Sample records for essential design parameters

  1. Validation of Essential Acoustic Parameters for Highly Urgent In-Vehicle Collision Warnings.

    PubMed

    Lewis, Bridget A; Eisert, Jesse L; Baldwin, Carryl L

    2018-03-01

    Objective The aim of this study was to validate the importance of key acoustic criteria for use as in-vehicle forward collision warning (FCW) systems. Background Despite recent advances in vehicle safety, automobile crashes remain one of the leading causes of death. As automation allows for more control of noncritical functions by the vehicle, the potential for disengagement and distraction from the driving task also increases. It is, therefore, as important as ever that in-vehicle safety-critical interfaces are intuitive and unambiguous, promoting effective collision avoidance responses upon first exposure even under divided-attention conditions. Method The current study used a driving simulator to assess the effectiveness of two warnings, one that met all essential acoustic parameters, one that met only some essential parameters, and a no-warning control in the context of a lead vehicle-following task in conjunction with a cognitive distractor task and collision event. Results Participants receiving an FCW comprising five essential acoustic components had improved collision avoidance responses relative to a no-warning condition and an FCW missing essential elements on their first exposure. Responses to a consistently good warning (GMU Prime) improved with subsequent exposures, whereas continued exposure to the less optimal FCW (GMU Sub-Prime) resulted in poorer performance even relative to receiving no warning at all. Conclusions This study provides support for previous warning design studies and for the validity of five key acoustic parameters essential for the design of effective in-vehicle FCWs. Application Results from this study have implications for the design of auditory FCWs and in-vehicle display design.

  2. Statistical Analysis of Hurst Exponents of Essential/Nonessential Genes in 33 Bacterial Genomes

    PubMed Central

    Liu, Xiao; Wang, Baojin; Xu, Luo

    2015-01-01

    Methods for identifying essential genes currently depend predominantly on biochemical experiments. However, there is demand for improved computational methods for determining gene essentiality. In this study, we used the Hurst exponent, a characteristic parameter to describe long-range correlation in DNA, and analyzed its distribution in 33 bacterial genomes. In most genomes (31 out of 33) the significance levels of the Hurst exponents of the essential genes were significantly higher than for the corresponding full-gene-set, whereas the significance levels of the Hurst exponents of the nonessential genes remained unchanged or increased only slightly. All of the Hurst exponents of essential genes followed a normal distribution, with one exception. We therefore propose that the distribution feature of Hurst exponents of essential genes can be used as a classification index for essential gene prediction in bacteria. For computer-aided design in the field of synthetic biology, this feature can build a restraint for pre- or post-design checking of bacterial essential genes. Moreover, considering the relationship between gene essentiality and evolution, the Hurst exponents could be used as a descriptive parameter related to evolutionary level, or be added to the annotation of each gene. PMID:26067107

  3. Virtual parameter-estimation experiments in Bioprocess-Engineering education.

    PubMed

    Sessink, Olivier D T; Beeftink, Hendrik H; Hartog, Rob J M; Tramper, Johannes

    2006-05-01

    Cell growth kinetics and reactor concepts constitute essential knowledge for Bioprocess-Engineering students. Traditional learning of these concepts is supported by lectures, tutorials, and practicals: ICT offers opportunities for improvement. A virtual-experiment environment was developed that supports both model-related and experimenting-related learning objectives. Students have to design experiments to estimate model parameters: they choose initial conditions and 'measure' output variables. The results contain experimental error, which is an important constraint for experimental design. Students learn from these results and use the new knowledge to re-design their experiment. Within a couple of hours, students design and run many experiments that would take weeks in reality. Usage was evaluated in two courses with questionnaires and in the final exam. The faculties involved in the two courses are convinced that the experiment environment supports essential learning objectives well.

  4. Statistical analysis and yield management in LED design through TCAD device simulation

    NASA Astrophysics Data System (ADS)

    Létay, Gergö; Ng, Wei-Choon; Schneider, Lutz; Bregy, Adrian; Pfeiffer, Michael

    2007-02-01

    This paper illustrates how technology computer-aided design (TCAD), which nowadays is an essential part of CMOS technology, can be applied to LED development and manufacturing. In the first part, the essential electrical and optical models inherent to LED modeling are reviewed. The second part of the work describes a methodology to improve the efficiency of the simulation procedure by using the concept of process compact models (PCMs). The last part demonstrates the capabilities of PCMs using an example of a blue InGaN LED. In particular, a parameter screening is performed to find the most important parameters, an optimization task incorporating the robustness of the design is carried out, and finally the impact of manufacturing tolerances on yield is investigated. It is indicated how the concept of PCMs can contribute to an efficient design for manufacturing DFM-aware development.

  5. The application of virtual prototyping methods to determine the dynamic parameters of mobile robot

    NASA Astrophysics Data System (ADS)

    Kurc, Krzysztof; Szybicki, Dariusz; Burghardt, Andrzej; Muszyńska, Magdalena

    2016-04-01

    The paper presents methods used to determine the parameters necessary to build a mathematical model of an underwater robot with a crawler drive. The parameters present in the dynamics equation will be determined by means of advanced mechatronic design tools, including: CAD/CAE software andMES modules. The virtual prototyping process is described as well as the various possible uses (design adaptability) depending on the optional accessories added to the vehicle. A mathematical model is presented to show the kinematics and dynamics of the underwater crawler robot, essential for the design stage.

  6. Forward and backward uncertainty propagation: an oxidation ditch modelling example.

    PubMed

    Abusam, A; Keesman, K J; van Straten, G

    2003-01-01

    In the field of water technology, forward uncertainty propagation is frequently used, whereas backward uncertainty propagation is rarely used. In forward uncertainty analysis, one moves from a given (or assumed) parameter subspace towards the corresponding distribution of the output or objective function. However, in the backward uncertainty propagation, one moves in the reverse direction, from the distribution function towards the parameter subspace. Backward uncertainty propagation, which is a generalisation of parameter estimation error analysis, gives information essential for designing experimental or monitoring programmes, and for tighter bounding of parameter uncertainty intervals. The procedure of carrying out backward uncertainty propagation is illustrated in this technical note by working example for an oxidation ditch wastewater treatment plant. Results obtained have demonstrated that essential information can be achieved by carrying out backward uncertainty propagation analysis.

  7. Teaching-learning-based Optimization Algorithm for Parameter Identification in the Design of IIR Filters

    NASA Astrophysics Data System (ADS)

    Singh, R.; Verma, H. K.

    2013-12-01

    This paper presents a teaching-learning-based optimization (TLBO) algorithm to solve parameter identification problems in the designing of digital infinite impulse response (IIR) filter. TLBO based filter modelling is applied to calculate the parameters of unknown plant in simulations. Unlike other heuristic search algorithms, TLBO algorithm is an algorithm-specific parameter-less algorithm. In this paper big bang-big crunch (BB-BC) optimization and PSO algorithms are also applied to filter design for comparison. Unknown filter parameters are considered as a vector to be optimized by these algorithms. MATLAB programming is used for implementation of proposed algorithms. Experimental results show that the TLBO is more accurate to estimate the filter parameters than the BB-BC optimization algorithm and has faster convergence rate when compared to PSO algorithm. TLBO is used where accuracy is more essential than the convergence speed.

  8. 40 CFR 35.927-5 - Project procedures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... State, for example, of such parameters as per capita design flow, ratio of flow to design flow, flow... and, if required, an evaluation survey, is an essential element of step 1 facilities planning. It is a..., an adequate sewer system evaluation survey and, if required, a rehabilitation program must be...

  9. 40 CFR 35.927-5 - Project procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... State, for example, of such parameters as per capita design flow, ratio of flow to design flow, flow... and, if required, an evaluation survey, is an essential element of step 1 facilities planning. It is a..., an adequate sewer system evaluation survey and, if required, a rehabilitation program must be...

  10. 40 CFR 35.927-5 - Project procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... State, for example, of such parameters as per capita design flow, ratio of flow to design flow, flow... and, if required, an evaluation survey, is an essential element of step 1 facilities planning. It is a..., an adequate sewer system evaluation survey and, if required, a rehabilitation program must be...

  11. 40 CFR 35.927-5 - Project procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... State, for example, of such parameters as per capita design flow, ratio of flow to design flow, flow... and, if required, an evaluation survey, is an essential element of step 1 facilities planning. It is a..., an adequate sewer system evaluation survey and, if required, a rehabilitation program must be...

  12. 40 CFR 35.927-5 - Project procedures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... State, for example, of such parameters as per capita design flow, ratio of flow to design flow, flow... and, if required, an evaluation survey, is an essential element of step 1 facilities planning. It is a..., an adequate sewer system evaluation survey and, if required, a rehabilitation program must be...

  13. Computer program for design of two-dimensional supersonic turbine rotor blades with boundary-layer correction

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.; Scullin, V. J.

    1971-01-01

    A FORTRAN 4 computer program for the design of two-dimensional supersonic rotor blade sections corrected for boundary-layer displacement thickness is presented. The ideal rotor is designed by the method of characteristics to produce vortex flow within the blade passage. The boundary-layer parameters are calculated by Cohen and Reshotoko's method for laminar flow and Sasman and Cresci's method for turbulent flow. The program input consists essentially of the blade surface Mach number distribution and total flow conditions. The primary output is the corrected blade profile and the boundary-layer parameters.

  14. Design and parametric study on energy harvesting from bridge vibration using tuned dual-mass damper systems

    NASA Astrophysics Data System (ADS)

    Takeya, Kouichi; Sasaki, Eiichi; Kobayashi, Yusuke

    2016-01-01

    A bridge vibration energy harvester has been proposed in this paper using a tuned dual-mass damper system, named hereafter Tuned Mass Generator (TMG). A linear electromagnetic transducer has been applied to harvest and make use of the unused reserve of energy the aforementioned damper system absorbs. The benefits of using dual-mass systems over single-mass systems for power generation have been clarified according to the theory of vibrations. TMG parameters have been determined considering multi-domain parameters, and TMG has been tuned using a newly proposed parameter design method. Theoretical analysis results have shown that for effective energy harvesting, it is essential that TMG has robustness against uncertainties in bridge vibrations and tuning errors, and the proposed parameter design method for TMG has demonstrated this feature.

  15. A Comparison of Parameter Study Creation and Job Submission Tools

    NASA Technical Reports Server (NTRS)

    DeVivo, Adrian; Yarrow, Maurice; McCann, Karen M.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    We consider the differences between the available general purpose parameter study and job submission tools. These tools necessarily share many features, but frequently with differences in the way they are designed and implemented For this class of features, we will only briefly outline the essential differences. However we will focus on the unique features which distinguish the ILab parameter study and job submission tool from other packages, and which make the ILab tool easier and more suitable for use in our research and engineering environment.

  16. Computer aided design of digital controller for radial active magnetic bearings

    NASA Technical Reports Server (NTRS)

    Cai, Zhong; Shen, Zupei; Zhang, Zuming; Zhao, Hongbin

    1992-01-01

    A five degree of freedom Active Magnetic Bearing (AMB) system is developed which is controlled by digital controllers. The model of the radial AMB system is linearized and the state equation is derived. Based on the state variables feedback theory, digital controllers are designed. The performance of the controllers are evaluated according to experimental results. The Computer Aided Design (CAD) method is used to design controllers for magnetic bearings. The controllers are implemented with a digital signal processing (DSP) system. The control algorithms are realized with real-time programs. It is very easy to change the controller by changing or modifying the programs. In order to identify the dynamic parameters of the controlled magnetic system, a special experiment was carried out. Also, the online Recursive Least Squares (RLS) parameter identification method is studied. It can be realized with the digital controllers. Online parameter identification is essential for the realization of an adaptive controller.

  17. Geostatistical characterisation of geothermal parameters for a thermal aquifer storage site in Germany

    NASA Astrophysics Data System (ADS)

    Rodrigo-Ilarri, J.; Li, T.; Grathwohl, P.; Blum, P.; Bayer, P.

    2009-04-01

    The design of geothermal systems such as aquifer thermal energy storage systems (ATES) must account for a comprehensive characterisation of all relevant parameters considered for the numerical design model. Hydraulic and thermal conductivities are the most relevant parameters and its distribution determines not only the technical design but also the economic viability of such systems. Hence, the knowledge of the spatial distribution of these parameters is essential for a successful design and operation of such systems. This work shows the first results obtained when applying geostatistical techniques to the characterisation of the Esseling Site in Germany. In this site a long-term thermal tracer test (> 1 year) was performed. On this open system the spatial temperature distribution inside the aquifer was observed over time in order to obtain as much information as possible that yield to a detailed characterisation both of the hydraulic and thermal relevant parameters. This poster shows the preliminary results obtained for the Esseling Site. It has been observed that the common homogeneous approach is not sufficient to explain the observations obtained from the TRT and that parameter heterogeneity must be taken into account.

  18. Study on the influence of design parameters on the damping property of glass fiber reinforced epoxy composite

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Nanda, B. K.

    2018-04-01

    Fiber reinforced composites are widely used in industrial applications due to their high strength, light weight and ease in manufacturing. In applications such as automotive, aerospace and structural parts, the components are subjected to unwanted vibrations which reduce their service life, accuracy as well as increases noise. Therefore, it is essential to avoid the detrimental effects of vibrations by enhancing their damping characteristics. The current research deals with estimating the damping properties of Glass fiber reinforced epoxy (GFRE) composites. Processing of the GFRE composites is carried out using hand-lay technique. Various design parameters such as number of glass fiber layers, orientation of fibers and weight ratio are varied while manufacturing GFRE composites. The effects of variation of these design parameters on damping property of GFRE composites are studied extensively.

  19. Theoretical performance analysis of doped optical fibers based on pseudo parameters

    NASA Astrophysics Data System (ADS)

    Karimi, Maryam; Seraji, Faramarz E.

    2010-09-01

    Characterization of doped optical fibers (DOFs) is an essential primary stage for design of DOF-based devices. This paper presents design of novel measurement techniques to determine DOFs parameters using mono-beam propagation in a low-loss medium by generating pseudo parameters for the DOFs. The designed techniques are able to characterize simultaneously the absorption, emission cross-sections (ACS and ECS), and dopant concentration of DOFs. In both the proposed techniques, we assume pseudo parameters for the DOFs instead of their actual values and show that the choice of these pseudo parameters values for design of DOF-based devices, such as erbium-doped fiber amplifier (EDFA), are appropriate and the resulting error is quite negligible when compared with the actual parameters values.Utilization of pseudo ACS and ECS values in design procedure of EDFAs does not require the measurement of background loss coefficient (BLC) and makes the rate equation of the DOFs simple. It is shown that by using the pseudo parameters values obtained by the proposed techniques, the error in the gain of a designed EDFA with a BLC of about 1 dB/km, are about 0.08 dB. It is further indicated that the same scenario holds good for BLC lower than 5 dB/m and higher than 12 dB/m. The proposed characterization techniques have simple procedures and are low cost that can have an advantageous use in manufacturing of the DOFs.

  20. Optimization study of Chromalaena odorata essential oil extracted using solventless extraction technique

    NASA Astrophysics Data System (ADS)

    Nasshorudin, Dalila; Ahmad, Muhammad Syarhabil; Mamat, Awang Soh; Rosli, Suraya

    2015-05-01

    Solventless extraction process of Chromalaena odorata using reduced pressure and temperature has been investigated. The percentage yield of essential oil produce was calculated for every experiment with different experimental condition. The effect of different parameters, such as temperature and extraction time on the yield was investigated using the Response Surface Methodology (RSM) through Central Composite Design (CCD). The temperature and extraction time were found to have significant effect on the yield of extract. A final essential oil yield was 0.095% could be extracted under the following optimized conditions; a temperature of 80 °C and a time of 8 hours.

  1. Predicting Fish Densities in Lotic Systems: a Simple Modeling Approach

    EPA Science Inventory

    Fish density models are essential tools for fish ecologists and fisheries managers. However, applying these models can be difficult because of high levels of model complexity and the large number of parameters that must be estimated. We designed a simple fish density model and te...

  2. Factorial design of essential oil extraction from Fagraea fragrans Roxb. flowers and evaluation of its biological activities for perfumery and cosmetic applications.

    PubMed

    Yingngam, B; Brantner, A H

    2015-06-01

    To optimize the extraction yields of essential oil from Fagraea fragrans Roxb. flowers in hydro-distillation using a central composite design (CCD) and to evaluate its biological activities for perfumery and cosmetic applications. Central composite design was applied to study the influences of operational parameters [water to flower weight (X(1)) and distillation time (X(2))] on the yields of essential oil (Y). Chemical compositions of the essential oil extracted from the optimized condition were identified by gas chromatography-mass spectrometry. Antioxidant activities of the essential oil were determined against ABTS(•+) and DPPH(•) radicals, and the cytotoxic effects were assessed on human embryonic kidney (HEK293) cells by the use of the MTT assay. Also, the aromatic properties of the essential oil were evaluated by five healthy trained volunteers. The best conditions to obtain the maximum essential oil yield were 7.5 mL g(-1) (X(1)) and 215 min (X(2)). The experimental yield of the essential oil (0.35 ± 0.02% v/w) was close to the value predicted by a mathematical model (0.35 ± 0.01% v/w). 3-Octadecyne, Z,Z,Z-7,10,13-hexadecatrienal, E-nerolidol, pentadecanal and linalool were the major constituents of the essential oil. The essential oil showed moderate antioxidant capacities with no toxic effects on HEK293 cells at 1-250 μg mL(-1). Also, the essential oil exhibited a very strong aroma and was classified to be top- to middle-notes. The results offer the effectively operational conditions in the extraction of essential oil from F. fragrans using hydro-distillation. The essential oil could be used as a natural fragrance, having antioxidant activity with slight cytotoxicity, for perfumery and cosmetic applications. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  3. Metal wastage design guidelines for bubbling fluidized-bed combustors. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyczkowski, R.W.; Podolski, W.F.; Bouillard, J.X.

    These metal wastage design guidelines identify relationships between metal wastage and (1) design parameters (such as tube size, tube spacing and pitch, tube bundle and fluidized-bed height to distributor, and heat exchanger tube material properties) and (2) operating parameters (such as fluidizing velocity, particle size, particle hardness, and angularity). The guidelines are of both a quantitative and qualitative nature. Simplified mechanistic models are described, which account for the essential hydrodynamics and metal wastage processes occurring in bubbling fluidized beds. The empirical correlational approach complements the use of these models in the development of these design guidelines. Data used for modelmore » and guideline validation are summarized and referenced. Sample calculations and recommended design procedures are included. The influences of dependent variables on metal wastage, such as solids velocity, bubble size, and in-bed pressure fluctuations, are discussed.« less

  4. Uncertainty analysis as essential step in the establishment of the dynamic Design Space of primary drying during freeze-drying.

    PubMed

    Mortier, Séverine Thérèse F C; Van Bockstal, Pieter-Jan; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas

    2016-06-01

    Large molecules, such as biopharmaceuticals, are considered the key driver of growth for the pharmaceutical industry. Freeze-drying is the preferred way to stabilise these products when needed. However, it is an expensive, inefficient, time- and energy-consuming process. During freeze-drying, there are only two main process variables to be set, i.e. the shelf temperature and the chamber pressure, however preferably in a dynamic way. This manuscript focuses on the essential use of uncertainty analysis for the determination and experimental verification of the dynamic primary drying Design Space for pharmaceutical freeze-drying. Traditionally, the chamber pressure and shelf temperature are kept constant during primary drying, leading to less optimal process conditions. In this paper it is demonstrated how a mechanistic model of the primary drying step gives the opportunity to determine the optimal dynamic values for both process variables during processing, resulting in a dynamic Design Space with a well-known risk of failure. This allows running the primary drying process step as time efficient as possible, hereby guaranteeing that the temperature at the sublimation front does not exceed the collapse temperature. The Design Space is the multidimensional combination and interaction of input variables and process parameters leading to the expected product specifications with a controlled (i.e., high) probability. Therefore, inclusion of parameter uncertainty is an essential part in the definition of the Design Space, although it is often neglected. To quantitatively assess the inherent uncertainty on the parameters of the mechanistic model, an uncertainty analysis was performed to establish the borders of the dynamic Design Space, i.e. a time-varying shelf temperature and chamber pressure, associated with a specific risk of failure. A risk of failure acceptance level of 0.01%, i.e. a 'zero-failure' situation, results in an increased primary drying process time compared to the deterministic dynamic Design Space; however, the risk of failure is under control. Experimental verification revealed that only a risk of failure acceptance level of 0.01% yielded a guaranteed zero-defect quality end-product. The computed process settings with a risk of failure acceptance level of 0.01% resulted in a decrease of more than half of the primary drying time in comparison with a regular, conservative cycle with fixed settings. Copyright © 2016. Published by Elsevier B.V.

  5. ANTHROPOMETRIC CHARACTERISTICS OF FLIGHT PERSONNEL FOR DESIGNING DAMPERS FOR SHOCKPROOF SEATS OF HELICOPTER CREWS.

    PubMed

    Moiseev, Yu B; Ignatovich, S N; Strakhov, A Yu

    The article discusses anthropometric design of shockproof pilot seats for state-of-the-art helicopters. Object of the investigation was anthropometric parameters of the helicopter aviation personnel of the Russian interior troops. It was stated that the body parameters essential for designing helicopter seat dampers are mass of the body part that presses against the seat in the seating position, and eye level above the seat surface. An uncontrolled seat damper ensuring shockproof safety to 95 % helicopter crews must be designed for the body mass contacting the seat of 99.7 kg and eye level above the seat of 78.6 cm. To absorb.shock effectively, future dampers should be adjustable to pilot's body parameters. The optimal approach to anthropometric design of a helicopter seat is development of type pilot' body models with due account of pilot's the flight outfit and seat geometry. Principle criteria of type models are body mass and eye level. The authors propose a system of type body models facilitating specification of anthropometric data helicopter seat developers.

  6. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  7. A review of international pharmacy-based minor ailment services and proposed service design model.

    PubMed

    Aly, Mariyam; García-Cárdenas, Victoria; Williams, Kylie; Benrimoj, Shalom I

    2018-01-05

    The need to consider sustainable healthcare solutions is essential. An innovative strategy used to promote minor ailment care is the utilisation of community pharmacists to deliver minor ailment services (MASs). Promoting higher levels of self-care can potentially reduce the strain on existing resources. To explore the features of international MASs, including their similarities and differences, and consider the essential elements to design a MAS model. A grey literature search strategy was completed in June 2017 to comply with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses standard. This included (1) Google/Yahoo! search engines, (2) targeted websites, and (3) contact with commissioning organisations. Executive summaries, table of contents and title pages of documents were reviewed. Key characteristics of MASs were extracted and a MAS model was developed. A total of 147 publications were included in the review. Key service elements identified included eligibility, accessibility, staff involvement, reimbursement systems. Several factors need to be considered when designing a MAS model; including contextualisation of MAS to the market. Stakeholder engagement, service planning, governance, implementation and review have emerged as key aspects involved with a design model. MASs differ in their structural parameters. Consideration of these parameters is necessary when devising MAS aims and assessing outcomes to promote sustainability and success of the service. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Application of response surface methodology for the optimization of supercritical fluid extraction of essential oil from pomegranate (Punica granatum L.) peel.

    PubMed

    Ara, Katayoun Mahdavi; Raofie, Farhad

    2016-07-01

    Essential oils and volatile components of pomegranate ( Punica granatum L.) peel of the Malas variety from Meybod, Iran, were extracted using supercritical fluid extraction (SFE) and hydro-distillation methods. The experimental parameters of SFE that is pressure, temperature, extraction time, and modifier (methanol) volume were optimized using a central composite design after a (2 4-1 ) fractional factorial design. Detailed chemical composition of the essential oils and volatile components obtained by hydro-distillation and optimum condition of the supercritical CO 2 extraction were analyzed by GC-MS, and seventy-three and forty-six compounds were identified according to their retention indices and mass spectra, respectively. The optimum SFE conditions were 350 atm pressure, 55 °C temperature, 30 min extraction time, and 150 µL methanol. Results showed that oleic acid, palmitic acid and (-)-Borneol were major compounds in both extracts. The optimum extraction yield was 1.18 % (w/w) for SFE and 0.21 % (v/w) for hydro-distillation.

  9. Process and assembly plans for low cost commercial fuselage structure

    NASA Technical Reports Server (NTRS)

    Willden, Kurtis; Metschan, Stephen; Starkey, Val

    1991-01-01

    Cost and weight reduction for a composite structure is a result of selecting design concepts that can be built using efficient low cost manufacturing and assembly processes. Since design and manufacturing are inherently cost dependent, concurrent engineering in the form of a Design-Build Team (DBT) is essential for low cost designs. Detailed cost analysis from DBT designs and hardware verification must be performed to identify the cost drivers and relationships between design and manufacturing processes. Results from the global evaluation are used to quantitatively rank design, identify cost centers for higher ranking design concepts, define and prioritize a list of technical/economic issues and barriers, and identify parameters that control concept response. These results are then used for final design optimization.

  10. Implementation and Performance Evaluation of Parameter Improvement Mechanisms for Intelligent E-Learning Systems

    ERIC Educational Resources Information Center

    Huang, Chenn-Jung; Chu, San-Shine; Guan, Chih-Tai

    2007-01-01

    In recent years, designing useful learning diagnosis systems has become a hot research topic in the literature. In order to help teachers easily analyze students' profiles in intelligent tutoring system, it is essential that students' portfolios can be transformed into some useful information to reflect the extent of students' participation in the…

  11. Optimization of microwave assisted extraction of essential oils from Iranian Rosmarinus officinalis L. using RSM.

    PubMed

    Akhbari, Maryam; Masoum, Saeed; Aghababaei, Fahimeh; Hamedi, Sepideh

    2018-06-01

    In this study, the efficiencies of conventional hydro-distillation and novel microwave hydro-distillation methods in extraction of essential oil from Rosemary officinalis leaves have been compared. In order to attain the best yield and also highest quality of the essential oil in the microwave assisted method, the optimal values of operating parameters such as extraction time, microwave irradiation power and water volume to plant mass ratio were investigated using central composite design under response surface methodology. Optimal conditions for obtaining the maximum extraction yield in the microwave assisted method were predicted as follows: extraction time of 85 min, microwave power of 888 W, and water volume to plant mass ratio of 0.5 ml/g. The extraction yield at these predicted conditions was computed as 0.7756%. The qualities of the obtained essential oils under designed experiments were optimized based on total contents of four major compounds (α-pinene, 1,8-cineole, camphor and verbenone) which determined by gas chromatography equipped with mass spectroscopy (GC-MS). The highest essential oil quality (55.87%) was obtained at extraction time of 68 min; microwave irradiation power of 700 W; and water volume to plant mass ratio of zero.

  12. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design.

    PubMed

    Laukens, Debby; Brinkman, Brigitta M; Raes, Jeroen; De Vos, Martine; Vandenabeele, Peter

    2016-01-01

    Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host-microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments. © FEMS 2015.

  13. Heterogeneity of the gut microbiome in mice: guidelines for optimizing experimental design

    PubMed Central

    Laukens, Debby; Brinkman, Brigitta M.; Raes, Jeroen; De Vos, Martine; Vandenabeele, Peter

    2015-01-01

    Targeted manipulation of the gut flora is increasingly being recognized as a means to improve human health. Yet, the temporal dynamics and intra- and interindividual heterogeneity of the microbiome represent experimental limitations, especially in human cross-sectional studies. Therefore, rodent models represent an invaluable tool to study the host–microbiota interface. Progress in technical and computational tools to investigate the composition and function of the microbiome has opened a new era of research and we gradually begin to understand the parameters that influence variation of host-associated microbial communities. To isolate true effects from confounding factors, it is essential to include such parameters in model intervention studies. Also, explicit journal instructions to include essential information on animal experiments are mandatory. The purpose of this review is to summarize the factors that influence microbiota composition in mice and to provide guidelines to improve the reproducibility of animal experiments. PMID:26323480

  14. Improved quality of frozen boer goat semen with the addition of sweet orange essential oil on tris yolk and gentamicin extender

    NASA Astrophysics Data System (ADS)

    Sitepu, S. A.; Zaituni, U.; Jaswandi; Hendri

    2018-02-01

    This research aimed to determine the extent of frozen semen quality Boer Goat by essential oils of sweet orange peel in tris yolk and gentamicin extender. Research has been conducted at the Laboratory Loka Penelitian Kambing Potong Sei Putih, Deli Serdang, North Sumatra in February 2017. This study used a completely randomized design with 4 treatments and 5 replications. Treatments are 0.25; 0.5; 0.75 and 1% essential oils as additional diluent. The parameters were measured percentage Motility, membrane integrity, acrosome integrity and viability Boer Goat frozen semen. The results showed that the addition of essential oils as diluent semen was significant (P <0.01) in the percentage motility, Viability, membrane integrity and acrosome integrity Boer Goat frozen semen. Motility, membrane integrity, acrosome integrity and viability was significantly higher in all treated groups than the control group. The best results of all treatments In the study was the addition of essential oil as much as 1%.

  15. Thermodynamic Studies for Drug Design and Screening

    PubMed Central

    Garbett, Nichola C.; Chaires, Jonathan B.

    2012-01-01

    Introduction A key part of drug design and development is the optimization of molecular interactions between an engineered drug candidate and its binding target. Thermodynamic characterization provides information about the balance of energetic forces driving binding interactions and is essential for understanding and optimizing molecular interactions. Areas covered This review discusses the information that can be obtained from thermodynamic measurements and how this can be applied to the drug development process. Current approaches for the measurement and optimization of thermodynamic parameters are presented, specifically higher throughput and calorimetric methods. Relevant literature for this review was identified in part by bibliographic searches for the period 2004 – 2011 using the Science Citation Index and PUBMED and the keywords listed below. Expert opinion The most effective drug design and development platform comes from an integrated process utilizing all available information from structural, thermodynamic and biological studies. Continuing evolution in our understanding of the energetic basis of molecular interactions and advances in thermodynamic methods for widespread application are essential to realize the goal of thermodynamically-driven drug design. Comprehensive thermodynamic evaluation is vital early in the drug development process to speed drug development towards an optimal energetic interaction profile while retaining good pharmacological properties. Practical thermodynamic approaches, such as enthalpic optimization, thermodynamic optimization plots and the enthalpic efficiency index, have now matured to provide proven utility in design process. Improved throughput in calorimetric methods remains essential for even greater integration of thermodynamics into drug design. PMID:22458502

  16. Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation

    PubMed Central

    Thair, Hayley; Holloway, Amy L.; Newport, Roger; Smith, Alastair D.

    2017-01-01

    Transcranial direct current stimulation (tDCS) is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields. PMID:29213226

  17. Optimal experimental design for parameter estimation of a cell signaling model.

    PubMed

    Bandara, Samuel; Schlöder, Johannes P; Eils, Roland; Bock, Hans Georg; Meyer, Tobias

    2009-11-01

    Differential equation models that describe the dynamic changes of biochemical signaling states are important tools to understand cellular behavior. An essential task in building such representations is to infer the affinities, rate constants, and other parameters of a model from actual measurement data. However, intuitive measurement protocols often fail to generate data that restrict the range of possible parameter values. Here we utilized a numerical method to iteratively design optimal live-cell fluorescence microscopy experiments in order to reveal pharmacological and kinetic parameters of a phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) second messenger signaling process that is deregulated in many tumors. The experimental approach included the activation of endogenous phosphoinositide 3-kinase (PI3K) by chemically induced recruitment of a regulatory peptide, reversible inhibition of PI3K using a kinase inhibitor, and monitoring of the PI3K-mediated production of PIP(3) lipids using the pleckstrin homology (PH) domain of Akt. We found that an intuitively planned and established experimental protocol did not yield data from which relevant parameters could be inferred. Starting from a set of poorly defined model parameters derived from the intuitively planned experiment, we calculated concentration-time profiles for both the inducing and the inhibitory compound that would minimize the predicted uncertainty of parameter estimates. Two cycles of optimization and experimentation were sufficient to narrowly confine the model parameters, with the mean variance of estimates dropping more than sixty-fold. Thus, optimal experimental design proved to be a powerful strategy to minimize the number of experiments needed to infer biological parameters from a cell signaling assay.

  18. Optimized ultrasonic assisted extraction-dispersive liquid-liquid microextraction coupled with gas chromatography for determination of essential oil of Oliveria decumbens Vent.

    PubMed

    Sereshti, Hassan; Izadmanesh, Yahya; Samadi, Soheila

    2011-07-22

    Ultrasonic assisted extraction-dispersive liquid-liquid microextraction (UAE-DLLME) coupled with gas chromatography (GC) was applied for extraction and determination of essential oil constituents of the plant Oliveria decumbens Vent. Scanning electron microscopy (SEM) was used to see the effect of ultrasonic radiation on the extraction efficiency. By comparison with hydrodistillation, UAE-DLLME is fast, low cost, simple, efficient and consuming small amount of plant materials (∼1.0 g). The effects of various parameters such as temperature, ultrasonication time, volume of disperser and extraction solvents were investigated by a full factorial design to identify significant variables and their interactions. The results demonstrated that temperature and ultrasonication time had no considerable effect on the results. In the next step, a central composite design (CCD) was performed to obtain the optimum levels of significant parameters. The obtained optimal conditions were: 0.45 mL for disperser solvent (acetonitrile) and 94.84 μL for extraction solvent (chlorobenzene). The limits of detection (LODs), linear dynamic range and determination coefficients (R(2)) were 0.2-29 ng mL(-1), 1-2100 ng mL(-1) and 0.995-0.998, respectively. The main components of the essential oil were: thymol (47.06%), carvacrol (23.31%), gamma-terpinene (18.94%), p-cymene (8.71%), limonene (0.76%) and myristicin (0.63%). Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Optimization of conditions of solvent-free microwave extraction and study on antioxidant capacity of essential oil from Schisandra chinensis (Turcz.) Baill.

    PubMed

    Ma, Chun-hui; Yang, Lei; Zu, Yuan-gang; Liu, Ting-ting

    2012-10-15

    In this article, solvent-free microwave extraction (SFME) of essential oil from Schisandra chinensis (Turcz.) Baill was studied. A multivariate study based on central composite design (CCD) was used to evaluate the influence of three major variables affecting the performance of SFME. The optimum parameters were extraction time 30 min, irradiation power 385 W and moisture content of the fruits was 68%. The extraction yield of essential oil was 11 ml/kg under the optimum conditions. The antioxidant capacity of essential oils extracted by different methods were determined, and compared with traditional antioxidants. GC-MS showed the different composition of essential oil extracted by hydro-distillation (HD), steam-distillation (SD) and SFME. S. chinensis materials treated by different methods were observed by scanning electronic microscopy (SEM) and thermo-gravimetric analysis (TGA). Micrographs and thermo gravimetric loss provided more evidences to prove SFME of essential oil is more completed than HD and SD. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Assessment of Cultivation Factors that Affect Biomass and Geraniol Production in Transgenic Tobacco Cell Suspension Cultures

    PubMed Central

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources. PMID:25117009

  1. Assessment of cultivation factors that affect biomass and geraniol production in transgenic tobacco cell suspension cultures.

    PubMed

    Vasilev, Nikolay; Schmitz, Christian; Grömping, Ulrike; Fischer, Rainer; Schillberg, Stefan

    2014-01-01

    A large-scale statistical experimental design was used to determine essential cultivation parameters that affect biomass accumulation and geraniol production in transgenic tobacco (Nicotiana tabacum cv. Samsun NN) cell suspension cultures. The carbohydrate source played a major role in determining the geraniol yield and factors such as filling volume, inoculum size and light were less important. Sucrose, filling volume and inoculum size had a positive effect on geraniol yield by boosting growth of plant cell cultures whereas illumination of the cultures stimulated the geraniol biosynthesis. We also found that the carbohydrates sucrose and mannitol showed polarizing effects on biomass and geraniol accumulation. Factors such as shaking frequency, the presence of conditioned medium and solubilizers had minor influence on both plant cell growth and geraniol content. When cells were cultivated under the screened conditions for all the investigated factors, the cultures produced ∼ 5.2 mg/l geraniol after 12 days of cultivation in shaking flasks which is comparable to the yield obtained in microbial expression systems. Our data suggest that industrial experimental designs based on orthogonal arrays are suitable for the selection of initial cultivation parameters prior to the essential medium optimization steps. Such designs are particularly beneficial in the early optimization steps when many factors must be screened, increasing the statistical power of the experiments without increasing the demand on time and resources.

  2. The meaning of "design".

    PubMed

    Leslie, J

    2001-12-01

    Our universe obeys elegant laws that permit living beings to evolve. This can suggest divine design. So can fine tuning of physical and cosmological parameters in ways that seem essential to life. Understanding the idea of design is, however, difficult for many reasons. For instance, could a designer be said to "fine tune" through choosing all-dictating laws very carefully? Again, would taking advantage of early quantum indeterminacies be a case of design, or would it be design-destroying interference? Can we speak of "design" if God is not a mind but an abstract Platonic principle? And what if, as Spinoza believed, the structure of our universe is just the structure of divine thinking? If such thinking extended to other universes which were lifeless, could those "exhibit design" simply through being orderly?

  3. Essential oils for dairy calves: effects on performance, scours, rumen fermentation and intestinal fauna.

    PubMed

    Santos, F H R; De Paula, M R; Lezier, D; Silva, J T; Santos, G; Bittar, C M M

    2015-06-01

    The first cause of death of dairy calves is often diarrhea which is mainly caused by pathogenic bacteria, which can result in excessive use of antibiotics. However, facing the increase concern by the industry and consumers, the use of antibiotics not only to control pathogens, but also to manipulate growth, has become a challenge. Alternative additives, such essential oils, have the potential to decrease antibiotic use, without reducing performance or increasing mortality of dairy calves. The objective of this study was to evaluate the use of a commercial blend of essential oils, incorporated into the calf starter and/or milk replacer to monitor the effect on overall calf performance, fecal scores and rumen fermentation parameters. A total of 30 Holstein calves received 6 l/day of a liquid diet, consisting of a commercial milk replacer containing 20% CP : 15% fat (EE). Calves had free choice access to water and calf starter. Weaning occurred at week 8, and calves were followed until the 10th week of age. Calves were assigned to one of the three treatment groups in a randomized block design. (1) control without essential oils supplementation (C); (2) essential oils blend in the milk replacer at 400 mg/kg (MR) and (3) essential oils blend in the milk replacer (200 mg/kg) and starter feed (200 mg/kg) (MRS). From the 2nd week, calves were weighed and body measurements were taken, while concentrate intake and fecal scores were monitored daily. Blood samples were drawn weekly for determination of glucose and β-hydroxybutyrate. Fecal samples were collected weekly and analyzed for lactic acid bacteria and Enterobacteria; and ruminal fluid for determination of pH, short chain fatty acids, ammonia-N and counts of amylolytic and cellulolytic bacteria, and protozoa. Performance, fecal scores and intestines microorganisms were not affected by the essential oils supplementation. Ruminal and blood parameters were also not affected, with the exception the rumen ammonia-N concentration, with higher values when essential oils were supplemented in a combination of milk replacer and starter feed. Most of the evaluated parameters were affected by age of calves, mainly as a response to the increase in concentrate intake as animals' aged. Essential oils are promising substitutes for antibiotics. However, the dose and routes of administration deserve further studies, allowing a better animal performance and health to be achieved.

  4. Fitting modular reconnaissance systems into modern high-performance aircraft

    NASA Astrophysics Data System (ADS)

    Stroot, Jacquelyn R.; Pingel, Leslie L.

    1990-11-01

    The installation of the Advanced Tactical Air Reconnaissance System (ATARS) in the F/A-18D(RC) presented a complex set of design challenges. At the time of the F/A-18D(RC) ATARS option exercise, the design and development of the ATARS subsystems and the parameters of the F/A-18D(RC) were essentially fixed. ATARS is to be installed in the gun bay of the F/A-18D(RC), taking up no additional room, nor adding any more weight than what was removed. The F/A-18D(RC) installation solution required innovations in mounting, cooling, and fit techniques, which made constant trade study essential. The successful installation in the F/A-18D(RC) is the result of coupling fundamental design engineering with brainstorming and nonstandard approaches to every situation. ATARS is sponsored by the Aeronautical Systems Division, Wright-Patterson AFB, Ohio. The F/A-18D(RC) installation is being funded to the Air Force by the Naval Air Systems Command, Washington, D.C.

  5. Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli

    PubMed Central

    Nakashima, Nobutaka; Tamura, Tomohiro; Good, Liam

    2006-01-01

    Reliable methods for conditional gene silencing in bacteria have been elusive. To improve silencing by expressed antisense RNAs (asRNAs), we systematically altered several design parameters and targeted multiple reporter and essential genes in Escherichia coli. A paired termini (PT) design, where flanking inverted repeats create paired dsRNA termini, proved effective. PTasRNAs targeted against the ackA gene within the acetate kinase-phosphotransacetylase operon (ackA-pta) triggered target mRNA decay and a 78% reduction in AckA activity with high genetic penetrance. PTasRNAs are abundant and stable and function through an RNase III independent mechanism that requires a large stoichiometric excess of asRNA. Conditional ackA silencing reduced carbon flux to acetate and increased heterologous gene expression. The PT design also improved silencing of the essential fabI gene. Full anti-fabI PTasRNA induction prevented growth and partial induction sensitized cells to a FabI inhibitor. PTasRNAs have potential for functional genomics, antimicrobial discovery and metabolic flux control. PMID:17062631

  6. Paired termini stabilize antisense RNAs and enhance conditional gene silencing in Escherichia coli.

    PubMed

    Nakashima, Nobutaka; Tamura, Tomohiro; Good, Liam

    2006-01-01

    Reliable methods for conditional gene silencing in bacteria have been elusive. To improve silencing by expressed antisense RNAs (asRNAs), we systematically altered several design parameters and targeted multiple reporter and essential genes in Escherichia coli. A paired termini (PT) design, where flanking inverted repeats create paired dsRNA termini, proved effective. PTasRNAs targeted against the ackA gene within the acetate kinase-phosphotransacetylase operon (ackA-pta) triggered target mRNA decay and a 78% reduction in AckA activity with high genetic penetrance. PTasRNAs are abundant and stable and function through an RNase III independent mechanism that requires a large stoichiometric excess of asRNA. Conditional ackA silencing reduced carbon flux to acetate and increased heterologous gene expression. The PT design also improved silencing of the essential fabI gene. Full anti-fabI PTasRNA induction prevented growth and partial induction sensitized cells to a FabI inhibitor. PTasRNAs have potential for functional genomics, antimicrobial discovery and metabolic flux control.

  7. Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation.

    PubMed

    Lin, Bor-Shing; Lee, I-Jung; Yang, Shu-Yu; Lo, Yi-Chiang; Lee, Junghsi; Chen, Jean-Lon

    2018-05-13

    Capturing hand motions for hand function evaluations is essential in the medical field. Various data gloves have been developed for rehabilitation and manual dexterity assessments. This study proposed a modular data glove with 9-axis inertial measurement units (IMUs) to obtain static and dynamic parameters during hand function evaluation. A sensor fusion algorithm is used to calculate the range of motion of joints. The data glove is designed to have low cost, easy wearability, and high reliability. Owing to the modular design, the IMU board is independent and extensible and can be used with various microcontrollers to realize more medical applications. This design greatly enhances the stability and maintainability of the glove.

  8. Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils

    NASA Technical Reports Server (NTRS)

    Lee, Byung Joon; Liou, Meng-Sing

    2012-01-01

    This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.

  9. Design of a Fission 99 Mo Recovery Process and Implications toward Mo Adsorption Mechanism on Titania and Alumina Sorbents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepinski, Dominique C.; Youker, Amanda J.; Krahn, Elizabeth O.

    2017-03-01

    Molybdenum-99 is a parent of the most widely used medical isotope technetium-99m. Proliferation concerns have prompted development of alternative Mo production methods utilizing low enriched uranium. Alumina and titania sorbents were evaluated for separation of Mo from concentrated uranyl nitrate solutions. System, mass transfer, and isotherm parameters were determined to enable design of Mo separation processes under a wide range of conditions. A model-based approach was utilized to design representative commercial-scale column processes. The designs and parameters were verified with bench-scale experiments. The results are essential for design of Mo separation processes from irradiated uranium solutions, selection of support materialmore » and process optimization. Mo uptake studies show that adsorption decreases with increasing concentration of uranyl nitrate; howeveL, examination of Mo adsorption as a function of nitrate ion concentration shows no dependency, indicating that uranium competes with Mo for adsorption sites. These results are consistent with reports indicating that Mo forms inner-sphere complexes with titania and alumina surface groups.« less

  10. Measurement and Analysis of Extreme Wave and Ice Actions in the Great Lakes for Offshore Wind Platform Design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, Tony; van Nieuwstadt, Lin; De Roo, Roger

    This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that hasmore » been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.« less

  11. AVR Microcontroller-based automated technique for analysis of DC motors

    NASA Astrophysics Data System (ADS)

    Kaur, P.; Chatterji, S.

    2014-01-01

    This paper provides essential information on the development of a 'dc motor test and analysis control card' using AVR series ATMega32 microcontroller. This card can be interfaced to PC and calculates parameters like motor losses, efficiency and plot characteristics for dc motors. Presently, there are different tests and methods available to evaluate motor parameters, but a single and universal user-friendly automated set-up has been discussed in this paper. It has been accomplished by designing a data acquisition and SCR bridge firing hardware based on AVR ATMega32 microcontroller. This hardware has the capability to drive the phase-controlled rectifiers and acquire real-time values of current, voltage, temperature and speed of motor. Various analyses feasible with the designed hardware are of immense importance for dc motor manufacturers and quality-sensitive users. Authors, through this paper aim to provide details of this AVR-based hardware which can be used for dc motor parameter analysis and also for motor control applications.

  12. Experimental design for estimating parameters of rate-limited mass transfer: Analysis of stream tracer studies

    USGS Publications Warehouse

    Wagner, Brian J.; Harvey, Judson W.

    1997-01-01

    Tracer experiments are valuable tools for analyzing the transport characteristics of streams and their interactions with shallow groundwater. The focus of this work is the design of tracer studies in high-gradient stream systems subject to advection, dispersion, groundwater inflow, and exchange between the active channel and zones in surface or subsurface water where flow is stagnant or slow moving. We present a methodology for (1) evaluating and comparing alternative stream tracer experiment designs and (2) identifying those combinations of stream transport properties that pose limitations to parameter estimation and therefore a challenge to tracer test design. The methodology uses the concept of global parameter uncertainty analysis, which couples solute transport simulation with parameter uncertainty analysis in a Monte Carlo framework. Two general conclusions resulted from this work. First, the solute injection and sampling strategy has an important effect on the reliability of transport parameter estimates. We found that constant injection with sampling through concentration rise, plateau, and fall provided considerably more reliable parameter estimates than a pulse injection across the spectrum of transport scenarios likely encountered in high-gradient streams. Second, for a given tracer test design, the uncertainties in mass transfer and storage-zone parameter estimates are strongly dependent on the experimental Damkohler number, DaI, which is a dimensionless combination of the rates of exchange between the stream and storage zones, the stream-water velocity, and the stream reach length of the experiment. Parameter uncertainties are lowest at DaI values on the order of 1.0. When DaI values are much less than 1.0 (owing to high velocity, long exchange timescale, and/or short reach length), parameter uncertainties are high because only a small amount of tracer interacts with storage zones in the reach. For the opposite conditions (DaI ≫ 1.0), solute exchange rates are fast relative to stream-water velocity and all solute is exchanged with the storage zone over the experimental reach. As DaI increases, tracer dispersion caused by hyporheic exchange eventually reaches an equilibrium condition and storage-zone exchange parameters become essentially nonidentifiable.

  13. Numerical Analysis of a Rotating Detonation Engine in the Relative Reference Frame

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2014-01-01

    A two-dimensional, computational fluid dynamic (CFD) simulation of a semi-idealized rotating detonation engine (RDE) is described. The simulation operates in the detonation frame of reference and utilizes a relatively coarse grid such that only the essential primary flow field structure is captured. This construction yields rapidly converging, steady solutions. Results from the simulation are compared to those from a more complex and refined code, and found to be in reasonable agreement. The performance impacts of several RDE design parameters are then examined. Finally, for a particular RDE configuration, it is found that direct performance comparison can be made with a straight-tube pulse detonation engine (PDE). Results show that they are essentially equivalent.

  14. DESIGN OF TWO-DIMENSIONAL SUPERSONIC TURBINE ROTOR BLADES WITH BOUNDARY-LAYER CORRECTION

    NASA Technical Reports Server (NTRS)

    Goldman, L. J.

    1994-01-01

    A computer program has been developed for the design of supersonic rotor blades where losses are accounted for by correcting the ideal blade geometry for boundary layer displacement thickness. The ideal blade passage is designed by the method of characteristics and is based on establishing vortex flow within the passage. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal passage, and the final blade geometry is obtained by adding the displacement thicknesses to the ideal nozzle coordinates. The boundary-layer parameters are also used to calculate the aftermixing conditions downstream of the rotor blades assuming the flow mixes to a uniform state. The computer program input consists essentially of the rotor inlet and outlet Mach numbers, upper- and lower-surface Mach numbers, inlet flow angle, specific heat ratio, and total flow conditions. The program gas properties are set up for air. Additional gases require changes to be made to the program. The computer output consists of the corrected rotor blade coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 7094. This program was developed in 1971.

  15. Design and optimization of an energy degrader with a multi-wedge scheme based on Geant4

    NASA Astrophysics Data System (ADS)

    Liang, Zhikai; Liu, Kaifeng; Qin, Bin; Chen, Wei; Liu, Xu; Li, Dong; Xiong, Yongqian

    2018-05-01

    A proton therapy facility based on an isochronous superconducting cyclotron is under construction in Huazhong University of Science and Technology (HUST). To meet the clinical requirements, an energy degrader is essential in the beamline to modulate the fixed beam energy extracted from the cyclotron. Because of the multiple Coulomb scattering in the degrader, the beam emittance and the energy spread will be considerably increased during the energy degradation process. Therefore, a set of collimators is designed to restrict the increase in beam emittance after the energy degradation. The energy spread will be reduced in the following beam line which is not discussed in this paper. In this paper, the design considerations of an energy degrader and collimators are introduced, and the properties of the degrader material, degrader structure and the initial beam parameters are discussed using the Geant4 Monte-Carlo toolkit, with the main purpose of improving the overall performance of the degrader by multiple parameter optimization.

  16. Aerodynamics of heat exchangers for high-altitude aircraft

    NASA Technical Reports Server (NTRS)

    Drela, Mark

    1996-01-01

    Reduction of convective beat transfer with altitude dictates unusually large beat exchangers for piston- engined high-altitude aircraft The relatively large aircraft drag fraction associated with cooling at high altitudes makes the efficient design of the entire heat exchanger installation an essential part of the aircraft's aerodynamic design. The parameters that directly influence cooling drag are developed in the context of high-altitude flight Candidate wing airfoils that incorporate heat exchangers are examined. Such integrated wing-airfoil/heat-exchanger installations appear to be attractive alternatives to isolated heat.exchanger installations. Examples are drawn from integrated installations on existing or planned high-altitude aircraft.

  17. The design of low cost structures for extensive ground arrays

    NASA Technical Reports Server (NTRS)

    Franklin, H. A.; Leonard, R. S.

    1980-01-01

    The development of conceptual designs of solar array support structures and their foundations including considerations of the use of concrete, steel, aluminum, or timber are reported. Some cost trends were examined by varying selected parameters to determine optimum configurations. Detailed civil/structural design criteria were developed. Using these criteria, eight detailed designs for support structures and foundations were developed and cost estimates were made. As a result of the study wind was identified as the major loading experienced by these low height structures, whose arrays are likely to extend over large tracts of land. Proper wind load estimating is considered essential to developing realistic structural designs and achieving minimum cost support structures. Wind tunnel testing of a conceptual array field was undertaken and some of the resulting wind design criteria are presented. The SPS rectenna system designs may be less sensitive to wind load estimates, but consistent design criteria remain important.

  18. Contact Dermatitis for the Practicing Allergist.

    PubMed

    Bernstein, David I

    2015-01-01

    This article provides an overview of important practice recommendations from the recently updated Contact Dermatitis Practice Parameter. This updated parameter provides essential recommendations pertaining to clinical history, physical examination, and patch testing evaluation of patients suspected of allergic contact dermatitis. In addition to providing guidance for performing and interpreting closed patch testing, the updated parameter provides concrete recommendations for assessing metal hypersensitivity in patients receiving prosthetic devices, for evaluating workers with occupational contact dermatitis, and also for addressing allergic contact dermatitis in children. Finally, the document provides practical recommendations useful for educating patients regarding avoidance of exposure to known contact sensitizers in the home and at work. The Contact Dermatitis Parameter is designed as a practical, evidence-based clinical tool to be used by allergists and dermatologists who routinely are called upon to evaluate patients with skin disorders. Copyright © 2015 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  19. Study on the parameters of the scanning system for the 300 keV electron accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leo, K. W.; Chulan, R. M., E-mail: leo@nm.gov.my; Hashim, S. A.

    2016-01-22

    This paper describes the method to identify the magnetic coil parameters of the scanning system. This locally designed low energy electron accelerator with the present energy of 140 keV will be upgraded to 300 keV. In this accelerator, scanning system is required to deflect the energetic electron beam across a titanium foil in vertical and horizontal direction. The excitation current of the magnetic coil is determined by the energy of the electron beam. Therefore, the magnetic coil parameters must be identified to ensure the matching of the beam energy and excitation coil current. As the result, the essential parameters ofmore » the effective lengths for X-axis and Y-axis have been found as 0.1198 m and 0.1134 m and the required excitation coil currents which is dependenton the electron beam energies have be identified.« less

  20. Lunar soils grain size catalog

    NASA Technical Reports Server (NTRS)

    Graf, John C.

    1993-01-01

    This catalog compiles every available grain size distribution for Apollo surface soils, trench samples, cores, and Luna 24 soils. Original laboratory data are tabled, and cumulative weight distribution curves and histograms are plotted. Standard statistical parameters are calculated using the method of moments. Photos and location comments describe the sample environment and geological setting. This catalog can help researchers describe the geotechnical conditions and site variability of the lunar surface essential to the design of a lunar base.

  1. EDF's studies and first choices regarding the design of electrical equipment

    NASA Technical Reports Server (NTRS)

    Paris, Michel; Metzger, Gisele; Pays, Michel; Pasdeloup, Maurice

    1988-01-01

    In the performance of its studies and in its first choices, Electricite de France has taken into account the three parameters that have been judged essential for its electrical installations: flammability and flame propagation; smoke opacity; and corrosiveness and toxicity of emitted gases. In this research, materials tests have been widely developed in order to insure simple manufacturing controls, and to decrease the costly testing of near to full size models.

  2. A study of electro-mechanical and infrastructure instrumentation facilities in environmental laboratory.

    PubMed

    Dhawangale, R M; Kawale, S M; Waghmare, Maya; Pandya, G H; Kondawar, V K

    2006-01-01

    Environmental laboratories carry out measurement and analysis of a number of physical, chemical and biological parameters. Each parameter requires some sort of instrument for its determination. Providing efficient instrumentation services to various departments of the Institute is an stupendous task. Instrumentation services in the form of installation, operation, repair and maintenanace of electro-mechanical equipment requires an in-depth experience and knowledge of the working, fabrication, design and repair of similar type of instruments so that the need of space, installation pre-requisites, budget constraints, availability of essential spares parts could be assessed. The paper discusses the operation of an environmental instrument repairs and maintenance, and audio-visual facilities. Suggestions for drafting of the proper specifications for procurement of laboratory equipments, such as ovens, furnaces, refrigerators, blowers, audio visual aids, and spares and accessories are given in this paper. The paper also gives the detailed information on various aspects that are needed for checking and testing of the equipment against specification before putting it in operational use. Development of a preventive maintenance program involving QC checks and keeping an inventory of essential spares required are also discussed in this paper. It is felt that such services are essential in providing smooth support to carry out research and development activities of the Institute.

  3. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    PubMed

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Parameters influencing the yield and composition of the essential oil from Cretan Vitex agnus-castus fruits.

    PubMed

    Sørensen, J M; Katsiotis, S T

    2000-04-01

    Mature and immature fruits of a Cretan Vitex agnus-castus L. population were chosen to investigate different parameters such as comminution, maturity, distillation period and extraction method influencing the essential oil yield and composition. The effect of the comminution and the maturity of the plant material showed highly significant differences in yield and composition of the essential oils obtained, as well as the distillation duration from one to five hours and the method applied (hydrodistillation and simultaneous distillation extraction). The variation of 36 essential oil components due to the parameters applied was studied. The results showed that many different essential oil qualities can be obtained from the same plant material according to the parameters employed in its extraction. Entire fruits hydrodistilled for one hour yielded an oil much richer in monoterpene hydrocarbons and oxygenated compounds whereas the best combination to obtain an oil rich in less volatile compounds is by SDE of comminuted fruits for five hours. For mature fruits the main components varied as follows due to the parameters studied: sabinene 16.4-44.1%, 1,8-cineole 8.4-15.2%, beta-caryophyllene 2.1-5.0%, and trans-beta-farnesene 5.0-11.7%.

  5. Exploiting Auto-Collimation for Real-Time Onboard Monitoring of Space Optical Camera Geometric Parameters

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wang, H.; Liu, D.; Miu, Y.

    2018-05-01

    Precise geometric parameters are essential to ensure the positioning accuracy for space optical cameras. However, state-of-the-art onorbit calibration method inevitably suffers from long update cycle and poor timeliness performance. To this end, in this paper we exploit the optical auto-collimation principle and propose a real-time onboard calibration scheme for monitoring key geometric parameters. Specifically, in the proposed scheme, auto-collimation devices are first designed by installing collimated light sources, area-array CCDs, and prisms inside the satellite payload system. Through utilizing those devices, the changes in the geometric parameters are elegantly converted into changes in the spot image positions. The variation of geometric parameters can be derived via extracting and processing the spot images. An experimental platform is then set up to verify the feasibility and analyze the precision index of the proposed scheme. The experiment results demonstrate that it is feasible to apply the optical auto-collimation principle for real-time onboard monitoring.

  6. Sequential Feedback Scheme Outperforms the Parallel Scheme for Hamiltonian Parameter Estimation.

    PubMed

    Yuan, Haidong

    2016-10-14

    Measurement and estimation of parameters are essential for science and engineering, where the main quest is to find the highest achievable precision with the given resources and design schemes to attain it. Two schemes, the sequential feedback scheme and the parallel scheme, are usually studied in the quantum parameter estimation. While the sequential feedback scheme represents the most general scheme, it remains unknown whether it can outperform the parallel scheme for any quantum estimation tasks. In this Letter, we show that the sequential feedback scheme has a threefold improvement over the parallel scheme for Hamiltonian parameter estimations on two-dimensional systems, and an order of O(d+1) improvement for Hamiltonian parameter estimation on d-dimensional systems. We also show that, contrary to the conventional belief, it is possible to simultaneously achieve the highest precision for estimating all three components of a magnetic field, which sets a benchmark on the local precision limit for the estimation of a magnetic field.

  7. The effects of the sequential addition of synthesis parameters on the performance of alkali activated fly ash mortar

    NASA Astrophysics Data System (ADS)

    Dassekpo, Jean-Baptiste Mawulé; Zha, Xiaoxiong; Zhan, Jiapeng; Ning, Jiaqian

    Geopolymer is an energy efficient and sustainable material that is currently used in construction industry as an alternative for Portland cement. As a new material, specific mix design method is essential and efforts have been made to develop a mix design procedure with the main focus on achieving better compressive strength and economy. In this paper, a sequential addition of synthesis parameters such as fly ash-sand, alkaline liquids, plasticizer and additional water at well-defined time intervals was investigated. A total of 4 mix procedures were used to study the compressive performance on fly ash-based geopolymer mortar and the results of each method were analyzed and discussed. Experimental results show that the sequential addition of sodium hydroxide (NaOH), sodium silicate (Na2SiO3), plasticizer (PL), followed by adding water (WA) increases considerably the compressive strengths of the geopolymer-based mortar. These results clearly demonstrate the high significant influence of sequential addition of synthesis parameters on geopolymer materials compressive properties, and also provide a new mixing method for the preparation of geopolymer paste, mortar and concrete.

  8. Design optimum frac jobs using virtual intelligence techniques

    NASA Astrophysics Data System (ADS)

    Mohaghegh, Shahab; Popa, Andrei; Ameri, Sam

    2000-10-01

    Designing optimal frac jobs is a complex and time-consuming process. It usually involves the use of a two- or three-dimensional computer model. For the computer models to perform as intended, a wealth of input data is required. The input data includes wellbore configuration and reservoir characteristics such as porosity, permeability, stress and thickness profiles of the pay layers as well as the overburden layers. Among other essential information required for the design process is fracturing fluid type and volume, proppant type and volume, injection rate, proppant concentration and frac job schedule. Some of the parameters such as fluid and proppant types have discrete possible choices. Other parameters such as fluid and proppant volume, on the other hand, assume values from within a range of minimum and maximum values. A potential frac design for a particular pay zone is a combination of all of these parameters. Finding the optimum combination is not a trivial process. It usually requires an experienced engineer and a considerable amount of time to tune the parameters in order to achieve desirable outcome. This paper introduces a new methodology that integrates two virtual intelligence techniques, namely, artificial neural networks and genetic algorithms to automate and simplify the optimum frac job design process. This methodology requires little input from the engineer beyond the reservoir characterizations and wellbore configuration. The software tool that has been developed based on this methodology uses the reservoir characteristics and an optimization criteria indicated by the engineer, for example a certain propped frac length, and provides the detail of the optimum frac design that will result in the specified criteria. An ensemble of neural networks is trained to mimic the two- or three-dimensional frac simulator. Once successfully trained, these networks are capable of providing instantaneous results in response to any set of input parameters. These networks will be used as the fitness function for a genetic algorithm routine that will search for the best combination of the design parameters for the frac job. The genetic algorithm will search through the entire solution space and identify the optimal combination of parameters to be used in the design process. Considering the complexity of this task this methodology converges relatively fast, providing the engineer with several near-optimum scenarios for the frac job design. These scenarios, which can be achieved in just a minute or two, can be valuable initial points for the engineer to start his/her design job and save him/her hours of runs on the simulator.

  9. Broadband non-reciprocal transmission of sound with invariant frequency

    PubMed Central

    Gu, Zhong-ming; Hu, Jie; Liang, Bin; Zou, Xin-ye; Cheng, Jian-chun

    2016-01-01

    We design and experimentally demonstrate a broadband yet compact acoustic diode (AD) by using an acoustic nonlinear material and a pair of gain and lossy materials. Due to the capabilities of maintaining the original frequency and high forward transmission while blocking backscattered wave, our design is closer to the desired features of a perfect AD and is promising to play the essential diode-like role in realistic acoustic systems, such as ultrasound imaging, noise control and nondestructive testing. Furthermore, our design enables improving the sensitivity and the robustness of device simultaneously by tailoring an individual structural parameter. We envision our design will take a significant step towards the realization of applicable acoustic one-way devices, and inspire the research of non-reciprocal wave manipulation in other fields. PMID:26805712

  10. High current polarized electron source for future eRHIC

    NASA Astrophysics Data System (ADS)

    Wang, Erdong

    2018-05-01

    The high current and high bunch charge polarized electron source is essential for cost reduction of Linac-Ring (L-R) eRHIC. In the baseline design, electron beam from multiple guns (probably 4-8) will be combined using deflection plates or accumulate ring. Each gun aims to deliver electron beam with 10 mA average current and 5.3 nC bunch charge. With total 50 mA and 5.3 nC electron beam, this beam combining design could use for generating positron too. The gun has been designed, fabricated and expected to start commissioning by the mid of this year. In this paper, we will present the DC gun design parameters and beam combine schemes. Also, we will describe the details of gun design and the strategies to demonstrate high current high charge polarized electron beam from this source.

  11. Theory of the Interfacial Dzyaloshinskii-Moriya Interaction in Rashba Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Qaiumzadeh, Alireza; Ado, Ivan A.; Duine, Rembert A.; Titov, Mikhail; Brataas, Arne

    2018-05-01

    In antiferromagnetic (AFM) thin films, broken inversion symmetry or coupling to adjacent heavy metals can induce Dzyaloshinskii-Moriya (DM) interactions. Knowledge of the DM parameters is essential for understanding and designing exotic spin structures, such as hedgehog Skyrmions and chiral Néel walls, which are attractive for use in novel information storage technologies. We introduce a framework for computing the DM interaction in two-dimensional Rashba antiferromagnets. Unlike in Rashba ferromagnets, the DM interaction is not suppressed even at low temperatures. The material parameters control both the strength and the sign of the interfacial DM interaction. Our results suggest a route toward controlling the DM interaction in AFM materials by means of doping and electric fields.

  12. A Modelling Method of Bolt Joints Based on Basic Characteristic Parameters of Joint Surfaces

    NASA Astrophysics Data System (ADS)

    Yuansheng, Li; Guangpeng, Zhang; Zhen, Zhang; Ping, Wang

    2018-02-01

    Bolt joints are common in machine tools and have a direct impact on the overall performance of the tools. Therefore, the understanding of bolt joint characteristics is essential for improving machine design and assembly. Firstly, According to the experimental data obtained from the experiment, the stiffness curve formula was fitted. Secondly, a finite element model of unit bolt joints such as bolt flange joints, bolt head joints, and thread joints was constructed, and lastly the stiffness parameters of joint surfaces were implemented in the model by the secondary development of ABAQUS. The finite element model of the bolt joint established by this method can simulate the contact state very well.

  13. Validation of scintillometer measurements over a heterogeneous landscape: The LITFASS-2009 Experiment

    NASA Astrophysics Data System (ADS)

    Beyrich, F.; Bange, J.; Hartogensis, O.; Raasch, S.

    2009-09-01

    The turbulent exchange of heat and water vapour are essential land surface - atmosphere interaction processes in the local, regional and global energy and water cycles. Scintillometry can be considered as the only technique presently available for the quasi-operational experimental determination of area-averaged turbulent fluxes needed to validate the fluxes simulated by regional atmospheric models or derived from satellite images at a horizontal scale of a few kilometres. While scintillometry has found increasing application over the last years, some fundamental issues related to its use still need further investigation. In particular, no studies are known so far to reproduce the path-averaged structure parameters measured by scintillometers by independent measurements or modelling techniques. The LITFASS-2009 field experiment has been performed in the area around the Meteorological Observatory Lindenberg / Richard-Aßmann-Observatory in Germany during summer 2009. It was designed to investigate the spatial (horizontal and vertical) and temporal variability of structure parameters (underlying the scintillometer principle) over moderately heterogeneous terrain. The experiment essentially relied on a coupling of eddy-covariance measurements, scintillometry and airborne measurements with an unmanned autonomous aircraft able to strictly fly along the scintillometer path. Data interpretation will be supported by numerical modelling using a large-eddy simulation (LES) model. The paper will describe the design of the experiment. First preliminary results from the measurements will be presented.

  14. Effect of different liming levels on the biomass production and essential oil extraction yield of Cunila galioides Benth.

    PubMed

    Mossi, A J; Pauletti, G F; Rota, L; Echeverrigaray, S; Barros, I B I; Oliveira, J V; Paroul, N; Cansian, R L

    2012-11-01

    Poejo is an aromatic and medicinal plant native to highland areas of south Brazil, in acid soils with high Al3+ concentration. The main objective of the present work was to evaluate the effect of liming on the extraction yield of essential oil of three chemotypes of poejo (Cunila galioides Benth). For this purpose, the experiments were performed in a greenhouse, using 8-litre pots. The treatments were four dosages of limestone (0, 3.15, 12.5, and 25 g.L(-1)) and a completely random experimental design was used, with four replications and three chemotypes, set up in a 3 × 4 factorial arrangement. The parameters evaluated were dry weight of aerial parts, essential oil content and chemical composition of essential oil. Results showed that liming affects the biomass production, essential oil yield and chemical composition, with cross interaction verified between chemotype and limestone dosage. For the higher dosage lower biomass production, lower yield of essential oil as well as the lowest content of citral (citral chemotype) and limonene (menthene chemotype) was observed. In the ocimene chemotype, no liming influence was observed on the essential oil yield and on the content of major compounds. The dosage of 3.15 g.L(-1) can be considered the best limestone dosage for the production of poejo for the experimental conditions evaluated.

  15. Optimal design of solenoid valve to minimize cavitation by numerical analysis

    NASA Astrophysics Data System (ADS)

    Ko, Seungbin; Jang, Ilhoon; Song, Simon

    2012-11-01

    Keeping pace with the development of clean energy, hybrid cars and electric vehicles are getting extensive attention recently. In an electronic-control brake system which is essential to those vehicles, a solenoid valve is used to control external hydraulic pressure that boosts up the driver's braking force. However, strong cavitation occurs at the narrow passage between the ball and seat of a solenoid valve due to sudden decrease in pressure, leading to severe damage to the valve. In this study, we investigate the cavitation numerically to discover geometric parameters to affect the cavitation, and an optimal design to minimize the cavitation using optimization technique. As a result, we found four parameters: seat inner radius, seat angle, seat length, and ball radius. Among them, the seat inner radius affects the cavitation most. Also, we found that preventing a sudden reduction in a flow passage is important to reduce cavitation. Finally using an evolutionary algorithm for optimization we minimized cavitation. The optimal design resulted in the maximum vapor volume of fraction of 0.04 while it was 0.7 for reference geometry.

  16. Manufacturing Methods and Technology (MM&T) program. 10.6 micrometer carbon dioxide TEA (Transverely Excited Atmospheric) lasers

    NASA Astrophysics Data System (ADS)

    Luck, C. F.

    1983-06-01

    This report documents the efforts of Raytheon Company to conduct a manufacturing methods and technology (MM&T) program for 10.6 micrometer carbon dioxide TEA lasers. A set of laser parameters is given and a conforming tube design is described. Results of thermal and mechanical stress analyses are detailed along with a procedure for assembling and testing the laser tube. Also provided are purchase specifications for optics and process specifications for some of the essential operations.

  17. Design of automated oil sludge treatment unit

    NASA Astrophysics Data System (ADS)

    Chukhareva, N.; Korotchenko, T.; Yurkin, A.

    2015-11-01

    The article provides the feasibility study of contemporary oil sludge treatment methods. The basic parameters of a new resource-efficient oil sludge treatment unit that allows extracting as much oil as possible and disposing other components in efficient way have been outlined. Based on the calculation results, it has been revealed that in order to reduce the cost of the treatment unit and the expenses related to sludge disposal, it is essential to apply various combinations of the existing treatment methods.

  18. Three dimensional finite element methods: Their role in the design of DC accelerator systems

    NASA Astrophysics Data System (ADS)

    Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.

    2013-04-01

    High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.

  19. Design of broadband dispersion flattened fiber for DWDM system: Performance analysis using various modulation formats

    NASA Astrophysics Data System (ADS)

    Goel, Aditya; Pandey, Gaurav

    2018-05-01

    In this paper, unique design of an optimal broadband optical dispersion flattened fiber (DFF) is proposed, which is capable of supporting the data rate of the order of Tb/s. The analysis of the single mode fiber for the design of the proposed DFF has been carried out by employing the quadratic Finite Element Method (FEM) with generalized refractive index (R. I.) profile. The minimization of the dispersion with respect to various profile parameters within the specified wavelength band is the essential optimization criteria. Computations show that a DFF can be designed where the overall dispersion can be restricted within ± 1 ps/km-nm over the entire spectral span ranging from 1290 to 1540 nm (250 nm) exhibiting a very small maximum value of dispersion slope (± 0.02 ps / (nm2-km)) in particular. The detailed performance analysis of the proposed DFF with different modulation techniques has been carried out in order to critically evaluate the performance of the DFF with respect to various significant parameters. The results suggest an excellent design of broadband optical waveguide capable of supporting high-speed data rate (40 Tb/s) through the single DFF, ideally suitable for the long haul dense wavelength division multiplexing (DWDM) optical transmission systems.

  20. A parametric model and estimation techniques for the inharmonicity and tuning of the piano.

    PubMed

    Rigaud, François; David, Bertrand; Daudet, Laurent

    2013-05-01

    Inharmonicity of piano tones is an essential property of their timbre that strongly influences the tuning, leading to the so-called octave stretching. It is proposed in this paper to jointly model the inharmonicity and tuning of pianos on the whole compass. While using a small number of parameters, these models are able to reflect both the specificities of instrument design and tuner's practice. An estimation algorithm is derived that can run either on a set of isolated note recordings, but also on chord recordings, assuming that the played notes are known. It is applied to extract parameters highlighting some tuner's choices on different piano types and to propose tuning curves for out-of-tune pianos or piano synthesizers.

  1. Natural extension of fast-slow decomposition for dynamical systems

    NASA Astrophysics Data System (ADS)

    Rubin, J. E.; Krauskopf, B.; Osinga, H. M.

    2018-01-01

    Modeling and parameter estimation to capture the dynamics of physical systems are often challenging because many parameters can range over orders of magnitude and are difficult to measure experimentally. Moreover, selecting a suitable model complexity requires a sufficient understanding of the model's potential use, such as highlighting essential mechanisms underlying qualitative behavior or precisely quantifying realistic dynamics. We present an approach that can guide model development and tuning to achieve desired qualitative and quantitative solution properties. It relies on the presence of disparate time scales and employs techniques of separating the dynamics of fast and slow variables, which are well known in the analysis of qualitative solution features. We build on these methods to show how it is also possible to obtain quantitative solution features by imposing designed dynamics for the slow variables in the form of specified two-dimensional paths in a bifurcation-parameter landscape.

  2. Investigating the CO 2 laser cutting parameters of MDF wood composite material

    NASA Astrophysics Data System (ADS)

    Eltawahni, H. A.; Olabi, A. G.; Benyounis, K. Y.

    2011-04-01

    Laser cutting of medium density fibreboard (MDF) is a complicated process and the selection of the process parameters combinations is essential to get the highest quality cut section. This paper presents a means for selecting the process parameters for laser cutting of MDF based on the design of experiments (DOE) approach. A CO 2 laser was used to cut three thicknesses, 4, 6 and 9 mm, of MDF panels. The process factors investigated are: laser power, cutting speed, air pressure and focal point position. In this work, cutting quality was evaluated by measuring the upper kerf width, the lower kerf width, the ratio between the upper kerf width to the lower kerf width, the cut section roughness and the operating cost. The effect of each factor on the quality measures was determined. The optimal cutting combinations were presented in favours of high quality process output and in favours of low cutting cost.

  3. Thermo-Mechanical Calculations of Hybrid Rotary Friction Welding at Equal Diameter Copper Bars and Effects of Essential Parameters on Dependent Special Variables

    NASA Astrophysics Data System (ADS)

    Parsa, M. H.; Davari, H.; Hadian, A. M.; Ahmadabadi, M. Nili

    2007-05-01

    Hybrid Rotary Friction Welding is a modified type of common rotary friction welding processes. In this welding method parameters such as pressure, angular velocity and time of welding control temperature, stress, strain and their variations. These dependent factors play an important rule in defining optimum process parameters combinations in order to improve the design and manufacturing of welding machines and quality of welded parts. Thermo-mechanical simulation of friction welding has been carried out and it has been shown that, simulation is an important tool for prediction of generated heat and strain at the weld interface and can be used for prediction of microstructure and evaluation of quality of welds. For simulation of Hybrid Rotary Friction Welding, a commercial finite element program has been used and the effects of pressure and rotary velocity of rotary part on temperature and strain variations have been investigated.

  4. Statistical analysis of porosity of 17-4PH alloy processed by selective laser melting

    NASA Astrophysics Data System (ADS)

    Ponnusamy, P.; Masood, S. H.; Ruan, D.; Palanisamy, S.; Mohamed, O. A.

    2017-07-01

    Selective Laser Melting (SLM) is a powder-bed type Additive Manufacturing (AM) process, where parts are built layer-by-layer by laser melting of powder layers of metal. There are several SLM process parameters that affect the accuracy and quality of the metal parts produced by SLM. Therefore, it is essential to understand the effect of these parameters on the quality and properties of the parts built by this process. In this paper, using Taguchi design of experiments, the effect of four SLM process parameters namely laser power, defocus distance, layer thickness and build orientation are considered on the porosity of 17-4PH stainless steel parts built on ProX200 SLM direct metal printer. The porositywas found to be optimum at a defocus distance of -4mm and a laser power of 240 W with a layer thickness of 30 μm and using vertical build orientation.

  5. The Impact of Housing on the Characteristics of Ceramic Pressure Sensors—An Issue of Design for Manufacturability

    PubMed Central

    Santo Zarnik, Marina; Belavic, Darko; Novak, Franc

    2015-01-01

    An exploratory study of the impact of housing on the characteristics of a low-temperature co-fired ceramic (LTCC) pressure sensor is presented. The ceramic sensor structure is sealed in a plastic housing. This may have non-negligible effect on the final characteristics and should be considered in the early design phase. The manufacturability issue mainly concerning the selection of available housing and the most appropriate materials was considered with respect to different requirements for low and high pressure ranges of operation. Numerical predictions showed the trends and helped reveal the critical design parameters. Proper selection of the adhesive material remains an essential issue. Curing of the epoxy adhesive may introduce non-negligible residual stresses, which considerably influence the sensor’s characteristics. PMID:26694386

  6. On Nb Silicide Based Alloys: Alloy Design and Selection.

    PubMed

    Tsakiropoulos, Panos

    2018-05-18

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb₅Si₃ (Materials 11 (2018) 69), and hexagonal C14-NbCr₂ and cubic A15-Nb₃X phases (Materials 11 (2018) 395) and eutectics with Nb ss and Nb₅Si₃ (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys.

  7. On Nb Silicide Based Alloys: Alloy Design and Selection

    PubMed Central

    Tsakiropoulos, Panos.

    2018-01-01

    The development of Nb-silicide based alloys is frustrated by the lack of composition-process-microstructure-property data for the new alloys, and by the shortage of and/or disagreement between thermodynamic data for key binary and ternary systems that are essential for designing (selecting) alloys to meet property goals. Recent publications have discussed the importance of the parameters δ (related to atomic size), Δχ (related to electronegativity) and valence electron concentration (VEC) (number of valence electrons per atom filled into the valence band) for the alloying behavior of Nb-silicide based alloys (J Alloys Compd 748 (2018) 569), their solid solutions (J Alloys Compd 708 (2017) 961), the tetragonal Nb5Si3 (Materials 11 (2018) 69), and hexagonal C14-NbCr2 and cubic A15-Nb3X phases (Materials 11 (2018) 395) and eutectics with Nbss and Nb5Si3 (Materials 11 (2018) 592). The parameter values were calculated using actual compositions for alloys, their phases and eutectics. This paper is about the relationships that exist between the alloy parameters δ, Δχ and VEC, and creep rate and isothermal oxidation (weight gain) and the concentrations of solute elements in the alloys. Different approaches to alloy design (selection) that use property goals and these relationships for Nb-silicide based alloys are discussed and examples of selected alloy compositions and their predicted properties are given. The alloy design methodology, which has been called NICE (Niobium Intermetallic Composite Elaboration), enables one to design (select) new alloys and to predict their creep and oxidation properties and the macrosegregation of Si in cast alloys. PMID:29783707

  8. Parameter-based estimation of CT dose index and image quality using an in-house android™-based software

    NASA Astrophysics Data System (ADS)

    Mubarok, S.; Lubis, L. E.; Pawiro, S. A.

    2016-03-01

    Compromise between radiation dose and image quality is essential in the use of CT imaging. CT dose index (CTDI) is currently the primary dosimetric formalisms in CT scan, while the low and high contrast resolutions are aspects indicating the image quality. This study was aimed to estimate CTDIvol and image quality measures through a range of exposure parameters variation. CTDI measurements were performed using PMMA (polymethyl methacrylate) phantom of 16 cm diameter, while the image quality test was conducted by using catphan ® 600. CTDI measurements were carried out according to IAEA TRS 457 protocol using axial scan mode, under varied parameters of tube voltage, collimation or slice thickness, and tube current. Image quality test was conducted accordingly under the same exposure parameters with CTDI measurements. An Android™ based software was also result of this study. The software was designed to estimate the value of CTDIvol with maximum difference compared to actual CTDIvol measurement of 8.97%. Image quality can also be estimated through CNR parameter with maximum difference to actual CNR measurement of 21.65%.

  9. Measurement of drill grinding parameters using laser sensor

    NASA Astrophysics Data System (ADS)

    Yanping, Peng; Kumehara, Hiroyuki; Wei, Zhang; Nomura, Takashi

    2005-12-01

    To measure the grinding parameters and geometry parameters accurately for a drill point is essential to its design and reconditioning. In recent years, a number of non-contact coordinate measuring apparatuses, using CCD camera or laser sensors, are developed. But, a lot work is to be done for further improvement. This paper reports another kind of laser coordinate meter. As an example of its application, the method for geometry inspection of the drill flank surface is detailed. Measured data from laser scanning on the flank surface around some points with several 2-dimensional curves are analyzed with mathematical procedure. If one of these curves turns to be a straight line, it must be the generatrix of the grinding cone. Thus, the grinding parameters are determined by a set of three generatrices. Then, the measurement method and data processing procedure are proposed. Its validity is assessed by measuring a sample with given parameters. The point geometry measured agrees well with the known values. In comparison with other methods in the published literature, it is simpler in computation and more accurate in results.

  10. Predictive Sampling of Rare Conformational Events in Aqueous Solution: Designing a Generalized Orthogonal Space Tempering Method.

    PubMed

    Lu, Chao; Li, Xubin; Wu, Dongsheng; Zheng, Lianqing; Yang, Wei

    2016-01-12

    In aqueous solution, solute conformational transitions are governed by intimate interplays of the fluctuations of solute-solute, solute-water, and water-water interactions. To promote molecular fluctuations to enhance sampling of essential conformational changes, a common strategy is to construct an expanded Hamiltonian through a series of Hamiltonian perturbations and thereby broaden the distribution of certain interactions of focus. Due to a lack of active sampling of configuration response to Hamiltonian transitions, it is challenging for common expanded Hamiltonian methods to robustly explore solvent mediated rare conformational events. The orthogonal space sampling (OSS) scheme, as exemplified by the orthogonal space random walk and orthogonal space tempering methods, provides a general framework for synchronous acceleration of slow configuration responses. To more effectively sample conformational transitions in aqueous solution, in this work, we devised a generalized orthogonal space tempering (gOST) algorithm. Specifically, in the Hamiltonian perturbation part, a solvent-accessible-surface-area-dependent term is introduced to implicitly perturb near-solute water-water fluctuations; more importantly in the orthogonal space response part, the generalized force order parameter is generalized as a two-dimension order parameter set, in which essential solute-solvent and solute-solute components are separately treated. The gOST algorithm is evaluated through a molecular dynamics simulation study on the explicitly solvated deca-alanine (Ala10) peptide. On the basis of a fully automated sampling protocol, the gOST simulation enabled repetitive folding and unfolding of the solvated peptide within a single continuous trajectory and allowed for detailed constructions of Ala10 folding/unfolding free energy surfaces. The gOST result reveals that solvent cooperative fluctuations play a pivotal role in Ala10 folding/unfolding transitions. In addition, our assessment analysis suggests that because essential conformational events are mainly driven by the compensating fluctuations of essential solute-solvent and solute-solute interactions, commonly employed "predictive" sampling methods are unlikely to be effective on this seemingly "simple" system. The gOST development presented in this paper illustrates how to employ the OSS scheme for physics-based sampling method designs.

  11. HARV ANSER Flight Test Data Retrieval and Processing Procedures

    NASA Technical Reports Server (NTRS)

    Yeager, Jessie C.

    1997-01-01

    Under the NASA High-Alpha Technology Program the High Alpha Research Vehicle (HARV) was used to conduct flight tests of advanced control effectors, advanced control laws, and high-alpha design guidelines for future super-maneuverable fighters. The High-Alpha Research Vehicle is a pre-production F/A-18 airplane modified with a multi-axis thrust-vectoring system for augmented pitch and yaw control power and Actuated Nose Strakes for Enhanced Rolling (ANSER) to augment body-axis yaw control power. Flight testing at the Dryden Flight Research Center (DFRC) began in July 1995 and continued until May 1996. Flight data will be utilized to evaluate control law performance and aircraft dynamics, determine aircraft control and stability derivatives using parameter identification techniques, and validate design guidelines. To accomplish these purposes, essential flight data parameters were retrieved from the DFRC data system and stored on the Dynamics and Control Branch (DCB) computer complex at Langley. This report describes the multi-step task used to retrieve and process this data and documents the results of these tasks. Documentation includes software listings, flight information, maneuver information, time intervals for which data were retrieved, lists of data parameters and definitions, and example data plots.

  12. Adaptation of cardiovascular system stent implants.

    PubMed

    Ostasevicius, Vytautas; Tretsyakou-Savich, Yahor; Venslauskas, Mantas; Bertasiene, Agne; Minchenya, Vladimir; Chernoglaz, Pavel

    2018-06-27

    Time-consuming design and manufacturing processes are a serious disadvantage when adapting human cardiovascular implants as they cause unacceptable delays after the decision to intervene surgically has been made. An ideal cardiovascular implant should have a broad range of characteristics such as strength, viscoelasticity and blood compatibility. The present research proposes the sequence of the geometrical adaptation procedures and presents their results. The adaptation starts from the identification of a person's current health status while performing abdominal aortic aneurysm (AAA) imaging, which is a point of departure for the mathematical model of a cardiovascular implant. The computerized tomography scan shows the patient-specific geometry parameters of AAA and helps to create a model using COMSOL Multiphysics software. The initial parameters for flow simulation are taken from the results of a patient survey. The simulation results allow choosing the available shape of an implant which ensures a non-turbulent flow. These parameters are essential for the design and manufacturing of an implant prototype which should be tested experimentally for the assurance that the mathematical model is adequate to a physical one. The article gives a focused description of competences and means that are necessary to achieve the shortest possible preparation of the adapted cardiovascular implant for the surgery.

  13. A modified approach for isolation of essential oil from fruit of Amorpha fruticosa Linn using microwave-assisted hydrodistillation concatenated liquid-liquid extraction.

    PubMed

    Chen, Fengli; Jia, Jia; Zhang, Qiang; Gu, Huiyan; Yang, Lei

    2017-11-17

    In this work, a modified technique was developed to separate essential oil from the fruit of Amorpha fruticosa using microwave-assisted hydrodistillation concatenated liquid-liquid extraction (MHD-LLE). The new apparatus consists of two series-wound separation columns for separating essential oil, one is the conventional oil-water separation column, and the other is the extraction column of components from hydrosol using an organic solvent. Therefore, the apparatus can simultaneously collect the essential oil separated on the top of hydrosol and the components extracted from hydrosol using an organic solvent. Based on the yield of essential oil in the first and second separation columns, the effects of parameters were investigated by single factor experiments and Box-Behnken design. Under the optimum conditions (2mL ethyl ether as the extraction solvent in the second separation column, 12mL/g liquid-solid ratio, 4.0min homogenate time, 35min microwave irradiation time and 540W microwave irradiation power), satisfactory yields for the essential oil in the first separation column (10.31±0.33g/kg) and second separation column (0.82±0.03g/kg) were obtained. Compared with traditional methods, the developed method gave a higher yield of essential oil in a shorter time. In addition, GC-MS analysis of the essential oil indicated significant differences of the relative contents of individual volatile components in the essential oils obtained in the two separation columns. Therefore, the MHD-LLE technique developed here is a good alternative for the isolation of essential oil from A. fruticosa fruit as well as other herbs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Microwave-assisted extraction of Nigella sativa L. essential oil and evaluation of its antioxidant activity.

    PubMed

    Abedi, Abdol-Samad; Rismanchi, Marjan; Shahdoostkhany, Mehrnoush; Mohammadi, Abdorreza; Mortazavian, Amir Mohammad

    2017-11-01

    It has been previously reported that the essential oil of Nigella sativa L. seeds and its major active component, thymoquinone (TQ), possess a broad variety of biological activities and therapeutic properties. In this work, microwave-assisted extraction (MAE) of the essential oil from Nigella sativa L. seeds and its antioxidant activity were studied. Response surface methodology based on central composite design was used to evaluate the effects of extraction time, irradiation power and moisture content on extraction yield and TQ content. Optimal parameters obtained by CCD and RSM were extraction time 30 min, irradiation power 450 W, and moisture content 50%. The extraction yield and TQ content of the essential oil were 0.33 and 20% under the optimum conditions, respectively. In contrast, extraction yield and TQ amount of oil obtained by hydrodistillation (HD) were 0.23 and 3.71%, respectively. The main constituents of the essential oil extracted by MAE and HD were p -cymene, TQ, α-thujene and longifolene, comprising more than 60% of total peak area. The antioxidant capacity of essential oils extracted by different methods were evaluated using 2,2-diphenyl-1-picrylhydrazyl and Ferric reducing antioxidant power assays, and compared with traditional antioxidants. The results showed that MAE method was a viable alternative to HD for the essential oil extraction from N. sativa seeds due to the excellent extraction efficiency, higher thymoquinone content, and stronger antioxidant activity.

  15. Towards Coupling of Macroseismic Intensity with Structural Damage Indicators

    NASA Astrophysics Data System (ADS)

    Kouteva, Mihaela; Boshnakov, Krasimir

    2016-04-01

    Knowledge on basic data of ground motion acceleration time histories during earthquakes is essential to understanding the earthquake resistant behaviour of structures. Peak and integral ground motion parameters such as peak ground motion values (acceleration, velocity and displacement), measures of the frequency content of ground motion, duration of strong shaking and various intensity measures play important roles in seismic evaluation of existing facilities and design of new systems. Macroseismic intensity is an earthquake measure related to seismic hazard and seismic risk description. Having detailed ideas on the correlations between the earthquake damage potential and macroseismic intensity is an important issue in engineering seismology and earthquake engineering. Reliable earthquake hazard estimation is the major prerequisite to successful disaster risk management. The usage of advanced earthquake engineering approaches for structural response modelling is essential for reliable evaluation of the accumulated damages in the existing buildings and structures due to the history of seismic actions, occurred during their lifetime. Full nonlinear analysis taking into account single event or series of earthquakes and the large set of elaborated damage indices are suitable contemporary tools to cope with this responsible task. This paper presents some results on the correlation between observational damage states, ground motion parameters and selected analytical damage indices. Damage indices are computed on the base of nonlinear time history analysis of test reinforced structure, characterising the building stock of the Mediterranean region designed according the earthquake resistant requirements in mid XX-th century.

  16. Chemometric investigation of light-shade effects on essential oil yield and morphology of Moroccan Myrtus communis L.

    PubMed

    Fadil, Mouhcine; Farah, Abdellah; Ihssane, Bouchaib; Haloui, Taoufik; Lebrazi, Sara; Zghari, Badreddine; Rachiq, Saâd

    2016-01-01

    To investigate the effect of environmental factors such as light and shade on essential oil yield and morphological traits of Moroccan Myrtus communis, a chemometric study was conducted on 20 individuals growing under two contrasting light environments. The study of individual's parameters by principal component analysis has shown that essential oil yield, altitude, and leaves thickness were positively correlated between them and negatively correlated with plants height, leaves length and leaves width. Principal component analysis and hierarchical cluster analysis have also shown that the individuals of each sampling site were grouped separately. The one-way ANOVA test has confirmed the effect of light and shade on essential oil yield and morphological parameters by showing a statistically significant difference between them from the shaded side to the sunny one. Finally, the multiple linear model containing main, interaction and quadratic terms was chosen for the modeling of essential oil yield in terms of morphological parameters. Sun plants have a small height, small leaves length and width, but they are thicker and richer in essential oil than shade plants which have shown almost the opposite. The highlighted multiple linear model can be used to predict essential oil yield in the studied area.

  17. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

    PubMed

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-08-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  18. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks

    PubMed Central

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-01-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is “non-intrusive” and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design. PMID:26317784

  19. Toward automatic time-series forecasting using neural networks.

    PubMed

    Yan, Weizhong

    2012-07-01

    Over the past few decades, application of artificial neural networks (ANN) to time-series forecasting (TSF) has been growing rapidly due to several unique features of ANN models. However, to date, a consistent ANN performance over different studies has not been achieved. Many factors contribute to the inconsistency in the performance of neural network models. One such factor is that ANN modeling involves determining a large number of design parameters, and the current design practice is essentially heuristic and ad hoc, this does not exploit the full potential of neural networks. Systematic ANN modeling processes and strategies for TSF are, therefore, greatly needed. Motivated by this need, this paper attempts to develop an automatic ANN modeling scheme. It is based on the generalized regression neural network (GRNN), a special type of neural network. By taking advantage of several GRNN properties (i.e., a single design parameter and fast learning) and by incorporating several design strategies (e.g., fusing multiple GRNNs), we have been able to make the proposed modeling scheme to be effective for modeling large-scale business time series. The initial model was entered into the NN3 time-series competition. It was awarded the best prediction on the reduced dataset among approximately 60 different models submitted by scholars worldwide.

  20. Contributions to the design of rainwater harvesting systems in buildings with green roofs in a Mediterranean climate.

    PubMed

    Monteiro, Cristina M; Calheiros, Cristina S C; Pimentel-Rodrigues, Carla; Silva-Afonso, Armando; Castro, Paula M L

    2016-01-01

    Green roofs (GRs) are becoming a trend in urban areas, favouring thermal performance of buildings, promoting removal of atmospheric pollutants, and acting as possible water collection spots. Rainwater harvesting systems in buildings can also contribute to the management of stormwater runoff reducing flood peaks. These technologies should be enhanced in Mediterranean countries where water scarcity is increasing and the occurrence of extreme events is becoming very significant, as a result of climate change. An extensive pilot GR with three aromatic plant species, Satureja montana, Thymus caespititius and Thymus pseudolanuginosus, designed to study several parameters affecting rainwater runoff, has been in operation for 12 months. Physico-chemical analyses of roof water runoff (turbidity, pH, conductivity, NH4(+), NO3(-), PO4(3-), chemical oxygen demand) have shown that water was of sufficient quality for non-potable uses in buildings, such as toilet flushing. An innovative approach allowed for the development of an expression to predict a 'monthly runoff coefficient' of the GR system. This parameter is essential when planning and designing GRs combined with rainwater harvesting systems in a Mediterranean climate. This study is a contribution to improving the basis for the design of rainwater harvesting systems in buildings with extensive GRs under a Mediterranean climate.

  1. Aspheres for high speed cine lenses

    NASA Astrophysics Data System (ADS)

    Beder, Christian

    2005-09-01

    To fulfil the requirements of today's high performance cine lenses aspheres are an indispensable part of lens design. Among making them manageable in shape and size, tolerancing aspheres is an essential part of the development process. The traditional method of tolerancing individual aspherical coefficients results in unemployable theoretical figures only. In order to obtain viable parameters that can easily be dealt with in a production line, more enhanced techniques are required. In this presentation, a method of simulating characteristic manufacturing errors and deducing surface deviation and slope error tolerances will be shown.

  2. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation.

    PubMed

    Finnerty, Justin John; Peyser, Alexander; Carloni, Paolo

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores.

  3. Building an experimental model of the human body with non-physiological parameters.

    PubMed

    Labuz, Joseph M; Moraes, Christopher; Mertz, David R; Leung, Brendan M; Takayama, Shuichi

    2017-03-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo -like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O 2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10 -6 ) microfluidic model of the human body.

  4. Building an experimental model of the human body with non-physiological parameters

    PubMed Central

    Labuz, Joseph M.; Moraes, Christopher; Mertz, David R.; Leung, Brendan M.; Takayama, Shuichi

    2017-01-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform — commonly called a ‘human-on-a-chip (HOC)’ — requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo-like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10−6) microfluidic model of the human body. PMID:28713851

  5. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know.

    PubMed

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted.

  6. FEL (free-electron lasers) undulator technology and synchrotron radiation source requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, K.; Quimby, D.; Slater, J.

    This paper describes design and construction considerations of the THUNDER undulator, for use in free-electron laser experiments at visible wavelengths. For the parameters of these experiments, an unusually high degree of optimization of the electron-photon interaction is required and, as a result, THUNDER is built to especially high mechanical and magnetic precision. Except for its narrow magnet gap, the 5-meter THUNDER undulator is quite similar to insertion devices under consideration for the proposed 6-GeV storage ring. The engineering and physics approach adopted for this FEL modulator design is directly applicable to insertion device development. The tolerance limits to THUNDER, establishedmore » by modeling and design and achieved through careful control of mechanical and magnetic errors, are essential to the next generation of insertion devices.« less

  7. Training Manual for Elements of Interface Definition and Control

    NASA Technical Reports Server (NTRS)

    Lalli, Vincent R. (Editor); Kastner, Robert E. (Editor); Hartt, Henry N. (Editor)

    1997-01-01

    The primary thrust of this manual is to ensure that the format and information needed to control interfaces between equipment are clear and understandable. The emphasis is on controlling the engineering design of the interface and not on the functional performance requirements of the system or the internal workings of the interfacing equipment. Interface control should take place, with rare exception, at the interfacing elements and no further. There are two essential sections of the manual. Chapter 2, Principles of Interface Control, discusses how interfaces are defined. It describes different types of interfaces to be considered and recommends a format for the documentation necessary for adequate interface control. Chapter 3, The Process: Through the Design Phases, provides tailored guidance for interface definition and control. This manual can be used to improve planned or existing interface control processes during system design and development. It can also be used to refresh and update the corporate knowledge base. The information presented herein will reduce the amount of paper and data required in interface definition and control processes by as much as 50 percent and will shorten the time required to prepare an interface control document. It also highlights the essential technical parameters that ensure that flight subsystems will indeed fit together and function as intended after assembly and checkout.

  8. Assessment of rotation thromboelastometry parameters in patients with essential thrombocythemia at diagnosis and after hydroxyurea therapy.

    PubMed

    Treliński, Jacek; Okońska, Marta; Robak, Marta; Chojnowski, Krzysztof

    2016-03-01

    Patients with essential thrombocythemia suffer from thrombotic complications that are the main source of mortality. Due to its complex pathogenesis, no existing single laboratory method is able to identify the patients at highest risk for developing thrombosis. Twenty patients with essential thrombocythemia at diagnosis, 15 healthy volunteers and 20 patients treated with hydroxyurea were compared with regard to certain rotation thromboelastometry parameters. Clotting time (CT), clot formation time (CFT), α-angle, and maximum clot firmness (MCF) were assessed by using the INTEM, EXTEM, FIBTEM, and NATEM tests. Patients with essential thrombocythemia at diagnosis demonstrated significantly higher mean platelet count and markedly lower mean red blood count than controls. CT and CFT readings were found to be markedly lower in essential thrombocythemia patients at diagnosis than in the control group according to the EXTEM test. Patients at diagnosis had markedly lower CT values (EXTEM, FIBTEM) than patients on hydroxyurea therapy. Alpha angle values were markedly higher in essential thrombocythemia patients at diagnosis than in controls, according to the EXTEM, FIBTEM and NATEM tests. MCF readings were significantly higher in essential thrombocythemia patients at diagnosis than in controls according to EXTEM, INTEM, FIBTEM, and NATEM tests. Patients on hydroxyurea therapy had markedly lower MCF values according to EXTEM test than patients at diagnosis. Patients with essential thrombocythemia demonstrate a prothrombotic state at the time of diagnosis, which is reflected in changes by certain rotation thromboelastometry parameters. The hydroxyurea therapy induces downregulation of the prothrombotic features seen in essential thrombocythemia patients at diagnosis.

  9. An applied methodology for assessment of the sustainability of biomass district heating systems

    NASA Astrophysics Data System (ADS)

    Vallios, Ioannis; Tsoutsos, Theocharis; Papadakis, George

    2016-03-01

    In order to maximise the share of biomass in the energy supplying system, the designers should adopt the appropriate changes to the traditional systems and become more familiar with the design details of the biomass heating systems. The aim of this study is to present the development of methodology and its associated implementation in software that is useful for the design of biomass thermal conversion systems linked with district heating (DH) systems, taking into consideration the types of building structures and urban settlement layout around the plant. The methodology is based on a completely parametric logic, providing an impact assessment of variations in one or more technical and/or economic parameters and thus, facilitating a quick conclusion on the viability of this particular energy system. The essential energy parameters are presented and discussed for the design of biomass power and heat production system which are in connection with DH network, as well as for its environmental and economic evaluation (i.e. selectivity and viability of the relevant investment). Emphasis has been placed upon the technical parameters of biomass logistics, energy system's design, the economic details of the selected technology (integrated cogeneration combined cycle or direct combustion boiler), the DH network and peripheral equipment (thermal substations) and the greenhouse gas emissions. The purpose of this implementation is the assessment of the pertinent investment financial viability taking into account the available biomass feedstock, the economical and market conditions, and the capital/operating costs. As long as biomass resources (forest wood and cultivation products) are available and close to the settlement, disposal and transportation costs of biomass, remain low assuring the sustainability of such energy systems.

  10. [Active surveillance of adverse drug reaction in the era of big data: challenge and opportunity for control selection].

    PubMed

    Wang, S F; Zhan, S Y

    2016-07-01

    Electronic healthcare databases have become an important source for active surveillance of drug safety in the era of big data. The traditional epidemiology research designs are needed to confirm the association between drug use and adverse events based on these datasets, and the selection of the comparative control is essential to each design. This article aims to explain the principle and application of each type of control selection, introduce the methods and parameters for method comparison, and describe the latest achievements in the batch processing of control selection, which would provide important methodological reference for the use of electronic healthcare databases to conduct post-marketing drug safety surveillance in China.

  11. Design Enhancement and Performance Examination of External Rotor Switched Flux Permanent Magnet Machine for Downhole Application

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Sulaiman, E.; Soomro, H. A.; Jusoh, L. I.; Bahrim, F. S.; Omar, M. F.

    2017-08-01

    The recent change in innovation and employments of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has turned out to be one of the suitable contenders for seaward boring, however, less intended for downhole because of high atmospheric temperature. Subsequently, this extensive review manages the design enhancement and performance examination of external rotor PMFSM for the downhole application. Preparatory, the essential design parameters required for machine configuration are computed numerically. At that point, the design enhancement strategy is actualized through deterministic technique. At last, preliminary and refined execution of the machine is contrasted and as a consequence, the yield torque is raised from 16.39Nm to 33.57Nm while depreciating the cogging torque and PM weight up to 1.77Nm and 0.79kg, individually. In this manner, it is inferred that purposed enhanced design of 12slot-22pole with external rotor is convenient for the downhole application.

  12. On-orbit calibration for star sensors without priori information.

    PubMed

    Zhang, Hao; Niu, Yanxiong; Lu, Jiazhen; Zhang, Chengfen; Yang, Yanqiang

    2017-07-24

    The star sensor is a prerequisite navigation device for a spacecraft. The on-orbit calibration is an essential guarantee for its operation performance. However, traditional calibration methods rely on ground information and are invalid without priori information. The uncertain on-orbit parameters will eventually influence the performance of guidance navigation and control system. In this paper, a novel calibration method without priori information for on-orbit star sensors is proposed. Firstly, the simplified back propagation neural network is designed for focal length and main point estimation along with system property evaluation, called coarse calibration. Then the unscented Kalman filter is adopted for the precise calibration of all parameters, including focal length, main point and distortion. The proposed method benefits from self-initialization and no attitude or preinstalled sensor parameter is required. Precise star sensor parameter estimation can be achieved without priori information, which is a significant improvement for on-orbit devices. Simulations and experiments results demonstrate that the calibration is easy for operation with high accuracy and robustness. The proposed method can satisfy the stringent requirement for most star sensors.

  13. Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods. Appendix 2

    NASA Technical Reports Server (NTRS)

    Prudhomme, C.; Rovas, D. V.; Veroy, K.; Machiels, L.; Maday, Y.; Patera, A. T.; Turinici, G.; Zang, Thomas A., Jr. (Technical Monitor)

    2002-01-01

    We present a technique for the rapid and reliable prediction of linear-functional outputs of elliptic (and parabolic) partial differential equations with affine parameter dependence. The essential components are (i) (provably) rapidly convergent global reduced basis approximations, Galerkin projection onto a space W(sub N) spanned by solutions of the governing partial differential equation at N selected points in parameter space; (ii) a posteriori error estimation, relaxations of the error-residual equation that provide inexpensive yet sharp and rigorous bounds for the error in the outputs of interest; and (iii) off-line/on-line computational procedures, methods which decouple the generation and projection stages of the approximation process. The operation count for the on-line stage, in which, given a new parameter value, we calculate the output of interest and associated error bound, depends only on N (typically very small) and the parametric complexity of the problem; the method is thus ideally suited for the repeated and rapid evaluations required in the context of parameter estimation, design, optimization, and real-time control.

  14. Use of fractional factorial design for optimization of digestion procedures followed by multi-element determination of essential and non-essential elements in nuts using ICP-OES technique.

    PubMed

    Momen, Awad A; Zachariadis, George A; Anthemidis, Aristidis N; Stratis, John A

    2007-01-15

    Two digestion procedures have been tested on nut samples for application in the determination of essential (Cr, Cu, Fe, Mg, Mn, Zn) and non-essential (Al, Ba, Cd, Pb) elements by inductively coupled plasma-optical emission spectrometry (ICP-OES). These included wet digestions with HNO(3)/H(2)SO(4) and HNO(3)/H(2)SO(4)/H(2)O(2). The later one is recommended for better analytes recoveries (relative error<11%). Two calibrations (aqueous standard and standard addition) procedures were studied and proved that standard addition was preferable for all analytes. Experimental designs for seven factors (HNO(3), H(2)SO(4) and H(2)O(2) volumes, digestion time, pre-digestion time, temperature of the hot plate and sample weight) were used for optimization of sample digestion procedures. For this purpose Plackett-Burman fractional factorial design, which involve eight experiments was adopted. The factors HNO(3) and H(2)O(2) volume, and the digestion time were found to be the most important parameters. The instrumental conditions were also optimized (using peanut matrix rather than aqueous standard solutions) considering radio-frequency (rf) incident power, nebulizer argon gas flow rate and sample uptake flow rate. The analytical performance, such as limits of detection (LOD<0.74mugg(-1)), precision of the overall procedures (relative standard deviation between 2.0 and 8.2%) and accuracy (relative errors between 0.4 and 11%) were assessed statistically to evaluate the developed analytical procedures. The good agreement between measured and certified values for all analytes (relative error <11%) with respect to IAEA-331 (spinach leaves) and IAEA-359 (cabbage) indicates that the developed analytical method is well suited for further studies on the fate of major elements in nuts and possibly similar matrices.

  15. Single and combined effects of vitamin C and oregano essential oil in diet, on growth performance, and blood parameters of broiler chicks reared under heat stress condition

    NASA Astrophysics Data System (ADS)

    Ghazi, Shahab; Amjadian, Tahere; Norouzi, Shokufeh

    2015-08-01

    This study was conducted to evaluate the effects of adding vitamin C (VC), oregano essential oil (OR), or their combination in diet, on growth performance, and blood parameters of broiler chicks reared under heat stress (HS) condition (38 °C). One-day-old 240 male broilers were randomly assigned to four treatment groups, six replicates of ten birds each. The birds were fed with either a basal diet or a basal diet supplemented with either 200 mg L-ascorbic acid/kg of diet, 250 mg of oregano essential oil/kg of diet, or 200 mg L-ascorbic acid plus 250 mg of oregano essential oil/kg of diet. Average daily feed intake (ADFI), average daily gain (ADG), and feed conversion ratio (FCR) were obtained for 42 days of age and at the end of the experiment (day 42); birds were bled to determine some blood parameters and weighted for final body weight (BW). Feeding birds with diets supplemented with oregano essential oil and vitamin C in a single or combined form increased ADG ( P > 0.05). Also BW increased and feed efficiency decreased ( P < 0.05) in the birds fed with diets including VC and OR (in a single or combined form), compared to those fed the basal diet. ADFI was not significantly influenced by dietary oregano essential oil and vitamin C ( P > 0.05). Supplemental oregano essential oil and vitamin C in a combined form decreased the serum concentration of corticosterone, triglycerides, glucose, and MDA ( P < 0.05) compared with other groups. An increase in the serum concentrations of vitamin C were seen in broiler chicks supplemented with vitamin C. From the results of the present experiment, it can be concluded that diet supplementation by combined oregano essential oil and vitamin C could have beneficial effects on some blood parameters of broiler chicks reared under heat stress condition.

  16. Single and combined effects of vitamin C and oregano essential oil in diet, on growth performance, and blood parameters of broiler chicks reared under heat stress condition.

    PubMed

    Ghazi, Shahab; Amjadian, Tahere; Norouzi, Shokufeh

    2015-08-01

    This study was conducted to evaluate the effects of adding vitamin C (VC), oregano essential oil (OR), or their combination in diet, on growth performance, and blood parameters of broiler chicks reared under heat stress (HS) condition (38 °C). One-day-old 240 male broilers were randomly assigned to four treatment groups, six replicates of ten birds each. The birds were fed with either a basal diet or a basal diet supplemented with either 200 mg L-ascorbic acid/kg of diet, 250 mg of oregano essential oil/kg of diet, or 200 mg L-ascorbic acid plus 250 mg of oregano essential oil/kg of diet. Average daily feed intake (ADFI), average daily gain (ADG), and feed conversion ratio (FCR) were obtained for 42 days of age and at the end of the experiment (day 42); birds were bled to determine some blood parameters and weighted for final body weight (BW). Feeding birds with diets supplemented with oregano essential oil and vitamin C in a single or combined form increased ADG (P > 0.05). Also BW increased and feed efficiency decreased (P < 0.05) in the birds fed with diets including VC and OR (in a single or combined form), compared to those fed the basal diet. ADFI was not significantly influenced by dietary oregano essential oil and vitamin C (P > 0.05). Supplemental oregano essential oil and vitamin C in a combined form decreased the serum concentration of corticosterone, triglycerides, glucose, and MDA (P < 0.05) compared with other groups. An increase in the serum concentrations of vitamin C were seen in broiler chicks supplemented with vitamin C. From the results of the present experiment, it can be concluded that diet supplementation by combined oregano essential oil and vitamin C could have beneficial effects on some blood parameters of broiler chicks reared under heat stress condition.

  17. The Compositional Dependence of the Microstructure and Properties of CMSX-4 Superalloys

    NASA Astrophysics Data System (ADS)

    Yu, Hao; Xu, Wei; Van Der Zwaag, Sybrand

    2018-01-01

    The degradation of creep resistance in Ni-based single-crystal superalloys is essentially ascribed to their microstructural evolution. Yet there is a lack of work that manages to predict (even qualitatively) the effect of alloying element concentrations on the rate of microstructural degradation. In this research, a computational model is presented to connect the rafting kinetics of Ni superalloys to their chemical composition by combining thermodynamics calculation and a modified microstructural model. To simulate the evolution of key microstructural parameters during creep, the isotropic coarsening rate and γ/ γ' misfit stress are defined as composition-related parameters, and the effect of service temperature, time, and applied stress are taken into consideration. Two commercial superalloys, for which the kinetics of the rafting process are selected as the reference alloys, and the corresponding microstructural parameters are simulated and compared with experimental observations reported in the literature. The results confirm that our physical model not requiring any fitting parameters manages to predict (semiquantitatively) the microstructural parameters for different service conditions, as well as the effects of alloying element concentrations. The model can contribute to the computational design of new Ni-based superalloys.

  18. High throughput screening: an in silico solubility parameter approach for lipids and solvents in SLN preparations.

    PubMed

    Shah, Malay; Agrawal, Yadvendra

    2013-01-01

    The present paper describes an in silico solubility behavior of drug and lipids, an essential screening study in preparation of solid lipid nanoparticles (SLN). Ciprofloxacin HCl was selected as a model drug along with 11 lipids and 5 organic solvents. In silico miscibility study of drug/lipid/solvent was performed using Hansen solubility parameter approach calculated by group contribution method of Van Krevelen and Hoftyzer. Predicted solubility was validated by determining solubility of lipids in various solvent at different temperature range, while miscibility of drug in lipids was determined by apparent solubility study and partition experiment. The presence of oxygen and OH functionality increases the polarity and hydrogen bonding possibilities of the compound which has reflected the highest solubility parameter values for Geleol and Capmul MCM C8. Ethyl acetate, Geleol and Capmul MCM C8 was identified as suitable organic solvent, solid lipid and liquid lipid respectively based on a solubility parameter approach which was in agreement with the result of an apparent solubility study and partition coefficient. These works demonstrate the validity of solubility parameter approach and provide a feasible predictor to the rational selection of excipients in designing SLN formulation.

  19. Identification of PARMA Models and Their Application to the Modeling of River flows

    NASA Astrophysics Data System (ADS)

    Tesfaye, Y. G.; Meerschaert, M. M.; Anderson, P. L.

    2004-05-01

    The generation of synthetic river flow samples that can reproduce the essential statistical features of historical river flows is essential to the planning, design and operation of water resource systems. Most river flow series are periodically stationary; that is, their mean and covariance functions are periodic with respect to time. We employ a periodic ARMA (PARMA) model. The innovation algorithm can be used to obtain parameter estimates for PARMA models with finite fourth moment as well as infinite fourth moment but finite variance. Anderson and Meerschaert (2003) provide a method for model identification when the time series has finite fourth moment. This article, an extension of the previous work by Anderson and Meerschaert, demonstrates the effectiveness of the technique using simulated data. An application to monthly flow data for the Frazier River in British Columbia is also included to illustrate the use of these methods.

  20. Chitosan/cashew gum nanogels for essential oil encapsulation.

    PubMed

    Abreu, Flávia O M S; Oliveira, Erick F; Paula, Haroldo C B; de Paula, Regina C M

    2012-08-01

    Nanogels based on chitosan and cashew gum were prepared and loaded with Lippia sidoides oil. Several parameters such as cashew gum concentration and relative oil content in the matrix had their influence on nanogel properties investigated. Nanogels were characterized regarding their morphologies, particle size distributions, zeta potential, Fourier transform infrared spectroscopy and essential oil contents. The release profile was investigated by UV/vis spectroscopy and its efficacy was determined through bioassays. Results showed that samples designed using relative ratios matrix:oil 10:2, gum:chitosan 1:1 and 5% gum concentration showed high loading (11.8%) and encapsulation efficiency (70%). Nanogels were found to exhibit average sizes in the range 335-558 nm. In vitro release profiles showed that nanoparticles presented slower and sustained release. Bioassays showed that larval mortality was related mainly to oil loading, with samples presenting more effective larvicide efficacies than the pure L. sidoides oil. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Global Sensitivity Analysis as Good Modelling Practices tool for the identification of the most influential process parameters of the primary drying step during freeze-drying.

    PubMed

    Van Bockstal, Pieter-Jan; Mortier, Séverine Thérèse F C; Corver, Jos; Nopens, Ingmar; Gernaey, Krist V; De Beer, Thomas

    2018-02-01

    Pharmaceutical batch freeze-drying is commonly used to improve the stability of biological therapeutics. The primary drying step is regulated by the dynamic settings of the adaptable process variables, shelf temperature T s and chamber pressure P c . Mechanistic modelling of the primary drying step leads to the optimal dynamic combination of these adaptable process variables in function of time. According to Good Modelling Practices, a Global Sensitivity Analysis (GSA) is essential for appropriate model building. In this study, both a regression-based and variance-based GSA were conducted on a validated mechanistic primary drying model to estimate the impact of several model input parameters on two output variables, the product temperature at the sublimation front T i and the sublimation rate ṁ sub . T s was identified as most influential parameter on both T i and ṁ sub , followed by P c and the dried product mass transfer resistance α Rp for T i and ṁ sub , respectively. The GSA findings were experimentally validated for ṁ sub via a Design of Experiments (DoE) approach. The results indicated that GSA is a very useful tool for the evaluation of the impact of different process variables on the model outcome, leading to essential process knowledge, without the need for time-consuming experiments (e.g., DoE). Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Nonlinear Model for Fuel Atomization in Spray Combustion

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave

    2003-01-01

    Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.

  3. Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Nguyen, Thanh-Binh; Park, Seungchul; Lim, Hyuneui

    2018-03-01

    In this paper, we report the contributions of actual ice-substrate contact area and nanopillar height to passive anti-icing performance in terms of adhesion force and freezing time. Well-textured nanopillars with various parameters were fabricated via colloidal lithography and a dry etching process. The nanostructured quartz surface was coated with low-energy material to confer water-repellent properties. These superhydrophobic surfaces were investigated to determine the parameters essential for reducing adhesion strength and delaying freezing time. A well-textured surface with nanopillars of very small top diameter, regardless of height, could reduce adhesion force and delay freezing time in a subsequent de-icing process. Small top diameters of nanopillars also ensured the metastable Cassie-Baxter state based on energy barrier calculations. The results demonstrated the important role of areal fraction in anti-icing efficiency, and the negligible contribution of texture height. This insight into icing phenomena should lead to design of improved ice-phobic surfaces in the future.

  4. The practical use of simplicity in developing ground water models

    USGS Publications Warehouse

    Hill, M.C.

    2006-01-01

    The advantages of starting with simple models and building complexity slowly can be significant in the development of ground water models. In many circumstances, simpler models are characterized by fewer defined parameters and shorter execution times. In this work, the number of parameters is used as the primary measure of simplicity and complexity; the advantages of shorter execution times also are considered. The ideas are presented in the context of constructing ground water models but are applicable to many fields. Simplicity first is put in perspective as part of the entire modeling process using 14 guidelines for effective model calibration. It is noted that neither very simple nor very complex models generally produce the most accurate predictions and that determining the appropriate level of complexity is an ill-defined process. It is suggested that a thorough evaluation of observation errors is essential to model development. Finally, specific ways are discussed to design useful ground water models that have fewer parameters and shorter execution times.

  5. Study the performance of star sensor influenced by space radiation damage of image sensor

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Li, Yudong; Wen, Lin; Guo, Qi; Zhang, Xingyao

    2018-03-01

    Star sensor is an essential component of spacecraft attitude control system. Spatial radiation can cause star sensor performance degradation, abnormal work, attitude measurement accuracy and reliability reduction. Many studies have already been dedicated to the radiation effect on Charge-Coupled Device(CCD) image sensor, but fewer studies focus on the radiation effect of star sensor. The innovation of this paper is to study the radiation effects from the device level to the system level. The influence of the degradation of CCD image sensor radiation sensitive parameters on the performance parameters of star sensor is studied in this paper. The correlation among the radiation effect of proton, the non-uniformity noise of CCD image sensor and the performance parameter of star sensor is analyzed. This paper establishes a foundation for the study of error prediction and correction technology of star sensor on-orbit attitude measurement, and provides some theoretical basis for the design of high performance star sensor.

  6. Spatially explicit dynamic N-mixture models

    USGS Publications Warehouse

    Zhao, Qing; Royle, Andy; Boomer, G. Scott

    2017-01-01

    Knowledge of demographic parameters such as survival, reproduction, emigration, and immigration is essential to understand metapopulation dynamics. Traditionally the estimation of these demographic parameters requires intensive data from marked animals. The development of dynamic N-mixture models makes it possible to estimate demographic parameters from count data of unmarked animals, but the original dynamic N-mixture model does not distinguish emigration and immigration from survival and reproduction, limiting its ability to explain important metapopulation processes such as movement among local populations. In this study we developed a spatially explicit dynamic N-mixture model that estimates survival, reproduction, emigration, local population size, and detection probability from count data under the assumption that movement only occurs among adjacent habitat patches. Simulation studies showed that the inference of our model depends on detection probability, local population size, and the implementation of robust sampling design. Our model provides reliable estimates of survival, reproduction, and emigration when detection probability is high, regardless of local population size or the type of sampling design. When detection probability is low, however, our model only provides reliable estimates of survival, reproduction, and emigration when local population size is moderate to high and robust sampling design is used. A sensitivity analysis showed that our model is robust against the violation of the assumption that movement only occurs among adjacent habitat patches, suggesting wide applications of this model. Our model can be used to improve our understanding of metapopulation dynamics based on count data that are relatively easy to collect in many systems.

  7. Construction and Setup of a Bench-scale Algal Photosynthetic Bioreactor with Temperature, Light, and pH Monitoring for Kinetic Growth Tests.

    PubMed

    Karam, Amanda L; McMillan, Catherine C; Lai, Yi-Chun; de Los Reyes, Francis L; Sederoff, Heike W; Grunden, Amy M; Ranjithan, Ranji S; Levis, James W; Ducoste, Joel J

    2017-06-14

    The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software.

  8. Changes in male foot shape and size with weightbearing.

    PubMed

    Houston, Vern L; Luo, Gangming; Mason, Carl P; Mussman, Martin; Garbarini, Maryanne; Beattie, Aaron C

    2006-01-01

    Accurate, consistent measurement of foot-ankle geometry is essential for the design and manufacture of well-fitting, functional, comfortable footwear; for the diagnosis of certain biomechanical disorders; and for consistent longitudinal monitoring and assessment of pedorthic treatment outcomes. We sought to formulate a basic set of measures characterizing the principal geometric dimensions of the foot, to investigate how these measures vary with increasing weightbearing, and to explore the implications of weightbearing changes in pedal geometry for orthopedic footwear design and manufacture. The right feet of 40 healthy men aged 22 to 71 years were scanned using the Department of Veterans Affairs Pedorthics Optical Digitizer in neutral alignment, sequentially bearing 0%, 10%, 25%, 50%, and 100% of the subjects' body weight. With support of the full body weight, the following mean changes in the pedal parameters were observed: heel-to-toe length, 1.5%; ball width, 4.3%; maximum heel width, 4.8%; and instep height, -9.3%. On average, 71% of the changes sustained in the pedal parameters at full weightbearing occurred when, or before, 25% of the body weight was applied.

  9. Thermal Protection of the Huygens Probe During Titan Entry: Last Questions

    NASA Technical Reports Server (NTRS)

    Bouilly, Jean-Marc

    2005-01-01

    CASSINI-HUYGENS mission is a cooperation between NASA and ESA, dedicated to the exploration of the Saturnian system. In the framework of this mission, the entry of the HUYGENS probe in the atmosphere of TITAN will be of major scientific interest. One of the essential points of the HUYGENS mission is therefore the good behavior of the thermal shield designed to maintain the aerodynamic shape and to protect the probe from excessive heating during the atmospheric entry on TITAN. The design and the qualification of this thermal shield were carried out between 1992 and 1995 (development phase). Currently, the final definition of mission parameters is being completed. As the performance of the thermal shield is one of all the parameters considered at system level, it is therefore necessary to reassess the thermal response of the TPS, taking into account some updated information that was not yet available during the development phase. After some recall of the results of 1992 to 1995, the paper will present a status of the current work on TPS.

  10. Construction and Setup of a Bench-scale Algal Photosynthetic Bioreactor with Temperature, Light, and pH Monitoring for Kinetic Growth Tests

    PubMed Central

    Karam, Amanda L.; McMillan, Catherine C.; Lai, Yi-Chun; de los Reyes, Francis L.; Sederoff, Heike W.; Grunden, Amy M.; Ranjithan, Ranji S.; Levis, James W.; Ducoste, Joel J.

    2017-01-01

    The optimal design and operation of photosynthetic bioreactors (PBRs) for microalgal cultivation is essential for improving the environmental and economic performance of microalgae-based biofuel production. Models that estimate microalgal growth under different conditions can help to optimize PBR design and operation. To be effective, the growth parameters used in these models must be accurately determined. Algal growth experiments are often constrained by the dynamic nature of the culture environment, and control systems are needed to accurately determine the kinetic parameters. The first step in setting up a controlled batch experiment is live data acquisition and monitoring. This protocol outlines a process for the assembly and operation of a bench-scale photosynthetic bioreactor that can be used to conduct microalgal growth experiments. This protocol describes how to size and assemble a flat-plate, bench-scale PBR from acrylic. It also details how to configure a PBR with continuous pH, light, and temperature monitoring using a data acquisition and control unit, analog sensors, and open-source data acquisition software. PMID:28654054

  11. Efficient Power-Transfer Capability Analysis of the TET System Using the Equivalent Small Parameter Method.

    PubMed

    Yanzhen Wu; Hu, A P; Budgett, D; Malpas, S C; Dissanayake, T

    2011-06-01

    Transcutaneous energy transfer (TET) enables the transfer of power across the skin without direct electrical connection. It is a mechanism for powering implantable devices for the lifetime of a patient. For maximum power transfer, it is essential that TET systems be resonant on both the primary and secondary sides, which requires considerable design effort. Consequently, a strong need exists for an efficient method to aid the design process. This paper presents an analytical technique appropriate to analyze complex TET systems. The system's steady-state solution in closed form with sufficient accuracy is obtained by employing the proposed equivalent small parameter method. It is shown that power-transfer capability can be correctly predicted without tedious iterative simulations or practical measurements. Furthermore, for TET systems utilizing a current-fed push-pull soft switching resonant converter, it is found that the maximum energy transfer does not occur when the primary and secondary resonant tanks are "tuned" to the nominal resonant frequency. An optimal turning point exists, corresponding to the system's maximum power-transfer capability when optimal tuning capacitors are applied.

  12. Parents and adolescents preferences for asthma control: a best-worst scaling choice experiment using an orthogonal main effects design.

    PubMed

    Ungar, Wendy J; Hadioonzadeh, Anahita; Najafzadeh, Mehdi; Tsao, Nicole W; Dell, Sharon; Lynd, Larry D

    2015-11-17

    The preferences of parents and children with asthma influence their ability to manage a child's asthma and achieve good control. Potential differences between parents and adolescents with respect to specific parameters of asthma control are not considered in clinical asthma guidelines. The objective was to measure and compare the preferences of parents and adolescents with asthma with regard to asthma control parameters using best worst scaling (BWS). Fifty-two parents of children with asthma and 44 adolescents with asthma participated in a BWS study to quantify preferences regarding night-time symptoms, wheezing/chest tightening, changes in asthma medications, emergency visits and physical activity limitations. Conditional logit regression was used to determine each group's utility for each level of each asthma control parameter. Parents displayed the strongest positive preference for the absence of night-time symptoms (β = 2.09, p < 0.00001) and the strongest negative preference for 10 emergency room visits per year (β = -2.15, p < 0.00001). Adolescents displayed the strongest positive preference for the absence of physical activity limitations (β = 2.17, p < 0.00001) and the strongest negative preference for ten physical activity limitations per month (β = -1.97). Both groups were least concerned with changes to medications. Parents and adolescents placed different weights on the importance of asthma control parameters and each group displayed unique preferences. Understanding the relative importance placed on each parameter by parents and adolescents is essential for designing effective patient-focused disease management plans.

  13. The Mission Assessment Post Processor (MAPP): A New Tool for Performance Evaluation of Human Lunar Missions

    NASA Technical Reports Server (NTRS)

    Williams, Jacob; Stewart, Shaun M.; Lee, David E.; Davis, Elizabeth C.; Condon, Gerald L.; Senent, Juan

    2010-01-01

    The National Aeronautics and Space Administration s (NASA) Constellation Program paves the way for a series of lunar missions leading to a sustained human presence on the Moon. The proposed mission design includes an Earth Departure Stage (EDS), a Crew Exploration Vehicle (Orion) and a lunar lander (Altair) which support the transfer to and from the lunar surface. This report addresses the design, development and implementation of a new mission scan tool called the Mission Assessment Post Processor (MAPP) and its use to provide insight into the integrated (i.e., EDS, Orion, and Altair based) mission cost as a function of various mission parameters and constraints. The Constellation architecture calls for semiannual launches to the Moon and will support a number of missions, beginning with 7-day sortie missions, culminating in a lunar outpost at a specified location. The operational lifetime of the Constellation Program can cover a period of decades over which the Earth-Moon geometry (particularly, the lunar inclination) will go through a complete cycle (i.e., the lunar nodal cycle lasting 18.6 years). This geometry variation, along with other parameters such as flight time, landing site location, and mission related constraints, affect the outbound (Earth to Moon) and inbound (Moon to Earth) translational performance cost. The mission designer must determine the ability of the vehicles to perform lunar missions as a function of this complex set of interdependent parameters. Trade-offs among these parameters provide essential insights for properly assessing the ability of a mission architecture to meet desired goals and objectives. These trades also aid in determining the overall usable propellant required for supporting nominal and off-nominal missions over the entire operational lifetime of the program, thus they support vehicle sizing.

  14. Characterization of material parameters for high speed forming and cutting via experiment and inverse simulation

    NASA Astrophysics Data System (ADS)

    Scheffler, Christian; Psyk, Verena; Linnemann, Maik; Tulke, Marc; Brosius, Alexander; Landgrebe, Dirk

    2018-05-01

    High speed velocity effects in production technology provide a broad range of technological and economic advantages [1, 2]. However, exploiting them necessitates the knowledge of strain rate dependent material behavior in process modelling. In general, high speed material data characterization features several difficulties and requires sophisticated approaches in order to provide reliable material data. This paper proposes two innovative concepts with electromagnetic and pneumatic drive and an approach for material characterization in terms of strain rate dependent flow curves and parameters of failure or damage models. The test setups have been designed for investigations of strain rates up to 105 s-1. In principle, knowledge about the temporary courses and local distributions of stress and strain in the specimen is essential for identifying material characteristics, but short process times, fast changes of the measurement values, small specimen size and frequently limited accessibility of the specimen during the test hinder directly measuring these parameters at high-velocity testing. Therefore, auxiliary test parameters, which are easier to measure, are recorded and used as input data for an inverse numerical simulation that provides the desired material characteristics, e.g. the Johnson-Cook parameters, as a result. These parameters are a force equivalent strain signal on a measurement body and the displacement of the upper specimen edge.

  15. Complete set of essential parameters of an effective theory

    NASA Astrophysics Data System (ADS)

    Ioffe, M. V.; Vereshagin, V. V.

    2018-04-01

    The present paper continues the series [V. V. Vereshagin, True self-energy function and reducibility in effective scalar theories, Phys. Rev. D 89, 125022 (2014); , 10.1103/PhysRevD.89.125022A. Vereshagin and V. Vereshagin, Resultant parameters of effective theory, Phys. Rev. D 69, 025002 (2004); , 10.1103/PhysRevD.69.025002K. Semenov-Tian-Shansky, A. Vereshagin, and V. Vereshagin, S-matrix renormalization in effective theories, Phys. Rev. D 73, 025020 (2006), 10.1103/PhysRevD.73.025020] devoted to the systematic study of effective scattering theories. We consider matrix elements of the effective Lagrangian monomials (in the interaction picture) of arbitrary high dimension D and show that the full set of corresponding coupling constants contains parameters of both kinds: essential and redundant. Since it would be pointless to formulate renormalization prescriptions for redundant parameters, it is necessary to select the full set of the essential ones. This is done in the present paper for the case of the single scalar field.

  16. Characterization of mechanical properties of pseudoelastic shape memory alloys under harmonic excitation

    NASA Astrophysics Data System (ADS)

    Böttcher, J.; Jahn, M.; Tatzko, S.

    2017-12-01

    Pseudoelastic shape memory alloys exhibit a stress-induced phase transformation which leads to high strains during deformation of the material. The stress-strain characteristic during this thermomechanical process is hysteretic and results in the conversion of mechanical energy into thermal energy. This energy conversion allows for the use of shape memory alloys in vibration reduction. For the application of shape memory alloys as vibration damping devices a dynamic modeling of the material behavior is necessary. In this context experimentally determined material parameters which accurately represent the material behavior are essential for a reliable material model. Subject of this publication is the declaration of suitable material parameters for pseudoelastic shape memory alloys and the methodology of their identification from experimental investigations. The used test rig was specifically designed for the characterization of pseudoelastic shape memory alloys.

  17. Automated processing of first-pass radioisotope ventriculography data to determine essential central circulation parameters

    NASA Astrophysics Data System (ADS)

    Krotov, Aleksei; Pankin, Victor

    2017-09-01

    The assessment of central circulation (including heart function) parameters is vital in the preventive diagnostics of inherent and acquired heart failures and during polychemotherapy. The protocols currently applied in Russia do not fully utilize the first-pass assessment (FPRNA) and that results in poor data formalization, while the FPRNA is the one of the fastest, affordable and compact methods among other radioisotope diagnostics protocols. A non-imaging algorithm basing on existing protocols has been designed to use the readings of an additional detector above vena subclavia to determine the total blood volume (TBV), not requiring blood sampling in contrast to current protocols. An automated processing of precordial detector readings is presented, in order to determine the heart strike volume (SV). Two techniques to estimate the ejection fraction (EF) of the heart are discussed.

  18. Contrast medium administration and image acquisition parameters in renal CT angiography: what radiologists need to know

    PubMed Central

    Saade, Charbel; Deeb, Ibrahim Alsheikh; Mohamad, Maha; Al-Mohiy, Hussain; El-Merhi, Fadi

    2016-01-01

    Over the last decade, exponential advances in computed tomography (CT) technology have resulted in improved spatial and temporal resolution. Faster image acquisition enabled renal CT angiography to become a viable and effective noninvasive alternative in diagnosing renal vascular pathologies. However, with these advances, new challenges in contrast media administration have emerged. Poor synchronization between scanner and contrast media administration have reduced the consistency in image quality with poor spatial and contrast resolution. Comprehensive understanding of contrast media dynamics is essential in the design and implementation of contrast administration and image acquisition protocols. This review includes an overview of the parameters affecting renal artery opacification and current protocol strategies to achieve optimal image quality during renal CT angiography with iodinated contrast media, with current safety issues highlighted. PMID:26728701

  19. The design and test of collecting device and film purge device joint work of residual film recovery machine based on Solidworks & Adams

    NASA Astrophysics Data System (ADS)

    Zhai, Haozhou; Jian, Jianming; Hou, Shulin; San, Yunlong; Guo, Wensong; Sun, Yue; Gao, Mingqing

    2018-03-01

    The twine of residual film is an essential issue in the process of remnant residue recovery of the residual film recovery machine. It is difficult to clean up the residual film in the residual film recovery operation and to influence the subsequent film efficiency. Therefore, in response to this problem a composite tooth pocket residual film recovery device was designed. In this paper, the structure of the film recovery device design, theoretical analysis, simulation experiments, get the most appropriate film recovery device parameters. In addition, the residual film rate of the membrane is dramatically low, reaching about 1.3% only, and the operation of the whole machine is smoother, and the stability of the work is promoted. The operation of the film recovery device is very obvious. Lifting, in addition to the film rate has also been significantly improved to 93.88%

  20. A button - type beam position monitor design for TARLA facility

    NASA Astrophysics Data System (ADS)

    Gündoǧan, M. Tural; Kaya, ć.; Yavaş, Ö.

    2016-03-01

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC. The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.

  1. MSDS sky reference and preamplifier study

    NASA Technical Reports Server (NTRS)

    Larsen, L.; Stewart, S.; Lambeck, P.

    1974-01-01

    The major goals in re-designing the Multispectral Scanner and Data System (MSDS) sky reference are: (1) to remove the sun-elevation angle and aircraft-attitude angle dependence from the solar-sky illumination measurement, and (2) to obtain data on the optical state of the atmosphere. The present sky reference is dependent on solar elevation and provides essentially no information on important atmospheric parameters. Two sky reference designs were tested. One system is built around a hyperbolic mirror and the reflection approach. A second approach to a sky reference utilizes a fish-eye lens to obtain a 180 deg field of view. A detailed re-design of the present sky reference around the fish-eye approach, even with its limitations, is recommended for the MSDS system. A preamplifier study was undertaken to find ways of improving the noise-equivalent reflectance by reducing the noise level for silicon detector channels on the MSDS.

  2. A Total Information Management System For All Medical Images

    NASA Astrophysics Data System (ADS)

    Ouimette, Donald; Nudelman, Sol; Ramsby, Gale; Spackman, Thomas

    1985-09-01

    A PACS has been designed for the University of Connecticut Health Center to serve all departments acquiring images for diagnosis, surgery and therapy. It incorporates a multiple community communications architecture to provide complete information management for medical images, medical data and departmental administrative matter. The system is modular and expandable. It permits an initial installation for radiology and subsequent expansion to include other departments at the Health Center, beginning with internal medicine, surgery, ophthalmology and dentistry. The design permits sufficient expansion to offer the potential for accepting the additional burden of a hospital information system. Primary parameters that led to this system design were based on the anticipation that departments in time could achieve generating 60 to 90% of their images suited to insertion in a PACS, that a high network throughput for large block image transfers would be essen-tial and that total system reliability was fundamental to success.

  3. Multiobjective design of aquifer monitoring networks for optimal spatial prediction and geostatistical parameter estimation

    NASA Astrophysics Data System (ADS)

    Alzraiee, Ayman H.; Bau, Domenico A.; Garcia, Luis A.

    2013-06-01

    Effective sampling of hydrogeological systems is essential in guiding groundwater management practices. Optimal sampling of groundwater systems has previously been formulated based on the assumption that heterogeneous subsurface properties can be modeled using a geostatistical approach. Therefore, the monitoring schemes have been developed to concurrently minimize the uncertainty in the spatial distribution of systems' states and parameters, such as the hydraulic conductivity K and the hydraulic head H, and the uncertainty in the geostatistical model of system parameters using a single objective function that aggregates all objectives. However, it has been shown that the aggregation of possibly conflicting objective functions is sensitive to the adopted aggregation scheme and may lead to distorted results. In addition, the uncertainties in geostatistical parameters affect the uncertainty in the spatial prediction of K and H according to a complex nonlinear relationship, which has often been ineffectively evaluated using a first-order approximation. In this study, we propose a multiobjective optimization framework to assist the design of monitoring networks of K and H with the goal of optimizing their spatial predictions and estimating the geostatistical parameters of the K field. The framework stems from the combination of a data assimilation (DA) algorithm and a multiobjective evolutionary algorithm (MOEA). The DA algorithm is based on the ensemble Kalman filter, a Monte-Carlo-based Bayesian update scheme for nonlinear systems, which is employed to approximate the posterior uncertainty in K, H, and the geostatistical parameters of K obtained by collecting new measurements. Multiple MOEA experiments are used to investigate the trade-off among design objectives and identify the corresponding monitoring schemes. The methodology is applied to design a sampling network for a shallow unconfined groundwater system located in Rocky Ford, Colorado. Results indicate that the effect of uncertainties associated with the geostatistical parameters on the spatial prediction might be significantly alleviated (by up to 80% of the prior uncertainty in K and by 90% of the prior uncertainty in H) by sampling evenly distributed measurements with a spatial measurement density of more than 1 observation per 60 m × 60 m grid block. In addition, exploration of the interaction of objective functions indicates that the ability of head measurements to reduce the uncertainty associated with the correlation scale is comparable to the effect of hydraulic conductivity measurements.

  4. "Singing in the Tube"--audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens).

    PubMed

    Adams, Temitope F; Wongchai, Chatchawal; Chaidee, Anchalee; Pfeiffer, Wolfgang

    2016-01-01

    Plant essential oils have been suggested as a promising alternative to the established mosquito repellent DEET (N,N-diethyl-meta-toluamide). Searching for an assay with generally available equipment, we designed a new audiovisual assay of repellent activity against mosquitoes "Singing in the Tube," testing single mosquitoes in Drosophila cultivation tubes. Statistics with regression analysis should compensate for limitations of simple hardware. The assay was established with female Culex pipiens mosquitoes in 60 experiments, 120-h audio recording, and 2580 estimations of the distance between mosquito sitting position and the chemical. Correlations between parameters of sitting position, flight activity pattern, and flight tone spectrum were analyzed. Regression analysis of psycho-acoustic data of audio files (dB[A]) used a squared and modified sinus function determining wing beat frequency WBF ± SD (357 ± 47 Hz). Application of logistic regression defined the repelling velocity constant. The repelling velocity constant showed a decreasing order of efficiency of plant essential oils: rosemary (Rosmarinus officinalis), eucalyptus (Eucalyptus globulus), lavender (Lavandula angustifolia), citronella (Cymbopogon nardus), tea tree (Melaleuca alternifolia), clove (Syzygium aromaticum), lemon (Citrus limon), patchouli (Pogostemon cablin), DEET, cedar wood (Cedrus atlantica). In conclusion, we suggest (1) disease vector control (e.g., impregnation of bed nets) by eight plant essential oils with repelling velocity superior to DEET, (2) simple mosquito repellency testing in Drosophila cultivation tubes, (3) automated approaches and room surveillance by generally available audio equipment (dB[A]: ISO standard 226), and (4) quantification of repellent activity by parameters of the audiovisual assay defined by correlation and regression analyses.

  5. Effect of Inhalation of Aroma of Geranium Essence on Anxiety and Physiological Parameters during First Stage of Labor in Nulliparous Women: a Randomized Clinical Trial

    PubMed Central

    Rashidi Fakari, Fahimeh; Tabatabaeichehr, Mahbubeh; Kamali, Hossian; Rashidi Fakari, Farzaneh; Naseri, Maryam

    2015-01-01

    Introduction: Anxiety increases significantly during labor, especially among nulliparous women. Such anxiety may affect the progress of labor and physiological parameters. The use of essential oils of aromatic plants, or aromatherapy, is a non-invasive procedure that can decrease childbirth anxiety. This study examined the effect of inhalation of the aroma of geranium essential oil on the level of anxiety and physiological parameters of nulliparous women in the first stage of labor. Methods: In study, was carried out on 100 nulliparous women admitted to Bent al-Hoda Hospital in the city of Bojnord in North Khorasan province of Iran during 2012-2013. The women were randomly assigned to two groups of equal size, one experimental group (geranium essential oil) and one control (placebo) group. Anxiety levels were measured using Spielberger' questionnaire before and after intervention. Physiological parameters (systolic and diastolic blood pressure, respiratory rate, pulse rate) were also measured before and after intervention in both groups. Data analysis was conducted using the x2 test, paired t-test, Mann-Whitney U test, and Wilcox on test on SPSS 11.5. Results: The mean anxiety score decreased significantly after inhalation of the aroma of geranium essential oil. There was also a significant decrease in diastolic blood pressure. Conclusion: Aroma of essential oil of geraniums can effectively reduce anxiety during labor and can be recommended as a non-invasive anti-anxiety aid during childbirth. PMID:26161367

  6. Development of fire-resistant, low smoke generating, thermally stable end items for aircraft and spacecraft

    NASA Technical Reports Server (NTRS)

    Gagliani, J.; Sorathia, U. A. K.; Wilcoxson, A. L.

    1977-01-01

    Materials were developed to improve aircraft interior materials by modifying existing polymer structures, refining the process parameters, and by the use of mechanical configurations designed to overcome specific deficiencies. The optimization, selection, and fabrication of five fire resistant, low smoke emitting open cell foams are described for five different types of aircraft cabin structures. These include: resilient foams, laminate floor and wall paneling, thermal/acoustical insulation, molded shapes, and coated fabrics. All five have been produced from essentially the same polyimide precursor and have resulted in significant benefits from transfer of technology between the various tasks.

  7. Cation Selectivity in Biological Cation Channels Using Experimental Structural Information and Statistical Mechanical Simulation

    PubMed Central

    Finnerty, Justin John

    2015-01-01

    Cation selective channels constitute the gate for ion currents through the cell membrane. Here we present an improved statistical mechanical model based on atomistic structural information, cation hydration state and without tuned parameters that reproduces the selectivity of biological Na+ and Ca2+ ion channels. The importance of the inclusion of step-wise cation hydration in these results confirms the essential role partial dehydration plays in the bacterial Na+ channels. The model, proven reliable against experimental data, could be straightforwardly used for designing Na+ and Ca2+ selective nanopores. PMID:26460827

  8. Modular electron transfer circuits for synthetic biology

    PubMed Central

    Agapakis, Christina M

    2010-01-01

    Electron transfer is central to a wide range of essential metabolic pathways, from photosynthesis to fermentation. The evolutionary diversity and conservation of proteins that transfer electrons makes these pathways a valuable platform for engineered metabolic circuits in synthetic biology. Rational engineering of electron transfer pathways containing hydrogenases has the potential to lead to industrial scale production of hydrogen as an alternative source of clean fuel and experimental assays for understanding the complex interactions of multiple electron transfer proteins in vivo. We designed and implemented a synthetic hydrogen metabolism circuit in Escherichia coli that creates an electron transfer pathway both orthogonal to and integrated within existing metabolism. The design of such modular electron transfer circuits allows for facile characterization of in vivo system parameters with applications toward further engineering for alternative energy production. PMID:21468209

  9. GAMBIT: the global and modular beyond-the-standard-model inference tool

    NASA Astrophysics Data System (ADS)

    Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian

    2017-11-01

    We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present first GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.

  10. A survey of instabilities within centrifugal pumps and concepts for improving the flow range of pumps in rocket engines

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1992-01-01

    Design features and concepts that have primary influence on the stable operating flow range of propellant-feed centrifugal turbopumps in a rocket engine are discussed. One of the throttling limitations of a pump-fed rocket engine is the stable operating range of the pump. Several varieties of pump hydraulic instabilities are mentioned. Some pump design criteria are summarized and a qualitative correlation of key parameters to pump stall and surge are referenced. Some of the design criteria were taken from the literature on high pressure ratio centrifugal compressors. Therefore, these have yet to be validated for extending the stable operating flow range of high-head pumps. Casing treatment devices, dynamic fluid-damping plenums, backflow-stabilizing vanes and flow-reinjection techniques are summarized. A planned program was undertaken at LeRC to validate these concepts. Technologies developed by this program will be available for the design of turbopumps for advanced space rocket engines for use by NASA in future space missions where throttling is essential.

  11. Antioxidant Activity of Essential Oil Extracted by SC-CO₂ from Seeds of Trachyspermum ammi.

    PubMed

    Singh, Aarti; Ahmad, Anees

    2017-07-11

    Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO₂) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi . A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO₂ flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO₂ methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w , respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC 50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL -1 , respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO₂ method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity.

  12. A novel orbiter mission concept for venus with the EnVision proposal

    NASA Astrophysics Data System (ADS)

    de Oliveira, Marta R. R.; Gil, Paulo J. S.; Ghail, Richard

    2018-07-01

    In space exploration, planetary orbiter missions are essential to gain insight into planets as a whole, and to help uncover unanswered scientific questions. In particular, the planets closest to the Earth have been a privileged target of the world's leading space agencies. EnVision is a mission proposal designed for Venus and competing for ESA's next launch opportunity with the objective of studying Earth's closest neighbor. The main goal is to study geological and atmospheric processes, namely surface processes, interior dynamics and atmosphere, to determine the reasons behind Venus and Earth's radically different evolution despite the planets' similarities. To achieve these goals, the operational orbit selection is a fundamental element of the mission design process. The design of an orbit around Venus faces specific challenges, such as the impossibility of choosing Sun-synchronous orbits. In this paper, an innovative genetic algorithm optimization was applied to select the optimal orbit based on the parameters with more influence in the mission planning, in particular the mission duration and the coverage of sites of interest on the Venusian surface. The solution obtained is a near-polar circular orbit with an altitude of 259 km that enables the coverage of all priority targets almost two times faster than with the parameters considered before this study.

  13. Near Field and Far Field Effects in the Taguchi-Optimized Design of AN InP/GaAs-BASED Double Wafer-Fused Mqw Long-Wavelength Vertical-Cavity Surface-Emitting Laser

    NASA Astrophysics Data System (ADS)

    Menon, P. S.; Kandiah, K.; Mandeep, J. S.; Shaari, S.; Apte, P. R.

    Long-wavelength VCSELs (LW-VCSEL) operating in the 1.55 μm wavelength regime offer the advantages of low dispersion and optical loss in fiber optic transmission systems which are crucial in increasing data transmission speed and reducing implementation cost of fiber-to-the-home (FTTH) access networks. LW-VCSELs are attractive light sources because they offer unique features such as low power consumption, narrow beam divergence and ease of fabrication for two-dimensional arrays. This paper compares the near field and far field effects of the numerically investigated LW-VCSEL for various design parameters of the device. The optical intensity profile far from the device surface, in the Fraunhofer region, is important for the optical coupling of the laser with other optical components. The near field pattern is obtained from the structure output whereas the far-field pattern is essentially a two-dimensional fast Fourier Transform (FFT) of the near-field pattern. Design parameters such as the number of wells in the multi-quantum-well (MQW) region, the thickness of the MQW and the effect of using Taguchi's orthogonal array method to optimize the device design parameters on the near/far field patterns are evaluated in this paper. We have successfully increased the peak lasing power from an initial 4.84 mW to 12.38 mW at a bias voltage of 2 V and optical wavelength of 1.55 μm using Taguchi's orthogonal array. As a result of the Taguchi optimization and fine tuning, the device threshold current is found to increase along with a slight decrease in the modulation speed due to increased device widths.

  14. El Toro Library Solar Heating and Cooling Demonstration Project. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report is divided into a number of essentially independent sections, each of which covers a specific topic. The sections, and the topics covered, are as follows. Section 1 provides a brief summary description of the solar energy heating and cooling system including the key final design parameters. Section 2 contains a copy of the final Acceptance Test Report. Section 3 consists of a reduced set of final updated as-built mechanical, electrical, control and instrumentations drawings of the solar energy heating and cooling system. Section 4 provides a summary of system maintenance requirements, in the form of a maintenance schedulemore » which lists necessary maintenance tasks to be performed at monthly, quarterly, semi-annual, and annual intervals. Section 5 contains a series of photographs of the final solar energy system installation, including the collector field and the mechanical equipment room. Section 6 provides a concise summary of system operation and performance for the period of December 1981 through June 1982, as measured, computed and reported by Vitro Laboratories Division of Automation Industries, Inc., for the DOE National Solar Data Network. Section 7 provides a summary of key as-built design parameters, compared with the corresponding original design concept parameters. Section 8 provides a description of a series of significant problems encountered during construction, start-up and check-out of the solar energy heating and cooling system, together with the method employed to solve the problem at the time and/or recommendations for avoiding the problem in the future design of similar systems. Appendices A through H contain the installation, operation and maintenance submittals of the various manufacturers on the major items of equipment in the system. Reference CAPE-2823.« less

  15. Patient Protection and Affordable Care Act; HHS notice of benefit and payment parameters for 2016. Final rule.

    PubMed

    2015-02-27

    This final rule sets forth payment parameters and provisions related to the risk adjustment, reinsurance, and risk corridors programs; cost sharing parameters and cost-sharing reductions; and user fees for Federally-facilitated Exchanges. It also finalizes additional standards for the individual market annual open enrollment period for the 2016 benefit year, essential health benefits, qualified health plans, network adequacy, quality improvement strategies, the Small Business Health Options Program, guaranteed availability, guaranteed renewability, minimum essential coverage, the rate review program, the medical loss ratio program, and other related topics.

  16. Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)

    2001-01-01

    Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The operating conditions causing parametric instabilities are expressed in closed-form suitable for design guidance. Using the well-defined modal properties of planetary gears, the effects of mesh parameters on parametric instability are analytically identified. Simple formulae are obtained to suppress particular instabilities by adjusting contact ratios and mesh phasing.

  17. In vivo toxicity and antitumor activity of essential oils extract from agarwood (Aquilaria crassna).

    PubMed

    Dahham, Saad Sabbar; Hassan, Loiy E Ahmed; Ahamed, Mohamed B Khadeer; Majid, Aman Shah Abdul; Majid, Amin Malik Shah Abdul; Zulkepli, Nik Noriman

    2016-07-22

    Aquilaria crassna has been used in traditional Asian medicine to treat vomiting, rheumatism, asthma, and cough. Furthermore, earlier studies from our laboratory have revealed that the essential oil extract from agarwood inhibited colorectal carcinoma cells. Despite of the wide range of ethno-pharmacological uses of agarwood, its toxicity has not been previously evaluated through systematic toxicological studies. Therefore, the potential safety of essential oil extract and its in vivo anti-tumor activity had been investigated. In the acute toxicity study, Swiss female mice were given a single dose of the essential oil extract at 2000 mg/kg/day orally and screened for two weeks after administration. Meanwhile, in the sub-chronic study, two different doses of the extract were administered for 28 days. Mortality, clinical signs, body weight changes, hematological and biochemical parameters, gross findings, organ weights, and histological parameters were monitored during the study. Other than that, in vivo anti-tumor study was assessed by using subcutaneous tumors model established in nude mice. The acute toxicity study showed that the LD50 of the extract was greater than 2000 mg/kg. In the repeated dose for 28-day oral toxicity study, the administration of 100 mg/kg and 500 mg/kg of essential oil per body weight revealed insignificant difference in food and water intakes, bodyweight change, hematological and biochemical parameters, relative organ weights, gross findings or histopathology compared to the control group. Nevertheless, the essential oil extract, when supplemented to nude mice, caused significant growth inhibition of the subcutaneous tumor of HCT 116 colorectal carcinoma cells. Collectively, the data obtained indicated that essential oil extract from agarwood might be a safe material, and this essential oil is suggested as a potential anti-colon cancer candidate.

  18. Bifunctional ultrasound assisted extraction and determination of Elettaria cardamomum Maton essential oil.

    PubMed

    Sereshti, Hassan; Rohanifar, Ahmad; Bakhtiari, Sadjad; Samadi, Soheila

    2012-05-18

    A new hyphenated extraction method composed of ultrasound assisted extraction (UAE)-optimized ultrasound assisted emulsification microextraction (USAEME) was developed for the extraction and preconcentration of the essential oil of Elettaria cardamomum Maton. The essential oil was analyzed by gas chromatography-mass spectrometry (GC-MS) and optimization was performed using gas chromatography-flame ionization detection (GC-FID). Ultrasound played two different roles in the extraction of the essential oil. First, as a source of sufficient energy to break the oil-containing glands in order to release the oil, and second as an emulsifier to disperse the organic phase within water. The effective parameters (factors) of USAEME including volume of extraction solvent (C(2)H(4)Cl(2)), extraction temperature and ultrasonic time were optimized by using a central composite design (CCD). The optimal conditions were 120 μL for extraction solvent volume, 32.5 °C for temperature and 10.5 min for ultrasonic time. The linear dynamic ranges (LDRs) were 0.01-50 mg L(-1) with the determination coefficients in the range of 0.9990-0.9999. The limits of detection (LODs) and the relative standard deviations (RSDs) were 0.001-0.007 mg L(-1) and 3.6-6.3%, respectively. The enrichment factors were 93-98. The main components of the extracted essential oil were α-terpenyl acetate (46.0%), 1,8-cineole (27.7%), linalool (5.3%), α-terpineol (4.0%), linalyl acetate (3.5%). Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A Range Finding Protocol to Support Design for Transcriptomics Experimentation: Examples of In-Vitro and In-Vivo Murine UV Exposure

    PubMed Central

    van Oostrom, Conny T.; Jonker, Martijs J.; de Jong, Mark; Dekker, Rob J.; Rauwerda, Han; Ensink, Wim A.; de Vries, Annemieke; Breit, Timo M.

    2014-01-01

    In transcriptomics research, design for experimentation by carefully considering biological, technological, practical and statistical aspects is very important, because the experimental design space is essentially limitless. Usually, the ranges of variable biological parameters of the design space are based on common practices and in turn on phenotypic endpoints. However, specific sub-cellular processes might only be partially reflected by phenotypic endpoints or outside the associated parameter range. Here, we provide a generic protocol for range finding in design for transcriptomics experimentation based on small-scale gene-expression experiments to help in the search for the right location in the design space by analyzing the activity of already known genes of relevant molecular mechanisms. Two examples illustrate the applicability: in-vitro UV-C exposure of mouse embryonic fibroblasts and in-vivo UV-B exposure of mouse skin. Our pragmatic approach is based on: framing a specific biological question and associated gene-set, performing a wide-ranged experiment without replication, eliminating potentially non-relevant genes, and determining the experimental ‘sweet spot’ by gene-set enrichment plus dose-response correlation analysis. Examination of many cellular processes that are related to UV response, such as DNA repair and cell-cycle arrest, revealed that basically each cellular (sub-) process is active at its own specific spot(s) in the experimental design space. Hence, the use of range finding, based on an affordable protocol like this, enables researchers to conveniently identify the ‘sweet spot’ for their cellular process of interest in an experimental design space and might have far-reaching implications for experimental standardization. PMID:24823911

  20. Thermal nanostructure: An order parameter multiscale ensemble approach

    NASA Astrophysics Data System (ADS)

    Cheluvaraja, S.; Ortoleva, P.

    2010-02-01

    Deductive all-atom multiscale techniques imply that many nanosystems can be understood in terms of the slow dynamics of order parameters that coevolve with the quasiequilibrium probability density for rapidly fluctuating atomic configurations. The result of this multiscale analysis is a set of stochastic equations for the order parameters whose dynamics is driven by thermal-average forces. We present an efficient algorithm for sampling atomistic configurations in viruses and other supramillion atom nanosystems. This algorithm allows for sampling of a wide range of configurations without creating an excess of high-energy, improbable ones. It is implemented and used to calculate thermal-average forces. These forces are then used to search the free-energy landscape of a nanosystem for deep minima. The methodology is applied to thermal structures of Cowpea chlorotic mottle virus capsid. The method has wide applicability to other nanosystems whose properties are described by the CHARMM or other interatomic force field. Our implementation, denoted SIMNANOWORLD™, achieves calibration-free nanosystem modeling. Essential atomic-scale detail is preserved via a quasiequilibrium probability density while overall character is provided via predicted values of order parameters. Applications from virology to the computer-aided design of nanocapsules for delivery of therapeutic agents and of vaccines for nonenveloped viruses are envisioned.

  1. Performance Assessment Uncertainty Analysis for Japan's HLW Program Feasibility Study (H12)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BABA,T.; ISHIGURO,K.; ISHIHARA,Y.

    1999-08-30

    Most HLW programs in the world recognize that any estimate of long-term radiological performance must be couched in terms of the uncertainties derived from natural variation, changes through time and lack of knowledge about the essential processes. The Japan Nuclear Cycle Development Institute followed a relatively standard procedure to address two major categories of uncertainty. First, a FEatures, Events and Processes (FEPs) listing, screening and grouping activity was pursued in order to define the range of uncertainty in system processes as well as possible variations in engineering design. A reference and many alternative cases representing various groups of FEPs weremore » defined and individual numerical simulations performed for each to quantify the range of conceptual uncertainty. Second, parameter distributions were developed for the reference case to represent the uncertainty in the strength of these processes, the sequencing of activities and geometric variations. Both point estimates using high and low values for individual parameters as well as a probabilistic analysis were performed to estimate parameter uncertainty. A brief description of the conceptual model uncertainty analysis is presented. This paper focuses on presenting the details of the probabilistic parameter uncertainty assessment.« less

  2. A support vector regression-firefly algorithm-based model for limiting velocity prediction in sewer pipes.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein

    2016-01-01

    Sediment transport without deposition is an essential consideration in the optimum design of sewer pipes. In this study, a novel method based on a combination of support vector regression (SVR) and the firefly algorithm (FFA) is proposed to predict the minimum velocity required to avoid sediment settling in pipe channels, which is expressed as the densimetric Froude number (Fr). The efficiency of support vector machine (SVM) models depends on the suitable selection of SVM parameters. In this particular study, FFA is used by determining these SVM parameters. The actual effective parameters on Fr calculation are generally identified by employing dimensional analysis. The different dimensionless variables along with the models are introduced. The best performance is attributed to the model that employs the sediment volumetric concentration (C(V)), ratio of relative median diameter of particles to hydraulic radius (d/R), dimensionless particle number (D(gr)) and overall sediment friction factor (λ(s)) parameters to estimate Fr. The performance of the SVR-FFA model is compared with genetic programming, artificial neural network and existing regression-based equations. The results indicate the superior performance of SVR-FFA (mean absolute percentage error = 2.123%; root mean square error =0.116) compared with other methods.

  3. Prospects for measuring the fuel ion ratio in burning ITER plasmas using a DT neutron emission spectrometer.

    PubMed

    Hellesen, C; Skiba, M; Dzysiuk, N; Weiszflog, M; Hjalmarsson, A; Ericsson, G; Conroy, S; Andersson-Sundén, E; Eriksson, J; Binda, F

    2014-11-01

    The fuel ion ratio nt/nd is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., nt/nd = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine nt/nd with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.

  4. Analysis of condensation on a horizontal cylinder with unknown wall temperature and comparison with the Nusselt model of film condensation

    NASA Technical Reports Server (NTRS)

    Bahrami, Parviz A.

    1996-01-01

    Theoretical analysis and numerical computations are performed to set forth a new model of film condensation on a horizontal cylinder. The model is more general than the well-known Nusselt model of film condensation and is designed to encompass all essential features of the Nusselt model. It is shown that a single parameter, constructed explicitly and without specification of the cylinder wall temperature, determines the degree of departure from the Nusselt model, which assumes a known and uniform wall temperature. It is also known that the Nusselt model is reached for very small, as well as very large, values of this parameter. In both limiting cases the cylinder wall temperature assumes a uniform distribution and the Nusselt model is approached. The maximum deviations between the two models is rather small for cases which are representative of cylinder dimensions, materials and conditions encountered in practice.

  5. Understanding efficiency limits of dielectric elastomer driver circuitry

    NASA Astrophysics Data System (ADS)

    Lo, Ho Cheong; Calius, Emilio; Anderson, Iain

    2013-04-01

    Dielectric elastomers (DEs) can theoretically operate at efficiencies greater than that of electromagnetics. This is due to their unique mode of operation which involves charging and discharging a capacitive load at a few kilovolts (typically 1kV-4kV). Efficient recovery of the electrical energy stored in the capacitance of the DE is essential in achieving favourable efficiencies as actuators or generators. This is not a trivial problem because the DE acts as a voltage source with a low capacity and a large output resistance. These properties are not ideal for a power source, and will reduce the performance of any power conditioning circuit utilizing inductors or transformers. This paper briefly explores how circuit parameters affect the performance of a simple inductor circuit used to transfer energy from a DE to another capacitor. These parameters must be taken into account when designing the driving circuitry to maximize performance.

  6. Prospects for measuring the fuel ion ratio in burning ITER plasmas using a DT neutron emission spectrometer

    NASA Astrophysics Data System (ADS)

    Hellesen, C.; Skiba, M.; Dzysiuk, N.; Weiszflog, M.; Hjalmarsson, A.; Ericsson, G.; Conroy, S.; Andersson-Sundén, E.; Eriksson, J.; Binda, F.

    2014-11-01

    The fuel ion ratio nt/nd is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., nt/nd = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands that a DT spectrometer has to fulfill to be able to determine nt/nd with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.

  7. New isotonic drinks with antioxidant and biological capacities from berries (maqui, açaí and blackthorn) and lemon juice.

    PubMed

    Gironés-Vilaplana, Amadeo; Villaño, Débora; Moreno, Diego A; García-Viguera, Cristina

    2013-11-01

    The aim of the study was to design new isotonic drinks with lemon juice and berries: maqui [Aristotelia chilensis (Molina) Stuntz], açaí (Euterpe oleracea Mart.) and blackthorn (Prunus spinosa L.), following on from previous research. Quality parameters - including colour (CIELab parameters), minerals, phytochemical identification and quantification by high-performance liquid chromatography with diode array detector, total phenolic content by the Folin-Ciocalteu reagent, the antioxidant capacity (ABTS(+), DPPH• and [Formula: see text] assays) and biological activities (in vitro alpha-glucosidase and lipase inhibitory effects) - were tested in the samples and compared to commercially available isotonic drinks. The new isotonic blends with lemon and anthocyanins-rich berries showed an attractive colour, especially in maqui samples, which is essential for consumer acceptance. Significantly higher antioxidant and biological effects were determined in the new blends, in comparison with the commercial isotonic beverages.

  8. Recognition of Handwritten Arabic words using a neuro-fuzzy network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boukharouba, Abdelhak; Bennia, Abdelhak

    We present a new method for the recognition of handwritten Arabic words based on neuro-fuzzy hybrid network. As a first step, connected components (CCs) of black pixels are detected. Then the system determines which CCs are sub-words and which are stress marks. The stress marks are then isolated and identified separately and the sub-words are segmented into graphemes. Each grapheme is described by topological and statistical features. Fuzzy rules are extracted from training examples by a hybrid learning scheme comprised of two phases: rule generation phase from data using a fuzzy c-means, and rule parameter tuning phase using gradient descentmore » learning. After learning, the network encodes in its topology the essential design parameters of a fuzzy inference system.The contribution of this technique is shown through the significant tests performed on a handwritten Arabic words database.« less

  9. Tailoring Selective Laser Melting Process Parameters for NiTi Implants

    NASA Astrophysics Data System (ADS)

    Bormann, Therese; Schumacher, Ralf; Müller, Bert; Mertmann, Matthias; de Wild, Michael

    2012-12-01

    Complex-shaped NiTi constructions become more and more essential for biomedical applications especially for dental or cranio-maxillofacial implants. The additive manufacturing method of selective laser melting allows realizing complex-shaped elements with predefined porosity and three-dimensional micro-architecture directly out of the design data. We demonstrate that the intentional modification of the applied energy during the SLM-process allows tailoring the transformation temperatures of NiTi entities within the entire construction. Differential scanning calorimetry, x-ray diffraction, and metallographic analysis were employed for the thermal and structural characterizations. In particular, the phase transformation temperatures, the related crystallographic phases, and the formed microstructures of SLM constructions were determined for a series of SLM-processing parameters. The SLM-NiTi exhibits pseudoelastic behavior. In this manner, the properties of NiTi implants can be tailored to build smart implants with pre-defined micro-architecture and advanced performance.

  10. Optimization of an angle-beam ultrasonic approach for characterization of impact damage in composites

    NASA Astrophysics Data System (ADS)

    Henry, Christine; Kramb, Victoria; Welter, John T.; Wertz, John N.; Lindgren, Eric A.; Aldrin, John C.; Zainey, David

    2018-04-01

    Advances in NDE method development are greatly improved through model-guided experimentation. In the case of ultrasonic inspections, models which provide insight into complex mode conversion processes and sound propagation paths are essential for understanding the experimental data and inverting the experimental data into relevant information. However, models must also be verified using experimental data obtained under well-documented and understood conditions. Ideally, researchers would utilize the model simulations and experimental approach to efficiently converge on the optimal solution. However, variability in experimental parameters introduce extraneous signals that are difficult to differentiate from the anticipated response. This paper discusses the results of an ultrasonic experiment designed to evaluate the effect of controllable variables on the anticipated signal, and the effect of unaccounted for experimental variables on the uncertainty in those results. Controlled experimental parameters include the transducer frequency, incidence beam angle and focal depth.

  11. Selection of optimal multispectral imaging system parameters for small joint arthritis detection

    NASA Astrophysics Data System (ADS)

    Dolenec, Rok; Laistler, Elmar; Stergar, Jost; Milanic, Matija

    2018-02-01

    Early detection and treatment of arthritis is essential for a successful outcome of the treatment, but it has proven to be very challenging with existing diagnostic methods. Novel methods based on the optical imaging of the affected joints are becoming an attractive alternative. A non-contact multispectral imaging (MSI) system for imaging of small joints of human hands and feet is being developed. In this work, a numerical simulation of the MSI system is presented. The purpose of the simulation is to determine the optimal design parameters. Inflamed and unaffected human joint models were constructed with a realistic geometry and tissue distributions, based on a MRI scan of a human finger with a spatial resolution of 0.2 mm. The light transport simulation is based on a weighted-photon 3D Monte Carlo method utilizing CUDA GPU acceleration. An uniform illumination of the finger within the 400-1100 nm spectral range was simulated and the photons exiting the joint were recorded using different acceptance angles. From the obtained reflectance and transmittance images the spectral and spatial features most indicative of inflammation were identified. Optimal acceptance angle and spectral bands were determined. This study demonstrates that proper selection of MSI system parameters critically affects ability of a MSI system to discriminate the unaffected and inflamed joints. The presented system design optimization approach could be applied to other pathologies.

  12. On the Singularity Structure of WKB Solution of the Boosted Whittaker Equation: its Relevance to Resurgent Functions with Essential Singularities

    NASA Astrophysics Data System (ADS)

    Kamimoto, Shingo; Kawai, Takahiro; Koike, Tatsuya

    2016-12-01

    Inspired by the symbol calculus of linear differential operators of infinite order applied to the Borel transformed WKB solutions of simple-pole type equation [Kamimoto et al. (RIMS Kôkyûroku Bessatsu B 52:127-146, 2014)], which is summarized in Section 1, we introduce in Section 2 the space of simple resurgent functions depending on a parameter with an infra-exponential type growth order, and then we define the assigning operator A which acts on the space and produces resurgent functions with essential singularities. In Section 3, we apply the operator A to the Borel transforms of the Voros coefficient and its exponentiation for the Whittaker equation with a large parameter so that we may find the Borel transforms of the Voros coefficient and its exponentiation for the boosted Whittaker equation with a large parameter. In Section 4, we use these results to find the explicit form of the alien derivatives of the Borel transformed WKB solutions of the boosted Whittaker equation with a large parameter. The results in this paper manifest the importance of resurgent functions with essential singularities in developing the exact WKB analysis, the WKB analysis based on the resurgent function theory. It is also worth emphasizing that the concrete form of essential singularities we encounter is expressed by the linear differential operators of infinite order.

  13. Novel noninvasive point-of-care device for real time hemoglobin monitoring

    NASA Astrophysics Data System (ADS)

    Timm, Ulrich; Gewiss, Helge; Kraitl, Jens; Stuepmann, Kirstin; Hinz, Michael; Koball, Sebastian; Ewald, Hartmut

    2014-02-01

    During the perioperative period, which includes the period before surgery and after surgery (postoperative), it is essential to measure diagnostic parameters such as: blood oxygen saturation; hemoglobin (Hb) concentration; and pulse rate. The Hb concentration in human blood is an important parameter to evaluate the physiological condition of an individual, as Hb is the oxygen carrying component of red blood cells. By determining the Hb concentration, it is possible, for example, to observe intraoperative or postoperative bleeding, and use this information as a trigger for autologous/ allogenic blood transfusions. In blood donation center it is also an essential parameter for the decision regarding the acceptance of the donor.

  14. Relationship between the erosion properties of soils and other parameters

    USDA-ARS?s Scientific Manuscript database

    Soil parameters are essential for erosion process prediction and ultimately improved model development, especially as they relate to dam and levee failure. Soil parameters including soil texture and structure, soil classification, soil compaction, moisture content, and degree of saturation can play...

  15. End Effects and Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2002-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Specific problems recently considered were focussed on end effects in sandwich structures and for functionally graded materials. Both linear and nonlinear (geometric and material) problems have been addressed. Our goal is the development of readily applicable design formulas for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  16. Investigation of Short Channel Effects on Device Performance for 60nm NMOS Transistor

    NASA Astrophysics Data System (ADS)

    Chinnappan, U.; Sanudin, R.

    2017-08-01

    In the aggressively scaled complementary metal oxide semiconductor (CMOS) devices, shallower p-n junctions and low sheet resistances are essential for short-channel effect (SCE) control and high device performance. The SCE are attributed to two physical phenomena that are the limitation imposed on electron drift characteristics in channel and the modification of the threshold voltage (Vth) due to the shortening channel length. The decrement of Vth with decrement in gate length is a well-known attribute in SCE known as “threshold voltage roll-off’. In this research, the Technology Computer Aided Design (TCAD) was used to model the SCE phenomenon effect on 60nm n-type metal oxide semiconductor (NMOS) transistor. There are three parameters being investigated, which are the oxide thickness (Tox), gate length (L), acceptor concentration (Na). The simulation data were used to visualise the effect of SCE on the 60nm NMOS transistor. Simulation data suggest that all three parameters have significant effect on Vth, and hence on the transistor performance. It is concluded that there is a trade-off among these three parameters to obtain an optimized transistor performance.

  17. Design Optimization of Microalloyed Steels Using Thermodynamics Principles and Neural-Network-Based Modeling

    NASA Astrophysics Data System (ADS)

    Mohanty, Itishree; Chintha, Appa Rao; Kundu, Saurabh

    2018-06-01

    The optimization of process parameters and composition is essential to achieve the desired properties with minimal additions of alloying elements in microalloyed steels. In some cases, it may be possible to substitute such steels for those which are more richly alloyed. However, process control involves a larger number of parameters, making the relationship between structure and properties difficult to assess. In this work, neural network models have been developed to estimate the mechanical properties of steels containing Nb + V or Nb + Ti. The outcomes have been validated by thermodynamic calculations and plant data. It has been shown that subtle thermodynamic trends can be captured by the neural network model. Some experimental rolling data have also been used to support the model, which in addition has been applied to calculate the costs of optimizing microalloyed steel. The generated pareto fronts identify many combinations of strength and elongation, making it possible to select composition and process parameters for a range of applications. The ANN model and the optimization model are being used for prediction of properties in a running plant and for development of new alloys, respectively.

  18. Chemical composition, efficacy and safety of Pistacia vera (var. Fandoghi) to inactivate protoscoleces during hydatid cyst surgery.

    PubMed

    Mahmoudvand, Hossein; Kheirandish, Farnaz; Dezaki, Ebrahim Saedi; Shamsaddini, Saeedeh; Harandi, Majid Fasihi

    2016-08-01

    At present, various scolicidal agents have been used for inactivation of protoscoleces during hydatid cyst surgery, however, they are associated with serious adverse side effects including sclerosing colangititis (biliary tract fibrosis), liver necrosis and methaemoglobinaemia. This investigation was designed to evaluate the chemical composition and in vitro scolicidal effects of Pistacia vera (var. Fandoghi) essential oil against protoscoleces of hydatid cysts and also its toxicity in mice model. The components of the P. vera essential oil were identified by gas chromatography/mass spectroscopy (GC/MS) analysis. Protoscoleces were aseptically aspirated from sheep livers having hydatid cysts. Various concentrations of the essential oil (25-200μl/mL) were used for 5-30min. Viability of protoscoleces was confirmed using eosin exclusion test (0.1% eosin staining). In addition, forty male NIH mice were used to determine the acute and sub-acute toxicity of P. vera essential oil for 2 and 14 days, respectively. The main components of P. vera essential oil were limonene (26.21%), α-pinene (18.07%), α-thujene (9.31%) and α-terpinolene (9.28%). Findings of the present study demonstrated that the P. vera essential oil at the concentrations of 100 and 200μl/mL killed 100% protoscoleces after 10 and 5min of exposure, respectively. The LD50 values of intraperitoneal injection of the P. vera essential oil was 2.69ml/kg body weight, and the maximum nonfatal doses were 1.94ml/kg body weight. No significant difference (P>0.05) was observed in the clinical chemistry and hematological parameters following oral administrations of P. vera essential oil at the doses 0.1, 0.2, and 0.4ml/kg for 14 days. The obtained findings demonstrated new chemical composition and promising scolicidal activity of the P. vera with no significant toxicity which might be used as a natural scolicidal agent in hydatid cyst surgery. Copyright © 2016. Published by Elsevier Masson SAS.

  19. Cardioprotective Effects of Essential Oil of Lavandula angustifolia on Isoproterenol-induced Acute Myocardial Infarction in Rat

    PubMed Central

    Ziaee, Mojtaba; Khorrami, Arash; Ebrahimi, Maryam; Nourafcan, Hassan; Amiraslanzadeh, Masoumeh; Rameshrad, Maryam; Garjani, Mehraveh; Garjani, Alireza

    2015-01-01

    Myocardial infarction (MI) is a common presentation of the ischemic heart disease. Lavandula angustifolia is an herbaceous plant with antioxidative effects. This study was designed to investigate the cardioprotective effects of lavandula angustifolia essential oil against isoproterenol-induced MI in rats. The dried sample was subjected to hydrodistillation by using a Clevenger and the oils were dried over anhydrous Na2SO4. Male Wistar rats were assigned to 6 groups of control, sham, isoproterenol and treatment with 5, 10, 20 mg/Kg of the essential oil. MI was induced by subcutaneous injection of Isoproterenol (100 mg/Kg) for 3 consecutive days at an interval of 24 h. The essential oil was given intraperitoneally every 24 h started at MI induction. Following anesthesia, hemodynamic parameters were measured. After sacrificing the animals, the hearts were removed to measure the heart to body weight ratio and histopathological examination. Myeloperoxidase (MPO) and Malondialdehyde (MDA) were measured in heart tissues for evaluating the activity of neutrophils and lipid peroxidation, respectively. The essential oil amended ECG pattern by suppressing ST-segment elevation and increasing R-amplitude. 10 mg/Kg of the essential oil significantly decreased heart to body weight ratio (P<0.001) and the elevation of MDA and MPO in myocardium, it also increased dp/dtmax from 2793 ± 210 to 4488 ± 253 mmHg/sec (P<0.001), and 20 mg/Kg of it significantly lowered LVEDP from 14 ± 3.43 to 4.3 ± 0.83 mmHg (P<0.001).The results demonstrated that L. angustifolia protects myocardium against isoproterenol-induced MI that it could be related to its antioxidant properties. PMID:25561934

  20. Antioxidant Activity of Essential Oil Extracted by SC-CO2 from Seeds of Trachyspermum ammi

    PubMed Central

    Singh, Aarti; Ahmad, Anees

    2017-01-01

    Bcakground: Extracts obtained from natural sources such as plants are of immense importance for humans. Methods: Therefore this study was conducted to obtain essential oil from the seeds of T. ammi by conventional and non-conventional methods. Hydrodistillation (HD), Solvent Extraction (SE), Ultrasonication (US), and Supercritical Carbon-dioxide (SC-CO2) extraction techniques were used to extract essential oil from the powdered seeds of T. ammi. A quality control method for each extracted oil was developed using HPTLC, FTIR, and GC-MS. The optimization process was carried out using fractional factorial design (FFD) under which three parameters were considered: pressure (150, 175, and 300 bar), temperature (25, 30, and 40 °C), and CO2 flow rate (5, 10, 15 g/min). Results: The yield of essential oil obtained from the HD, SE, US, and SC-CO2 methods were 1.20%, 1.82%, 2.30%, and 2.64% v/w, respectively. Antioxidant activity was determined by the DPPH and superoxide scavenging methods and the IC50 (Inhibition Concentration) values of the T. ammi oil sample were found to be 36.41 and 20.55 µg mL−1, respectively. Conclusion: The present paper reported that different extraction methods lead to different yields of essential oils and the choice of a suitable method is extremely important to obtain more preferred compounds. The yield was higher in the SC-CO2 method and it is a sustainable and green extraction technique. Many important constituents were detected in analytical techniques. Antioxidant activities carried out showed that essential oil extracted from T. ammi seeds possess significant antioxidant activity. PMID:28930268

  1. Thermal characterizations analysis of high-power ThinGaN cool-white light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Raypah, Muna E.; Devarajan, Mutharasu; Ahmed, Anas A.; Sulaiman, Fauziah

    2018-03-01

    Analysis of thermal properties plays an important role in the thermal management of high-power (HP) lighting-emitting diodes (LEDs). Thermal resistance, thermal capacitance, and thermal time constant are essential parameters for the optimal design of the LED device and system, particularly for dynamic performance study. In this paper, thermal characterization and thermal time constant of ThinGaN HP LEDs are investigated. Three HP cool-white ThinGaN LEDs from different manufacturers are used in this study. A forward-voltage method using thermal transient tester (T3Ster) system is employed to determine the LEDs' thermal parameters at various operating conditions. The junction temperature transient response is described by a multi-exponential function model to extract thermal time constants. The transient response curve is divided into three layers and expressed by three exponential functions. Each layer is associated with a particular thermal time constant, thermal resistance, and thermal capacitance. It is found that the thermal time constant of LED package is on the order of 22 to 100 ms. Comparison between the experimental results is carried out to show the design effects on thermal performance of the LED package.

  2. Changes in growth, hormones levels and essential oil content of Ammi visnaga L. plants treated with some bioregulators

    PubMed Central

    Talaat, Iman M.; Khattab, Hemmat I.; Ahmed, Aisha M.

    2013-01-01

    The effects of foliar application of different concentrations of amino acids (tyrosine and phenylalanine) and phenolic acids (trans-cinnamic acid, benzoic acid and salicylic acid) on growth, pigment content, hormones levels and essential oil content of Ammi visnaga L were carried out during two successive seasons. It is clear that foliar application of either amino acids or phenolics significantly promoted the growth parameters in terms of shoot height, fresh and dry biomass, number of branches and number of umbels per plant. The increment of growth parameter was associated with elevated levels of growth promoters (IAA, GA3, total cytokinins) and low level of ABA. The greatest increase in the previously mentioned parameters was measured in plants exposed to different concentrations of phenols particularly in benzoic acid-treated plants. Such effect was concentration dependent. All treatments led to significant increments in yield seeds and oil content. Moreover, gas liquid chromatographic analysis revealed that the main identified components of essential oil were 2,2-dimethyl butanoic acid, isobutyl isobutyrate, α-isophorone, thymol, fenchyl acetate and linalool. Phenolics and amino acid treatments resulted in qualitative differences in these components of essential oil. PMID:25183946

  3. Sensor performance analysis

    NASA Technical Reports Server (NTRS)

    Montgomery, H. E.; Ostrow, H.; Ressler, G. M.

    1990-01-01

    The theory is described and the equations required to design are developed and the performance of electro-optical sensor systems that operate from the visible through the thermal infrared spectral regions are analyzed. Methods to compute essential optical and detector parameters, signal-to-noise ratio, MTF, and figures of merit such as NE delta rho and NE delta T are developed. A set of atmospheric tables are provided to determine scene radiance in the visible spectral region. The Planck function is used to determine radiance in the infrared. The equations developed were incorporated in a spreadsheet so that a wide variety of sensor studies can be rapidly and efficiently conducted.

  4. A new algorithm for design, operation and cost assessment of struvite (MgNH4PO4) precipitation processes.

    PubMed

    Birnhack, Liat; Nir, Oded; Telzhenski, Marina; Lahav, Ori

    2015-01-01

    Deliberate struvite (MgNH4PO4) precipitation from wastewater streams has been the topic of extensive research in the last two decades and is expected to gather worldwide momentum in the near future as a P-reuse technique. A wide range of operational alternatives has been reported for struvite precipitation, including the application of various Mg(II) sources, two pH elevation techniques and several Mg:P ratios and pH values. The choice of each operational parameter within the struvite precipitation process affects process efficiency, the overall cost and also the choice of other operational parameters. Thus, a comprehensive simulation program that takes all these parameters into account is essential for process design. This paper introduces a systematic decision-supporting tool which accepts a wide range of possible operational parameters, including unconventional Mg(II) sources (i.e. seawater and seawater nanofiltration brines). The study is supplied with a free-of-charge computerized tool (http://tx.technion.ac.il/~agrengn/agr/Struvite_Program.zip) which links two computer platforms (Python and PHREEQC) for executing thermodynamic calculations according to predefined kinetic considerations. The model can be (inter alia) used for optimizing the struvite-fluidized bed reactor process operation with respect to P removal efficiency, struvite purity and economic feasibility of the chosen alternative. The paper describes the algorithm and its underlying assumptions, and shows results (i.e. effluent water quality, cost breakdown and P removal efficiency) of several case studies consisting of typical wastewaters treated at various operational conditions.

  5. A predictive model for biomimetic plate type broadband frequency sensor

    NASA Astrophysics Data System (ADS)

    Ahmed, Riaz U.; Banerjee, Sourav

    2016-04-01

    In this work, predictive model for a bio-inspired broadband frequency sensor is developed. Broadband frequency sensing is essential in many domains of science and technology. One great example of such sensor is human cochlea, where it senses a frequency band of 20 Hz to 20 KHz. Developing broadband sensor adopting the physics of human cochlea has found tremendous interest in recent years. Although few experimental studies have been reported, a true predictive model to design such sensors is missing. A predictive model is utmost necessary for accurate design of selective broadband sensors that are capable of sensing very selective band of frequencies. Hence, in this study, we proposed a novel predictive model for the cochlea-inspired broadband sensor, aiming to select the frequency band and model parameters predictively. Tapered plate geometry is considered mimicking the real shape of the basilar membrane in the human cochlea. The predictive model is intended to develop flexible enough that can be employed in a wide variety of scientific domains. To do that, the predictive model is developed in such a way that, it can not only handle homogeneous but also any functionally graded model parameters. Additionally, the predictive model is capable of managing various types of boundary conditions. It has been found that, using the homogeneous model parameters, it is possible to sense a specific frequency band from a specific portion (B) of the model length (L). It is also possible to alter the attributes of `B' using functionally graded model parameters, which confirms the predictive frequency selection ability of the developed model.

  6. Influence of Paclobutrazol (PP333) and Sridiamin (Human hair-derived aminoacid mixture) on growth and quality of Tomato PKM-1

    NASA Astrophysics Data System (ADS)

    Suja, S.; Anusuya, N.

    2018-03-01

    Tomato is one of the most popular vegetable in subtropics and tropics. Plant growth regulators have potential for manipulating growth of many agricultural crops. Among the plant growth retardants, paclobutrazol (PP333) has been reported to exert profound effects on improving the yield of certain vegetables. Aminoacids are essential prerequisite for plant growth. Sridiamin a natural blend of 17 essential L-aminoacids, fortified with vitamins ensuring better crop growth and higher productivity. Therefore the present study was designed with 5mg and 10 mg concentration of PP333 as soil drench and a foliar spray of sridiamin of 0.5% and 1% concentration as individual and as combined treatment improved the yield and quality of tomato PKM1. Various biometric parameters, along with chlorophyll, starch, aminoacid and protein content were analysed in the leaves. In fruit analysis like titrable acidity, total soluble solids, ascorbic acid, lycopene, total sugars, macronutrients and micronutrients were analysed.

  7. Durham extremely large telescope adaptive optics simulation platform.

    PubMed

    Basden, Alastair; Butterley, Timothy; Myers, Richard; Wilson, Richard

    2007-03-01

    Adaptive optics systems are essential on all large telescopes for which image quality is important. These are complex systems with many design parameters requiring optimization before good performance can be achieved. The simulation of adaptive optics systems is therefore necessary to categorize the expected performance. We describe an adaptive optics simulation platform, developed at Durham University, which can be used to simulate adaptive optics systems on the largest proposed future extremely large telescopes as well as on current systems. This platform is modular, object oriented, and has the benefit of hardware application acceleration that can be used to improve the simulation performance, essential for ensuring that the run time of a given simulation is acceptable. The simulation platform described here can be highly parallelized using parallelization techniques suited for adaptive optics simulation, while still offering the user complete control while the simulation is running. The results from the simulation of a ground layer adaptive optics system are provided as an example to demonstrate the flexibility of this simulation platform.

  8. In silico designing of power conversion efficient organic lead dyes for solar cells using todays innovative approaches to assure renewable energy for future

    NASA Astrophysics Data System (ADS)

    Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy

    2017-06-01

    Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.

  9. Human and bovine spinal disc mechanics subsequent to trypsin injection.

    PubMed

    Alsup, Jeremy; Bishop, Timothy; Eggett, Dennis; Bowden, Anton E

    2017-10-01

    To investigate the biomechanical effects of injections of a protease on the characteristics of bovine coccygeal and human lumbar disc motion segments. Mechanics of treated tissues were measured immediately after injection and 3 h after injection. Motion segments underwent axial rotation and flexion-extension loading. Stiffness and neutral zone parameters experienced significant changes over time, with bovine tissues more strongly affected than human cadaver tissues. This was true in both axial rotation and flexion-extension. The treatment type significantly affected the neutral zone measurements in axial rotation. Hysteresis parameters were impacted by control injections. The extrapolation of bovine coccygeal motion testing results to human lumbar disc mechanics is not yet practical. The injected treatment may have a smaller impact on disc mechanics than time in testing. Viscoelasticity of human lumbar discs may be impacted by any damage to the annulus fibrosis induced by needlestick. Preclinical testing of novel spinal devices is essential to the design validation and regulatory processes, but current testing techniques rely on cadaveric testing of primarily older spines with essentially random amounts of disc degeneration. The present work investigates the viability of using trypsin injections to create a more uniform preclinical model of disc degeneration from a mechanics perspective, for the purpose of testing spinal devices. Such a model would facilitate translation of new spinal technologies to clinical practice.

  10. Mechanical design optimization of a single-axis MOEMS accelerometer based on a grating interferometry cavity for ultrahigh sensitivity

    NASA Astrophysics Data System (ADS)

    Lu, Qianbo; Bai, Jian; Wang, Kaiwei; Lou, Shuqi; Jiao, Xufen; Han, Dandan; Yang, Guoguang

    2016-08-01

    The ultrahigh static displacement-acceleration sensitivity of a mechanical sensing chip is essential primarily for an ultrasensitive accelerometer. In this paper, an optimal design to implement to a single-axis MOEMS accelerometer consisting of a grating interferometry cavity and a micromachined sensing chip is presented. The micromachined sensing chip is composed of a proof mass along with its mechanical cantilever suspension and substrate. The dimensional parameters of the sensing chip, including the length, width, thickness and position of the cantilevers are evaluated and optimized both analytically and by finite-element-method (FEM) simulation to yield an unprecedented acceleration-displacement sensitivity. Compared with one of the most sensitive single-axis MOEMS accelerometers reported in the literature, the optimal mechanical design can yield a profound sensitivity improvement with an equal footprint area, specifically, 200% improvement in displacement-acceleration sensitivity with moderate resonant frequency and dynamic range. The modified design was microfabricated, packaged with the grating interferometry cavity and tested. The experimental results demonstrate that the MOEMS accelerometer with modified design can achieve the acceleration-displacement sensitivity of about 150μm/g and acceleration sensitivity of greater than 1500V/g, which validates the effectiveness of the optimal design.

  11. Color distribution of a shade guide in the value, chroma, and hue scale.

    PubMed

    Ahn, Jin-Soo; Lee, Yong-Keun

    2008-07-01

    Shade tabs in a shade guide are matched to teeth in the order of value, hue, and chroma; therefore, information on the distribution of shade tabs is essential for clinical application of a shade guide. However, there is limited information on the color distribution as sorted by these 3 parameters of a recently introduced shade guide. The purposes of this study were to determine the color distributions of tabs from a shade guide in the value (CIE L*), chroma (C*(ab)), and hue scale, and to determine the distribution of step intervals between adjacent tabs by value and chroma. The color of shade tabs (n=29) from a shade guide (Vitapan 3D-Master) was measured to determine the distribution of shade tabs by the value, chroma, hue angle, and CIE a* and b* values. The distribution of the ratios of the value and the chroma of each tab, when compared with the lowest value tab or the lowest chroma tab, was also determined. The data for each color parameter were analyzed by a 3-way ANOVA with the factors of value, chroma, and hue designations of the tabs (alpha=.05). The value, chroma, hue angle, and CIE a* and b* values were influenced by the value, chroma, and hue designations of shade tabs (P<.001). The distributions of the chroma of the tabs within the same value group were relatively ordered, but the values of different value groups overlapped in several instances. Distributions for the CIE a* and b* values reflected the chroma designations in each value group. In the same value group, L, M, and R hue designations corresponded with the manufacturer's stated hue, such as a yellow hue for the L designation and a red hue for the R designation. The distance in the value and chroma scales between adjacent tabs was not uniform. The color distribution of the Vitapan 3D-Master shade guide was more ordered than previously reported color distributions of other, traditional shade guides. However, the interval in the color parameters between adjacent tabs was not uniform; therefore, shade tabs spaced equally, according to the color parameters, should be studied based on the observer's response data.

  12. Shuttle Entry Air Data System (SEADS) hardware development. Volume 1: Summary

    NASA Technical Reports Server (NTRS)

    While, D. M.

    1983-01-01

    Hardware development of the Shuttle Entry Data System (SEADS) is described. The system consists of an array of fourteen pressure ports, installed in an Orbiter nose cap, which, when coupled with existing fuselage mounted static pressure ports permits computation of entry flight parameters. Elements of the system that are described include the following: (1) penetration assemblies to place pressure port openings at the surface of the nose cap; (2) pressure tubes to transmit the surface pressure to transducers; (3) support posts or manifolds to provide support for, and reduce the length of, the individual pressure tubes; (4) insulation for the manifolds; and (5) a SEADS nose cap. Design, analyses, and tests to develop and certify design for flight are described. Specific tests include plasma arc exposure, radiant thermal, vibration, and structural. Volume one summarizes highlights of the program, particularly as they relate to the final design of SEADS. Volume two summarizes all of the Vought responsible activities in essentially a chronological order.

  13. Shuttle Entry Air Data System (SEADS) hardware development. Volume 2: History

    NASA Technical Reports Server (NTRS)

    While, D. M.

    1983-01-01

    Hardware development of the Shuttle Entry Air Data System (SEADS) is described. The system consists of an array of fourteen pressure ports, installed in an Orbiter nose cap, which, when coupled with existing fuselage mounted static pressure ports permits computation of entry flight parameters. Elements of the system that are described include the following: (1) penetration assemblies to place pressure port openings at the surface of the nose cap; (2) pressure tubes to transmit the surface pressure to transducers; (3) support posts or manifolds to provide support for, and reduce the length of, the individual pressure tubes; (4) insulation for the manifolds; and (5) a SEADS nose cap. Design, analyses, and tests to develop and certify design for flight are described. Specific tests included plasma arc exposure, radiant thermal, vibration, and structural. Volume one summarizes highlights of the program, particularly as they relate to the final design of SEADS. Volume two summarizes all of the Vought responsible activities in essentially a chronological order.

  14. Synergetic Use of Principal Component Analysis Applied to Normed Physicochemical Measurements and GC × GC-MS to Reveal the Stabilization Effect of Selected Essential Oils on Heated Rapeseed Oil.

    PubMed

    Sghaier, Lilia; Cordella, Christophe B Y; Rutledge, Douglas N; Lefèvre, Fanny; Watiez, Mickaël; Breton, Sylvie; Sassiat, Patrick; Thiebaut, Didier; Vial, Jérôme

    2017-06-01

    Lipid oxidation leads to the formation of volatile compounds and very often to off-flavors. In the case of the heating of rapeseed oil, unpleasant odors, characterized as a fishy odor, are emitted. In this study, 2 different essential oils (coriander and nutmeg essential oils) were added to refined rapeseed oil as odor masking agents. The aim of this work was to determine a potential antioxidant effect of these essential oils on the thermal stability of rapeseed oil subject to heating cycles between room temperature and 180 °C. For this purpose, normed determinations of different parameters (peroxide value, anisidine value, and the content of total polar compounds, free fatty acids and tocopherols) were carried out to examine the differences between pure and degraded oil. No significant difference was observed between pure rapeseed oil and rapeseed oil with essential oils for each parameter separately. However, a stabilizing effect of the essential oils, with a higher effect for the nutmeg essential oil was highlighted by principal component analysis applied on physicochemical dataset. Moreover, the analysis of the volatile compounds performed by GC × GC showed a substantial loss of the volatile compounds of the essential oils from the first heating cycle. © 2017 Institute of Food Technologists®.

  15. MOESHA: A genetic algorithm for automatic calibration and estimation of parameter uncertainty and sensitivity of hydrologic models

    EPA Science Inventory

    Characterization of uncertainty and sensitivity of model parameters is an essential and often overlooked facet of hydrological modeling. This paper introduces an algorithm called MOESHA that combines input parameter sensitivity analyses with a genetic algorithm calibration routin...

  16. Design and optimization of self-nanoemulsifying drug delivery systems (SNEDDS) for enhanced dissolution of gemfibrozil.

    PubMed

    Villar, Ana Maria Sierra; Naveros, Beatriz Clares; Campmany, Ana Cristina Calpena; Trenchs, Monserrat Aróztegui; Rocabert, Coloma Barbé; Bellowa, Lyda Halbaut

    2012-07-15

    Self-nanoemulsifying drug delivery systems of gemfibrozil were developed under Quality by Design approach for improvement of dissolution and oral absorption. Preliminary screening was performed to select proper components combination. Box-Behnken experimental design was employed as statistical tool to optimize the formulation variables, X(1) (Cremophor(®) EL), X(2) (Capmul(®) MCM-C8), and X(3) (lemon essential oil). Systems were assessed for visual characteristics (emulsification efficacy), turbidity, droplet size, polydispersity index and drug release. Different pH media were also assayed for optimization. Following optimization, the values of formulation components (X(1), X(2), and X(3)) were 32.43%, 29.73% and 21.62%, respectively (16.22% of gemfibrozil). Transmission electron microscopy demonstrated spherical droplet morphology. SNEEDS release study was compared to commercial tablets. Optimized SNEDDS formulation of gemfibrozil showed a significant increase in dissolution rate compared to conventional tablets. Both formulations followed Weibull mathematical model release with a significant difference in t(d) parameter in favor of the SNEDDS. Equally amodelistic parameters were calculated being the dissolution efficiency significantly higher for SNEDDS, confirming that the developed SNEDDS formulation was superior to commercial formulation with respect to in vitro dissolution profile. This paper provides an overview of the SNEDDS of the gemfibrozil as a promising alternative to improve oral absorption. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Dual-Use Aspects of System Health Management

    NASA Technical Reports Server (NTRS)

    Owens, P. R.; Jambor, B. J.; Eger, G. W.; Clark, W. A.

    1994-01-01

    System Health Management functionality is an essential part of any space launch system. Health management functionality is an integral part of mission reliability, since it is needed to verify the reliability before the mission starts. Health Management is also a key factor in life cycle cost reduction and in increasing system availability. The degree of coverage needed by the system and the degree of coverage made available at a reasonable cost are critical parameters of a successful design. These problems are not unique to the launch vehicle world. In particular, the Intelligent Vehicle Highway System, commercial aircraft systems, train systems, and many types of industrial production facilities require various degrees of system health management. In all of these applications, too, the designers must balance the benefits and costs of health management in order to optimize costs. The importance of an integrated system is emphasized. That is, we present the case for considering health management as an integral part of system design, rather than functionality to be added on at the end of the design process. The importance of maintaining the system viewpoint is discussed in making hardware and software tradeoffs and in arriving at design decisions. We describe an approach to determine the parameters to be monitored in any system health management application. This approach is based on Design of Experiments (DOE), prototyping, failure modes and effects analyses, cost modeling and discrete event simulation. The various computer-based tools that facilitate the approach are discussed. The approach described originally was used to develop a fault tolerant avionics architecture for launch vehicles that incorporated health management as an integral part of the system. Finally, we discuss generalizing the technique to apply it to other domains. Several illustrations are presented.

  18. Basic principles of stability.

    PubMed

    Egan, William; Schofield, Timothy

    2009-11-01

    An understanding of the principles of degradation, as well as the statistical tools for measuring product stability, is essential to management of product quality. Key to this is management of vaccine potency. Vaccine shelf life is best managed through determination of a minimum potency release requirement, which helps assure adequate potency throughout expiry. Use of statistical tools such a least squares regression analysis should be employed to model potency decay. The use of such tools provides incentive to properly design vaccine stability studies, while holding stability measurements to specification presents a disincentive for collecting valuable data. The laws of kinetics such as Arrhenius behavior help practitioners design effective accelerated stability programs, which can be utilized to manage stability after a process change. Design of stability studies should be carefully considered, with an eye to minimizing the variability of the stability parameter. In the case of measuring the degradation rate, testing at the beginning and the end of the study improves the precision of this estimate. Additional design considerations such as bracketing and matrixing improve the efficiency of stability evaluation of vaccines.

  19. Effects of Calendula Essential Oil-Based Cream on Biochemical Parameters of Skin of Albino Rats against Ultraviolet B Radiation.

    PubMed

    Mishra, Arun K; Mishra, Amrita; Verma, Anurag; Chattopadhyay, Pronobesh

    2012-01-01

    Reactive oxygen species (ROS) generated from UV-B radiation have the capacity to cause oxidative decomposition which leads to the formation of toxic components as well as lipid peroxidation. Considering this fact, the present study was performed to evaluate the effect of a cream (O/W) containing the essential oil of Calendula officinalis on biochemical parameters of the skin of albino rats against UV-B radiation. The fingerprint analysis of Calendula essential oil was performed by HPLC with special reference to 1,8-cineole and α-pinene. The results indicated that the treatment with creams containing 4% and 5% of Calendula essential oil caused a significant decrease in the malonyldialdehyde level, whereas the levels of catalase, glutathione, superoxide dismutase, ascorbic acid, and the total protein level were significantly increased after 1 month of daily irradiation and treatment when compared to untreated control groups. The results suggest that the cutaneous application of the essential oil of Calendula prevents UV-B-induced alterations in the level of antioxidants in skin tissue.

  20. Effects of Calendula Essential Oil-Based Cream on Biochemical Parameters of Skin of Albino Rats against Ultraviolet B Radiation

    PubMed Central

    Mishra, Arun K.; Mishra, Amrita; Verma, Anurag; Chattopadhyay, Pronobesh

    2012-01-01

    Reactive oxygen species (ROS) generated from UV-B radiation have the capacity to cause oxidative decomposition which leads to the formation of toxic components as well as lipid peroxidation. Considering this fact, the present study was performed to evaluate the effect of a cream (O/W) containing the essential oil of Calendula officinalis on biochemical parameters of the skin of albino rats against UV-B radiation. The fingerprint analysis of Calendula essential oil was performed by HPLC with special reference to 1,8-cineole and α-pinene. The results indicated that the treatment with creams containing 4% and 5% of Calendula essential oil caused a significant decrease in the malonyldialdehyde level, whereas the levels of catalase, glutathione, superoxide dismutase, ascorbic acid, and the total protein level were significantly increased after 1 month of daily irradiation and treatment when compared to untreated control groups. The results suggest that the cutaneous application of the essential oil of Calendula prevents UV-B-induced alterations in the level of antioxidants in skin tissue. PMID:23008814

  1. Predictive microbiology for cosmetics based on physicals, chemicals and concentration parameters.

    PubMed

    Ghalleb, S; De Vaugelade, S; Sella, O; Lavarde, M; Mielcarek, C; Pense-Lheritier, A-M; Pirnay, S

    2015-02-01

    Challenge test (CT) is essential to assure the efficiency of the preservative system in products. A previous study realized by our staff in 2012, carried out to evaluate the influence of three parameters (ethanol, pH and water) on the microbiological cosmetics products conservation. Following this work, a correlation between aw (based on the glycerine concentration) and the selected parameter has been demonstrated. In the present study, smaller limits of ethanol, pH and glycerine were applied to determinate CT necessity. Sixteen stables O/W cosmetics creams with different concentration of ethanol (1-19%), glycerine (3-16%) and different pH (6-11) were formulated. To evaluate the efficiency of the different formulations, CTs were performed according to the International Standard ISO 11930:2012. To determine the influence of the parameters, a D-optimal plan generated by Design Expert(®) was applied. Design of Experiments software offers to plan, estimate and control the statistics and models for factorial and no-factorial designs. Challenge tests results show that 10 formula passed criteria A, two passed criteria B and four are not conform. Mostly, an ethanol concentration higher than 16% exempts products of CT. It has been shown that an ethanol concentration between 10.5% and 16%, and an glycerine concentration >10%; or if the ethanol concentration is between 5% and 10.5%, glycerine is >6% and pH is ≥10, the CT is not required. Ethanol has a significant impact on conservation and especially when it is correlated with glycerine and pH. Finally, a glycerine concentration higher than 16% exempts products of CT. Following the analysis of the different concentration, a correlation between glycerine and ethanol that directly influence microbiological protection of cosmetics products has been established. Indeed, by controlling ethanol, pH and glycerine, many products may be exempted from the CT. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  2. Nonequilibrium viscosity of glass

    NASA Astrophysics Data System (ADS)

    Mauro, John C.; Allan, Douglas C.; Potuzak, Marcel

    2009-09-01

    Since glass is a nonequilibrium material, its properties depend on both composition and thermal history. While most prior studies have focused on equilibrium liquid viscosity, an accurate description of nonequilibrium viscosity is essential for understanding the low temperature dynamics of glass. Departure from equilibrium occurs as a glass-forming system is cooled through the glass transition range. The glass transition involves a continuous breakdown of ergodicity as the system gradually becomes trapped in a subset of the available configurational phase space. At very low temperatures a glass is perfectly nonergodic (or “isostructural”), and the viscosity is described well by an Arrhenius form. However, the behavior of viscosity during the glass transition range itself is not yet understood. In this paper, we address the problem of glass viscosity using the enthalpy landscape model of Mauro and Loucks [Phys. Rev. B 76, 174202 (2007)] for selenium, an elemental glass former. To study a wide range of thermal histories, we compute nonequilibrium viscosity with cooling rates from 10-12 to 1012K/s . Based on these detailed landscape calculations, we propose a simplified phenomenological model capturing the essential physics of glass viscosity. The phenomenological model incorporates an ergodicity parameter that accounts for the continuous breakdown of ergodicity at the glass transition. We show a direct relationship between the nonequilibrium viscosity parameters and the fragility of the supercooled liquid. The nonequilibrium viscosity model is validated against experimental measurements of Corning EAGLE XG™ glass. The measurements are performed using a specially designed beam-bending apparatus capable of accurate nonequilibrium viscosity measurements up to 1016Pas . Using a common set of parameters, the phenomenological model provides an accurate description of EAGLE XG™ viscosity over the full range of measured temperatures and fictive temperatures.

  3. Modeling and characteristic of the SMT Board Plug connector in high speed optical communication system

    NASA Astrophysics Data System (ADS)

    Wu, Haoran; Dong, Zhenzhen; Wang, Tanglin; Zhao, Heng; Feng, Junbo; Cui, Naidi; Teng, Jie; Guo, Jin

    2015-04-01

    Modeling and characteristic of the SMT Board Plug connector, which is used to connect micro optical transceiver to the main board, are proposed and analyzed in this paper. When the high speed signal transfers from the PCB of transceiver to main board through SMT Board Plug connector, the structure and material discontinuity of the connector causes insertion losses and impedance mismatches. This makes the performance of high speed digital system exacerbated. So it is essential to analyze the signal transfer characteristics of the connector and find out what factors affected the signal quality at the design stage of the digital system. To solve this problem, Ansoft's High Frequency Structure Simulator (HFSS), based on the finite element method, was employed to build accurate 3D models, analyze the effects of various structure parameters, and obtain the full-wave characteristics of the SMT Board Plug connectors in this paper. Then an equivalent circuit model was developed. The circuit parameters were extracted precisely in the frequency range of interests by using the curve fitting method in ADS software, and the result was in good agreement with HFSS simulations up to 8GHz with different structure parameters. At last, the measurement results of S-parameter and eye diagram were given and the S-parameters showed good coincidence between the measurement and HFSS simulation up to 4GHz.

  4. Track Geometry Development : UMTA Urban Rail Supporting Technology Program

    DOT National Transportation Integrated Search

    1974-04-01

    Measurement of transit system track geometry parameters, under normal operating conditions, is essential for planning and conducting an effective maintenance program. The pertinent parameters are profile, gage, alignment, and cross level. Present met...

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gündoğan, M. Tural, E-mail: mugetural@yahoo.com; Yavaş, Ö., E-mail: yavas@ankara.edu.tr; Kaya, Ç., E-mail: c.kaya@ankara.edu.tr

    Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) facility is proposed as an IR FEL and Bremsstrahlung facility as the first facility of Turkish Accelerator Center (TAC). TARLA is essentially proposed to generate oscillator mode FEL in 3-250 microns wavelengths range, will consist of normal conducting injector system with 250 keV beam energy, two superconducting RF accelerating modules in order to accelerate the beam 15-40 MeV. The TARLA facility is expected to provide two modes, Continuous wave (CW) and pulsed mode. Longitudinal electron bunch length will be changed between 1 and 10 ps. The bunch charge will be limited by 77pC.more » The design of the Button-type Beam Position Monitor for TARLA IR FEL is studied to operate in 1.3 GHz. Mechanical antenna design and simulations are completed considering electron beam parameters of TARLA. Ansoft HFSS and CST Particle Studio is used to compare with results of simulations.« less

  6. Statistical distribution of mechanical properties for three graphite-epoxy material systems

    NASA Technical Reports Server (NTRS)

    Reese, C.; Sorem, J., Jr.

    1981-01-01

    Graphite-epoxy composites are playing an increasing role as viable alternative materials in structural applications necessitating thorough investigation into the predictability and reproducibility of their material strength properties. This investigation was concerned with tension, compression, and short beam shear coupon testing of large samples from three different material suppliers to determine their statistical strength behavior. Statistical results indicate that a two Parameter Weibull distribution model provides better overall characterization of material behavior for the graphite-epoxy systems tested than does the standard Normal distribution model that is employed for most design work. While either a Weibull or Normal distribution model provides adequate predictions for average strength values, the Weibull model provides better characterization in the lower tail region where the predictions are of maximum design interest. The two sets of the same material were found to have essentially the same material properties, and indicate that repeatability can be achieved.

  7. Single-Axis Three-Beam Amplitude Monopulse Antenna-Signal Processing Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doerry, Armin W.; Bickel, Douglas L.

    2015-05-01

    Typically, when three or more antenna beams along a single axis are required, the answer has been multiple antenna phase-centers, essentially a phase-monopulse system. Such systems and their design parameters are well-reported in the literature. Less appreciated is that three or more antenna beams can also be generated in an amplitude-monopulse fashion. Consequently, design guidelines and performance analysis of such antennas is somewhat under-reported in the literature. We provide discussion herein of three beams arrayed in a single axis with an amplitude-monopulse configuration. Acknowledgements The preparation of this report is the result of an unfunded research and development activity. Sandiamore » National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administ ration under contract DE-AC04-94AL85000.« less

  8. Monte Carlo modelling of Schottky diode for rectenna simulation

    NASA Astrophysics Data System (ADS)

    Bernuchon, E.; Aniel, F.; Zerounian, N.; Grimault-Jacquin, A. S.

    2017-09-01

    Before designing a detector circuit, the electrical parameters extraction of the Schottky diode is a critical step. This article is based on a Monte-Carlo (MC) solver of the Boltzmann Transport Equation (BTE) including different transport mechanisms at the metal-semiconductor contact such as image force effect or tunneling. The weight of tunneling and thermionic current is quantified according to different degrees of tunneling modelling. The I-V characteristic highlights the dependence of the ideality factor and the current saturation with bias. Harmonic Balance (HB) simulation on a rectifier circuit within Advanced Design System (ADS) software shows that considering non-linear ideality factor and saturation current for the electrical model of the Schottky diode does not seem essential. Indeed, bias independent values extracted in forward regime on I-V curve are sufficient. However, the non-linear series resistance extracted from a small signal analysis (SSA) strongly influences the conversion efficiency at low input powers.

  9. Combined effects of oregano essential oil and salt on the growth of Escherichia coli in salad dressing.

    PubMed

    Cattelan, Marília Gonçalves; Nishiyama, Yara Paula de Oliveira; Gonçalves, Tânia Maria Vinturim; Coelho, Alexandre Rodrigo

    2018-08-01

    There is a broad research interest in the search for alternatives to chemical additives for use as natural food preservatives. Although many natural compounds have biological in vitro properties evidenced, in situ studies are still scarce. This study evaluated the effect of oregano essential oil (OEO) and salt (NaCl) concentrations against Escherichia coli (ATCC 8739), in salad dressing, using the response surface methodology. The experiment included a 2 2 central composite rotatable design (CCRD) in a total of 11 formulations of salad dressings. Oregano essential oil was characterized by gas chromatography and salad dressings by ash, lipids, proteins and moisture. OEO was composed mainly by carvacrol (65.1%) and p-cymene (12.0%). Salad dressings showed similar chemical profiles. A mathematical model for the prediction of the antibacterial activity in salad dressing was obtained. The results revealed that the interaction between OEO and salt showed effect on the bacterial count. However, the effect of salt was negative suggesting that the highest NaCl concentrations decreases the bacterial count. Therefore, within the parameters studied, the use of OEO to control E. coli in salad dressing can be considered promising and allows reduction in the levels of salt to be incorporated in food. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Essentials and Perspectives of Computational Modelling Assistance for CNS-oriented Nanoparticle-based Drug Delivery Systems.

    PubMed

    Kisała, Joanna; Heclik, Kinga I; Pogocki, Krzysztof; Pogocki, Dariusz

    2018-05-16

    The blood-brain barrier (BBB) is a complex system controlling two-way substances traffic between circulatory (cardiovascular) system and central nervous system (CNS). It is almost perfectly crafted to regulate brain homeostasis and to permit selective transport of molecules that are essential for brain function. For potential drug candidates, the CNS-oriented neuropharmaceuticals as well as for those of primary targets in the periphery, the extent to which a substance in the circulation gains access to the CNS seems crucial. With the advent of nanopharmacology the problem of the BBB permeability for drug nano-carriers gains new significance. Compare to some other fields of medicinal chemistry, the computational science of nanodelivery is still prematured to offer the black-box type solutions, especially for the BBB-case. However, even its enormous complexity can be spell out the physical principles, and as such subjected to computation. Basic understanding of various physico-chemical parameters describing the brain uptake is required to take advantage of their usage for the BBB-nanodelivery. This mini-review provides a sketchy introduction into essential concepts allowing application of computational simulation to the BBB-nanodelivery design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. An infrared optical pacing system for high-throughput screening of cardiac electrophysiology in human cardiomyocytes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    McPheeters, Matt T.; Wang, Yves T.; Laurita, Kenneth R.; Jenkins, Michael W.

    2017-02-01

    Cardiomyocytes derived from human induced pluripotent stem cells (hiPS-HCM) have the potential to provide individualized therapies for patients and to test drug candidates for cardiac toxicity. In order for hiPS-CM to be useful for such applications, there is a need for high-throughput technology to rapidly assess cardiac electrophysiology parameters. Here, we designed and tested a fully contactless optical mapping (OM) and optical pacing (OP) system capable of imaging and point stimulation of hiPS-CM in small wells. OM allowed us to characterize cardiac electrophysiological parameters (conduction velocity, action potential duration, etc.) using voltage-sensitive dyes with high temporal and spatial resolution over the entire well. To improve OM signal-to-noise ratio, we tested a new voltage-sensitive dye (Fluovolt) for accuracy and phototoxicity. Stimulation is essential because most electrophysiological parameters are rate dependent; however, traditional methods utilizing electrical stimulation is difficult in small wells. To overcome this limitation, we utilized OP (λ = 1464 nm) to precisely control heart rate with spatial precision without the addition of exogenous agents. We optimized OP parameters (e.g., well size, pulse width, spot size) to achieve robust pacing and minimize the threshold radiant exposure. Finally, we tested system sensitivity using Flecainide, a drug with well described action on multiple electrophysiological properties.

  12. Integral parameters for characterizing water, energy, and aeration properties of soilless plant growth media

    NASA Astrophysics Data System (ADS)

    Chamindu Deepagoda, T. K. K.; Chen Lopez, Jose Choc; Møldrup, Per; de Jonge, Lis Wollesen; Tuller, Markus

    2013-10-01

    Over the last decade there has been a significant shift in global agricultural practice. Because the rapid increase of human population poses unprecedented challenges to production of an adequate and economically feasible food supply for undernourished populations, soilless greenhouse production systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While there are considerable empirical and theoretical efforts devoted to characterize water retention and aeration substrate properties, a holistic, physically-based approach considering water retention and aeration concurrently is lacking. In this study, the previously developed concept of integral water storage and energy was expanded to dual-porosity substrates and an analog integral oxygen diffusivity parameter was introduced to simultaneously characterize aeration properties of four common soilless greenhouse growth media. Integral parameters were derived for greenhouse crops in general, as well as for tomatoes. The integral approach provided important insights for irrigation management and for potential optimization of substrate properties. Furthermore, an observed relationship between the integral parameters for water availability and oxygen diffusivity can be potentially applied for the design of advanced irrigation and management strategies to ensure stress-free growth conditions, while conserving water resources.

  13. Functional Dependence of Thermodynamic and Thermokinetic Parameters of Refrigerants Used in Mine Air Refrigerators. Part 1 - Refrigerant R407C

    NASA Astrophysics Data System (ADS)

    Nowak, Bernard; Życzkowski, Piotr; Łuczak, Rafał

    2017-03-01

    The authors of this article dealt with the issue of modeling the thermodynamic and thermokinetic properties (parameters) of refrigerants. The knowledge of these parameters is essential to design refrigeration equipment, to perform their energy efficiency analysis, or to compare the efficiency of air refrigerators using different refrigerants. One of the refrigerants used in mine air compression refrigerators is R407C. For this refrigerant, 23 dependencies were developed, determining its thermodynamic and thermokinetic parameters in the states of saturated liquid, dry saturated vapour, superheated vapor, subcooled liquid, and in the two-phase region. The created formulas have been presented in Tables 2, 5, 8, 10 and 12, respectively. It should be noted that the scope of application of these formulas is wider than the range of changes of that refrigerant during the normal operation of mine refrigeration equipment. The article ends with the statistical verification of the developed dependencies. For this purpose, for each model correlation coefficients and coefficients of determination were calculated, as well as absolute and relative deviations between the given values from the program REFPROP 7 (Lemmon et al., 2002) and the calculated ones. The results of these calculations have been contained in Tables 14 and 15.

  14. STEAM: a software tool based on empirical analysis for micro electro mechanical systems

    NASA Astrophysics Data System (ADS)

    Devasia, Archana; Pasupuleti, Ajay; Sahin, Ferat

    2006-03-01

    In this research a generalized software framework that enables accurate computer aided design of MEMS devices is developed. The proposed simulation engine utilizes a novel material property estimation technique that generates effective material properties at the microscopic level. The material property models were developed based on empirical analysis and the behavior extraction of standard test structures. A literature review is provided on the physical phenomena that govern the mechanical behavior of thin films materials. This survey indicates that the present day models operate under a wide range of assumptions that may not be applicable to the micro-world. Thus, this methodology is foreseen to be an essential tool for MEMS designers as it would develop empirical models that relate the loading parameters, material properties, and the geometry of the microstructures with its performance characteristics. This process involves learning the relationship between the above parameters using non-parametric learning algorithms such as radial basis function networks and genetic algorithms. The proposed simulation engine has a graphical user interface (GUI) which is very adaptable, flexible, and transparent. The GUI is able to encompass all parameters associated with the determination of the desired material property so as to create models that provide an accurate estimation of the desired property. This technique was verified by fabricating and simulating bilayer cantilevers consisting of aluminum and glass (TEOS oxide) in our previous work. The results obtained were found to be very encouraging.

  15. Blue enhanced light sources: opportunities and risks

    NASA Astrophysics Data System (ADS)

    Lang, Dieter

    2012-03-01

    Natural daylight is characterized by high proportions of blue light. By proof of a third type of photoreceptor in the human eye which is only sensitive in this spectral region and by subsequent studies it has become obvious that these blue proportions are essential for human health and well being. In various studies beneficial effects of indoor lighting with higher blue spectral proportions have been proven. On the other hand with increasing use of light sources having enhanced blue light for indoor illumination questions are arising about potential health risks attributed to blue light. Especially LED are showing distinct emission characteristics in the blue. Recently the French agency for food, environmental and occupational health & safety ANSES have raised the question on health issues related to LED light sources and have claimed to avoid use of LED for lighting in schools. In this paper parameters which are relevant for potential health risks will be shown and their contribution to risk factors will quantitatively be discussed. It will be shown how to differentiate between photometric parameters for assessment of beneficial as well as hazardous effects. Guidelines will be discussed how blue enhanced light sources can be used in applications to optimally support human health and well being and simultaneously avoid any risks attributed to blue light by a proper design of lighting parameters. In the conclusion it will be shown that no inherent health risks are related to LED lighting with a proper lighting design.

  16. 77 FR 43796 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Lost River...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... essential to the conservation of the species should be included in the designation and why; (c) Special management considerations or protection that may be needed for the physical and biological features essential... our criteria for being essential for the conservation of the species and, therefore, should be...

  17. Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor

    NASA Astrophysics Data System (ADS)

    Moro, Alessandro; Bruschi, Alex; Franke, Thomas; Garavaglia, Saul; Granucci, Gustavo; Grossetti, Giovanni; Hizanidis, Kyriakos; Tigelis, Ioannis; Tran, Minh-Quang; Tsironis, Christos

    2017-10-01

    A demonstration fusion power plant (DEMO) producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD) in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components). Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution.

  18. Study of design and technology factors influencing gas turbine blade cooling

    NASA Astrophysics Data System (ADS)

    Shevchenko, I. V.; Garanin, I. V.; Rogalev, A. N.; Kindra, V. O.; Khudyakova, V. P.

    2017-11-01

    The knowledge of aerodynamic and thermal parameters of turbulators used in order to design an efficient blade cooling system. However, all experimental tests of the hydraulic and thermal characteristics of the turbulators were conducted on the rectangular shape channels with a strongly defined air flow direction. The actual blades have geometry of the channels that essentially differs from the rectangular shape. Specifically, the air flow in the back cavity of a blade with one and half-pass cooling channel changes its direction throughout the feather height. In most cases the ribs and pins are made with a tilt to the channel walls, which is determined by the moving element design of a mould for the ceramic rod element fabrication. All of the factors described above may result in the blade thermohydraulic model being developed failing to fully simulate the air flow and the heat exchange processes in some sections of the cooling path. Hence, the design temperature field will differ from the temperature field of an actual blade. This article studied the numerical data of design and technology factors influencing heat transfer in the cooling channels. The results obtained showed their substantial impact on the blade cooling efficiency.

  19. Enhancing performance of next generation FSO communication systems using soft computing-based predictions.

    PubMed

    Kazaura, Kamugisha; Omae, Kazunori; Suzuki, Toshiji; Matsumoto, Mitsuji; Mutafungwa, Edward; Korhonen, Timo O; Murakami, Tadaaki; Takahashi, Koichi; Matsumoto, Hideki; Wakamori, Kazuhiko; Arimoto, Yoshinori

    2006-06-12

    The deterioration and deformation of a free-space optical beam wave-front as it propagates through the atmosphere can reduce the link availability and may introduce burst errors thus degrading the performance of the system. We investigate the suitability of utilizing soft-computing (SC) based tools for improving performance of free-space optical (FSO) communications systems. The SC based tools are used for the prediction of key parameters of a FSO communications system. Measured data collected from an experimental FSO communication system is used as training and testing data for a proposed multi-layer neural network predictor (MNNP) used to predict future parameter values. The predicted parameters are essential for reducing transmission errors by improving the antenna's accuracy of tracking data beams. This is particularly essential for periods considered to be of strong atmospheric turbulence. The parameter values predicted using the proposed tool show acceptable conformity with original measurements.

  20. A generalized correlation of experimental flat-plate collector performance. [solar collectors, performance tests, energy policy

    NASA Technical Reports Server (NTRS)

    Simon, F. F.; Miller, D. R.

    1975-01-01

    A generalized collector performance correlation was derived and shown by experimental verification to be of the proper form to account for the majority of the variable conditions encountered both in outdoor and in indoor collector tests. This correlation permits a determination of collector parameters which are essentially nonvarying under conditions which do vary randomly (outdoors) or conditions which vary in a controlled manner (indoors - simulator). It was shown that correlation of the experimental performance of collectors allows the following: (1) comparisons of different collector designs; (2) collector performance prediction under conditions that differ from the conditions of the test program; and (3) monitoring performance degradation effects.

  1. Calipso's Mission Design: Sun-Glint Avoidance Strategies

    NASA Technical Reports Server (NTRS)

    Mailhe, Laurie M.; Schiff, Conrad; Stadler, John H.

    2004-01-01

    CALIPSO will fly in formation with the Aqua spacecraft to obtain a coincident image of a portion of the Aqua/MODIS swath. Since MODIS pixels suffering sun-glint degradation are not processed, it is essential that CALIPSO only co- image the glint h e portion of the MODIS instrument swath. This paper presents sun-glint avoidance strategies for the CALIPSO mission. First, we introduce the Aqua sun-glint geometry and its relation to the CALIPSO-Aqua formation flying parameters. Then, we detail our implementation of the computation and perform a cross-track trade-space analysis. Finally, we analyze the impact of the sun-glint avoidance strategy on the spacecraft power and delta-V budget over the mission lifetime.

  2. Effect of cassava starch-based edible coating incorporated with lemongrass essential oil on the quality of papaya MJ9

    NASA Astrophysics Data System (ADS)

    Praseptiangga, D.; Utami, R.; Khasanah, L. U.; Evirananda, I. P.; Kawiji

    2017-02-01

    Edible films and coatings have emerged as an alternative packaging in food applications and have received much attention due to their advantages. The incorporation of essential oils in film matrices to give antimicrobial properties had been observed recently, and could be used as promising preservation technology. In this study, cassava starch-based edible coating incorporated with lemongrass essential oil (1%) was applied by spraying and dipping methods to preserve papaya MJ9 during storage at room temperature. The quality of papaya MJ9 was analyzed based on its physicochemical and microbiological properties. The addition of lemongrass essential oil (1%) significantly inhibited the microbial growth on papaya MJ9 by reducing the value of total yeast and mold as compared to the control. This study also showed that for parameters of weight loss, total soluble solid, vitamin C, and total titratable acid, papaya MJ9 with cassava starch-based edible coating incorporated with lemongrass essential oil (1%) had the lower values than control, however, they had the higher value than control on firmness parameter. These results indicate that cassava starch-based edible coating incorporated with lemongrass essential oil (1%) can be used as an alternative preservation for papaya MJ9.

  3. Static Magnetic Field Therapy: A Critical Review of Treatment Parameters

    PubMed Central

    Wahbeh, Helané; Harling, Noelle; Connelly, Erin; Schiffke, Heather C.; Forsten, Cora; Gregory, William L.; Markov, Marko S.; Souder, James J.; Elmer, Patricia; King, Valerie

    2009-01-01

    Static magnetic field (SMF) therapy, applied via a permanent magnet attached to the skin, is used by people worldwide for self-care. Despite a lack of established SMF dosage and treatment regimens, multiple studies are conducted to evaluate SMF therapy effectiveness. Our objectives in conducting this review are to:(i) summarize SMF research conducted in humans; (ii) critically evaluate reporting quality of SMF dosages and treatment parameters and (iii) propose a set of criteria for reporting SMF treatment parameters in future clinical trials. We searched 27 electronic databases and reference lists. Only English language human studies were included. Excluded were studies of electromagnetic fields, transcranial magnetic stimulation, magnets placed on acupuncture points, animal studies, abstracts, posters and editorials. Data were extracted on clinical indication, study design and 10 essential SMF parameters. Three reviewers assessed quality of reporting and calculated a quality assessment score for each of the 10 treatment parameters. Fifty-six studies were reviewed, 42 conducted in patient populations and 14 in healthy volunteers. The SMF treatment parameters most often and most completely described were site of application, magnet support device and frequency and duration of application. Least often and least completely described were characteristics of the SMF: magnet dimensions, measured field strength and estimated distance of the magnet from the target tissue. Thirty-four (61%) of studies failed to provide enough detail about SMF dosage to permit protocol replication by other investigators. Our findings highlight the need to optimize SMF dosing parameters for individual clinical conditions before proceeding to a full-scale clinical trial. PMID:18955243

  4. A Neural Network Aero Design System for Advanced Turbo-Engines

    NASA Technical Reports Server (NTRS)

    Sanz, Jose M.

    1999-01-01

    An inverse design method calculates the blade shape that produces a prescribed input pressure distribution. By controlling this input pressure distribution the aerodynamic design objectives can easily be met. Because of the intrinsic relationship between pressure distribution and airfoil physical properties, a Neural Network can be trained to choose the optimal pressure distribution that would meet a set of physical requirements. Neural network systems have been attempted in the context of direct design methods. From properties ascribed to a set of blades the neural network is trained to infer the properties of an 'interpolated' blade shape. The problem is that, especially in transonic regimes where we deal with intrinsically non linear and ill posed problems, small perturbations of the blade shape can produce very large variations of the flow parameters. It is very unlikely that, under these circumstances, a neural network will be able to find the proper solution. The unique situation in the present method is that the neural network can be trained to extract the required input pressure distribution from a database of pressure distributions while the inverse method will still compute the exact blade shape that corresponds to this 'interpolated' input pressure distribution. In other words, the interpolation process is transferred to a smoother problem, namely, finding what pressure distribution would produce the required flow conditions and, once this is done, the inverse method will compute the exact solution for this problem. The use of neural network is, in this context, highly related to the use of proper optimization techniques. The optimization is used essentially as an automation procedure to force the input pressure distributions to achieve the required aero and structural design parameters. A multilayered feed forward network with back-propagation is used to train the system for pattern association and classification.

  5. 78 FR 14245 - Endangered and Threatened Wildlife and Plants; Designation of Critical Habitat for the Buena...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-05

    ... occupied by the species at the time of listing that contain features essential for the conservation of the... listing that are essential to the conservation of the species, and why. (3) Land use designations and... areas proposed are not essential, are appropriate for exclusion under section 4(b)(2) of the Act, or are...

  6. Enhanced growth, yield and physiological characteristics of rice under elevated carbon dioxide

    NASA Astrophysics Data System (ADS)

    Abzar, A.; Ahmad, Wan Juliana Wan; Said, Mohd Nizam Mohd; Doni, Febri; Zaidan, Mohd Waznul Adly Mohd; Fathurahman, Zain, Che Radziah Che Mohd

    2018-04-01

    Carbon dioxide (CO2) is rapidly increasing in the atmosphere. It is an essential element for photosynthesis which attracts attention among scientists on how plants will perform in the rising CO2 level. Rice as one of the most important staple food in the world has been studied on the growth responses under elevated CO2. The present research was carried out to determine the growth and physiology of rice in elevated CO2 condition. This research was carried out using complete randomized design with elevated (800 ppm) and ambient CO2. Results showed that growth parameters such as plant height, tillers and number of leaves per plant were increased by elevated CO2. The positive changes in plant physiology when exposed to high CO2 concentration includes significant change (p<0.05) in yield parameters such as panicle number, grain number per panicle, biomass and 1000 grain weight under the elevated CO2 of 800 ppm.

  7. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care

    NASA Astrophysics Data System (ADS)

    Chen, Lisa Y.; Tee, Benjamin C.-K.; Chortos, Alex L.; Schwartz, Gregor; Tse, Victor; J. Lipomi, Darren; Wong, H.-S. Philip; McConnell, Michael V.; Bao, Zhenan

    2014-10-01

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  8. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care.

    PubMed

    Chen, Lisa Y; Tee, Benjamin C-K; Chortos, Alex L; Schwartz, Gregor; Tse, Victor; Lipomi, Darren J; Wong, H-S Philip; McConnell, Michael V; Bao, Zhenan

    2014-10-06

    Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.

  9. Odor-identity dependent motor programs underlie behavioral responses to odors

    PubMed Central

    Jung, Seung-Hye; Hueston, Catherine; Bhandawat, Vikas

    2015-01-01

    All animals use olfactory information to perform tasks essential to their survival. Odors typically activate multiple olfactory receptor neuron (ORN) classes and are therefore represented by the patterns of active ORNs. How the patterns of active ORN classes are decoded to drive behavior is under intense investigation. In this study, using Drosophila as a model system, we investigate the logic by which odors modulate locomotion. We designed a novel behavioral arena in which we could examine a fly’s locomotion under precisely controlled stimulus condition. In this arena, in response to similarly attractive odors, flies modulate their locomotion differently implying that odors have a more diverse effect on locomotion than was anticipated. Three features underlie odor-guided locomotion: First, in response to odors, flies modulate a surprisingly large number of motor parameters. Second, similarly attractive odors elicit changes in different motor programs. Third, different ORN classes modulate different subset of motor parameters. DOI: http://dx.doi.org/10.7554/eLife.11092.001 PMID:26439011

  10. Recognition of speaker-dependent continuous speech with KEAL

    NASA Astrophysics Data System (ADS)

    Mercier, G.; Bigorgne, D.; Miclet, L.; Le Guennec, L.; Querre, M.

    1989-04-01

    A description of the speaker-dependent continuous speech recognition system KEAL is given. An unknown utterance, is recognized by means of the followng procedures: acoustic analysis, phonetic segmentation and identification, word and sentence analysis. The combination of feature-based, speaker-independent coarse phonetic segmentation with speaker-dependent statistical classification techniques is one of the main design features of the acoustic-phonetic decoder. The lexical access component is essentially based on a statistical dynamic programming technique which aims at matching a phonemic lexical entry containing various phonological forms, against a phonetic lattice. Sentence recognition is achieved by use of a context-free grammar and a parsing algorithm derived from Earley's parser. A speaker adaptation module allows some of the system parameters to be adjusted by matching known utterances with their acoustical representation. The task to be performed, described by its vocabulary and its grammar, is given as a parameter of the system. Continuously spoken sentences extracted from a 'pseudo-Logo' language are analyzed and results are presented.

  11. Support for fast comprehension of ICU data: visualization using metaphor graphics.

    PubMed

    Horn, W; Popow, C; Unterasinger, L

    2001-01-01

    The time-oriented analysis of electronic patient records on (neonatal) intensive care units is a tedious and time-consuming task. Graphic data visualization should make it easier for physicians to assess the overall situation of a patient and to recognize essential changes over time. Metaphor graphics are used to sketch the most relevant parameters for characterizing a patient's situation. By repetition of the graphic object in 24 frames the situation of the ICU patient is presented in one display, usually summarizing the last 24 h. VIE-VISU is a data visualization system which uses multiples to present the change in the patient's status over time in graphic form. Each multiple is a highly structured metaphor graphic object. Each object visualizes important ICU parameters from circulation, ventilation, and fluid balance. The design using multiples promotes a focus on stability and change. A stable patient is recognizable at first sight, continuous improvement or worsening condition are easy to analyze, drastic changes in the patient's situation get the viewers attention immediately.

  12. Quasi-steady aerodynamic model of clap-and-fling flapping MAV and validation using free-flight data.

    PubMed

    Armanini, S F; Caetano, J V; Croon, G C H E de; Visser, C C de; Mulder, M

    2016-06-30

    Flapping-wing aerodynamic models that are accurate, computationally efficient and physically meaningful, are challenging to obtain. Such models are essential to design flapping-wing micro air vehicles and to develop advanced controllers enhancing the autonomy of such vehicles. In this work, a phenomenological model is developed for the time-resolved aerodynamic forces on clap-and-fling ornithopters. The model is based on quasi-steady theory and accounts for inertial, circulatory, added mass and viscous forces. It extends existing quasi-steady approaches by: including a fling circulation factor to account for unsteady wing-wing interaction, considering real platform-specific wing kinematics and different flight regimes. The model parameters are estimated from wind tunnel measurements conducted on a real test platform. Comparison to wind tunnel data shows that the model predicts the lift forces on the test platform accurately, and accounts for wing-wing interaction effectively. Additionally, validation tests with real free-flight data show that lift forces can be predicted with considerable accuracy in different flight regimes. The complete parameter-varying model represents a wide range of flight conditions, is computationally simple, physically meaningful and requires few measurements. It is therefore potentially useful for both control design and preliminary conceptual studies for developing new platforms.

  13. Checking distributional assumptions for pharmacokinetic summary statistics based on simulations with compartmental models.

    PubMed

    Shen, Meiyu; Russek-Cohen, Estelle; Slud, Eric V

    2016-08-12

    Bioequivalence (BE) studies are an essential part of the evaluation of generic drugs. The most common in vivo BE study design is the two-period two-treatment crossover design. AUC (area under the concentration-time curve) and Cmax (maximum concentration) are obtained from the observed concentration-time profiles for each subject from each treatment under each sequence. In the BE evaluation of pharmacokinetic crossover studies, the normality of the univariate response variable, e.g. log(AUC) 1 or log(Cmax), is often assumed in the literature without much evidence. Therefore, we investigate the distributional assumption of the normality of response variables, log(AUC) and log(Cmax), by simulating concentration-time profiles from two-stage pharmacokinetic models (commonly used in pharmacokinetic research) for a wide range of pharmacokinetic parameters and measurement error structures. Our simulations show that, under reasonable distributional assumptions on the pharmacokinetic parameters, log(AUC) has heavy tails and log(Cmax) is skewed. Sensitivity analyses are conducted to investigate how the distribution of the standardized log(AUC) (or the standardized log(Cmax)) for a large number of simulated subjects deviates from normality if distributions of errors in the pharmacokinetic model for plasma concentrations deviate from normality and if the plasma concentration can be described by different compartmental models.

  14. Simulation of a Geiger-Mode Imaging LADAR System for Performance Assessment

    PubMed Central

    Kim, Seongjoon; Lee, Impyeong; Kwon, Yong Joon

    2013-01-01

    As LADAR systems applications gradually become more diverse, new types of systems are being developed. When developing new systems, simulation studies are an essential prerequisite. A simulator enables performance predictions and optimal system parameters at the design level, as well as providing sample data for developing and validating application algorithms. The purpose of the study is to propose a method for simulating a Geiger-mode imaging LADAR system. We develop simulation software to assess system performance and generate sample data for the applications. The simulation is based on three aspects of modeling—the geometry, radiometry and detection. The geometric model computes the ranges to the reflection points of the laser pulses. The radiometric model generates the return signals, including the noises. The detection model determines the flight times of the laser pulses based on the nature of the Geiger-mode detector. We generated sample data using the simulator with the system parameters and analyzed the detection performance by comparing the simulated points to the reference points. The proportion of the outliers in the simulated points reached 25.53%, indicating the need for efficient outlier elimination algorithms. In addition, the false alarm rate and dropout rate of the designed system were computed as 1.76% and 1.06%, respectively. PMID:23823970

  15. Accuracy of the weighted essentially non-oscillatory conservative finite difference schemes

    NASA Astrophysics Data System (ADS)

    Don, Wai-Sun; Borges, Rafael

    2013-10-01

    In the reconstruction step of (2r-1) order weighted essentially non-oscillatory conservative finite difference schemes (WENO) for solving hyperbolic conservation laws, nonlinear weights αk and ωk, such as the WENO-JS weights by Jiang et al. and the WENO-Z weights by Borges et al., are designed to recover the formal (2r-1) order (optimal order) of the upwinded central finite difference scheme when the solution is sufficiently smooth. The smoothness of the solution is determined by the lower order local smoothness indicators βk in each substencil. These nonlinear weight formulations share two important free parameters in common: the power p, which controls the amount of numerical dissipation, and the sensitivity ε, which is added to βk to avoid a division by zero in the denominator of αk. However, ε also plays a role affecting the order of accuracy of WENO schemes, especially in the presence of critical points. It was recently shown that, for any design order (2r-1), ε should be of Ω(Δx2) (Ω(Δxm) means that ε⩾CΔxm for some C independent of Δx, as Δx→0) for the WENO-JS scheme to achieve the optimal order, regardless of critical points. In this paper, we derive an alternative proof of the sufficient condition using special properties of βk. Moreover, it is unknown if the WENO-Z scheme should obey the same condition on ε. Here, using same special properties of βk, we prove that in fact the optimal order of the WENO-Z scheme can be guaranteed with a much weaker condition ε=Ω(Δxm), where m(r,p)⩾2 is the optimal sensitivity order, regardless of critical points. Both theoretical results are confirmed numerically on smooth functions with arbitrary order of critical points. This is a highly desirable feature, as illustrated with the Lax problem and the Mach 3 shock-density wave interaction of one dimensional Euler equations, for a smaller ε allows a better essentially non-oscillatory shock capturing as it does not over-dominate over the size of βk. We also show that numerical oscillations can be further attenuated by increasing the power parameter 2⩽p⩽r-1, at the cost of increased numerical dissipation. Compact formulas of βk for WENO schemes are also presented.

  16. The use of the digital smile design concept as an auxiliary tool in periodontal plastic surgery.

    PubMed

    Santos, Felipe Rychuv; Kamarowski, Stephanie Felice; Lopez, Camilo Andres Villabona; Storrer, Carmen Lucia Mueller; Neto, Alexandre Teixeira; Deliberador, Tatiana Miranda

    2017-01-01

    Periodontal surgery associated with prior waxing, mock-up, and the use of digital tools to design the smile is the current trend of reverse planning in periodontal plastic surgery. The objective of this study is to report a surgical resolution of the gummy smile using a prior esthetic design with the use of digital tools. A digital smile design and mock-up were used for performing gingival recontouring surgery. The relationship between the facial and dental measures and the incisal plane with the horizontal facial plane of reference were evaluated. The relative dental height x width was measured, and the dental contour drawing was inserted. Complementary lines are drawn such as the gingival zenith, joining lines of the gingival and incisal battlements. The periodontal esthetic was improved according to the established design digital smile pattern. These results demonstrate the importance of surgical techniques and are well accepted by patients and are easy to perform for the professional. When properly planned, they provide the desired expectations. Periodontal Surgical procedures associated with the design digital smile facilitate the communication between the patient and the professional. It is, therefore, essential to demonstrate the reverse planning of the smile and periodontal parameters with approval by the patient to solve the esthetic problem.

  17. Multi-objective optimization of GENIE Earth system models.

    PubMed

    Price, Andrew R; Myerscough, Richard J; Voutchkov, Ivan I; Marsh, Robert; Cox, Simon J

    2009-07-13

    The tuning of parameters in climate models is essential to provide reliable long-term forecasts of Earth system behaviour. We apply a multi-objective optimization algorithm to the problem of parameter estimation in climate models. This optimization process involves the iterative evaluation of response surface models (RSMs), followed by the execution of multiple Earth system simulations. These computations require an infrastructure that provides high-performance computing for building and searching the RSMs and high-throughput computing for the concurrent evaluation of a large number of models. Grid computing technology is therefore essential to make this algorithm practical for members of the GENIE project.

  18. Cost-engineering modeling to support rapid concept development of an advanced infrared satellite system

    NASA Astrophysics Data System (ADS)

    Bell, Kevin D.; Dafesh, Philip A.; Hsu, L. A.; Tsuda, A. S.

    1995-12-01

    Current architectural and design trade techniques often carry unaffordable alternatives late into the decision process. Early decisions made during the concept exploration and development (CE&D) phase will drive the cost of a program more than any other phase of development; thus, designers must be able to assess both the performance and cost impacts of their early choices. The Space Based Infrared System (SBIRS) cost engineering model (CEM) described in this paper is an end-to-end process integrating engineering and cost expertise through commonly available spreadsheet software, allowing for concurrent design engineering and cost estimation to identify and balance system drives to reduce acquisition costs. The automated interconnectivity between subsystem models using spreadsheet software allows for the quick and consistent assessment of the system design impacts and relative cost impacts due to requirement changes. It is different from most CEM efforts attempted in the past as it incorporates more detailed spacecraft and sensor payload models, and has been applied to determine the cost drivers for an advanced infrared satellite system acquisition. The CEM is comprised of integrated detailed engineering and cost estimating relationships describing performance, design, and cost parameters. Detailed models have been developed to evaluate design parameters for the spacecraft bus and sensor; both step-starer and scanner sensor types incorporate models of focal plane array, optics, processing, thermal, communications, and mission performance. The current CEM effort has provided visibility to requirements, design, and cost drivers for system architects and decision makers to determine the configuration of an infrared satellite architecture that meets essential requirements cost effectively. In general, the methodology described in this paper consists of process building blocks that can be tailored to the needs of many applications. Descriptions of the spacecraft and payload subsystem models provide insight into The Aerospace Corporation expertise and scope of the SBIRS concept development effort.

  19. Aroma-therapeutic effects of massage blended essential oils on humans.

    PubMed

    Hongratanaworakit, Tapanee

    2011-08-01

    Although blended essential oils are increasingly being used for the improvement of the quality of life and for the relief of various symptoms in patients, the scientific evaluation of the aroma-therapeutic effects of blended essential oils in humans is rather scarce. In this study, we hypothesized that applying blended essential oil would provide a synergistic effect that would have a chance for success in treating depression or anxiety. Therefore, the main objective of this study was to investigate the effects of the blended essential oil on autonomic parameters and on emotional responses in humans following transdermal absorption. The blended essential oil consisted of lavender and bergamot oils. Human autonomic parameters, i.e. blood pressure, pulse rate, breathing rate, and skin temperature, were recorded as indicators of the arousal level of the autonomic nervous system. In addition, subjects had to rate their emotional condition in terms of relaxation, vigor, calmness, attentiveness, mood, and alertness in order to assess subjective behavioral arousal. Forty healthy volunteers participated in the experiments. Blended essential oil was applied topically to the skin of the abdomen of each subject. Compared with placebo, blended essential oil caused significant decreases of pulse rate, and systolic and diastolic blood pressure, which indicated a decrease of autonomic arousal. At the emotional level, subjects in the blended essential oil group rated themselves as 'more calm' and 'more relaxed' than subjects in the control group. This finding suggests a decrease of subjective behavioral arousal. In conclusion, our investigation demonstrates the relaxing effect of a mixture of lavender and bergamot oils. This synergistic blend provides evidence for its use in medicine for treating depression or anxiety in humans.

  20. Relationship Between Soil and Essential Oil Profiles in Salvia desoleana Populations: Preliminary Results.

    PubMed

    Rapposelli, Emma; Melito, Sara; Barmina, Giovanni Gabriele; Foddai, Marzia; Azara, Emanuela; Scarpa, Grazia Maria

    2015-09-01

    Salvia desoleana is a herbaceous perennial shrub endemic of Sardinia (Italy). The leaves are a source of essential oil, used in pharmaceutical and cosmetic industries. The therapeutic function of this species has been associated to the presence of essential oils rich in α/β-pinene, p-cimene, linalool, linalyl acetate and 1,8-cineole. Today.the industrial request of Salvia essential oils is increasing and most of the biomass is exploited from the natural populations which are under severe risk of genetic erosion. In order to improve the essential oil production, the study of the environmental parameters that influence composition, quality and quantity of the essential oils, turns out to be necessary. Soil physical and chemical structure represents one of the determinant factors in secondary metabolites production, and could also be involved in volatiles fraction composition in the same species. The main aim of this research was to explore the relationship between essential oil profiles and soil characteristics in S. desoleana populations. GC/MS analysis performed on the essential oil extracts identified 22 principal compounds, which were extremely variable among the five S. desoleana populations studied. The analysis of the essential oils revealed different compositions in the terpenes fractions: 68.2% of monoterpenes, 27.3% of sesquiterpenes and 4.5% of diterpenes. Analysis of chemical and physical soil parameters at the collection sites revealed that silt and sand contents were correlated with α-pinene and sclareol fractions and the total K20 was significantly correlated to several compounds belonging to the three terpene fractions identified. These results will provide guidelines for the in site conservation and for the improvement of the commercial value of the species.

  1. A quality by design approach using artificial intelligence techniques to control the critical quality attributes of ramipril tablets manufactured by wet granulation.

    PubMed

    Aksu, Buket; Paradkar, Anant; de Matas, Marcel; Özer, Özgen; Güneri, Tamer; York, Peter

    2013-02-01

    Quality by design (QbD) is an essential part of the modern approach to pharmaceutical quality. This study was conducted in the framework of a QbD project involving ramipril tablets. Preliminary work included identification of the critical quality attributes (CQAs) and critical process parameters (CPPs) based on the quality target product profiles (QTPPs) using the historical data and risk assessment method failure mode and effect analysis (FMEA). Compendial and in-house specifications were selected as QTPPs for ramipril tablets. CPPs that affected the product and process were used to establish an experimental design. The results thus obtained can be used to facilitate definition of the design space using tools such as design of experiments (DoE), the response surface method (RSM) and artificial neural networks (ANNs). The project was aimed at discovering hidden knowledge associated with the manufacture of ramipril tablets using a range of artificial intelligence-based software, with the intention of establishing a multi-dimensional design space that ensures consistent product quality. At the end of the study, a design space was developed based on the study data and specifications, and a new formulation was optimized. On the basis of this formulation, a new laboratory batch formulation was prepared and tested. It was confirmed that the explored formulation was within the design space.

  2. A Comprehensive Understanding of Machine and Material Behaviors During Inertia Friction Welding

    NASA Astrophysics Data System (ADS)

    Tung, Daniel J.

    Inertia Friction Welding (IFW), a critical process to many industries, currently relies on trial-and-error experimentation to optimize process parameters. Although this Edisonian approach is very effective, the high time and dollar costs incurred during process development are the driving force for better design approaches. Thermal-stress finite element modeling has been increasingly used to aid in process development in the literature; however, several fundamental questions on machine and material behaviors remain unanswered. The work presented here aims produce an analytical foundation to significantly reduce the costly physical experimentation currently required to design the inertia welding of production parts. Particularly, the work is centered around the following two major areas. First, machine behavior during IFW, which critically determines deformation and heating, had not been well understood to date. In order to properly characterize the IFW machine behavior, a novel method based on torque measurements was invented to measure machine efficiency, i.e. the ratio of the initial kinetic energy of the flywheel to that contributing to workpiece heating and deformation. The measured efficiency was validated by both simple energy balance calculations and more sophisticated finite element modeling. For the first time, the efficiency dependence on both process parameters (flywheel size, initial rotational velocity, axial load, and surface roughness) and materials (1018 steel, Low Solvus High Refractory LSHR and Waspaloy) was quantified using the torque based measurement method. The effect of process parameters on machine efficiency was analyzed to establish simple-to-use yet powerful equations for selection and optimization of IFW process parameters for making welds; however, design criteria such as geometry and material optimization were not addressed. Second, there had been a lack of understanding of the bond formation during IFW. In the present research, an interrupted welding study was developed utilizing purposefully-designed dissimilar metal couples to investigate bond formation for this specific material combination. The inertia welding process was interrupted at various times as the flywheel velocity decreased. The fraction of areas with intermixed metals was quantified to reveal the bond formation during IFW. The results revealed a relationship between the upset and the fraction of bonded material, which, interestingly, was found to be consistent to that established for roll bonding literature. The relationship is critical to studying the bonding mechanism and surface interactions during IFW. Moreover, it is essential to accurately interpret the modeling results to determine the extent of bonding using the computed strains near the workpiece interface. With this method developed, similar data can now be collected for additional similar and dissimilar material combinations. In summary, in the quest to develop, validate, and execute a modeling framework to study the inertia friction weldability of different alloy systems, particularly Fe- and Ni-base alloys, many new discoveries have been made to enhance the body of knowledge surrounding IFW. The data and trends discussed in this dissertation constitute a physics-based framework to understand the machine and material behaviors during IFW. Such a physics-based framework is essential to significantly reduce the costly trial-and-error experimentation currently required to successfully and consistently perform the inertia welding of production parts.

  3. Structure-activity modelling of essential oils, their components, and key molecular parameters and descriptors.

    PubMed

    Owen, Lucy; Laird, Katie; Wilson, Philippe B

    2018-04-01

    Many essential oil components are known to possess broad spectrum antimicrobial activity, including against antibiotic resistant bacteria. These compounds may be a useful source of new and novel antimicrobials. However, there is limited research on the structure-activity relationship (SAR) of essential oil compounds, which is important for target identification and lead optimization. This study aimed to elucidate SARs of essential oil components from experimental and literature sources. Minimum Inhibitory Concentrations (MICs) of essential oil components were determined against Escherichia coli and Staphylococcus aureus using a microdilution method and then compared to those in published in literature. Of 12 essential oil components tested, carvacrol and cuminaldehyde were most potent with MICs of 1.98 and 2.10 mM, respectively. The activity of 21 compounds obtained from the literature, MICs ranged from 0.004 mM for limonene to 36.18 mM for α-terpineol. A 3D qualitative SAR model was generated from MICs using FORGE software by consideration of electrostatic and steric parameters. An r 2 value of 0.807 for training and cross-validation sets was achieved with the model developed. Ligand efficiency was found to correlate well to the observed activity (r 2  = 0.792), while strongly negative electrostatic regions were present in potent molecules. These descriptors may be useful for target identification of essential oils or their major components in antimicrobial/drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of juniper essential oil on growth performance, some rumen protozoa, rumen fermentation and antioxidant blood enzyme parameters of growing Saanen kids.

    PubMed

    Yesilbag, D; Biricik, H; Cetin, I; Kara, C; Meral, Y; Cengiz, S S; Orman, A; Udum, D

    2017-10-01

    This study aimed to evaluate the effects of juniper essential oil on the growth performance, rumen fermentation parameters, rumen protozoa population, blood antioxidant enzyme parameters and faecal content in growing Saanen kids. Thirty-six male Saanen kids (36 ± 14 days of age) were used in the study. Each group consisted of 9 kids. The control group (G1) was fed with a diet that consisted of the above concentrated feed and oat hay, whereas the experimental groups consumed the same diet but with the concentrated feed uniformly sprayed with juniper essential oil 0.4 ml/kg (G2), 0.8 ml/kg (G3) or 2 ml/kg (G4). There were no differences (p > 0.05) in live weight, live weight gain or feed consumption between the control and experimental groups. There was a significant improvement (p < 0.05) in feed efficiency in the G3 group. There were no differences in the rumen pH, rumen volatile fatty acid (VFA) profile or faecal pH of the control and experimental groups. The rumen NH 3 N values were similar at the middle and end of the experiment, but at the start of the experiment, the rumen NH 3 N values differed between the control and experimental groups (p < 0.05). The faecal score value was significantly (p < 0.05) decreased in the experimental groups. The addition of juniper essential oil supplementation to the rations caused significant effects on the kids' antioxidant blood parameters. Although the superoxide dismutase (SOD) activity, total antioxidant capacity (TAC) and catalase values were significantly (p < 0.05) increased in the experimental groups (G2, G3 and G4), especially group G4, the blood glutathione peroxidase (GPX) value significantly decreased in the experimental groups. The results of this study suggest that supplementation of juniper oil is more effective on antioxidant parameters than on performance parameters and may be used as a natural antioxidant product. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  5. Air Force Research Laboratory Spacecraft Cryocooler Endurance Evaluation Facility Closing Report

    NASA Astrophysics Data System (ADS)

    Armstrong, J.; Martin, K. W.; Fraser, T.

    2015-12-01

    The Air Force Research Laboratory (AFRL) Spacecraft Component Thermal Research Group has been devoted to evaluating lifetime performance of space cryocooler technology for over twenty years. Long-life data is essential for confirming design lifetimes for space cryocoolers. Continuous operation in a simulated space environment is the only accepted method to test for degradation. AFRL has provided raw data and detailed evaluations to cryocooler developers for advancing the technology, correcting discovered deficiencies, and improving cryocooler designs. At AFRL, units of varying design and refrigeration cycles were instrumented in state-of-the-art experiment stands to provide spacelike conditions and were equipped with software data acquisition to track critical cryocooler operating parameters. This data allowed an assessment of the technology's ability to meet the desired lifetime and documented any long-term changes in performance. This paper will outline a final report of the various flight cryocoolers tested in our laboratory. The data summarized includes the seven cryocoolers tested during 2014-2015. These seven coolers have a combined total of 433,326 hours (49.5 years) of operation.

  6. Modeling and HIL Simulation of Flight Conditions Simulating Control System for the Altitude Test Facility

    NASA Astrophysics Data System (ADS)

    Zhou, Jun; Shen, Li; Zhang, Tianhong

    2016-12-01

    Simulated altitude test is an essential exploring, debugging, verification and validation means during the development of aero-engine. Free-jet engine test can simulate actual working conditions of aero-engine more realistically than direct-connect engine test but with relatively lower cost compared to propulsion wind tunnel test, thus becoming an important developing area of simulated altitude test technology. The Flight Conditions Simulating Control System (FCSCS) is of great importance to the Altitude Test Facility (ATF) but the development of that is a huge challenge. Aiming at improving the design efficiency and reducing risks during the development of FCSCS for ATFs, a Hardware- in-the-Loop (HIL) simulation system was designed and the mathematical models of key components such as the pressure stabilizing chamber, free-jet nozzle, control valve and aero-engine were built in this paper. Moreover, some HIL simulation experiments were carried out. The results show that the HIL simulation system designed and established in this paper is reasonable and effective, which can be used to adjust control parameters conveniently and assess the software and hardware in the control system immediately.

  7. Impact of Testosterone, Zinc, Calcium and Magnesium Concentrations on Sperm Parameters in Subfertile Men

    NASA Astrophysics Data System (ADS)

    Aydemir, Birsen; Kiziler, Ali Riza; Onaran, Ilhan; Alici, Bülent; Özkara, Hamdi; Akyolcu, Mehmet Can

    2007-04-01

    To investigate the impact of testosterone, zinc, calcium and magnesium concentrations in serum and seminal plasma on sperm parameters. There were significant decrease in sperm parameters, serum and seminal plasma zinc levels in subfertile males. It indicates zinc has a essential role in male infertility; the determination the level of zinc during infertility investigation is recommended.

  8. Optimal synthesis and design of the number of cycles in the leaching process for surimi production.

    PubMed

    Reinheimer, M Agustina; Scenna, Nicolás J; Mussati, Sergio F

    2016-12-01

    Water consumption required during the leaching stage in the surimi manufacturing process strongly depends on the design and the number and size of stages connected in series for the soluble protein extraction target, and it is considered as the main contributor to the operating costs. Therefore, the optimal synthesis and design of the leaching stage is essential to minimize the total annual cost. In this study, a mathematical optimization model for the optimal design of the leaching operation is presented. Precisely, a detailed Mixed Integer Nonlinear Programming (MINLP) model including operating and geometric constraints was developed based on our previous optimization model (NLP model). Aspects about quality, water consumption and main operating parameters were considered. The minimization of total annual costs, which considered a trade-off between investment and operating costs, led to an optimal solution with lesser number of stages (2 instead of 3 stages) and higher volumes of the leaching tanks comparing with previous results. An analysis was performed in order to investigate how the optimal solution was influenced by the variations of the unitary cost of fresh water, waste treatment and capital investment.

  9. Operator Support System Design forthe Operation of RSG-GAS Research Reactor

    NASA Astrophysics Data System (ADS)

    Santoso, S.; Situmorang, J.; Bakhri, S.; Subekti, M.; Sunaryo, G. R.

    2018-02-01

    The components of RSG-GAS main control room are facing the problem of material ageing and technology obsolescence as well, and therefore the need for modernization and refurbishment are essential. The modernization in control room can be applied on the operator support system which bears the function in providing information for assisting the operator in conducting diagnosis and actions. The research purpose is to design an operator support system for RSG-GAS control room. The design was developed based on the operator requirement in conducting task operation scenarios and the reactor operation characteristics. These scenarios include power operation, low power operation and shutdown/scram reactor. The operator support system design is presented in a single computer display which contains structure and support system elements e.g. operation procedure, status of safety related components and operational requirements, operation limit condition of parameters, alarm information, and prognosis function. The prototype was developed using LabView software and consisted of components structure and features of the operator support system. Information of each component in the operator support system need to be completed before it can be applied and integrated in the RSG-GAS main control room.

  10. Engineering complex orthopaedic tissues via strategic biomimicry.

    PubMed

    Qu, Dovina; Mosher, Christopher Z; Boushell, Margaret K; Lu, Helen H

    2015-03-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, wherein overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g., bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g., bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g., bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration.

  11. Engineering Complex Orthopaedic Tissues via Strategic Biomimicry

    PubMed Central

    Qu, Dovina; Mosher, Christopher Z.; Boushell, Margaret K.; Lu, Helen H.

    2014-01-01

    The primary current challenge in regenerative engineering resides in the simultaneous formation of more than one type of tissue, as well as their functional assembly into complex tissues or organ systems. Tissue-tissue synchrony is especially important in the musculoskeletal system, whereby overall organ function is enabled by the seamless integration of bone with soft tissues such as ligament, tendon, or cartilage, as well as the integration of muscle with tendon. Therefore, in lieu of a traditional single-tissue system (e.g. bone, ligament), composite tissue scaffold designs for the regeneration of functional connective tissue units (e.g. bone-ligament-bone) are being actively investigated. Closely related is the effort to re-establish tissue-tissue interfaces, which is essential for joining these tissue building blocks and facilitating host integration. Much of the research at the forefront of the field has centered on bioinspired stratified or gradient scaffold designs which aim to recapitulate the structural and compositional inhomogeneity inherent across distinct tissue regions. As such, given the complexity of these musculoskeletal tissue units, the key question is how to identify the most relevant parameters for recapitulating the native structure-function relationships in the scaffold design. Therefore, the focus of this review, in addition to presenting the state-of-the-art in complex scaffold design, is to explore how strategic biomimicry can be applied in engineering tissue connectivity. The objective of strategic biomimicry is to avoid over-engineering by establishing what needs to be learned from nature and defining the essential matrix characteristics that must be reproduced in scaffold design. Application of this engineering strategy for the regeneration of the most common musculoskeletal tissue units (e.g. bone-ligament-bone, muscle-tendon-bone, cartilage-bone) will be discussed in this review. It is anticipated that these exciting efforts will enable integrative and functional repair of soft tissue injuries, and moreover, lay the foundation for the development of composite tissue systems and ultimately, total limb or joint regeneration. PMID:25465616

  12. Population models for passerine birds: structure, parameterization, and analysis

    USGS Publications Warehouse

    Noon, B.R.; Sauer, J.R.; McCullough, D.R.; Barrett, R.H.

    1992-01-01

    Population models have great potential as management tools, as they use infonnation about the life history of a species to summarize estimates of fecundity and survival into a description of population change. Models provide a framework for projecting future populations, determining the effects of management decisions on future population dynamics, evaluating extinction probabilities, and addressing a variety of questions of ecological and evolutionary interest. Even when insufficient information exists to allow complete identification of the model, the modelling procedure is useful because it forces the investigator to consider the life history of the species when determining what parameters should be estimated from field studies and provides a context for evaluating the relative importance of demographic parameters. Models have been little used in the study of the population dynamics of passerine birds because of: (1) widespread misunderstandings of the model structures and parameterizations, (2) a lack of knowledge of life histories of many species, (3) difficulties in obtaining statistically reliable estimates of demographic parameters for most passerine species, and (4) confusion about functional relationships among demographic parameters. As a result, studies of passerine demography are often designed inappropriately and fail to provide essential data. We review appropriate models for passerine bird populations and illustrate their possible uses in evaluating the effects of management or other environmental influences on population dynamics. We identify environmental influences on population dynamics. We identify parameters that must be estimated from field data, briefly review existing statistical methods for obtaining valid estimates, and evaluate the present status of knowledge of these parameters.

  13. Optimization of LC-Orbitrap-HRMS acquisition and MZmine 2 data processing for nontarget screening of environmental samples using design of experiments.

    PubMed

    Hu, Meng; Krauss, Martin; Brack, Werner; Schulze, Tobias

    2016-11-01

    Liquid chromatography-high resolution mass spectrometry (LC-HRMS) is a well-established technique for nontarget screening of contaminants in complex environmental samples. Automatic peak detection is essential, but its performance has only rarely been assessed and optimized so far. With the aim to fill this gap, we used pristine water extracts spiked with 78 contaminants as a test case to evaluate and optimize chromatogram and spectral data processing. To assess whether data acquisition strategies have a significant impact on peak detection, three values of MS cycle time (CT) of an LTQ Orbitrap instrument were tested. Furthermore, the key parameter settings of the data processing software MZmine 2 were optimized to detect the maximum number of target peaks from the samples by the design of experiments (DoE) approach and compared to a manual evaluation. The results indicate that short CT significantly improves the quality of automatic peak detection, which means that full scan acquisition without additional MS 2 experiments is suggested for nontarget screening. MZmine 2 detected 75-100 % of the peaks compared to manual peak detection at an intensity level of 10 5 in a validation dataset on both spiked and real water samples under optimal parameter settings. Finally, we provide an optimization workflow of MZmine 2 for LC-HRMS data processing that is applicable for environmental samples for nontarget screening. The results also show that the DoE approach is useful and effort-saving for optimizing data processing parameters. Graphical Abstract ᅟ.

  14. Instruction-Level Characterization of Scientific Computing Applications Using Hardware Performance Counters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Y.; Cameron, K.W.

    1998-11-24

    Workload characterization has been proven an essential tool to architecture design and performance evaluation in both scientific and commercial computing areas. Traditional workload characterization techniques include FLOPS rate, cache miss ratios, CPI (cycles per instruction or IPC, instructions per cycle) etc. With the complexity of sophisticated modern superscalar microprocessors, these traditional characterization techniques are not powerful enough to pinpoint the performance bottleneck of an application on a specific microprocessor. They are also incapable of immediately demonstrating the potential performance benefit of any architectural or functional improvement in a new processor design. To solve these problems, many people rely on simulators,more » which have substantial constraints especially on large-scale scientific computing applications. This paper presents a new technique of characterizing applications at the instruction level using hardware performance counters. It has the advantage of collecting instruction-level characteristics in a few runs virtually without overhead or slowdown. A variety of instruction counts can be utilized to calculate some average abstract workload parameters corresponding to microprocessor pipelines or functional units. Based on the microprocessor architectural constraints and these calculated abstract parameters, the architectural performance bottleneck for a specific application can be estimated. In particular, the analysis results can provide some insight to the problem that only a small percentage of processor peak performance can be achieved even for many very cache-friendly codes. Meanwhile, the bottleneck estimation can provide suggestions about viable architectural/functional improvement for certain workloads. Eventually, these abstract parameters can lead to the creation of an analytical microprocessor pipeline model and memory hierarchy model.« less

  15. Gene essentiality and the topology of protein interaction networks

    PubMed Central

    Coulomb, Stéphane; Bauer, Michel; Bernard, Denis; Marsolier-Kergoat, Marie-Claude

    2005-01-01

    The mechanistic bases for gene essentiality and for cell mutational resistance have long been disputed. The recent availability of large protein interaction databases has fuelled the analysis of protein interaction networks and several authors have proposed that gene dispensability could be strongly related to some topological parameters of these networks. However, many results were based on protein interaction data whose biases were not taken into account. In this article, we show that the essentiality of a gene in yeast is poorly related to the number of interactants (or degree) of the corresponding protein and that the physiological consequences of gene deletions are unrelated to several other properties of proteins in the interaction networks, such as the average degrees of their nearest neighbours, their clustering coefficients or their relative distances. We also found that yeast protein interaction networks lack degree correlation, i.e. a propensity for their vertices to associate according to their degrees. Gene essentiality and more generally cell resistance against mutations thus seem largely unrelated to many parameters of protein network topology. PMID:16087428

  16. Convergence properties of simple genetic algorithms

    NASA Technical Reports Server (NTRS)

    Bethke, A. D.; Zeigler, B. P.; Strauss, D. M.

    1974-01-01

    The essential parameters determining the behaviour of genetic algorithms were investigated. Computer runs were made while systematically varying the parameter values. Results based on the progress curves obtained from these runs are presented along with results based on the variability of the population as the run progresses.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, R.; Sáez, D., E-mail: rdale@umh.es, E-mail: diego.saez@uv.es

    The vector-tensor (VT) theory of gravitation revisited in this article was studied in previous papers, where it was proved that VT works and deserves attention. New observational data and numerical codes have motivated further development which is presented here. New research has been planed with the essential aim of proving that current cosmological observations, including Planck data, baryon acoustic oscillations (BAO), and so on, may be explained with VT, a theory which accounts for a kind of dark energy which has the same equation of state as vacuum. New versions of the codes CAMB and COSMOMC have been designed formore » applications to VT, and the resulting versions have been used to get the cosmological parameters of the VT model at suitable confidence levels. The parameters to be estimated are the same as in general relativity (GR), plus a new parameter D . For D = 0, VT linear cosmological perturbations reduces to those of GR, but the VT background may explain dark energy. The fits between observations and VT predictions lead to non vanishing | D | upper limits at the 1σ confidence level. The value D = 0 is admissible at this level, but this value is not that of the best fit in any case. Results strongly suggest that VT may explain current observations, at least, as well as GR; with the advantage that, as it is proved in this paper, VT has an additional parameter which facilitates adjustments to current observational data.« less

  18. Research on Product Conceptual Design Based on Integrated of TRIZ and HOQ

    NASA Astrophysics Data System (ADS)

    Xie, Jianmin; Tang, Xiaowo; Shao, Yunfei

    The conceptual design determines the success of the final product quality and competition of market. The determination of design parameters and the effective method to resolve parameters contradiction are the key to success. In this paper, the concept of HOQ products designed to determine the parameters, then using the TRIZ contradiction matrix and inventive principles of design parameters to solve the problem of contradictions. Facts have proved that the effective method is to obtain the product concept design parameters and to resolve contradictions line parameters.

  19. Qualification of computerized monitoring systems in a cell therapy facility compliant with the good manufacturing practices.

    PubMed

    Del Mazo-Barbara, Anna; Mirabel, Clémentine; Nieto, Valentín; Reyes, Blanca; García-López, Joan; Oliver-Vila, Irene; Vives, Joaquim

    2016-09-01

    Computerized systems (CS) are essential in the development and manufacture of cell-based medicines and must comply with good manufacturing practice, thus pushing academic developers to implement methods that are typically found within pharmaceutical industry environments. Qualitative and quantitative risk analyses were performed by Ishikawa and Failure Mode and Effects Analysis, respectively. A process for qualification of a CS that keeps track of environmental conditions was designed and executed. The simplicity of the Ishikawa analysis permitted to identify critical parameters that were subsequently quantified by Failure Mode Effects Analysis, resulting in a list of test included in the qualification protocols. The approach presented here contributes to simplify and streamline the qualification of CS in compliance with pharmaceutical quality standards.

  20. Compliant Turbomachine Sealing

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Deng, D.; Hendricks, J. A.

    2011-01-01

    Sealing interface materials and coatings are sacrificial, giving up their integrity for the benefit of the component. Seals that are compliant while still controlling leakage, dynamics, and coolant flows are sought to enhance turbomachine performance. Herein we investigate the leaf-seal configuration. While the leaf seal is classified as contacting, a ready modification using the leaf-housing arrangement in conjunction with an interface film rider (a bore seal, for example) provides for a film-riding noncontact seal. The leaf housing and leaf elements can be made from a variety of materials from plastic to ceramic. Four simplistic models are used to identify the physics essential to controlling leakage. Corroborated by CFD, these results provide design parameters for applications to within reasonable engineering certainty. Some potential improvements are proposed.

  1. Instrumentation complex for Langley Research Center's National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Russell, C. H.; Bryant, C. S.

    1977-01-01

    The instrumentation discussed in the present paper was developed to ensure reliable operation for a 2.5-meter cryogenic high-Reynolds-number fan-driven transonic wind tunnel. It will incorporate four CPU's and associated analog and digital input/output equipment, necessary for acquiring research data, controlling the tunnel parameters, and monitoring the process conditions. Connected in a multipoint distributed network, the CPU's will support data base management and processing; research measurement data acquisition and display; process monitoring; and communication control. The design will allow essential processes to continue, in the case of major hardware failures, by switching input/output equipment to alternate CPU's and by eliminating nonessential functions. It will also permit software modularization by CPU activity and thereby reduce complexity and development time.

  2. Negative inductance SQUID qubit operating in a quantum regime

    NASA Astrophysics Data System (ADS)

    Liu, W. Y.; Su, F. F.; Xu, H. K.; Li, Z. Y.; Tian, Ye; Zhu, X. B.; Lu, Li; Han, Siyuan; Zhao, S. P.

    2018-04-01

    Two-junction SQUIDs with negative mutual inductance between their two arms, called nSQUIDs, have been proposed for significantly improving quantum information transfer but their quantum nature has not been experimentally demonstrated. We have designed, fabricated, and characterized superconducting nSQUID qubits. Our results provide clear evidence of the quantum coherence of the device, whose properties are well described by theoretical calculations using parameters determined from spectroscopic measurement. In addition to their future application for fast quantum information transfer, the nSQUID qubits exhibit rich characteristics in their tunable two-dimensional (2D) potentials, energy levels, wave function symmetries, and dipole matrix elements, which are essential to the study of a wide variety of macroscopic quantum phenomena such as tunneling in 2D potential landscapes.

  3. Particle-size distribution modified effective medium theory and validation by magneto-dielectric Co-Ti substituted BaM ferrite composites

    NASA Astrophysics Data System (ADS)

    Li, Qifan; Chen, Yajie; Harris, Vincent G.

    2018-05-01

    This letter reports an extended effective medium theory (EMT) including particle-size distribution functions to maximize the magnetic properties of magneto-dielectric composites. It is experimentally verified by Co-Ti substituted barium ferrite (BaCoxTixFe12-2xO19)/wax composites with specifically designed particle-size distributions. In the form of an integral equation, the extended EMT formula essentially takes the size-dependent parameters of magnetic particle fillers into account. It predicts the effective permeability of magneto-dielectric composites with various particle-size distributions, indicating an optimal distribution for a population of magnetic particles. The improvement of the optimized effective permeability is significant concerning magnetic particles whose properties are strongly size dependent.

  4. Investigation of Carbohydrate Recognition via Computer Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We reviewmore » the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.« less

  5. Investigation of Carbohydrate Recognition via Computer Simulation

    DOE PAGES

    Johnson, Quentin R.; Lindsay, Richard J.; Petridis, Loukas; ...

    2015-04-28

    Carbohydrate recognition by proteins, such as lectins and other (bio)molecules, can be essential for many biological functions. Interest has arisen due to potential protein and drug design and future bioengineering applications. A quantitative measurement of carbohydrate-protein interaction is thus important for the full characterization of sugar recognition. Here, we focus on the aspect of utilizing computer simulations and biophysical models to evaluate the strength and specificity of carbohydrate recognition in this review. With increasing computational resources, better algorithms and refined modeling parameters, using state-of-the-art supercomputers to calculate the strength of the interaction between molecules has become increasingly mainstream. We reviewmore » the current state of this technique and its successful applications for studying protein-sugar interactions in recent years.« less

  6. Interpretation of statistical results.

    PubMed

    García Garmendia, J L; Maroto Monserrat, F

    2018-02-21

    The appropriate interpretation of the statistical results is crucial to understand the advances in medical science. The statistical tools allow us to transform the uncertainty and apparent chaos in nature to measurable parameters which are applicable to our clinical practice. The importance of understanding the meaning and actual extent of these instruments is essential for researchers, the funders of research and for professionals who require a permanent update based on good evidence and supports to decision making. Various aspects of the designs, results and statistical analysis are reviewed, trying to facilitate his comprehension from the basics to what is most common but no better understood, and bringing a constructive, non-exhaustive but realistic look. Copyright © 2018 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  7. Balancing novelty with confined chemical space in modern drug discovery.

    PubMed

    Medina-Franco, José L; Martinez-Mayorga, Karina; Meurice, Nathalie

    2014-02-01

    The concept of chemical space has broad applications in drug discovery. In response to the needs of drug discovery campaigns, different approaches are followed to efficiently populate, mine and select relevant chemical spaces that overlap with biologically relevant chemical spaces. This paper reviews major trends in current drug discovery and their impact on the mining and population of chemical space. We also survey different approaches to develop screening libraries with confined chemical spaces balancing physicochemical properties. In this context, the confinement is guided by criteria that can be divided in two broad categories: i) library design focused on a relevant therapeutic target or disease and ii) library design focused on the chemistry or a desired molecular function. The design and development of chemical libraries should be associated with the specific purpose of the library and the project goals. The high complexity of drug discovery and the inherent imperfection of individual experimental and computational technologies prompt the integration of complementary library design and screening approaches to expedite the identification of new and better drugs. Library design approaches including diversity-oriented synthesis, biological-oriented synthesis or combinatorial library design, to name a few, and the design of focused libraries driven by target/disease, chemical structure or molecular function are more efficient if they are guided by multi-parameter optimization. In this context, consideration of pharmaceutically relevant properties is essential for balancing novelty with chemical space in drug discovery.

  8. Market Intelligence Guide

    DTIC Science & Technology

    2012-01-05

    learn about the latest designs , trends in fashion, and scientific breakthroughs in chair ergonomics . Using this tradeshow, the Furnishings Commodity...these tools is essential to designing the optimal contract that reaps the most value from the exchange. Therefore, this market intelligence guide is...portfolio matrix) that are transferrable to the not-for-profit sector are absent. Each of these tools is essential to designing the optimal contract that

  9. Spacecraft telecommunications system mass estimates

    NASA Technical Reports Server (NTRS)

    Yuen, J. H.; Sakamoto, L. L.

    1988-01-01

    Mass is the most important limiting parameter for present-day planetary spacecraft design, In fact, the entire design can be characterized by mass. The more efficient the design of the spacecraft, the less mass will be required. The communications system is an essential and integral part of planetary spacecraft. A study is presented of the mass attributable to the communications system for spacecraft designs used in recent missions in an attempt to help guide future design considerations and research and development efforts. The basic approach is to examine the spacecraft by subsystem and allocate a portion of each subsystem to telecommunications. Conceptually, this is to divide the spacecraft into two parts, telecommunications and nontelecommunications. In this way, it is clear what the mass attributable to the communications system is. The percentage of mass is calculated using the actual masses of the spacecraft parts, except in the case of CRAF. In that case, estimated masses are used since the spacecraft was not yet built. The results show that the portion of the spacecraft attributable to telecommunications is substantial. The mass fraction for Voyager, Galileo, and CRAF (Mariner Mark 2) is 34, 19, and 18 percent, respectively. The large reduction of telecommunications mass from Voyager to Galileo is mainly due to the use of a deployable antenna instead of the solid antenna on Voyager.

  10. Honey Antibacterial Effect Boosting Using Origanum vulgare L. Essential Oil

    PubMed Central

    Imtara, Hamada; Elamine, Youssef

    2018-01-01

    The appearance of new bacterial strains which cause pathogenic diseases and which are resistant to the most used antibiotics requires probing new antibacterial agents sources. Therefore, the main aim of the present work was to follow the antibacterial activity of honey samples from Palestine and Morocco, after the combination with Origanum vulgare L. essential oil, and figure out whether the honey physicochemical parameters and geographic origin influence the final activity. The results of this study showed good geographical discrimination between the Palestinians and Moroccan honey samples. The antioxidant and antimicrobial activities showed a significant correlation with honey color, melanoidins, and phenolic and flavonoids contents. Furthermore, the possible effect of honey physicochemical parameters on the gained antimicrobial activities was assessed using the principal component analysis (PCA). Some parameters showed a promising effect and seem to be important in the process of honey samples selection. Namely, melanoidins content, phenolic content, electrical conductivity, and mineral content were shown to be positively influencing the gained antibacterial activity after the combination with essential oil against the tested strains, although a significant negative correlation was seen with the FIC only in the case of Escherichia coli (ATB: 57). PMID:29736180

  11. Honey Antibacterial Effect Boosting Using Origanum vulgare L. Essential Oil.

    PubMed

    Imtara, Hamada; Elamine, Youssef; Lyoussi, Badiâa

    2018-01-01

    The appearance of new bacterial strains which cause pathogenic diseases and which are resistant to the most used antibiotics requires probing new antibacterial agents sources. Therefore, the main aim of the present work was to follow the antibacterial activity of honey samples from Palestine and Morocco, after the combination with Origanum vulgare L. essential oil, and figure out whether the honey physicochemical parameters and geographic origin influence the final activity. The results of this study showed good geographical discrimination between the Palestinians and Moroccan honey samples. The antioxidant and antimicrobial activities showed a significant correlation with honey color, melanoidins, and phenolic and flavonoids contents. Furthermore, the possible effect of honey physicochemical parameters on the gained antimicrobial activities was assessed using the principal component analysis (PCA). Some parameters showed a promising effect and seem to be important in the process of honey samples selection. Namely, melanoidins content, phenolic content, electrical conductivity, and mineral content were shown to be positively influencing the gained antibacterial activity after the combination with essential oil against the tested strains, although a significant negative correlation was seen with the FIC only in the case of Escherichia coli (ATB: 57).

  12. Kernel Ada Programming Support Environment (KAPSE) Interface Team: Public Report. Volume II.

    DTIC Science & Technology

    1982-10-28

    essential I parameters from our work so far in this area and, using trade-offs concerning these, construct the KIT’s recommended alternative. 1145...environment that are also in the development states. At this point in development it is essential for the KITEC to provide a forum and act as a focal...standardization in this area. Moreover, this is an area with considerable divergence in proposed approaches. Or the other hand, an essential tool from the point of

  13. JPRS Report, Science & Technology Europe

    DTIC Science & Technology

    1988-05-10

    given environment essentially depends on three parameters ; these are: • the adhesion between the adhesive and the supports; • the cohesion of the...durability/CND J Electric current under high field/Tensile test at 4 degrees K I Synthetic hydroxyapatite /behavior under friction and wear GB NaCl, s...French programs GB Inventory of accelerated test procedures, correlation among parameters FC Influence of experimental parameters 8615 JPRS-EST-88

  14. Analytical methods in the high conversion reactor core design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeggel, W.; Oldekop, W.; Axmann, J.K.

    High conversion reactor (HCR) design methods have been used at the Technical University of Braunschweig (TUBS) with the technological support of Kraftwerk Union (KWU). The present state and objectives of this cooperation between KWU and TUBS in the field of HCRs have been described using existing design models and current activities aimed at further development and validation of the codes. The hard physical and thermal-hydraulic boundary conditions of pressurized water reactor (PWR) cores with a high degree of fuel utilization result from the tight packing of the HCR fuel rods and the high fissionable plutonium content of the fuel. Inmore » terms of design, the problem will be solved with rod bundles whose fuel rods are adjusted by helical spacers to the proposed small rod pitches. These HCR properties require novel computational models for neutron physics, thermal hydraulics, and fuel rod design. By means of a survey of the codes, the analytical procedure for present-day HCR core design is presented. The design programs are currently under intensive development, as design tools with a solid, scientific foundation and with essential parameters that are widely valid and are required for a promising optimization of the HCR core. Design results and a survey of future HCR development are given. In this connection, the reoptimization of the PWR core in the direction of an HCR is considered a fascinating scientific task, with respect to both economic and safety aspects.« less

  15. Effect of Oregano Essential Oil (Origanum vulgare subsp. hirtum) on the Storage Stability and Quality Parameters of Ground Chicken Breast Meat.

    PubMed

    Al-Hijazeen, Marwan; Lee, Eun Joo; Mendonca, Aubrey; Ahn, Dong Uk

    2016-06-07

    A study was conducted to investigate the effect of oregano essential oil on the oxidative stability and color of raw and cooked chicken breast meats. Five treatments, including (1) control (none added); (2) 100 ppm oregano essential oil; (3) 300 ppm oregano essential oil; (4) 400 ppm oregano essential oil; and (5) 5 ppm butylated hydroxyanisole (BHA), were prepared with ground boneless, skinless chicken breast meat and used for both raw and cooked meat studies. For raw meat study, samples were individually packaged in oxygen-permeable bags and stored in a cold room (4 °C) for 7 days. For cooked meat study, the raw meat samples were vacuum-packaged in oxygen-impermeable vacuum bags and then cooked in-bag to an internal temperature of 75 °C. After cooling to room temperature, the cooked meats were repackaged in new oxygen-permeable bags and then stored at 4 °C for 7 days. Both raw and cooked meats were analyzed for lipid and protein oxidation, volatiles, and color at 0, 3, and 7 days of storage. Oregano essential oil significantly reduced (p < 0.05) lipid and protein oxidation, and improved color stability of raw and cooked meat. However, oregano oil at 400 ppm showed the strongest effect for all these parameters. Hexanal was the major aldehyde, which was decreased significantly (p < 0.05) by oregano oil treatment, in cooked meat. Overall, oregano essential oil at 100-400 ppm levels could be a good preservative that can replace the synthetic antioxidant in chicken meat.

  16. Effect of Oregano Essential Oil (Origanum vulgare subsp. hirtum) on the Storage Stability and Quality Parameters of Ground Chicken Breast Meat

    PubMed Central

    Al-Hijazeen, Marwan; Lee, Eun Joo; Mendonca, Aubrey; Ahn, Dong Uk

    2016-01-01

    A study was conducted to investigate the effect of oregano essential oil on the oxidative stability and color of raw and cooked chicken breast meats. Five treatments, including (1) control (none added); (2) 100 ppm oregano essential oil; (3) 300 ppm oregano essential oil; (4) 400 ppm oregano essential oil; and (5) 5 ppm butylated hydroxyanisole (BHA), were prepared with ground boneless, skinless chicken breast meat and used for both raw and cooked meat studies. For raw meat study, samples were individually packaged in oxygen-permeable bags and stored in a cold room (4 °C) for 7 days. For cooked meat study, the raw meat samples were vacuum-packaged in oxygen-impermeable vacuum bags and then cooked in-bag to an internal temperature of 75 °C. After cooling to room temperature, the cooked meats were repackaged in new oxygen-permeable bags and then stored at 4 °C for 7 days. Both raw and cooked meats were analyzed for lipid and protein oxidation, volatiles, and color at 0, 3, and 7 days of storage. Oregano essential oil significantly reduced (p < 0.05) lipid and protein oxidation, and improved color stability of raw and cooked meat. However, oregano oil at 400 ppm showed the strongest effect for all these parameters. Hexanal was the major aldehyde, which was decreased significantly (p < 0.05) by oregano oil treatment, in cooked meat. Overall, oregano essential oil at 100–400 ppm levels could be a good preservative that can replace the synthetic antioxidant in chicken meat. PMID:27338486

  17. Single neuron modeling and data assimilation in BNST neurons

    NASA Astrophysics Data System (ADS)

    Farsian, Reza

    Neurons, although tiny in size, are vastly complicated systems, which are responsible for the most basic yet essential functions of any nervous system. Even the most simple models of single neurons are usually high dimensional, nonlinear, and contain many parameters and states which are unobservable in a typical neurophysiological experiment. One of the most fundamental problems in experimental neurophysiology is the estimation of these parameters and states, since knowing their values is essential in identification, model construction, and forward prediction of biological neurons. Common methods of parameter and state estimation do not perform well for neural models due to their high dimensionality and nonlinearity. In this dissertation, two alternative approaches for parameters and state estimation of biological neurons have been demonstrated: dynamical parameter estimation (DPE) and a Markov Chain Monte Carlo (MCMC) method. The first method uses elements of chaos control and synchronization theory for parameter and state estimation. MCMC is a statistical approach which uses a path integral formulation to evaluate a mean and an error bound for these unobserved parameters and states. These methods have been applied to biological system of neurons in Bed Nucleus of Stria Termialis neurons (BNST) of rats. State and parameters of neurons in both systems were estimated, and their value were used for recreating a realistic model and predicting the behavior of the neurons successfully. The knowledge of biological parameters can ultimately provide a better understanding of the internal dynamics of a neuron in order to build robust models of neuron networks.

  18. Improved adaptive splitting and selection: the hybrid training method of a classifier based on a feature space partitioning.

    PubMed

    Jackowski, Konrad; Krawczyk, Bartosz; Woźniak, Michał

    2014-05-01

    Currently, methods of combined classification are the focus of intense research. A properly designed group of combined classifiers exploiting knowledge gathered in a pool of elementary classifiers can successfully outperform a single classifier. There are two essential issues to consider when creating combined classifiers: how to establish the most comprehensive pool and how to design a fusion model that allows for taking full advantage of the collected knowledge. In this work, we address the issues and propose an AdaSS+, training algorithm dedicated for the compound classifier system that effectively exploits local specialization of the elementary classifiers. An effective training procedure consists of two phases. The first phase detects the classifier competencies and adjusts the respective fusion parameters. The second phase boosts classification accuracy by elevating the degree of local specialization. The quality of the proposed algorithms are evaluated on the basis of a wide range of computer experiments that show that AdaSS+ can outperform the original method and several reference classifiers.

  19. Rho-Isp Revisited and Basic Stage Mass Estimating for Launch Vehicle Conceptual Sizing Studies

    NASA Technical Reports Server (NTRS)

    Kibbey, Timothy P.

    2015-01-01

    The ideal rocket equation is manipulated to demonstrate the essential link between propellant density and specific impulse as the two primary stage performance drivers for a launch vehicle. This is illustrated by examining volume-limited stages such as first stages and boosters. This proves to be a good approximation for first-order or Phase A vehicle design studies for solid rocket motors and for liquid stages, except when comparing to hydrogen-fueled stages. A next-order mass model is developed that is able to model the mass differences between hydrogen-fueled and other stages. Propellants considered range in density from liquid methane to inhibited red fuming nitric acid. Calculated comparisons are shown for solid rocket boosters, liquid first stages, liquid upper stages, and a balloon-deployed single-stage-to-orbit concept. The derived relationships are ripe for inclusion in a multi-stage design space exploration and optimization algorithm, as well as for single-parameter comparisons such as those shown herein.

  20. Synopsis of a computer program designed to interface a personal computer with the fast data acquisition system of a time-of-flight mass spectrometer

    NASA Technical Reports Server (NTRS)

    Bechtel, R. D.; Mateos, M. A.; Lincoln, K. A.

    1988-01-01

    Briefly described are the essential features of a computer program designed to interface a personal computer with the fast, digital data acquisition system of a time-of-flight mass spectrometer. The instrumentation was developed to provide a time-resolved analysis of individual vapor pulses produced by the incidence of a pulsed laser beam on an ablative material. The high repetition rate spectrometer coupled to a fast transient recorder captures complete mass spectra every 20 to 35 microsecs, thereby providing the time resolution needed for the study of this sort of transient event. The program enables the computer to record the large amount of data generated by the system in short time intervals, and it provides the operator the immediate option of presenting the spectral data in several different formats. Furthermore, the system does this with a high degree of automation, including the tasks of mass labeling the spectra and logging pertinent instrumental parameters.

  1. A Biochemical Oscillator Using Excitatory Molecules for Nanonetworks.

    PubMed

    Shitiri, Ethungshan; Cho, Ho-Shin

    2016-10-01

    For nanonetworks to be able to achieve large-scale functionality, such as to respond collectively to a trigger, synchrony between nanomachines is essential. However, to facilitate synchronization, some sort of physical clocking mechanism is required, such as the oscillators driven by auto-inhibitory molecules or by auto-inducing molecules. In this study, taking inspiration from the widely studied biological oscillatory phenomena called Calcium (Ca 2+ ) oscillations, we undertake a different approach to design an oscillator. Our model employs three different types of excitatory molecules that work in tandem to generate oscillatory phenomenon in the concentration levels of the molecule of interest. The main objective of the study is to model a high frequency biochemical oscillator, along with the investigations to identify and determine the parameters that affect the period of the oscillations. The investigations entail and highlight the design of the reserve unit, a reservoir of the molecule of interest, as a key factor in realizing a high frequency stable biochemical oscillator.

  2. Prediction Of Tensile And Shear Strength Of Friction Surfaced Tool Steel Deposit By Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Manzoor Hussain, M.; Pitchi Raju, V.; Kandasamy, J.; Govardhan, D.

    2018-04-01

    Friction surface treatment is well-established solid technology and is used for deposition, abrasion and corrosion protection coatings on rigid materials. This novel process has wide range of industrial applications, particularly in the field of reclamation and repair of damaged and worn engineering components. In this paper, we present the prediction of tensile and shear strength of friction surface treated tool steel using ANN for simulated results of friction surface treatment. This experiment was carried out to obtain tool steel coatings of low carbon steel parts by changing contribution process parameters essentially friction pressure, rotational speed and welding speed. The simulation is performed by a 33-factor design that takes into account the maximum and least limits of the experimental work performed with the 23-factor design. Neural network structures, such as the Feed Forward Neural Network (FFNN), were used to predict tensile and shear strength of tool steel sediments caused by friction.

  3. Evaluation of the best fit distribution for partial duration series of daily rainfall in Madinah, western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alahmadi, F.; Rahman, N. A.; Abdulrazzak, M.

    2014-09-01

    Rainfall frequency analysis is an essential tool for the design of water related infrastructure. It can be used to predict future flood magnitudes for a given magnitude and frequency of extreme rainfall events. This study analyses the application of rainfall partial duration series (PDS) in the vast growing urban Madinah city located in the western part of Saudi Arabia. Different statistical distributions were applied (i.e. Normal, Log Normal, Extreme Value type I, Generalized Extreme Value, Pearson Type III, Log Pearson Type III) and their distribution parameters were estimated using L-moments methods. Also, different selection criteria models are applied, e.g. Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC) and Anderson-Darling Criterion (ADC). The analysis indicated the advantage of Generalized Extreme Value as the best fit statistical distribution for Madinah partial duration daily rainfall series. The outcome of such an evaluation can contribute toward better design criteria for flood management, especially flood protection measures.

  4. Design of tyre force excitation for tyre-road friction estimation

    NASA Astrophysics Data System (ADS)

    Albinsson, Anton; Bruzelius, Fredrik; Jacobson, Bengt; Fredriksson, Jonas

    2017-02-01

    Knowledge of the current tyre-road friction coefficient is essential for future autonomous vehicles. The environmental conditions, and the tyre-road friction in particular, determine both the braking distance and the maximum cornering velocity and thus set the boundaries for the vehicle. Tyre-road friction is difficult to estimate during normal driving due to low levels of tyre force excitation. This problem can be solved by using active tyre force excitation. A torque is added to one or several wheels in the purpose of estimating the tyre-road friction coefficient. Active tyre force excitation provides the opportunity to design the tyre force excitation freely. This study investigates how the tyre force should be applied to minimise the error of the tyre-road friction estimate. The performance of different excitation strategies was found to be dependent on both tyre model choice and noise level. Furthermore, the advantage with using tyre models with more parameters decreased when noise was added to the force and slip ratio.

  5. A Fast and Scalable Method for A-Optimal Design of Experiments for Infinite-dimensional Bayesian Nonlinear Inverse Problems with Application to Porous Medium Flow

    NASA Astrophysics Data System (ADS)

    Petra, N.; Alexanderian, A.; Stadler, G.; Ghattas, O.

    2015-12-01

    We address the problem of optimal experimental design (OED) for Bayesian nonlinear inverse problems governed by partial differential equations (PDEs). The inverse problem seeks to infer a parameter field (e.g., the log permeability field in a porous medium flow model problem) from synthetic observations at a set of sensor locations and from the governing PDEs. The goal of the OED problem is to find an optimal placement of sensors so as to minimize the uncertainty in the inferred parameter field. We formulate the OED objective function by generalizing the classical A-optimal experimental design criterion using the expected value of the trace of the posterior covariance. This expected value is computed through sample averaging over the set of likely experimental data. Due to the infinite-dimensional character of the parameter field, we seek an optimization method that solves the OED problem at a cost (measured in the number of forward PDE solves) that is independent of both the parameter and the sensor dimension. To facilitate this goal, we construct a Gaussian approximation to the posterior at the maximum a posteriori probability (MAP) point, and use the resulting covariance operator to define the OED objective function. We use randomized trace estimation to compute the trace of this covariance operator. The resulting OED problem includes as constraints the system of PDEs characterizing the MAP point, and the PDEs describing the action of the covariance (of the Gaussian approximation to the posterior) to vectors. We control the sparsity of the sensor configurations using sparsifying penalty functions, and solve the resulting penalized bilevel optimization problem via an interior-point quasi-Newton method, where gradient information is computed via adjoints. We elaborate our OED method for the problem of determining the optimal sensor configuration to best infer the log permeability field in a porous medium flow problem. Numerical results show that the number of PDE solves required for the evaluation of the OED objective function and its gradient is essentially independent of both the parameter dimension and the sensor dimension (i.e., the number of candidate sensor locations). The number of quasi-Newton iterations for computing an OED also exhibits the same dimension invariance properties.

  6. Genetic parameters for milk fatty acids, milk yield and quality traits of a Holstein cattle population reared under tropical conditions

    USDA-ARS?s Scientific Manuscript database

    Information about genetic parameters is essential for selection decisions and genetic evaluation. Those estimates are population specific, but few studies are available for dairy cattle populations reared under tropical and subtropical conditions. Heritability and genetic correlations for milk yield...

  7. Real-time monitoring of peanut drying parameters in semitrailers

    USDA-ARS?s Scientific Manuscript database

    Knowledge of peanut drying parameters such as temperature and relative humidity of the ambient air, temperature and relative humidity of the air being blown into the peanuts and kernel moisture content is essential in managing the dryer for optimal drying rate. The optimal drying rate is required to...

  8. Robust design of configurations and parameters of adaptable products

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua

    2014-03-01

    An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.

  9. Coupling Hydraulic Fracturing Propagation and Gas Well Performance for Simulation of Production in Unconventional Shale Gas Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, C.; Winterfeld, P. H.; Wu, Y. S.; Wang, Y.; Chen, D.; Yin, C.; Pan, Z.

    2014-12-01

    Hydraulic fracturing combined with horizontal drilling has made it possible to economically produce natural gas from unconventional shale gas reservoirs. An efficient methodology for evaluating hydraulic fracturing operation parameters, such as fluid and proppant properties, injection rates, and wellhead pressure, is essential for the evaluation and efficient design of these processes. Traditional numerical evaluation and optimization approaches are usually based on simulated fracture properties such as the fracture area. In our opinion, a methodology based on simulated production data is better, because production is the goal of hydraulic fracturing and we can calibrate this approach with production data that is already known. This numerical methodology requires a fully-coupled hydraulic fracture propagation and multi-phase flow model. In this paper, we present a general fully-coupled numerical framework to simulate hydraulic fracturing and post-fracture gas well performance. This three-dimensional, multi-phase simulator focuses on: (1) fracture width increase and fracture propagation that occurs as slurry is injected into the fracture, (2) erosion caused by fracture fluids and leakoff, (3) proppant subsidence and flowback, and (4) multi-phase fluid flow through various-scaled anisotropic natural and man-made fractures. Mathematical and numerical details on how to fully couple the fracture propagation and fluid flow parts are discussed. Hydraulic fracturing and production operation parameters, and properties of the reservoir, fluids, and proppants, are taken into account. The well may be horizontal, vertical, or deviated, as well as open-hole or cemented. The simulator is verified based on benchmarks from the literature and we show its application by simulating fracture network (hydraulic and natural fractures) propagation and production data history matching of a field in China. We also conduct a series of real-data modeling studies with different combinations of hydraulic fracturing parameters and present the methodology to design these operations with feedback of simulated production data. The unified model aids in the optimization of hydraulic fracturing design, operations, and production.

  10. Vulnerability of groundwater resources to nitrate pollution: A simple and effective procedure for delimiting Nitrate Vulnerable Zones.

    PubMed

    Arauzo, Mercedes

    2017-01-01

    This research was undertaken to further our understanding of the factors involved in nonpoint-source nitrate pollution of groundwater. The shortcomings of some of the most commonly used methods for assessing groundwater vulnerability have been analysed and a new procedure that incorporates key improvements has been proposed. The new approach (LU-IV procedure) allows us to assess and map groundwater vulnerability to nitrate pollution and to accurately delimit the Nitrate Vulnerable Zones. The LU-IV procedure proved more accurate than the most widely used methods to assess groundwater vulnerability (DRASTIC, GOD), when compared with nitrate distribution in the groundwater of 46 aquifers included in the study (using the drainage basin as the unit of analysis). The proposed procedure stands out by meeting the following requirements: (1) it uses readily available parameters that provide enough data to feed the model, (2) it excludes redundant parameters, (3) it avoids the need to assign insufficiently contrasted weights to parameters, (4) it assess the whole catchment area that potentially drains N-polluted waters into the receptor aquifer, (5) it can be implemented within a GIS, and (6) it provides a multi-scale representation. As the LU-IV procedure has been demonstrated to be a reliable tool for delimiting NVZ, it could be particularly interesting to use it in countries where certain types of environmental data are either not available or have only limited availability. Based on this study (and according to the LU-IV procedure), it was concluded that an area of at least 1728km 2 should be considered as NVZ. This sharply contrasts with the current 328km 2 officially designated in the study area by the Spain's regional administrations. These results highlight the need to redefine the current NVZ designation, which is essential for an appropriate implementation of action programmes designed to restore water quality in line with Directive 91/676/EEC. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Process design and control of a twin screw hot melt extrusion for continuous pharmaceutical tamper-resistant tablet production.

    PubMed

    Baronsky-Probst, J; Möltgen, C-V; Kessler, W; Kessler, R W

    2016-05-25

    Hot melt extrusion (HME) is a well-known process within the plastic and food industries that has been utilized for the past several decades and is increasingly accepted by the pharmaceutical industry for continuous manufacturing. For tamper-resistant formulations of e.g. opioids, HME is the most efficient production technique. The focus of this study is thus to evaluate the manufacturability of the HME process for tamper-resistant formulations. Parameters such as the specific mechanical energy (SME), as well as the melt pressure and its standard deviation, are important and will be discussed in this study. In the first step, the existing process data are analyzed by means of multivariate data analysis. Key critical process parameters such as feed rate, screw speed, and the concentration of the API in the polymers are identified, and critical quality parameters of the tablet are defined. In the second step, a relationship between the critical material, product and process quality attributes are established by means of Design of Experiments (DoEs). The resulting SME and the temperature at the die are essential data points needed to indirectly qualify the degradation of the API, which should be minimal. NIR-spectroscopy is used to monitor the material during the extrusion process. In contrast to most applications in which the probe is directly integrated into the die, the optical sensor is integrated into the cooling line of the strands. This saves costs in the probe design and maintenance and increases the robustness of the chemometric models. Finally, a process measurement system is installed to monitor and control all of the critical attributes in real-time by means of first principles, DoE models, soft sensor models, and spectroscopic information. Overall, the process is very robust as long as the screw speed is kept low. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The randomised controlled trial design: unrecognized opportunities for health sciences librarianship.

    PubMed

    Eldredge, Jonathan D

    2003-06-01

    to describe the essential components of the Randomised Controlled Trial (RCT) and its major variations; to describe less conventional applications of the RCT design found in the health sciences literature with potential relevance to health sciences librarianship; to discuss the limited number of RCTs within health sciences librarianship. narrative review supported to a limited extent with PubMed and Library Literature database searches consistent with specific search parameters. In addition, more systematic methods, including handsearching of specific journals, to identify health sciences librarianship RCTs. While many RCTs within the health sciences follow more conventional patterns, some RCTs assume certain unique features. Selected examples illustrate the adaptations of this experimental design to answering questions of possible relevance to health sciences librarians. The author offers several strategies for controlling bias in library and informatics applications of the RCT and acknowledges the potential of the electronic era in providing many opportunities to utilize the blinding aspects of RCTs. RCTs within health sciences librarianship inhabit a limited number of subject domains such as education. This limited scope offers both advantages and disadvantages for making Evidence-Based Librarianship (EBL) a reality. The RCT design offers the potential to answer far more EBL questions than have been addressed by the design to date. Librarians need only extend their horizons through use of the versatile RCT design into new subject domains to facilitate making EBL a reality.

  13. Numerical Analysis of Stress Concentration in Isotropic and Laminated Plates with Inclined Elliptical Holes

    NASA Astrophysics Data System (ADS)

    Khechai, Abdelhak; Tati, Abdelouahab; Belarbi, Mohamed Ouejdi; Guettala, Abdelhamid

    2018-03-01

    The design of high-performance composite structures frequently includes discontinuities to reduce the weight and fastener holes for joining. Understanding the behavior of perforated laminates is necessary for structural design. In the current work, stress concentrations taking place in laminated and isotropic plates subjected to tensile load are investigated. The stress concentrations are obtained using a recent quadrilateral finite element of four nodes with 32 DOFs. The present finite element (PE) is a combination of two finite elements. The first finite element is a linear isoparametric membrane element and the second is a high precision Hermitian element. One of the essential objectives of the current investigation is to confirm the capability and efficiency of the PE for stress determination in perforated laminates. Different geometric parameters, such as the cutout form, sizes and cutout orientations, which have a considerable effect on the stress values, are studied. Using the present finite element formulation, the obtained results are found to be in good agreement with the analytical findings, which validates the capability and the efficiency of the proposed formulation. Finally, to understand the material parameters effect such as the orientation of fibers and degree of orthotropy ratio on the stress values, many figures are presented using different ellipse major to minor axis ratio. The stress concentration values are considerably affected by increasing the orientation angle of the fibers and degree of orthotropy.

  14. Reporting to Improve Reproducibility and Facilitate Validity Assessment for Healthcare Database Studies V1.0.

    PubMed

    Wang, Shirley V; Schneeweiss, Sebastian; Berger, Marc L; Brown, Jeffrey; de Vries, Frank; Douglas, Ian; Gagne, Joshua J; Gini, Rosa; Klungel, Olaf; Mullins, C Daniel; Nguyen, Michael D; Rassen, Jeremy A; Smeeth, Liam; Sturkenboom, Miriam

    2017-09-01

    Defining a study population and creating an analytic dataset from longitudinal healthcare databases involves many decisions. Our objective was to catalogue scientific decisions underpinning study execution that should be reported to facilitate replication and enable assessment of validity of studies conducted in large healthcare databases. We reviewed key investigator decisions required to operate a sample of macros and software tools designed to create and analyze analytic cohorts from longitudinal streams of healthcare data. A panel of academic, regulatory, and industry experts in healthcare database analytics discussed and added to this list. Evidence generated from large healthcare encounter and reimbursement databases is increasingly being sought by decision-makers. Varied terminology is used around the world for the same concepts. Agreeing on terminology and which parameters from a large catalogue are the most essential to report for replicable research would improve transparency and facilitate assessment of validity. At a minimum, reporting for a database study should provide clarity regarding operational definitions for key temporal anchors and their relation to each other when creating the analytic dataset, accompanied by an attrition table and a design diagram. A substantial improvement in reproducibility, rigor and confidence in real world evidence generated from healthcare databases could be achieved with greater transparency about operational study parameters used to create analytic datasets from longitudinal healthcare databases. © 2017 The Authors. Pharmacoepidemiology & Drug Safety Published by John Wiley & Sons Ltd.

  15. Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties

    DOE PAGES

    Ilas, Germina; Liljenfeldt, Henrik

    2017-05-19

    Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less

  16. Decay heat uncertainty for BWR used fuel due to modeling and nuclear data uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilas, Germina; Liljenfeldt, Henrik

    Characterization of the energy released from radionuclide decay in nuclear fuel discharged from reactors is essential for the design, safety, and licensing analyses of used nuclear fuel storage, transportation, and repository systems. There are a limited number of decay heat measurements available for commercial used fuel applications. Because decay heat measurements can be expensive or impractical for covering the multitude of existing fuel designs, operating conditions, and specific application purposes, decay heat estimation relies heavily on computer code prediction. Uncertainty evaluation for calculated decay heat is an important aspect when assessing code prediction and a key factor supporting decision makingmore » for used fuel applications. While previous studies have largely focused on uncertainties in code predictions due to nuclear data uncertainties, this study discusses uncertainties in calculated decay heat due to uncertainties in assembly modeling parameters as well as in nuclear data. Capabilities in the SCALE nuclear analysis code system were used to quantify the effect on calculated decay heat of uncertainties in nuclear data and selected manufacturing and operation parameters for a typical boiling water reactor (BWR) fuel assembly. Furthermore, the BWR fuel assembly used as the reference case for this study was selected from a set of assemblies for which high-quality decay heat measurements are available, to assess the significance of the results through comparison with calculated and measured decay heat data.« less

  17. Parameter estimation of a three-axis spacecraft simulator using recursive least-squares approach with tracking differentiator and Extended Kalman Filter

    NASA Astrophysics Data System (ADS)

    Xu, Zheyao; Qi, Naiming; Chen, Yukun

    2015-12-01

    Spacecraft simulators are widely used to study the dynamics, guidance, navigation, and control of a spacecraft on the ground. A spacecraft simulator can have three rotational degrees of freedom by using a spherical air-bearing to simulate a frictionless and micro-gravity space environment. The moment of inertia and center of mass are essential for control system design of ground-based three-axis spacecraft simulators. Unfortunately, they cannot be known precisely. This paper presents two approaches, i.e. a recursive least-squares (RLS) approach with tracking differentiator (TD) and Extended Kalman Filter (EKF) method, to estimate inertia parameters. The tracking differentiator (TD) filter the noise coupled with the measured signals and generate derivate of the measured signals. Combination of two TD filters in series obtains the angular accelerations that are required in RLS (TD-TD-RLS). Another method that does not need to estimate the angular accelerations is using the integrated form of dynamics equation. An extended TD (ETD) filter which can also generate the integration of the function of signals is presented for RLS (denoted as ETD-RLS). States and inertia parameters are estimated simultaneously using EKF. The observability is analyzed. All proposed methods are illustrated by simulations and experiments.

  18. Wedge gate valves selecting essentials in pipeline systems designing based on permissible operation parameters

    NASA Astrophysics Data System (ADS)

    Zakirnichnaya, M. M.; Kulsharipov, I. M.

    2017-10-01

    Wedge gate valves are widely used at the fuel and energy complex enterprises. The pipeline valves manufacturers indicate the safe operation resource according to the current regulatory and technical documentation. In this case, the resource value of the valve body strength calculation results is taken into consideration as the main structural part. However, it was determined that the wedge gate valves fail before the assigned resource due to the occurrence of conditions under which the wedge breaks in the hooks and, accordingly, the sealing integrity is not ensured. In this regard, it became necessary to assess the conditions under which the resource should be assigned not only to the valve body, but also to take into account the wedge durability. For this purpose, wedge resource calculations were made using the example of ZKL2 250-25 and ZKL2 300-25 valves using the ABAQUS software package FE-SAFE module under the technological parameters influence on the basis of their stressstrain state calculation results. Operating conditions, under which the wedge resource value is lower than the one set by the manufacturer, were determined. A technique for limiting the operating parameters for ensuring the wedge durability during the wedge gate valve assigned resource is proposed.

  19. A new linear plasma device for the study of plasma waves in the electron magnetohydrodynamics regime

    NASA Astrophysics Data System (ADS)

    Joshi, Garima; Ravi, G.; Mukherjee, S.

    2018-06-01

    A new, user-friendly, linear plasma device has been developed in our laboratory where a quiescent (Δ n/n ≈ 1%), low temperature (1-10 eV), pulsed (3-10 ms) plasma can be produced over a large uniform region of 30-40 cm diameter and 40 cm length. Salient features of the device include the flexibility of tuning the plasma density in the range of 10^{10} to 10^{12} cm^{-3} and capability of scanning the plasma and field parameters in two dimensions with a precision of < 1 mm. The plasma is produced by a multifilamentary cathode and external magnetic field by Helmholtz coils, both designed and constructed in-house. The plasma parameters can be measured by Langmuir probes and electromagnetic field parameters by miniature magnetic probes and Rogowski coils. The plasma produced is uniform and essentially unbounded for performing experiments on waves and turbulence. The whole device can be operated single-handedly by undergraduate or graduate students. The device can be opened, serviced, new antennas/probes installed and ready for operation in a matter of hours. Some results on the excitation of electromagnetic structures in the context of electron magnetohydrodynamics (EMHD) are also presented to demonstrate the suitability of the device for carrying out such experiments.

  20. Innovation Analysis Approach to Design Parameters of High Speed Train Carriage and Their Intrinsic Complexity Relationships

    NASA Astrophysics Data System (ADS)

    Xiao, Shou-Ne; Wang, Ming-Meng; Hu, Guang-Zhong; Yang, Guang-Wu

    2017-09-01

    In view of the problem that it's difficult to accurately grasp the influence range and transmission path of the vehicle top design requirements on the underlying design parameters. Applying directed-weighted complex network to product parameter model is an important method that can clarify the relationships between product parameters and establish the top-down design of a product. The relationships of the product parameters of each node are calculated via a simple path searching algorithm, and the main design parameters are extracted by analysis and comparison. A uniform definition of the index formula for out-in degree can be provided based on the analysis of out-in-degree width and depth and control strength of train carriage body parameters. Vehicle gauge, axle load, crosswind and other parameters with higher values of the out-degree index are the most important boundary conditions; the most considerable performance indices are the parameters that have higher values of the out-in-degree index including torsional stiffness, maximum testing speed, service life of the vehicle, and so on; the main design parameters contain train carriage body weight, train weight per extended metre, train height and other parameters with higher values of the in-degree index. The network not only provides theoretical guidance for exploring the relationship of design parameters, but also further enriches the application of forward design method to high-speed trains.

  1. Re-Defining the Radio Operator: Honing AFSOF’s Edge for the Joint IW Fight

    DTIC Science & Technology

    2011-02-16

    Containment Before Korea. Westport, Connecticut. Greenwood Press. Daft , R. L. (2003). Essentials of Organization Theory and Design , Fourth...Managing Differentiation and Integration, p 213. 25 Ibid. 26 Daft , Essentials of Organization Theory and Design , Fourth Edition, p 18. 27 Ibid...classic 2 organizational and systems design theory to evaluate various approaches AFSOC could take to fill its need for worldwide dedicated airborne

  2. KEWPIE2: A cascade code for the study of dynamical decay of excited nuclei

    NASA Astrophysics Data System (ADS)

    Lü, Hongliang; Marchix, Anthony; Abe, Yasuhisa; Boilley, David

    2016-03-01

    KEWPIE-a cascade code devoted to investigating the dynamical decay of excited nuclei, specially designed for treating very low probability events related to the synthesis of super-heavy nuclei formed in fusion-evaporation reactions-has been improved and rewritten in C++ programming language to become KEWPIE2. The current version of the code comprises various nuclear models concerning the light-particle emission, fission process and statistical properties of excited nuclei. General features of the code, such as the numerical scheme and the main physical ingredients, are described in detail. Some typical calculations having been performed in the present paper clearly show that theoretical predictions are generally in accordance with experimental data. Furthermore, since the values of some input parameters cannot be determined neither theoretically nor experimentally, a sensibility analysis is presented. To this end, we systematically investigate the effects of using different parameter values and reaction models on the final results. As expected, in the case of heavy nuclei, the fission process has the most crucial role to play in theoretical predictions. This work would be essential for numerical modeling of fusion-evaporation reactions.

  3. Using of material-technological modelling for designing production of closed die forgings

    NASA Astrophysics Data System (ADS)

    Ibrahim, K.; Vorel, I.; Jeníček, Š.; Káňa, J.; Aišman, D.; Kotěšovec, V.

    2017-02-01

    Production of forgings is a complex and demanding process which consists of a number of forging operations and, in many cases, includes post-forge heat treatment. An optimized manufacturing line is a prerequisite for obtaining prime-quality products which in turn are essential to profitable operation of a forging company. Problems may, however, arise from modifications to the manufacturing route due to changing customer needs. As a result, the production may have to be suspended temporarily to enable changeover and optimization. Using material-technological modelling, the required modifications can be tested and optimized under laboratory conditions outside the plant without disrupting the production. Thanks to material-technological modelling, the process parameters can be varied rapidly in response to changes in market requirements. Outcomes of the modelling runs include optimum parameters for the forging part’s manufacturing route, values of mechanical properties, and results of microstructure analysis. This article describes the use of material-technological modelling for exploring the impact of the amount of deformation and the rate of cooling of a particular forged part from the finish-forging temperature on its microstructure and related mechanical properties.

  4. Prospects for measuring the fuel ion ratio in burning ITER plasmas using a DT neutron emission spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellesen, C.; Skiba, M., E-mail: mateusz.skiba@physics.uu.se; Dzysiuk, N.

    2014-11-15

    The fuel ion ratio n{sub t}/n{sub d} is an essential parameter for plasma control in fusion reactor relevant applications, since maximum fusion power is attained when equal amounts of tritium (T) and deuterium (D) are present in the plasma, i.e., n{sub t}/n{sub d} = 1.0. For neutral beam heated plasmas, this parameter can be measured using a single neutron spectrometer, as has been shown for tritium concentrations up to 90%, using data obtained with the MPR (Magnetic Proton Recoil) spectrometer during a DT experimental campaign at the Joint European Torus in 1997. In this paper, we evaluate the demands thatmore » a DT spectrometer has to fulfill to be able to determine n{sub t}/n{sub d} with a relative error below 20%, as is required for such measurements at ITER. The assessment shows that a back-scattering time-of-flight design is a promising concept for spectroscopy of 14 MeV DT emission neutrons.« less

  5. Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions

    NASA Astrophysics Data System (ADS)

    Ghadiri, Majid; Shafiei, Navvab

    2016-04-01

    In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.

  6. [Investigation of sleep disorders in the vicinity of high frequency transmitters].

    PubMed

    Leitgeb, N; Schröttner, J; Cech, R; Kerbl, R

    2004-08-01

    To investigate the potential impact of RF electromagnetic fields of transmitters on the sleep quality of nearby residents, a new study design is presented. In a double-blind crossover field study the effect of on-site shielding, rather than of additional exposure, is investigated. For improved sleep quality differentiation the polysomnographic parameters are expanded by additional parameters. The feasibility study showed that checking the raw data and correcting the software-generated results by visual reading of the polysomnographic recordings is essential. Long-term RF measurement showed that exposure may vary considerably throughout the night, as well as from one night to the next. This variation may be greater than the GSM contribution itself. Mostly, the contributions of USW radio frequency fields dominated over GSM. Thus, continuous broadband RF recording is required for reliable interpretation of the results, in particular with regard to the potential role of mobile telephony emissions. Results show that simple sleep monitoring systems based on single-channel EEG analysis without acces to original biosignals are not adequate for sleep studies.

  7. The design and development of an automatic control system for the in-duct cancellation of spinning modes of sound. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Harrington, W. W.

    1973-01-01

    The reduction is discussed of the discrete tones generated by jet engines which is essential for jet aircraft to meet present and proposed noise standards. The discrete tones generated by the blades and vanes propagate in the inlet and exhaust duct in the form of spiraling acoustic waves, or spinning modes. The reduction of these spinning modes by the cancellation effect of the combination of two acoustic fields was investigated. The spinning mode synthesizer provided the means for effective study of this noise reduction scheme. Two sets of electrical-acoustical transducers located in an equally-spaced circular array simultaneously generate a specified spinning mode and the cancelling mode. Analysis of the wave equation for the synthesizer established the optimum cancelling array acoustic parameters for maximum sound pressure level reduction. The parameter dependence of the frequency ranges of propagation of single, specified circumferential modes generated by a single array, and of effective cancellation of the modes generated by two arrays, was determined. Substantial sound pressure level reduction was obtained for modes within these limits.

  8. Metabolic regulation of yeast

    NASA Astrophysics Data System (ADS)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  9. Biodiversity Mapping via Natura 2000 Conservation Status and Ebv Assessment Using Airborne Laser Scanning in Alkali Grasslands

    NASA Astrophysics Data System (ADS)

    Zlinszky, A.; Deák, B.; Kania, A.; Schroiff, A.; Pfeifer, N.

    2016-06-01

    Biodiversity is an ecological concept, which essentially involves a complex sum of several indicators. One widely accepted such set of indicators is prescribed for habitat conservation status assessment within Natura 2000, a continental-scale conservation programme of the European Union. Essential Biodiversity Variables are a set of indicators designed to be relevant for biodiversity and suitable for global-scale operational monitoring. Here we revisit a study of Natura 2000 conservation status mapping via airbone LIDAR that develops individual remote sensing-derived proxies for every parameter required by the Natura 2000 manual, from the perspective of developing regional-scale Essential Biodiversity Variables. Based on leaf-on and leaf-off point clouds (10 pt/m2) collected in an alkali grassland area, a set of data products were calculated at 0.5 ×0.5 m resolution. These represent various aspects of radiometric and geometric texture. A Random Forest machine learning classifier was developed to create fuzzy vegetation maps of classes of interest based on these data products. In the next step, either classification results or LIDAR data products were selected as proxies for individual Natura 2000 conservation status variables, and fine-tuned based on field references. These proxies showed adequate performance and were summarized to deliver Natura 2000 conservation status with 80% overall accuracy compared to field references. This study draws attention to the potential of LIDAR for regional-scale Essential Biodiversity variables, and also holds implications for global-scale mapping. These are (i) the use of sensor data products together with habitat-level classification, (ii) the utility of seasonal data, including for non-seasonal variables such as grassland canopy structure, and (iii) the potential of fuzzy mapping-derived class probabilities as proxies for species presence and absence.

  10. Reporting Confidence Intervals and Effect Sizes: Collecting the Evidence

    ERIC Educational Resources Information Center

    Zientek, Linda Reichwein; Ozel, Z. Ebrar Yetkiner; Ozel, Serkan; Allen, Jeff

    2012-01-01

    Confidence intervals (CIs) and effect sizes are essential to encourage meta-analytic thinking and to accumulate research findings. CIs provide a range of plausible values for population parameters with a degree of confidence that the parameter is in that particular interval. CIs also give information about how precise the estimates are. Comparison…

  11. Genetic parameters and prediction of breeding values in switchgrass bred for bioenergy

    USDA-ARS?s Scientific Manuscript database

    Estimating genetic parameters is an essential step in breeding by recurrent selection to maximize genetic gains over time. This study evaluated the effects of selection on genetic variation across two successive cycles (C1 and C2) of a ‘Summer’x‘Kanlow’ switchgrass (Panicum virgatum L.) population. ...

  12. Evaluation of transverse dispersion effects in tank experiments by numerical modeling: parameter estimation, sensitivity analysis and revision of experimental design.

    PubMed

    Ballarini, E; Bauer, S; Eberhardt, C; Beyer, C

    2012-06-01

    Transverse dispersion represents an important mixing process for transport of contaminants in groundwater and constitutes an essential prerequisite for geochemical and biodegradation reactions. Within this context, this work describes the detailed numerical simulation of highly controlled laboratory experiments using uranine, bromide and oxygen depleted water as conservative tracers for the quantification of transverse mixing in porous media. Synthetic numerical experiments reproducing an existing laboratory experimental set-up of quasi two-dimensional flow through tank were performed to assess the applicability of an analytical solution of the 2D advection-dispersion equation for the estimation of transverse dispersivity as fitting parameter. The fitted dispersivities were compared to the "true" values introduced in the numerical simulations and the associated error could be precisely estimated. A sensitivity analysis was performed on the experimental set-up in order to evaluate the sensitivities of the measurements taken at the tank experiment on the individual hydraulic and transport parameters. From the results, an improved experimental set-up as well as a numerical evaluation procedure could be developed, which allow for a precise and reliable determination of dispersivities. The improved tank set-up was used for new laboratory experiments, performed at advective velocities of 4.9 m d(-1) and 10.5 m d(-1). Numerical evaluation of these experiments yielded a unique and reliable parameter set, which closely fits the measured tracer concentration data. For the porous medium with a grain size of 0.25-0.30 mm, the fitted longitudinal and transverse dispersivities were 3.49×10(-4) m and 1.48×10(-5) m, respectively. The procedures developed in this paper for the synthetic and rigorous design and evaluation of the experiments can be generalized and transferred to comparable applications. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The Investigation of Laparoscopic Instrument Movement Control and Learning Effect

    PubMed Central

    Lin, Chiuhsiang Joe

    2013-01-01

    Laparoscopic surgery avoids large incisions for intra-abdominal operations as required in conventional open surgery. Whereas the patient benefits from laparoscopic techniques, the surgeon encounters new difficulties that were not present during open surgery procedures. However, limited literature has been published in the essential movement characteristics such as magnification, amplitude, and angle. For this reason, the present study aims to investigate the essential movement characteristics of instrument manipulation via Fitts' task and to develop an instrument movement time predicting model. Ten right-handed subjects made discrete Fitts' pointing tasks using a laparoscopic trainer. The experimental results showed that there were significant differences between the three factors in movement time and in throughput. However, no significant differences were observed in the improvement rate for movement time and throughput between these three factors. As expected, the movement time was rather variable and affected markedly by direction to target. The conventional Fitts' law model was extended by incorporating a directional parameter into the model. The extended model was shown to better fit the data than the conventional model. These findings pointed to a design direction for the laparoscopic surgery training program, and the predictive model can be used to establish standards in the training procedure. PMID:23984348

  14. How to Personalize Learning in K-12 Schools: Five Essential Design Features

    ERIC Educational Resources Information Center

    Lee, Dabae

    2014-01-01

    Personalized learning (PL) is spotlighted as a way to transform K-12 educational systems. PL customizes learning pace, instructional methods, and learning content to individual students. As much as PL sounds promising and complex, little guidance is available to educators and policymakers about how to effectively design PL. Five essential features…

  15. Comparative Model Evaluation Studies of Biogenic Trace Gas Fluxes in Tropical Forests

    NASA Technical Reports Server (NTRS)

    Potter, C. S.; Peterson, David L. (Technical Monitor)

    1997-01-01

    Simulation modeling can play a number of important roles in large-scale ecosystem studies, including synthesis of patterns and changes in carbon and nutrient cycling dynamics, scaling up to regional estimates, and formulation of testable hypotheses for process studies. Recent comparative studies have shown that ecosystem models of soil trace gas exchange with the atmosphere are evolving into several distinct simulation approaches. Different levels of detail exist among process models in the treatment of physical controls on ecosystem nutrient fluxes and organic substrate transformations leading to gas emissions. These differences are is in part from distinct objectives of scaling and extrapolation. Parameter requirements for initialization scalings, boundary conditions, and time-series driven therefore vary among ecosystem simulation models, such that the design of field experiments for integration with modeling should consider a consolidated series of measurements that will satisfy most of the various model requirements. For example, variables that provide information on soil moisture holding capacity, moisture retention characteristics, potential evapotranspiration and drainage rates, and rooting depth appear to be of the first order in model evaluation trials for tropical moist forest ecosystems. The amount and nutrient content of labile organic matter in the soil, based on accurate plant production estimates, are also key parameters that determine emission model response. Based on comparative model results, it is possible to construct a preliminary evaluation matrix along categories of key diagnostic parameters and temporal domains. Nevertheless, as large-scale studied are planned, it is notable that few existing models age designed to simulate transient states of ecosystem change, a feature which will be essential for assessment of anthropogenic disturbance on regional gas budgets, and effects of long-term climate variability on biosphere-atmosphere exchange.

  16. Chemical vapor deposition modeling for high temperature materials

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1992-01-01

    The formalism for the accurate modeling of chemical vapor deposition (CVD) processes has matured based on the well established principles of transport phenomena and chemical kinetics in the gas phase and on surfaces. The utility and limitations of such models are discussed in practical applications for high temperature structural materials. Attention is drawn to the complexities and uncertainties in chemical kinetics. Traditional approaches based on only equilibrium thermochemistry and/or transport phenomena are defended as useful tools, within their validity, for engineering purposes. The role of modeling is discussed within the context of establishing the link between CVD process parameters and material microstructures/properties. It is argued that CVD modeling is an essential part of designing CVD equipment and controlling/optimizing CVD processes for the production and/or coating of high performance structural materials.

  17. Theoretical Study of Wave Particle Correlation Measurement via 1-D Electromagnetic Particle Simulation

    NASA Astrophysics Data System (ADS)

    Ueda, Yoshikatsu; Omura, Yoshiharu; Kojima, Hiro

    Spacecraft observation is essentially "one-point measurement", while numerical simulation can reproduce a whole system of physical processes on a computer. By performing particle simulations of plasma wave instabilities and calculating correlation of waves and particles observed at a single point, we examine how well we can infer the characteristics of the whole system by a one-point measurement. We perform various simulation runs with different plasma parameters using one-dimensional electromagnetic particle code (KEMPO1) and calculate 'E dot v' or other moments at a single point. We find good correlation between the measurement and the macroscopic fluctuations of the total simulation region. We make use of the results of the computer experiments in our system design of new instruments 'One-chip Wave Particle Interaction Analyzer (OWPIA)'.

  18. Stopping power in D6Li plasmas for target ignition studies

    NASA Astrophysics Data System (ADS)

    Cortez, Ross J.; Cassibry, Jason T.

    2018-02-01

    The ability to calculate the range of charged fusion products in a target is critical when estimating driver requirements. Additionally, charged particle ranges are a determining factor in the possibility that a burn front will propagate through the surrounding cold fuel layer, igniting the plasma. Performance parameters of the plasma, such as yield, gain, etc therefore rely on accurate knowledge of particle ranges and stopping power over a wide range of densities and temperatures. Further, this knowledge is essential in calculating ignition conditions for a given target design. In this paper, stopping power is calculated for DD and D6Li plasmas using a molecular dynamics based model. Emphasis is placed on solid D6Li which has been recently considered as a fuel option for fusion propulsion systems.

  19. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    NASA Astrophysics Data System (ADS)

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2017-11-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.

  20. [Effects of acupuncture on circadian rhythm of blood pressure in patients with essential hypertension].

    PubMed

    Lei, Yun; Jin, Jiu; Ban, Haipeng; Du, Yuzheng

    2017-11-12

    To observe the effects of acupuncture combined with medication on circadian rhythm of blood pressure in patients with essential hypertension. Sixty-four patients of essential hypertension were randomly divided into an observation group and a control group, 32 cases in each group. All the patients maintained original treatment (taking antihypertensive medication); the patients in the observation group were treated with acupuncture method of " Huoxue Sanfeng , Shugan Jianpi ", once a day, five times per week, for totally 6 weeks (30 times). The circadian rhythm of blood pressure and related dynamic parameters were observed before and after treatment in the two groups. (1) The differences of daytime average systolic blood pressure (dASBP), daytime average diastolic blood pressure (dADBP), nighttime average systolic blood pressure (nASBP) and circadian rhythm of systolic blood pressure before and after treatment were significant in the observation group (all P <0.05); the differences of circadian rhythm of blood pressure and related dynamic parameters before and after treatment were insignificant in the control group (all P >0.05). The nASBP and circadian rhythm of systolic blood pressure in the observation group were significantly different from those in the control group (all P <0.05). (2) After the treatment, the spoon-shaped rate of circadian rhythm of blood pressure in the observation group was higher than that in the control group ( P <0.05). The acupuncture combined with medication could effectively improve the circadian rhythm of blood pressure and related dynamic parameters in patients with essential hypertension.

  1. Optimization Under Uncertainty for Electronics Cooling Design

    NASA Astrophysics Data System (ADS)

    Bodla, Karthik K.; Murthy, Jayathi Y.; Garimella, Suresh V.

    Optimization under uncertainty is a powerful methodology used in design and optimization to produce robust, reliable designs. Such an optimization methodology, employed when the input quantities of interest are uncertain, produces output uncertainties, helping the designer choose input parameters that would result in satisfactory thermal solutions. Apart from providing basic statistical information such as mean and standard deviation in the output quantities, auxiliary data from an uncertainty based optimization, such as local and global sensitivities, help the designer decide the input parameter(s) to which the output quantity of interest is most sensitive. This helps the design of experiments based on the most sensitive input parameter(s). A further crucial output of such a methodology is the solution to the inverse problem - finding the allowable uncertainty range in the input parameter(s), given an acceptable uncertainty range in the output quantity of interest...

  2. Distributed electrical time domain reflectometry (ETDR) structural sensors: design models and proof-of-concept experiments

    NASA Astrophysics Data System (ADS)

    Stastny, Jeffrey A.; Rogers, Craig A.; Liang, Chen

    1993-07-01

    A parametric design model has been created to optimize the sensitivity of the sensing cable in a distributed sensing system. The system consists of electrical time domain reflectometry (ETDR) signal processing equipment and specially designed sensing cables. The ETDR equipment sends a high-frequency electric pulse (in the giga hertz range) along the sensing cable. Some portion of the electric pulse will be reflected back to the ETDR equipment as a result of the variation of the cable impedance. The electric impedance variation in the sensing cable can be related to its mechanical deformation, such as cable elongation (change in the resistance), shear deformation (change in the capacitance), corrosion of the cable or the materials around the cable (change in inductance and capacitance), etc. The time delay, amplitude, and shape of the reflected pulse provides the means to locate, determine the magnitude, and indicate the nature of the change in the electrical impedance, which is then related to the distributed structural deformation. The sensing cables are an essential part of the health-monitoring system. By using the parametric design model, the optimum cable parameters can be determined for specific deformation. Proof-of-concept experiments also are presented in the paper to demonstrate the utility of an electrical TDR system in distributed sensing applications.

  3. System design considerations for a production-grade, ESR-based x-ray lithography beamline

    NASA Astrophysics Data System (ADS)

    Kovacs, Stephen; Melore, Dan; Cerrina, Franco; Cole, Richard K.

    1991-08-01

    As electron storage ring (ESR) based x-ray lithography technology moves closer to becoming an industrial reality, more and more attention has been devoted to studying problem areas related to its application in the production environment. A principle component is the x-ray lithography beamline (XLBL) and its associated design requirements. XLBL, an x-ray radiation transport system, is one of the three major subunits in the ESR-based x-ray lithography system (XLS) and has a pivotal role in defining performance characteristics of the entire XLS. Its major functions are to transport the synchrotron orbital radiation (SOR) to the lithography target area with defined efficiency and to modify SOR into the spectral distribution defined by the lithography process window. These functions must be performed reliably in order to satisfy the required high production rate and ensure 0.25 micron resolution lithography conditions. In this paper the authors attempt to answer some specific questions that arise during the formulation of an XLBL system design. Three principle issues that are essential to formulating a design are (1) Radiation transport efficiency, (2) X-ray optical configurations in the beamline, (3) Beamline system configurations. Some practical solutions to thee problem areas are presented, and the effects of these parameters on lithography production rate are examined.

  4. An interactive tool for outdoor computer controlled cultivation of microalgae in a tubular photobioreactor system.

    PubMed

    Dormido, Raquel; Sánchez, José; Duro, Natividad; Dormido-Canto, Sebastián; Guinaldo, María; Dormido, Sebastián

    2014-03-06

    This paper describes an interactive virtual laboratory for experimenting with an outdoor tubular photobioreactor (henceforth PBR for short). This virtual laboratory it makes possible to: (a) accurately reproduce the structure of a real plant (the PBR designed and built by the Department of Chemical Engineering of the University of Almería, Spain); (b) simulate a generic tubular PBR by changing the PBR geometry; (c) simulate the effects of changing different operating parameters such as the conditions of the culture (pH, biomass concentration, dissolved O2, inyected CO2, etc.); (d) simulate the PBR in its environmental context; it is possible to change the geographic location of the system or the solar irradiation profile; (e) apply different control strategies to adjust different variables such as the CO2 injection, culture circulation rate or culture temperature in order to maximize the biomass production; (f) simulate the harvesting. In this way, users can learn in an intuitive way how productivity is affected by any change in the design. It facilitates the learning of how to manipulate essential variables for microalgae growth to design an optimal PBR. The simulator has been developed with Easy Java Simulations, a freeware open-source tool developed in Java, specifically designed for the creation of interactive dynamic simulations.

  5. An Interactive Tool for Outdoor Computer Controlled Cultivation of Microalgae in a Tubular Photobioreactor System

    PubMed Central

    Dormido, Raquel; Sánchez, José; Duro, Natividad; Dormido-Canto, Sebastián; Guinaldo, María; Dormido, Sebastián

    2014-01-01

    This paper describes an interactive virtual laboratory for experimenting with an outdoor tubular photobioreactor (henceforth PBR for short). This virtual laboratory it makes possible to: (a) accurately reproduce the structure of a real plant (the PBR designed and built by the Department of Chemical Engineering of the University of Almería, Spain); (b) simulate a generic tubular PBR by changing the PBR geometry; (c) simulate the effects of changing different operating parameters such as the conditions of the culture (pH, biomass concentration, dissolved O2, inyected CO2, etc.); (d) simulate the PBR in its environmental context; it is possible to change the geographic location of the system or the solar irradiation profile; (e) apply different control strategies to adjust different variables such as the CO2 injection, culture circulation rate or culture temperature in order to maximize the biomass production; (f) simulate the harvesting. In this way, users can learn in an intuitive way how productivity is affected by any change in the design. It facilitates the learning of how to manipulate essential variables for microalgae growth to design an optimal PBR. The simulator has been developed with Easy Java Simulations, a freeware open-source tool developed in Java, specifically designed for the creation of interactive dynamic simulations. PMID:24662450

  6. Factors influencing microinjection molding replication quality

    NASA Astrophysics Data System (ADS)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  7. Artificial Intelligence in Mitral Valve Analysis

    PubMed Central

    Jeganathan, Jelliffe; Knio, Ziyad; Amador, Yannis; Hai, Ting; Khamooshian, Arash; Matyal, Robina; Khabbaz, Kamal R; Mahmood, Feroze

    2017-01-01

    Background: Echocardiographic analysis of mitral valve (MV) has become essential for diagnosis and management of patients with MV disease. Currently, the various software used for MV analysis require manual input and are prone to interobserver variability in the measurements. Aim: The aim of this study is to determine the interobserver variability in an automated software that uses artificial intelligence for MV analysis. Settings and Design: Retrospective analysis of intraoperative three-dimensional transesophageal echocardiography data acquired from four patients with normal MV undergoing coronary artery bypass graft surgery in a tertiary hospital. Materials and Methods: Echocardiographic data were analyzed using the eSie Valve Software (Siemens Healthcare, Mountain View, CA, USA). Three examiners analyzed three end-systolic (ES) frames from each of the four patients. A total of 36 ES frames were analyzed and included in the study. Statistical Analysis: A multiple mixed-effects ANOVA model was constructed to determine if the examiner, the patient, and the loop had a significant effect on the average value of each parameter. A Bonferroni correction was used to correct for multiple comparisons, and P = 0.0083 was considered to be significant. Results: Examiners did not have an effect on any of the six parameters tested. Patient and loop had an effect on the average parameter value for each of the six parameters as expected (P < 0.0083 for both). Conclusion: We were able to conclude that using automated analysis, it is possible to obtain results with good reproducibility, which only requires minimal user intervention. PMID:28393769

  8. Numerical Study of Aeroacoustic Sound on Performance of Bladeless Fan

    NASA Astrophysics Data System (ADS)

    Jafari, Mohammad; Sojoudi, Atta; Hafezisefat, Parinaz

    2017-03-01

    Aeroacoustic performance of fans is essential due to their widespread application. Therefore, the original aim of this paper is to evaluate the generated noise owing to different geometric parameters. In current study, effect of five geometric parameters was investigated on well performance of a Bladeless fan. Airflow through this fan was analyzed simulating a Bladeless fan within a 2 m×2 m×4 m room. Analysis of the flow field inside the fan and evaluating its performance were obtained by solving conservations of mass and momentum equations for aerodynamic investigations and FW-H noise equations for aeroacoustic analysis. In order to design Bladeless fan Eppler 473 airfoil profile was used as the cross section of this fan. Five distinct parameters, namely height of cross section of the fan, outlet angle of the flow relative to the fan axis, thickness of airflow outlet slit, hydraulic diameter and aspect ratio for circular and quadratic cross sections were considered. Validating acoustic code results, we compared numerical solution of FW-H noise equations for NACA0012 with experimental results. FW-H model was selected to predict the noise generated by the Bladeless fan as the numerical results indicated a good agreement with experimental ones for NACA0012. To validate 3-D numerical results, the experimental results of a round jet showed good agreement with those simulation data. In order to indicate the effect of each mentioned parameter on the fan performance, SPL and OASPL diagrams were illustrated.

  9. Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions.

    PubMed

    Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith

    2018-01-02

    Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour and identifies the sets of rate parameters of interest.

  10. A fast and efficient method for device level layout analysis

    NASA Astrophysics Data System (ADS)

    Dong, YaoQi; Zou, Elaine; Pang, Jenny; Huang, Lucas; Yang, Legender; Zhang, Chunlei; Du, Chunshan; Hu, Xinyi; Wan, Qijian

    2017-03-01

    There is an increasing demand for device level layout analysis, especially as technology advances. The analysis is to study standard cells by extracting and classifying critical dimension parameters. There are couples of parameters to extract, like channel width, length, gate to active distance, and active to adjacent active distance, etc. for 14nm technology, there are some other parameters that are cared about. On the one hand, these parameters are very important for studying standard cell structures and spice model development with the goal of improving standard cell manufacturing yield and optimizing circuit performance; on the other hand, a full chip device statistics analysis can provide useful information to diagnose the yield issue. Device analysis is essential for standard cell customization and enhancements and manufacturability failure diagnosis. Traditional parasitic parameters extraction tool like Calibre xRC is powerful but it is not sufficient for this device level layout analysis application as engineers would like to review, classify and filter out the data more easily. This paper presents a fast and efficient method based on Calibre equation-based DRC (eqDRC). Equation-based DRC extends the traditional DRC technology to provide a flexible programmable modeling engine which allows the end user to define grouped multi-dimensional feature measurements using flexible mathematical expressions. This paper demonstrates how such an engine and its programming language can be used to implement critical device parameter extraction. The device parameters are extracted and stored in a DFM database which can be processed by Calibre YieldServer. YieldServer is data processing software that lets engineers query, manipulate, modify, and create data in a DFM database. These parameters, known as properties in eqDRC language, can be annotated back to the layout for easily review. Calibre DesignRev can create a HTML formatted report of the results displayed in Calibre RVE which makes it easy to share results among groups. This method has been proven and used in SMIC PDE team and SPICE team.

  11. Temperature and heat flux datasets of a complex object in a fire plume for the validation of fire and thermal response codes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jernigan, Dann A.; Blanchat, Thomas K.

    It is necessary to improve understanding and develop temporally- and spatially-resolved integral scale validation data of the heat flux incident to a complex object in addition to measuring the thermal response of said object located within the fire plume for the validation of the SIERRA/FUEGO/SYRINX fire and SIERRA/CALORE codes. To meet this objective, a complex calorimeter with sufficient instrumentation to allow validation of the coupling between FUEGO/SYRINX/CALORE has been designed, fabricated, and tested in the Fire Laboratory for Accreditation of Models and Experiments (FLAME) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisonmore » between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. This report presents the data validation steps and processes, the results of the penlight radiant heat experiments (for the purpose of validating the CALORE heat transfer modeling of the complex calorimeter), and the results of the fire tests in FLAME.« less

  12. Static and dynamic micro deformable mirror characterization by phase-shifting and time-averaged interferometry

    NASA Astrophysics Data System (ADS)

    Liotard, Arnaud; Zamkotsian, Frédéric

    2017-11-01

    The micro-opto-electro-mechanical systems (MOEMS), based on mature technologies of micro-electronics, are essential in the design of future astronomical instruments. One of these key-components is the microdeformable mirror for wave-front correction. Very challenging topics like search of exo-planets could greatly benefit from this technology. Design, realization and characterization of micro-Deformable Mirrors are under way at Laboratoire d'Astrophysique de Marseille (LAM) in collaboration with Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS). In order to measure the surface shape and the deformation parameters during operation of these devices, a high-resolution Twyman-Green interferometer has been developed. Measurements have been done on a tiltable micro-mirror (170*100μm2) designed by LAM-LAAS and realized by an American foundry, and also on an OKO deformable mirror (15mm diameter). Static characterization is made by phase shifting interferometry and dynamic measurements have been made by quantitative time-averaged interferometry. The OKO mirror has an actuator stroke of 370+/-10nm for 150V applied and its resonant frequency is 1170+/-50 Hz, and the tiltable mirror has a rotation cut-off frequency of 31+/-3 kHz.

  13. Heuristic urban transportation network design method, a multilayer coevolution approach

    NASA Astrophysics Data System (ADS)

    Ding, Rui; Ujang, Norsidah; Hamid, Hussain bin; Manan, Mohd Shahrudin Abd; Li, Rong; Wu, Jianjun

    2017-08-01

    The design of urban transportation networks plays a key role in the urban planning process, and the coevolution of urban networks has recently garnered significant attention in literature. However, most of these recent articles are based on networks that are essentially planar. In this research, we propose a heuristic multilayer urban network coevolution model with lower layer network and upper layer network that are associated with growth and stimulate one another. We first use the relative neighbourhood graph and the Gabriel graph to simulate the structure of rail and road networks, respectively. With simulation we find that when a specific number of nodes are added, the total travel cost ratio between an expanded network and the initial lower layer network has the lowest value. The cooperation strength Λ and the changeable parameter average operation speed ratio Θ show that transit users' route choices change dramatically through the coevolution process and that their decisions, in turn, affect the multilayer network structure. We also note that the simulated relation between the Gini coefficient of the betweenness centrality, Θ and Λ have an optimal point for network design. This research could inspire the analysis of urban network topology features and the assessment of urban growth trends.

  14. Finite element analysis of ion transport in solid state nuclear waste form materials

    NASA Astrophysics Data System (ADS)

    Rabbi, F.; Brinkman, K.; Amoroso, J.; Reifsnider, K.

    2017-09-01

    Release of nuclear species from spent fuel ceramic waste form storage depends on the individual constituent properties as well as their internal morphology, heterogeneity and boundary conditions. Predicting the release rate is essential for designing a ceramic waste form, which is capable of effectively storing the spent fuel without contaminating the surrounding environment for a longer period of time. To predict the release rate, in the present work a conformal finite element model is developed based on the Nernst Planck Equation. The equation describes charged species transport through different media by convection, diffusion, or migration. And the transport can be driven by chemical/electrical potentials or velocity fields. The model calculates species flux in the waste form with different diffusion coefficient for each species in each constituent phase. In the work reported, a 2D approach is taken to investigate the contributions of different basic parameters in a waste form design, i.e., volume fraction, phase dispersion, phase surface area variation, phase diffusion co-efficient, boundary concentration etc. The analytical approach with preliminary results is discussed. The method is postulated to be a foundation for conformal analysis based design of heterogeneous waste form materials.

  15. Design and development of low pressure evaporator/condenser unit for water-based adsorption type climate control systems

    NASA Astrophysics Data System (ADS)

    Venkataramanan, Arjun; Rios Perez, Carlos A.; Hidrovo, Carlos H.

    2016-11-01

    Electric vehicles (EVs) are the future of clean transportation and driving range is one of the important parameters which dictates its marketability. In order to increase driving range, electrical battery energy consumption should be minimized. Vapor-compression refrigeration systems currently employed in EVs for climate control consume a significant fraction of the battery charge. Thus, by replacing this traditional heating ventilation and air-conditioning system with an adsorption based climate control system one can have the capability of increasing the drive range of EVs.The Advanced Thermo-adsorptive Battery (ATB) for climate control is a water-based adsorption type refrigeration cycle. An essential component of the ATB is a low pressure evaporator/condenser unit (ECU) which facilitates both the evaporation and condensation processes. The thermal design of the ECU relies predominantly on the accurate prediction of evaporation/boiling heat transfer coefficients since the standard correlations for predicting boiling heat transfer coefficients have large uncertainty at the low operating pressures of the ATB. This work describes the design and development of a low pressure ECU as well as the thermal performance of the actual ECU prototype.

  16. Modular and Adaptive Control of Sound Processing

    NASA Astrophysics Data System (ADS)

    van Nort, Douglas

    This dissertation presents research into the creation of systems for the control of sound synthesis and processing. The focus differs from much of the work related to digital musical instrument design, which has rightly concentrated on the physicality of the instrument and interface: sensor design, choice of controller, feedback to performer and so on. Often times a particular choice of sound processing is made, and the resultant parameters from the physical interface are conditioned and mapped to the available sound parameters in an exploratory fashion. The main goal of the work presented here is to demonstrate the importance of the space that lies between physical interface design and the choice of sound manipulation algorithm, and to present a new framework for instrument design that strongly considers this essential part of the design process. In particular, this research takes the viewpoint that instrument designs should be considered in a musical control context, and that both control and sound dynamics must be considered in tandem. In order to achieve this holistic approach, the work presented in this dissertation assumes complementary points of view. Instrument design is first seen as a function of musical context, focusing on electroacoustic music and leading to a view on gesture that relates perceived musical intent to the dynamics of an instrumental system. The important design concept of mapping is then discussed from a theoretical and conceptual point of view, relating perceptual, systems and mathematically-oriented ways of examining the subject. This theoretical framework gives rise to a mapping design space, functional analysis of pertinent existing literature, implementations of mapping tools, instrumental control designs and several perceptual studies that explore the influence of mapping structure. Each of these reflect a high-level approach in which control structures are imposed on top of a high-dimensional space of control and sound synthesis parameters. In this view, desired gestural dynamics and sonic response are achieved through modular construction of mapping layers that are themselves subject to parametric control. Complementing this view of the design process, the work concludes with an approach in which the creation of gestural control/sound dynamics are considered in the low-level of the underlying sound model. The result is an adaptive system that is specialized to noise-based transformations that are particularly relevant in an electroacoustic music context. Taken together, these different approaches to design and evaluation result in a unified framework for creation of an instrumental system. The key point is that this framework addresses the influence that mapping structure and control dynamics have on the perceived feel of the instrument. Each of the results illustrate this using either top-down or bottom-up approaches that consider musical control context, thereby pointing to the greater potential for refined sonic articulation that can be had by combining them in the design process.

  17. Fourier transform and particle swarm optimization based modified LQR algorithm for mitigation of vibrations using magnetorheological dampers

    NASA Astrophysics Data System (ADS)

    Kumar, Gaurav; Kumar, Ashok

    2017-11-01

    Structural control has gained significant attention in recent times. The standalone issue of power requirement during an earthquake has already been solved up to a large extent by designing semi-active control systems using conventional linear quadratic control theory, and many other intelligent control algorithms such as fuzzy controllers, artificial neural networks, etc. In conventional linear-quadratic regulator (LQR) theory, it is customary to note that the values of the design parameters are decided at the time of designing the controller and cannot be subsequently altered. During an earthquake event, the response of the structure may increase or decrease, depending the quasi-resonance occurring between the structure and the earthquake. In this case, it is essential to modify the value of the design parameters of the conventional LQR controller to obtain optimum control force to mitigate the vibrations due to the earthquake. A few studies have been done to sort out this issue but in all these studies it was necessary to maintain a database of the earthquake. To solve this problem and to find the optimized design parameters of the LQR controller in real time, a fast Fourier transform and particle swarm optimization based modified linear quadratic regulator method is presented here. This method comprises four different algorithms: particle swarm optimization (PSO), the fast Fourier transform (FFT), clipped control algorithm and the LQR. The FFT helps to obtain the dominant frequency for every time window. PSO finds the optimum gain matrix through the real-time update of the weighting matrix R, thereby, dispensing with the experimentation. The clipped control law is employed to match the magnetorheological (MR) damper force with the desired force given by the controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done by simulation of a three-story structure having an MR damper at the ground floor level subjected to three different near-fault historical earthquake time histories, and the outcomes are equated with those of simple conventional LQR. The results establish that the advised methodology is more effective than conventional LQR controllers in reducing inter-storey drift, relative displacement, and acceleration response.

  18. Macular versus Retinal Nerve Fiber Layer Parameters for Diagnosing Manifest Glaucoma: A Systematic Review of Diagnostic Accuracy Studies.

    PubMed

    Oddone, Francesco; Lucenteforte, Ersilia; Michelessi, Manuele; Rizzo, Stanislao; Donati, Simone; Parravano, Mariacristina; Virgili, Gianni

    2016-05-01

    Macular parameters have been proposed as an alternative to retinal nerve fiber layer (RNFL) parameters to diagnose glaucoma. Comparing the diagnostic accuracy of macular parameters, specifically the ganglion cell complex (GCC) and ganglion cell inner plexiform layer (GCIPL), with the accuracy of RNFL parameters for detecting manifest glaucoma is important to guide clinical practice and future research. Studies using spectral domain optical coherence tomography (SD OCT) and reporting macular parameters were included if they allowed the extraction of accuracy data for diagnosing manifest glaucoma, as confirmed with automated perimetry or a clinician's optic nerve head (ONH) assessment. Cross-sectional cohort studies and case-control studies were included. The QUADAS 2 tool was used to assess methodological quality. Only direct comparisons of macular versus RNFL parameters (i.e., in the same study) were conducted. Summary sensitivity and specificity of each macular or RNFL parameter were reported, and the relative diagnostic odds ratio (DOR) was calculated in hierarchical summary receiver operating characteristic (HSROC) models to compare them. Thirty-four studies investigated macular parameters using RTVue OCT (Optovue Inc., Fremont, CA) (19 studies, 3094 subjects), Cirrus OCT (Carl Zeiss Meditec Inc., Dublin, CA) (14 studies, 2164 subjects), or 3D Topcon OCT (Topcon, Inc., Tokyo, Japan) (4 studies, 522 subjects). Thirty-two of these studies allowed comparisons between macular and RNFL parameters. Studies generally reported sensitivities at fixed specificities, more commonly 0.90 or 0.95, with sensitivities of most best-performing parameters between 0.65 and 0.75. For all OCT devices, compared with RNFL parameters, macular parameters were similarly or slightly less accurate for detecting glaucoma at the highest reported specificity, which was confirmed in analyses at the lowest specificity. Included studies suffered from limitations, especially the case-control study design, which is known to overestimate accuracy. However, this flaw is less relevant as a source of bias in direct comparisons conducted within studies. With the use of OCT, RNFL parameters are still preferable to macular parameters for diagnosing manifest glaucoma, but the differences are small. Because of high heterogeneity, direct comparative or randomized studies of OCT devices or OCT parameters and diagnostic strategies are essential. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  19. Antioxidant effect of poleo and oregano essential oil on roasted sunflower seeds.

    PubMed

    Quiroga, Patricia R; Grosso, Nelson R; Nepote, Valeria

    2013-12-01

    The objective was to evaluate the stability of sensory and chemical parameters in roasted sunflower seeds supplemented with oregano and poleo essential oils; and the consumer acceptability of this product. Four samples were prepared: plain roasted sunflower seeds (Control = RS-C), and sunflower seeds added with oregano (RS-O) or poleo (RS-P) essential oils or BHT (RS-BHT). Consumer acceptance was determined on fresh samples. The overall acceptance averages were 6.13 for RS-C, 5.62 for RS-P, and 5.50 for RS-O (9-point hedonic scale). The addition of BHT showed greater protection against the oxidation process in the roasted sunflower seeds. Oregano essential oil exhibited a greater antioxidant effect during storage than poleo essential oil. Both essential oils (oregano and poleo) provided protection to the product, inhibiting the formation of undesirable flavors (oxidized and cardboard). The antioxidant activity that presents essential oils of oregano and poleo could be used to preserve roasted sunflower seeds. © 2013 Institute of Food Technologists®

  20. Quality By Design: Concept To Applications.

    PubMed

    Swain, Suryakanta; Padhy, Rabinarayan; Jena, Bikash Ranjan; Babu, Sitty Manohar

    2018-03-08

    Quality by Design is associated to the modern, systematic, scientific and novel approach which is concerned with pre-distinct objectives that not only focus on product, process understanding but also leads to process control. It predominantly signifies the design and product improvement and the manufacturing process in order to fulfill the predefined manufactured goods or final products quality characteristics. It is quite essential to identify desire and required product performance report such as Target Product Profile, typical Quality Target Product Profile (QTPP) and Critical Quality attributes (CQA). This review highlighted about the concepts of QbD design space, for critical material attributes (CMAs) as well as the critical process parameters that can totally affect the CQAs within which the process shall be unaffected and consistently manufacture the required product. Risk assessment tools and design of experiments are its prime components. This paper outlines the basic knowledge of QbD, the key elements; steps as well as various tools for QbD implementation in pharmaceutics field are presented briefly. In addition to this, quite a lot of applications of QbD in numerous pharmaceutical related unit operations are discussed and summarized. This article provides a complete data as well as the road map for universal implementation and application of QbD for pharmaceutical products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Making Boundaries Great Again: Essentialism and Support for Boundary-Enhancing Initiatives.

    PubMed

    Roberts, Steven O; Ho, Arnold K; Rhodes, Marjorie; Gelman, Susan A

    2017-12-01

    Psychological essentialism entails a focus on category boundaries (e.g., categorizing people as men or women) and an increase in the conceptual distance between those boundaries (e.g., accentuating the differences between men and women). Across eight studies, we demonstrate that essentialism additionally entails an increase in support for boundary-enhancing legislation, policies, and social services, and that it does so under conditions that disadvantage social groups, as well as conditions that benefit them. First, individual differences in essentialism were associated with support for legislation mandating that transgender people use restrooms corresponding with their biological sex, and with support for the boundary-enhancing policies of the 2016 then-presumptive Republican presidential nominee (i.e., Donald Trump). Second, essentialism was associated with support for same-gender classrooms designed to promote student learning, as well as support for services designed to benefit LGBTQ (lesbian, gay, bisexual, transgender, queer) individuals. These findings demonstrate the boundary-enhancing implications of essentialism and their social significance.

  2. Rheology and tribology of lubricants with polymeric viscosity modifiers

    NASA Astrophysics Data System (ADS)

    Babak, LotfizadehDehkordi

    Elastohydrodynamic lubrication (EHL) theory has been used to model the lubrication state of antifriction machine elements, where initial viscosity and pressure viscosity coefficients are essential parameters in film thickness modeling. Since the pressures of lubricants in the contact zone can be very high, it is important to know the rheological properties of lubricants in these pressure and temperature regimes. The characteristics of viscosity behavior as a function of pressure are also essential for a universal definition of the pressure viscosity coefficient in order to estimate film thickness in an EHL regime. In this study, viscosities and pressure-viscosity coefficients of ten commercial engine and gear oils and seventeen laboratory-produced oil/polymer viscosity modifiers (VM) additives are measured up to 1.3 GPa at 40, 75 and 100 °C. For the first time, a sharp increase in the viscosity and piezoviscous factor is observed in both mineral-based and synthetic-based oils with different VMs. Analysis of the experimental results indicates that sharp increase in viscosity observed in these experiments are believed to arise from physical changes in the VMs, that is liquid-solid phase transition. Evidence is offered that polymer properties such as molecular weight, concentration and structure influence the onset of the phase transitions. A modified Yasutomi model, which normally describes the pressure dependence of the viscosity of lubricants very well, fails to predict the viscosity of the specimens above the onset of sharp increase in viscosity. A design of experiment (DOE) analysis using Design-Expert software indicates that pressure and temperature are the most critical parameters in the viscosity variation. Tribological tests demonstrate that wear in the contact, zone occurs at temperatures and stresses that coincides with the VM phase transitions in both commercial and laboratory synthesized oil/VMs. Tribological results also indicate that the onset of the sharp increase in viscosity can have significant and unanticipated consequences on the elastohydrodynamic contact and can adversely affect EHL theory. The onset of the steep rise in viscosity may also affect the torque and power losses in a mechanical system. Hence, this previously unknown behavior of the lubricant with VMs should be seriously considered in the application of lubricant in mechanical system.

  3. Interim Stabilization Equipment Essential and Support Drawing Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    KOCH, M.R.

    The purpose of this document is to list the Interim Stabilization equipment drawings that are classified as Essential or Support drawings. Essential Drawings: Those drawings identified by the facility staff as necessary to directly support the safe operation of the facility or equipment. Support Drawings: Those drawings identified by the facility staff that further describe the design details of structures, systems or components shown on essential drawings.

  4. Combined p16 and p53 expression in cervical cancer of unknown primary and other prognostic parameters : A single-center analysis.

    PubMed

    Yildirim, Müjdat; Müller von der Grün, Jens; Winkelmann, Ria; Fokas, Emmanouil; Rödel, Franz; Ackermann, Hanns; Rödel, Claus; Balermpas, Panagiotis

    2017-04-01

    Cervical cancer of unknown primary (CUP) represents an uncommon and heterogeneous subentity of head and neck cancer. However, both optimal diagnostics and therapy remain unclear. An improved understanding of the underlying pathology is essential to enable future tailored therapies and optimized outcomes. We retrospectively analyzed 53 patients with head and neck CUP and 48 available cervical lymph node specimens. All patients have received radiotherapy between 2007 and 2015. Preradiotherapy involved lymph node specimens were analyzed for p16 and p53 immunoreactivity. The prognostic relevance of the combined p16 and p53 status and other clinical parameters were examined by univariate and multivariate analyses. Median patient age was 61.5 years and median irradiation dose to the involved nodal levels was 66 Gy. Of the 48 evaluated specimens, 13 (27%) were p16-positive and 31 (64.6%) p53-positive. After a median follow up of 32.9 months, patients with p16-negative and simultaneously p53-positive tumors showed a significantly inferior tumor-specific survival (TSS) compared to those with either p16+/p53-, p16+/p53+, or p16-/p53- (univariate: p = 0.055, multivariate: p = 0.038). Other factors with an adverse impact on TSS in the univariate analysis were smoking history (p = 0.032) and nodal stage (p = 0.038). The combined p16- and p53-expression status in cervical metastases of CUP may represent a simple method for risk stratification. Further validation of these biomarkers in large prospective trials is essential to design rational trials for CUP treatment optimization.

  5. Retrospective robustness of the continual reassessment method.

    PubMed

    O'Quigley, John; Zohar, Sarah

    2010-09-01

    We study model sensitivity of the continual reassessment method (CRM). The context is that of dose-finding designs where certain design parameters are fixed by the investigator. Although our focus is on the CRM (O'Quigley et al., 1990), the essential ideas can be applied to any sequential dose-finding method. It is expected that different choices of a model family and particular parameterizations will have an impact on performance. Assuming that the constraints outlined in Shen and O'Quigley (1996) are respected, large sample performance is unaffected. However small sample performance will be affected by these choices, which are to some degree arbitrary. This work focuses on the retrospective robustness of the CRM in practice. The question is not of a general theoretical nature where, in the background, we would want to consider large numbers of true potential situations. Instead, the question is raised in the specific context of any actual completed study and is the following: Would we have come to the same conclusion concerning the MTD had we worked with a design specified differently? The sequential nature of the CRM means that this question cannot be answered in any definitive way. We can, though, by appealing to the retrospective CRM (O'Quigley, 2005), provide consistent estimates of the relationships between the MTD and the chosen model. If these estimates suggest that changes in different family model parameters will be accompanied by changes in final recommendation, then we would not be confident in the reliability of the estimated MTD and more work would be needed. Also, of course, at the planning stage, prospective robustness could be studied by simulating trials using particular models and parameterizations.

  6. Towards a footwear design tool: influence of shoe midsole properties and ground stiffness on the impact force during running.

    PubMed

    Ly, Quoc Hung; Alaoui, Amina; Erlicher, Silvano; Baly, Laurent

    2010-01-19

    Several spring-damper-mass models of the human body have been developed in order to reproduce the measured ground vertical reaction forces during human running (McMahon and Cheng, 1990; Ferris et al., 1999; Liu and Nigg, 2000). In particular, Liu and Nigg introduced at the lower level of their model, i.e. at the interface between the human body and the ground, a nonlinear element representing simultaneously the shoe midsoles and the ground flexibility. The ground reaction force is modelled as the force supported by this nonlinear element, whose parameters are identified from several sets of experimental data. This approach proved to be robust and quite accurate. However, it does not explicitly take into account the shoe and the ground properties. It turns out to be impossible to study the influence of shoe materials on the impact force, for instance for footwear design purposes. In this paper, a modification of the Liu and Nigg's model is suggested, where the original nonlinear element is replaced with a bi-layered spring-damper-mass model: the first layer represents the shoe midsole and the second layer is associated with the ground. Ground is modelled as an infinite elastic half-space. We have assumed a viscoelastic behaviour of the shoe material, so the damping of shoe material is taken into account. A methodology for the shoe-soles characterization is proposed and used together with the proposed model. A parametric study is then conducted and the influence of the shoe properties on the impact force is quantified. Moreover, it is shown that impact forces are strongly affected by the ground stiffness, which should therefore be considered as an essential parameter in the footwear design. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Modelling fuel cell performance using artificial intelligence

    NASA Astrophysics Data System (ADS)

    Ogaji, S. O. T.; Singh, R.; Pilidis, P.; Diacakis, M.

    Over the last few years, fuel cell technology has been increasing promisingly its share in the generation of stationary power. Numerous pilot projects are operating worldwide, continuously increasing the amount of operating hours either as stand-alone devices or as part of gas turbine combined cycles. An essential tool for the adequate and dynamic analysis of such systems is a software model that enables the user to assess a large number of alternative options in the least possible time. On the other hand, the sphere of application of artificial neural networks has widened covering such endeavours of life such as medicine, finance and unsurprisingly engineering (diagnostics of faults in machines). Artificial neural networks have been described as diagrammatic representation of a mathematical equation that receives values (inputs) and gives out results (outputs). Artificial neural networks systems have the capacity to recognise and associate patterns and because of their inherent design features, they can be applied to linear and non-linear problem domains. In this paper, the performance of the fuel cell is modelled using artificial neural networks. The inputs to the network are variables that are critical to the performance of the fuel cell while the outputs are the result of changes in any one or all of the fuel cell design variables, on its performance. Critical parameters for the cell include the geometrical configuration as well as the operating conditions. For the neural network, various network design parameters such as the network size, training algorithm, activation functions and their causes on the effectiveness of the performance modelling are discussed. Results from the analysis as well as the limitations of the approach are presented and discussed.

  8. Designing CAF-adjuvanted dry powder vaccines: spray drying preserves the adjuvant activity of CAF01.

    PubMed

    Ingvarsson, Pall Thor; Schmidt, Signe Tandrup; Christensen, Dennis; Larsen, Niels Bent; Hinrichs, Wouter Leonardus Joseph; Andersen, Peter; Rantanen, Jukka; Nielsen, Hanne Mørck; Yang, Mingshi; Foged, Camilla

    2013-05-10

    Dry powder vaccine formulations are highly attractive due to improved storage stability and the possibility for particle engineering, as compared to liquid formulations. However, a prerequisite for formulating vaccines into dry formulations is that their physicochemical and adjuvant properties remain unchanged upon rehydration. Thus, we have identified and optimized the parameters of importance for the design of a spray dried powder formulation of the cationic liposomal adjuvant formulation 01 (CAF01) composed of dimethyldioctadecylammonium (DDA) bromide and trehalose 6,6'-dibehenate (TDB) via spray drying. The optimal excipient to stabilize CAF01 during spray drying and for the design of nanocomposite microparticles was identified among mannitol, lactose and trehalose. Trehalose and lactose were promising stabilizers with respect to preserving liposome size, as compared to mannitol. Trehalose and lactose were in the glassy state upon co-spray drying with the liposomes, whereas mannitol appeared crystalline, suggesting that the ability of the stabilizer to form a glassy matrix around the liposomes is one of the prerequisites for stabilization. Systematic studies on the effect of process parameters suggested that a fast drying rate is essential to avoid phase separation and lipid accumulation at the surface of the microparticles during spray drying. Finally, immunization studies in mice with CAF01 in combination with the tuberculosis antigen Ag85B-ESAT6-Rv2660c (H56) demonstrated that spray drying of CAF01 with trehalose under optimal processing conditions resulted in the preservation of the adjuvant activity in vivo. These data demonstrate the importance of liposome stabilization via optimization of formulation and processing conditions in the engineering of dry powder liposome formulations. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Preliminary results on noncollocated torque control of space robot actuators

    NASA Technical Reports Server (NTRS)

    Tilley, Scott W.; Francis, Colin M.; Emerick, Ken; Hollars, Michael G.

    1989-01-01

    In the Space Station era, more operations will be performed robotically in space in the areas of servicing, assembly, and experiment tending among others. These robots may have various sets of requirements for accuracy, speed, and force generation, but there will be design constraints such as size, mass, and power dissipation limits. For actuation, a leading motor candidate is a dc brushless type, and there are numerous potential drive trains each with its own advantages and disadvantages. This experiment uses a harmonic drive and addresses some inherent limitations, namely its backdriveability and low frequency structural resonances. These effects are controlled and diminished by instrumenting the actuator system with a torque transducer on the output shaft. This noncollocated loop is closed to ensure that the commanded torque is accurately delivered to the manipulator link. The actuator system is modelled and its essential parameters identified. The nonlinear model for simulations will include inertias, gearing, stiction, flexibility, and the effects of output load variations. A linear model is extracted and used for designing the noncollocated torque and position feedback loops. These loops are simulated with the structural frequency encountered in the testbed system. Simulation results are given for various commands in position. The use of torque feedback is demonstrated to yield superior performance in settling time and positioning accuracy. An experimental setup being finished consists of a bench mounted motor and harmonic drive actuator system. A torque transducer and two position encoders, each with sufficient resolution and bandwidth, will provide sensory information. Parameters of the physical system are being identified and matched to analytical predictions. Initial feedback control laws will be incorporated in the bench test equipment and various experiments run to validate the designs. The status of these experiments is given.

  10. Sensitive voltammetric determination of thymol in essential oil of Carum copticum seeds using boron-doped diamond electrode.

    PubMed

    Stanković, Dalibor M

    2015-10-01

    Essential oil of Carum copticum seeds, obtained from a local shop, was extracted and content of thymol was analyzed using square-wave voltammetry at boron-doped diamond electrode. The effect of various parameters, such as pH of supporting electrolyte and square-wave voltammetric parameters (modulation amplitude and frequency), was examined. In Britton-Robinson buffer solution (pH 4), thymol provided a single and oval-shaped irreversible oxidation peak at +1.13 V versus silver/silver chloride potassium electrode (3M). Under optimal experimental conditions, a plot of peak height against concentration of thymol was found to be linear over the range of 4 to 100μM consisting of two linear ranges: from 4 to 20μM (R(2)=0.9964) and from 20 to 100μM (R(2)=0.9993). The effect of potential interferences such as p-cymene and γ-terpinene (major components in essential oil of C. copticum seeds) was evaluated. Thus, the proposed method displays a sufficient selectivity toward thymol with a detection limit of 3.9μM, and it was successfully applied for the determination of thymol in essential oil of C. copticum seeds. The Prussian blue method was used for validation of the proposed electroanalytical method. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Interpretation of Nonlinear Well Loss Coefficients for Rorabaugh (1953) Method.

    NASA Astrophysics Data System (ADS)

    Kurtulus, B.; Yaylım, T. N.; Avşar

    2016-12-01

    Step drawdown test (SDT) are essential for hydrogeologist to determine aquifer loss and well loss parameters. In a SDT, different series of constant-discharges with incremental rates are conducted to obtain incremental drawdown into the pumping well. Pumping well efficiency (if the well is properly developed and designed), aquifer characteristics (transmissivity, storativity) and discharge-drawdown relationship can be derived from SDT. The well loss parameter directly associate with the well efficiency. The main problem is to determine the correct well loss parameter in order to estimate aquifer characteristics. Walton (1962) stated that the interpretation of the well efficiency is possible to determine the nonlinear head loss coefficient (C) with p equals to 2 and Walton (1962) presented a criteria that suggested the following terms: If C is less than 1800 m2/s5, the is properly developed and designed, If C is ranged from 1800 m2/s5 to 3600 m2/s5, the well has a mild deterioration, If C is greater than 3600 m2/s5, the well has a severe clogging. Until now, several well-known computer techniques such as Aqutesolv, AquiferWin32 , AquifertestPro can be found in the literature to evaluate well efficiency when exponential parameter (p) equals to 2. However, there exist a lack of information to evaluate well efficiency for different number of exponential parameter (p). Strategic Water Storage & Recovery (SWSR) Project in Liwa, Abu Dhabi is the leading and unique hydrogeology project in the world because of its both financial and scientific dimension. A total of 315 recovery wells have been drilled in pursuance of the scope of the SWSR project. A Universal Well Efficiency Criteria (UWEC) is developed using 315 Step Drawdown Test (SDT). UWEC is defined for different number of head loss equation coefficients. The results reveal that there is a strong correlation between non-linear well loss coefficient (C) and exponential parameter (p) up to a coefficient of determination (R2) equal to 0.97 using Rorabaugh method. According to the calculated results, p and C value are calculated between 1 to 9 and 100 sp/m3p-1 to 2.3 x 1011 sp/m3p-1 respectively. We are very grateful for financial support and providing us the data to ZETAS-Dubai Inc.

  12. Rock mass characterisation and stability analyses of excavated slopes

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian; Lechner, Heidrun

    2016-04-01

    Excavated slopes in fractured rock masses are frequently designed for open pit mining, quarries, buildings, highways, railway lines, and canals. These slopes can reach heights of several hundreds of metres and in cases concerning open pit mines slopes larger than 1000 m are not uncommon. Given that deep-seated slope failures can cause large damage or even loss of life, the slope design needs to incorporate sufficient stability. Thus, slope design methods based on comprehensive approaches need to be applied. Excavation changes slope angle, groundwater flow, and blasting increases the degree of rock mass fracturing as well as rock mass disturbance. As such, excavation leads to considerable stress changes in the slopes. Generally, slope design rely on the concept of factor of safety (FOS), often a requirement by international or national standards. A limitation of the factor of safety is that time dependent failure processes, stress-strain relationships, and the impact of rock mass strain and displacement are not considered. Usually, there is a difficulty to estimate the strength of the rock mass, which in turn is controlled by an interaction of intact rock and discontinuity strength. In addition, knowledge about in-situ stresses for the failure criterion is essential. Thus, the estimation of the state of stress of the slope and the strength parameters of the rock mass is still challenging. Given that, large-scale in-situ testing is difficult and costly, back-calculations of case studies in similar rock types or rock mass classification systems are usually the methods of choice. Concerning back-calculations, often a detailed and standardised documentation is missing, and a direct applicability to new projects is not always given. Concerning rock mass classification systems, it is difficult to consider rock mass anisotropy and thus the empirical estimation of the strength properties possesses high uncertainty. In the framework of this study an approach based on numerical discrete element modelling (DEM) in combination with limit-equilibrium (LE) methods are presented. The advantage of DEM methods is that failure and displacement of discontinuities and the intact rock for the investigation of failure mechanisms and slope deformations are considered. Furthermore, DEM methods have its strength when rock masses are highly anisotropic and slope failure is structurally controlled. Herein DEM methods are applied to model potential failure geometries, which in turn serve as basis for further investigations by limit-equilibrium methods. LE-methods are used to determine the factor of safety for the pre-defined failure geometries where a sliding mechanism with a discrete and pre-defined basal shear zone is the most likely kinematical failure mode. In this study a parameter variation was performed to find the most reliable FOS based on field estimated strength parameters and the critical strength parameter where a FOS is equal to one (i.e. the lower limit for the parameters). Furthermore, the sensitivity of the shear strength parameters is studied, which enables plausibility checks with field measurements and back-calculated values. The combined approach can help to gain a better insight into failure processes and deformation mechanisms and facilitate to perform a parameter-variation study at a reasonable time frame.

  13. Achieving Higher Strength and Sensitivity toward UV Light in Multifunctional Composites by Controlling the Thickness of Nano-Layer on the Surface of Glass Fiber.

    PubMed

    Sun, Chao; Zhang, Jie; Gao, Shanglin; Zhang, Nan; Zhang, Yijun; Zhuang, Jian; Liu, Ming; Zhang, Xiaohui; Ren, Wei; Wu, Hua; Ye, Zuo-Guang

    2018-06-18

    The interphase between fiber and matrix plays an essential role in the performance of composites. Therefore, the ability to design or modify the interphase is a key technology needed to manufacture stronger and smarter composite. Recently, depositing nano-materials onto the surface of the fiber has become a promising approach to optimize the interphase and composites. But, the modified composites have not reached the highest strength yet, because the determining parameters, such as thickness of the nano-layer, are hardly controlled by the mentioned methods in reported works. Here, we deposit conformal ZnO nano-layer with various thicknesses onto the surfaces of glass fibers via the atomic layer deposition (ALD) method and a tremendous enhancement of interfacial shear strength of composites is achieved. Importantly, a critical thickness of ZnO nano-layer is obtained for the first time, giving rise to a maximal relative enhancement in the interfacial strength, which is more than 200% of the control fiber. In addition, the single modified fiber exhibits a potential application as a flexible, transparent, in-situ UV detector in composites. And, we find the UV-sensitivity also shows a strong correlation with the thickness of ZnO. To reveal the dependence of UV-sensitivity on thickness, a depletion thickness is estimated by a proposed model which is an essential guide to design the detectors with higher sensitivity. Consequently, such precise tailoring of the interphase offers an advanced way to improve and to flexibly control various macroscopic properties of multifunctional composites of the next generation.

  14. The role of structural parameters in DNA cyclization

    DOE PAGES

    Alexandrov, Ludmil B.; Bishop, Alan R.; Rasmussen, Kim O.; ...

    2016-02-04

    The intrinsic bendability of DNA plays an important role with relevance for myriad of essential cellular mechanisms. The flexibility of a DNA fragment can be experimentally and computationally examined by its propensity for cyclization, quantified by the Jacobson-Stockmayer J factor. In this paper, we use a well-established coarse-grained three-dimensional model of DNA and seven distinct sets of experimentally and computationally derived conformational parameters of the double helix to evaluate the role of structural parameters in calculating DNA cyclization.

  15. Labeling Projections on Published Maps

    USGS Publications Warehouse

    Snyder, John P.

    1987-01-01

    To permit accurate scaling on a map, and to use the map as a source of accurate positions in the transfer of data, certain parameters - such as the standard parallels selected for a conic projection - must be stated on the map. This information is often missing on published maps. Three current major world atlases are evaluated with respect to map projection identification. The parameters essential for the projections used in these three atlases are discussed and listed. These parameters should be stated on any map based on the same projection.

  16. Acoustic Quality Levels of Mosques in Batu Pahat

    NASA Astrophysics Data System (ADS)

    Azizah Adnan, Nor; Nafida Raja Shahminan, Raja; Khair Ibrahim, Fawazul; Tami, Hannifah; Yusuff, M. Rizal M.; Murniwaty Samsudin, Emedya; Ismail, Isham

    2018-04-01

    Every Friday, Muslims has been required to perform a special prayer known as the Friday prayers which involve the delivery of a brief lecture (Khutbah). Speech intelligibility in oral communications presented by the preacher affected all the congregation and determined the level of acoustic quality in the interior of the mosque. Therefore, this study intended to assess the level of acoustic quality of three public mosques in Batu Pahat. Good acoustic quality is essential in contributing towards appreciation in prayers and increasing khusyu’ during the worship, which is closely related to the speech intelligibility corresponding to the actual function of the mosque according to Islam. Acoustic parameters measured includes noise criteria (NC), reverberation time (RT) and speech transmission index (STI), and was performed using the sound level meter and sound measurement instruments. This test is carried out through the physical observation with the consideration of space and volume design as a factor affecting acoustic parameters. Results from all 3 mosques as the showed that the acoustic quality level inside these buildings are slightly poor which is at below 0.45 coefficients based on the standard. Among the factors that influencing the low acoustical quality are location, building materials, installation of sound absorption material and the number of occupants inside the mosque. As conclusion, the acoustic quality level of a mosque is highly depends on physical factors of the mosque such as the architectural design and space volume besides other factors as been identified by this study.

  17. Simulation of optical signaling among nano-bio-sensors: enhancing of bioimaging contrast.

    PubMed

    SalmanOgli, A; Behzadi, S; Rostami, A

    2014-09-01

    In this article, the nanoparticle-dye systems is designed and simulated to illustrate the possibility of enhancement in optical imaging contrast. For this, the firefly optimization technique is used as an optical signaling mechanism among agents (nanoparticle-dye) because fireflies attract together due to their flashing light and optical signaling that is produced by a process of bioluminescence (also it has been investigated that other parameters such as neural response and brain function have essential role in attracting fireflies to each other). The first parameter is coincided with our work, because the nanoparticle-dye systems have ability to augment of received light and its amplification cause that the designed complex system act as a brightness particle. This induced behavior of nanoparticles can be considered as an optical communication and signaling. Indeed by functionalization of nanoparticles and then due to higher brightness of the tumor site because of active targeting, the other particles can be guided to reach toward the target point and the signaling among agents is done by optical relation similar to firefly nature. Moreover, the fundamental of this work is the use of surface plasmon resonance and plasmons hybridization, in which photonic signals can be manipulated on the nanoscale and can be used in biomedical applications such as electromagnetic field enhancement. Finally, it can be mentioned that by simultaneously using plasmon hybridization, near-field augmentation, and firefly algorithm, the optical imaging contrast can be impressively improved.

  18. Optimization of Ferroelectric Ceramics by Design at the Microstructure Level

    NASA Astrophysics Data System (ADS)

    Jayachandran, K. P.; Guedes, J. M.; Rodrigues, H. C.

    2010-05-01

    Ferroelectric materials show remarkable physical behaviors that make them essential for many devices and have been extensively studied for their applications of nonvolatile random access memory (NvRAM) and high-speed random access memories. Although ferroelectric ceramics (polycrystals) present ease in manufacture and in compositional modifications and represent the widest application area of materials, computational and theoretical studies are sparse owing to many reasons including the large number of constituent atoms. Macroscopic properties of ferroelectric polycrystals are dominated by the inhomogeneities at the crystallographic domain/grain level. Orientation of grains/domains is critical to the electromechanical response of the single crystalline and polycrystalline materials. Polycrystalline materials have the potential of exhibiting better performance at a macroscopic scale by design of the domain/grain configuration at the domain-size scale. This suggests that piezoelectric properties can be optimized by a proper choice of the parameters which control the distribution of grain orientations. Nevertheless, this choice is complicated and it is impossible to analyze all possible combinations of the distribution parameters or the angles themselves. Hence we have implemented the stochastic optimization technique of simulated annealing combined with the homogenization for the optimization problem. The mathematical homogenization theory of a piezoelectric medium is implemented in the finite element method (FEM) by solving the coupled equilibrium electrical and mechanical fields. This implementation enables the study of the dependence of the macroscopic electromechanical properties of a typical crystalline and polycrystalline ferroelectric ceramic on the grain orientation.

  19. A design methodology for nonlinear systems containing parameter uncertainty

    NASA Technical Reports Server (NTRS)

    Young, G. E.; Auslander, D. M.

    1983-01-01

    In the present design methodology for nonlinear systems containing parameter uncertainty, a generalized sensitivity analysis is incorporated which employs parameter space sampling and statistical inference. For the case of a system with j adjustable and k nonadjustable parameters, this methodology (which includes an adaptive random search strategy) is used to determine the combination of j adjustable parameter values which maximize the probability of those performance indices which simultaneously satisfy design criteria in spite of the uncertainty due to k nonadjustable parameters.

  20. An Extensive Unified Thermo-Electric Module Characterization Method

    PubMed Central

    Attivissimo, Filippo; Guarnieri Calò Carducci, Carlo; Lanzolla, Anna Maria Lucia; Spadavecchia, Maurizio

    2016-01-01

    Thermo-Electric Modules (TEMs) are being increasingly used in power generation as a valid alternative to batteries, providing autonomy to sensor nodes or entire Wireless Sensor Networks, especially for energy harvesting applications. Often, manufacturers provide some essential parameters under determined conditions, like for example, maximum temperature difference between the surfaces of the TEM or for maximum heat absorption, but in many cases, a TEM-based system is operated under the best conditions only for a fraction of the time, thus, when dynamic working conditions occur, the performance estimation of TEMs is crucial to determine their actual efficiency. The focus of this work is on using a novel procedure to estimate the parameters of both the electrical and thermal equivalent model and investigate their relationship with the operating temperature and the temperature gradient. The novelty of the method consists in the use of a simple test configuration to stimulate the modules and simultaneously acquire electrical and thermal data to obtain all parameters in a single test. Two different current profiles are proposed as possible stimuli, which use depends on the available test instrumentation, and relative performance are compared both quantitatively and qualitatively, in terms of standard deviation and estimation uncertainty. Obtained results, besides agreeing with both technical literature and a further estimation method based on module specifications, also provides the designer a detailed description of the module behavior, useful to simulate its performance in different scenarios. PMID:27983575

  1. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy

    NASA Astrophysics Data System (ADS)

    Jiménez-Forteza, Xisco; Keitel, David; Husa, Sascha; Hannam, Mark; Khan, Sebastian; Pürrer, Michael

    2017-03-01

    Numerical relativity is an essential tool in studying the coalescence of binary black holes (BBHs). It is still computationally prohibitive to cover the BBH parameter space exhaustively, making phenomenological fitting formulas for BBH waveforms and final-state properties important for practical applications. We describe a general hierarchical bottom-up fitting methodology to design and calibrate fits to numerical relativity simulations for the three-dimensional parameter space of quasicircular nonprecessing merging BBHs, spanned by mass ratio and by the individual spin components orthogonal to the orbital plane. Particular attention is paid to incorporating the extreme-mass-ratio limit and to the subdominant unequal-spin effects. As an illustration of the method, we provide two applications, to the final spin and final mass (or equivalently: radiated energy) of the remnant black hole. Fitting to 427 numerical relativity simulations, we obtain results broadly consistent with previously published fits, but improving in overall accuracy and particularly in the approach to extremal limits and for unequal-spin configurations. We also discuss the importance of data quality studies when combining simulations from diverse sources, how detailed error budgets will be necessary for further improvements of these already highly accurate fits, and how this first detailed study of unequal-spin effects helps in choosing the most informative parameters for future numerical relativity runs.

  2. An Extensive Unified Thermo-Electric Module Characterization Method.

    PubMed

    Attivissimo, Filippo; Guarnieri Calò Carducci, Carlo; Lanzolla, Anna Maria Lucia; Spadavecchia, Maurizio

    2016-12-13

    Thermo-Electric Modules (TEMs) are being increasingly used in power generation as a valid alternative to batteries, providing autonomy to sensor nodes or entire Wireless Sensor Networks, especially for energy harvesting applications. Often, manufacturers provide some essential parameters under determined conditions, like for example, maximum temperature difference between the surfaces of the TEM or for maximum heat absorption, but in many cases, a TEM-based system is operated under the best conditions only for a fraction of the time, thus, when dynamic working conditions occur, the performance estimation of TEMs is crucial to determine their actual efficiency. The focus of this work is on using a novel procedure to estimate the parameters of both the electrical and thermal equivalent model and investigate their relationship with the operating temperature and the temperature gradient. The novelty of the method consists in the use of a simple test configuration to stimulate the modules and simultaneously acquire electrical and thermal data to obtain all parameters in a single test. Two different current profiles are proposed as possible stimuli, which use depends on the available test instrumentation, and relative performance are compared both quantitatively and qualitatively, in terms of standard deviation and estimation uncertainty. Obtained results, besides agreeing with both technical literature and a further estimation method based on module specifications, also provides the designer a detailed description of the module behavior, useful to simulate its performance in different scenarios.

  3. Stability of Intercellular Exchange of Biochemical Substances Affected by Variability of Environmental Parameters

    NASA Astrophysics Data System (ADS)

    Mihailović, Dragutin T.; Budinčević, Mirko; Balaž, Igor; Mihailović, Anja

    Communication between cells is realized by exchange of biochemical substances. Due to internal organization of living systems and variability of external parameters, the exchange is heavily influenced by perturbations of various parameters at almost all stages of the process. Since communication is one of essential processes for functioning of living systems it is of interest to investigate conditions for its stability. Using previously developed simplified model of bacterial communication in a form of coupled difference logistic equations we investigate stability of exchange of signaling molecules under variability of internal and external parameters.

  4. Associations of semen quality with non-essential heavy metals in blood and seminal fluid: data from the Environment and Male Infertility (EMI) study in Lebanon.

    PubMed

    Sukhn, Carol; Awwad, Johnny; Ghantous, Akram; Zaatari, Ghazi

    2018-06-21

    Human exposure to environmental pollutants is widespread. It was suggested that exposure to non-essential heavy metals may adversely affect semen development in men. To evaluate associations between non-essential heavy metals in blood and seminal fluid and semen quality parameters in men. Male partners of heterosexual couples were included. The following elements were measured in blood and seminal fluid: lead (Pb), cadmium (Cd), arsenic (As), barium (Ba), mercury (Hg), and uranium (U) using ion-coupled plasma-mass spectrometry. The fertility clinic at the American University of Beirut Medical Center. Semen quality parameters (volume, concentration, total count, progressive motility, viability, and normal morphology). We found that participants with low-quality semen had significantly higher Cd and Ba concentrations in the seminal fluid than participants with normal-quality semen. We also observed significant associations between low sperm viability and higher blood Cd and Ba, as well as higher seminal Pb, Cd, Ba, and U. Furthermore, U concentrations in the seminal fluid were associated with increased odds ratios for below-reference progressive sperm motility and normal morphology. Environmental exposures to Pb, Cd, Ba, and U appear to adversely influence sperm development in men. In non-occupationally exposed men, measurements of heavy metals in the seminal fluid may be more predictive of below-reference sperm quality parameters than in blood.

  5. Wolf survival and population trend using non-invasive capture-recapture techniques in the Western Alps

    Treesearch

    Francesca Marucco; Daniel H. Pletscher; Luigi Boitani; Michael K. Schwartz; Kristy L. Pilgrim; Jean-Dominique Lebreton

    2009-01-01

    Population abundance and related parameters need to be assessed to implement effective wildlife management. These essential parameters are often very hard to obtain for rare, wide-ranging and elusive species, particularly those listed as endangered or threatened (IUCN 2001). In Italy, wolves Canis lupus Linnaeus 1758, now a fully protected species in Western Europe,...

  6. Effect of an essential oil-containing dentifrice on dental plaque microbial composition.

    PubMed

    Charles, C H; Vincent, J W; Borycheski, L; Amatnieks, Y; Sarina, M; Qaqish, J; Proskin, H M

    2000-09-01

    To determine the effect of 6 months use of an essential oil-containing (EO) antiplaque/antigingivitis fluoride dentifrice on the balance of the oral microbial flora and on the emergence of resistant microbial forms by analysis of dental plaque and saliva. The dentifrice essential oils consisted of a fixed combination of thymol, menthol, methyl salicylate, and eucalyptol. An identical fluoride-containing dentifrice without the essential oils served as the control. A subgroup of 66 subjects from a clinical trial population of 321 was randomly selected for characterization of their dental plaque microflora. Saliva was also cultured to monitor for the emergence of opportunistic pathogens. Supragingival plaque and saliva were harvested at baseline, after which subjects received a dental prophylaxis. Subjects were sampled again after 3 and 6 months of product use prior to clinical examination. Plaque was characterized for microbial content by phase contrast microscopy for recognizable cellular morphotypes and by cultivation on nonselective and selective culture media. Determination of the minimum inhibitory concentrations of the test agent against selected Actinomyces and Veillonella isolated bacterial species was conducted at all time points to monitor for the potential development of bacterial resistance. There were no statistically significant differences between the microbial flora obtained from subjects using the essential oil-containing dentifrice and the vehicle control for all parameters and time periods except for the percentage of spirochetes at 6 months and for percentage of "other" microorganisms at 3 months. The EO group exhibited a lower adjusted mean for both parameters. Additionally, there was no evidence of the development of bacterial resistance to the antimicrobial activity of the essential oils or the emergence of opportunistic pathogens.

  7. Analysis of Design Parameters Effects on Vibration Characteristics of Fluidlastic Isolators

    NASA Astrophysics Data System (ADS)

    Deng, Jing-hui; Cheng, Qi-you

    2017-07-01

    The control of vibration in helicopters which consists of reducing vibration levels below the acceptable limit is one of the key problems. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters is very important to obtain efficient vibration-suppressed. Aiming at getting the effect of design parameters on the property of fluidlastic isolator, a dynamic equation is set up based on the theory of dynamics. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. Dynamic analysis results have shown that fluidlastic isolator can reduce the vibration effectively. Analysis results also showed that the design parameters such as the fluid density, viscosity coefficient, stiffness (K1 and K2) and loss coefficient have obvious influence on the performance of isolator. The efficient vibration-suppressed can be obtained by the design optimization of parameters.

  8. Volume CT (VCT) enabled by a novel diode technology

    NASA Astrophysics Data System (ADS)

    Ikhlef, Aziz; Zeman, Greg; Hoffman, David; Li, Wen; Possin, George

    2005-04-01

    One of the results of the latest developments in x-ray tube and detector technology, is the enabling of computed tomography (CT) as a strong non-invasive imaging modality for a new set of clinical applications including cardiac and brain imaging. A common theme among the applications is an ability to have wide anatomical coverage in a single rotation. Large coverage in CT is expected to bring significant diagnostic value in clinical field, especially in cardiac, trauma, pediatric, neuro, angiography, Stroke WorkUp and pulmonary applications. This demand, in turn, creates a need for tile-able and scalable detector design. In this paper, we introduce the design of a new diode, a crucial part of the detector, discuss how it enables wide coverage, its performance in terms of cross-talk, light output response, maximized geometric efficiency, and other CT requirements, and compare it to the traditional design which is front-illuminated diode. We ran extensive simulation and measurement experiments to study the geometric efficiency and assess the cross talk and all other performance parameters Critical To Quality (CTQs) with both designs. We modeled x-ray scattering in the scintillator, light scattering through the septa and optical coupler, and electrical cross talk. We tested the design with phantoms and clinical experiments on a scanner (LightSpeed VCT, GE Healthcare Technologies, Waukesha, WI, USA). Our preliminary results indicate that the new diode design performs as well as the traditional in terms of cross talk and other CTQs. It, also, yields better geometric efficiency and enables tile-able detector design, which is crucial for the VCT. We introduced a new diode design, which is an essential enabler for VCT. We demonstrated the new design is superior to the traditional design for the clinically relevant performance measures.

  9. Detecting chaos in particle accelerators through the frequency map analysis method.

    PubMed

    Papaphilippou, Yannis

    2014-06-01

    The motion of beams in particle accelerators is dominated by a plethora of non-linear effects, which can enhance chaotic motion and limit their performance. The application of advanced non-linear dynamics methods for detecting and correcting these effects and thereby increasing the region of beam stability plays an essential role during the accelerator design phase but also their operation. After describing the nature of non-linear effects and their impact on performance parameters of different particle accelerator categories, the theory of non-linear particle motion is outlined. The recent developments on the methods employed for the analysis of chaotic beam motion are detailed. In particular, the ability of the frequency map analysis method to detect chaotic motion and guide the correction of non-linear effects is demonstrated in particle tracking simulations but also experimental data.

  10. Direct model reference adaptive control of a flexible robotic manipulator

    NASA Technical Reports Server (NTRS)

    Meldrum, D. R.

    1985-01-01

    Quick, precise control of a flexible manipulator in a space environment is essential for future Space Station repair and satellite servicing. Numerous control algorithms have proven successful in controlling rigid manipulators wih colocated sensors and actuators; however, few have been tested on a flexible manipulator with noncolocated sensors and actuators. In this thesis, a model reference adaptive control (MRAC) scheme based on command generator tracker theory is designed for a flexible manipulator. Quicker, more precise tracking results are expected over nonadaptive control laws for this MRAC approach. Equations of motion in modal coordinates are derived for a single-link, flexible manipulator with an actuator at the pinned-end and a sensor at the free end. An MRAC is designed with the objective of controlling the torquing actuator so that the tip position follows a trajectory that is prescribed by the reference model. An appealing feature of this direct MRAC law is that it allows the reference model to have fewer states than the plant itself. Direct adaptive control also adjusts the controller parameters directly with knowledge of only the plant output and input signals.

  11. Systematic Experimental and Computational Investigation of Ion Transport in Novel Polyether Electrolytes

    NASA Astrophysics Data System (ADS)

    Pesko, Danielle; Webb, Michael; Jung, Yukyung; Zheng, Qi; Miller, Thomas, III; Coates, Geoffrey; Balsara, Nitash

    Polyethers, such as poly(ethylene oxide) (PEO), are considered to be the most promising polymer electrolyte materials due to their high ionic conductivity and electrochemical stability, both essential for battery applications. To gain a fundamental understanding of the transport properties of polyether systems, we design a systematic set of linear PEO-like polymers to explore the effect of adding carbon spacers to the backbone of the chain. Ac impedance spectroscopy is employed to measure the ionic conductivity of polyether/lithium salt electrolytes; the results elucidate tradeoffs between lowering the glass transition temperature and diluting the polar groups on the polymer chain. Molecular-level insight is provided by molecular dynamics simulations of the polyether electrolytes. We define the useful and intuitive metric of ``connectivity'', a parameter calculated from simulations which describes the physical arrangements of solvation sites in a polymer melt. Direct comparison of experiment and theory allows us to determine the relationship between connectivity and conductivity. The comparison provides insight regarding the factors that control conductivity, and highlights considerations that must be taken when designing new ion-conducting polymers.

  12. Exploiting the chaotic behaviour of atmospheric models with reconfigurable architectures

    NASA Astrophysics Data System (ADS)

    Russell, Francis P.; Düben, Peter D.; Niu, Xinyu; Luk, Wayne; Palmer, T. N.

    2017-12-01

    Reconfigurable architectures are becoming mainstream: Amazon, Microsoft and IBM are supporting such architectures in their data centres. The computationally intensive nature of atmospheric modelling is an attractive target for hardware acceleration using reconfigurable computing. Performance of hardware designs can be improved through the use of reduced-precision arithmetic, but maintaining appropriate accuracy is essential. We explore reduced-precision optimisation for simulating chaotic systems, targeting atmospheric modelling, in which even minor changes in arithmetic behaviour will cause simulations to diverge quickly. The possibility of equally valid simulations having differing outcomes means that standard techniques for comparing numerical accuracy are inappropriate. We use the Hellinger distance to compare statistical behaviour between reduced-precision CPU implementations to guide reconfigurable designs of a chaotic system, then analyse accuracy, performance and power efficiency of the resulting implementations. Our results show that with only a limited loss in accuracy corresponding to less than 10% uncertainty in input parameters, the throughput and energy efficiency of a single-precision chaotic system implemented on a Xilinx Virtex-6 SX475T Field Programmable Gate Array (FPGA) can be more than doubled.

  13. Development of natural gas rotary engines

    NASA Astrophysics Data System (ADS)

    Mack, J. R.

    1991-08-01

    Development of natural gas-fueled rotary engines was pursued on the parallel paths of converted Mazda automotive engines and of establishing technology and demonstration of a test model of a larger John Deer Technologies Incorporated (JDTI) rotary engine with power capability of 250 HP per power section for future production of multi-rotor engines with power ratings 250, 500, and 1000 HP and upward. Mazda engines were converted to natural gas and were characterized by a laboratory which was followed by nearly 12,000 hours of testing in three different field installations. To develop technology for the larger JDTI engine, laboratory and engine materials testing was accomplished. Extensive combustion analysis computer codes were modified, verified, and utilized to predict engine performance, to guide parameters for actual engine design, and to identify further improvements. A single rotor test engine of 5.8 liter displacement was designed for natural gas operation based on the JDTI 580 engine series. This engine was built and tested. It ran well and essentially achieved predicted performance. Lean combustion and low NOW emission were demonstrated.

  14. Risk management for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Buchbinder, Ben

    1993-01-01

    Probabilistic Risk Assessment (PRA) is a quantitative engineering process that provides the analytic structure and decision-making framework for total programmatic risk management. Ideally, it is initiated in the conceptual design phase and used throughout the program life cycle. Although PRA was developed for assessment of safety, reliability, and availability risk, it has far greater application. Throughout the design phase, PRA can guide trade-off studies among system performance, safety, reliability, cost, and schedule. These studies are based on the assessment of the risk of meeting each parameter goal, with full consideration of the uncertainties. Quantitative trade-off studies are essential, but without full identification, propagation, and display of uncertainties, poor decisions may result. PRA also can focus attention on risk drivers in situations where risk is too high. For example, if safety risk is unacceptable, the PRA prioritizes the risk contributors to guide the use of resources for risk mitigation. PRA is used in the Space Exploration Initiative (SEI) Program. To meet the stringent requirements of the SEI mission, within strict budgetary constraints, the PRA structure supports informed and traceable decision-making. This paper briefly describes the SEI PRA process.

  15. Design of 2*6 optical hybrid in inter-satellite coherent laser communications

    NASA Astrophysics Data System (ADS)

    Xu, Nan; Liu, Liren; Liu, De'an; Wan, Lingyu; Zhou, Yu

    2008-08-01

    Compared with direct detection, homodyne binary phase shift keying receivers can achieve the best sensitivity theoretically, and became the trend of the research and application in inter-satellite coherent laser communications. In coherent optical communication systems an optical hybrid is an essential component of the receiver. It demodulates the incoming signal by mixing it with the local oscillator. We present a design of a 2*6 optical hybrid. 4 output ports of the hybrid give the narrow mixed beams of the incoming signal and the local oscillator shifted by 90°for communication, and the others give the wide mixed beams with a shifted degree of 180°for position errors detection. CCD captures the interference pattern from the wide beams, and then the pattern is processed and analyzed by the computer. Target position information is obtained from characteristic parameter of the interference pattern. The position errors as the control signals of PAT (pointing, acquisition and tracking) subsystem drive the receiver telescope to keep tracking to the target. The application extends to coherent laser rang finder.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rhinefrank, Kenneth E.; Lenee-Bluhm, Pukha; Prudell, Joseph H.

    The most prudent path to a full-scale design, build and deployment of a wave energy conversion (WEC) system involves establishment of validated numerical models using physical experiments in a methodical scaling program. This Project provides essential additional rounds of wave tank testing at 1:33 scale and ocean/bay testing at a 1:7 scale, necessary to validate numerical modeling that is essential to a utility-scale WEC design and associated certification.

  17. Optimal Designs for the Rasch Model

    ERIC Educational Resources Information Center

    Grasshoff, Ulrike; Holling, Heinz; Schwabe, Rainer

    2012-01-01

    In this paper, optimal designs will be derived for estimating the ability parameters of the Rasch model when difficulty parameters are known. It is well established that a design is locally D-optimal if the ability and difficulty coincide. But locally optimal designs require that the ability parameters to be estimated are known. To attenuate this…

  18. Chemical composition and biological activity of the essential oil of rhizome of Zingiber zerumbet (L.) smith

    USDA-ARS?s Scientific Manuscript database

    Technical Abstract: The aim was designed to study the biological activity and chemical composition of essential oil of Zingiber zerumbet (L.) Smith. The essential oil extracted from the rhizome of the plant was analysed by gas chromatography-mass spectroscopy and its major components amounting t...

  19. Interagency Transition Team Development and Facilitation. Essential Tools.

    ERIC Educational Resources Information Center

    Stodden, Robert A.; Brown, Steven E.; Galloway, L. M.; Mrazek, Susan; Noy, Liora

    2005-01-01

    The purpose of this Essential Tool is to assist state-level transition coordinators and others responsible for forming, conducting, and evaluating the performance of interagency transition teams that are focused upon the school and post-school needs of youth with disabilities. This Essential Tool is designed to guide the coordination efforts of…

  20. Model Predictive Control of Type 1 Diabetes: An in Silico Trial

    PubMed Central

    Magni, Lalo; Raimondo, Davide M.; Bossi, Luca; Man, Chiara Dalla; De Nicolao, Giuseppe; Kovatchev, Boris; Cobelli, Claudio

    2007-01-01

    Background The development of artificial pancreas has received a new impulse from recent technological advancements in subcutaneous continuous glucose monitoring and subcutaneous insulin pump delivery systems. However, the availability of innovative sensors and actuators, although essential, does not guarantee optimal glycemic regulation. Closed-loop control of blood glucose levels still poses technological challenges to the automatic control expert, most notable of which are the inevitable time delays between glucose sensing and insulin actuation. Methods A new in silico model is exploited for both design and validation of a linear model predictive control (MPC) glucose control system. The starting point is a recently developed meal glucose–insulin model in health, which is modified to describe the metabolic dynamics of a person with type 1 diabetes mellitus. The population distribution of the model parameters originally obtained in healthy 204 patients is modified to describe diabetic patients. Individual models of virtual patients are extracted from this distribution. A discrete-time MPC is designed for all the virtual patients from a unique input–output-linearized approximation of the full model based on the average population values of the parameters. The in silico trial simulates 4 consecutive days, during which the patient receives breakfast, lunch, and dinner each day. Results Provided that the regulator undergoes some individual tuning, satisfactory results are obtained even if the control design relies solely on the average patient model. Only the weight on the glucose concentration error needs to be tuned in a quite straightforward and intuitive way. The ability of the MPC to take advantage of meal announcement information is demonstrated. Imperfect knowledge of the amount of ingested glucose causes only marginal deterioration of performance. In general, MPC results in better regulation than proportional integral derivative, limiting significantly the oscillation of glucose levels. Conclusions The proposed in silico trial shows the potential of MPC for artificial pancreas design. The main features are a capability to consider meal announcement information, delay compensation, and simplicity of tuning and implementation. PMID:19885152

  1. Considering Apical Scotomas, Confusion, and Diplopia When Prescribing Prisms for Homonymous Hemianopia

    PubMed Central

    Apfelbaum, Henry L.; Ross, Nicole C.; Bowers, Alex R.; Peli, Eli

    2013-01-01

    Purpose: While prisms are commonly prescribed for homonymous hemianopia to extend or expand the visual field, they cause potentially troubling visual side effects, including nonveridical location of perceived images, diplopia, and visual confusion. In addition, the field behind a prism at its apex is lost to an apical scotoma equal in magnitude to the amount of prism shift. The perceptual consequences of apical scotomas and the other effects of various designs were examined to consider parameters and designs that can mitigate the impact of these effects. Methods: Various configurations of sector and peripheral prisms were analyzed, in various directions of gaze, and their visual effects were illustrated using simulated perimetry. A novel “percept” diagram was developed that yielded insights into the patient's view through the prisms. The predictions were verified perimetrically with patients. Results: The diagrams distinguish between potentially beneficial field expansion via visual confusion and the pericentrally disturbing and useless effect of diplopia, and their relationship to prism power and gaze direction. They also illustrate the nonexpanding substitution of field segments of some popular prism designs. Conclusions: Yoked sector prisms have no effect at primary gaze or when gaze is directed toward the seeing hemifield, and they introduce pericentral field loss when gaze is shifted into them. When fitted unilaterally, sector prisms also have an effect only when the gaze is directed into the prism and may cause a pericentral scotoma and/or central diplopia. Peripheral prisms are effective at essentially all gaze angles. Since gaze is not directed into them, they avoid problematic pericentral effects. We derive useful recommendations for prism power and position parameters, including novel ways of fitting prisms asymmetrically. Translational Relevance: Clinicians will find these novel diagrams, diagramming techniques, and analyses valuable when prescribing prismatic aids for hemianopia and when designing new prism devices for patients with various types of field loss. PMID:24049719

  2. Accurate Monte Carlo simulations for nozzle design, commissioning and quality assurance for a proton radiation therapy facility.

    PubMed

    Paganetti, H; Jiang, H; Lee, S Y; Kooy, H M

    2004-07-01

    Monte Carlo dosimetry calculations are essential methods in radiation therapy. To take full advantage of this tool, the beam delivery system has to be simulated in detail and the initial beam parameters have to be known accurately. The modeling of the beam delivery system itself opens various areas where Monte Carlo calculations prove extremely helpful, such as for design and commissioning of a therapy facility as well as for quality assurance verification. The gantry treatment nozzles at the Northeast Proton Therapy Center (NPTC) at Massachusetts General Hospital (MGH) were modeled in detail using the GEANT4.5.2 Monte Carlo code. For this purpose, various novel solutions for simulating irregular shaped objects in the beam path, like contoured scatterers, patient apertures or patient compensators, were found. The four-dimensional, in time and space, simulation of moving parts, such as the modulator wheel, was implemented. Further, the appropriate physics models and cross sections for proton therapy applications were defined. We present comparisons between measured data and simulations. These show that by modeling the treatment nozzle with millimeter accuracy, it is possible to reproduce measured dose distributions with an accuracy in range and modulation width, in the case of a spread-out Bragg peak (SOBP), of better than 1 mm. The excellent agreement demonstrates that the simulations can even be used to generate beam data for commissioning treatment planning systems. The Monte Carlo nozzle model was used to study mechanical optimization in terms of scattered radiation and secondary radiation in the design of the nozzles. We present simulations on the neutron background. Further, the Monte Carlo calculations supported commissioning efforts in understanding the sensitivity of beam characteristics and how these influence the dose delivered. We present the sensitivity of dose distributions in water with respect to various beam parameters and geometrical misalignments. This allows the definition of tolerances for quality assurance and the design of quality assurance procedures.

  3. Tolerance assignment in optical design

    NASA Astrophysics Data System (ADS)

    Youngworth, Richard Neil

    2002-09-01

    Tolerance assignment is necessary in any engineering endeavor because fabricated systems---due to the stochastic nature of manufacturing and assembly processes---necessarily deviate from the nominal design. This thesis addresses the problem of optical tolerancing. The work can logically be split into three different components that all play an essential role. The first part addresses the modeling of manufacturing errors in contemporary fabrication and assembly methods. The second component is derived from the design aspect---the development of a cost-based tolerancing procedure. The third part addresses the modeling of image quality in an efficient manner that is conducive to the tolerance assignment process. The purpose of the first component, modeling manufacturing errors, is twofold---to determine the most critical tolerancing parameters and to understand better the effects of fabrication errors. Specifically, mid-spatial-frequency errors, typically introduced in sub-aperture grinding and polishing fabrication processes, are modeled. The implication is that improving process control and understanding better the effects of the errors makes the task of tolerance assignment more manageable. Conventional tolerancing methods do not directly incorporate cost. Consequently, tolerancing approaches tend to focus more on image quality. The goal of the second part of the thesis is to develop cost-based tolerancing procedures that facilitate optimum system fabrication by generating the loosest acceptable tolerances. This work has the potential to impact a wide range of optical designs. The third element, efficient modeling of image quality, is directly related to the cost-based optical tolerancing method. Cost-based tolerancing requires efficient and accurate modeling of the effects of errors on the performance of optical systems. Thus it is important to be able to compute the gradient and the Hessian, with respect to the parameters that need to be toleranced, of the figure of merit that measures the image quality of a system. An algebraic method for computing the gradient and the Hessian is developed using perturbation theory.

  4. Fine tuning of transmission features in nanoporous anodic alumina distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Lim, Siew Yee; Law, Cheryl Suwen; Santos, Abel

    2018-01-01

    This study introduces an innovative apodisation strategy to tune the filtering features of distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs). The effective medium of NAA-DBRs, which is modulated in a stepwise fashion by a pulse-like anodisation approach, is apodised following a logarithmic negative function to engineer the transmission features of NAA-DBRs. We investigate the effect of various apodisation parameters such as apodisation amplitude difference, anodisation period, current density offset and pore widening time, to tune and optimise the optical properties of NAA-DBRs in terms of central wavelength position, full width at half maximum and quality of photonic stop band. The transmission features of NAA-DBRs are shown to be fully controllable with precision across the spectral regions by means of the apodisation parameters. Our study demonstrates that an apodisation strategy can significantly narrow the width and enhance the quality of the characteristic photonic stop band of NAA-DBRs. This rationally designed anodisation approach based on the combination of apodisation and stepwise pulse anodisation enables the development of optical filters with tuneable filtering features to be integrated into optical technologies acting as essential photonic elements in devices such as optical sensors and biosensors.

  5. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cristea, D.; Crisan, A.; Cretu, N.; Borges, J.; Lopes, C.; Cunha, L.; Ion, V.; Dinescu, M.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Munteanu, D.

    2015-11-01

    The main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOz thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N2 and O2, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, -50 V or -100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance TaxNyOz films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric TaxNyOz films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  6. Structural optimization of the path length control mirror for ring laser gyro

    NASA Astrophysics Data System (ADS)

    Ma, Yanghua; Quan, Bingxin; Han, Zonghu; Wang, Jiliang

    2017-02-01

    The path length control mirror (PLCM) is essential for high precision ring laser gyro (RLG). In this paper the influence of the structural parameters of the PLCM on its length compensating efficiency (LCE) and the anti-transversedeformation capability(ATDC) is numerically investigated, with the aid of the finite element software ANSYS. The result shows that the inner and outer diameters as well as the thickness of the deformation slot of the PLCM have significant influences on both its LCE and ATDC, while the position of the deformation slot of the PLCM has little impact on its LCE and mainly affect its ATDC. According to the simulation, two types of PLCMs with the same parameters all but the position of deformation slot are fabricated and experimentally demonstrated, with the result showing great agreement with the simulation. That is to say, for a given overall dimension constraint, the dynamic stability of the RLG resonator can be dramatically enhanced by a proper design of the PLCM, without almost any negative impact on its LCE. This will be of great value for the optimization of the PLCM for RLG, especially for miniature RLG.

  7. SIMPLE estimate of the free energy change due to aliphatic mutations: superior predictions based on first principles.

    PubMed

    Bueno, Marta; Camacho, Carlos J; Sancho, Javier

    2007-09-01

    The bioinformatics revolution of the last decade has been instrumental in the development of empirical potentials to quantitatively estimate protein interactions for modeling and design. Although computationally efficient, these potentials hide most of the relevant thermodynamics in 5-to-40 parameters that are fitted against a large experimental database. Here, we revisit this longstanding problem and show that a careful consideration of the change in hydrophobicity, electrostatics, and configurational entropy between the folded and unfolded state of aliphatic point mutations predicts 20-30% less false positives and yields more accurate predictions than any published empirical energy function. This significant improvement is achieved with essentially no free parameters, validating past theoretical and experimental efforts to understand the thermodynamics of protein folding. Our first principle analysis strongly suggests that both the solute-solute van der Waals interactions in the folded state and the electrostatics free energy change of exposed aliphatic mutations are almost completely compensated by similar interactions operating in the unfolded ensemble. Not surprisingly, the problem of properly accounting for the solvent contribution to the free energy of polar and charged group mutations, as well as of mutations that disrupt the protein backbone remains open. 2007 Wiley-Liss, Inc.

  8. Solar tower power plant using a particle-heated steam generator: Modeling and parametric study

    NASA Astrophysics Data System (ADS)

    Krüger, Michael; Bartsch, Philipp; Pointner, Harald; Zunft, Stefan

    2016-05-01

    Within the framework of the project HiTExStor II, a system model for the entire power plant consisting of volumetric air receiver, air-sand heat exchanger, sand storage system, steam generator and water-steam cycle was implemented in software "Ebsilon Professional". As a steam generator, the two technologies fluidized bed cooler and moving bed heat exchangers were considered. Physical models for the non-conventional power plant components as air- sand heat exchanger, fluidized bed coolers and moving bed heat exchanger had to be created and implemented in the simulation environment. Using the simulation model for the power plant, the individual components and subassemblies have been designed and the operating parameters were optimized in extensive parametric studies in terms of the essential degrees of freedom. The annual net electricity output for different systems was determined in annual performance calculations at a selected location (Huelva, Spain) using the optimized values for the studied parameters. The solution with moderate regenerative feed water heating has been found the most advantageous. Furthermore, the system with moving bed heat exchanger prevails over the system with fluidized bed cooler due to a 6 % higher net electricity yield.

  9. An open-population hierarchical distance sampling model

    USGS Publications Warehouse

    Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,

    2015-01-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  10. Optimization of wireless Bluetooth sensor systems.

    PubMed

    Lonnblad, J; Castano, J; Ekstrom, M; Linden, M; Backlund, Y

    2004-01-01

    Within this study, three different Bluetooth sensor systems, replacing cables for transmission of biomedical sensor data, have been designed and evaluated. The three sensor architectures are built on 1-, 2- and 3-chip solutions and depending on the monitoring situation and signal character, different solutions are optimal. Essential parameters for all systems have been low physical weight and small size, resistance to interference and interoperability with other technologies as global- or local networks, PC's and mobile phones. Two different biomedical input signals, ECG and PPG (photoplethysmography), have been used to evaluate the three solutions. The study shows that it is possibly to continuously transmit an analogue signal. At low sampling rates and slowly varying parameters, as monitoring the heart rate with PPG, the 1-chip solution is the most suitable, offering low power consumption and thus a longer battery lifetime or a smaller battery, minimizing the weight of the sensor system. On the other hand, when a higher sampling rate is required, as an ECG, the 3-chip architecture, with a FPGA or micro-controller, offers the best solution and performance. Our conclusion is that Bluetooth might be useful in replacing cables of medical monitoring systems.

  11. Investigation of microwave backscatter from the air-sea interface

    NASA Technical Reports Server (NTRS)

    Mcintosh, Robert E.; Carswell, James R.

    1995-01-01

    Monitoring the ocean surface winds and mean ocean surface level is essential for improving our knowledge of the climate. Two instruments that may provide us with this information are satellite-based scatterometers and altimeters. However, these instruments measure the backscatter characteristics of the ocean surface from which other physical parameters, such as the wind speed or ocean surface height, are derived. To improve the algorithms or models that relate the electromagnetic backscatter to the desired physical parameters, the University of Massachusetts (UMass) Microwave Remote Sensing Laboratory (MIRSL) designed and fabricated three airborne scatterometers: a C-band scatterometer (CSCAT), Ku-band scatterometer (KUSCAT) and C/Ku-band scatterometer (EMBR). One or more of these instruments participated in the Electromagnetic Bias experiment (EM Bias), Shelf Edge Exchange Processes experiment (SEEP), Surface Wave Dynamics Experiment (SWADE), Southern Ocean Wave Experiment (SOWEX), Hurricane Tina research flights, Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE), and Ladir In-space Technology Experiment (LITE). This document describes the three scatterometers, summarizes our measurement campaigns and major contributions to the scientific and engineering communities, lists the publications that resulted, and presents the degrees earned under the support of this NASA grant.

  12. Electron cooling for the Fermilab recycler: Present concept and provisional parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagaitsev, S.

    1997-09-01

    In all scenarios of the possible Tevatron upgrades, luminosity is essentially proportional to the number of antiprotons. Thus, a tenfold increase in luminosity could be achieved by putting five times more protons on the antiproton production target and gaining an additional factor of two from recycling antiprotons left over from the previous store. Stacking and storing ten times more antiprotons puts an unbearable burden on the stochastic cooling system of the existing Accumulator Ring. Thus, one is led to consider an additional stage of antiproton storage the so called Recycler Ring. Electron cooling of the 8 GeV antiprotons in themore » Recycler could provide an attractive way around the problems of large stacks. Such a system would look much like the IUCF proposal to cool 12 GeV protons in the SSC Medium Energy Booster. Although electron cooling has now become a routine tool in many laboratories, its use has been restricted to lower energy accelerators (< 500 MeV/nucleon). An R&D program is currently underway at Fermilab to extend electron cooling technology to the GeV range. This paper describes the electron cooling system design as well as the Recycler ring parameters required to accommodate this system.« less

  13. An open-population hierarchical distance sampling model.

    PubMed

    Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott

    2015-02-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  14. Extension of the Optimized Virtual Fields Method to estimate viscoelastic material parameters from 3D dynamic displacement fields

    PubMed Central

    Connesson, N.; Clayton, E.H.; Bayly, P.V.; Pierron, F.

    2015-01-01

    In-vivo measurement of the mechanical properties of soft tissues is essential to provide necessary data in biomechanics and medicine (early cancer diagnosis, study of traumatic brain injuries, etc.). Imaging techniques such as Magnetic Resonance Elastography (MRE) can provide 3D displacement maps in the bulk and in vivo, from which, using inverse methods, it is then possible to identify some mechanical parameters of the tissues (stiffness, damping etc.). The main difficulties in these inverse identification procedures consist in dealing with the pressure waves contained in the data and with the experimental noise perturbing the spatial derivatives required during the processing. The Optimized Virtual Fields Method (OVFM) [1], designed to be robust to noise, present natural and rigorous solution to deal with these problems. The OVFM has been adapted to identify material parameter maps from Magnetic Resonance Elastography (MRE) data consisting of 3-dimensional displacement fields in harmonically loaded soft materials. In this work, the method has been developed to identify elastic and viscoelastic models. The OVFM sensitivity to spatial resolution and to noise has been studied by analyzing 3D analytically simulated displacement data. This study evaluates and describes the OVFM identification performances: different biases on the identified parameters are induced by the spatial resolution and experimental noise. The well-known identification problems in the case of quasi-incompressible materials also find a natural solution in the OVFM. Moreover, an a posteriori criterion to estimate the local identification quality is proposed. The identification results obtained on actual experiments are briefly presented. PMID:26146416

  15. Commercialization of the Conversion of Bagasse to Ethanol. Summary quarterly report for the period January-September 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2000-02-01

    These studies were intended to further refine sugar yield parameters which effect sugar yield such as feedstock particle size, debris, acid soak time, temperature, dewatering, and pretreatment conditions (such as temperature, reaction time, percentage solids concentration, acid concentration), liquid-solids separation, and detoxification parameters (such as time temperature and mixing of detoxification ingredients). Validate and refine parameters, which affect ethanol yield such as detoxification conditions mentioned above, and to fermenter conditions such as temperature, pH adjustment, aeration, nutrients, and charging sequence. Materials of construction will be evaluated also. Evaluate stillage to determine clarification process and suitability for recycle; evaluate lignocellulosic cakemore » for thermal energy recovery to produce heat and electricity for the process; and Support Studies at UF - Toxin Amelioration and Fermentation; TVA work will provide pre-hydroylsates for the evaluation of BCI proprietary methods of toxin amelioration. Pre-hydrolysates from batch studies will allow the determination of the range of allowable hydrolyze conditions that can be used to produce a fermentable sugar stream. This information is essential to guide selection of process parameters for refinement and validation in the continuous pretreatment reactor, and for overall process design. Additional work will be conducted at UFRFI to develop improved strains that are resistant to inhibitors. The authors are quite optimistic about the long-term prospects for this advancement having recently developed strains with a 25%--50% increase in ethanol production. The biocatalyst platform selected originally, genetically engineered Escherichia coli B, has proven to be quite robust and adaptable.« less

  16. Seat pressure measurement technologies: considerations for their evaluation.

    PubMed

    Gyi, D E; Porter, J M; Robertson, N K

    1998-04-01

    Interface pressure measurement has generated interest in the automotive industry as a technique which could be used in the prediction of driver discomfort for various car seat designs, and provide designers and manufacturers with rapid information early on in the design process. It is therefore essential that the data obtained are of the highest quality, relevant and have some quantitative meaning. Exploratory experimental work carried out with the commercially available Talley Pressure Monitor is outlined. This led to a better understanding of the strengths and weaknesses of this system and the re-design of the sensor matrix. Such evaluation, in the context of the actual experimental environment, is considered essential.

  17. Design and analysis of a high power moderate band radiator using a switched oscillator

    NASA Astrophysics Data System (ADS)

    Armanious, Miena Magdi Hakeem

    Quarter-wave switched oscillators (SWOs) are an important technology for the generation of high-power, moderate bandwidth (mesoband) wave forms. The use of SWOs in high power microwave sources has been discussed for the past 10 years [1--6], but a detailed discussion of the design of this type of oscillators for particular waveforms has been lacking. In this dissertation I develop a design methodology for a realization of SWOs, also known as MATRIX oscillators in the scientific community. A key element in the design of SWOs is the self-breakdown switch, which is created by a large electric field. In order for the switch to close as expected from the design, it is essential to manage the electrostatic field distribution inside the oscillator during the charging time. This enforces geometric constraints on the shape of the conductors inside MATRIX. At the same time, the electrodynamic operation of MATRIX is dependent on the geometry of the structure. In order to generate a geometry that satisfies both the electrostatic and electrodynamic constraints, a new approach is developed to generate this geometry using the 2-D static solution of the Laplace equation, subject to a particular set of boundary conditions. These boundary conditions are manipulated to generate equipotential lines with specific dimensions that satisfy the electrodynamic constraints. Meanwhile, these equipotential lines naturally support an electrostatic field distribution that meets the requirements for the switch operation. To study the electrodynamic aspects of MATRIX, three different (but interrelated) numerical models are built. Depending on the assumptions made in each model, different information about the electrodynamic properties of the designed SWO are obtained. In addition, the agreement and consistency between the different models, validate and give confidence in the calculated results. Another important aspect of the design process is understanding the relationship between the geometric parameters of MATRIX and the output waveforms. Using the numerical models, the relationship between the dimensions of MATRIX and its calculated resonant parameters are studied. For a given set of geometric constraints, this provides more flexibility to the output specifications. Finally, I present a comprehensive design methodology that generates the geometry of a MATRIX system from the desired specification then calculates the radiated waveform.

  18. Analysis of material parameter effects on fluidlastic isolators performance

    NASA Astrophysics Data System (ADS)

    Cheng, Q. Y.; Deng, J. H.; Feng, Z. Z.; Qian, F.

    2018-01-01

    Control of vibration in helicopters has always been a complex and challenging task. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters of fluid and rubber is very important to obtain efficient vibration-suppressed. Aiming at getting the property of fluidlastic isolator to material design parameters, a dynamic equation is set up based on the dynamic theory. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. The material parameters examined are the properties of fluid and rubber. Analysis results showed that the design parameters such as density of fluid, viscosity coefficient of fluid, stiffness of rubber (K1) and loss coefficient of rubber have obvious influence on the performance of isolator. Base on the results of the study it is concluded that the efficient vibration-suppressed can be obtained by the selection of design parameters.

  19. Successful design and delivery of a professional poster.

    PubMed

    Berg, Judith; Hicks, Rod

    2017-08-01

    Poster presentations are increasingly popular for dissemination of scientific and clinical knowledge at professional meetings; however, this professional skill is generally absent from advanced practice registered nurse (APRN) curricula and acquisition of the skill must occur in other arenas. The purpose of this article is to promote professional development by educating APRNs, students, and faculty on the essentials of poster development and presentation. To aid in poster presentation skill development, types of posters, advantages and disadvantages, content and design, and tips to enhance these presentations are discussed. What is known on these topics is summarized and emphasis on professional appearance and conduct is highlighted. Content and layout, use of color, imagery, and positive and negative space are crucial design elements. Poster presentation essentials include being prepared, professional appearance, and professional behavior. Designing and presenting a professional poster is an essential skill for all APRNs as the ability to communicate knowledge is central to the role. ©2017 American Association of Nurse Practitioners.

  20. Control of Aspergillus section Flavi growth and aflatoxin accumulation by plant essential oils.

    PubMed

    Bluma, R; Amaiden, M R; Daghero, J; Etcheverry, M

    2008-07-01

    The antifungal effect of Pimpinella anisum (anise), Pëumus boldus (boldus), Mentha piperita (peppermint), Origanum vulgare (oregano) and Minthosthachys verticillata (peperina) essential oils against Aspergillus section Flavi (two isolates of Aspergillus parasiticus and two isolates of Aspergillus flavus) was evaluated in maize meal extract agar at 0.982 and 0.955 water activities, at 25 degrees C. The percentage of germination, germ-tube elongation rate, growth rate and aflatoxin B(1) (AFB(1)) accumulation at different essential oils concentrations were evaluated. Anise and boldus essential oils were the most inhibitory at 500 mg kg(-1) to all growth parameters of the fungus. These essential oils inhibited the percentage of germination, germ-tube elongation rate and fungal growth. AFB(1) accumulation was completely inhibited by anise, boldus and oregano essential oils. Peperina and peppermint essential oils inhibited AFB(1) production by 85-90% in all concentrations assayed. Anise and boldus essential oils could be considered as effective fungitoxicans for Aspergillus section flavi. Our results suggest that these phytochemical compounds could be used alone or in conjunction with other substances to control the presence of aflatoxigenic fungi in stored maize.

  1. Etoricoxib - preemptive and postoperative analgesia (EPPA) in patients with laparotomy or thoracotomy - design and protocols

    PubMed Central

    2010-01-01

    Background and Objective Our objective was to report on the design and essentials of the Etoricoxib protocol- Preemptive and Postoperative Analgesia (EPPA) Trial, investigating whether preemptive analgesia with cox-2 inhibitors is more efficacious than placebo in patients who receive either laparotomy or thoracotomy. Design and Methods The study is a 2 × 2 factorial armed, double blinded, bicentric, randomised placebo-controlled trial comparing (a) etoricoxib and (b) placebo in a pre- and postoperative setting. The total observation period is 6 months. According to a power analysis, 120 patients scheduled for abdominal or thoracic surgery will randomly be allocated to either the preemptive or the postoperative treatment group. These two groups are each divided into two arms. Preemptive group patients receive etoricoxib prior to surgery and either etoricoxib again or placebo postoperatively. Postoperative group patients receive placebo prior to surgery and either placebo again or etoricoxib after surgery (2 × 2 factorial study design). The Main Outcome Measure is the cumulative use of morphine within the first 48 hours after surgery (measured by patient controlled analgesia PCA). Secondary outcome parameters include a broad range of tests including sensoric perception and genetic polymorphisms. Discussion The results of this study will provide information on the analgesic effectiveness of etoricoxib in preemptive analgesia and will give hints on possible preventive effects of persistent pain. Trial registration NCT00716833 PMID:20504378

  2. Validation experiments to determine radiation partitioning of heat flux to an object in a fully turbulent fire.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ricks, Allen; Blanchat, Thomas K.; Jernigan, Dann A.

    2006-06-01

    It is necessary to improve understanding and develop validation data of the heat flux incident to an object located within the fire plume for the validation of SIERRA/ FUEGO/SYRINX fire and SIERRA/CALORE. One key aspect of the validation data sets is the determination of the relative contribution of the radiative and convective heat fluxes. To meet this objective, a cylindrical calorimeter with sufficient instrumentation to measure total and radiative heat flux had been designed and fabricated. This calorimeter will be tested both in the controlled radiative environment of the Penlight facility and in a fire environment in the FLAME/Radiant Heatmore » (FRH) facility. Validation experiments are specifically designed for direct comparison with the computational predictions. Making meaningful comparisons between the computational and experimental results requires careful characterization and control of the experimental features or parameters used as inputs into the computational model. Validation experiments must be designed to capture the essential physical phenomena, including all relevant initial and boundary conditions. A significant question of interest to modeling heat flux incident to an object in or near a fire is the contribution of the radiation and convection modes of heat transfer. The series of experiments documented in this test plan is designed to provide data on the radiation partitioning, defined as the fraction of the total heat flux that is due to radiation.« less

  3. Cost and Economics for Advanced Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Whitfield, Jeff

    1998-01-01

    Market sensitivity and weight-based cost estimating relationships are key drivers in determining the financial viability of advanced space launch vehicle designs. Due to decreasing space transportation budgets and increasing foreign competition, it has become essential for financial assessments of prospective launch vehicles to be performed during the conceptual design phase. As part of this financial assessment, it is imperative to understand the relationship between market volatility, the uncertainty of weight estimates, and the economic viability of an advanced space launch vehicle program. This paper reports the results of a study that evaluated the economic risk inherent in market variability and the uncertainty of developing weight estimates for an advanced space launch vehicle program. The purpose of this study was to determine the sensitivity of a business case for advanced space flight design with respect to the changing nature of market conditions and the complexity of determining accurate weight estimations during the conceptual design phase. The expected uncertainty associated with these two factors drives the economic risk of the overall program. The study incorporates Monte Carlo simulation techniques to determine the probability of attaining specific levels of economic performance when the market and weight parameters are allowed to vary. This structured approach toward uncertainties allows for the assessment of risks associated with a launch vehicle program's economic performance. This results in the determination of the value of the additional risk placed on the project by these two factors.

  4. Design of a -1 MV dc UHV power supply for ITER NBI

    NASA Astrophysics Data System (ADS)

    Watanabe, K.; Yamamoto, M.; Takemoto, J.; Yamashita, Y.; Dairaku, M.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; Umeda, N.; Sakamoto, K.; Inoue, T.

    2009-05-01

    Procurement of a dc -1 MV power supply system for the ITER neutral beam injector (NBI) is shared by Japan and the EU. The Japan Atomic Energy Agency as the Japan Domestic Agency (JADA) for ITER contributes to the procurement of dc -1 MV ultra-high voltage (UHV) components such as a dc -1 MV generator, a transmission line and a -1 MV insulating transformer for the ITER NBI power supply. The inverter frequency of 150 Hz in the -1 MV power supply and major circuit parameters have been proposed and adopted in the ITER NBI. The dc UHV insulation has been carefully designed since dc long pulse insulation is quite different from conventional ac insulation or dc short pulse systems. A multi-layer insulation structure of the transformer for a long pulse up to 3600 s has been designed with electric field simulation. Based on the simulation the overall dimensions of the dc UHV components have been finalized. A surge energy suppression system is also essential to protect the accelerator from electric breakdowns. The JADA contributes to provide an effective surge suppression system composed of core snubbers and resistors. Input energy into the accelerator from the power supply can be reduced to about 20 J, which satisfies the design criteria of 50 J in total in the case of breakdown at -1 MV.

  5. Design of autonomous sensor nodes for remote soil monitoring in tropical banana plantation

    NASA Astrophysics Data System (ADS)

    Tiausas, Francis Jerome G.; Co, Jerelyn; Macalinao, Marc Joseph M.; Guico, Maria Leonora; Monje, Jose Claro; Oppus, Carlos

    2017-09-01

    Determining the effect of Fusarium oxysporum f. sp. cubense Tropical Race 4 on various soil parameters is essential in modeling and predicting its occurrence in banana plantations. One way to fulfill this is through a sensor network that will continuously and automatically monitor environmental conditions at suspect locations for an extended period of time. A wireless sensor network was developed specifically for this purpose. This sensor network is capable of measuring soil acidity, moisture, temperature, and conductivity. The designed prototype made use of off-the-shelf Parrot Flower Power soil sensor, pH sensor, Bluno Beetle, battery, and 3D-printed materials, catering specifically to the conditions of tropical banana plantations with consideration for sensor node size, communication, and power. Sensor nodes were tested on both simulated tropical environments and on an actual banana plantation in San Jose, General Santos City, Philippines. Challenges were resolved through iterative design and development of prototypes. Several tests including temperature and weather resilience, and structural stress tests were done to validate the design. Findings showed that the WSN nodes developed for this purpose are resilient to high tropical temperatures for up to 12 hours of continuous exposure, are able to withstand compressive forces of up to 8880.6 N, and can reliably collect data automatically from the area 47.96% of the time at an hourly frequency under actual field conditions.

  6. Engineering specification and system design for CAD/CAM of custom shoes. Phase 5: UMC involvement (January 1, 1989 - June 30, 1989)

    NASA Technical Reports Server (NTRS)

    Bao, Han P.

    1989-01-01

    The CAD/CAM of custom shoes is discussed. The solid object for machining is represented by a wireframe model with its nodes or vertices specified systematically in a grid pattern covering its entire length (point-to-point configuration). Two sets of data from CENCIT and CYBERWARE were used for machining purposes. It was found that the indexing technique (turning the stock by a small angle then moving the tool on a longitudinal path along the foot) yields the best result in terms of ease of programming, savings in wear and tear of the machine and cutting tools, and resolution of fine surface details. The work done using the LASTMOD last design system results in a shoe last specified by a number of congruent surface patches of different sizes. This data format was converted into a form amenable to the machine tool. It involves a series of sorting algorithms and interpolation algorithms to provide the grid pattern that the machine tool needs as was the case in the point to point configuration discussed above. This report also contains an in-depth treatment of the design and production technique of an integrated sole to complement the task of design and manufacture of the shoe last. Clinical data and essential production parameters are discussed. Examples of soles made through this process are given.

  7. All-Digital Baseband 65nm PLL/FPLL Clock Multiplier using 10-cell Library

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L., Jr.; Wu, Qiong; Liu, Rui; Chen, Li

    2014-01-01

    PLLs for clock generation are essential for modern circuits, to generate specialized frequencies for many interfaces and high frequencies for chip internal operation. These circuits depend on analog circuits and careful tailoring for each new process, and making them fault tolerant is an incompletely solved problem. Until now, all digital PLLs have been restricted to sampled data DSP techniques and not available for the highest frequency baseband applications. This paper presents the design and preliminary evaluation of an all-digital baseband technique built entirely with an easily portable 10-cell digital library. The library is also described, as it aids in research and low volume design porting to new processes. The advantages of the digital approach are the wide variety of techniques available to give varying degrees of fault tolerance, and the simplicity of porting the design to new processes, even to exotic processes that may not have analog capability. The only tuning parameter is digital gate delay. An all-digital approach presents unique problems and standard analog loop stability design criteria cannot be directly used. Because of the quantization of frequency, there is effectively infinite gain for very small loop error feedback. The numerically controlled oscillator (NCO) based on a tapped delay line cannot be reliably updated while a pulse is active in the delay line, and ordinarily does not have enough frequency resolution for a low-jitter output.

  8. ALL-Digital Baseband 65nm PLL/FPLL Clock Multiplier Using 10-Cell Library

    NASA Technical Reports Server (NTRS)

    Schuler, Robert L., Jr.; Wu, Qiong; Liu, Rui; Chen, Li; Madala, Shridhar

    2014-01-01

    PLLs for clock generation are essential for modern circuits, to generate specialized frequencies for many interfaces and high frequencies for chip internal operation. These circuits depend on analog circuits and careful tailoring for each new process, and making them fault tolerant is an incompletely solved problem. Until now, all digital PLLs have been restricted to sampled data DSP techniques and not available for the highest frequency baseband applications. This paper presents the design and preliminary evaluation of an all-digital baseband technique built entirely with an easily portable 10-cell digital library. The library is also described, as it aids in research and low volume design porting to new processes. The advantages of the digital approach are the wide variety of techniques available to give varying degrees of fault tolerance, and the simplicity of porting the design to new processes, even to exotic processes that may not have analog capability. The only tuning parameter is digital gate delay. An all-digital approach presents unique problems and standard analog loop stability design criteria cannot be directly used. Because of the quantization of frequency, there is effectively infinite gain for very small loop error feedback. The numerically controlled oscillator (NCO) based on a tapped delay line cannot be reliably updated while a pulse is active in the delay line, and ordinarily does not have enough frequency resolution for a low-jitter output.

  9. Performance analysis of rain attenuation on earth-to-satellite microwave links design in Libya

    NASA Astrophysics Data System (ADS)

    Rafiqul Islam, Md; Hussein Budalal, Asma Ali; Habaebi, Mohamed H.; Badron, Khairayu; Fadzil Ismail, Ahmad

    2017-11-01

    Performances of earth-to-satellite microwave links operating in Ku, Ka, and V-bands are degraded by the environment and strongly attenuated by rain. Rain attenuation is the most significant consideration and challenge to design a reliable earth-to-satellite microwave links for these frequency bands. Hence, it is essential for satellite link designer to take into account rain fade margin accurately before system implementation. Rain rate is the main measured parameter to predict of rain attenuation. Rainfall statistical data measured and recorded in Libya for the period of 30 years are collected from 5 locations. The prediction methods require one minute integration time rain intensity. Therefore, collected data were analyzed and processed to convert into one-minute rain rate cumulative distribution in Libya. The model proposed by ITU-R is used to predict and investigate rain fade based on converted 1-minute rain rate data. Rain fade predicted at two locations are used for performance analysis in terms of link spectral efficiency and throughput. V-band downlink shows that 99.99% availability is possible in all the Southern part stations in Libya at 0.29 bps/Hz spectral efficiency and 20.74 Mbps throughput when 72 MHz transponder band width is used which is not feasible in Northern part. Results of this paper will be a very useful resource to design highly reliable earth-to-satellite communication links in Libya.

  10. A review on the applications of portable near-infrared spectrometers in the agro-food industry.

    PubMed

    dos Santos, Cláudia A Teixeira; Lopo, Miguel; Páscoa, Ricardo N M J; Lopes, João A

    2013-11-01

    Industry has created the need for a cost-effective and nondestructive quality-control analysis system. This requirement has increased interest in near-infrared (NIR) spectroscopy, leading to the development and marketing of handheld devices that enable new applications that can be implemented in situ. Portable NIR spectrometers are powerful instruments offering several advantages for nondestructive, online, or in situ analysis: small size, low cost, robustness, simplicity of analysis, sample user interface, portability, and ergonomic design. Several studies of on-site NIR applications are presented: characterization of internal and external parameters of fruits and vegetables; conservation state and fat content of meat and fish; distinguishing among and quality evaluation of beverages and dairy products; protein content of cereals; evaluation of grape ripeness in vineyards; and soil analysis. Chemometrics is an essential part of NIR spectroscopy manipulation because wavelength-dependent scattering effects, instrumental noise, ambient effects, and other sources of variability may complicate the spectra. As a consequence, it is difficult to assign specific absorption bands to specific functional groups. To achieve useful and meaningful results, multivariate statistical techniques (essentially involving regression techniques coupled with spectral preprocessing) are therefore required to extract the information hidden in the spectra. This work reviews the evolution of the use of portable near-infrared spectrometers in the agro-food industry.

  11. Synergistic Association of Genetic Variants with Environmental Risk Factors in Susceptibility to Essential Hypertension.

    PubMed

    Sousa, Ana Célia; Mendonça, Maria I; Pereira, Andreia; Gouveia, Sara; Freitas, Ana I; Guerra, Graça; Rodrigues, Mariana; Henriques, Eva; Freitas, Sónia; Borges, Sofia; Pereira, Décio; Brehm, António; Palma Dos Reis, Roberto

    2017-10-01

    Essential hypertension (EH) is a disease in which both environment and genes have an important role. This study was designed to identify the interaction model between genetic variants and environmental risk factors that most highly potentiates EH development. We performed a case-control study with 1641 participants (mean age 50.6 ± 8.1 years), specifically 848 patients with EH and 793 controls, adjusted for gender and age. Traditional risk factors, biochemical and genetic parameters, including the genotypic discrimination of 14 genetic variants previously associated with EH, were investigated. Multifactorial dimensionality reduction (MDR) software was used to analyze gene-environment interactions. Validation was performed using logistic regression analysis with environmental risk factors, significant genetic variants, and the best MDR model. The best model indicates that the interactions among the ADD1 rs4961 640T allele, diabetes, and obesity (body mass index ≥30) increase approximately four-fold the risk of EH (odds ratio = 3.725; 95% confidence interval: 2.945-4.711; p < 0.0001). This work showed that the interaction between the ADD1 rs4961 variant, obesity, and the presence of diabetes increased the susceptibility to EH four-fold. In these circumstances, lifestyle adjustment and diabetes control should be intensified in patients who carry the ADD1 variant.

  12. Functional seismic evaluation of hospitals

    NASA Astrophysics Data System (ADS)

    Guevara, L. T.

    2003-04-01

    Functional collapse of hospitals (FCH) occurs when a medical complex, or part of it, although with neither structural nor nonstructural damage, is unable to provide required services for immediate attention to earthquake victims and for the recovery of the affected community. As it is known, FCH during and after an earthquake, is produced, not only by the damage to nonstructural components, but by an inappropriate or deficient distribution of essential and supporting medical spaces. This paper presents some conclusions on the analysis of the traditional architectural schemes for the design and construction of hospitals in the 20th Century and some recommendations for the establishment of evaluation parameters for the remodeling and seismic upgrade of existing hospitals in seismic zones based on the new concepts of: a) the relative location of each essential service (ES) into the medical complex, b) the capacity of each of these spaces for housing temporary activities required for the attention of a massive emergency (ME); c) the relationship between ES and the supporting services (SS); d) the flexibility of transformation of nonessential services into complementary spaces for the attention of extraordinary number of victims; e) the dimensions and appropriateness of evacuation routes; and d) the appropriate supply and maintenance of water, electricity and vital gases emergency installations.

  13. Ensuring Access to Quality Health Care in Vulnerable Communities.

    PubMed

    Bhatt, Jay; Bathija, Priya

    2018-04-24

    For millions of Americans living in vulnerable rural and urban communities, their hospital is an important, and often their only, source of health care. As transformation in the hospital and health care field continues, some communities may be at risk of losing access to health care services and the opportunities and resources they need to improve and maintain their health. Integrated, comprehensive strategies to reform health care delivery and payment, within which vulnerable communities can make individual choices based on their needs, support structures, and preferences, are needed.In this Invited Commentary, the authors outline characteristics and parameters of vulnerable communities as well as the essential health care services that hospitals should strive to maintain locally identified by the American Hospital Association Task Force on Ensuring Access in Vulnerable Communities. They also describe four of nine emerging strategies-recommended by the task force-to reform health care delivery and payment and allow hospitals to provide the essential health care services, along with implementation barriers and how to address them. While this Invited Commentary focuses on vulnerable communities, the four highlighted strategies (addressing the social determinants of health, adopting new and innovative virtual care strategies, designing global budgets, and using inpatient/outpatient transformation strategy), as well as the other five strategies, may have broader applicability for all communities.

  14. Simultaneous versus sequential optimal experiment design for the identification of multi-parameter microbial growth kinetics as a function of temperature.

    PubMed

    Van Derlinden, E; Bernaerts, K; Van Impe, J F

    2010-05-21

    Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Information Design: A Bibliography.

    ERIC Educational Resources Information Center

    Albers, Michael J.; Lisberg, Beth Conney

    2000-01-01

    Presents a 17-item annotated list of essential books on information design chosen by members of the InfoDesign e-mail list. Includes a 113-item unannotated bibliography of additional works, on topics of creativity and critical thinking; visual thinking; graphic design; infographics; information design; instructional design; interface design;…

  16. A Research Study Using the Delphi Method to Define Essential Competencies for a High School Game Art and Design Course Framework at the National Level

    ERIC Educational Resources Information Center

    Mack, Nayo Corenus-Geneva

    2011-01-01

    This research study reports the findings of a Delphi study conducted to determine the essential competencies and objectives for a high school Game Art and Design course framework at the national level. The Delphi panel consisted of gaming, industry and educational experts from all over the world who were members of the International Game…

  17. Design of oligonucleotides for microarrays and perspectives for design of multi-transcriptome arrays.

    PubMed

    Nielsen, Henrik Bjørn; Wernersson, Rasmus; Knudsen, Steen

    2003-07-01

    Optimal design of oligonucleotides for microarrays involves tedious and laborious work evaluating potential oligonucleotides relative to a series of parameters. The currently available tools for this purpose are limited in their flexibility and do not present the oligonucleotide designer with an overview of these parameters. We present here a flexible tool named OligoWiz for designing oligonucleotides for multiple purposes. OligoWiz presents a set of parameter scores in a graphical interface to facilitate an overview for the user. Additional custom parameter scores can easily be added to the program to extend the default parameters: homology, DeltaTm, low-complexity, position and GATC-only. Furthermore we present an analysis of the limitations in designing oligonucleotide sets that can detect transcripts from multiple organisms. OligoWiz is available at www.cbs.dtu.dk/services/OligoWiz/.

  18. Identifying the Essential Elements of Effective Science Communication: What Do the Experts Say?

    ERIC Educational Resources Information Center

    Bray, Belinda; France, Bev; Gilbert, John K.

    2012-01-01

    Experts in science communication were asked to identify the essential elements of a science communication course for post-graduate students. A Delphi methodology provided a framework for a research design that accessed their opinions and allowed them to contribute to, reflect on and identify 10 essential elements. There was a high level of…

  19. Advanced power cycles and configurations for solar towers: Modeling and optimization of the decoupled solar combined cycle concept

    NASA Astrophysics Data System (ADS)

    García-Barberena, Javier; Olcoz, Asier; Sorbet, Fco. Javier

    2017-06-01

    CSP technologies are essential to allow large shares of renewables into the grid due to their unique ability to cope with the large variability of the energy resource by means of technically and economically feasible thermal energy storage (TES) systems. However, there is still the need and sought to achieve technological breakthroughs towards cost reductions and increased efficiencies. For this, research on advanced power cycles, like the Decoupled Solar Combined Cycle (DSCC) is, are regarded as a key objective. The DSCC concept is, basically, a Combined Brayton-Rankine cycle in which the bottoming cycle is decoupled from the operation of the topping cycle by means of an intermediate storage system. According to this concept, one or several solar towers driving a solar air receiver and a Gas Turbine (Brayton cycle) feed through their exhaust gasses a single storage system and bottoming cycle. This general concept benefits from a large flexibility in its design. On the one hand, different possible schemes related to number and configuration of solar towers, storage systems media and configuration, bottoming cycles, etc. are possible. On the other, within a specific scheme a large number of design parameters can be optimized, including the solar field size, the operating temperatures and pressures of the receiver, the power of the Brayton and Rankine cycles, the storage capacity and others. Heretofore, DSCC plants have been analyzed by means of simple steady-state models with pre-stablished operating parameters in the power cycles. In this work, a detailed transient simulation model for DSCC plants has been developed and is used to analyze different DSCC plant schemes. For each of the analyzed plant schemes, a sensitivity analysis and selection of the main design parameters is carried out. Results show that an increase in annual solar to electric efficiency of 30% (from 12.91 to 16.78) can be achieved by using two bottoming Rankine cycles at two different temperatures, enabling low temperature heat recovery from the receiver and Gas Turbine exhaust gasses.

  20. Sensitivity analysis on the performances of a closed-loop Ground Source Heat Pump

    NASA Astrophysics Data System (ADS)

    Casasso, Alessandro; Sethi, Rajandrea

    2014-05-01

    Ground Source Heat Pumps (GSHP) permit to achieve a significant reduction of greenhouse gas emissions, and the margins for economic saving of this technology are strongly correlated to the long-term sustainability of the exploitation of the heat stored in the soil. The operation of a GSHP over its lifetime should be therefore modelled considering realistic conditions, and a thorough characterization of the physical properties of the soil is essential to avoid large errors of prediction. In this work, a BHE modelling procedure with the finite-element code FEFLOW is presented. Starting from the governing equations of the heat transport in the soil around a GSHP and inside the BHE, the most important parameters are individuated and the adopted program settings are explained. A sensitivity analysis is then carried on both the design parameters of the heat exchanger, in order to understand the margins of improvement of a careful design and installation, and the physical properties of the soil, with the aim of quantifying the uncertainty induced by their variability. The relative importance of each parameter is therefore assessed by comparing the statistical distributions of the fluid temperatures and estimating the energy consumption of the heat pump, and practical conclusions are from these results about the site characterization, the design and the installation of a BHE. References Casasso A., Sethi R., 2014 Efficiency of closed loop geothermal heat pumps: A sensitivity analysis, Renewable Energy 62 (2014), pp. 737-746 Chiasson A.C., Rees S.J., Spitler J.D., 2000, A preliminary assessment of the effects of groundwater flow on closed-loop ground-source heat pump systems, ASHRAE Transactions 106 (2000), pp. 380-393 Delaleux F., Py X., Olives R., Dominguez A., 2012, Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity, Applied Thermal Engineering 33-34, pp. 92-99 Diao N., Li Q., Fang Z., 2004, Heat transfer in ground heat exchangers with groundwater advection, International Journal of Thermal Sciences 43, pp. 1203-1211 Michopoulos A., Kyriakis N., 2010, The influence of a vertical ground heat exchanger length on the electricity consumption of the heat pumps, Renewable Energy 35 (2010), pp. 1403-1407

  1. Real-time flood forecasts & risk assessment using a possibility-theory based fuzzy neural network

    NASA Astrophysics Data System (ADS)

    Khan, U. T.

    2016-12-01

    Globally floods are one of the most devastating natural disasters and improved flood forecasting methods are essential for better flood protection in urban areas. Given the availability of high resolution real-time datasets for flood variables (e.g. streamflow and precipitation) in many urban areas, data-driven models have been effectively used to predict peak flow rates in river; however, the selection of input parameters for these types of models is often subjective. Additionally, the inherit uncertainty associated with data models along with errors in extreme event observations means that uncertainty quantification is essential. Addressing these concerns will enable improved flood forecasting methods and provide more accurate flood risk assessments. In this research, a new type of data-driven model, a quasi-real-time updating fuzzy neural network is developed to predict peak flow rates in urban riverine watersheds. A possibility-to-probability transformation is first used to convert observed data into fuzzy numbers. A possibility theory based training regime is them used to construct the fuzzy parameters and the outputs. A new entropy-based optimisation criterion is used to train the network. Two existing methods to select the optimum input parameters are modified to account for fuzzy number inputs, and compared. These methods are: Entropy-Wavelet-based Artificial Neural Network (EWANN) and Combined Neural Pathway Strength Analysis (CNPSA). Finally, an automated algorithm design to select the optimum structure of the neural network is implemented. The overall impact of each component of training this network is to replace the traditional ad hoc network configuration methods, with one based on objective criteria. Ten years of data from the Bow River in Calgary, Canada (including two major floods in 2005 and 2013) are used to calibrate and test the network. The EWANN method selected lagged peak flow as a candidate input, whereas the CNPSA method selected lagged precipitation and lagged mean daily flow as candidate inputs. Model performance metric show that the CNPSA method had higher performance (with an efficiency of 0.76). Model output was used to assess the risk of extreme peak flows for a given day using an inverse possibility-to-probability transformation.

  2. Characterization and Design of Spiral Frequency Steerable Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Repale, Rohan

    Structural Health Monitoring (SHM) is an emerging research area devoted to improving the safety and maintainability of civil structures. Guided wave structural testing method is an effective approach used for SHM of plate-like structures using piezoelectric transducers. These transducers are attached to the surface of the structure and are capable of sensing its health by using surface waves. Transducers with beam steering i.e. electronic scanning capabilities can perform surface interrogation with higher precision and ease. A frequency steerable acoustic transducer (FSAT) is capable of beam steering and directional surface wave sensing to detect and localize damage in structures. The objective of this research is to further explore the possibilities of FSAT technology by designing and testing new FSAT designs. The beam steering capability of FSAT can be controlled by manipulating its design parameters. These design parameters therefore play a significant role in FSAT's performance. Studying the design parameters and documenting the performance improvements based on parameter variation is the primary goal of this research. Design and characterization of spiral FSAT was performed and results were simulated. Array FSAT documented results were validated. Modified designs were modeled based on design parameter variations. Characterization of these designs was done and their performance was recorded. Plate simulation results confirm direct relationship between design parameters and beam steering. A set of guidelines for future designs was also proposed. Two designs developed based on the set guidelines were sent to our collaborator Genziko Inc. for fabrication.

  3. An on-line calibration algorithm for external parameters of visual system based on binocular stereo cameras

    NASA Astrophysics Data System (ADS)

    Wang, Liqiang; Liu, Zhen; Zhang, Zhonghua

    2014-11-01

    Stereo vision is the key in the visual measurement, robot vision, and autonomous navigation. Before performing the system of stereo vision, it needs to calibrate the intrinsic parameters for each camera and the external parameters of the system. In engineering, the intrinsic parameters remain unchanged after calibrating cameras, and the positional relationship between the cameras could be changed because of vibration, knocks and pressures in the vicinity of the railway or motor workshops. Especially for large baselines, even minute changes in translation or rotation can affect the epipolar geometry and scene triangulation to such a degree that visual system becomes disabled. A technology including both real-time examination and on-line recalibration for the external parameters of stereo system becomes particularly important. This paper presents an on-line method for checking and recalibrating the positional relationship between stereo cameras. In epipolar geometry, the external parameters of cameras can be obtained by factorization of the fundamental matrix. Thus, it offers a method to calculate the external camera parameters without any special targets. If the intrinsic camera parameters are known, the external parameters of system can be calculated via a number of random matched points. The process is: (i) estimating the fundamental matrix via the feature point correspondences; (ii) computing the essential matrix from the fundamental matrix; (iii) obtaining the external parameters by decomposition of the essential matrix. In the step of computing the fundamental matrix, the traditional methods are sensitive to noise and cannot ensure the estimation accuracy. We consider the feature distribution situation in the actual scene images and introduce a regional weighted normalization algorithm to improve accuracy of the fundamental matrix estimation. In contrast to traditional algorithms, experiments on simulated data prove that the method improves estimation robustness and accuracy of the fundamental matrix. Finally, we take an experiment for computing the relationship of a pair of stereo cameras to demonstrate accurate performance of the algorithm.

  4. Planning and Design of Seawater Reverse Osmosis Desalination Plants Marine Outfalls

    NASA Astrophysics Data System (ADS)

    Maalouf, S.; Yeh, W. W.

    2011-12-01

    Increasing demands for water in urban areas and agricultural zones in arid and semi-arid regions have urged planners and regulators to look for alternative renewable water sources. Worldwide, seawater reverse osmosis (SWRO) desalination plants have become an essential supply source for the production of fresh water in such regions. Disposal of their wastes, however, has not been fully and properly addressed. This study presents a strategy for the analysis and design of optimal disposal systems of hypersaline wastes that are generated by SWRO desalination plants. The study evaluates current disposal methods and recommends ways to effectively employ multiport marine outfalls for this purpose. Such outfalls emerged as reliable means for conveying wastes from process plants, to include wastewater treatment and power plants, into the coastal waters. Their proper use, however, in conjunction with SWRO desalination plants is still in its beginning stage, and much work needs to be done to employ them effectively. Therefore, the main objective of this research is to provide design engineers with effective procedures that meet environmental permitting requirements and restrictions, while ascertaining adequate hydrodynamic performance. The study is tested by employing a simulation model and examining its reliability under many parameter perturbation scenarios. This is further extended by providing a solution to the same problem using a heuristic approach.

  5. Biomechanical evaluation of heel elevation on load transfer — experimental measurement and finite element analysis

    NASA Astrophysics Data System (ADS)

    Luximon, Yan; Luximon, Ameersing; Yu, Jia; Zhang, Ming

    2012-02-01

    In spite of ill-effects of high heel shoes, they are widely used for women. Hence, it is essential to understand the load transfer biomechanics in order to design better fit and comfortable shoes. In this study, both experimental measurement and finite element analysis were used to evaluate the biomechanical effects of heel height on foot load transfer. A controlled experiment was conducted using custom-designed platforms. Under different weight-bearing conditions, peak plantar pressure, contact area and center of pressure were analyzed. A three-dimensional finite element foot model was used to simulate the high-heel support and to predict the internal stress distributions and deformations for different heel heights. Results from both experiment and model indicated that heel elevations had significant effects on all variables. When heel elevation increased, the center of pressure shifted from the midfoot region to the forefoot region, the contact area was reduced by 26% from 0 to 10.2 cm heel and the internal stress of foot bones increased. Prediction results also showed that the strain and total tension force of plantar fascia was minimum at 5.1 cm heel condition. This study helps to better understand the biomechanical behavior of foot, and to provide better suggestions for design parameters of high heeled shoes.

  6. SCASim: A Flexible and Reusable Detector Simulator for the MIRI instrument of the JWST

    NASA Astrophysics Data System (ADS)

    Beard, S.; Morin, J.; Gastaud, R.; Azzollini, R.; Bouchet, P.; Chaintreuil, S.; Lahuis, F.; Littlejohns, O.; Nehme, C.; Pye, J.

    2012-09-01

    The JWST Mid Infrared Instrument (MIRI) operates in the 5-28μm wavelength range and can be configured for imaging, coronographic imaging, long-slit, low-resolution spectroscopy or medium resolution spectroscopy with an integral field unit. SCASim is one of a suite of simulators which operate together to simulate all the different modes of the instrument. These simulators are essential for the efficient operation of MIRI; allowing more accurate planning of MIRI observations on sky or during the pre-launch testing of the instrument. The data generated by the simulators are essential for testing the data pipeline software. The simulators not only need to reproduce the behaviour of the instrument faithfully, they also need to be adaptable so that information learned about the instrument during the pre-launch testing and in-orbit commissioning can be fed back into the simulation. SCASim simulates the behaviour of the MIRI detectors, taking into account cosmetic effects, quantum efficiency, shot noise, dark current, read noise, amplifier layout, cosmic ray hits, etc... The software has benefited from three major design choices. First, the development of a suite of MIRI simulators, rather than single simulator, has allowed MIRI simulators to be developed in parallel by different teams, with each simulator able to concentrate on one particular area. SCASim provides a facility common to all the other simulators and saves duplication of effort. Second, SCASim has a Python-based object-oriented design which makes it easier to adapt as new information about the instrument is learned during testing. Third, all simulator parameters are maintained in external files, rather than being hard coded in the software. These design choices have made SCASim highly reusable. In its present form it can be used to simulate any JWST detector, and it can be adapted for future instruments with similar, photon-counting detectors.

  7. Experimental design and efficient parameter estimation in preclinical pharmacokinetic studies.

    PubMed

    Ette, E I; Howie, C A; Kelman, A W; Whiting, B

    1995-05-01

    Monte Carlo simulation technique used to evaluate the effect of the arrangement of concentrations on the efficiency of estimation of population pharmacokinetic parameters in the preclinical setting is described. Although the simulations were restricted to the one compartment model with intravenous bolus input, they provide the basis of discussing some structural aspects involved in designing a destructive ("quantic") preclinical population pharmacokinetic study with a fixed sample size as is usually the case in such studies. The efficiency of parameter estimation obtained with sampling strategies based on the three and four time point designs were evaluated in terms of the percent prediction error, design number, individual and joint confidence intervals coverage for parameter estimates approaches, and correlation analysis. The data sets contained random terms for both inter- and residual intra-animal variability. The results showed that the typical population parameter estimates for clearance and volume were efficiently (accurately and precisely) estimated for both designs, while interanimal variability (the only random effect parameter that could be estimated) was inefficiently (inaccurately and imprecisely) estimated with most sampling schedules of the two designs. The exact location of the third and fourth time point for the three and four time point designs, respectively, was not critical to the efficiency of overall estimation of all population parameters of the model. However, some individual population pharmacokinetic parameters were sensitive to the location of these times.

  8. META II Complex Systems Design and Analysis (CODA)

    DTIC Science & Technology

    2011-08-01

    37  3.8.7  Variables, Parameters and Constraints ............................................................. 37  3.8.8  Objective...18  Figure 7: Inputs, States, Outputs and Parameters of System Requirements Specifications ......... 19...Design Rule Based on Device Parameter ....................................................... 57  Figure 35: AEE Device Design Rules (excerpt

  9. Influence of spike lavender (Lavandula latifolia Med.) essential oil in the quality, stability and composition of soybean oil during microwave heating.

    PubMed

    Rodrigues, Nuno; Malheiro, Ricardo; Casal, Susana; Asensio-S-Manzanera, M Carmen; Bento, Albino; Pereira, José Alberto

    2012-08-01

    Lipids oxidation is one of the main factors leading to quality losses in foods. Its prevention or delay could be obtained by the addition of antioxidants. In this sense the present work intend to monitor the protective effects of Lavandula latifolia essential oil during soybean oil microwave heating. To achieve the proposed goal quality parameters (free acidity, peroxide value, specific coefficients of extinction and ΔK), fatty acids profile, tocopherols and tocotrienols composition, antioxidant activity and oxidative stability were evaluated in soybean oil with and without spike lavender essential oils (EO) submitted to different microwave heating exposure times (1, 3, 5, 10 and 15 min; 1000 Watt) with a standard domestic microwave equipment. Microwave heating induced severe quality and composition losses, mainly above 3 min of microwave heating, regardless the sample tested. However, spike lavender EO addition counteracts the oxidation comparatively to control oils, by presenting enhanced values in quality parameters. A higher protection in unsaturated fatty acids loss was also observed as well as a higher antioxidant activity and oxidative stability. The microwave heating effects were clearly different in the samples with essential oils addition, allowing discrimination from plain soybean oils by a principal component analysis, being also capable to discriminate the different heating times tested within each sample. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Short-term effects of scaling and root planing with or without adjunctive use of an essential-oil-based mouthwash in the treatment of periodontal inflammation in smokers.

    PubMed

    Alshehri, Mohammad; Alshail, Faisal; Alqahtani, Sami H; Aloriny, Tawfeeg Saleh; Alsharif, Abdulhakim; Kujan, Omar

    2015-09-01

    The aim of the present short-term follow-up study was to assess the effects of scaling and root planing (SRP) with or without adjunctive use of an essential-oil-based mouthwash in the treatment of periodontal inflammation in smokers. In total, 120 individuals were divided into 2 groups. In Group-1, 60 smokers with periodontal inflammation received SRP alone; and in Group-2, 60 smokers with periodontal inflammation received adjunct essential-oil mouthwash therapy. Periodontal parameters (plaque index [PI], bleeding-on-probing [BOP], and probing pocket depth [PD] ≥ 4 mm) were assessed at baseline and after 90 days of treatment. There was no significant difference in periodontal parameters (PI, BOP, and PD ≥ 4 mm) among participants in Group-1 and -2. Participants in both groups showed significant reductions in PI (P < 0.01), BOP (P < 0.01), and PD ≥ 4 mm (P < 0.01) at follow-up compared to baseline. At 90 days of follow-up, PI (P < 0.05), BOP (P < 0.05), and PD ≥ 4 mm (P < 0.05) were significantly higher in Group-1 compared to Group-2. SRP with adjunct essential-oil mouthwash therapy is more effective in the treatment of periodontal inflammation in smokers as compared to when SRP is performed alone.

  11. Coffee and caffeine intake and male infertility: a systematic review.

    PubMed

    Ricci, Elena; Viganò, Paola; Cipriani, Sonia; Somigliana, Edgardo; Chiaffarino, Francesca; Bulfoni, Alessandro; Parazzini, Fabio

    2017-06-24

    Semen quality, a predictor of male fertility, has been suggested declining worldwide. Among other life style factors, male coffee/caffeine consumption was hypothesized to influence semen parameters, but also sperm DNA integrity. To summarize available evidence, we performed a systematic review of observational studies on the relation between coffee/caffeine intake and parameters of male fertility including sperm ploidy, sperm DNA integrity, semen quality and time to pregnancy. A systematic literature search was performed up to November 2016 (MEDLINE and EMBASE). We included all observational papers that reported the relation between male coffee/caffeine intake and reproductive outcomes: 1. semen parameters, 2. sperm DNA characteristics, 3. fecundability. All pertinent reports were retrieved and the relative reference lists were systematically searched in order to identify any potential additional studies that could be included. We retrieved 28 papers reporting observational information on coffee/caffeine intake and reproductive outcomes. Overall, they included 19,967 men. 1. Semen parameters did not seem affected by caffeine intake, at least caffeine from coffee, tea and cocoa drinks, in most studies. Conversely, other contributions suggested a negative effect of cola-containing beverages and caffeine-containing soft drinks on semen volume, count and concentration. 2. As regards sperm DNA defects, caffeine intake seemed associated with aneuploidy and DNA breaks, but not with other markers of DNA damage. 3. Finally, male coffee drinking was associated to prolonged time to pregnancy in some, but not all, studies. The literature suggests that caffeine intake, possibly through sperm DNA damage, may negatively affect male reproductive function. Evidence from epidemiological studies on semen parameters and fertility is however inconsistent and inconclusive. Well-designed studies with predefined criteria for semen analysis, subject selection, and life style habits definition, are essential to reach a consistent evidence on the effect of caffeine on semen parameters and male fertility.

  12. Tuning Parameters in Heuristics by Using Design of Experiments Methods

    NASA Technical Reports Server (NTRS)

    Arin, Arif; Rabadi, Ghaith; Unal, Resit

    2010-01-01

    With the growing complexity of today's large scale problems, it has become more difficult to find optimal solutions by using exact mathematical methods. The need to find near-optimal solutions in an acceptable time frame requires heuristic approaches. In many cases, however, most heuristics have several parameters that need to be "tuned" before they can reach good results. The problem then turns into "finding best parameter setting" for the heuristics to solve the problems efficiently and timely. One-Factor-At-a-Time (OFAT) approach for parameter tuning neglects the interactions between parameters. Design of Experiments (DOE) tools can be instead employed to tune the parameters more effectively. In this paper, we seek the best parameter setting for a Genetic Algorithm (GA) to solve the single machine total weighted tardiness problem in which n jobs must be scheduled on a single machine without preemption, and the objective is to minimize the total weighted tardiness. Benchmark instances for the problem are available in the literature. To fine tune the GA parameters in the most efficient way, we compare multiple DOE models including 2-level (2k ) full factorial design, orthogonal array design, central composite design, D-optimal design and signal-to-noise (SIN) ratios. In each DOE method, a mathematical model is created using regression analysis, and solved to obtain the best parameter setting. After verification runs using the tuned parameter setting, the preliminary results for optimal solutions of multiple instances were found efficiently.

  13. Aerodynamic optimization by simultaneously updating flow variables and design parameters

    NASA Technical Reports Server (NTRS)

    Rizk, M. H.

    1990-01-01

    The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.

  14. Novel parameter-based flexure bearing design method

    NASA Astrophysics Data System (ADS)

    Amoedo, Simon; Thebaud, Edouard; Gschwendtner, Michael; White, David

    2016-06-01

    A parameter study was carried out on the design variables of a flexure bearing to be used in a Stirling engine with a fixed axial displacement and a fixed outer diameter. A design method was developed in order to assist identification of the optimum bearing configuration. This was achieved through a parameter study of the bearing carried out with ANSYS®. The parameters varied were the number and the width of the arms, the thickness of the bearing, the eccentricity, the size of the starting and ending holes, and the turn angle of the spiral. Comparison was made between the different designs in terms of axial and radial stiffness, the natural frequency, and the maximum induced stresses. Moreover, the Finite Element Analysis (FEA) was compared to theoretical results for a given design. The results led to a graphical design method which assists the selection of flexure bearing geometrical parameters based on pre-determined geometric and material constraints.

  15. Flight Test Validation of Optimal Input Design and Comparison to Conventional Inputs

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1997-01-01

    A technique for designing optimal inputs for aerodynamic parameter estimation was flight tested on the F-18 High Angle of Attack Research Vehicle (HARV). Model parameter accuracies calculated from flight test data were compared on an equal basis for optimal input designs and conventional inputs at the same flight condition. In spite of errors in the a priori input design models and distortions of the input form by the feedback control system, the optimal inputs increased estimated parameter accuracies compared to conventional 3-2-1-1 and doublet inputs. In addition, the tests using optimal input designs demonstrated enhanced design flexibility, allowing the optimal input design technique to use a larger input amplitude to achieve further increases in estimated parameter accuracy without departing from the desired flight test condition. This work validated the analysis used to develop the optimal input designs, and demonstrated the feasibility and practical utility of the optimal input design technique.

  16. A More Flexible Approach to Valuing Flexibility

    DTIC Science & Technology

    2011-04-01

    remaining life of the program? Almost certainly. Next is the cost assessment step. This is executed in the context of whatever design options we...methodology is essentially a modifi- cation of the current life cycle model and is premised on the notion that the need for capabili- ty changes in a program...valuing the inherent ability of a system or design to accommodate change. The proposed methodology is essentially a modifi-cation of the current life

  17. On the Accuracy of Probabilistic Bucking Load Prediction

    NASA Technical Reports Server (NTRS)

    Arbocz, Johann; Starnes, James H.; Nemeth, Michael P.

    2001-01-01

    The buckling strength of thin-walled stiffened or unstiffened, metallic or composite shells is of major concern in aeronautical and space applications. The difficulty to predict the behavior of axially compressed thin-walled cylindrical shells continues to worry design engineers as we enter the third millennium. Thanks to extensive research programs in the late sixties and early seventies and the contributions of many eminent scientists, it is known that buckling strength calculations are affected by the uncertainties in the definition of the parameters of the problem such as definition of loads, material properties, geometric variables, edge support conditions, and the accuracy of the engineering models and analysis tools used in the design phase. The NASA design criteria monographs from the late sixties account for these design uncertainties by the use of a lump sum safety factor. This so-called 'empirical knockdown factor gamma' usually results in overly conservative design. Recently new reliability based probabilistic design procedure for buckling critical imperfect shells have been proposed. It essentially consists of a stochastic approach which introduces an improved 'scientific knockdown factor lambda(sub a)', that is not as conservative as the traditional empirical one. In order to incorporate probabilistic methods into a High Fidelity Analysis Approach one must be able to assess the accuracy of the various steps that must be executed to complete a reliability calculation. In the present paper the effect of size of the experimental input sample on the predicted value of the scientific knockdown factor lambda(sub a) calculated by the First-Order, Second-Moment Method is investigated.

  18. Optimal lunar soft landing trajectories using taboo evolutionary programming

    NASA Astrophysics Data System (ADS)

    Mutyalarao, M.; Raj, M. Xavier James

    A safe lunar landing is a key factor to undertake an effective lunar exploration. Lunar lander consists of four phases such as launch phase, the earth-moon transfer phase, circumlunar phase and landing phase. The landing phase can be either hard landing or soft landing. Hard landing means the vehicle lands under the influence of gravity without any deceleration measures. However, soft landing reduces the vertical velocity of the vehicle before landing. Therefore, for the safety of the astronauts as well as the vehicle lunar soft landing with an acceptable velocity is very much essential. So it is important to design the optimal lunar soft landing trajectory with minimum fuel consumption. Optimization of Lunar Soft landing is a complex optimal control problem. In this paper, an analysis related to lunar soft landing from a parking orbit around Moon has been carried out. A two-dimensional trajectory optimization problem is attempted. The problem is complex due to the presence of system constraints. To solve the time-history of control parameters, the problem is converted into two point boundary value problem by using the maximum principle of Pontrygen. Taboo Evolutionary Programming (TEP) technique is a stochastic method developed in recent years and successfully implemented in several fields of research. It combines the features of taboo search and single-point mutation evolutionary programming. Identifying the best unknown parameters of the problem under consideration is the central idea for many space trajectory optimization problems. The TEP technique is used in the present methodology for the best estimation of initial unknown parameters by minimizing objective function interms of fuel requirements. The optimal estimation subsequently results into an optimal trajectory design of a module for soft landing on the Moon from a lunar parking orbit. Numerical simulations demonstrate that the proposed approach is highly efficient and it reduces the minimum fuel consumption. The results are compared with the available results in literature shows that the solution of present algorithm is better than some of the existing algorithms. Keywords: soft landing, trajectory optimization, evolutionary programming, control parameters, Pontrygen principle.

  19. Population Parameters of Blainvilles and Cuviers Beaked Whales

    DTIC Science & Technology

    2015-09-30

    cetacean populations. Long-term monitoring of beaked whale populations in El Hierro , a nearly pristine habitat far from areas of sonar testing or...marine industry, enables valuable studies of demographic trends and life history dictated mainly by natural parameters. El Hierro is in process of...functioning (expected in 2018-2019), it is essential to continue monitoring the populations in El Hierro to obtain an uninterrupted long-term dataset of

  20. Online Patient Education for Chronic Disease Management: Consumer Perspectives.

    PubMed

    Win, Khin Than; Hassan, Naffisah Mohd; Oinas-Kukkonen, Harri; Probst, Yasmine

    2016-04-01

    Patient education plays an important role in chronic disease management. The aim of this study is to identify patients' preferences in regard to the design features of effective online patient education (OPE) and the benefits. A review of the existing literature was conducted in order to identify the benefits of OPE and its essential design features. These design features were empirically tested by conducting survey with patients and caregivers. Reliability analysis, construct validity and regression analysis were performed for data analysis. The results identified patient-tailored information, interactivity, content credibility, clear presentation of content, use of multimedia and interpretability as the essential design features of online patient education websites for chronic disease management.

  1. 78 FR 39493 - Patient Protection and Affordable Care Act; Exchange Functions: Eligibility for Exemptions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ...This final rule implements certain functions of the Affordable Insurance Exchanges (``Exchanges''). These specific statutory functions include determining eligibility for and granting certificates of exemption from the individual shared responsibility payment described in section 5000A of the Internal Revenue Code. Additionally, this final rule implements the responsibilities of the Secretary of Health and Human Services, in coordination with the Secretary of the Treasury, to designate other health benefits coverage as minimum essential coverage by providing that certain coverage be designated as minimum essential coverage. It also outlines substantive and procedural requirements that other types of individual coverage must fulfill in order to be certified as minimum essential coverage.

  2. Kinetic bridges.

    DOT National Transportation Integrated Search

    1980-01-01

    This report on kinetic bridges is essentially a state-of-the-art study on two types of bridges whose location or physical characteristics are designed to be time dependent. The first type, called a "relocatable bridge", is essentially for use as a te...

  3. Design considerations for rechargeable lithium batteries

    NASA Technical Reports Server (NTRS)

    Shen, D. H.; Huang, C.-K.; Davies, E.; Perrone, D.; Surampudi, S.; Halpert, Gerald

    1993-01-01

    Viewgraphs of a discussion of design considerations for rechargable lithium batteries. The objective is to determine the influence of cell design parameters on the performance of Li-TiS2 cells. Topics covered include cell baseline design and testing, cell design and testing, cell design parameters studies, and cell cycling performance.

  4. An approach to predict the shape-memory behavior of amorphous polymers from Dynamic Mechanical Analysis (DMA) data

    NASA Astrophysics Data System (ADS)

    Kuki, Ákos; Czifrák, Katalin; Karger-Kocsis, József; Zsuga, Miklós; Kéki, Sándor

    2015-02-01

    The prediction of shape-memory behavior is essential regarding the design of a smart material for different applications. This paper proposes a simple and quick method for the prediction of shape-memory behavior of amorphous shape memory polymers (SMPs) on the basis of a single dynamic mechanical analysis (DMA) temperature sweep at constant frequency. All the parameters of the constitutive equations for linear viscoelasticity are obtained by fitting the DMA curves. The change with the temperature of the time-temperature superposition shift factor ( a T ) is expressed by the Williams-Landel-Ferry (WLF) model near and above the glass transition temperature ( T g ), and by the Arrhenius law below T g . The constants of the WLF and Arrhenius equations can also be determined. The results of our calculations agree satisfactorily with the experimental free recovery curves from shape-memory tests.

  5. Model-Based Self-Tuning Multiscale Method for Combustion Control

    NASA Technical Reports Server (NTRS)

    Le, Dzu, K.; DeLaat, John C.; Chang, Clarence T.; Vrnak, Daniel R.

    2006-01-01

    A multi-scale representation of the combustor dynamics was used to create a self-tuning, scalable controller to suppress multiple instability modes in a liquid-fueled aero engine-derived combustor operating at engine-like conditions. Its self-tuning features designed to handle the uncertainties in the combustor dynamics and time-delays are essential for control performance and robustness. The controller was implemented to modulate a high-frequency fuel valve with feedback from dynamic pressure sensors. This scalable algorithm suppressed pressure oscillations of different instability modes by as much as 90 percent without the peak-splitting effect. The self-tuning logic guided the adjustment of controller parameters and converged quickly toward phase-lock for optimal suppression of the instabilities. The forced-response characteristics of the control model compare well with those of the test rig on both the frequency-domain and the time-domain.

  6. Simulation of transvertron high power microwave sources

    NASA Astrophysics Data System (ADS)

    Sullivan, Donald J.; Walsh, John E.; Arman, M. Joseph; Godfrey, Brendan B.

    1989-07-01

    The transvertron oscillator or amplifier is a new and efficient type of intense relativistic electron-beam-driven microwave radiation source. In the m = 0 axisymmetric version, it consists of single or multiple cylindrical cavities driven at one of the TM(0np) resonances by a high-voltage, low-impedance electron beam. There is no applied magnetic field, and the oscillatory transverse motion acquired by the axially-injected electron beam is an essential part of the drive mechanism. The transvertron theory was systematically tested for a wide range of parameters and two possible applications. The simulations were designed to verify the theoretical predictions, assess the transvertron as a possible source of intense microwave radiation, and study its potential as a microwave amplifier. Numerical results agree well in all regards with the analytical theory. Simulations were carried out in two dimensions using CCUBE, with the exception of radial loading cases, where the three-dimensional code SOS was required.

  7. The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin

    The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.

  8. Characterization of damage modes in dental ceramic bilayer structures.

    PubMed

    Deng, Yan; Lawn, Brian R; Lloyd, Isabel K

    2002-01-01

    Results of contact tests using spherical indenters on flat ceramic coating layers bonded to compliant substrates are reported for selected dental ceramics. Critical loads to produce various damage modes, cone cracking, and quasiplasticity at the top surfaces and radial cracking at the lower (inner) surfaces are measured as a function of ceramic-layer thickness. It is proposed that these damage modes, especially radial cracking, are directly relevant to the failure of all-ceramic dental crowns. The critical load data are analyzed with the use of explicit fracture-mechanics relations, expressible in terms of routinely measurable material parameters (elastic modulus, strength, toughness, hardness) and essential geometrical variables (layer thickness, contact radius). The utility of such analyses in the design of ceramic/substrate bilayer systems for optimal resistance to lifetime-threatening damage is discussed. Copyright 2002 Wiley Periodicals, Inc. J Biomed Mater Res (Appl Biomater) 63: 137--145, 2002; DOI 10.1002/jbm.10091

  9. Investigation of the part-load performance of two 1.12 MW regenerative marine gas turbines

    NASA Astrophysics Data System (ADS)

    Korakianitis, T.; Beier, K. J.

    1994-04-01

    Regenerative and intercooled-regenerative gas turbine engines with low pressure ratio have significant efficiency advantages over traditional aero-derivative engines of higher pressure ratios, and can compete with modern diesel engines for marine propulsion. Their performance is extremely sensitive to thermodynamic-cycle parameter choices and the type of components. The performances of two 1.12 MW (1500 hp) regenerative gas turbines are predicted with computer simulations. One engine has a single-shaft configuration, and the other has a gas-generator/power-turbine combination. The latter arrangement is essential for wide off-design operating regime. The performance of each engine driving fixed-pitch and controllable-pitch propellers, or an AC electric bus (for electric-motor-driven propellers) is investigated. For commercial applications the controllable-pitch propeller may have efficiency advantages (depending on engine type and shaft arrangements). For military applications the electric drive provides better operational flexibility.

  10. Performance Evaluation and Analysis for Gravity Matching Aided Navigation.

    PubMed

    Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong

    2017-04-05

    Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN.

  11. Performance Evaluation and Analysis for Gravity Matching Aided Navigation

    PubMed Central

    Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong

    2017-01-01

    Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN. PMID:28379178

  12. Laser Tailoring the Surface Chemistry and Morphology for Wear, Scale and Corrosion Resistant Superhydrophobic Coatings.

    PubMed

    Boinovich, Ludmila B; Emelyanenko, Kirill A; Domantovsky, Alexander G; Emelyanenko, Alexandre M

    2018-06-04

    A strategy, combining laser chemical modification with laser texturing, followed by chemisorption of the fluorinated hydrophobic agent was used to fabricate the series of superhydrophobic coatings on an aluminum alloy with varied chemical compositions and parameters of texture. It was shown that high content of aluminum oxynitride and aluminum oxide formed in the surface layer upon laser treatment allows solving the problem of enhancement of superhydrophobic coating resistance to abrasive loads. Besides, the multimodal structure of highly porous surface layer leads to self-healing ability of fabricated coatings. Long-term behavior of designed coatings in "hard" hot water with an essential content of calcium carbonate demonstrated high antiscaling resistance with self-cleaning potential against solid deposits onto the superhydrophobic surfaces. Study of corrosion protection properties and the behavior of coatings at long-term contact with 0.5 M NaCl solution indicated extremely high chemical stability and remarkable anticorrosion properties.

  13. Behavior-Based Cleaning for Unreliable RFID Data Sets

    PubMed Central

    Fan, Hua; Wu, Quanyuan; Lin, Yisong

    2012-01-01

    Radio Frequency IDentification (RFID) technology promises to revolutionize the way we track items and assets, but in RFID systems, missreading is a common phenomenon and it poses an enormous challenge to RFID data management, so accurate data cleaning becomes an essential task for the successful deployment of systems. In this paper, we present the design and development of a RFID data cleaning system, the first declarative, behavior-based unreliable RFID data smoothing system. We take advantage of kinematic characteristics of tags to assist in RFID data cleaning. In order to establish the conversion relationship between RFID data and kinematic parameters of the tags, we propose a movement behavior detection model. Moreover, a Reverse Order Filling Mechanism is proposed to ensure a more complete access to get the movement behavior characteristics of tag. Finally, we validate our solution with a common RFID application and demonstrate the advantages of our approach through extensive simulations. PMID:23112595

  14. Behavior-based cleaning for unreliable RFID data sets.

    PubMed

    Fan, Hua; Wu, Quanyuan; Lin, Yisong

    2012-01-01

    Radio Frequency IDentification (RFID) technology promises to revolutionize the way we track items and assets, but in RFID systems, missreading is a common phenomenon and it poses an enormous challenge to RFID data management, so accurate data cleaning becomes an essential task for the successful deployment of systems. In this paper, we present the design and development of a RFID data cleaning system, the first declarative, behavior-based unreliable RFID data smoothing system. We take advantage of kinematic characteristics of tags to assist in RFID data cleaning. In order to establish the conversion relationship between RFID data and kinematic parameters of the tags, we propose a movement behavior detection model. Moreover, a Reverse Order Filling Mechanism is proposed to ensure a more complete access to get the movement behavior characteristics of tag. Finally, we validate our solution with a common RFID application and demonstrate the advantages of our approach through extensive simulations.

  15. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors

    NASA Astrophysics Data System (ADS)

    Lagorce, David; Douguet, Dominique; Miteva, Maria A.; Villoutreix, Bruno O.

    2017-04-01

    The modulation of PPIs by low molecular weight chemical compounds, particularly by orally bioavailable molecules, would be very valuable in numerous disease indications. However, it is known that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several other ADMET parameters would be important to assess. In order to gain new insights into the ADMET properties of iPPIs, computations were carried out on eight datasets collected from several databases. These datasets involve compounds targeting enzymes, GPCRs, ion channels, nuclear receptors, allosteric modulators, oral marketed drugs, oral natural product-derived marketed drugs and iPPIs. Several trends are reported that should assist the design and optimization of future PPI inhibitors, either for drug discovery endeavors or for chemical biology projects.

  16. Camera calibration method of binocular stereo vision based on OpenCV

    NASA Astrophysics Data System (ADS)

    Zhong, Wanzhen; Dong, Xiaona

    2015-10-01

    Camera calibration, an important part of the binocular stereo vision research, is the essential foundation of 3D reconstruction of the spatial object. In this paper, the camera calibration method based on OpenCV (open source computer vision library) is submitted to make the process better as a result of obtaining higher precision and efficiency. First, the camera model in OpenCV and an algorithm of camera calibration are presented, especially considering the influence of camera lens radial distortion and decentering distortion. Then, camera calibration procedure is designed to compute those parameters of camera and calculate calibration errors. High-accurate profile extraction algorithm and a checkboard with 48 corners have also been used in this part. Finally, results of calibration program are presented, demonstrating the high efficiency and accuracy of the proposed approach. The results can reach the requirement of robot binocular stereo vision.

  17. Designing Security-Hardened Microkernels For Field Devices

    NASA Astrophysics Data System (ADS)

    Hieb, Jeffrey; Graham, James

    Distributed control systems (DCSs) play an essential role in the operation of critical infrastructures. Perimeter field devices are important DCS components that measure physical process parameters and perform control actions. Modern field devices are vulnerable to cyber attacks due to their increased adoption of commodity technologies and that fact that control networks are no longer isolated. This paper describes an approach for creating security-hardened field devices using operating system microkernels that isolate vital field device operations from untrusted network-accessible applications. The approach, which is influenced by the MILS and Nizza architectures, is implemented in a prototype field device. Whereas, previous microkernel-based implementations have been plagued by poor inter-process communication (IPC) performance, the prototype exhibits an average IPC overhead for protected device calls of 64.59 μs. The overall performance of field devices is influenced by several factors; nevertheless, the observed IPC overhead is low enough to encourage the continued development of the prototype.

  18. Prediction of the compression ratio for municipal solid waste using decision tree.

    PubMed

    Heshmati R, Ali Akbar; Mokhtari, Maryam; Shakiba Rad, Saeed

    2014-01-01

    The compression ratio of municipal solid waste (MSW) is an essential parameter for evaluation of waste settlement and landfill design. However, no appropriate model has been proposed to estimate the waste compression ratio so far. In this study, a decision tree method was utilized to predict the waste compression ratio (C'c). The tree was constructed using Quinlan's M5 algorithm. A reliable database retrieved from the literature was used to develop a practical model that relates C'c to waste composition and properties, including dry density, dry weight water content, and percentage of biodegradable organic waste using the decision tree method. The performance of the developed model was examined in terms of different statistical criteria, including correlation coefficient, root mean squared error, mean absolute error and mean bias error, recommended by researchers. The obtained results demonstrate that the suggested model is able to evaluate the compression ratio of MSW effectively.

  19. The optimization of total laboratory automation by simulation of a pull-strategy.

    PubMed

    Yang, Taho; Wang, Teng-Kuan; Li, Vincent C; Su, Chia-Lo

    2015-01-01

    Laboratory results are essential for physicians to diagnose medical conditions. Because of the critical role of medical laboratories, an increasing number of hospitals use total laboratory automation (TLA) to improve laboratory performance. Although the benefits of TLA are well documented, systems occasionally become congested, particularly when hospitals face peak demand. This study optimizes TLA operations. Firstly, value stream mapping (VSM) is used to identify the non-value-added time. Subsequently, batch processing control and parallel scheduling rules are devised and a pull mechanism that comprises a constant work-in-process (CONWIP) is proposed. Simulation optimization is then used to optimize the design parameters and to ensure a small inventory and a shorter average cycle time (CT). For empirical illustration, this approach is applied to a real case. The proposed methodology significantly improves the efficiency of laboratory work and leads to a reduction in patient waiting times and increased service level.

  20. A wireless soil moisture sensor powered by solar energy.

    PubMed

    Jiang, Mingliang; Lv, Mouchao; Deng, Zhong; Zhai, Guoliang

    2017-01-01

    In a variety of agricultural activities, such as irrigation scheduling and nutrient management, soil water content is regarded as an essential parameter. Either power supply or long-distance cable is hardly available within field scale. For the necessity of monitoring soil water dynamics at field scale, this study presents a wireless soil moisture sensor based on the impedance transform of the frequency domain. The sensor system is powered by solar energy, and the data can be instantly transmitted by wireless communication. The sensor electrodes are embedded into the bottom of a supporting rod so that the sensor can measure soil water contents at different depths. An optimal design with time executing sequence is considered to reduce the energy consumption. The experimental results showed that the sensor is a promising tool for monitoring moisture in large-scale farmland using solar power and wireless communication.

  1. Infectivity of Chronic Malaria Infections and Its Consequences for Control and Elimination.

    PubMed

    Aguas, Ricardo; Maude, Richard J; Gomes, M Gabriela M; White, Lisa J; White, Nicholas J; Dondorp, Arjen M

    2018-05-10

    Assessing the importance of targeting the chronic Plasmodium falciparum malaria reservoir is pivotal as the world moves toward malaria eradication. Through the lens of a mathematical model, we show how, for a given malaria prevalence, the relative infectivity of chronic individuals determines what intervention tools are predicted be the most effective. Crucially, in a large part of the parameter space where elimination is theoretically possible, it can be achieved solely through improved case management. However, there are a significant number of settings where malaria elimination requires not only good vector control but also a mass drug administration campaign. Quantifying the relative infectiousness of chronic malaria across a range of epidemiological settings would provide essential information for the design of effective malaria elimination strategies. Given the difficulties obtaining this information, we also provide a set of epidemiological metrics that can be used to guide policy in the absence of such data.

  2. Essential fatty acid supplementation in chronic hepatitis B.

    PubMed

    Jenkins, A P; Green, A T; Thompson, R P

    1996-08-01

    Dietary supplementation with essential fatty acids and polyunsaturated lecithin may improve biochemical and histological parameters in liver disease. Ten patients with serological and histological evidence of chronic hepatitis B received capsules of the polyunsaturated fatty acid-rich evening primrose oil in a dose of 4 g daily for 12 months, while a matched group received liquid paraffin capsules as a placebo. Compared to the placebo group, the patients receiving evening primrose oil showed no improvement in either biochemical or histological indices of liver damage, or in the rate of loss of circulating e antigen. Dietary, supplementation with this dose of essential fatty acids is unlikely to be of benefit in chronic hepatitis B.

  3. Headspace single drop microextraction coupled with microwave extraction of essential oil from plant materials.

    PubMed

    Zhai, Yujuan; Sun, Shuo; Wang, Ziming; Zhang, Yupu; Liu, He; Sun, Ye; Zhang, Hanqi; Yu, Aimin

    2011-05-01

    Headspace single drop microextraction (HS-SDME) coupled with microwave extraction (ME) was developed and applied to the extraction of the essential oil from dried Syzygium aromaticum (L.) Merr. et Perry and Cuminum cyminum L. The operational parameters, such as microdrop volume, microwave absorption medium (MAM), extraction time, and microwave power were optimized. Ten microliters of decane was used as the microextraction solvent. Ionic liquid and carbonyl iron powder were used as MAM. The extraction time was less than 7 min at the microwave power of 440 W. The proposed method was compared with hydrodistillation (HD). There were no obvious differences in the constituents of essential oils obtained by the two methods.

  4. Antifungal activity of some essential oils against toxigenic Aspergillus species.

    PubMed

    Alizadeh, Alireza; Zamani, Elham; Sharaifi, Rohollah; Javan-Nikkhah, Mohammad; Nazari, Somayeh

    2010-01-01

    Increasing attentions have been paid on the application of essential oils and plant extracts for control of postharvest pathogens due to their natural origin and less appearance of resistance in fungi pathogens. Some Aspergillus species are toxigenic and responsible for many cases of food and feed contamination. Some Toxins that produce with some Aspergillus species are known to be potent hepatocarcinogens in animals and humans. The present work evaluated the parameters of antifungal activity of the essential oils of Zataria multiflora, Thymus migricus, Satureja hortensis, Foeniculum vulgare, Carum capticum and thiabendazol fungicide on survival and growth of different species of Aspergillus. Aerial part and seeds of plant species were collected then dried and its essential oils isolated by means of hydrodistillation. Antifungal activity was evaluated in vitro by poisonous medium technique with PDA medium at six concentrations. Results showed that all essential oils could inhibit the growth of Aspergillus species. The essential oil with the best effect and lowest EC50 and MIC (Minimum Inhibitory Concentration) was Z. multiflora (223 microl/l and 650 microl/l, respectively). The chemical composition of the Z. multiflora essential oil was analyzed by GC-MS.

  5. Calibration process of highly parameterized semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Vidmar, Andrej; Brilly, Mitja

    2017-04-01

    Hydrological phenomena take place in the hydrological system, which is governed by nature, and are essentially stochastic. These phenomena are unique, non-recurring, and changeable across space and time. Since any river basin with its own natural characteristics and any hydrological event therein, are unique, this is a complex process that is not researched enough. Calibration is a procedure of determining the parameters of a model that are not known well enough. Input and output variables and mathematical model expressions are known, while only some parameters are unknown, which are determined by calibrating the model. The software used for hydrological modelling nowadays is equipped with sophisticated algorithms for calibration purposes without possibility to manage process by modeler. The results are not the best. We develop procedure for expert driven process of calibration. We use HBV-light-CLI hydrological model which has command line interface and coupling it with PEST. PEST is parameter estimation tool which is used widely in ground water modeling and can be used also on surface waters. Process of calibration managed by expert directly, and proportionally to the expert knowledge, affects the outcome of the inversion procedure and achieves better results than if the procedure had been left to the selected optimization algorithm. First step is to properly define spatial characteristic and structural design of semi-distributed model including all morphological and hydrological phenomena, like karstic area, alluvial area and forest area. This step includes and requires geological, meteorological, hydraulic and hydrological knowledge of modeler. Second step is to set initial parameter values at their preferred values based on expert knowledge. In this step we also define all parameter and observation groups. Peak data are essential in process of calibration if we are mainly interested in flood events. Each Sub Catchment in the model has own observations group. Third step is to set appropriate bounds to parameters in their range of realistic values. Fourth step is to use of singular value decomposition (SVD) ensures that PEST maintains numerical stability, regardless of how ill-posed is the inverse problem Fifth step is to run PWTADJ1. This creates a new PEST control file in which weights are adjusted such that the contribution made to the total objective function by each observation group is the same. This prevents the information content of any group from being invisible to the inversion process. Sixth step is to add Tikhonov regularization to the PEST control file by running the ADDREG1 utility (Doherty, J, 2013). In adding regularization to the PEST control file ADDREG1 automatically provides a prior information equation for each parameter in which the preferred value of that parameter is equated to its initial value. Last step is to run PEST. We run BeoPEST which a parallel version of PEST and can be run on multiple computers in parallel in same time on TCP communications and this speedup process of calibrations. The case study with results of calibration and validation of the model will be presented.

  6. Study on reservoir time-varying design flood of inflow based on Poisson process with time-dependent parameters

    NASA Astrophysics Data System (ADS)

    Li, Jiqing; Huang, Jing; Li, Jianchang

    2018-06-01

    The time-varying design flood can make full use of the measured data, which can provide the reservoir with the basis of both flood control and operation scheduling. This paper adopts peak over threshold method for flood sampling in unit periods and Poisson process with time-dependent parameters model for simulation of reservoirs time-varying design flood. Considering the relationship between the model parameters and hypothesis, this paper presents the over-threshold intensity, the fitting degree of Poisson distribution and the design flood parameters are the time-varying design flood unit period and threshold discriminant basis, deduced Longyangxia reservoir time-varying design flood process at 9 kinds of design frequencies. The time-varying design flood of inflow is closer to the reservoir actual inflow conditions, which can be used to adjust the operating water level in flood season and make plans for resource utilization of flood in the basin.

  7. PESTAN: Pesticide Analytical Model Version 4.0 User's Guide

    EPA Pesticide Factsheets

    The principal objective of this User's Guide to provide essential information on the aspects such as model conceptualization, model theory, assumptions and limitations, determination of input parameters, analysis of results and sensitivity analysis.

  8. Inverse planning in the age of digital LINACs: station parameter optimized radiation therapy (SPORT)

    NASA Astrophysics Data System (ADS)

    Xing, Lei; Li, Ruijiang

    2014-03-01

    The last few years have seen a number of technical and clinical advances which give rise to a need for innovations in dose optimization and delivery strategies. Technically, a new generation of digital linac has become available which offers features such as programmable motion between station parameters and high dose-rate Flattening Filter Free (FFF) beams. Current inverse planning methods are designed for traditional machines and cannot accommodate these features of new generation linacs without compromising either dose conformality and/or delivery efficiency. Furthermore, SBRT is becoming increasingly important, which elevates the need for more efficient delivery, improved dose distribution. Here we will give an overview of our recent work in SPORT designed to harness the digital linacs and highlight the essential components of SPORT. We will summarize the pros and cons of traditional beamlet-based optimization (BBO) and direct aperture optimization (DAO) and introduce a new type of algorithm, compressed sensing (CS)-based inverse planning, that is capable of automatically removing the redundant segments during optimization and providing a plan with high deliverability in the presence of a large number of station control points (potentially non-coplanar, non-isocentric, and even multi-isocenters). We show that CS-approach takes the interplay between planning and delivery into account and allows us to balance the dose optimality and delivery efficiency in a controlled way and, providing a viable framework to address various unmet demands of the new generation linacs. A few specific implementation strategies of SPORT in the forms of fixed-gantry and rotational arc delivery are also presented.

  9. Increasing efficiency of human mesenchymal stromal cell culture by optimization of microcarrier concentration and design of medium feed.

    PubMed

    Chen, Allen Kuan-Liang; Chew, Yi Kong; Tan, Hong Yu; Reuveny, Shaul; Weng Oh, Steve Kah

    2015-02-01

    Large amounts of human mesenchymal stromal cells (MSCs) are needed for clinical cellular therapy. In a previous publication, we described a microcarrier-based process for expansion of MSCs. The present study optimized this process by selecting suitable basal media, microcarrier concentration and feeding regime to achieve higher cell yields and more efficient medium utilization. MSCs were expanded in stirred cultures on Cytodex 3 microcarriers with media containing 10% fetal bovine serum. Process optimization was carried out in spinner flasks. A 2-L bioreactor with an automated feeding system was used to validate the optimized parameters explored in spinner flask cultures. Minimum essential medium-α-based medium supported faster MSC growth on microcarriers than did Dulbecco's modified Eagle's medium (doubling time, 31.6 ± 1.4 vs 42 ± 1.7 h) and shortened the process time. At microcarrier concentration of 8 mg/mL, a high cell concentration of 1.08 × 10(6) cells/mL with confluent cell concentration of 4.7 × 10(4)cells/cm(2) was achieved. Instead of 50% medium exchange every 2 days, we have designed a full medium feed that is based on glucose consumption rate. The optimal medium feed that consisted of 1.5 g/L glucose supported MSC growth to full confluency while achieving the low medium usage efficiency of 3.29 mL/10(6)cells. Finally, a controlled bioreactor with the optimized parameters achieved maximal confluent cell concentration with 16-fold expansion and a further improved medium usage efficiency of 1.68 mL/10(6)cells. We have optimized the microcarrier-based platform for expansion of MSCs that generated high cell yields in a more efficient and cost-effective manner. This study highlighted the critical parameters in the optimization of MSC production process. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents CFB process analysis focused on combustion and NO profiles in pilot and industrial scale bituminous coal combustion.

  11. Chemical compositions and properties of Schinus areira L. essential oil on airway inflammation and cardiovascular system of mice and rabbits.

    PubMed

    Bigliani, María C; Rossetti, Víctor; Grondona, Ezequiel; Lo Presti, Silvina; Paglini, Patricia M; Rivero, Virginia; Zunino, María P; Ponce, Andrés A

    2012-07-01

    The main purpose was to investigate the effects of essential plant-oil of Schinus areira L. on hemodynamic functions in rabbits, as well as myocardial contractile strength and airways inflammation associated to bacterial endotoxin lipopolysaccharide (LPS) in mice. This study shows the important properties of the essential oil (EO) of S. areira studied and these actions on lung with significant inhibition associated to LPS, all of which was assessed in mice bronchoalveolar lavage fluid and evidenced by stability of the percentage of alveolar macrophages, infiltration of polymorphonuclear leukocytes and tumor necrosis factor-α concentration, and without pathway modifications in conjugated dienes activity. Clinical status (morbidity or mortality), macroscopic morphology and lung/body weight index were unaffected by the administration of the EO S. areira. Furthermore, the ex vivo analysis of isolated hearts demonstrated the negative inotropic action of the EO of S. areira in a mice model, and in rabbits changes in the hemodynamic parameters, such as a reduction of systolic blood pressure. We conclude that EO S. areira could be responsible for modifications on the cardiovascular and/or airway parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Optimization of an accelerated solvent extraction dispersive liquid-liquid microextraction method for the separation and determination of essential oil from Ligusticum chuanxiong Hort by gas chromatography with mass spectrometry.

    PubMed

    Yang, Guang; Sun, Qiushi; Hu, Zhiyan; Liu, Hua; Zhou, Tingting; Fan, Guorong

    2015-10-01

    In this study, an accelerated solvent extraction dispersive liquid-liquid microextraction coupled with gas chromatography and mass spectrometry was established and employed for the extraction, concentration and analysis of essential oil constituents from Ligusticum chuanxiong Hort. Response surface methodology was performed to optimize the key parameters in accelerated solvent extraction on the extraction efficiency, and key parameters in dispersive liquid-liquid microextraction were discussed as well. Two representative constituents in Ligusticum chuanxiong Hort, (Z)-ligustilide and n-butylphthalide, were quantitatively analyzed. It was shown that the qualitative result of the accelerated solvent extraction dispersive liquid-liquid microextraction approach was in good agreement with that of hydro-distillation, whereas the proposed approach took far less extraction time (30 min), consumed less plant material (usually <1 g, 0.01 g for this study) and solvent (<20 mL) than the conventional system. To sum up, the proposed method could be recommended as a new approach in the extraction and analysis of essential oil. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. A linear parameter-varying multiobjective control law design based on youla parametrization for a flexible blended wing body aircraft

    NASA Astrophysics Data System (ADS)

    Demourant, F.; Ferreres, G.

    2013-12-01

    This article presents a methodology for a linear parameter-varying (LPV) multiobjective flight control law design for a blended wing body (BWB) aircraft and results. So, the method is a direct design of a parametrized control law (with respect to some measured flight parameters) through a multimodel convex design to optimize a set of specifications on the full-flight domain and different mass cases. The methodology is based on the Youla parameterization which is very useful since closed loop specifications are affine with respect to Youla parameter. The LPV multiobjective design method is detailed and applied to the BWB flexible aircraft example.

  14. Evolution of Geometric Sensitivity Derivatives from Computer Aided Design Models

    NASA Technical Reports Server (NTRS)

    Jones, William T.; Lazzara, David; Haimes, Robert

    2010-01-01

    The generation of design parameter sensitivity derivatives is required for gradient-based optimization. Such sensitivity derivatives are elusive at best when working with geometry defined within the solid modeling context of Computer-Aided Design (CAD) systems. Solid modeling CAD systems are often proprietary and always complex, thereby necessitating ad hoc procedures to infer parameter sensitivity. A new perspective is presented that makes direct use of the hierarchical associativity of CAD features to trace their evolution and thereby track design parameter sensitivity. In contrast to ad hoc methods, this method provides a more concise procedure following the model design intent and determining the sensitivity of CAD geometry directly to its respective defining parameters.

  15. Evaluation of essential oils for maintaining postharvest quality of Thompson seedless table grape.

    PubMed

    Abdollahi, Ali; Hassani, Abbas; Ghosta, Youbert; Bernousi, Iraj; Meshkatalsadat, Mohammad Hadi; Shabani, Razieh; Ziaee, Seyed Masoud

    2012-01-01

    The effects of postharvest spraying of essential oils from sweet basil (Ocimum basilicum), fennel (Foeniculum vulgare), summer savory (Satureja hortensis) and thyme (Thymus vulgaris) on fungal decay and quality parameters of the 'Thompson seedless' table grape stored at 0 ± 1°C for 60 days were evaluated. Results showed that the essential oils, especially of thyme and fennel, have a good inhibitory effect on the development of fungal decay in Thompson table grapes. In addition, essential oils reduced weight loss, berry and rachis browning and had no considerable adverse effect on the flavour of the fruits. GC-MS analysis showed that the main compounds identified in sweet basil, fennel, summer savory and thyme oils are linalool (65.25%), trans-anethole (64.72%), carvacrol (54.14%) and β-ocimene (12.62%), respectively. Therefore, these essential oils have good potential for use as an alternative to synthetic fungicides for the preservation and storage of table grapes.

  16. Composition and biological activity of essential oils against Metopolophium dirhodum (Hemiptera: Aphididae) cereal crop pest.

    PubMed

    Chopa, Carolina Sánchez; Descamps, Lilian R

    2012-11-01

    Natural pesticides based on plant essential oils may represent alternative crop protectants. This study analysed the chemical constituents and bioactivities of essential oils from Schinus areira L., Rosmarinus officinalis L. and Tagetes terniflora Kunth against winged and wingless adults of Metopolophium dirhodum (Walk.). The major component of S. areira was α-phellandrene, that of R. officinalis was 1,8-cineole and that of T. terniflora was cis-ocimene. Rosemary essential oil was more effective than the others in immersion method tests. In contact toxicity, the rosemary oil was the most toxic to wingless adults and the S. areira leaf oil was the most toxic to winged adults. All the EOs produced some degrees of repellency in adults and effects on the reproduction and demographic parameters. These results showed that the essential oils from S. areira, R. officinalis and T. terniflora could be used as an alternative in the management of M. dirhodum. Copyright © 2012 Society of Chemical Industry.

  17. Sequential ensemble-based optimal design for parameter estimation: SEQUENTIAL ENSEMBLE-BASED OPTIMAL DESIGN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Man, Jun; Zhang, Jiangjiang; Li, Weixuan

    2016-10-01

    The ensemble Kalman filter (EnKF) has been widely used in parameter estimation for hydrological models. The focus of most previous studies was to develop more efficient analysis (estimation) algorithms. On the other hand, it is intuitively understandable that a well-designed sampling (data-collection) strategy should provide more informative measurements and subsequently improve the parameter estimation. In this work, a Sequential Ensemble-based Optimal Design (SEOD) method, coupled with EnKF, information theory and sequential optimal design, is proposed to improve the performance of parameter estimation. Based on the first-order and second-order statistics, different information metrics including the Shannon entropy difference (SD), degrees ofmore » freedom for signal (DFS) and relative entropy (RE) are used to design the optimal sampling strategy, respectively. The effectiveness of the proposed method is illustrated by synthetic one-dimensional and two-dimensional unsaturated flow case studies. It is shown that the designed sampling strategies can provide more accurate parameter estimation and state prediction compared with conventional sampling strategies. Optimal sampling designs based on various information metrics perform similarly in our cases. The effect of ensemble size on the optimal design is also investigated. Overall, larger ensemble size improves the parameter estimation and convergence of optimal sampling strategy. Although the proposed method is applied to unsaturated flow problems in this study, it can be equally applied in any other hydrological problems.« less

  18. Mutual diffusion coefficients of heptane isomers in nitrogen: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Chae, Kyungchan; Violi, Angela

    2011-01-01

    The accurate knowledge of transport properties of pure and mixture fluids is essential for the design of various chemical and mechanical systems that include fluxes of mass, momentum, and energy. In this study we determine the mutual diffusion coefficients of mixtures composed of heptane isomers and nitrogen using molecular dynamics (MD) simulations with fully atomistic intermolecular potential parameters, in conjunction with the Green-Kubo formula. The computed results were compared with the values obtained using the Chapman-Enskog (C-E) equation with Lennard-Jones (LJ) potential parameters derived from the correlations of state values: MD simulations predict a maximum difference of 6% among isomers while the C-E equation presents that of 3% in the mutual diffusion coefficients in the temperature range 500-1000 K. The comparison of two approaches implies that the corresponding state principle can be applied to the models, which are only weakly affected by the anisotropy of the interaction potentials and the large uncertainty will be included in its application for complex polyatomic molecules. The MD simulations successfully address the pure effects of molecular structure among isomers on mutual diffusion coefficients by revealing that the differences of the total mutual diffusion coefficients for the six mixtures are caused mainly by heptane isomers. The cross interaction potential parameters, collision diameter σ _{12}, and potential energy well depth \\varepsilon _{12} of heptane isomers and nitrogen mixtures were also computed from the mutual diffusion coefficients.

  19. Detection of the spatial accuracy of an O-arm in the region of surgical interest

    NASA Astrophysics Data System (ADS)

    Koivukangas, Tapani; Katisko, Jani P. A.; Koivukangsa, John P.

    2013-03-01

    Medical imaging is an essential component of a wide range of surgical procedures1. For image guided surgical (IGS) procedures, medical images are the main source of information2. The IGS procedures rely largely on obtained image data, so the data needs to provide differentiation between normal and abnormal tissues, especially when other surgical guidance devices are used in the procedures. The image data also needs to provide accurate spatial representation of the patient3. This research has concentrated on the concept of accuracy assessment of IGS devices to meet the needs of quality assurance in the hospital environment. For this purpose, two precision engineered accuracy assessment phantoms have been developed as advanced materials and methods for the community. The phantoms were designed to mimic the volume of a human head as the common region of surgical interest (ROSI). This paper introduces the utilization of the phantoms in spatial accuracy assessment of a commercial surgical 3D CT scanner, the O-Arm. The study presents methods and results of image quality detection of possible geometrical distortions in the region of surgical interest. The results show that in the pre-determined ROSI there are clear image distortion and artefacts using too high imaging parameters when scanning the objects. On the other hand, when using optimal parameters, the O-Arm causes minimal error in IGS accuracy. The detected spatial inaccuracy of the O-Arm with used parameters was in the range of less than 1.00 mm.

  20. Combined treatment of Thymus vulgaris L., Rosmarinus officinalis L. and Myrtus communis L. essential oils against Salmonella typhimurium: Optimization of antibacterial activity by mixture design methodology.

    PubMed

    Fadil, Mouhcine; Fikri-Benbrahim, Kawtar; Rachiq, Saad; Ihssane, Bouchaib; Lebrazi, Sara; Chraibi, Marwa; Haloui, Taoufik; Farah, Abdellah

    2018-05-01

    To increase the sensibility of Salmonella typhimurium strain, a mixture of Thymus vulgaris L. (T. vulgaris L.), Rosmarinus officinalis L. (R. officinalis L.) and Myrtus communis L. (M. communis L.) essential oils (EOs) was used in combined treatment by experimental design methodology (mixture design). The chemical composition of EOs was firstly identified by GC and GC/MS and their antibacterial activity was evaluated. The results of this first step have shown that thymol and borneol were the major compounds in T. vulgaris and M. communis L. EOs, respectively, while 1,8-cineole and α-pinene were found as major compounds in R. officinalis L. The same results have shown a strong antibacterial activity of T. vulgaris L. EO followed by an important power of M. communis L. EO against a moderate activity of R. officinalis L. EO. Besides, 1/20 (v/v) was the concentration giving a strain response classified as sensitive. From this concentration, the mixture design was performed and analyzed. The optimization of mixtures antibacterial activities has highlighted the synergistic effect between T. vulgaris L. and M. communis L. essential oils. A formulation comprising 55% of T. vulgaris L. and 45% of M. communis L. essential oils, respectively, can be considered for the increase of Salmonella typhimurium sensibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Traffic load spectra development for the 2002 AASHTO design guide.

    DOT National Transportation Integrated Search

    2004-12-30

    Accurate knowledge of traffic volumes and loading is essential to structural pavement design and performance. : Underestimation of design traffic can result in premature pavement failures and excessive rehabilitation costs. : Overestimation can resul...

  2. Structural Similitude and Scaling Laws

    NASA Technical Reports Server (NTRS)

    Simitses, George J.

    1998-01-01

    Aircraft and spacecraft comprise the class of aerospace structures that require efficiency and wisdom in design, sophistication and accuracy in analysis and numerous and careful experimental evaluations of components and prototype, in order to achieve the necessary system reliability, performance and safety. Preliminary and/or concept design entails the assemblage of system mission requirements, system expected performance and identification of components and their connections as well as of manufacturing and system assembly techniques. This is accomplished through experience based on previous similar designs, and through the possible use of models to simulate the entire system characteristics. Detail design is heavily dependent on information and concepts derived from the previous steps. This information identifies critical design areas which need sophisticated analyses, and design and redesign procedures to achieve the expected component performance. This step may require several independent analysis models, which, in many instances, require component testing. The last step in the design process, before going to production, is the verification of the design. This step necessitates the production of large components and prototypes in order to test component and system analytical predictions and verify strength and performance requirements under the worst loading conditions that the system is expected to encounter in service. Clearly then, full-scale testing is in many cases necessary and always very expensive. In the aircraft industry, in addition to full-scale tests, certification and safety necessitate large component static and dynamic testing. Such tests are extremely difficult, time consuming and definitely absolutely necessary. Clearly, one should not expect that prototype testing will be totally eliminated in the aircraft industry. It is hoped, though, that we can reduce full-scale testing to a minimum. Full-scale large component testing is necessary in other industries as well, Ship building, automobile and railway car construction all rely heavily on testing. Regardless of the application, a scaled-down (by a large factor) model (scale model) which closely represents the structural behavior of the full-scale system (prototype) can prove to be an extremely beneficial tool. This possible development must be based on the existence of certain structural parameters that control the behavior of a structural system when acted upon by static and/or dynamic loads. If such structural parameters exist, a scaled-down replica can be built, which will duplicate the response of the full-scale system. The two systems are then said to be structurally similar. The term, then, that best describes this similarity is structural similitude. Similarity of systems requires that the relevant system parameters be identical and these systems be governed by a unique set of characteristic equations. Thus, if a relation or equation of variables is written for a system, it is valid for all systems which are similar to it. Each variable in a model is proportional to the corresponding variable of the prototype. This ratio, which plays an essential role in predicting the relationship between the model and its prototype, is called the scale factor.

  3. Retrieval of cloud cover parameters from multispectral satellite images

    NASA Technical Reports Server (NTRS)

    Arking, A.; Childs, J. D.

    1985-01-01

    A technique is described for extracting cloud cover parameters from multispectral satellite radiometric measurements. Utilizing three channels from the AVHRR (Advanced Very High Resolution Radiometer) on NOAA polar orbiting satellites, it is shown that one can retrieve four parameters for each pixel: cloud fraction within the FOV, optical thickness, cloud-top temperature and a microphysical model parameter. The last parameter is an index representing the properties of the cloud particle and is determined primarily by the radiance at 3.7 microns. The other three parameters are extracted from the visible and 11 micron infrared radiances, utilizing the information contained in the two-dimensional scatter plot of the measured radiances. The solution is essentially one in which the distributions of optical thickness and cloud-top temperature are maximally clustered for each region, with cloud fraction for each pixel adjusted to achieve maximal clustering.

  4. Supplementing a ruminally undegradable protein supplement to maintain essential amino acid supply to the small intestine when forage intake is restricted in beef cattle.

    PubMed

    Scholljegerdes, E J; Weston, T R; Ludden, P A; Hess, B W

    2005-09-01

    Twelve Angus crossbred cattle (eight heifers and four steers; average initial BW = 594 +/- 44.4 kg) fitted with ruminal and duodenal cannulas and fed restricted amounts of forage plus a ruminally undegradable protein (RUP) supplement were used in a triplicated 4 x 4 Latin square design experiment to determine intestinal supply of essential AA. Cattle were fed four different levels of chopped (2.54 cm) bromegrass hay (11.4% CP, 57% NDF; OM basis): 30, 55, 80, or 105% of the forage intake required for maintenance. Cattle fed below maintenance were given specified quantities of a RUP supplement (6.8% porcine blood meal, 24.5% hydrolyzed feather meal, and 68.7% menhaden fish meal; DM basis) designed to provide duodenal essential AA flow equal to that of cattle fed forage at 105% of maintenance. Experimental periods lasted 21 d (17 d of adaptation and 4 d of sampling). Total OM intake and duodenal OM flow increased linearly (P < 0.001) as cattle consumed more forage; however, OM truly digested in the rumen (% of intake) did not change (P = 0.43) as intake increased. True ruminal N degradation (% of intake) tended (P = 0.07) to increase linearly, and true ruminal N degradation (g/d) decreased quadratically (P = 0.02) as intake increased from 30 to 105%. Duodenal N flow was equal (P = 0.33) across intake levels, even though microbial N flow increased linearly (P < 0.001) as forage OM intake increased. Total and individual essential AA intake decreased (cubic; P < 0.001) as forage intake increased because the supply of nonammonia, nonmicrobial N flow from RUP was decreased (linear; P < 0.001) by design. Total duodenal flow of essential AA did not differ (P = 0.39) across these levels of forage intake. Although the profile of essential AA reaching the duodenum differed (P < or = 0.02) for all 10 essential AA, the range of each essential AA as a proportion of total essential AA was low (11.1 to 11.2% of total essential AA for phenylalanine to 12.3 to 14.3% of total essential AA for lysine). Duodenal essential AA flow did not differ (P = 0.10 to 0.65) with forage intake level for eight of the 10 essential AA. Duodenal flow of arginine decreased linearly (P = 0.01), whereas duodenal flow of tryptophan increased linearly (P = 0.002) as forage intake increased from 30 to 105% of maintenance. Balancing intestinal essential AA supply in beef cattle can be accomplished by varying intake of a RUP supplement.

  5. Subprograms for integrating the equations of motion of satellites. FORTRAN 4

    NASA Technical Reports Server (NTRS)

    Prokhorenko, V. I.

    1980-01-01

    The subprograms for the formation of the right members of the equations of motion of artificial Earth satellites (AES), integration of systems of differential equations by Adams' method, and the calculation of the values of various functions from the AES parameters of motion are described. These subprograms are written in the FORTRAN 4 language and constitute an essential part of the package of applied programs for the calculation of navigational parameters AES.

  6. Parameter Trade Studies For Coherent Lidar Wind Measurements of Wind from Space

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Frehlich, Rod G.

    2007-01-01

    The design of an orbiting wind profiling lidar requires selection of dozens of lidar, measurement scenario, and mission geometry parameters; in addition to prediction of atmospheric parameters. Typical mission designs do not include a thorough trade optimization of all of these parameters. We report here the integration of a recently published parameterization of coherent lidar wind velocity measurement performance with an orbiting coherent wind lidar computer simulation; and the use of these combined tools to perform some preliminary parameter trades. We use the 2006 NASA Global Wind Observing Sounder mission design as the starting point for the trades.

  7. Design of state-feedback controllers including sensitivity reduction, with applications to precision pointing

    NASA Technical Reports Server (NTRS)

    Hadass, Z.

    1974-01-01

    The design procedure of feedback controllers was described and the considerations for the selection of the design parameters were given. The frequency domain properties of single-input single-output systems using state feedback controllers are analyzed, and desirable phase and gain margin properties are demonstrated. Special consideration is given to the design of controllers for tracking systems, especially those designed to track polynomial commands. As an example, a controller was designed for a tracking telescope with a polynomial tracking requirement and some special features such as actuator saturation and multiple measurements, one of which is sampled. The resulting system has a tracking performance comparing favorably with a much more complicated digital aided tracker. The parameter sensitivity reduction was treated by considering the variable parameters as random variables. A performance index is defined as a weighted sum of the state and control convariances that sum from both the random system disturbances and the parameter uncertainties, and is minimized numerically by adjusting a set of free parameters.

  8. Analytical approach to cross-layer protocol optimization in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    2008-04-01

    In the distributed operations of route discovery and maintenance, strong interaction occurs across mobile ad hoc network (MANET) protocol layers. Quality of service (QoS) requirements of multimedia service classes must be satisfied by the cross-layer protocol, along with minimization of the distributed power consumption at nodes and along routes to battery-limited energy constraints. In previous work by the author, cross-layer interactions in the MANET protocol are modeled in terms of a set of concatenated design parameters and associated resource levels by multivariate point processes (MVPPs). Determination of the "best" cross-layer design is carried out using the optimal control of martingale representations of the MVPPs. In contrast to the competitive interaction among nodes in a MANET for multimedia services using limited resources, the interaction among the nodes of a wireless sensor network (WSN) is distributed and collaborative, based on the processing of data from a variety of sensors at nodes to satisfy common mission objectives. Sensor data originates at the nodes at the periphery of the WSN, is successively transported to other nodes for aggregation based on information-theoretic measures of correlation and ultimately sent as information to one or more destination (decision) nodes. The "multimedia services" in the MANET model are replaced by multiple types of sensors, e.g., audio, seismic, imaging, thermal, etc., at the nodes; the QoS metrics associated with MANETs become those associated with the quality of fused information flow, i.e., throughput, delay, packet error rate, data correlation, etc. Significantly, the essential analytical approach to MANET cross-layer optimization, now based on the MVPPs for discrete random events occurring in the WSN, can be applied to develop the stochastic characteristics and optimality conditions for cross-layer designs of sensor network protocols. Functional dependencies of WSN performance metrics are described in terms of the concatenated protocol parameters. New source-to-destination routes are sought that optimize cross-layer interdependencies to achieve the "best available" performance in the WSN. The protocol design, modified from a known reactive protocol, adapts the achievable performance to the transient network conditions and resource levels. Control of network behavior is realized through the conditional rates of the MVPPs. Optimal cross-layer protocol parameters are determined by stochastic dynamic programming conditions derived from models of transient packetized sensor data flows. Moreover, the defining conditions for WSN configurations, grouping sensor nodes into clusters and establishing data aggregation at processing nodes within those clusters, lead to computationally tractable solutions to the stochastic differential equations that describe network dynamics. Closed-form solution characteristics provide an alternative to the "directed diffusion" methods for resource-efficient WSN protocols published previously by other researchers. Performance verification of the resulting cross-layer designs is found by embedding the optimality conditions for the protocols in actual WSN scenarios replicated in a wireless network simulation environment. Performance tradeoffs among protocol parameters remain for a sequel to the paper.

  9. DES Y1 Results: Validating Cosmological Parameter Estimation Using Simulated Dark Energy Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacCrann, N.; et al.

    We use mock galaxy survey simulations designed to resemble the Dark Energy Survey Year 1 (DES Y1) data to validate and inform cosmological parameter estimation. When similar analysis tools are applied to both simulations and real survey data, they provide powerful validation tests of the DES Y1 cosmological analyses presented in companion papers. We use two suites of galaxy simulations produced using different methods, which therefore provide independent tests of our cosmological parameter inference. The cosmological analysis we aim to validate is presented in DES Collaboration et al. (2017) and uses angular two-point correlation functions of galaxy number counts and weak lensing shear, as well as their cross-correlation, in multiple redshift bins. While our constraints depend on the specific set of simulated realisations available, for both suites of simulations we find that the input cosmology is consistent with the combined constraints from multiple simulated DES Y1 realizations in themore » $$\\Omega_m-\\sigma_8$$ plane. For one of the suites, we are able to show with high confidence that any biases in the inferred $$S_8=\\sigma_8(\\Omega_m/0.3)^{0.5}$$ and $$\\Omega_m$$ are smaller than the DES Y1 $$1-\\sigma$$ uncertainties. For the other suite, for which we have fewer realizations, we are unable to be this conclusive; we infer a roughly 70% probability that systematic biases in the recovered $$\\Omega_m$$ and $$S_8$$ are sub-dominant to the DES Y1 uncertainty. As cosmological analyses of this kind become increasingly more precise, validation of parameter inference using survey simulations will be essential to demonstrate robustness.« less

  10. Vibration parameters affecting vibration-induced reflex muscle activity.

    PubMed

    Cidem, Muharrem; Karacan, Ilhan; Cakar, Halil Ibrahim; Cidem, Mehmet; Sebik, Oguz; Yilmaz, Gizem; Turker, Kemal Sitki; Karamehmetoglu, Safak Sahir

    2017-03-01

    To determine vibration parameters affecting the amplitude of the reflex activity of soleus muscle during low-amplitude whole-body vibration (WBV). This study was conducted on 19 participants. Vibration frequencies of 25, 30, 35, 40, 45, and 50 Hz were used. Surface electromyography, collision force between vibration platform and participant's heel measured using a force sensor, and acceleration measured using an accelerometer fixed to the vibration platform were simultaneously recorded. The collision force was the main independent predictor of electromyographic amplitude. The essential parameter of vibration affecting the amplitude of the reflex muscle activity is the collision force.

  11. Quantum space and quantum completeness

    NASA Astrophysics Data System (ADS)

    Jurić, Tajron

    2018-05-01

    Motivated by the question whether quantum gravity can "smear out" the classical singularity we analyze a certain quantum space and its quantum-mechanical completeness. Classical singularity is understood as a geodesic incompleteness, while quantum completeness requires a unique unitary time evolution for test fields propagating on an underlying background. Here the crucial point is that quantum completeness renders the Hamiltonian (or spatial part of the wave operator) to be essentially self-adjoint in order to generate a unique time evolution. We examine a model of quantum space which consists of a noncommutative BTZ black hole probed by a test scalar field. We show that the quantum gravity (noncommutative) effect is to enlarge the domain of BTZ parameters for which the relevant wave operator is essentially self-adjoint. This means that the corresponding quantum space is quantum complete for a larger range of BTZ parameters rendering the conclusion that in the quantum space one observes the effect of "smearing out" the singularity.

  12. Sensitivity of Space Station alpha joint robust controller to structural modal parameter variations

    NASA Technical Reports Server (NTRS)

    Kumar, Renjith R.; Cooper, Paul A.; Lim, Tae W.

    1991-01-01

    The photovoltaic array sun tracking control system of Space Station Freedom is described. A synthesis procedure for determining optimized values of the design variables of the control system is developed using a constrained optimization technique. The synthesis is performed to provide a given level of stability margin, to achieve the most responsive tracking performance, and to meet other design requirements. Performance of the baseline design, which is synthesized using predicted structural characteristics, is discussed and the sensitivity of the stability margin is examined for variations of the frequencies, mode shapes and damping ratios of dominant structural modes. The design provides enough robustness to tolerate a sizeable error in the predicted modal parameters. A study was made of the sensitivity of performance indicators as the modal parameters of the dominant modes vary. The design variables are resynthesized for varying modal parameters in order to achieve the most responsive tracking performance while satisfying the design requirements. This procedure of reoptimization design parameters would be useful in improving the control system performance if accurate model data are provided.

  13. Traffic load spectra development for the 2002 AASHTO pavement design guide

    DOT National Transportation Integrated Search

    2004-12-30

    Accurate knowledge of traffic volumes and loading is essential to structural pavement design and performance. Underestimation of design traffic can result in premature pavement failures and excessive rehabilitation costs. Overestimation can result in...

  14. Effects of bergamot ( Citrus bergamia (Risso) Wright & Arn.) essential oil aromatherapy on mood states, parasympathetic nervous system activity, and salivary cortisol levels in 41 healthy females.

    PubMed

    Watanabe, Eri; Kuchta, Kenny; Kimura, Mari; Rauwald, Hans Wilhelm; Kamei, Tsutomu; Imanishi, Jiro

    2015-01-01

    Bergamot essential oil (BEO) is commonly used against psychological stress and anxiety in aromatherapy. The primary aim of the present study was to obtain first clinical evidence for these psychological and physiological effects. A secondary aim was to achieve some fundamental understanding of the relevant pharmacological processes. Endocrinological, physiological, and psychological effects of BEO vapor inhalation on 41 healthy females were tested using a random crossover study design. Volunteers were exposed to 3 experimental setups (rest (R), rest + water vapor (RW), rest + water vapor + bergamot essential oil (RWB)) for 15 min each. Immediately after each setup, saliva samples were collected and the volunteers rested for 10 min. Subsequently, they completed the Profile of Mood States, State-Trait Anxiety Inventory, and Fatigue Self-Check List. High-frequency (HF) heart rate values, an indicator for parasympathetic nervous system activity, were calculated from heart rate variability values measured both during the 15 min of the experiment and during the subsequent 10 min of rest. Salivary cortisol (CS) levels in the saliva samples were analyzed using ELISA. CS of all 3 conditions R, RW, and RWB were found to be significantly distinct (p = 0.003). In the subsequent multiple comparison test, the CS value of RWB was significantly lower when compared to the R setup. When comparing the HF values of the RWB setup during the 10 min of rest after the experiment to those of RW, this parameter was significantly increased (p = 0.026) in the RWB setup for which scores for negative emotions and fatigue were also improved. These results demonstrate that BEO inhaled together with water vapor exerts psychological and physiological effects in a relatively short time. © 2015 S. Karger GmbH, Freiburg.

  15. Digital adaptive flight controller development

    NASA Technical Reports Server (NTRS)

    Kaufman, H.; Alag, G.; Berry, P.; Kotob, S.

    1974-01-01

    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Two designs are described for an example aircraft. Each of these designs uses a weighted least squares procedure to identify parameters defining the dynamics of the aircraft. The two designs differ in the way in which control law parameters are determined. One uses the solution of an optimal linear regulator problem to determine these parameters while the other uses a procedure called single stage optimization. Extensive simulation results and analysis leading to the designs are presented.

  16. Experimental Design of a UCAV-Based High-Energy Laser Weapon

    DTIC Science & Technology

    2016-12-01

    propagation. The Design of Experiments (DOE) methodology is then applied to determine the significance of the UCAV-HEL design parameters and their... Design of Experiments (DOE) methodology is then applied to determine the significance of the UCAV-HEL design parameters and their effect on the...73 A. DESIGN OF EXPERIMENTS METHODOLOGY .............................73 B. OPERATIONAL CONCEPT

  17. Design of a family of ring-core fibers for OAM transmission studies.

    PubMed

    Brunet, Charles; Ung, Bora; Wang, Lixian; Messaddeq, Younès; LaRochelle, Sophie; Rusch, Leslie A

    2015-04-20

    We propose a family of ring-core fibers, designed for the transmission of OAM modes, that can be fabricated by drawing five different fibers from a single preform. This novel technique allows us to experimentally sweep design parameters and speed up the fiber design optimization process. Such a family of fibers could be used to examine system performance, but also facilitate understanding of parameter impact in the transition from design to fabrication. We present design parameters characterizing our fiber, and enumerate criteria to be satisfied. We determine targeted fiber dimensions and explain our strategy for examining a design family rather than a single fiber design. We simulate modal properties of the designed fibers, and compare the results with measurements performed on fabricated fibers.

  18. DEPOT: A Database of Environmental Parameters, Organizations and Tools

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARSON,SUSAN D.; HUNTER,REGINA LEE; MALCZYNSKI,LEONARD A.

    2000-12-19

    The Database of Environmental Parameters, Organizations, and Tools (DEPOT) has been developed by the Department of Energy (DOE) as a central warehouse for access to data essential for environmental risk assessment analyses. Initial efforts have concentrated on groundwater and vadose zone transport data and bioaccumulation factors. DEPOT seeks to provide a source of referenced data that, wherever possible, includes the level of uncertainty associated with these parameters. Based on the amount of data available for a particular parameter, uncertainty is expressed as a standard deviation or a distribution function. DEPOT also provides DOE site-specific performance assessment data, pathway-specific transport data,more » and links to environmental regulations, disposal site waste acceptance criteria, other environmental parameter databases, and environmental risk assessment models.« less

  19. Parameters Design of Series Resonant Inverter Circuit

    NASA Astrophysics Data System (ADS)

    Qi, Xingkun; Peng, Yonglong; Li, Yabin

    This paper analyzes the main circuit structure of series resonant inverter, and designs the components parameters of the main circuit.That provides a theoretical method for the design of series resonant inverter.

  20. Natural wrapping paper from banana (Musa paradisiaca Linn) peel waste with additive essential oils

    NASA Astrophysics Data System (ADS)

    Widiastuti Agustina, E. S.; Elfi Susanti, V. H.

    2018-05-01

    The research aimed to produce natural wrapping paper from banana (Musa Paradisiaca Linn.) peel waste with additive essentials oils. The method used in this research was alkalization. The delignification process is done with the use of NaOH 4% at the temperature of 100°C for 1.5 hours. Additive materials in the form of essential oils are added as a preservative and aroma agent, namely cinnamon oil, lemon oil, clove oil and lime oil respectively 2% and 3%. Chemical and physical properties of the produced papers are tested included water content (dry-oven method SNI ISO 287:2010), pH (SNI ISO 6588-1.2010), grammage (SNI ISO 536:2010) and brightness (SNI ISO 2470:2010). Testing results of each paper were compared with commercial wrapping paper. The result shows that the natural paper from banana peel waste with additive essential oil meets the standard of ISO 6519:2016 about Basic Paper for Laminated Plastic Wrapping Paper within the parameter of pH and water content. The paper produced also meet the standard of ISO 8218:2015 about Food Paper and Cardboard within the grammage parameter (high-grade grammage), except the paper with 2% lemon oil. The paper which is closest to the characteristic of commercial wrapping paper is the paper with the additive of 2% cinnamon oil, with pH of 6.95, the water content of 7.14%, grammage of 347.6 gram/m2 and the brightness level of 24.68%.

Top