slugs, to the succedent inter-collision and coalescence among oil slugs, and then to the dispersed oil bubbles. These properties render our developed method particularly powerful for mining the essential flow features from the multilayer sensor measurements.

  16. The Application and Future of Big Database Studies in Cardiology: A Single-Center Experience.

    PubMed

    Lee, Kuang-Tso; Hour, Ai-Ling; Shia, Ben-Chang; Chu, Pao-Hsien

    2017-11-01

    As medical research techniques and quality have improved, it is apparent that cardiovascular problems could be better resolved by more strict experiment design. In fact, substantial time and resources should be expended to fulfill the requirements of high quality studies. Many worthy ideas and hypotheses were unable to be verified or proven due to ethical or economic limitations. In recent years, new and various applications and uses of databases have received increasing attention. Important information regarding certain issues such as rare cardiovascular diseases, women's heart health, post-marketing analysis of different medications, or a combination of clinical and regional cardiac features could be obtained by the use of rigorous statistical methods. However, there are limitations that exist among all databases. One of the key essentials to creating and correctly addressing this research is through reliable processes of analyzing and interpreting these cardiologic databases.

  17. Model-Based Self-Tuning Multiscale Method for Combustion Control

    NASA Technical Reports Server (NTRS)

    Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2006-01-01

    A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.

  18. Spin Seebeck insulator.

    PubMed

    Uchida, K; Xiao, J; Adachi, H; Ohe, J; Takahashi, S; Ieda, J; Ota, T; Kajiwara, Y; Umezawa, H; Kawai, H; Bauer, G E W; Maekawa, S; Saitoh, E

    2010-11-01

    Thermoelectric generation is an essential function in future energy-saving technologies. However, it has so far been an exclusive feature of electric conductors, a situation which limits its application; conduction electrons are often problematic in the thermal design of devices. Here we report electric voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, the magnetic insulator LaY(2)Fe(5)O(12) can convert a heat flow into a spin voltage. Attached Pt films can then transform this spin voltage into an electric voltage as a result of the inverse spin Hall effect. The experimental results require us to introduce a thermally activated interface spin exchange between LaY(2)Fe(5)O(12) and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.

  19. Influence of micromixer characteristics on polydispersity index of block copolymers synthesized in continuous flow microreactors.

    PubMed

    Rosenfeld, Carine; Serra, Christophe; Brochon, Cyril; Hadziioannou, Georges

    2008-10-01

    The influence of interdigital multilamination micromixer characteristics on monomer conversions, molecular weights and especially on the polydispersity index of block copolymers synthesized continuously in two microtube reactors is investigated. The micromixers are used to mix, before copolymerization, a polymer solution with different viscosities and the second monomer. Different geometries of micromixer (number of microchannels, characteristic lengths) have been studied. It was found that polydispersity indices of the copolymers follow a linear relationship with the Reynolds number in the micromixer, represented by a form factor. Thus, beside the operating conditions (nature of the first block and comonomer flow rate), the choice of the micromixer geometry and dimension is essential to control the copolymerization in terms of molecular weights and polydispersity indices. This linear correlation allows the prediction of copolymer features. It can also be a new method to optimize existing micromixers or design other geometries so that mixing could be more efficient.

  20. Animating streamlines with repeated asymmetric patterns for steady flow visualization

    NASA Astrophysics Data System (ADS)

    Yeh, Chih-Kuo; Liu, Zhanping; Lee, Tong-Yee

    2012-01-01

    Animation provides intuitive cueing for revealing essential spatial-temporal features of data in scientific visualization. This paper explores the design of Repeated Asymmetric Patterns (RAPs) in animating evenly-spaced color-mapped streamlines for dense accurate visualization of complex steady flows. We present a smooth cyclic variable-speed RAP animation model that performs velocity (magnitude) integral luminance transition on streamlines. This model is extended with inter-streamline synchronization in luminance varying along the tangential direction to emulate orthogonal advancing waves from a geometry-based flow representation, and then with evenly-spaced hue differing in the orthogonal direction to construct tangential flow streaks. To weave these two mutually dual sets of patterns, we propose an energy-decreasing strategy that adopts an iterative yet efficient procedure for determining the luminance phase and hue of each streamline in HSL color space. We also employ adaptive luminance interleaving in the direction perpendicular to the flow to increase the contrast between streamlines.

Top