The role of marine biotoxins on the trophic transfer of Mn and Zn in fish.
Pouil, Simon; Clausing, Rachel J; Metian, Marc; Bustamante, Paco; Dechraoui Bottein, Marie-Yasmine
2018-05-01
Essential nutrients are critical for physiological processes of organisms. In fish, they are obtained primarily from the diet, and their transfer and accumulation are known to be impacted by environmental variables such as water temperature, pH and salinity, as well as by diet composition and matrices. Yet, prey items consumed by fish may also contain toxic compounds such as marine toxins associated with harmful algae. These biotoxins have the potential to affect essential trace element assimilation in fish through chemical interactions such as the formation of trace element-toxin complexes or by affecting general fish physiology as in the modification of ion-specific transport pathways. We assessed the influence of dietary exposure to brevetoxins (PbTxs), ichthyotoxic neurotoxins produced by the dinoflagellate Karenia brevis, on trophic transfer of two essential trace elements, Mn and Zn, in a fish model. Using ecologically relevant concentrations of PbTxs and trace elements in controlled laboratory conditions, juvenile turbots Scophthalmus maximus were given food containing PbTxs before or at the same time as a feeding with radiotracers of the chosen essential elements ( 54 Mn and 65 Zn). Treatments included simultaneous exposure (PbTxs + 54 Mn + 65 Zn) in a single-feeding, 3-week daily pre-exposure to dietary PbTx followed by a single feeding with 54 Mn and 65 Zn, and a control ( 54 Mn and 65 Zn only). After a 21-day depuration period, turbot tissue brevetoxin levels were quantified and assimilation efficiencies of 54 Mn and 65 Zn were assessed. PbTxs were found in turbot tissues in each exposure treatment, demonstrating dietary trophic transfer of these toxins; yet, no differences in assimilation efficiencies of Mn or Zn were found between treatments or the control (p > 0.05). These results indicate that, in our experimental conditions, PbTx exposure does not significantly affect the trophic transfer of Mn and Zn in fish. Copyright © 2018 Elsevier B.V. All rights reserved.
2018-01-01
The objective of this study was to investigate the content of essential elements in medicinal plants in the Kingdom of Saudi Arabia (KSA). Five different medical plants (mahareeb (Cymbopogon schoenanthus), sheeh (Artemisia vulgaris), harjal (Cynanchum argel delile), nabipoot (Equisetum arvense), and cafmariam (Vitex agnus-castus)) were collected from Madina city in the KSA. Five elements Fe, Mn, Zn, Cu, and Se were determined by using inductively coupled plasma mass spectrometry (ICP-MS). Fe levels were the highest and Se levels were the lowest in all plants. The range levels of all elements in all plants were as follows: Fe 193.4–1757.9, Mn 23.6–143.7, Zn 15.4–32.7, Se 0.13–0.92, and Cu 11.3–21.8 µg/g. Intakes of essential elements from the medical plants in infusion were calculated: Fe 4.6–13.4, Mn 6.7–123.2, Zn 7.0–42.7, Se 0.14–1.5, and Cu 1.5–5.0 µg/dose. The calculated intakes of essential elements for all plants did not exceed the daily intake set by the World Health Organization (WHO) and European Food Safety Authority (EFSA). These medicinal plants may be useful sources of essential elements, which are vital for health. PMID:29744234
A study on toxic and essential elements in wheat grain from the Republic of Kazakhstan.
Tattibayeva, Damira; Nebot, Carolina; Miranda, Jose M; Abuova, Altynai B; Baibatyrov, Torebek A; Kizatova, Maigul Z; Cepeda, Alberto; Franco, Carlos M
2016-03-01
Little information is currently available about the content of different elements in wheat samples from the Republic of Kazakhstan. The concentrations of toxic (As, Cd, Cr, Hg, Pb, and U) and essential (Co, Cu, Fe, Mn, Ni, Se, and Zn) elements in 117 sampled wheat grains from the Republic of Kazakhstan were measured. The results indicated that the mean and maximum concentrations of most investigated elements (As, Cd, Co, Cr, Mn, Se, Pb, and U) were higher in samples collected from southern Kazakhstan. The mean and maximum concentrations of toxic elements such as As, Cd, Hg, and Pb did not exceed levels specified by European, FAO, or Kazakh legislation, although the hazard quotient (HQ) values for Co, Cu, Mn, and Zn were higher than 1 and the hazard index (HI) was higher than 1 for samples collected from all areas of Kazakhstan. This indicates that there should be concern about the potential hazards of the combination of toxic elements in Kazakh wheat.
Risk assessment of manganese: A comparison of oral and inhalation derivations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poirier, K.A.; Velazquez, S.F.
1991-03-11
An oral and inhalation human exposure-response risk assessment was calculated for manganese (Mn) using USEPA methodologies for both oral reference dose (RfD) and inhalation reference concentration (RfC) determination. When ingested, Mn is among the least toxic of the essential trace elements. The RfD for Mn is based on ingestion data from normal human diets, balance studies and neurotoxicity resulting from drinking contaminated well water. From these data, a NOAEL of 0.14 mg/kb/day was estimated. Since the NOAEL was thought to account for human sensitivity and Mn is an essential element required for normal human growth, an uncertainty factor (UF) ofmore » 1 was used resulting in a RfD of 1E-1 mg/kg/day. Although neurotoxic effects are rarely observed from oral exposures, they are more commonly associated with exposure to Mn by inhalation. Toxicity from inhaled Mn results in an increased prevalence of respiratory symptoms, reproductive dysfunction and psychomotor disturbances that can ultimately be expressed in a frank effect of manganism characterized by Parkinson disease-like symptoms. Using data from occupational exposure to in organic Mn, a dose duration adjusted LOAEL of 0.34 mg/m{sup 3} is identified. Application of an UF of 300 results in an RfC of 4E-4 mg/m{sup 3}. The RfD and RfC analyses demonstrate a dichotomous data set of toxicological effects dependent upon the route of exposure to Mn. Furthermore, these analyses demonstrate the unique issues of characterizing toxicological risk assessment for essential trace elements.« less
Essential and toxic elements in infant foods from Spain, UK, China and USA.
Carbonell-Barrachina, Ángel A; Ramírez-Gandolfo, Amanda; Wu, Xiangchun; Norton, Gareth J; Burló, Francisco; Deacon, Claire; Meharg, Andrew A
2012-09-01
Spanish gluten-free rice, cereals with gluten, and pureed baby foods were analysed for essential macro-elements (Ca and Na), essential trace elements (Fe, Cu, Zn, Mn, Se, Cr, Co and Ni) and non-essential trace elements (As, Pb, Cd and Hg) using ICP-MS and AAS. Baby cereals were an excellent source of most of the essential elements (Ca, Fe, Cu, Mn and Zn). Sodium content was high in pureed foods to improve their flavour; fish products were also rich in Se. USA pure baby rice samples had the highest contents of all studied essential elements, showing a different nutrient pattern compared to those of other countries. Mineral fortification was not always properly stated in the labelling of infant foods. Complementary infant foods may also contain significant amounts of contaminants. The contents of Hg and Cd were low enough to guarantee the safety of these infant foods. However, it will be necessary to identify the source and reduce the levels of Pb, Cr and As in Spanish foods. Pure baby rice samples contained too much: Pb in Spain; As in UK; As, Cr and Ni in USA; and Cr and Cd in China.
Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation ...
Trace element accumulation in bivalve mussels Anodonta woodiana from Taihu Lake, China.
Liu, Hongbo; Yang, Jian; Gan, Juli
2010-11-01
Data are presented for 13 trace metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, and Pb) in 38 bivalve mussels Anodonta woodiana from four separate sites (Huzhou, Dapu, Sansandao, and Manshan) around the Taihu Lake of China. All elemental concentrations generally ranked in decreasing order, Mn > Fe > Zn > As ≈ Cu ≈ Cd ≈ Se > Pb > Mo ≈ Ag, except that Cr, Co, and Ni were not detected. Anodonta woodiana was able to bioaccumulate essential Mn and toxic Cd to the extremely high level of 19,240 and 53 mg/kg dry weight, respectively. Geographical differences in the concentrations of trace elements were usually significant between sampling sites except for As and Pb, and the mussels from Sanshandao site had mostly accumulated or were contaminated with essential and toxic elements. The residue level of Cd in A. woodiana from the Sanshandao and Manshan sites appeared to be even higher than those of the essential elements Cu and Se, and exceeded the corresponding maximum residue limits of China. The present study provides the most recent information on trace element bioaccumulation or contamination in Taihu Lake and, further, suggests that A. woodiana can be used as a suitable bioindicator for inland water environmental monitoring.
Exposure to Environmental Air Manganese and Medication Use
Manganese (Mn) is an essential element with natural low levels found in water, food, and air, but due to industrialized processes, both workplace and the environmental exposures to Mn have increased. Recently, environmental studies have reported physical and mental health problem...
Manganese-Induced Parkinsonism and Parkinson’s Disease: Shared and Distinguishable Features
Kwakye, Gunnar F.; Paoliello, Monica M.B.; Mukhopadhyay, Somshuvra; Bowman, Aaron B.; Aschner, Michael
2015-01-01
Manganese (Mn) is an essential trace element necessary for physiological processes that support development, growth and neuronal function. Secondary to elevated exposure or decreased excretion, Mn accumulates in the basal ganglia region of the brain and may cause a parkinsonian-like syndrome, referred to as manganism. The present review discusses the advances made in understanding the essentiality and neurotoxicity of Mn. We review occupational Mn-induced parkinsonism and the dynamic modes of Mn transport in biological systems, as well as the detection and pharmacokinetic modeling of Mn trafficking. In addition, we review some of the shared similarities, pathologic and clinical distinctions between Mn-induced parkinsonism and Parkinson’s disease. Where possible, we review the influence of Mn toxicity on dopamine, gamma aminobutyric acid (GABA), and glutamate neurotransmitter levels and function. We conclude with a survey of the preventive and treatment strategies for manganism and idiopathic Parkinson’s disease (PD). PMID:26154659
Socha, Amanda L.; Guerinot, Mary Lou
2014-01-01
Manganese (Mn), an essential trace element, is important for plant health. In plants, Mn serves as a cofactor in essential processes such as photosynthesis, lipid biosynthesis and oxidative stress. Mn deficient plants exhibit decreased growth and yield and are more susceptible to pathogens and damage at freezing temperatures. Mn deficiency is most prominent on alkaline soils with approximately one third of the world's soils being too alkaline for optimal crop production. Despite the importance of Mn in plant development, relatively little is known about how it traffics between plant tissues and into and out of organelles. Several gene transporter families have been implicated in Mn transport in plants. These transporter families include NRAMP (natural resistance associated macrophage protein), YSL (yellow stripe-like), ZIP (zinc regulated transporter/iron-regulated transporter [ZRT/IRT1]-related protein), CAX (cation exchanger), CCX (calcium cation exchangers), CDF/MTP (cation diffusion facilitator/metal tolerance protein), P-type ATPases and VIT (vacuolar iron transporter). A combination of techniques including mutant analysis and Synchrotron X-ray Fluorescence Spectroscopy can assist in identifying essential transporters of Mn. Such knowledge would vastly improve our understanding of plant Mn homeostasis. PMID:24744764
Environmental Exposure to Manganese in Air: Associations with Cognitive Functions
Manganese (Mn), an essential element, can be neurotoxic in high doses. This cross-sectional study explored the oognitive function of adults residing in two towns (Marietta and East Liverpool, Ohio, USA) identified as having high levels of environmental airborne Mn from indu...
Lei, Bingli; Chen, Liang; Hao, Ying; Cao, Tiehua; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-10-01
The concentrations of four human essential trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr)] and non-essential elements [cadmium (Cd), lead (Pb), arsenic (As), and mercury (Hg)] in eighteen animal-based foods including meat, fish, and shellfish collected from markets in Shanghai, China, were analyzed, and the associated human daily intake and uptake considering bioaccessibility were estimated. The mean concentration ranges for eight trace elements measured in the foods were 3.98-131µgg(-1) for Fe, 0.437-18.5µgg(-1) for Mn, 5.47-53.8µgg(-1) for Zn, none detected-0.101µgg(-1) for Cr, 2.88×10(-4)-2.48×10(-2)µgg(-1) for Cd, 1.18×10(-3)-0.747µgg(-1) for Pb, none detected-0.498µgg(-1) for As, and 8.98×10(-4)-6.52×10(-2)µgg(-1) for Hg. The highest mean concentrations of four human essential elements were all found in shellfish. For all the trace elements, the observed mean concentrations are mostly in agreement with the reported values around the world. The total daily intake of trace elements via ingestion of animal-based food via an average Shanghai resident was estimated as 7371µgd(-1) for the human essential elements and 13.0µgd(-1) for the human non-essential elements, but the uptake decreased to 4826µgd(-1) and 6.90µgd(-1), respectively, after trace element bioaccessibility was considered. Livestock and fish for human essential and non-essential elements, respectively, were the main contributor, no matter whether the bioaccessibility was considered or not. Risk estimations showed that the intake and uptake of a signal trace element for an average Shanghai resident via ingestion animal-based foods from Shanghai markets do not exceed the recommended dietary allowance values; consequently, a health risk situation is not indicated. Copyright © 2013. Published by Elsevier Inc.
ADVERSE HEALTH EFFECTS FROM ENVIRONMENTAL MANGANESE EXPOSURE.
The ubiquitous element, manganese (Mn), is an essential nutrient, but toxic at excessive exposure levels. Therefore, the US EPA set guideline levels for Mn exposure through inhalation (reference concentration-RfC=0.05 ?g/m3) and ingestion (reference dose-RfD=0.14 mg/kg/day (10 mg...
ENVIRONMENTAL MANGANESE: GUIDELINE EXPOSURE LEVELS, EVIDENCE OF HEALTH EFFECTS AND RESEARCH NEEDS.
Introduction. The ubiquitous element, manganese (Mn), is an essential nutrient, but toxic at excessive exposure levels. The US EPA, therefore, set guideline levels for Mn exposure through inhalation (reference concentration-RfC=0.05 g/m3) and ingestion (reference dose-RfD=0.14 m...
Salahinejad, Maryam; Aflaki, Fereydoon
2010-04-01
The metal contents of eleven black tea samples, four cultivated in Iran and seven imported, and their tea infusions were determined. Twelve elements consisting toxic metals (Al, As, Pb, Cr, Cd, and Ni) and essential mineral elements (Fe, Zn, Cu, Mn, Ca, and Mg) were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Al, Ca, Mg, and Mn ranged in black tea leaves at mg g(-1) levels, while Cr, Fe, Ni, Cu, Zn were at microg g(-1) levels. Analysis of variance showed no statistically significant differences among most elements determined in cultivated and imported black teas in Iran except for Ni and Cu. The extraction efficiency of each element into tea infusions was evaluated. The solubility of measured metals in infusion extracts varied widely and ranged from 0 to 59.3%. Among the studied elements, Cr, Pb, and Cd showed the lowest rates of solubility and Ni had the highest rates of solubility. The amount of toxic metals and essential mineral elements that one may take up through consumption of black tea infusion was estimated. The amount of realizing each element into tea infusions and acceptable daily intake, for safety consumption of black tea, was compared.
Determination of elements in ayurvedic medicinal plants by AAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teerthe, Santoshkumar S.; Kerur, B. R., E-mail: kerurbrk@yahoo.com
India has a rich country for the uses of Ayurvedic medicinal plants for treatment and also the north- Karnataka boasts an unparallel diversity of medicinal plants. The present study attempts to estimate and compare the level of trace and heavy metals in some selected leaves and root samples of Ayurvedic medicinal plants such as Mg, Al, K, Cr, Mn, Fe, Cu, Zn, and Cd. The samples are collected from different places of North-Karnataka regions and sample solutions prepared as the ratio of 1:25:25+950ml=1000ppm.the trace and heavy elemental concentration was estimated using Atomic Absorption Spectrometric (AAS) Method. The average concentrations ofmore » Mg, Mn, Fe and Zn, are ranging from 2ppm to 5250.2ppm and potassium (K) has more concentration as compare to all other. The other elements likes Al, Cr, Cu, and Cd were also estimed and presented in the table. Therefore, these medicinal plants are rich in some essential minerals, especially K, Mg, Mn, Fe and Zn which are essential for human health.« less
Kannan, K.; Agusa, T.; Perrotta, E.; Thomas, N.J.; Tanabe, S.
2006-01-01
Infectious diseases have been implicated as a cause of high rates of adult mortality in southern sea otters. Exposure to environmental contaminants can compromise the immuno-competence of animals, predisposing them to infectious diseases. In addition to organic pollutants, certain trace elements can modulate the immune system in marine mammals. Nevertheless, reports of occurrence of trace elements, including toxic heavy metals, in sea otters are not available. In this study, concentrations of 20 trace elements (V, Cr, Mn, Co, Cu, Zn, Rb, Sr, Mo, Ag, Cd, In, Sn, Sb, Cs, Ba, Hg, Tl, Pb, and Bi) were measured in livers of southern sea otters found dead along the central California coast (n = 80) from 1992 to 2002. Hepatic concentrations of trace elements were compared among sea otters that died from infectious diseases (n = 27), those that died from non-infectious causes (n = 26), and otters that died in emaciated condition with no evidence of another cause of death (n = 27). Concentrations of essential elements in sea otters varied within an order of magnitude, whereas concentrations of non-essential elements varied by two to five orders of magnitude. Hepatic concentrations of Cu and Cd were 10- to 100-fold higher in the sea otters in this study than concentrations reported for any other marine mammal species. Concentrations of Mn, Co, Zn, and Cd were elevated in the diseased and emaciated sea otters relative to the non-diseased sea otters. Elevated concentrations of essential elements such as Mn, Zn, and Co in the diseased/emaciated sea otters suggest that induction of synthesis of metallothionein and superoxide dismutase (SOD) enzyme is occurring in these animals, as a means of protecting the cells from oxidative stress-related injuries. Trace element profiles in diseased and emaciated sea otters suggest that oxidative stress mediates the perturbation of essential-element concentrations. Elevated concentrations of toxic metals such as Cd, in addition to several other organic pollutants, may contribute to oxidative stress-meditated effects in sea otters.
Essential and toxic elements in seaweeds for human consumption.
Desideri, D; Cantaluppi, C; Ceccotto, F; Meli, M A; Roselli, C; Feduzi, L
2016-01-01
Essential elements (K, Ca, P, S, Cl, Mn, Fe, Cu, Zn, Ni, Br, and I) and nonessential or toxic elements (Al, Ti, Si, Rb, Sr, As, Cd, Sn, and Pb) were determined by energy-dispersive polarized x-ray fluorescence spectrometry in 14 seaweeds purchased in local specialty stores in Italy and consumed by humans. The differences in elements between the algae species reached up to 2-4 orders of magnitude. Lithothamnium calcareum showed the highest levels of Ca, Al, Si, Fe, and Ti. Palmaria palmata showed the highest concentrations of K, Rb, and Cl. The highest content of S was in Chondrus crispus. Laminaria digitata contained the highest concentrations of total As, Cd, Sn, Br, and I. The highest concentration of Zn was in Chlorella pyrenoidosa. Ulva lactuca displayed the highest levels of Cu, Ni, Mn, and Pb. Iodine levels ranged from 3.4 in Chlorella pyrenoidosa to 7316 mg/kg(dry) in Laminaria digitata. The nutrimental importance of essential elements was assessed using nutritional requirements. The results showed that the consumption of algae might serve as an important source of the essential elements. Health risk due to the toxic elements present in seaweed was estimated using risk estimators. Total As, Cd, and Pb concentrations ranged from <1 to 67.6, to 7.2 and to 6.7 mg/kg(dry) respectively; therefore, their contribution to total elemental intake does not appear to pose any threat to the consumers, but the concentrations of these elements should be controlled to protect the consumer against potential adverse health risks.
Maternal transfer of trace elements in the Atlantic horseshoe crab (Limulus polyphemus).
Bakker, Aaron K; Dutton, Jessica; Sclafani, Matthew; Santangelo, Nicholas
2017-01-01
The maternal transfer of trace elements is a process by which offspring may accumulate trace elements from their maternal parent. Although maternal transfer has been assessed in many vertebrates, there is little understanding of this process in invertebrate species. This study investigated the maternal transfer of 13 trace elements (Ag, As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in Atlantic horseshoe crab (Limulus polyphemus) eggs and compared concentrations to those in adult leg and gill tissue. For the majority of individuals, all trace elements were transferred, with the exception of Cr, from the female to the eggs. The greatest concentrations on average transferred to egg tissue were Zn (140 µg/g), Cu (47.8 µg/g), and Fe (38.6 µg/g) for essential elements and As (10.9 µg/g) and Ag (1.23 µg/g) for nonessential elements. For elements that were maternally transferred, correlation analyses were run to assess if the concentration in the eggs were similar to that of adult tissue that is completely internalized (leg) or a boundary to the external environment (gill). Positive correlations between egg and leg tissue were found for As, Hg, Se, Mn, Pb, and Ni. Mercury, Mn, Ni, and Se were the only elements correlated between egg and gill tissue. Although, many trace elements were in low concentration in the eggs, we speculate that the higher transfer of essential elements is related to their potential benefit during early development versus nonessential trace elements, which are known to be toxic. We conclude that maternal transfer as a source of trace elements to horseshoe crabs should not be overlooked and warrants further investigation.
COMPARING THE RECOMMENDED DIETARY ALLOWANCE TO TOXICITY VALUES FOR ZN, SE, MN, AND MB
Certain essential nutrients can be toxic when ingested at dosages higher than the daily nutritional requirement. Research data for the essential trace elements, zinc, selenium, manganese and molybdenum have been reviewed by various government agencies for both their nutritional n...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Gearhart, Jeffrey; Clewell, III, H. J.
2007-01-01
Manganese (Mn) is an essential nutrient. Mn deficiency is associated with altered lipid (Kawano et al. 1987) and carbohydrate metabolism (Baly et al. 1984; Baly et al. 1985), abnormal skeletal cartilage development (Keen et al. 2000), decreased reproductive capacity, and brain dysfunction. Occupational and accidental inhalation exposures to aerosols containing high concentrations of Mn produce neurological symptoms with Parkinson-like characteristics in workers. At present, there is also concern about use of the manganese-containing compound, methylcyclopentadienyl manganese tricarbonyl (MMT), in unleaded gasoline as an octane enhancer. Combustion of MMT produces aerosols containing a mixture of manganese salts (Lynam et al. 1999).more » These Mn particulates may be inhaled at low concentrations by the general public in areas using MMT. Risk assessments for essential elements need to acknowledge that risks occur with either excesses or deficiencies and the presence of significant amounts of these nutrients in the body even in the absence of any exogenous exposures. With Mn there is an added complication, i.e., the primary risk is associated with inhalation while Mn is an essential dietary nutrient. Exposure standards for inhaled Mn will need to consider the substantial background uptake from normal ingestion. Andersen et al. (1999) suggested a generic approach for essential nutrient risk assessment. An acceptable exposure limit could be based on some ‘tolerable’ change in tissue concentration in normal and exposed individuals, i.e., a change somewhere from 10 to 25 % of the individual variation in tissue concentration seen in a large human population. A reliable multi-route, multi-species pharmacokinetic model would be necessary for the implementation of this type of dosimetry-based risk assessment approach for Mn. Physiologically-based pharmacokinetic (PBPK) models for various xenobiotics have proven valuable in contributing to a variety of chemical specific risk assessments (Dixit et al., 2003). With most exogenous compounds, there is often no background exposure and body concentrations are not under active control from homeostatic processes as occurs with essential nutrients. Any complete Mn PBPK model would include the homeostatic regulation as an essential nutritional element and the additional exposure routes by inhalation. Two companion papers discuss the kinetic complexities of the quantitative dose-dependent alterations in hepatic and intestinal processes that control uptake and elimination of Mn (Teeguarden et al., 2006a, b). Radioactive 54Mn has been to investigate the behavior of the more common 55Mn isotope in the body because the distribution and elimination of tracer doses reflects the overall distributional characteristics of Mn. In this paper, we take the first steps in developing a multi-route PBPK model for Mn. Here we develop a PBPK model to account for tissue concentrations and tracer kinetics of Mn under normal dietary intake. This model for normal levels of Mn will serve as the starting point for more complete model descriptions that include dose-dependencies in both oral uptake and and biliary excretion. Material and Methods Experimental Data Two studies using 54Mn tracer were employed in model development. (Furchner et al. 1966; Wieczorek and Oberdorster 1989). In Furchner et al. (1966) male Sprague-Dawley rats received an ip injection of carrier-free 54MnCl2 while maintained on standard rodent feed containing ~ 45 ppm Mn. Tissue radioactivity of 54Mn was measured by liquid scintillation counting between post injection days 1 to 89 and reported as percent of administered dose per kg tissue. 54Mn time courses were reported for liver, kidney, bone, brain, muscle, blood, lung and whole body. Because ip uptake is via the portal circulation to the liver, this data set had information on distribution and clearance behaviors of Mn entering the systemic circulation from liver.« less
Villa, C A; Flint, M; Bell, I; Hof, C; Limpus, C J; Gaus, C
2017-01-01
Exposure to essential and non-essential elements may be elevated for green sea turtles (Chelonia mydas) that forage close to shore. Biomonitoring of trace elements in turtle blood can identify temporal trends over repeated sampling events, but any interpretation of potential health risks due to an elevated exposure first requires a comparison against a baseline. This study aims to use clinical reference interval (RI) methods to produce exposure baseline limits for essential and non-essential elements (Na, Mg, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sb, Ba, and Pb) using blood from healthy subadult turtles foraging in a remote and offshore part of the Great Barrier Reef. Subsequent blood biomonitoring of three additional coastal populations, which forage in areas dominated by agricultural, urban and military activities, showed clear habitat-specific differences in blood metal profiles relative to the those observed in the offshore population. Coastal turtles were most often found to have elevated concentrations of Co, Mo, Mn, Mg, Na, As, Sb, and Pb relative to the corresponding RIs. In particular, blood from turtles from the agricultural site had Co concentrations ranging from 160 to 840 μg/L (4-25 times above RI), which are within the order expected to elicit acute effects in many vertebrates. Additional clinical blood biochemistry and haematology results indicate signs of a systemic disease and the prevalence of an active inflammatory response in a high proportion (44%) of turtles from the agricultural site. Elevated Co, Sb, and Mn in the blood of these turtles significantly correlated with elevated markers of acute inflammation (total white cell counts) and liver dysfunction (alkaline phosphatase and total bilirubin). The results of this study support the notion that elevated trace element exposures may be adversely affecting the health of nearshore green sea turtles. Copyright © 2016 Elsevier Ltd. All rights reserved.
Skröder, Helena; Kippler, Maria; Nermell, Barbro; Tofail, Fahmida; Levi, Michael; Rahman, Syed Moshfiqur; Raqib, Rubhana
2017-01-01
Background: Hair is a commonly used exposure biomarker for metals and other trace elements, but concern has been raised regarding its appropriateness for assessing the internal dose. Objectives: The aim of the present study was to evaluate children’s hair as biomarker of internal dose for toxic (As, Mn, Cd, Pb) and essential elements (Mg, Ca, Fe, Co, Cu, Zn, Se, Mo). Methods: In 207 children (9–10 years of age), originating from a population-based cohort in rural Bangladesh, we measured concentrations of the selected elements in hair (2cm closest to the scalp) using ICP-MS. We compared these with previously measured concentrations in erythrocytes, urine, and water. For a subset of children (n=19), we analyzed four consecutive 2cm pieces of hair. Results: There were strong associations between hair As and the other biomarkers (erythrocytes: rS=0.73, p<0.001; urine: rS=0.66, p<0.001); and water (rS=0.60, p<0.001); and there were significant correlations between Se in hair and erythrocytes (overall rS=0.38, p<0.001), and urine (rS=0.29, p<0.001). Hair Co and Mo showed weak correlations with concentrations in erythrocytes. Hair Mn was not associated with Mn in erythrocytes, urine, or water, and the geometric mean concentration increased almost five times from the 2cm closest to the head to the 7th–8th cm (p<0.001). Also Mg, Ca, Co, Cd, and Pb increased from the scalp outward (>50% higher in 7th–8th cm compared with 1st–2nd cm, p<0.001). Conclusions: Hair was found to be a useful exposure biomarker of absorbed As and Se only. Of all measured elements, hair Mn seemed the least reflective of internal dose. https://doi.org/10.1289/EHP1239 PMID:28669939
Jiang, Haifeng; Qin, Dongli; Mou, Zhenbo; Zhao, Jiwei; Tang, Shizhan; Wu, Song; Gao, Lei
2016-06-01
Concentrations of 30 trace elements, Li, V, Cr, Mn, Fe, Ni, Cu, Mo, Zn, Se, Sr, Co, Al, Ti, As, Cs, Sc, Te, Ba, Ga, Pb, Sn, Cd, Sb, Ag, Tm, TI, Be, Hg and U in major cultured freshwater fish species (common carp-Cyprinus carpio, grass carp-Ctenopharyngodon idella and rainbow trout-Oncorhynchus mykiss) with the corresponding feed from 23 fish farms in Beijing, China, were investigated. The results revealed that Fe, Zn, Cu, Mn, Sr, Se were the major accumulated essential elements and Al, Ti were the major accumulated non-essential elements, while Mo, Co, Ga, Sn, Cd, Sb, Ag, Tm, U, TI, Be, Te, Pb and Hg were hardly detectable. Contents of investigated trace elements were close to or much lower than those in fish from other areas in China. Correlation analysis suggested that the elemental concentrations in those fish species were relatively constant and did not vary much with the fish feed. In comparison with the limits for aquafeeds and fish established by Chinese legislation, Cd in 37.5% of rainbow trout feeds and As in 20% of rainbow trout samples exceeded the maximum limit, assuming that inorganic As accounts for 10% of total As. Further health risk assessment showed that fish consumption would not pose risks to consumers as far as non-essential element contaminants are concerned. However, the carcinogenic risk of As in rainbow trout for the inhabitants in Beijing exceeded the acceptable level of 10(-)(4), to which more attention should be paid.
Water-extractable magnesium, manganese and copper in leaves and herbs of medicinal plants.
Konieczyński, Paweł; Wesołowski, Marek
2012-01-01
Since herbal teas, infusions and decoctions prepared from medicinal plants are popular remedies, it remains a topical question whether these herbal drugs can be treated as sources of essential elements for humans, who often use them in their everyday diet. Therefore, total and water-extractable contents of Mg, Mn and Cu were determined in 41 leaves originating from four botanical species of Plantago lanceolata, Arctostaphyllos uva-ursi, Rubus fruticosus and Betula sp., as well as in 33 samples of herbs represented by three species of Urtica dioica, Hypericum perforatum and Achillea millefolium. The highest level was determined in the case of Mg (in a range from 2.0 to 7.0 mg/g of dry mass [d.m.]), followed by Mn (from 50.0 to 1300.0 mg/kg d.m.), and lowest of all, Cu (from 3.5 to 19.5 mg/kg d.m.). Student's t-test showed that a statistically significant difference exists between samples originating from different plant species regarding the total content and water-extractable forms of Mg, Mn and Cu. By analysis of the relations between elements, it was observed that total level of Cu correlated with total levels of Mg and Mn, which indicates a synergistic interaction between the essential elements under study. With regard to Dietary Reference Intakes (DRIs), the leaves of Rubus fruticosus contained the highest amounts of a water-extractable bioavailable form of Mn, which guarantees from 160 to 200% of the daily requirement of Mn for women and men, respectively. On the other hand, the extract obtained from Urticae folium gave water-extractable Mg in the amount of 76 mg/500 mL, which constitutes about 20% of daily requirement. The plant material richest in water-extractable Cu was Hyperici herba, containing 154.5 microg/500 mL, or 17% of DRI for both sexes.
Trace elements in starter infant formula: dietary intake and safety assessment.
Bargellini, Annalisa; Venturelli, Francesco; Casali, Elisabetta; Ferrari, Angela; Marchesi, Isabella; Borella, Paola
2018-01-01
The aim of this study was to investigate the concentrations of five essential (Fe, Mn, Zn, Cu and Se) and four non-essential/toxic elements (Cr, Cd, Ni and Pb) in 35 different starter infant formulas (0-6 months) sold in Italy. In addition, a safety assessment of these trace elements was carried out, by comparing the estimated daily intake (EDI) with the adequate intake (AI) and the provisional tolerable daily intake (PTDI), with a view to provide information on the metal distribution patterns and health risk to infants arising from the consumption of these products. The concentrations were determined by using inductively coupled plasma mass spectrometry after microwave digestion. The concentrations expressed in geometric mean ± geometric standard deviation of Fe (6.17 ± 1.61 mg/L), Zn (6.21 ± 1.31 mg/L), Cu (416.4 ± 1.21 μg/L), Mn (121.5 ± 1.85 μg/L) and Se (13.27 ± 1.67 μg/L) were within legal limits. In spite of this, the mean EDIs of Fe (4.81 mg/day) and Mn (94.75 μg/day) were many times higher than the recommended AI, especially for Mn. Chromium, Ni, Cd and Pb concentrations were not detectable in 11, 37, 57 and 66% of the samples, respectively. Considering the overall sample, the GM ± GSD of these elements were 4.80 ± 5.35 μg/L for Cr, 1.02 ± 11.65 μg/L for Ni, 0.21 ± 14.83 μg/L for Cd and 0.14 ± 17.13 μg/L for Pb. The mean EDIs were far below the respective PTDI. When the safety assessment was based on the 75° percentile level of each elements, all EDIs remained well below the PTDI, with the exception of Cd, whose EDI approached (74.7%), albeit remaining below the PTDI. In conclusion, our results and the increased awareness on the potential risks of excessive Mn and Fe for infants support that an urgent scientific-based definition of the appropriated levels of fortification in formulas is required. Moreover, regular monitoring of all the stages of production of infant formulas is essential in order to limit toxic metal contamination.
Nath, Bibhash; Chaudhuri, Punarbasu; Birch, Gavin
2014-09-01
Mangrove forests act as a natural filter of land-derived wastewaters along industrialized tropical and sub-tropical coastlines and assist in maintaining a healthy living condition for marine ecosystems. Currently, these intertidal communities are under serious threat from heavy metal contamination induced by human activity associated with rapid urbanization and industrialization. Studies on the biotic responses of these plants to heavy metal contamination are of great significance in estuary management and maintaining coastal ecosystem health. The main objective of the present investigation was to assess the biotic response in Avicennia marina ecosystems to heavy metal contamination through the determination of metal concentrations in leaves, fine nutritive roots and underlying sediments collected in fifteen locations across Sydney Estuary (Australia). Metal concentrations (especially Cu, Pb and Zn) in the underlying sediments of A. marina were enriched to a level (based on Interim Sediment Quality Guidelines) at which adverse biological effects to flora could occasionally occur. Metals accumulated in fine nutritive roots greater than underlying sediments, however, only minor translocation of these metals to A. marina leaves was observed (mean translocation factors, TFs, for all elements <0.13, except for Mn). Translocation factors of essential elements (i.e., common plant micro-nutrients, Cu, Ni, Mn and Zn) were greater than non-essential elements (As, Cd, Co, Cr and Pb), suggesting that A. marina mangroves of this estuary selectively excluded non-essential elements, while regulating essential elements and limiting toxicity to plants. This study supports the notion that A. marina mangroves act as a phytostabilizer in this highly modified estuary thereby protecting the aquatic ecosystem from point or non-point sources of heavy metal contamination. Copyright © 2014 Elsevier Inc. All rights reserved.
Richardson, J B
2017-03-01
Manganese (Mn) cycling in the Critical Zone is important because of its role as an essential nutrient and potential toxicity to plants and organisms. Quantifying Mn enrichment in terrestrial environments has been limited since Mn is monoisotopic. However, elemental ratios of Mn/Ca ratios may be used to determine spatial Mn enrichment and in aboveground and belowground pools. The objectives of this study were to quantify the spatial variation in Mn concentrations and Mn/Ca ratios in foliage, bolewood, forest floor, and mineral soil horizons across the northeastern United States and compare Mn/Ca ratios to estimate enrichment. Forest floor and mineral soil samples were collected from 26 study sites across the northeastern United States and analyzed by strong acid digestion. Foliage and bolewood was collected from 12 of the 26 sites and analyzed for total Mn and Ca. Our results show forest floor and mineral soil horizon Mn concentrations and Mn/Ca ratios were higher at Pennsylvania and New York sites than New Hampshire and Vermont sites. Using a modified isotope equation, enrichment factors (EF) for Mn/Ca ratios were calculated to be ~3.6 in the forest floor, upper and lower mineral soil horizons at sites in New York and Pennsylvania compared to reference sites in New Hampshire and Vermont. Foliar and bolewood Mn concentrations also decreased from Pennsylvania towards New Hampshire. Moreover, foliar and bolewood Mn concentrations were strongly correlated to forest floor, upper, and lower mineral soil Mn concentrations. It was hypothesized that internal cycling (uptake, throughfall, and litterfall) of Mn controls retention of enriched Mn in forests. Geologic influences from a lithologic gradient and soil pH gradient could also influence Mn enrichment in addition to Mn pollution. Ratios of Mn/Ca and other elemental ratios hold promise as geochemical tracers but require further development. Copyright © 2016 Elsevier B.V. All rights reserved.
The role of biological uptake in iron and manganese cycling in Lake Baikal
Granina, L.Z.; Callender, E.
2006-01-01
The role of biological uptake in the internal cycling of Fe and Mn in Lake Baikal was quantified. Biological uptake, sedimentation consisting of the biogenic and lithogenic fluxes, and remineralization have been evaluated. The results of calculations show that about 5-10% of Fe and Mn accumulated in the lake are annually taken up by biota. More than 80% of this amount is again recycled after remineralization of biological material. At this, the biogenic fluxes of Fe and Mn are 2-4 times less compared to lithogenic ones. Thus not only is oxidation of Fe and Mn within the water column highly enriched in the oxygen that results in settling of Fe and Mn oxides, but also intensive biological uptake of these elements contributes to their fast removal from internal cycling. However, essential remineralization makes this process of minor importance to Fe and Mn cycling in Lake Baikal. ?? Springer 2006.
Longchamp, M; Angeli, N; Castrec-Rouelle, M
2016-01-01
The addition of selenate or selenite to common fertilizers for crop production could be an effective way of producing selenium-rich food and feed. However, this would be feasible only if the increase in plant selenium (Se) content did not negatively influence the uptake of other essential elements. We therefore need to understand the interactions between Se and other major and trace elements during uptake by the plant. This study aimed to evaluate the influence of inorganic forms of Se on the accumulation of selected macronutrients (Ca and Mg) and micronutrients (Fe, Zn, Mn and Cu). Those essential elements are involved in the oxidative balance of cells. Zea mays seedlings were grown hydroponically in growth chambers in nutrient solutions to which we added 10, 50 or 1000 μg.L(-1) of selenate and/or selenite. Cation accumulation was significantly affected by the addition of 50 μg.L(-1) or 1000 μg.L(-1) Se, but not by the presence of 10 μg.L(-1) of Se in the nutrient solution. The highest concentration (1000 μg.L(-1)) of Se in the nutrient solution affected the accumulation of essential cations in Zea mays: selenate tended to increase the accumulation of Mg, Zn and Mn, whereas a selenate/selenite mixture tended to decrease the accumulation of Ca, Mg, Zn and Mn. Only Fe accumulation was unaffected by Se whatever its form or concentration. Selenium may also affect the distribution of cations on Zea mays. For example, levels of Mg and Zn translocation to the shoots were lower in the presence of selenite. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Toxic and essential elements in butter from the Black Sea region, Turkey.
Dervisoglu, Muhammet; Gul, Osman; Yazici, Fehmi; Guvenc, Dilek; Atmaca, Enes; Aksoy, Abdurrahman
2014-01-01
In this study, 88 randomly selected samples of butter produced in the Black Sea region of Turkey were purchased from different retail markets during different periods and investigated for toxic and essential elements content. Quantitative analyses of elements in the samples were performed using an inductively coupled plasma-mass spectroscopy (ICP-MS). Mean concentrations of As, Cr, Cu, Fe, Mn, Ni, Pb, Se and Zn in the butter samples were 18.93, 100.32, 384.66, 4199.1, 887.47, 168.64, 56.13, 16.34 and 384.66 µg kg(-1), respectively. Cd and Co were detected in 19 (mean content 0.29 µg kg(-1)) and 81 (mean content 3.81 µg kg(-1)) samples of 88 butter samples, respectively. However, the dietary intake of these elements by the population of the Black Sea region is currently well below the dietary reference intake (DRI) and provisional tolerable weekly intake (PTWI) levels of essential and toxic elements.
Stojsavljević, Aleksandar; Trifković, Jelena; Rasić-Milutinović, Zorica; Jovanović, Dragana; Bogdanović, Gradimir; Mutić, Jelena; Manojlović, Dragan
2018-07-01
Inductively coupled plasma-mass spectrometry ((ICP-MS)) was used to determine three toxic (Ni, As, Cd) and six essential trace elements (Cr, Mn, Co, Cu, Zn, Se) in blood serum of patients with hypothyroidism (Hy group) and healthy people (control group), in order to set the experimental conditions for accurate determination of a unique profile of these elements in hypothyroidism. Method validation was performed with standard reference material of the serum by varying the sample treatment with both standard and collision mode for analysis of elements isotopes. Quadratic curvilinear functions with good performances of models and the lowest detection limits were obtained for 52 Cr, 66 Zn, 75 As, 112 Cd in collision mode, and 55 Mn, 59 Co, 60 Ni, 65 Cu, 78 Se in standard mode. Treatment of serum samples with aqueous solution containing nitric acid, Triton X-100 and n-butanol gave the best results. Chemometric tools were applied for discrimination of patients with hypothyroidism. All nine elements discriminated Hy group of samples with almost the same discriminating power as indicated by their higher values for this group of patients. Statistically significant correlation (p < 0.01) was observed for several elements. Results indicated clear differences in element profile between Hy and control group and it could be used as a unique profile of hypothyroid state. Copyright © 2018 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Cheol-Woo; Cho, Jae-Ik; Choi, Se-Weon; Kim, Young-Chan; Kang, Chang-Seog
Recently, demand of aluminum alloys for use in high thermal conductivity application is increases but the most aluminum die casting alloys exhibit very lower thermal properties because of their high concentrations of alloying elements. However, those alloying elements are essential to obtain sufficient fluidity and mechanical strength. Therefore, the purpose of this study is to analyze the effect of alloying elements in die casting alloys, Si, Cu, Mg, Fe and Mn, in thermal conductivity, die casting characteristics and mechanical properties and find out the appropriate amount of each alloying element for development of heat sink component. The results showed that Mn had the most deleterious effect in thermal conductivity and Si and Fe contents were important to improve strength and limit casting defects, such as hot tearing and die soldering. The alloy with 0.2 1.0wt%Cu, 0.3 0.6wt%Fe and 1.0 2.0wt%Si showed very good combination of high thermal conductivity and good casting characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, P. Robinan, E-mail: rgentry@ramboll.com
A physiologically-based pharmacokinetic (PBPK) model (Schroeter et al., 2011) was applied to simulate target tissue manganese (Mn) concentrations following occupational and environmental exposures. These estimates of target tissue Mn concentrations were compared to determine margins of safety (MOS) and to evaluate the biological relevance of applying safety factors to derive acceptable Mn air concentrations. Mn blood concentrations measured in occupational studies permitted verification of the human PBPK models, increasing confidence in the resulting estimates. Mn exposure was determined based on measured ambient air Mn concentrations and dietary data in Canada and the United States (US). Incorporating dietary and inhalation exposuresmore » into the models indicated that increases in target tissue concentrations above endogenous levels only begin to occur when humans are exposed to levels of Mn in ambient air (i.e. > 10 μg/m{sup 3}) that are far higher than those currently measured in Canada or the US. A MOS greater than three orders of magnitude was observed, indicating that current Mn air concentrations are far below concentrations that would be required to produce the target tissue Mn concentrations associated with subclinical neurological effects. This application of PBPK modeling for an essential element clearly demonstrates that the conventional application of default factors to “convert” an occupational exposure to an equivalent continuous environmental exposure, followed by the application of safety factors, is not appropriate in the case of Mn. PBPK modeling demonstrates that the relationship between ambient Mn exposures and dose-to-target tissue is not linear due to normal tissue background levels and homeostatic controls. - Highlights: • Manganese is an essential nutrient, adding complexity to its risk assessment. • Nonlinearities in biological processes are important for manganese risk assessment. • A PBPK model was used to estimate target tissue concentrations of manganese. • An MOS approach also considered target tissue concentrations for ambient exposures. • Relationships between ambient Mn exposures and dose-to-target tissue are not linear.« less
Assessment of serum trace elements and electrolytes in children with childhood and atypical autism.
Skalny, Anatoly V; Simashkova, Natalia V; Klyushnik, Tatiana P; Grabeklis, Andrei R; Radysh, Ivan V; Skalnaya, Margarita G; Nikonorov, Alexandr A; Tinkov, Alexey A
2017-09-01
The existing data demonstrate a significant interrelation between ASD and essential and toxic trace elements status of the organism. However, data on trace element homeostasis in particular ASD forms are insufficient. Therefore, the objective of the present study was to assess the level of trace elements and electrolytes in serum of children with childhood and atypical autism. A total of 48 children with ASD (24 with childhood and 24 with atypical autism) and age- and sex-adjusted controls were examined. Serum trace elements and electrolytes were assessed using inductively-coupled plasma mass spectrometry. The obtained data demonstrate that children with ASD unspecified are characterized by significantly lower Ni, Cr, and Se levels as compared to the age- and sex-matched controls. At the same time, significantly decreased serum Ni and Se concentrations were detected in patients with childhood autism. In turn, children with atypical autism were characterized by more variable serum trace element spectrum. In particular, atypical autism is associated with lower serum Al, As, Ni, Cr, Mn, and Se levels in comparison to the control values. Moreover, Al and Mn concentration in this group was also lower than that in childhood autism patients. Generally, the obtained data demonstrate lower levels of both essential and toxic trace elements in atypical autism group, being indicative of profound alteration of trace elements metabolism. However, further detailed metabolic studies are required to reveal critical differences in metabolic pathways being responsible for difference in trace element status and clinical course of the disease. Copyright © 2016 Elsevier GmbH. All rights reserved.
Meillère, Alizée; Brischoux, François; Bustamante, Paco; Michaud, Bruno; Parenteau, Charline; Marciau, Coline; Angelier, Frédéric
2016-10-01
In a rapidly urbanizing world, trace element pollution may represent a threat to human health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects of trace element contamination on urban vertebrates. In this study, we investigated the impact of urbanization on trace element contamination and stress physiology in a wild bird species, the common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and explored the putative disrupting effects of the non-essential element contamination on corticosterone levels (a hormonal proxy for environmental challenges). We found that non-essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, indicating a significant trace element contamination even in medium sized cities and suburban areas. Interestingly, the increased feather non-essential trace element concentrations were also associated with elevated feather corticosterone levels, suggesting that urbanization probably constrains birds and that this effect may be mediated by trace element contamination. Future experimental studies are now required to disentangle the influence of multiple urban-related constraints on corticosterone levels and to specifically test the influence of each of these trace elements on corticosterone secretion. Copyright © 2016 Elsevier B.V. All rights reserved.
Toxic and essential elements in five tree nuts from Hangzhou market, China.
Ni, Zhanglin; Tang, Fubin; Yu, Qing; Liu, Yihua
2016-12-01
In this study, a total of 35 tree nut samples of walnut, pecan, pine seed, hickory nut and torreya were obtained from 5 farm product markets in Hangzhou, China, and investigated for essential (Cr, Mn, Fe, Mo, Cu, Zn, Se and Sr) and toxic (Al, As, Cd and Pb) elements by inductively coupled plasma-mass spectroscopy. Mean elemental concentrations of different tree nuts were in the following ranges: Cr 0.26-0.78 mg kg -1 , Mn 42.1-174 mg kg -1 , Fe 33.7-43.9 mg kg -1 , Mo 0.11-0.48 mg kg -1 , Cu 10.3-17.6 mg kg -1 , Zn 21.6-56.1 mg kg -1 , Se 0.015-0.051 mg kg -1 , Al 1.44-37.6 mg kg -1 , As 0.0062-0.047 mg kg -1 , Cd 0.016-0.18 mg kg -1 and Pb 0.0069-0.029 mg kg -1 . The estimated provisional tolerable daily intake of Al, As, Cd and Pb was much lower than the provisional tolerable daily intake.
Eybl, Vladislav; Kotyzová, Dana; Lesetický, Ladislav; Bludovská, Monika; Koutenský, Jaroslav
2006-01-01
Curcumin (diferuoyl methane) from turmeric is a well-known biologically active compound. It has been shown to ameliorate oxidative stress and it is considered to be a potent cancer chemopreventive agent. In our previous study the antioxidative effects of curcumin in cadmium exposed animals were demonstrated. Also manganese exerts protective effects in experimental cadmium intoxication. The present study examined the ability of the manganese complex of curcumin (Mn-curcumin) and curcumin to protect against oxidative damage and changes in trace element status in cadmium-intoxicated male mice. Curcumin or Mn-curcumin were administered at equimolar doses (0.14 mmol/kg b.w.) for 3 days, by gastric gavages, dispersed in methylcellulose. One hour after the last dose of antioxidants, cadmium chloride (33 micromol/kg) was administered subcutaneously. Both curcumin and Mn-curcumin prevented the increase of hepatic lipid peroxidation -- expressed as MDA level, induced by cadmium intoxication and attenuated the Cd-induced decrease of hepatic GSH level. No change in hepatic glutathione peroxidase or catalase activities was found in Cd-exposed mice. A decreased GSH-Px activity was measured in curcumin and Mn-curcumin alone treated mice. Neither curcumin nor Mn-curcumin treatment influenced cadmium distribution in the tissues and did not correct the changes in the balance of essential elements caused by Cd-treatment. The treatment with Mn-curcumin increased the Fe and Mn content in the kidneys of both control and Cd-treated mice and Fe and Cu content in the brain of control mice. In conclusion, regarding the antioxidative action, introducing manganese into the curcumin molecule does not potentiate the studied effects of curcumin. Copyright 2006 John Wiley & Sons, Ltd.
Elemental analysis of different varieties of rice samples using XRF technique
NASA Astrophysics Data System (ADS)
Kaur, Jaspreet; Kumar, Anil
2016-05-01
Rice is most consumed staple food in the world providing over 21% of the calorie intake of world's population having high yielding capacity. Elements detected in rice are Al, As, Br, Cd, Cl, Co, Cs, Cu, Fe, Hg, K, Mg, Mn, Mo, Rb, Se and Zn by using Instrumental Neutron Activation with k0 standardization (R. Jayasekera etal,2004). Some of these trace elements are C, H, O, N, S, Ca, P, K, Na, Cl, Mn, Ti, Mg, Cu, Fe, Ni, Si and Zn are essential for growth of human physique The deficiency or excess of these elements in food is known to cause a variety of malnutrition or health disorders in the world. Every year, various varieties of rice are launched by Punjab Agriculture University, Ludhiana. The main purpose of which is to increases the yield to attain the maximum profit. But this leads to changing the elemental concentration in them, which may affect the human health according to variation in the nutrition values. The main objective is to study the presence of elemental concentration in various varieties of rice using EDXRF technique.
NASA Astrophysics Data System (ADS)
Izzati, Munifatul; Haryanti, Sri; Parman, Sarjana
2018-05-01
Gracilaria widely known as a source of essential trace elements. However this red seaweeds also has great potential for being developed into commercial products. This study examined the sequential pattern of essential trace elements composition in fresh Gracilaria verrucosa and a selection of its generated products, nemely extracted agar, Gracilaria salt and Gracilaria residue. The sample was collected from a brackish water pond, located in north part Semarang, Central Java. The collected sample was then dried under the sun, and subsequently processed into aformentioned generated products. The Gracilaria salt was obtain by soaking the sun dried Gracilaria overnight in fresh water overnight. The resulted salt solution was then boiled leaving crystal salt. Extracted agar was obtained with alkali agar extraction method. The rest of remaining material was considered as Gracilaria residue. The entire process was repeated 3 times. The compositin of trace elements was examined using ICP-MS Spectrometry. Collected data was then analyzed by ANOVA single factor. Resulting sequential pattern of its essential trace elements composition was compared. A regular table salt was used as controls. Resuts from this study revealed that Gracilaria verrucosa and its all generated products all have similarly patterned the composition of essential trace elements, where Mn>Zn>Cu>Mo. Additionally this pattern is similar to different subspecies of Gracilaria from different location and and different season. However, Gracilaria salt has distinctly different pattern of sequential essential trace elements composition compared to table salt.
Trace metal anomalies in bleached Porites coral at Meiji Reef, tropical South China Sea
NASA Astrophysics Data System (ADS)
Li, Shu; Yu, Kefu; Zhao, Jianxin; Feng, Yuexing; Chen, Tianran
2017-01-01
Coral bleaching has generally been recognized as the main reason for tropical coral reef degradation, but there are few long-term records of coral bleaching events. In this study, trace metals including chromium (Cr), copper (Cu), molybdenum (Mo), manganese (Mn), lead (Pb), tin (Sn), titanium (Ti), vanadium (V), and yttrium (Y), were analyzed in two Porites corals collected from Meiji Reef in the tropical South China Sea (SCS) to assess differences in trace metal concentrations in bleached compared with unbleached coral growth bands. Ti, V, Cr, and Mo generally showed irregular fluctuations in both corals. Bleached layers contained high concentrations of Mn, Cu, Sn, and Pb. Unbleached layers showed moderately high concentrations of Mn and Cu only. The different distribution of trace metals in Porites may be attributable to different selectivity on the basis of vital utility or toxicity. Ti, V, Cr, and Mo are discriminated against by both coral polyps and zooxanthellae, but Mn, Cu, Sn, and Pb are accumulated by zooxanthellae and only Mn and Cu are accumulated by polyps as essential elements. The marked increase in Cu, Mn, Pb, and Sn are associated with bleaching processes, including mucus secretion, tissue retraction, and zooxanthellae expulsion and occlusion. Variation in these trace elements within the coral skeleton can be used as potential tracers of short-lived bleaching events.
Elevated Manganese Concentrations in Drinking Water May Be Beneficial for Fetal Survival
Rahman, Syed Moshfiqur; Åkesson, Agneta; Kippler, Maria; Grandér, Margaretha; Hamadani, Jena Derakhshani; Streatfield, Peter Kim; Persson, Lars-Åke; Arifeen, Shams El; Vahter, Marie
2013-01-01
Background Elevated exposure to the essential element manganese (Mn) can be toxic. Manganese concentrations in ground water vary considerably, and reported associations between Mn and early-life mortality and impaired development have raised concern. We assessed the effects of drinking water Mn exposure during pregnancy upon fetal and infant survival. Methods In this population-based cohort study, we identified the outcomes of pregnancies registered between February 2002 and April 2003 in Matlab, Bangladesh. Using inductively coupled plasma mass spectrometry, we measured the concentrations of Mn and other elements in the pregnant women’s drinking water. Results A total of 1,875 women were included in the analysis of spontaneous abortions (n=158) and 1,887 women in the perinatal mortality analysis (n=70). Water Mn ranged from 3.0–6,550 µg/L (median=217 µg/L). The adjusted odds ratio (OR) for spontaneous abortion was 0.65 (95% CI 0.43–0.99) in the highest water Mn tertile (median=1,292 µg/L) as compared to the lowest tertile (median=56 µg/L). The corresponding OR for perinatal mortality was 0.69 (95% CI 0.28–1.71), which increased to 0.78 (95% CI 0.29–2.08) after adjustment for BMI and place of delivery (home/health facility; n=1,648). Conclusions Elevated water Mn concentrations during pregnancy appear protective for the fetus, particularly in undernourished women. This effect may be due to the element’s role in antioxidant defense. PMID:24066101
Investigation of Some Metals in Leaves and Leaf Extracts of Lippia javanica: Its Daily Intake
Florence, Kunsamala
2017-01-01
Consumption of plant extracts can be a source of essential elements or a route of human exposure to toxicants. Metal concentrations in leaves, leaf brew, and infusion of L. javanica collected from five sites were determined by atomic absorption spectrometry after acid and aqueous extraction. Estimated daily intakes of metals in extracts were compared with recommended dietary allowances. Total metal concentrations in leaves varied with sampling sites (p < 0.05): Mn > Fe > Cu > Cr > Pb for sites SS2–SS5. The highest metal concentrations in leaves were recorded for SS3 (Cu: 15.32 ± 4.53 and Mn: 734.99 ± 105.49), SS5 (Fe: 210.27 ± 17.17), SS2 (Pb: 3.11 ± 0.21), and SS4 (Cr: 4.40 ± 0.75 mg/kg). Leaf infusion appeared to release higher Cu and Mn concentrations in leaves across sites (Cu: 21.65; Mn: 28.01%) than leaf brew (Cu: 11.95; Mn: 19.74%). Lead was not detected in leaf extracts. Estimated dietary intakes of Cr, Cu, Fe, and Mn were below recommended dietary allowances. A 250 ml cup of leaf infusion contributed 0.30–1.18% Cu and 4.46–13.83% Mn to the recommended dietary allowances of these elements per day. Lead did not pose any potential hazard when consumed in tea beverage made from brew and infusion of leaves of L. javanica. PMID:28781598
Hansen, Angela M. K.; Bryan, Colleen E.; West, Kristi; Jensen, Brenda A.
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997–2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (µg/g wet mass fraction) for non-essential trace elements such as Cd (0.0031–58.93) and Hg (0.0062–1571.75) were much greater than essential trace elements such as Mn (0.590–17.31) and Zn (14.72–245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean. PMID:26283019
Hansen, Angela M K; Bryan, Colleen E; West, Kristi; Jensen, Brenda A
2016-01-01
The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.
Trace element contaminants in mineral fertilizers used in Iran.
Latifi, Zahra; Jalali, Mohsen
2018-05-25
The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg -1 ) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.
Erkekoglu, Pinar; Arnaud, Josiane; Rachidi, Walid; Kocer-Gumusel, Belma; Favier, Alain; Hincal, Filiz
2015-01-01
Di(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer for synthetic polymers, is known to have endocrine disruptive potential, reproductive toxicity, and induces hepatic carcinogenesis in rodents. Selenium (Se) is a component of several selenoenzymes which are essential for cellular antioxidant defense and for the functions of mammalian reproductive system. The present study was designed to investigate the effects of DEHP exposure on trace element distribution in liver, testis, and kidney tissues and plasma of Se-deficient and Se-supplemented rats. Se deficiency was produced by feeding 3-week old Sprague-Dawley rats with ≤0.05mg Se/kg diet for 5 weeks, and supplementation group were on 1mg Se/kg diet. DEHP treated groups received 1000mg/kg dose by gavage during the last 10 days of feeding period. Se, zinc (Zn), copper (Cu), iron (Fe) and manganese (Mn) levels were measured by inductively coupled plasma mass spectrometry (ICP-MS). Se supplementation caused significant increases in hepatic, renal, and testicular Se levels. With DEHP exposure, plasma Se and Zn, kidney Se, Cu and Mn levels were significantly decreased. Besides, liver Fe decreased markedly in all the DEHP-treated groups. Liver and kidney Mn levels decreased significantly in DEHP/SeD group compared to both DEHP and SeD groups. These results showed the potential of DEHP exposure and/or different Se status to modify the distribution pattern of essential trace elements in various tissues, the importance of which needs to be further evaluated. Copyright © 2014. Published by Elsevier GmbH.
[The elemental composition of teeth hard tissues depending on the state of the environment].
Suladze, N; Shishniashvili, T; Margvelashvili, V; Kobakhidze, K
2014-01-01
At present, great attention is paid to the origin of man-made micro elemental anomalies. To monitor the state of the environment and its effects on the human body, of great importance is the determination of the amount and distribution of various chemical elements in the dentin and enamel of the teeth. To determine the essential (Ca, Zn, Mn, Ni), conditionally essential (Rb, Ni, Sr) and toxic (Pb, Hg) trace elements in the mineralized tissues of the teeth and to identify the relationship between the elemental composition of the tooth structure and the state of the general and dental health depending on the state of the environment, we have examined 29 children aged 3-4 years who have carried out analysis of hard tissue of teeth (teeth used for remote medical reasons) for the maintenance of nine chemical elements. Children living in a relatively environmentally favorable conditions essential value and conditionally essential elements in the mineralized tissues of the teeth were within normal limits, and toxic elements slightly increased limits that differ from those of children living in environmentally disadvantaged areas. In particular, these essential elements were significantly reduced (except for zinc), as indicators of toxic elements - mercury and lead, increased by 12.5% and 44.5%, respectively, which is clearly reflected on the state of dental health because noted decompensated form of tooth decay. Thus, deviations in a state of general and dental health of children associated with an imbalance of macro-and microelements in the mineralized tissues of the teeth.
Gómez-Nieto, Beatriz; Gismera, Mª Jesús; Sevilla, Mª Teresa; Procopio, Jesús R
2017-03-15
A simple method based on FAAS was developed for the sequential multi-element determination of Cu, Zn, Mn, Mg and Si in beverages and food supplements with successful results. The main absorption lines for Cu, Zn and Si and secondary lines for Mn and Mg were selected to carry out the measurements. The sample introduction was performed using a flow injection system. Using the choice of the absorption line wings, the upper limit of the linear range increased up to 110mgL -1 for Mg, 200mgL -1 for Si and 13mgL -1 for Zn. The determination of the five elements was carried out, in triplicate, without the need of additional sample dilutions and/or re-measurements, using less than 3.5mL of sample to perform the complete analysis. The LODs were 0.008mgL -1 for Cu, 0.017mgL -1 for Zn, 0.011mgL -1 for Mn, 0.16mgL -1 for Si and 0.11mgL -1 for Mg. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rodríguez-Pérez, Celia; Vrhovnik, Petra; González-Alzaga, Beatriz; Fernández, Mariana F; Martin-Olmedo, Piedad; Olea, Nicolás; Fiket, Željka; Kniewald, Goran; Arrebola, Juan P
2018-05-01
There is increasing evidence linking levels of trace elements (TEs) in adipose tissue with certain chronic conditions (e.g., diabetes or obesity). The objectives of this study were to assess concentrations of a selection of nine essential and possibly-essential TEs in adipose tissue samples from an adult cohort and to explore their socio-demographic, dietary, and lifestyle determinants. Adipose tissue samples were intraoperatively collected from 226 volunteers recruited in two public hospitals from Granada province. Trace elements (Co, Cr, Cu, Fe, Mn, Mo, Se, V, and Zn) were analyzed in adipose tissue by high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS). Data were collected on socio-demographic characteristics, lifestyle, diet, and health status by face-to-face interview. Predictors of TE concentrations were assessed by using multivariable linear and logistic regression. All TEs were detected in all samples with the exception of Se (53.50%). Iron, zinc, and copper showed the highest concentrations (42.60 mg/kg, 9.80 mg/kg, and 0.68 mg/kg, respectively). Diet was the main predictor of Cr, Fe, Mo, and Se concentrations. Body mass index was negatively associated with all TEs (β coefficients = -0.018 to -0.593, p = 0.001-0.090) except for Mn and V. Age showed a borderline-significant positive correlation with Cu (β = 0.004, p = 0.089). Residence in a rural or semi-rural area was associated with increased Co, Cr, Fe, Mo, Mn, V and Zn concentrations and with β coefficients ranging from 0.196 to 0.544 (p < 0.05). Furthermore, individuals with higher educational level showed increased Cr, Co, Fe and V concentrations (β coefficients = 0.276-0.368, p = 0.022-0.071). This is the first report on the distribution of these TEs in adipose tissue and on their determinants in a human cohort and might serve as an initial step in the elucidation of their clinical relevance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pathways of inhalation exposure to manganese in children ...
Manganese (Mn) is both essential element and neurotoxicant. Exposure to Mn can occur from various sources and routes. Structural equation modeling was used to examine routes of exposure to Mn among children residing near a ferromanganese refinery in Marietta, Ohio. An inhalation pathway model to ambient air Mn was hypothesized. Data for model evaluation were obtained from participants in the Communities Actively Researching Exposure Study (CARES). These data were collected in 2009 and included levels of Mn in residential soil and dust, levels of Mn in children's hair, information on the amount of time the child spent outside, heat and air conditioning in the home and level of parent education. Hair Mn concentration was the primary endogenous variable used to assess the theoretical inhalation exposure pathways. The model indicated that household dust Mn was a significant contributor to child hair Mn (0.37). Annual ambient air Mn concentration (0.26), time children spent outside (0.24) and soil Mn (0.24) significantly contributed to the amount of Mn in household dust. These results provide a potential framework for understanding the inhalation exposure pathway for children exposed to ambient air Mn who live in proximity to an industrial emission source. The purpose of this study was to use a structural equations modeling approach combined with exposure estimates derived from air-dispersion modeling to assess potential inhalation exposure pathways for children to a
NASA Astrophysics Data System (ADS)
Mwalongo, D.; Mohammed, N. K.
2013-10-01
A habit of eating clay soil especially among pregnant women is a common practice in Tanzania. This practice known as geophagy might introduce toxic elements in the consumer's body to endanger the health of the mother and her child. Therefore it is very important to have information on the elemental composition of the eaten soil so as to assess the safety nature of the habit. In this study 100 samples of clay soil, which were reported to be originating from five regions in Tanzania and are consumed by pregnant women were analyzed to determine their levels of essential and toxic elements. The analysis was carried out using energy dispersive X-ray fluorescent technique (EDXRF) of Tanzania Atomic Energy Commission, Arusha. Essential elements Fe, Zn, Cu, Se and Mn and toxic elements As, Pb, Co, Ni, U and Th were detected in concentrations above WHO permissible limits in some of the samples. The results from this study show that the habit of eating soil is exposing the pregnant mothers and their children to metal toxicity which is detrimental to their health. Hence, further actions should be taken to discourage the habit of eating soil at all levels.
Association of plasma manganese levels with chronic renal failure.
Sánchez-González, Cristina; López-Chaves, Carlos; Gómez-Aracena, Jorge; Galindo, Pilar; Aranda, Pilar; Llopis, Juan
2015-01-01
Manganese (Mn) is an essential trace element involved in the formation of bone and in amino acid, lipid and carbohydrate metabolism. Mn excess may be neurotoxic to humans, affecting specific areas of the central nervous system. However, relatively little is known about its physiological and/or toxicological effects, and very few data are available concerning the role of Mn in chronic renal failure (CRF). This paper describes a 12-month study of the evolution of plasma Mn levels in predialysis patients with CRF and the relationship with energy and macronutrient intake. The participants in this trial were 64 patients with CRF in predialysis and 62 healthy controls. Plasma levels of creatinine, urea, uric acid, total protein and Mn were measured. The glomerular filtration rate (GFR) was calculated using the Cockcroft-Gault index. The CRF patients had higher plasma levels of creatinine, urea, uric acid and Mn and a lower GFR than the controls. Plasma Mn was positively correlated with creatinine, plasma urea and plasma uric acid and was negatively correlated with the GFR and the intake of energy and macronutrients. In conclusion, CRF in predialysis patients is associated with increases in circulating levels of Mn. Copyright © 2015 Elsevier GmbH. All rights reserved.
Assessment of total soil and plant trace elements in rice-based production systems in NE Italy
NASA Astrophysics Data System (ADS)
Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Vianello, Gilmo; Vittori, Livia; Wahsha, Mohammad; Spiandorello, Massimo
2014-05-01
Macro- and micronutrients concentrations, and PTEs contents in soils and plants (rice) from the rice district in the Venetian territory (NE Italy) have been determined by ICP-MS spectrometry, with the following aims: - to determine the background levels of macro- and microelements in the study area; - to assess possible contamination of soils and plants; - to calculate the Translocation Factor (TF) of metals from soil to plant, and the possible hazard for human health. Four rice plots with different rotation systems were investigated from seedling time to harvesting; sampling of soils (0-30cm) and plants was carried out 4 times during growing season (three replicates). Rice plants were separated into roots, stems, leaves and grains, and then oven-dried. Chemical and physical analyses were carried out at the Soil Science Lab of the University of Bologna and Venice, respectively. The results obtained point to a land with moderate soil contamination by trace elements (namely Li, Sn, Tl, Sr, Ti, Fe). Heavy metal (Sb, As, Be, Cd, Co, Cr, Ni, Pb, Cu, V, Zn ) concentrations in soils are below the threshold indicated by the Italian legislation (DM 152/2006). Cd, Sn, and Ti contents in soils are positively correlated with soil pH, while As, Fe, Li, Ti, Tl and Zn are negatively correlated with organic matter content. With the exception of Strontium, soil metal contents are always correlated between variable couples. HMs in plants vary according to the sampling season, texture and moisture, and soil pH. Most non-essential trace elements are accumulated in rice roots and, only in cases of essential micronutrients, in leaves. Therefore, rice can be assumed as an accumulator plant of As, Pb, Cr, Ba, and Ti, whereas it is as an indicator plant for Cu, Fe, Ni, Mn and Zn. The results of multiple linear regression analysis showed that soil pH has a larger effect on Ba, Cr, Cu, Fe, Mn, Ni, Ti and Zn concentrations in grain than other soil parameters. The average translocation of metals from soil to root was found to be >1, irrespective of the essential/not essential function; conversely, only essential elements ((Cu, Fe, Mn, Zn) are translocated rather easily from roots to leaves (TF ≤1) via phloem (TF< <1), and very little translocated to grains (TF< <1). Therefore, it is suggested that rice could be useful in contaminated-sites restoration projects by the phytostabilization technique. Moreover, there is very limited hazard for human population consuming rice crops. Key Words: Macro- and micronutrients concentrations, heavy metals, trace elements, rice plant, Italy, accumulator plant, indicator plant * Corresponding author. Tel.: +39 3891356251 E-mail address: mandy.nadimi@gmail.com
Elemental analysis of different varieties of rice samples using XRF technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaur, Jaspreet, E-mail: gillpreet05051812@gmail.com; Kumar, Anil, E-mail: gilljaspreet06@gmail.com
Rice is most consumed staple food in the world providing over 21% of the calorie intake of world’s population having high yielding capacity. Elements detected in rice are Al, As, Br, Cd, Cl, Co, Cs, Cu, Fe, Hg, K, Mg, Mn, Mo, Rb, Se and Zn by using Instrumental Neutron Activation with k0 standardization (R. Jayasekera etal,2004). Some of these trace elements are C, H, O, N, S, Ca, P, K, Na, Cl, Mn, Ti, Mg, Cu, Fe, Ni, Si and Zn are essential for growth of human physique The deficiency or excess of these elements in food is knownmore » to cause a variety of malnutrition or health disorders in the world. Every year, various varieties of rice are launched by Punjab Agriculture University, Ludhiana. The main purpose of which is to increases the yield to attain the maximum profit. But this leads to changing the elemental concentration in them, which may affect the human health according to variation in the nutrition values. The main objective is to study the presence of elemental concentration in various varieties of rice using EDXRF technique.« less
Lu, Shao-You; Zhang, Hui-Min; Sojinu, Samuel O; Liu, Gui-Hua; Zhang, Jian-Qing; Ni, Hong-Gang
2015-01-01
The levels of seven essential trace elements (Mn, Co, Ni, Cu, Zn, Se, and Mo) and six non-essential trace elements (Cr, As, Cd, Sb, Hg, and Pb) in a total of 89 drinking water samples collected in Shenzhen, China were determined using inductively coupled plasma mass spectrometry (ICP-MS) in the present study. Both the essential and non-essential trace elements were frequently detectable in the different kinds of drinking waters assessed. Remarkable temporal and spatial variations were observed among most of the trace elements in the tap water collected from two tap water treatment plants. Meanwhile, potential human health risk from these non-essential trace elements in the drinking water for local residents was also assessed. The median values of cancer risks associated with exposure to carcinogenic metals via drinking water consumption were estimated to be 6.1 × 10(-7), 2.1 × 10(-8), and 2.5 × 10(-7) for As, Cd, and Cr, respectively; the median values of incremental lifetime for non-cancer risks were estimated to be 6.1 × 10(-6), 4.4 × 10(-5), and 2.2 × 10(-5) for Hg, Pb, and Sb, respectively. The median value of total incremental lifetime health risk induced by the six non-essential trace elements for the population was 3.5 × 10(-5), indicating that the potential health risks from non-carcinogenic trace elements in drinking water also require some attention. Sensitivity analysis indicates that the most important factor for health risk assessment should be the levels of heavy metal in drinking water.
Fantuz, F; Ferraro, S; Todini, L; Mariani, P; Piloni, R; Salimei, E
2013-11-01
The aim of this trial was to study the concentration of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), selenium (Se), cobalt (Co) and iodine (I) in milk and blood serum of lactating donkeys, taking into account the effects of lactation stage and dietary supplementation with trace elements. During a 3-month period, 16 clinically healthy lactating donkeys (Martina-Franca-derived population), randomly divided into two homogeneous groups (control (CTL) and trace elements (TE)), were used to provide milk and blood samples at 2-week intervals. Donkeys in both groups had continuous access to meadow hay and were fed 2.5 kg of mixed feed daily, divided into two meals. The mixed feed for the TE group had the same ingredients as the CTL, but was supplemented with a commercial premix providing 163 mg Zn, 185 mg Fe, 36 mg Cu, 216 mg Mn, 0.67 mg Se, 2.78 mg Co and 3.20 mg I/kg mixed feed. The concentrations of Zn, Fe, Cu, Mn, Se, Co and I were measured in feeds, milk and blood serum by inductively coupled plasma-MS. Data were processed by ANOVA for repeated measures. The milk concentrations of all the investigated elements were not significantly affected by the dietary supplementation with TE. Serum concentrations of Zn, Fe, Cu Mn and Se were not affected by dietary treatment, but TE-supplemented donkeys showed significantly higher concentrations of serum Co (1.34 v. 0.69 μg/l) and I (24.42 v. 21.43 μg/l) than unsupplemented donkeys. The effect of lactation stage was significant for all the investigated elements in milk and blood serum, except for serum manganese. A clear negative trend during lactation was observed for milk Cu and Se concentrations (-38%), whereas that of Mn tended to increase. The serum Cu concentration was generally constant and that of Co tended to increase. If compared with data reported in the literature for human milk, donkey milk showed similarities for Zn, Mn, Co and I. Furthermore, this study indicated that, in the current experimental conditions, the mineral profile of donkey milk was not dependent on dietary TE supply.
Guan, Huai; Wang, Man; Li, Xiaowei; Piao, Fengyuan; Li, Qiujuan; Xu, Lei; Kitamura, Fumihiko; Yokoyama, Kazuhito
2014-02-01
Manganese (Mn) is an essential element and a potential toxicant for developing organism. Deficiency and excess of it were both deleterious to fetal growth in experimental animals. However, literature on relationship between Mn status and birth outcome in humans is sparse. Mn concentrations were measured in mother whole blood (MWB) and umbilical cord blood (UCB) in 125 pairs of mother-infant; birth size was examined and relationship between them was analysed. Potentially environmental factors influencing Mn loads in maternal and fetal organisms were investigated through epidemiological method. Mn level in UCB was significantly higher than that in MWB (mean value: 54.98 vs. 78.75 µg/L), and a significant positive correlation was shown between them. There was a quadratic curvilinear (inverted U-shaped curve) relationship between MWB Mn and birth size, and between UCB Mn and birth size. Both univariate analysis and multiple linear regression analysis showed that exposure to harmful occupational factors during gestation remarkably increased maternal and fetal Mn levels. Living close to major transportation routes (<500 m) also increased the MWB Mn levels. Our results suggested that lower or higher Mn level in maternal and umbilical blood may induce adverse effect on birth size in humans. In addition, increased levels of Mn in MWB or UCB may be associated with exposure to some environmental hazard factors.
Crock, J.G.; Severson, R.C.
1980-01-01
Attaining acceptable precision in extractable element determinations is more difficult than in total element determinations. In total element determinations, dissolution of the sample is qualitatively checked by the clarity of the solution and the absence of residues. These criteria cannot be used for extracts. Possibilities for error are introduced in virtually every step in soil extractions. Therefore, the use of reference materials whose homogeneity and element content are reasonably well known is essential for determination of extractable elements. In this report, estimates of homogeneity and element content are presented for four reference samples. Bulk samples of about 100 kilograms of each sample were ground to pass an 80-mesh sieve. The samples were homogenized and split using a Jones-type splitter. Fourteen splits of each reference sample were analyzed for total content of Ca, Co, Cu, Fe, K, Mg, Mn, Na, and Zn; DTPA-extractable Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn; exchangeable Ca, Mg, K, and Na; cation exchange capacity water-saturation-extractable Ca, Mg, K, Na, C1, and SO4; soil pH; and hot-water-extractable boron. Error measured between splits was small, indicating that the samples were homogenized adequately and that the laboratory procedure provided reproducible results.
Mn(II,III) oxidation and MnO 2 mineralization by an expressed bacterial multicopper oxidase
Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung -Woo; ...
2013-07-01
Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of themore » enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. Lastly, with the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.« less
Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase
NASA Astrophysics Data System (ADS)
Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.
2013-07-01
Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs.
Mn(II,III) oxidation and MnO2 mineralization by an expressed bacterial multicopper oxidase
Butterfield, Cristina N.; Soldatova, Alexandra V.; Lee, Sung-Woo; Spiro, Thomas G.; Tebo, Bradley M.
2013-01-01
Reactive Mn(IV) oxide minerals are ubiquitous in the environment and control the bioavailability and distribution of many toxic and essential elements and organic compounds. Their formation is thought to be dependent on microbial enzymes, because spontaneous Mn(II) to Mn(IV) oxidation is slow. Several species of marine Bacillus spores oxidize Mn(II) on their exosporium, the outermost layer of the spore, encrusting them with Mn(IV) oxides. Molecular studies have identified the mnx (Mn oxidation) genes, including mnxG, encoding a putative multicopper oxidase (MCO), as responsible for this two-electron oxidation, a surprising finding because MCOs only catalyze single-electron transfer reactions. Characterization of the enzymatic mechanism has been hindered by the lack of purified protein. By purifying active protein from the mnxDEFG expression construct, we found that the resulting enzyme is a blue (absorption maximum 590 nm) complex containing MnxE, MnxF, and MnxG proteins. Further, by analyzing the Mn(II)- and (III)-oxidizing activity in the presence of a Mn(III) chelator, pyrophosphate, we found that the complex facilitates both electron transfers from Mn(II) to Mn(III) and from Mn(III) to Mn(IV). X-ray absorption spectroscopy of the Mn mineral product confirmed its similarity to Mn(IV) oxides generated by whole spores. Our results demonstrate that Mn oxidation from soluble Mn(II) to Mn(IV) oxides is a two-step reaction catalyzed by an MCO-containing complex. With the purification of active Mn oxidase, we will be able to uncover its mechanism, broadening our understanding of Mn mineral formation and the bioinorganic capabilities of MCOs. PMID:23818588
2012-01-01
Background Manganese (Mn) is an essential element in humans but its effect on semen quality is unclear. This study therefore aimed to assess the effects of Mn on semen quality in healthy men with no occupational exposure to Mn. Methods Semen samples were obtained from healthy Chinese men 20–59 years old who were recruited from six provinces in China. Individuals with urogenital tract diseases, tuberculosis, or occupational exposure to heavy metals were excluded. A questionnaire survey was conducted, and the external genitalia, semen quality, and serum Mn levels were examined. Results A total of 1,179 volunteers were enrolled in this study. The median serum Mn concentration was 8.2 μg/L (25th percentile (P25)=3.7 μg/L, P75=16.2μg/L). After adjusted area (six provinces), abstinence interval, season, registered residence, age of subjects, education level, income, smoking, and drinking, the risk of teratospermia was increased at serum Mn concentrations >19.40 μg/L (P80) group, with an adjusted odds ratio of 2.27 (95% confidence interval: 1.18–4.37). Conclusion High serum Mn levels appeared to have harmful effects on sperm morphology and motility among healthy men with no occupational exposure to Mn. PMID:23107312
Ebrahimzadeh, Mohammad Ali; Eslami, Shahram; Nabavi, Seyed Fazel; Nabavi, Seyed Mohammad
2011-12-01
The concentrations of Cr, Cu, Fe, Mn, Ni, Pb, Cd, and Zn were determined in the brain, heart, liver, gill, gonad, spleen, kidney, and red and white muscles of Liza saliens (leaping mullet). Trace element levels in fish samples were analyzed by flame atomic absorption spectrometry. Among the non-essential metals, the levels of Ni and Pb in the tissues were higher than limits for fish proposed by FAO/WHO, EU, and TFC. Generally, the levels of the non-essential metals were much higher than those of manganese in the red and white muscles. Fe distribution pattern in tissues was in order of spleen > liver > heart > gill > brain > kidney > gonad > red muscle > white muscle. Red muscle was not within the safe limits for human consumption because non-essential metal (Ni, Pb) contents were higher than standard limits.
Mahlangeni, Nomfundo T; Moodley, Roshila; Jonnalagadda, Sreekantha B
2016-01-01
Laportea peduncularis and Urtica dioica, which are popularly known as "Nettles" belong to the plant family Urticaceae and are consumed as green vegetables or used for their medicinal benefit in many countries in Africa, Asia, Europe and America. This study aimed at investigating the effect of cooking on the macronutrient, anti-nutrient and elemental composition of L. peduncularis and U. dioica leaves. The results showed a decrease in the crude fat, ash, carbohydrate and vitamin C content with cooking, but an increase in the vitamin E content. The anti-nutrient content (cyanides, phytates and saponins) increased slightly with cooking, while the oxalate content has decreased. The concentration of essential elements in cooked L. peduncularis leaves were found to be in decreasing order of Ca > Mg > Fe > Mn > Zn > Cu > Cr > Ni > Co. Both raw and cooked leaves of nettles were found to be rich sources of macronutrients and essential elements and may be used as alternatives to commercially available nutrient supplements. Statistical analyses (principal component analysis and correlations) indicated that certain elements taken up by these plants were from common sources. Both positive and negative relationships between nutrients, anti-nutrients and elements were observed in the plant leaves.
Trace elements in fish from Taihu Lake, China: levels, associated risks, and trophic transfer.
Hao, Ying; Chen, Liang; Zhang, Xiaolan; Zhang, Dongping; Zhang, Xinyu; Yu, Yingxin; Fu, Jiamo
2013-04-01
Concentrations of eight trace elements [iron (Fe), manganese (Mn), zinc (Zn), chromium (Cr), mercury (Hg), cadmium (Cd), lead (Pb), and arsenic (As)] were measured in a total of 198 samples covering 24 fish species collected from Taihu Lake, China, in September 2009. The trace elements were detected in all samples, and the total mean concentrations ranged from 18.2 to 215.8 μg/g dw (dry weight). The concentrations of the trace elements followed the sequence of Zn>Fe>Mn>Cr>As>Hg>Pb>Cd. The measured trace element concentrations in fish from Taihu Lake were similar to or lower than the reported values in fish around the world. The metal pollution index was used to compare the total trace element accumulation levels among various species. Toxabramis swinhonis (1.606) accumulated the highest level of the total trace elements, and Saurogobio dabryi (0.315) contained the lowest. The concentrations of human non-essential trace elements (Hg, Cd, Pb, and As) were lower than the allowable maximum levels in fish in China and the European Union. The relationships between the trace element concentrations and the δ(15)N values of fish species were used to investigate the trophic transfer potential of the trace elements. Of the trace elements, Hg might be biomagnified through the food chain in Taihu Lake if the significant level of p-value was set at 0.1. No biomagnification and biodilution were observed for other trace elements. Copyright © 2012 Elsevier Inc. All rights reserved.
Gandhi, Deepa; Sivanesan, Saravanadevi; Kannan, Krishnamurthi
2018-06-01
Manganese (Mn) is an essential trace element required for many physiological functions including proper biochemical and cellular functioning of the central nervous system (CNS). However, exposure to excess level of Mn through occupational settings or from environmental sources has been associated with neurotoxicity. The cellular and molecular mechanism of Mn-induced neurotoxicity remains unclear. In the current study, we investigated the effects of 30-day exposure to a sub-lethal concentration of Mn (100 μM) in human neuroblastoma cells (SH-SY5Y) using transcriptomic approach. Microarray analysis revealed differential expression of 1057 transcripts in Mn-exposed SH-SY5Y cells as compared to control cells. Gene functional annotation cluster analysis exhibited that the differentially expressed genes were associated with several biological pathways. Specifically, genes involved in neuronal pathways including neuron differentiation and development, regulation of neurogenesis, synaptic transmission, and neuronal cell death (apoptosis) were found to be significantly altered. KEGG pathway analysis showed upregulation of p53 signaling pathways and neuroactive ligand-receptor interaction pathways, and downregulation of neurotrophin signaling pathway. On the basis of the gene expression profile, possible molecular mechanisms underlying Mn-induced neuronal toxicity were predicted.
Liang, Guiqiang; Zhang, Li'e; Ma, Shuyan; Lv, Yingnan; Qin, Huiyan; Huang, Xiaowei; Qing, Li; Li, Qin; Chen, Kangcheng; Xiong, Feng; Ma, Yifei; Nong, Jie; Yang, Xiaobo; Zou, Yunfeng
2016-06-01
Manganese (Mn) is an essential trace element to humans. However, excessive Mn causes cognitive impairment resulting from injury to the central nervous system within the hippocampus. No ideal biomarker is currently available for evaluating Mn exposure and associated neurotoxicity in the body. Hence, this study used Mn levels in the serum (MnS), teeth (MnT), and hair (MnH) as biomarkers for evaluating the association between Mn exposure and cognitive impairment in Mn-treated rats. A total of 32 male Sprague-Dawley rats were randomly divided into four groups, received 0, 5, 10, and 20 mg/(kg day) of MnCl2·4H2O for 5 days a week for 18 weeks, respectively. Lifetime Mn cumulative dose (LMCD) was used to evaluate external Mn exposure. Hippocampus, serum, teeth, and hair specimens were collected from the rats for Mn determination by graphite furnace atomic absorption spectrometry. Learning and memory functions were assessed using the Morris water maze test. Results showed that chronic Mn exposure increased the hippocampus (MnHip), MnS, MnT, and MnH levels, as well as impaired learning and memory function in rats. MnHip, MnT, and MnH levels were positively correlated with LMCD (r = 0.759, r = 0.925, and r = 0.908, respectively; p < 0.05), escape latency (r = 0.862, r = 0.716, and r = 0.814, respectively; p < 0.05), and the number of platform crossings (r = -0.734, r = -0.514, and r = -0.566, respectively; p < 0.05). No association was observed between MnS levels and the number of platform crossings (r = -0.286, p > 0.05). Thus, MnT and MnH detected long-term low-dose Mn exposure. These parameters can be reliable biomarkers for Mn exposure and associated neurotoxicity in Mn-treated rats.
Zhang, Guoying; Zhao, Yanxin; Liu, Fengjun; Ling, Jianya; Lin, Jianqiang; Zhang, Changkai
2013-01-01
In this study, a total of 20 elements (essential, non-essential and toxic): lithium (Li), sodium (Na), potassium (K), gallium (Ga), magnesium (Mg), zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), vanadium (V), chromium (Cr), nickel (Ni), cobalt (Co), molybdenum (Mo), selenium (Se), barium (Ba), tin (Sn), arsenic (As), lead (Pb) cadmium (Cd) and mercury (Hg) in natural and cultured Cordyceps kyushuensis have been determined by means of inductively coupled plasma mass spectrometry (ICP-MS). Cultured stroma, natural stroma and natural worm were digested by microwave-assisted method before analysis. The proposed ICP-MS method was validated by analyzing a certified reference material (CRM) GBW10015 (spinach). The results of one-way analysis of variance (ANOVA) revealed that the element concentrations in the three kinds of samples were significantly different (p<0.05). Except for Mg, Zn, Cu, the values of other elemental contents were the highest in the stroma of natural C. kyushuensis. In comparison with the worm, the concentrations of determined elements in wild stroma were higher. The remarkable difference of elemental contents between cultured and natural stroma may be caused by distinct growing environment. This finding highlighted the usefulness of ICP-MS elemental analysis and enhanced the value of C. kyushuensis as a candidate for nourishing food based on its composition. Copyright © 2012 Elsevier B.V. All rights reserved.
Bhasmas: unique ayurvedic metallic-herbal preparations, chemical characterization.
Kumar, A; Nair, A G C; Reddy, A V R; Garg, A N
2006-03-01
Bhasmas are unique Ayurvedic metallic preparations with herbal juices/fruits, known in the Indian subcontinent since the seventh century BC and widely recommended for treatment of a variety of chronic ailments. Twenty bhasmas based on calcium, iron, zinc, mercury, silver, potassium, arsenic, copper, tin, and gemstones were analyzed for up to 18 elements by instrumental neutron activation analysis, including their C, H, N, and S contents. In addition to the major constituent element found at % level, several other essential elements such as Na, K, Ca, Mg, V, Mn, Fe, Cu, and Zn have also been found in microg/g amounts and ultratrace (ng/g) amounts of Au and Co. These seem to remain chelated with organic ligands derived from medicinal herbs. The bhasmas are biologically produced nanoparticles and are taken along with milk, butter, honey, or ghee (a preparation from milk); thus, this makes these elements easily assimilable, eliminating their harmful effects and enhancing their biocompatibility. Siddha Makaradhwaja, a mercury preparation is found to be stoichiometrically HgS without any traces of any other element. Similarly, Swet Parpati is stoichiometrically KNO3 but is found to have Mn, Cu, Zn, Na, P, and Cl as well. An attempt has been made to correlate the metallic contents with their medicinal importance. Na and K, the two electrolytic elements, seem to be well correlated, although K/Na varies in a wide range from 0.06 to 95, with specifically low values for Ca-, Fe-, and Zn-based bhasmas. K/P also varies in a wide range from 0.23 to 12, although for most bhasmas (n = 12), it is 2.3 +/- 1.2. Further, Fe/Mn is linearly correlated (r = 0.96) with Fe in nine noniron bhasmas.
Recycling of trace elements required for humans in CELSS.
Ashida, A
1994-11-01
Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a possibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.
Recycling of trace elements required for humans in CELSS
NASA Astrophysics Data System (ADS)
Ashida, A.
1994-11-01
Recycle of complete nourishment necessary for human should be constructed in CELSS (Controlled Ecological Life Support Systems). Essential elements necessary for human support are categorized as major elements, semi-major elements and trace elements. Recently, trace elements have been identified from considerations of local diseases, food additive problems, pollution problems and adult diseases, consisting of Fe, Zn, Cu, Se, Co, F, Si, Mn, Cr, I, As, Mo, Ni, V, Sn, Li, Br, Cd, Pb, B. A review of the biogeochemical history of the earth's biosphere and the physiological nature of humans and plants explains some of the requirements. A possible route for intake of trace elements is considered that trace elements are dissolved in some chemical form in water, absorbed by plants through their roots and then transfered to human as foods. There may be a posibility that living things absorb some trace elements from atmosphere. Management and recycling of trace elements in CELSS is discussed.
Case report: a metabolic disorder presenting as pediatric manganism.
Sahni, Vanita; Léger, Yves; Panaro, Linda; Allen, Mark; Giffin, Scott; Fury, Diane; Hamm, Nadine
2007-12-01
Manganese is a trace element, essential for physiologic functioning but neurotoxic at high doses. Common exposure sources include dietary intake as well as drinking water in some regions; toxicity is most often associated with inhalation exposures in occupational settings. In this article we describe the investigation of a pediatric case of manganism using both clinical and environmental assessment methods. A previously healthy 6-year-old child presented with severe Mn neurotoxicity, iron deficiency, and elevated cobalt levels. Immediate and selected extended family members had elevated plasma Mn but remained asymptomatic. An exposure assessment identified seasonal ingestion exposures to Mn at the family's summer cottage; these were common to the four immediate family members. Well water used for drinking and cooking exceeded recommended guidelines, and foods high in Mn predominated in their diet. No inhalation exposures were identified. Only pica was unique to the patient. The combined evidence of the environmental assessment and biomonitoring of blood Mn levels supported a seasonal ingestion exposure source; this alone was insufficient to explain the toxicity because the patient's 7-year-old sibling was asymptomatic with almost identical exposures (except pica). A metabolic disorder involving divalent metals (Mn, Fe, and Co) interacting with environmental exposures is the most likely explanation. This case report adds to the emerging body of evidence linking neurologic effects to ingestion Mn exposure.
Anal, Jasha Momo H.
2014-01-01
Cymbopogon citratus (DC.) Stapf commonly known as lemon grass is used extensively as green tea and even as herbal tea ingredient across the world. Plants have the ability to uptake metals as nutrient from the soil and its environment which are so essential for their physiological and biochemical growth. Concentrations of these twelve trace elements, namely, Mg, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Mo, As, Cd, and Pb, are analysed by graphite furnace-atomic absorption spectroscopy (GF-AAS) and are compared with the permissible limits of FAO/WHO, ICMR, and NIH, USA, which are found to be within permissible limits. Toxic metals like As, Cd, and Pb, analysed are within the tolerable daily diet limit and at low concentration. PMID:25525430
Ternes, Ana Paula Lausmann; Zemolin, Ana Paula; da Cruz, Litiele Cezar; da Silva, Gustavo Felipe; Saidelles, Ana Paula Fleig; de Paula, Mariane Trindade; Wagner, Caroline; Golombieski, Ronaldo Medeiros; Flores, Érico Marlon de Moraes; Picoloto, Rochele Sogari; Pereira, Antônio Batista; Franco, Jeferson Luis; Posser, Thaís
2014-01-01
Embryonic animals are especially susceptible to metal exposure. Manganese (Mn) is an essential element, but in excess it can induce toxicity. In this study we used Drosophila melanogaster as an embryonic model to investigate biochemical and behavioral alterations due to Mn exposure. Flies were treated with standard medium supplemented with MnCl2 at 0.1 mM, 0.5 mM or 1 mM from the egg to the adult stage. At 0.5 mM and 1 mM Mn, newly ecloded flies showed significantly enhanced locomotor activity when assessed by negative geotaxis behavior. In addition, a significant increase in Mn levels (p < 0.0001) was observed, while Ca, Fe, Cu, Zn and S levels were significantly decreased. A significant drop in cell viability occurred in flies exposed to 1 mM Mn. There was also an induction of reactive oxygen species at 0.5 mM and 1 mM Mn (p < 0.05). At 1 mM, Mn increased Catalase (p < 0.005), Superoxide Dismutase (p < 0.005) and Hsp83 (p < 0.0001) mRNA expression, without altering Catalase or Superoxide Dismutase activity; the activity of Thioredoxin reductase and Glutatione-S-transferase enzymes was increased. Mn treatment did not alter ERK or JNK1/2 phosphorylation, but at 1 mM caused an inhibition of p38MAPK phosphorylation. Together these data suggest mechanisms of adaptation in the fly response to Mn exposure in embryonic life. PMID:26417337
Amos-Kroohs, Robyn M; Davenport, Laurie L; Atanasova, Nina; Abdulla, Zuhair I; Skelton, Matthew R; Vorhees, Charles V; Williams, Michael T
Manganese (Mn) is an essential element but neurotoxic at higher exposure levels. The effects of Mn overexposure (MnOE) on hippocampal and striatal-dependent learning and memory in rats were tested in combination with iron deficiency (FeD) and developmental stress that often co-occur with MnOE. Moderate FeD affects up to 15% of U.S. children and developmental stress is common in lower socio-economic areas where MnOE occurs. Pregnant Sprague-Dawley rats and their litters were housed in cages with or without (barren cage (BAR)) standard bedding from embryonic day (E)7 to postnatal day (P)28. Dams were fed a 90% FeD or iron sufficient (FeS) diet from E15-P28. Within each litter, separate offspring were treated with 100mg/kg Mn (MnOE) or vehicle (VEH) by gavage on alternate days from P4-28. Offspring were tested as adults in the Morris and Cincinnati water mazes. FeD and developmental stress interactively impaired spatial learning in the Morris water maze. Developmental stress and MnOE impaired learning and memory in both mazes. MnOE resulted in reduced CA1 hippocampal long-term potentiation (LTP) and increased levels of α-synuclein. Preweaning MnOE resulted in cognitive deficits on multiple domains of learning and memory accompanied by impaired LTP and α-synuclein changes, effects worsened by developmental stress. Copyright © 2016 Elsevier Inc. All rights reserved.
Ogawa, Teruo; Bao, Ding Hui; Katoh, Hirokazu; Shibata, Mari; Pakrasi, Himadri B; Bhattacharyya-Pakrasi, Maitrayee
2002-08-09
Elemental manganese is essential for the production of molecular oxygen by cyanobacteria, plants, and algae. In the cyanobacterium Synechocystis sp. PCC 6803, transcription of the mntCAB operon, encoding a high affinity Mn transporter, occurs under Mn starvation (nm Mn) conditions but not in Mn-sufficient (microm Mn) growth medium. Using a strain in which the promoter of this operon directs the transcription of the luxAB reporter genes, we determined that inactivation of the slr0640 gene, which encodes a histidine kinase sensor protein component of a two-component signal transduction system, resulted in constitutive high levels of lux luminescence. Systematic targeted inactivation mutagenesis also identified slr1837 as the gene encoding the corresponding response regulator protein. We have named these two genes manS (manganese-sensor) and manR (manganese-regulator), respectively. A polyhistidine-tagged form of the ManS protein was localized in the Synechocystis 6803 cell membrane. Directed replacement of the conserved catalytic His-205 residue of this protein by Leu abolished its activity, although the mutated protein was present in cyanobacterial membrane. This mutant also showed suboptimal rates of Mn uptake under either Mn-starved or Mn-sufficient growth condition. These data suggest that the ManS/ManR two-component system plays a central role in the homeostasis of manganese in Synechocystis 6803 cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, X.I.; Aboal, J.R.; Fernandez, J.A.
2008-11-15
In the present study, we determined the concentrations of Cu, Fe, Mn, and Zn in soil and several trophic compartments at a total of 16 sampling stations. The trophic compartments studied were primary producers, represented by two species of terrestrial mosses (Pseudoescleropodium purum and Hypnum cupressiforme) and oak trees (Quercus robur or Q. pyrenaica); primary consumers, represented by the wood mouse (Apodemus sylvaticus) and the yellow necked mouse (A. flavicollis); secondary consumers, represented by the shrew (Sorex granarius); and finally, detritivores, represented by slugs (Arion ater). Thirteen of the sampling stations were located in mature oak woodlands (Quercus sp.); twomore » of the sampling stations were located in the area surrounding a restored lignite mine dump, and the other in an ultrabasic area. The analytical determinations revealed a lack of significant correlations among trophic compartments, possibly caused by effective regulation of metals by organisms and/or spatial variation in availability of metals from soil or food. Furthermore, the only element that showed a clear pattern of biomagnification was Cu; as for the other elements, there was always some divergence from such a pattern. Finally, the patterns of bioaccumulation in contaminated and woodland sampling stations were very similar, although there was enrichment of the concentrations of Cu, Mn, and Zn in the mice viscera, which, except for Mn, were related to higher edaphic concentrations.« less
Mn-Fe base and Mn-Cr-Fe base austenitic alloys
Brager, Howard R.; Garner, Francis A.
1987-09-01
Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.
Mn-Fe base and Mn-Cr-Fe base austenitic alloys
Brager, Howard R.; Garner, Francis A.
1987-01-01
Manganese-iron base and manganese-chromium-iron base austenitic alloys designed to have resistance to neutron irradiation induced swelling and low activation have the following compositions (in weight percent): 20 to 40 Mn; up to about 15 Cr; about 0.4 to about 3.0 Si; an austenite stabilizing element selected from C and N, alone or in combination with each other, and in an amount effective to substantially stabilize the austenite phase, but less than about 0.7 C, and less than about 0.3 N; up to about 2.5 V; up to about 0.1 P; up to about 0.01 B; up to about 3.0 Al; up to about 0.5 Ni; up to about 2.0 W; up to about 1.0 Ti; up to about 1.0 Ta; and with the remainder of the alloy being essentially iron.
Mn-Site Doped CaMnO 3: Creation of the CMR Effect
NASA Astrophysics Data System (ADS)
Raveau, B.; Zhao, Y. M.; Martin, C.; Hervieu, M.; Maignan, A.
2000-01-01
The doping of CaMnO3-δ at Mn sites with pentavalent and hexavalent d0 elements - Nb, Ta, W, Mo - modifies the resistivity behavior of this phase, extending the insulating domain and increasing significantly the resistivity at low temperature as the doping element content increases. The higher valency of the doping element introduces electrons; i.e., Mn3+ species are formed in the Mn4+ matrix. Double exchange phenomena then allow ferromagnetic interactions, by application of external magnetic fields which are similar to those observed for electron-doped manganites Ca1-xLnxMnO3 (x≤0.15), but with smaller magnetic moments. Consequently, this Mn site doping induces CMR properties with resistivity ratios considerably larger than those for CaMnO3-δ.
Elemental composition of four farmed fish produced in Portugal.
Lourenço, Helena M; Afonso, Cláudia; Anacleto, Patrícia; Martins, Maria F; Nunes, Maria L; Lino, Ana R
2012-11-01
Farmed gilthead sea bream (Sparus aurata), European sea bass (Dicentrarchus labrax), rainbow trout (Oncorhynchus mykiss) and turbot (Psetta maxima) produced in Portugal were analysed in order to characterize their elemental composition. Atomic absorption (flame and cold vapour) and molecular absorption spectrometry techniques were used to determine all the studied elements. Similar patterns of macro, trace and ultra trace elements were observed for all fish species. The main elements were potassium (K), sodium (Na), phosphorus (P), magnesium (Mg) and calcium (Ca), followed by zinc (Zn), iron (Fe), copper (Cu), chromium (Cr), manganese (Mn) and nickel (Ni). Cadmium (Cd), mercury (Hg) and lead (Pb) concentrations, obtained in this study, allow concluding that these species do not present a hazard for human consumption. In addition, they contain almost all essential elements at concentrations sufficient to suit the dietary reference intake. Nevertheless, P. maxima nutritious trace element content is relatively low compared with the other three species.
NASA Astrophysics Data System (ADS)
Đinović-Stojanović, J.; Nikolić, D.; Janković, S.; Vranić, D.; Milijašević, M.; Babić-Milijašević, J.
2017-09-01
This study aimed to provide information on levels of Mn and Se in four different pork cuts (loin, neck, hind leg and shoulder) commercially available on the Serbian market, with a view to providing information on dietary intakes of metals associated with the consumption of these meat cuts. In total, for 50 pork cuts, the levels of Mn and Se were determined by inductively-coupled plasma mass spectrometry (ICP-MS). The following ranges of Mn and Se were found (mg kg-1) in loin 0.055-0.130 and 0.074-0.365, in neck 0.014-0.365 and 0.045-0.196, in hind leg 0.032-0.099 and 0.066-0.123, in shoulder 0.012-0.290 and 0.027-0.515, respectively. The highest mean levels were obtained for Mn (0.124 mg kg-1) in shoulder and for Se (0.209 mg kg-1) in loin. The Estimated Daily Intake (EDI) of essential elements through consumption of 114.1 g mammalian meat/person/day was below 1% of Adequate Intake (AI) for Mn and between 18.9% and 43.2% of Recommended Dietary Allowance (RDA) for Se.
Lu, Shaoyou; Ren, Lu; Fang, Jianzhang; Ji, Jiajia; Liu, Guihua; Zhang, Jianqing; Zhang, Huimin; Luo, Ruorong; Lin, Kai; Fan, Ruifang
2016-05-01
Many trace heavy elements are carcinogenic and increase the incidence of cancer. However, a comprehensive study of the correlation between multiple trace elements and DNA oxidative damage is still lacking. The aim of this study is to investigate the relationships between the body burden of multiple trace elements and DNA oxidative stress in college students in Guangzhou, China. Seventeen trace elements in urine samples were determined by inductively coupled plasma-mass spectrometry (ICP-MS). Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), a biomarker of DNA oxidative stress, was also measured using liquid chromatography tandem mass spectrometer (LC-MS/MS). The concentrations of six essential elements including manganese (Mn), copper (Cu), nickel (Ni), selenium (Se), strontium (Sr), and molybdenum (Mo), and five non-essential elements including arsenic (As), cadmium (Cd), aluminum (Al), stibium (Sb), and thallium (Tl), were found to be significantly correlated with urinary 8-OHdG levels. Moreover, urinary levels of Ni, Se, Mo, As, Sr, and Tl were strongly significantly correlated with 8-OHdG (P < 0.01) concentration. Environmental exposure and dietary intake of these trace elements may play important roles in DNA oxidative damage in the population of Guangzhou, China.
Juranović Cindrić, Iva; Zeiner, Michaela; Mihajlov-Konanov, Darija; Stingeder, Gerhard
2017-05-18
Black chokeberries ( Aronia melanocarpa ) are considered to be functional food containing high amounts of anthocyanins, phenols, antioxidants, vitamins and minerals. Whereas organic compounds are well studied, there is little research on the mineral composition of the chokeberries. Thus, the presented study is focused on the determination of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Se, Sr and Zn in black chokeberry fruits and infusions to study the metals' extractability. The nutrients Ca, K and Mg are present in the fruits (dried matter) at g/kg level, whereas the other elements are present from µg/kg up to mg/kg level. The extraction yields of the metals from the infusion range from 4 (Al, Mn) up to 44% (Na). The toxic elements present do not pose any health risk when berries or infusions are consumed. Concluding, Aronia berries, as well as infusions derived from them, are a good dietary source of essential metals in addition to the organic compounds also contained.
Distribution and speciation of trace elements in iron and manganese oxide cave deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frierdich, Andrew J.; Catalano, Jeffrey G.
2012-10-24
Fe and Mn oxide minerals control the distribution and speciation of heavy metals and trace elements in soils and aquatic systems through chemical mechanisms involving adsorption, incorporation, and electron transfer. The Pautler Cave System in Southwest Illinois, an analog to other temperate carbonate-hosted karst systems, contains Fe and Mn oxide minerals that form in multiple depositional environments and have high concentrations of associated trace elements. Synchrotron-based micro-scanning X-ray fluorescence ({mu}-SXRF) shows unique spatial distributions of Fe, Mn, and trace elements in mineral samples. Profile maps of Mn oxide cave stream pebble coatings show Fe- and As-rich laminations, indicating dynamic redoxmore » conditions in the cave stream. {mu}-SXRF maps demonstrate that Ni, Cu, and Zn correlate primarily with Mn whereas As correlates with both Mn and Fe; As is more enriched in the Fe phase. Zn is concentrated in the periphery of Mn oxide stream pebble coatings, and may be an indication of recent anthropogenic surface activity. X-ray absorption fine structure spectroscopy measurements reveal that As(V) occurs as surface complexes on Mn and Fe oxides whereas Zn(II) associated with Mn oxides is adsorbed to the basal planes of phyllomanganates in a tetrahedral coordination. Co(III) and Se(IV) are also observed to be associated with Mn oxides. The observation of Fe, Mn, and trace element banding in Mn oxide cave stream pebble coatings suggests that these materials are sensitive to and document aqueous redox conditions, similar to ferromanganese nodules in soils and in marine and freshwater sediments. Furthermore, speciation and distribution measurements indicate that these minerals scavenge trace elements and limit the transport of micronutrients and contaminants in karst aquifer systems while also potentially recording changes in anthropogenic surface activity and land-use.« less
Jacob, Hugo; Pouil, Simon; Lecchini, David; Oberhänsli, François; Swarzenski, Peter; Metian, Marc
2017-01-01
Little information exists on the effects of ocean acidification (OA) on the digestive and post-digestive processes in marine fish. Here, we investigated OA impacts (Δ pH = 0.5) on the trophic transfer of select trace elements in the clownfish Amphiprion ocellaris using radiotracer techniques. Assimilation efficiencies of three essential elements (Co, Mn and Zn) as well as their other short-term and long-term kinetic parameters in juvenile clownfish were not affected by this experimental pH change. In complement, their stomach pH during digestion were not affected by the variation in seawater pH. Such observations suggest that OA impacts do not affect element assimilation in these fish. This apparent pCO2 tolerance may imply that clownfish have the ability to self-regulate pH shifts in their digestive tract, or that they can metabolically accommodate such shifts. Such results are important to accurately assess future OA impacts on diverse marine biota, as such impacts are highly species specific, complex, and may be modulated by species-specific metabolic processes.
Pouil, Simon; Lecchini, David; Oberhänsli, François; Swarzenski, Peter; Metian, Marc
2017-01-01
Little information exists on the effects of ocean acidification (OA) on the digestive and post-digestive processes in marine fish. Here, we investigated OA impacts (Δ pH = 0.5) on the trophic transfer of select trace elements in the clownfish Amphiprion ocellaris using radiotracer techniques. Assimilation efficiencies of three essential elements (Co, Mn and Zn) as well as their other short-term and long-term kinetic parameters in juvenile clownfish were not affected by this experimental pH change. In complement, their stomach pH during digestion were not affected by the variation in seawater pH. Such observations suggest that OA impacts do not affect element assimilation in these fish. This apparent pCO2 tolerance may imply that clownfish have the ability to self-regulate pH shifts in their digestive tract, or that they can metabolically accommodate such shifts. Such results are important to accurately assess future OA impacts on diverse marine biota, as such impacts are highly species specific, complex, and may be modulated by species-specific metabolic processes. PMID:28399186
Leaf elemental analysis in mycorrhizal post oak seedlings
NASA Astrophysics Data System (ADS)
Boling, B. C.; Naab, F. U.; Smith, D.; Duggan, J. L.; McDaniel, F. D.
2006-09-01
Growth and element assimilation was investigated in the leaves of post oak seedlings exposed to four different treatment combinations of fertilization and ectomycorrhizal inoculation. Element concentration was analyzed via particle-induced X-ray emission spectrometry (PIXE). PIXE detected 10 of the 13 essential macro and micronutrients: P, S, Mg, Ca, K, Cu, Zn, Mn, Fe and Cl. Mean growth and dry weight was significantly different across the treatment groups as well as the mean concentration of Mg, Al, S, K, Ca, Fe, Cu and Zn. The data suggest that fertilization rather than mycorrhizal inoculation had a stronger influence on nutrient uptake. This study is the first to analyze element concentration in post oak and to investigate the potential benefits of mycorrhizal symbiosis in post oak seedlings in terms of nutrient uptake.
Understanding the evolution of S- and I-type granitic plutons through analysis of apatite.
NASA Astrophysics Data System (ADS)
Hess, B. L.; Fiege, A.; Tailby, N.
2017-12-01
The major and trace element composition of apatites from the Lachlan fold belt (LFB) S- and I-type granitoids (Australia) and the Central French Massif (CFM) S-type leucogranites (France) were analyzed to investigate their compositional and redox variation. Apatite is a common accessory mineral in magmatic systems that can incorporate a variety of trace elements, including the polyvalent elements sulfur (S), iron (Fe), and manganese (Mn). It was recently discovered that apatite can incorporate three oxidation states of S (S6+, S4+, S2-) into its structure as a function of oxygen fugacity [1]. However, the oxidation states of Mn and Fe in apatite are essentially unknown (2+ and/or 3+). In this study, we collected many electron probe line transects across apatites in several different host phases from a variety of S- and I-type plutons. The F-H-Cl contents of the S- and I-type LFB samples were similar ( 2.9 wt% F, 0.4 wt% Cl, 0.5 wt% OH). The CFM S-types contained virtually no Cl and ranged from near-endmember OH-apatite to near-endmember F-apatite. The apatites of all studied the S- and I-type plutons are characterized by similar ranges of Fe content (<1.5 wt% Fe), while Mn reaches much higher concentrations in the S-type when compared to I-type apatites (<6.5 wt% Mn). The S content of the apatites varies significantly, from <50 ppm S in the LFB S-types, up to 2,000 ppm S in the LFB I-types, and reaching 1,650 ppm S in the CFM S-types. The elevated S contents in the LFB I-type and CFM S-type apatites allowed us to measure the S oxidation states by using X-ray absorption near-edge structure (XANES) spectroscopy. The spectra show variability in S oxidation states ranging from mostly sulfate down to nearly equal S6+/S2- ratios, indicating redox variations during apatite formation. The S-type Mn + Fe content plots in a 1:1 ratio against calcium (Ca) in atoms per formula unit, while the I-type apatites have too low Mn and Fe to show a clear trend. Thus, divalent Mn and Fe probably replace Ca2+ in the S-types' apatite structure, while the incorporation of trivalent Mn or Fe in apatite is rather unlikely. We suggest that Mn and Fe contents in apatite may become a useful tracer of melt evolution once the distributions coefficients are experimentally calibrated. [1] Konecke et al. (2017), Am Mineral
Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review.
Vatansever, Recep; Ozyigit, Ibrahim Ilker; Filiz, Ertugrul
2017-01-01
The essentiality of 14 mineral elements so far have been reported in plant nutrition. Eight of these elements were known as micronutrients due to their lower concentrations in plants (usually ≤100 mg/kg/dw). However, it is still challenging to mention an exact number of plant micronutrients since some elements have not been strictly proposed yet either as essential or beneficial. Micronutrients participate in very diverse metabolic processes, including from the primary and secondary metabolism to the cell defense, and from the signal transduction to the gene regulation, energy metabolism, and hormone perception. Thus, the attempt to understand the molecular mechanism(s) behind their transport has great importance in terms of basic and applied plant sciences. Moreover, their deficiency or toxicity also caused serious disease symptoms in plants, even plant destruction if not treated, and many people around the world suffer from the plant-based dietary deficiencies or metal toxicities. In this sense, shedding some light on this issue, the 13 mineral elements (Fe, B, Cu, Mn, Mo, Si, Zn, Ni, Cl, Se, Na, Al, and Co), required by plants at trace amounts, has been reviewed with the primary focus on the transport proteins (transporters/channels) in plant roots. So, providing the compiled but extensive information about the structural and functional roles of micronutrient transport genes/proteins in plant roots.
Profiling elements in Puerh tea from Yunnan province, China.
Zhang, Jianyang; Ma, Guicen; Chen, Liyan; Liu, Ting; Liu, Xin; Lu, Chengyin
2017-09-01
Puerh tea, as the most representative Chinese dark tea, has attracted global interest in recent years. Profiling the levels of metal elements in Puerh tea is very important since its presence is related to human health. In this study, 41 elements in 98 Puerh tea samples from Yunnan province, China including Puerh raw tea and Puerh ripe tea were evaluated by microwave digestion combined with inductively coupled plasma mass spectrometry . The content of toxic elements, essential elements and rare earth elements of Puerh tea from different regions was discussed in detail. The concentrations of Ba, Cr, As, Pb, Bi, Fe, Zn, V, Mn, Be, Ag and Tl showed significant differences (p < 0.05) by ANOVA analysis. Principal component analysis and linear discriminant analysis were used to describe the relationship of Puerh tea from different regions. This study provided a comprehensive database for Puerh tea quality control and intake risk assessment.
Cast, heat-resistant austenitic stainless steels having reduced alloying element content
Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA
2011-08-23
A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).
Cast, heat-resistant austenitic stainless steels having reduced alloying element content
Muralidharan, Govindarajan [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Maziasz, Philip J [Oak Ridge, TN; Pankiw, Roman I [Greensburg, PA
2010-07-06
A cast, austenitic steel composed essentially of, expressed in weight percent of the total composition, about 0.4 to about 0.7 C, about 20 to about 30 Cr, about 20 to about 30 Ni, about 0.5 to about 1 Mn, about 0.6 to about 2 Si, about 0.05 to about 1 Nb, about 0.05 to about 1 W, about 0.05 to about 1.0 Mo, balance Fe, the steel being essentially free of Ti and Co, the steel characterized by at least one microstructural component selected from the group consisting of MC, M.sub.23C.sub.6, and M(C, N).
Evaluation of trace element status of organic dairy cattle.
Orjales, I; Herrero-Latorre, C; Miranda, M; Rey-Crespo, F; Rodríguez-Bermúdez, R; López-Alonso, M
2018-06-01
The present study aimed to evaluate trace mineral status of organic dairy herds in northern Spain and the sources of minerals in different types of feed. Blood samples from organic and conventional dairy cattle and feed samples from the respective farms were analysed by inductively coupled plasma mass spectrometry to determine the concentrations of the essential trace elements (cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), iodine (I), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se) and zinc (Zn)) and toxic trace elements (arsenic (As), cadmium (Cd), mercury (Hg) and lead (Pb)). Overall, no differences between organic and conventional farms were detected in serum concentrations of essential and toxic trace elements (except for higher concentrations of Cd on the organic farms), although a high level of inter-farm variation was detected in the organic systems, indicating that organic production greatly depends on the specific local conditions. The dietary concentrations of the essential trace elements I, Cu, Se and Zn were significantly higher in the conventional than in the organic systems, which can be attributed to the high concentration of these minerals in the concentrate feed. No differences in the concentrations of trace minerals were found in the other types of feed. Multivariate chemometric analysis was conducted to determine the contribution of different feed sources to the trace element status of the cattle. Concentrate samples were mainly associated with Co, Cu, I, Se and Zn (i.e. with the elements supplemented in this type of feed). However, pasture and grass silage were associated with soil-derived elements (As, Cr, Fe and Pb) which cattle may thus ingest during grazing.
Assessment of Trace Element Concentrations in Birds of Prey in Korea.
Kim, Jungsoo; Oh, Jong-Min
2016-07-01
This study presents liver concentrations of trace elements of cinereous vultures (Aegypius monachus), common buzzards (Buteo buteo), common kestrels (Falco tinnunculus), and Eurasian eagle owls (Bubo bubo) collected in Korea from 2007 to 2008. Iron (Fe), manganese (Mn), copper (Cu), lead (Pb), and cadmium (Cd) concentrations in common kestrel juveniles were greater than in other juveniles of birds of prey. Adult cinereous vultures had greater Fe, Pb, and Cd concentrations than in those of other species, but common kestrels had greater Mn and Cu concentrations than in those of other birds of prey. Zinc concentrations in Eurasian eagle owl juveniles and adults were greater than in juveniles and adults of other species, respectively. In common kestrels, Fe, Cu, Pb, and Cd concentrations were significantly greater in adults than in juveniles. In Eurasian eagle owls, only Pb concentrations were greater in adults than in juveniles. Essential elements, such as Fe, Zn, Mn, and Cu concentrations, were within the range of other birds of prey studies. Seventeen individual birds of prey (30 %) were at a level considered Pb exposed (6-30 µg/g dw). This is a greater proportion than reported earlier in herons, egrets, and other birds from Korea. Elevated Pb concentration might be attributed to ingestion of Pb shot and bullet fragments for cinereous vultures and common buzzards, and urbanization for common kestrels. Cadmium concentrations in birds of prey were within the background concentrations (<3 µg/g dw) for wild birds.
Koubová, Eva; Sumczynski, Daniela; Šenkárová, Lenka; Orsavová, Jana; Fišera, Miroslav
2018-04-12
This study analysed the contents of thirty-six mineral and trace elements in teff ( Eragrostis tef L.) grains. What is more, dietary intakes were calculated. Inductively coupled plasma mass spectrometry (ICP-MS) was used to assess mineral and trace element contents. Consequently, the appropriate Recommended Dietary Allowance (RDA) or adequate intake (AI), and provisional tolerable weekly intake (PTWI) or provisional tolerable monthly intake (PTMI) values for adults were determined according to the Food and Agriculture Organization/World Health Organization (FAO/WHO) and Institute of Medicine (IOM) regulations. Teff is a significant contributor to RDAs and AIs for females in the following order: Mn > Cu > Zn ≥ Mg > Fe ≥ P and Ca. For males, teff contributes in the order, Mn > Cu > Fe > Zn ≥ P ≥ Mg > and Ca. The concentration of arsenic (65.9 µg/kg) in brown teff originating in Bolivia exceeded the average acceptable value set by Reg. No. 1881 of 6-50 µg/kg in cereals consumed in the EU. The PTWIs or PTMIs for Al, Cd, Sn and Hg were all under 7%, which is below the limits of toxic element intake related to the body weight of 65 kg for adult females and 80 kg for males, set by the FAO/WHO. Teff grains can be recommended as a valuable and safe source of minerals and trace elements.
Content of nutritional elements in sudangrass and ryegrass determined by ICP-AES.
Li, Wen-Xi; Lu, Jian-Wei; Seneweera, Saman P; Wu, Ji; Chen, Fang; Lu, Jun-Ming; Li, Xiao-Kun
2011-09-01
The sudangrass (Sorghum sudanense) and ryegrass (Lolium multi florum L.) rotation is a new type of cropping system, which has developed rapidly in recent years in the south of China. The contents of nutritional elements for forage grass in the sudangrass and ryegrass rotation system were determined by ICP-AES. The results showed that there were abundant and essential nutritional elements for animals in sudangrass and ryegrass. The contents of P, K, Ca, Mg, S, Fe, B, Cu, Zn and Mn for sudangrass were 0.20% -0.29%, 1.94%-2.57%, 0.62%-0.97%, 0.39%-0.69%, 0.12%-0.18%, 108.35-180.12, 3.04-5.96, 6.17-10.02, 20.37-31.36 and 46.80-101.29 mg x kg(-1), respectively. The contents of P, K, Ca, Mg, S, Fe, B, Cu, Zn, Mn for ryegrass were 0.39%-0.70%, 3.77%-5.07%, 0.61%-0.84%, 0.28% -0.47%, 0.32%-0.41%, 291.65- 632.20, 2.13-3.23, 13.29-15.19, 30.73-42.98 and 92.08-156.04 mg x kg(-1), respectively, and there were differences between various periods in nutritional elements in the two forage grasses. The application of ICP-AES could reflect fast and efficiently the content of nutritional elements for forage grass as animals feed.
Koubová, Eva; Šenkárová, Lenka
2018-01-01
This study analysed the contents of thirty-six mineral and trace elements in teff (Eragrostis tef L.) grains. What is more, dietary intakes were calculated. Inductively coupled plasma mass spectrometry (ICP-MS) was used to assess mineral and trace element contents. Consequently, the appropriate Recommended Dietary Allowance (RDA) or adequate intake (AI), and provisional tolerable weekly intake (PTWI) or provisional tolerable monthly intake (PTMI) values for adults were determined according to the Food and Agriculture Organization/World Health Organization (FAO/WHO) and Institute of Medicine (IOM) regulations. Teff is a significant contributor to RDAs and AIs for females in the following order: Mn > Cu > Zn ≥ Mg > Fe ≥ P and Ca. For males, teff contributes in the order, Mn > Cu > Fe > Zn ≥ P ≥ Mg > and Ca. The concentration of arsenic (65.9 µg/kg) in brown teff originating in Bolivia exceeded the average acceptable value set by Reg. No. 1881 of 6–50 µg/kg in cereals consumed in the EU. The PTWIs or PTMIs for Al, Cd, Sn and Hg were all under 7%, which is below the limits of toxic element intake related to the body weight of 65 kg for adult females and 80 kg for males, set by the FAO/WHO. Teff grains can be recommended as a valuable and safe source of minerals and trace elements. PMID:29649158
Linking waterlogging tolerance with Mn²⁺ toxicity: a case study for barley.
Huang, X; Shabala, S; Shabala, L; Rengel, Z; Wu, X; Zhang, G; Zhou, M
2015-01-01
Vast agricultural areas are affected by flooding, causing up to 80% yield reduction and resulting in multibillion dollar losses. Up to now, the focus of plant breeders was predominantly on detrimental effects of anoxia, while other (potentially equally important) traits were essentially neglected; one of these is soil elemental toxicity. Excess water triggers a progressive decrease in soil redox potential, thus increasing the concentration of Mn(2+) that can be toxic to plants if above a specific threshold. This work aimed to quantify the relative contribution of Mn(2+) toxicity to waterlogging stress tolerance, using barley as a case study. Twenty barley (Hordeum vulgare) genotypes contrasting in waterlogging stress tolerance were studied for their ability to cope with toxic (1 mm) amounts of Mn(2+) in the root rhizosphere. Under Mn(2+) toxicity, chlorophyll content of most waterlogging-tolerant genotypes (TX9425, Yerong, CPI-71284-48 and CM72) remained above 60% of the control value, whereas sensitive genotypes (Franklin and Naso Nijo) had 35% less chlorophyll than 35% of controls. Manganese concentration in leaves was not related to visual Mn(2+) toxicity symptoms, suggesting that various Mn(2+) tolerance mechanisms might operate in different tolerant genotypes, i.e. avoidance versus tissue tolerance. The overall significant (r = 0.60) correlation between tolerance to Mn(2+) toxicity and waterlogging in barley suggests that plant breeding for tolerance to waterlogging traits may be advanced by targeting mechanisms conferring tolerance to Mn(2+) toxicity, at least in this species. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Essential and toxic metals in tea (Camellia sinensis) imported and produced in Ethiopia.
Ashenef, Ayenew
2014-01-01
Sixteen samples of packed tea leaves (Camellia sinensis) were purchased from supermarkets in Addis Ababa, Ethiopia for metal analysis. Elements were measured by FAAS and graphite furnace atomic absorption spectrometer (GFAAS) employing external calibration curves. The levels in mg/kg dried weight basis varied from Cu: 4.7-12.9; Cd: 0.02-2.83; Pb: <0.01-2.29; Zn: 8.6-198.3; Mn: 81.7-962.2; Al: 3376.4-10,369.3; K: 7667.7-10,775; Li: 0.2-0.62; Ba: 9.4-1407.1; Mg: 1145.6-1834.1; Fe: 286.4-880.9; Ca: 1414.2-2646.0; Na: 147.1-557.7. Levels of exposure to the investigated metals by drinking tea were checked with the recommended daily allowance (RDA) of the WHO/FAO. Considering the average daily consumption rate of tea alone, the possible daily intakes of Al, Ba and Mn surpass the amenability to the side effects associated with these elements like Alzheimer's disease, kidney damage and Parkinson's disease, respectively, for which drinking tea should cause awareness. The other investigated elements are in the acceptable range.
NASA Astrophysics Data System (ADS)
Goto, K. T.; Ito, T.; Suzuki, K.; Kashiwabara, T.; Takaya, Y.; Shimoda, G.; Nozaki, T.; Kiyokawa, S.; Tetteh, G. M.; Nyame, F. K.
2013-12-01
Oxygenation of the atmosphere and oceans has influenced the evolution of ocean chemistry and diversification of early life. A number of large manganese (Mn) deposits are distributed in the Paleoproterozoic sedimentary successions that were formed during the great oxidation event (GOE) around 2.4-2.2 Ga (Meynard, 2010). Due to the high redox potential of Mn, occurrences of Mn deposits have been regarded as important evidence for a highly oxidized environment during the Paleoproterozoic (Kirschvink et al., 2000). Furthermore, because Mn oxides strongly adsorb various elements, including bioessential elements such as Mo, formation of large Mn deposits may have affected the seawater chemical composition and ecology during the Paleoproterozoic. However, the genesis of each Mn deposit is poorly constrained, and the relationships among the formation of Mn deposits, the evolution of atmospheric and ocean chemistry, and the diversification of early life are still ambiguous. In this study, we report the Re-Os isotope compositions, rare earth element (REE) compositions, and abundance of manganophile elements in the Mn carbonate ore and host sedimentary rock samples collected from the Nsuta Mn deposit of the Birimian Supergroup, Ghana. The Nsuta deposit is one of the largest Paleoproterozoic Mn deposits, although its genesis remains controversial (Melcher et al., 1995; Mucke et al., 1999). The composite Re-Os isochron age (2149 × 130 Ma) of the Mn carbonate and sedimentary rock samples was consistent with the depositional age of the sedimentary rocks (~2.2 Ga) presumed from the U-Pb zircon age of volcanic rocks (Hirdes and Davis, 1998), suggesting that the timing of Mn ore deposition was almost equivalent to the host rock sedimentation. The PAAS-normalized REE pattern showed a positive Eu anomaly in all samples and a positive Ce anomaly only in the Mn carbonate ore. These REE patterns indicate the possible contribution of Eu-enriched fluids derived from hydrothermal activity and Ce enrichment due to the oxidation of Ce(III) by Mn(IV) during an ore formation. Among the manganophile elements, merely Mo is enriched in the Mn carbonate ore compared with the host sedimentary rocks. The profile of manganophile elements was similar to that of modern hydrothermal Mn oxide (Kuhn et al., 2003), although the exact Mo concentration was much lower. These geochemical lines of evidence provide the following plausible genetic model for the Nsuta deposits: (1) Mn(II) was derived from hydrothermal vents, (2) Mn(II) was oxidized to Mn(IV) oxide by the oxygenated seawater, (3) the precipitation of Mn oxide is almost concurrent with the deposition of the host sedimentary rocks, (4) Mn oxide was diagenetically transformed to be a Mn carbonate ore. The geochemical features of the Nsuta deposits suggest that, as in the present oxic oceans, Mn oxide was a potential sink for several trace elements in the Paleoproterozoic oceans. The low-Mo concentration in the Mn carbonate ore probably reflects the large difference between the chemical compositions of Paleoproterozoic and present seawater, implying the prevalence of reduced marine conditions even during the GOE (Scott et al., 2008)
Nowlan, G.A.
1976-01-01
Correlation studies of 400 samples of sieved stream sediments and 325 samples of fluvial, concretionary Mn-Fe oxides from Maine resulted in the separation of elements into the following categories: (1) elements not scavenged by Mn-Fe oxides - B, Cr, K, Mg, Rb, Sc, Ti, V, and Zr; (2) elements probably not scavenged by Mn-Fe oxides - Ag, Be, Ca, Ga, La, Sb, and Y; (3) elements scavenged weakly by Mn-Fe oxides - Cu, Mo, Pb, and Sr; (4) elements scavenged strongly by Mn oxides - Ba, Cd, Co, Ni, Tl, and Zn; and (5) elements scavenged strongly by Fe oxides - As and In. Studies of the scavenged elements showed that the deviation from the mean is characteristically greater in oxide samples as compared to sieved sediments from the same locality. However, a significant increase in contrast between anomalous and background localities, when oxides are the sample medium, more than offsets the disadvantage of data scatter. The use of oxides as a sampling medium clearly and significantly accentuates anomalous localities. In general, non-ratioed data on oxides give very nearly the same results as data consisting of scavenged elements ratioed to Mn and Fe. However, ratioed data expand the geographic area of specific anomalies. Cd and Zn consistently show strong correlations with concretionary Mn-Fe oxides, but their concentrations in the oxides do not generally show as much contrast between anomalous and background localities as do Cu, Mo, and Pb. These latter elements are strongly scavenged where rocks are mineralized. ?? 1976.
Ley-Quiñónez, César Paúl; Rossi-Lafferriere, Natalia Alejandra; Espinoza-Carreon, Teresa Leticia; Hart, Catherine Edwina; Peckham, Sherwood Hoyt; Aguirre, Alfredo Alonso; Zavala-Norzagaray, Alan Alfredo
2017-04-01
This study investigated selected trace elements toxicity in sea turtles Caretta caretta population from Baja California Sur (BCS), Mexico, by analyzing associations among Zn, Se, Cu, As, Cd, Ni, Mn, Pb, and Hg with various biochemical parameters (packed cell volume, leukocytes, and selected blood parameters), and whether their concentrations could have an impact on the health status of sea turtles. Blood samples from 22 loggerhead (C. caretta) sea turtles from BCS, Mexico, were collected for trace elements on biochemistry parameter analyses. Significant associations among trace element levels and the biochemistry parameters were found: Cd vs ALP (R 2 = 0.874, p ˂ 0.001), As vs ALP (R 2 = 0.656, p ˂ 0.001), Mn vs ALP (R 2 = 0.834, p ˂ 0.001), and Ni vs LDH (R 2 = 0.587, p ˂ 0.001). This study is the first report of the biochemical parameters of the North Pacific loggerhead sea turtle (C. caretta) from Baja California Sur, Mexico, and it is the first to observe several associations with toxic and essential trace elements. Our study reinforces the usefulness of blood for the monitoring of the levels of contaminating elements and the results suggest that, based on the associations with health clinical parameters, high levels of Cd and As could be representing a risk to the North Pacific loggerhead population health.
Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Barałkiewicz, Danuta
2017-12-01
A new procedure for determination of elements derived from titanium implants and physiological elements in soft tissues by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is presented. The analytical procedure was developed which involved preparation of in-house matrix matched solid standards with analyte addition based on certified reference material (CRM) MODAS-4 Cormorant Tissue. Addition of gelatin, serving as a binding agent, essentially improved physical properties of standards. Performance of the analytical method was assayed and validated by calculating parameters like precision, detection limits, trueness and recovery of analyte addition using additional CRM - ERM-BB184 Bovine Muscle. Analyte addition was additionally confirmed by microwave digestion of solid standards and analysis by solution nebulization ICP-MS. The detection limits are in range 1.8μgg -1 to 450μgg -1 for Mn and Ca respectively. The precision values range from 7.3% to 42% for Al and Zn respectively. The estimated recoveries of analyte addition line within scope of 83%-153% for Mn and Cu respectively. Oral mucosa samples taken from patients treated with titanium dental implants were examined using developed analytical method. Standards and tissue samples were cryocut into 30µm thin sections. LA-ICP-MS allowed to obtain two-dimensional maps of distribution of elements in tested samples which revealed high content of Ti and Al derived from implants. Photographs from optical microscope displayed numerous particles with µm size in oral mucosa samples which suggests that they are residues from implantation procedure. Copyright © 2017 Elsevier B.V. All rights reserved.
Metal concentrations in the mussel Bathymodiolus platifrons from a cold seep in the South China Sea
NASA Astrophysics Data System (ADS)
Wang, Xiaocheng; Li, Chaolun; Zhou, Li
2017-11-01
Data regarding the concentration and distribution of various metals in different tissues of mussels from the cold seep is scant. We aimed to quantify the presence of twenty elements (Ca, K, Mg, Sr, Ag, Al, As, Ba, Cd, Co, Cr, Cu, Li, Fe, Mn, Mo, Ni, Pb, V, and Zn) in gills, mantles and shells of Bathymodiolus platifrons, a common mussel species in deep-sea cold seep and hydrothermal vent communities. Specimens of B. platifrons were sampled from a cold seep at the northern continental slope of the South China Sea and the elemental contents in its tissues were quantified. Our findings were compared to data from taxonomically similar species at hydrothermal vents and coastal waters. We found that most elements were significantly enriched in the gills, which could be related to food uptake and the existence of endosymbionts. In shells and mantles, Mn was particularly rich, possibly due to its replacement of Ca in the carbonate structure. A significant positive correlation among Ca, Sr, and Mg was found in both gills and mantles, consistent with relationships observed in vent and littoral mussel species. Concentrations of metals were highest in the new-growth outer edges of shells in comparison to older shell material, which suggests that trace metals have become more abundant in the ambient seawater in recent years. Compared with other deep-sea environments and coastal areas, metal accumulation showed local variability but similar overall patterns of uptake and accumulation, indicating that essential elemental requirements in different mussel species may be similar across taxa. The high bioconcentration factor (BCF) values of Mn and Ag suggest that their particular functions and regulation mechanisms are related to specific adaptations and life cycle processes.
Jarzyńska, Grażyna; Falandysz, Jerzy
2011-07-01
Concentrations, composition and interrelationships of selenium and metallic elements (Ag, Ba, Cd, Co, Cr, Cs, Cu, Ga, Mn, Mo, Pb, Rb, Sb, Sr, Tl, V and Zn) have been examined in muscle and organ meats of Red Deer hunted in Poland. The analytical data obtained were also discussed in terms of Se supplementation and deficit to Deer as well as the benefits and risk to humans associated with the essential and toxic metals intake resulting from consumption of Deer meat and products. These elements were determined in 20 adult animals of both sexes that were obtained in the 2000/2001 hunting season from Warmia and Mazury in the north-eastern part of Poland. The whole kidneys contained Ba, Cd, Cr, Ga, Pb, Se, Sr and Tl at statistically greater concentrations than liver or muscle tissue from the same animal. Liver showed statistically greater concentrations of Ag, Co, Cu, Mn and Mo than kidneys or muscle tissue, and muscle tissue was richer in Zn, when compared to the kidneys or liver. Cs and Rb were similarly distributed between all three tissue types, while V was less abundant in liver than kidneys or muscle tissue. There were significant associations between some metallic elements retained in Red Deer demonstrated by Principal Component Analysis (PCA) of the data set. In organ and muscle meats (kidneys, liver and muscle tissue considered together) the first principal component (PC1) was strongly influenced by positively correlated variables describing Se, Ba and Cd and negatively correlated variables describing Ag, Co, Cs, Mn, Pb, Tl and V; PC2, respectively, by Cu, Mn and Mo (+) and Zn (-); PC3 by Ga (+) and PC4 by Sb (+). Selenium occurred in muscle tissue, liver and kidneys at median concentrations of 0.13, 0.19 and 4.0mg/g dry weight, respectively. These values can be defined as marginally deficient (< 0.6mg Se/kg liver dw) or satisfactory (≤ 3.0mg Se/kg kidneys dw) for the amount required to maintain the Deer's body condition and health, depending on the criterion for supplementation used. In terms of human nutritional needs, a relatively high selenium content of kidneys can be beneficial. The muscle meat, liver and kidneys of Red Deer can be considered as a very good source of essential Co, Cr, Cu, Mo, Mn, Se and Zn in the human diet. Lead is generally considered as toxic, and the concentrations found in Red Deer (via the food chain intake) were well below the European Union tolerance limit. Pb from the lead bullets can always create food hygienic problem, if not well recognized during sanitary inspection, and this was noted for one muscle meat sample in this study (5% surveyed). There is no tolerance limit of Cd in game animal meats. The median values of Cd noted in fresh muscle tissue, liver and whole kidneys were 0.07, 0.18, and 3.3mg/kg wet weight, respectively. Cd exists as a chemical element present at trace levels in plants and mushrooms in Deer's food chain in background (uncontaminated) areas. When these are consumed by the Deer, the amount of Cd sequestered with metallothioneins and retained in the organ and muscle meat in this study is low enough to be considered safe for human consumption. Copyright © 2011 Elsevier Ltd. All rights reserved.
Carvalho, Chrissie Ferreira de; Oulhote, Youssef; Martorelli, Marina; Carvalho, Carla Oliveira de; Menezes-Filho, José Antônio; Argollo, Nayara; Abreu, Neander
2018-02-09
Manganese (Mn) is an essential element, however high levels of Mn have been associated with lower neuropsychological performance and behavioral problems in children. We investigated the associations between hair Mn concentrations and neuropsychological and behavioral performances among children with long-term exposure to airborne Mn aged between 7 and 12 years. Neuropsychological performance included tests of: verbal memory, inhibitory control, cognitive flexibility, verbal fluency, and motor function. We used the Conners Abbreviated Rating Scale for teachers to assess students' behaviors of hyperactivity. Hair manganese (MnH) concentrations in children and exposure to airborne manganese from a ferro-manganese alloy plant were analyzed and correlated with tests scores. Multivariable linear models adjusting for potential confounders showed that elevated levels of MnH were associated with lower performance in verbal memory, as measured by the free recall after interference (β = - 1.8; 95% CI: - 3.4, - 0.2), which indicates susceptibility to interference, and Delayed Effect (β = -2.0; 95% CI: -3.7, - 0.2), representing a loss of information over time. Additionally, we found patterns of effect modification by sex in three subtests measuring verbal memory: the free recall after interference score, Interference Effect, and Delayed Effect (all at p < 0.10). Overall, the results suggest that long-term airborne Mn exposure may be associated with lower performance in verbal memory, and hyperactivity behaviors. Copyright © 2018 Elsevier B.V. All rights reserved.
Bioaccessibility assessment of toxic and essential elements in produced pulses, Bahia, Brazil.
Santos, Wagna Piler Carvalho; Ribeiro, Nubia Moura; Santos, Daniele Cristina Muniz Batista; Korn, Maria Graças Andrade; Lopes, Mariângela Vieira
2018-02-01
The objective of this study was to analyze the effect of heat treatment on the bioaccessibility of major (K, Ca, Mg, P) and trace elements (As, Ba, Cu, Fe, Mn, Cd, Cr, Hg, Mo, Ni, Pb, Se, Sb, Sn, and Zn) in three different pulse species: Vigna unguiculata L. Walp (cowpea beans), Cajanus cajan L. (pigeon pea) and Lablab purpureus L. Sweet (mangalo). Analyte concentrations were determined in the samples by inductively coupled plasma mass spectrometry and inductively coupled plasma optical emission spectrometry. The results showed that thermal processing can affect the concentrations of the elements investigated in pulse samples. The influence of the heat treatment can range between legume species and chemical elements, as well as with the type of heat treatment, dry, wet, conductive heating and using microwaves. Copyright © 2017 Elsevier Ltd. All rights reserved.
Toxic and essential elements in Lebanese cheese.
Bou Khozam, Rola; Pohl, Pawel; Al Ayoubi, Baydaa; Jaber, Farouk; Lobinski, Ryszard
2012-01-01
Concentrations of 20 minor, trace and ultratrace elements relevant to human health (Ag, Al, As, Cd, Co, Cr, Cu, Fe, Hg, Li, Mn, Mo, Ni, Pb, Sb, Se, Si, Sn, V) were determined in four different varieties of the most consumed cheese in Lebanon (Halloumi, Double Crème, Baladi, Labneh) sampled at five different provinces (Grand Beirut, South of Lebanon, North of Lebanon, Mount of Lebanon and Beka'a) during the wet and dry seasons. The analyses were carried out by double focussing sector field inductively coupled plasma-mass spectrometry (ICP-MS) in order to avoid errors due to polyatomic interferences. Levels of toxic elements (As, Cd, Pb) were generally below the WHO permissible levels in dairy products. Concentrations of most elements were considerably affected by the type of cheese, the geographical site and the season of sampling.
Exposure to Environmental Air Manganese and Medication ...
Manganese (Mn) is an essential element with natural low levels found in water, food, and air, but due to industrialized processes, both workplace and the environmental exposures to Mn have increased. Recently, environmental studies have reported physical and mental health problems associated with air-Mn exposure, but medical record reviews for exposed residents are rare in the literature. When medical records and clinical testing are unavailable, examination of residents’ prescribed medication use may be used as a surrogate of health effects associated with Mn. We examined medication use among adult Ohio residents in two towns with elevated air-Mn (n=185) and one unexposed control town (n=90). Study participants recorded medication use in a health questionnaire and brought their currently prescribed medication, over-the-counter and supplement lists to their interview. Two physicians (family and psychiatric medicine) reviewed the provided medication list and developed medical categories associated with the medications used. The exposed (E) and control (C) groups were compared on the established 12 medication and 1 supplement categories using chi-square tests. The significant medication categories were further analyzed using hierarchical binomial logistic regression adjusting for education, personal income, and years of residency. The two groups were primarily white (E:94.6%; C:96.7%) but differed on education (E:13.8; C:15.2 years), residence length in their re
Alaimo, Agustina; Gorojod, Roxana M; Miglietta, Esteban A; Villarreal, Alejandro; Ramos, Alberto J; Kotler, Mónica L
2013-10-25
Manganese (Mn) is an essential trace element due to its participation in many physiological processes. However, overexposure to this metal leads to a neurological disorder known as Manganism whose clinical manifestations and molecular mechanisms resemble Parkinson's disease. Several lines of evidence implicate astrocytes as an early target of Mn neurotoxicity being the mitochondria the most affected organelles. The aim of this study was to investigate the possible mitochondrial dynamics alterations in Mn-exposed human astrocytes. Therefore, we employed Gli36 cells which express the astrocytic markers GFAP and S100B. We demonstrated that Mn triggers the mitochondrial apoptotic pathway revealed by increased Bax/Bcl-2 ratio, by the loss of mitochondrial membrane potential and by caspase-9 activation. This apoptotic program may be in turn responsible of caspase-3/7 activation, PARP-1 cleavage, chromatin condensation and fragmentation. In addition, we determined that Mn induces deregulation in mitochondria-shaping proteins (Opa-1, Mfn-2 and Drp-1) expression levels in parallel with the disruption of the mitochondrial network toward to an exacerbated fragmentation. Since mitochondrial dynamics is altered in several neurodegenerative diseases, these proteins could become future targets to be considered in Manganism treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Riojas-Rodríguez, Horacio; Solís-Vivanco, Rodolfo; Schilmann, Astrid; Montes, Sergio; Rodríguez, Sandra; Ríos, Camilo; Rodríguez-Agudelo, Yaneth
2010-01-01
Background Excessive exposure to manganese (Mn), an essential trace element, has been shown to be neurotoxic, especially when inhaled. Few studies have examined potential effects of Mn on cognitive functions of environmentally exposed children. Objective This study was intended to estimate environmental exposure to Mn resulting from mining and processing and to explore its association with intellectual function of school-age children. Methods Children between 7 and 11 years of age from the Molango mining district in central Mexico (n = 79) and communities with similar socioeconomic conditions that were outside the mining district (n = 93) participated in the cross-sectional evaluation. The revised version of the Wechsler Intelligence Scale for Children adapted for the Mexican population was applied. Concentrations of Mn in blood (MnB) and hair (MnH) were used as biomarkers of exposure. Results Exposed children had significantly higher median values for MnH (12.6 μg/g) and MnB (9.5 μg/L) than did nonexposed children (0.6 μg/g and 8.0 μg/L, respectively). MnH was inversely associated with Verbal IQ [β = −0.29; 95% confidence interval (CI), −0.51 to −0.08], Performance IQ (β = −0.08; 95% CI, −0.32 to 0.16), and Total Scale IQ (β = −0.20; 95% CI, −0.42 to 0.02). MnB was inversely but nonsignificantly associated with Total and Verbal IQ score. Age and sex significantly modified associations of MnH, with the strongest inverse associations in young girls and little evidence of associations in boys at any age. Associations with MnB did not appear to be modified by sex but appeared to be limited to younger study participants. Conclusions The findings from this study suggest that airborne Mn environmental exposure is inversely associated with intellectual function in young school-age children. PMID:20936744
Riojas-Rodríguez, Horacio; Solís-Vivanco, Rodolfo; Schilmann, Astrid; Montes, Sergio; Rodríguez, Sandra; Ríos, Camilo; Rodríguez-Agudelo, Yaneth
2010-10-01
Excessive exposure to manganese (Mn), an essential trace element, has been shown to be neurotoxic, especially when inhaled. Few studies have examined potential effects of Mn on cognitive functions of environmentally exposed children. This study was intended to estimate environmental exposure to Mn resulting from mining and processing and to explore its association with intellectual function of school-age children. Children between 7 and 11 years of age from the Molango mining district in central Mexico (n = 79) and communities with similar socioeconomic conditions that were outside the mining district (n = 93) participated in the cross-sectional evaluation. The revised version of the Wechsler Intelligence Scale for Children adapted for the Mexican population was applied. Concentrations of Mn in blood (MnB) and hair (MnH) were used as biomarkers of exposure. Exposed children had significantly higher median values for MnH (12.6 μg/g) and MnB (9.5 μg/L) than did nonexposed children (0.6 μg/g and 8.0 μg/L, respectively). MnH was inversely associated with Verbal IQ [β = -0.29; 95% confidence interval (CI), -0.51 to -0.08], Performance IQ (β = -0.08; 95% CI, -0.32 to 0.16), and Total Scale IQ (β = -0.20; 95% CI, -0.42 to 0.02). MnB was inversely but nonsignificantly associated with Total and Verbal IQ score. Age and sex significantly modified associations of MnH, with the strongest inverse associations in young girls and little evidence of associations in boys at any age. Associations with MnB did not appear to be modified by sex but appeared to be limited to younger study participants. The findings from this study suggest that airborne Mn environmental exposure is inversely associated with intellectual function in young school-age children.
Khani, Rouhollah; Moudi, Maryam; Khojeh, Vahid
2017-02-01
There are great concentrations of toxic metallic and metalloid elements such as lead, arsenic, mercury, cadmium or silver in many species of mushrooms comparative to other fruits and vegetables. In this study, contamination with heavy and toxic metallic and metalloid elements in the cultivated mushroom of (Pleurotus florida (Mont.) Singer) is investigated. P. florida was cultivated on different substrates; wheat straw (as blank), wheat straw + pine cone, wheat straw + soybean straw and wheat straw + urea and the effects of these substrates on contamination levels of Mn, Fe, Cu, Zn, As, Cd, and Pb were analyzed. The results showed that the concentrations of essential elements (Mn, Fe, Cu, and Zn) in the target mushroom are at the typical levels. The estimated daily intakes of studied metallic and metalloid elements were below their oral reference dosage mentioned by the international regulatory bodies. Health risk index (HRI) was calculated to evaluate the consumer's health risk assessment from the metal intake that contaminated in the cultivated mushroom of P. florida on the different nutrient sources. In this study, the individual HRIs were less than 1, which indicates insignificant potential health risk associated with the consumption of target mushroom from the studied substrates. Based on the HRIs values among the toxic metallic and metalloid elements, As in the target mushroom in the substrate of the wheat straw + pine cone is the main sources of risk, and it may cause severe health problems. Thus, this study suggests that the concentrations of heavy and toxic elements should be periodically monitored in cultivated mushrooms.
Hargreaves, Anna L; Whiteside, Douglas P; Gilchrist, Grant
2010-07-15
Exposure to contaminants is one hypothesis proposed to explain the global decline in shorebirds, and this is of particular concern in the arctic. However, little information exists on contaminant levels in arctic-breeding shorebirds, especially in Canada. We studied potential contaminants in three biparental shorebird species nesting in Nunavut, Canada: ruddy turnstones (Arenaria interpres), black-bellied plovers (Pluvialis squatarola) and semipalmated plovers (Charadrius semipalmatus). Blood, feathers and eggs were analyzed for As, Be, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sb, Se, Tl, V, and Zn. We assessed whether element concentrations a) differed among species and sexes, b) were correlated among pairs and their eggs, and c) were related to fitness endpoints, namely body condition, blood-parasite load, nest survival days, and hatching success. Non-essential elements were found at lower concentrations than essential elements, with the exception of Hg. Maximum Hg levels in blood approached those associated with toxicological effects in other bird species, but other elements were well below known toxicological thresholds. Reproductive success was negatively correlated with paternal Hg and maternal Pb, although these effects were generally weak and varied among tissues. Element levels were positively correlated within pairs for blood-Hg (turnstones) and feather-Ni and Cr (semipalmated plovers); concentrations in eggs and maternal blood were never correlated. Concentrations of many elements differed among species, but there was no evidence that any species had higher overall exposure to non-essential metals. In conclusion, whereas we found little evidence that exposure to the majority of these elements is leading to declines of the species studied here, Hg levels were of potential concern and both Hg and Pb warrant further monitoring. Copyright 2010 Elsevier B.V. All rights reserved.
Early Diagenesis of Trace Elements in Modern Fjord Sediments of the High Arctic
NASA Astrophysics Data System (ADS)
Herbert, L.; Riedinger, N.; Aller, R. C.; Jørgensen, B. B.; Wehrmann, L.
2017-12-01
Marine sediments are critical repositories for elements that are only available at trace concentrations in seawater, such as Fe, Mn, Co, Ni, As, Mo, and U. The behavior of these trace elements in the sediment is governed by a dynamic interplay of diagenetic reactions involving organic carbon, Fe and Mn oxides, and sulfur phases. In the Arctic fjords of Svalbard, glacial meltwater delivers large amounts of reactive Fe and Mn oxides to the sediment, while organic carbon is deposited episodically and diluted by lithogenic material. These conditions result in pronounced Fe and Mn cycling, which in turn drives other diagenetic processes such as rapid sulfide oxidation. These conditions make the Svalbard fjords ideal sites for investigating trace element diagenesis because they allow resolution of the interconnections between Fe and Mn dynamics and trace element cycling. In August 2016, we collected sediment cores from three Svalbard fjords and analyzed trace elements in the pore water and solid sediment over the top meter. Initial results reveal the dynamic nature of these fjords, which are dominated by non-steady state processes and episodic events such as meltwater pulses and phytoplankton blooms. Within this system, the distribution of As appears to be strongly linked to the Fe cycle, while Co and Ni follow Mn; thus, these three elements may be released from the sediment through diffusion and bioturbation along with Fe and Mn. The pore water profiles of U and Mo indicate removal processes that are independent from Fe or Mn, and which are rather unexpected given the apparent diagenetic conditions. Our results will help elucidate the processes controlling trace element cycling in a dynamic, glacially impacted environment and will ultimately contribute to our understanding of the role of fjords in the biogeochemical cycling of trace elements in a rapidly changing Arctic Ocean.
Metals, Oxidative Stress and Neurodegeneration: A focus on Iron, Manganese and Mercury
Farina, Marcelo; Avila, Daiana Silva; da Rocha, João Batista Teixeira
2013-01-01
Essential metals are crucial for the maintenance of cell homeostasis. Among the 23 elements that have known physiological functions in humans, 12 are metals, including iron (Fe) and manganese (Mn). Nevertheless, excessive exposure to these metals may lead to pathological conditions, including neurodegeneration. Similarly, exposure to metals that do not have known biological functions, such as mercury (Hg), also present great health concerns. This reviews focuses on the neurodegenerative mechanisms and effects of Fe, Mn and Hg. Oxidative stress (OS), particularly in mitochondria, is a common feature of Fe, Mn and Hg toxicity. However, the primary molecular targets triggering OS are distinct. Free cationic iron is a potent pro-oxidant and can initiate a set of reactions that form extremely reactive products, such as OH•. Mn can oxidize dopamine (DA), generating reactive species and also affect mitochondrial function, leading to accumulation of metabolites and culminating with OS. Cationic Hg forms have strong affinity for nucleophiles, such as –SH and –SeH. Therefore, they target critical thiol- and selenol-molecules with antioxidant properties. Finally, we address the main sources of exposure to these metals, their transport mechanisms into the brain, and therapeutic modalities to mitigate their neurotoxic effects. PMID:23266600
NASA Astrophysics Data System (ADS)
Razumov, Nikolay G.; Popovich, Anatoly A.; Wang, QingSheng
2018-03-01
This paper presents the results of experimental studies on the treatment of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe-23Cr-11Mn-1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe-23Cr-11Mn-1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.
Composition and genesis of ferromanganese deposits from the northern South China Sea
NASA Astrophysics Data System (ADS)
Zhong, Yi; Chen, Zhong; González, Francisco Javier; Hein, James R.; Zheng, Xufeng; Li, Gang; Luo, Yun; Mo, Aibin; Tian, Yuhang; Wang, Shuhong
2017-05-01
Marine ferromanganese (Fe-Mn) nodules and crusts are archives of past environmental conditions and potential mineral resources. Over the last 30 years, many have been discovered in the northern South China Sea (SCS). To determine the origin of the Fe-Mn deposits, a comprehensive laboratory analysis of physical properties, mineralogy and geochemistry was conducted on newly collected Fe-Mn nodule/crust samples. The results revealed that there are three types of Fe-Mn deposits: (1) Fe-rich nodules containing essentially goethite occur on the northeastern slope of the SCS, with high Fe, low Mn (Mn/Fe = 0.03) and low trace metals and rare earth elements concentrations; (2) Smooth Fe-Mn nodules and crusts composed of asbolane, todorokite and CFA occur along the northwestern marginal of the SCS that have similar Fe and Mn contents (Mn/Fe = 1.21), moderate trace metal enrichments, and a positive Ce anomaly; (3) Fe-Mn nodules and crusts composed of asbolane, todorokite and birnessite that occur in the central basin of the SCS have higher Mn and lower Fe contents (Mn/Fe = 1.45). This depositional pattern was associated with major changes in oceanographic conditions and tectonic regimes. The northeastern slope deposits occur in a contourite depositional system, are strongly enriched in Fe relative to Mn (average 38.7% and 0.96%, respectively), formed from the combination of hydrogenetic and diagenetic processes. We propose a new genetic model for Fe-Mn nodules, which formed through the oxidation of pyrite and pyrite-barite concretions that formed by rapid early diagenetic growth (average 3320 mm/Myr) on continental margins above the carbonate compensation depth, and dominated by hydrocarbon seep structures and strong erosive action of bottom currents along the northeastern slope. In contrast, the introduction of vigorous deep-water flow from the North Pacific promoted the slow growth (4-7 mm/Myr) of hydrogenetic Fe-Mn nodules and crusts along the northwestern margin. Finally, hydrogenetic growth of Fe-Mn nodules and crusts in the central basin may have been enhanced by volcanic processes. Our data provide new insights into the genesis and province characteristics of the Fe-Mn nodules and crusts of the northern SCS.
Mineral Composition and Nutritive Value of Isotonic and Energy Drinks.
Leśniewicz, Anna; Grzesiak, Magdalena; Żyrnicki, Wiesław; Borkowska-Burnecka, Jolanta
2016-04-01
Several very popular brands of isotonic and energy drinks consumed for fluid and electrolyte supplementation and stimulation of mental or physical alertness were chosen for investigation. Liquid beverages available in polyethylene bottles and aluminum cans as well as products in the form of tablets and powder in sachets were studied. The total concentrations of 21 elements (Ag, Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Na, Ni, P, Pb, Sr, Ti, V, and Zn), both essential and toxic, were simultaneously determined in preconcentrated drink samples by inductively coupled plasma-optical emission spectrometry (ICP-OES) equipped with pneumatic and ultrasonic nebulizers. Differences between the mineral compositions of isotonic and energy drinks were evaluated and discussed. The highest content of Na was found in both isotonic and energy drinks, whereas quite high concentrations of Mg were found in isotonic drinks, and the highest amount of calcium was quantified in energy drinks. The concentrations of B, Co, Cu, Ni, and P were higher in isotonic drinks, but energy drinks contained greater quantities of Ag, Cr, Zn, Mn, and Mo and toxic elements, as Cd and Pb. A comparison of element contents with micronutrient intake and tolerable levels was performed to evaluate contribution of the investigated beverages to the daily diet. The consumption of 250 cm(3) of an isotonic drink provides from 0.32% (for Mn) up to 14.8% (for Na) of the recommended daily intake. For the energy drinks, the maximum recommended daily intake fulfillment ranged from 0.02% (for V) to 19.4 or 19.8% (for Mg and Na).
Juranović Cindrić, Iva; Zeiner, Michaela; Mihajlov-Konanov, Darija; Stingeder, Gerhard
2017-01-01
Black chokeberries (Aronia melanocarpa) are considered to be functional food containing high amounts of anthocyanins, phenols, antioxidants, vitamins and minerals. Whereas organic compounds are well studied, there is little research on the mineral composition of the chokeberries. Thus, the presented study is focused on the determination of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Se, Sr and Zn in black chokeberry fruits and infusions to study the metals’ extractability. The nutrients Ca, K and Mg are present in the fruits (dried matter) at g/kg level, whereas the other elements are present from µg/kg up to mg/kg level. The extraction yields of the metals from the infusion range from 4 (Al, Mn) up to 44% (Na). The toxic elements present do not pose any health risk when berries or infusions are consumed. Concluding, Aronia berries, as well as infusions derived from them, are a good dietary source of essential metals in addition to the organic compounds also contained. PMID:28524107
Amos-Kroohs, Robyn M; Davenport, Laurie L; Gutierrez, Arnold; Hufgard, Jillian R; Vorhees, Charles V; Williams, Michael T
2016-01-01
Manganese (Mn) is an essential element but neurotoxic at higher exposures, however, Mn exposure seldom occurs in isolation. It often co-occurs in populations with inadequate dietary iron (Fe) and limited resources that result in stress. Subclinical FeD affects up to 15% of U.S. children and exacerbates Mn toxicity by increasing Mn bioavailability. Therefore, we investigated Mn overexposure (MnOE) in rats in combination with Fe deficiency (FeD) and developmental stress, for which we used barren cage rearing. For barren cage rearing (BAR), rats were housed in cages with a wire grid floor or standard bedding material (STD) from embryonic day (E)7 through postnatal day (P)28. For FeD, dams were fed a 90% Fe-deficient NIH-07 diet from E15 through P28. Within each litter, different offspring were treated with 100mg/kg Mn (MnOE) or vehicle (VEH) by gavage every other day from P4-28. Behavior was assessed at two ages and consisted of: open-field, anxiety tests, acoustic startle response (ASR) with prepulse inhibition (PPI), sociability, sucrose preference, tapered beam crossing, and the Porsolt's forced swim test. MnOE had main effects of decreasing activity, ASR, social preference, and social novelty. BAR and FeD transiently modified MnOE effects. BAR groups weighed less and showed decreased anxiety in the elevated zero maze, had increased ASR and decreased PPI, and exhibited reduced sucrose preference compared with the STD groups. FeD animals also weighed less and had increased slips on the tapered beam. Most of the monoamine effects were dopaminergic and occurred in the MnOE groups. The results showed that Mn is a pervasive developmental neurotoxin, the effects of which are modulated by FeD and/or BAR cage rearing. Copyright © 2016 Elsevier Inc. All rights reserved.
Čurlík, Ján; Kolesár, Martin; Ďurža, Ondrej; Hiller, Edgar
2016-04-01
Contents of potentially toxic elements Fe, Mn, Cr, Ni, Co, V, Cu, and Mo were determined in common dandelion (Taraxacum officinale) and agrimony (Agrimonia eupatoria) to show their usefulness as bioindicators of geogenic soil pollution. Both plants were collected on geochemically anomalous soils developed on flysch sedimentary rocks (Paleogene) of Eastern Slovakia, which also are composed of weathered detritus of some ultramafic rocks. Generally, contents of the investigated association of potentially toxic elements are highly increased in these "serpentine"-like soils. Elevated concentrations were detected in both shoots and roots of the plants. The highest values, which exceed world average values for plants, were observed for Ni content. They ranged from 1.7 to 16.3 mg kg(-1) in dandelion and from 1.6 to 22.6 mg kg(-1) in agrimony. Essential elements, such as Mo, Cu, and Mn, were the most concentrated in plants, whereas Co, V, and Cr were the least concentrated. Although the bioindication value of the common dandelion for anthropogenic soil pollution is well known, it is not mentioned for agrimony in literature, and no data exist to indicate the geogenic pollution for both plants. Dandelion and agrimony are widely used as herbal drugs; therefore, our intention also was to point out another fact, namely, possible high uptake of potentially toxic elements by herbal plants growing on similar soils.
Zeiner, Michaela; Juranović Cindrić, Iva; Požgaj, Martina; Pirkl, Raimund; Šilić, Tea; Stingeder, Gerhard
2015-03-15
The use of medical herbs for the treatment of many human diseases is increasing nowadays due to their mild features and low side effects. Not only for their healing properties, but also for their nutritive value supplementation of diet with various herbs is recommended. Thus also their analysis is of rising importance. While total elemental compositions are published for many common herbs, the origin of toxic as well as beneficial elements is not yet well investigated. Thus different indigenous medicinal plants, namely Croatian spruce (Picea abies), savory (Satureja montana L.), mountain yarrow (Achillea clavennae), showy calamint (Calamintha grandiflora), micromeria (Micromeria croatica), yellow gentian (Gentiana lutea) and fir (Abies alba) together with soil samples were collected in the National Park Northern Velebit. The macro- and trace elements content, after microwave digestion, was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS). The study focuses on the one hand on essential elements and on the other hand on non-essential elements which are considered as toxic for humans, covering in total Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Sr and Zn. Copyright © 2014 Elsevier B.V. All rights reserved.
Assessment of metal contents in spices and herbs from Saudi Arabia.
Seddigi, Z S; Kandhro, G A; Shah, F; Danish, E; Soylak, Mustafa
2016-02-01
In the recent years, there has been a growing interest in monitoring heavy metal contamination of spices/herbs. Spices and herbs are sources of many bioactive compounds that can improve the tastes of food as well as influence digestion and metabolism processes. In the present study, the levels of some essential and toxic elements such as iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), cobalt (Co), nickel (Ni), lead (Pb), and cadmium (Cd), present in common spices/herbs that were purchased from the local market in Saudi Arabia, were analyzed by atomic absorption spectroscopy after digestion with nitric acid/hydrogen peroxide mixture. Samples from the following spices/herbs were used: turmeric, cloves, black pepper, red pepper, cumin, legume, cinnamon, abazir, white pepper, ginger, and coriander. The concentration ranges for the studied elements were found as 48.8-231, 4.7-19.4, 2.5-10.5, below detection level (BDL)-1.0, 8.8-490, 1.0-2.6, and BDL-3.7 µg g(-1) for Fe, Zn, Cu, Cr, Mn, Ni, and Pb, respectively, while Cd and Co levels were below the detection limit. Consumers of these spices/herbs would not be exposed to any risk associated with the daily intake of 10 g of spices per day as far as metals Fe, Zn, Cu, Cr, Mn, Ni, and Pb are concerned. © The Author(s) 2013.
Zhao, Huijun; Wu, Liangqi; Chai, Tuanyao; Zhang, Yuxiu; Tan, Jinjuan; Ma, Shengwen
2012-09-01
Synchrotron radiation X-ray fluorescence (SRXRF) and inductively coupled plasma mass spectrometry were used to estimate major, minor and trace elements in Cu-, Zn- and Mn-treated Phytolacca americana. The effects of the addition of Cu, Zn and Mn on morphological parameters, such as root length, shoot height, and fresh and dry weights of shoots and roots, were also examined. In addition, the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT) and the expression of Fe-SOD, Cu/Zn-SOD, metallothionein-2 and glutathione S-transferase (GST) exposed to the highest amounts of Cu, Zn or Mn were detected. Our results confirmed the following: (1) Zn supplementation leads to chlorosis, disturbed elemental homeostasis and decreased concentrations of micro- and macroelements such as Fe, Mg, Mn, Ca and K. Cu competed with Fe, Mn and Zn uptake in plants supplemented with 25 μM Cu. However, no antagonistic interactions took place between Cu, Zn, Mn and Fe uptake in plants supplemented with 100 μM Cu. Mn supplementation at various concentrations had no negative effects on elemental deficits. Mn was co-located with high concentrations of Fe and Zn in mature leaves and the concentrations of macro elements were unchanged. (2) P. americana supplemented with increased concentrations of Zn and Cu exhibited lower biomass production and reduced plant growth. (3) When plants were supplemented with the highest Zn and Cu concentrations, symptoms of toxicity corresponded to decreased SOD or CAT activities and increased APX and GPX activities. However, Mn tolerance corresponded to increased SOD and CAT activities and decreased POD and APX activities. Our study revealed that heavy metals partially exert toxicity by disturbing the nutrient balance and modifying enzyme activities that induce damage in plants. However, P. americana has evolved hyper accumulating mechanisms to maintain elemental balance and redox homeostasis under excess Mn. Copyright © 2012 Elsevier GmbH. All rights reserved.
Rasic-Milutinovic, Z; Jovanovic, D; Bogdanovic, G; Trifunovic, J; Mutic, J
2017-02-01
Background: Besides genetic factors, it is known that some trace elements, as Selenium, Copper, and Zinc are essential for thyroid gland fuction and thyroid hormone metabolism. Moreover, there were some metals effect that suggested patterns associated with overt thyroid disease. Aim of study: Hashimoto thyroiditis (HT), chronic autoimune inflamation of thyroid gland with cosequtive hipothyroidism, is common disease in Serbia, and we thought it is worthwile to explore potential effects of essential and toxic metals and metalloides on thyroid function and ability to restore euthyroid status of them. Results: This cross-sectional, case-control, study investigated the status of essential elements (Selenium,Copper,and Zinc) and toxic metals and metalloides (Al, Cr, Mn, Co, As, Cd, Sb, Ba, Be, Pb and Ni) from the blood of 22 female, patients with Hashimoto thyroiditis and overt hypothyroidism, and compared it with those of 55 female healthy persons. We tried to establish the presence of any correlation between previous mentioned elements and thyroid function in hypothyroid patients and healthy participants. Conclusions: The results of our study suggested that the blood concentration of essential trace elements, especially the ratio of Copper, and Selenium may influence directly thyroid function in patients with HT and overt hypothyroidism.Thus, our findings may have implication to life-long substitution therapy in terms of l-thyroxine dose reduction. Furthermore, for the first time, our study shown potential toxic effect of Cadmium on thyroid function in HT patients, which may implicate the dose of l-thyroxine substitution. © Georg Thieme Verlag KG Stuttgart · New York.
Alghadir, Ahmad H; Gabr, Sami A; Al-Eisa, Einas S; Alghadir, Muaz H
2016-01-01
Life style and physical activity play a pivotal role in prevention and treatment of osteoporosis. The mechanism for better bone metabolism and improvement of physical disorders is not clear yet. Trace minerals such as Ca, Mn, Cu, and Zn are essential precursors for most vital biological process, especially those of bone health. The main target of this study was evaluating the effective role of supervised aerobic exercise for 1 hour/day, 3 days/week for 12 weeks in the functions of trace elements in bone health through measuring bone mineral density (BMD), osteoporosis (T-score), bone markers, and trace element concentrations in healthy subjects aged 30-60 years with age average of 41.2±4.9. A total of 100 healthy subjects (47 males, 53 females; age range 30-60 years) were recruited for this study. Based on dual-energy x-ray absorptiometry (DEXA) scan analysis, the participants were classified into three groups: normal (n=30), osteopenic (n=40), and osteoporotic (n=30). Following, 12 weeks of moderate aerobic exercise, bone-specific alkaline phosphatase (BAP), BMD, T-score, and trace elements such as Ca, Mn, Cu, and Zn were assessed at baseline and post-intervention. Significant improvement in serum BAP level, T-score, and BMD were observed in all participants following 12 weeks of moderate exercise. Participants with osteopenia and osteoporosis showed significant increase in serum Ca and Mn, along with decrease in serum Cu and Zn levels following 12 weeks of aerobic training. In control group, the improvements in serum trace elements and body mass index were significantly linked with the enhancement in the levels of BAP, BMD hip, and BMD spine. These results supported the preventive effects of moderate exercise in healthy subjects against osteoporosis. In both sexes, the changes in serum trace elements significantly correlated (P<0.05) with the improvement in BAP, BMD hip, BMD spine, and body mass index in all groups. The observed changes in the levels of Ca, Mn, Cu, and Zn were shown to be positively correlated with improved bone mass density among control and osteoporosis subjects of both sexes. These results demonstrate that aerobic exercise of moderate intensity might protect bone and cartilage by regulation of body trace elements which are involved in the biosynthesis of bone matrix structures and inhibition of bone resorption process via a proposed anti-free radical mechanism.
da Silva Santos, Vivian; Bisen-Hersh, Emily; Yu, Yingchun; Cabral, Ingridy Simone Ribeiro; Nardini, Viviani; Culbreth, Megan; Teixeira da Rocha, João Batista; Barbosa, Fernando; Aschner, Michael
2014-01-01
Manganese (Mn) is an essential element for human health. However, at high concentrations Mn may be neurotoxic. Mn accumulates in astrocytes, affecting their redox status. In view of the high antioxidant and anti-inflammatory properties of the exotic Brazilian fruit açaí (Euterpe oleracea Mart.), its methanolic extract was obtained by solid-phase extraction (SPE). This açaí extract showed considerable anthocyanins content and direct antioxidant capacity. The açaí extract scavenged 2,2-diphenyl-1-picrylhydrazyl radicals (DPPH•) with an EC₅₀ of 19.1 ppm, showing higher antioxidant activity compared to butylated hydroxytoluene (BHT), but lower than ascorbic acid and quercetin. This obtained açaí extract also attenuated Mn-induced oxidative stress in primary cultured astrocytes. Specifically, the açaí extract at an optimal and nutritionally relevant concentration of 0.1 μg/ml prevented Mn-induced oxidative stress by (1) restoring GSH/GSSG ratio and net glutamate uptake, (2) protecting astrocytic membranes from lipid peroxidation, and (3) decreasing Mn-induced expression of erythroid 2-related factor (Nrf2) protein. A larger quantity of açaí extract exacerbated the effects of Mn on these parameters except with respect to lipid peroxidation assessed by means of F₂-isoprostanes. These studies indicate that at nutritionally relevant concentration, anthocyanins obtained from açaí protect astrocytes against Mn neurotoxicity, but at high concentrations, the "pro-oxidant" effects of its constituents likely prevail. Future studies may be profitably directed at potential protective effects of açaí anthocyanins in nutraceutical formulations.
Determination of Trace Elements in Edible Nuts in the Beijing Market by ICP-M.
Yin, Liang Liang; Tian, Qing; Shao, Xian Zhang; Kong, Xiang Yin; Ji, Yan Qin
2015-06-01
Nuts have received increased attention from the public in recent years as important sources of some essential elements, and information on the levels of elements in edible nuts is useful to consumers. Determination of the elemental distributions in nuts is not only necessary in evaluating the total dietary intake of the essential elements, but also useful in detecting heavy metal contamination in food. The aim of this study was to determine the mineral contents in edible nuts, and to assess the food safety of nuts in the Beijing market. Levels of Li, Cr, Mn, Co, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Cs, Ba, Pb, Th, and U in 11 types of edible nuts and seeds (macadamia nuts, lotus nuts, pistachios, sunflower seeds, pine nuts, almonds, walnuts, chestnuts, hazelnuts, cashews, and ginkgo nuts) as well as raisins were determined by inductively coupled plasma mass spectrometry (ICP-MS). The accuracy of the method was validated using standard reference materials GBW10014 (cabbage) and GBW10016 (tea). Our results provide useful information for evaluating the levels of trace elements in edible nuts in the Beijing market, will be helpful for improving food safety, and will aid in better protecting consumer interests. Copyright © 2015 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.
Divalent metal (Ca, Cd, Mn, Zn) uptake and interactions in the aquatic insect Hydropsyche sparna.
Poteat, Monica D; Díaz-Jaramillo, Mauricio; Buchwalter, David B
2012-05-01
Despite their ecological importance and prevalent use as ecological indicators, the trace element physiology of aquatic insects remains poorly studied. Understanding divalent metal transport processes at the water-insect interface is important because these metals may be essential (e.g. Ca), essential and potentially toxic (e.g. Zn) or non-essential and toxic (e.g. Cd). We measured accumulation kinetics of Zn and Cd across dissolved concentrations ranging 4 orders of magnitude and examined interactions with Ca and Mn in the caddisfly Hydropsyche sparna. Here, we provide evidence for at least two transport systems for both Zn and Cd, the first of which operates at concentrations below 0.8 μmol l(-1) (and is fully saturable for Zn). We observed no signs of saturation of a second lower affinity transport system at concentrations up to 8.9 μmol l(-1) Cd and 15.3 μmol l(-1) Zn. In competition studies at 0.6 μmol l(-1) Zn and Cd, the presence of Cd slowed Zn accumulation by 35% while Cd was unaffected by Zn. At extreme concentrations (listed above), Cd accumulation was unaffected by the presence of Zn whereas Zn accumulation rates were reduced by 58%. Increasing Ca from 31.1 μmol l(-1) to 1.35 mmol l(-1) resulted in only modest decreases in Cd and Zn uptake. Mn decreased adsorption of Cd and Zn to the integument but not internalization. The L-type Ca(2+) channel blockers verapamil and nifedipine and the plasma membrane Ca(2+)-ATPase inhibitor carboxyeosin had no influence on Ca, Cd or Zn accumulation rates, while Ruthenium Red, a Ca(2+)-ATPase inhibitor, significantly decreased the accumulation of all three in a concentration-dependent manner.
NASA Astrophysics Data System (ADS)
Tanc, Beril; Kaya, Mustafa; Gumus, Lokman; Kumral, Mustafa
2016-04-01
X-ray fluorescence (XRF) spectrometry is widely used for quantitative and semi quantitative analysis of many major, minor and trace elements in geological samples. Some advantages of the XRF method are; non-destructive sample preparation, applicability for powder, solid, paste and liquid samples and simple spectrum that are independent from chemical state. On the other hand, there are some disadvantages of the XRF methods such as poor sensitivity for low atomic number elements, matrix effect (physical matrix effects, such as fine versus course grain materials, may impact XRF performance) and interference effect (the spectral lines of elements may overlap distorting results for one or more elements). Especially, spectral interferences are very significant factors for accurate results. In this study, semi-quantitative analyzed manganese (II) oxide (MnO, 99.99%) was examined. Samples were pelleted and analyzed with XRF spectrometry (Bruker S8 Tiger). Unexpected peaks were obtained at the side of the major Mn peaks. Although sample does not contain Eu element, in results 0,3% Eu2O3 was observed. These result can occur high concentration of MnO and proximity of Mn and Eu lines. It can be eliminated by using correction equation or Mn concentration can confirm with other methods (such as Atomic absorption spectroscopy). Keywords: Spectral Interferences; Manganese (Mn); Europium (Eu); X-Ray Fluorescence Spectrometry Spectrum.
Environmental Exposure to Manganese in Air: Associations ...
Manganese (Mn), an essential element, can be neurotoxic in high doses. This cross-sectional study explored the oognitive function of adults residing in two towns (Marietta and East Liverpool, Ohio, USA) identified as having high levels of environmental airborne Mn from industrial sources. Air-Mn site surface emissions method modeling for total suspended particulate (TSP) ranged from 0.03 to 1.61 µg/m(3) in Marietta and 0.01-6.32 µg/m(3) in East Liverpool. A comprehensive screening test battery of cognitive function, including the domains of abstract thinking, attention/concentration, executive function and memory was administered. The mean age of the participants was 56 years (±10.8 years). Participants were mostly female (59.1) and primarily white (94.6%). Significant relationships (p<0.05) were found between Mn exposure and performance on working and visuospatial memory (e.g., Rey-0 Immediate B3=0.19, Rey-0 Delayed B3=0.16) and verbal skills (e.g., Similarities B3=0.19). Using extensive cognitive testing and computer modeling of 10-plus years of measured air monitoring data, this study suggests that long-term environmental exposure to high levels of air-Mn, the exposure metric of this paper, may result in mild deficits of cognitive function in adult populations. This study addresses research questions under Sustainable and Healthy Communities (2.2.1.6 lessons learned, best practices and stakeholder feedback from community and tribal participa
Yao, Yinan; Xu, Gang; Mou, Dongling; Wang, Junru; Ma, Jinbiao
2012-09-01
To explore the underlying mechanism for the high tolerance to excess manganese stress in the grape species (Vitis vinifera Linn), we observed the subcellular compartment of Mn element, anatomic and biochemical responses of two grape cultivars (Combier and Shuijin) under excess Mn stress in semi-controlled environmental condition. Grape species exhibited typical detoxifying or tolerant mechanism as following: first, majority of Mn element accumulated in leaf was excluded into cell wall or comparted into cell vacuole to avoid cellular Mn-toxicity; Mn and other elements were also secreted into leaf surface or deposited in vascular wall; second, only small amount of Mn was located in cellular organ, and excess Mn in chloroplast was detoxified by depositing in starch granule, which serve as a novel detoxifying strategy; additionally, the cellular Mn was further chelated by phytochelatins; third, to quench the toxic oxygen radicals, the total phenolic compounds and polyamine (putrescine and spermidine) were enhanced. Although the obvious symptom of Mn-toxicity was not detected, we observed the dessication symptom under high level of Mn treatment in the two cultivars, such as sunk stomata, thickened palisade tissue, enhanced palisade/spongy tissue ratio and abscisic acid concentration. The growth inhibition and dessication symptom in the two grape cultivars could be largely associated with osmotic stress resulted from high concentration of leaf Mn. Copyright © 2012 Elsevier Ltd. All rights reserved.
A global portrait of the manganese industry-A socioeconomic perspective.
Clarke, Carl; Upson, Sophie
2017-01-01
In 2013/14, Risk & Policy Analysts Ltd undertook the first global study on the socio-economic value of Manganese (Mn). Based on a top-down analysis of the key supply chains for Mn, it outlined the economic importance of Mn ore and alloys in terms of their direct and indirect economic value, as well as their effects on employment (jobs and wages). In 2013, global production of Mn ore was worth an estimated US$ 10.2-11.1 billion. Taking into account multiplier effects in the supply chain, the total economic value of Mn ore production globally in 2013 is estimated at US$ 21-23 billion. Direct employment related to Mn ore production is estimated at 44,000-78,000 people worldwide (with total wages estimated at US$ 2.7-4.6 billion per year), plus 33,000-59,000 jobs are created through indirect and induced employment effects. Meanwhile, the production of Mn alloy contributes around US$ 23 billion per year to the global economy (based on global production of around 19 million mt and 2013 market prices). In total, the value of Mn alloy production worldwide, taking into account downstream multiplier effects in the supply chain, is estimated at around US$ 146 billion per year. Direct employment related to Mn alloy production is estimated at 67,000-86,000 jobs worldwide (with total wages estimated at US$ 613-796 million per year), plus 217,000-278,000 jobs created through indirect & induced employment effects. In addition, numerous industries/sectors, products and/or applications are heavily dependent on Mn production and use. Mn is a critical raw material input and alloying element for the steel industry, for which there are no known alternatives. It can be argued that without Mn the entire steel industry (based on the current physico-chemical properties of steel) would not exist and, as a result, the value of the steel industry - an estimated US$ 964 billion to US$ 1446 billion in 2013 - is reliant on the continued supply and use of Mn. Besides its use in steel, Mn is also a critical element in the manufacture of dry cell and other batteries (notably, those used in electric vehicles) and the production of aluminium alloys (e.g. for beverage cans). Mn is also a micronutrient needed for plant growth and plays a vital role in agricultural production. It is also essential for maintaining the health and well-being of the human body and is used in food supplements and medicines. Furthermore, its use in developing applications (such as advanced steel products in automotive applications and batteries for electric vehicles) has the potential to provide socio-economic and environmental benefits in the future through enhancing vehicle safety and reducing fuel use/emissions. Copyright © 2016 Elsevier B.V. All rights reserved.
Ab initio study of Fe{sub 2}MnZ (Al, Si, Ge) Heusler alloy using GGA approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vivek Kumar, E-mail: vivek.jain129@gmail.com; Jain, Vishal, E-mail: vivek.jain129@gmail.com; Lakshmi, N., E-mail: vivek.jain129@gmail.com
Density functional theory based on FP-LAPW method used to investigate the electronic structure of Fe{sub 2}MnZ, shows that the total spin magnetic moment shows a trend consistent with the Slater–Pauling curve. The Fe and Mn magnetic moment depend on choice of Z element although the magnetic moment of Z element is negative and less than 0.1 μ{sub B}. Spin polarization calculations evidence 100% spin polarization for Fe{sub 2}MnSi. Fe{sub 2}MnAl and Fe{sub 2}MnGe show metallic behavior with 93%, 98% spin polarization.
Trace Elements in Manganese Minerals as Potential Biosignatures on Mars
NASA Astrophysics Data System (ADS)
Lanza, N.; Clegg, S. M.; Cousin, A.; Forni, O.; Kirk, M. F.; Lamm, S. N.; Ollila, A.; Wiens, R. C.
2017-12-01
Observations from the Curiosity rover in Gale crater, Mars have shown the presence of high abundances of manganese (>3 wt% MnO) within sedimentary rocks throughout the traverse. Such high Mn abundances point to the past presence of abundant liquid water and strongly oxidizing conditions. On Earth, these types of environments are almost always habitable and are frequently inhabited by microbes. Given its close association with life and habitable environments on Earth, manganese has long been considered a potential biosignature for Mars. However, high concentrations of martian Mn have only recently been observed. In addition to the observations in Gale crater, high abundances of Mn have also been observed in Endeavor crater by the Opportunity rover and in the paired martian meteorites NWA 7034 and 7533 (`Black Beauty'), suggesting that Mn deposits may be more widespread on Mars than previously thought. The goal of this work is to determine whether there are unique signatures from rover payload instruments that can distinguish Mn-rich deposits as biogenic in origin (i.e., produced by life) from abiogenic Mn deposits. Importantly, Mn-oxides are known to scavenge trace metals from water because of their surface charge properties. We hypothesize that the presence and abundance of specific trace elements are the critical, distinguishing evidence for identifying the biogenic origin of Mn-bearing materials. A suite of natural rocks containing Mn-rich minerals with a range of Mn redox states was selected for analysis with laser-induced breakdown spectroscopy (LIBS). Samples with a biogenic origin had mixed valence redox states between Mn3+ and Mn4+ as inferred by mineralogy. Trace elements Ba, Li, Sr, and Rb were quantified and the presence or absence of Zn and Cu was ascertained by examining key LIBS peaks. Results show that samples with a known microbial origin had moderate Mn abundances >30 wt% MnO and higher Li and Ba. These results suggest that high Mn abundance alone is not sufficient evidence of a biosignatures. However, the presence of trace elements may help to infer the redox state of Mn, which may in turn point to samples that are more likely to have a biogenic origin.
TEM Study of Manganese Biosorption by Cyanobacterium Synechocystis 6803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dohnalkova, Alice; Bilskis, Christina L.; Kennedy, David W.
2006-09-01
The capture of solar energy and its conversion into chemical energy in photosynthetic organisms involves a series of charge reactions across photosynthetic membranes. Oxygen is generated by a proton-electron coupling in photosystem II (PSII) during a water oxidation process where hydrogen is extracted from water terminally bound to a Mn4Ca1Clx inorganic cluster [1]. Manganese is, therefore, an essential catalytic element for photosynthetic growth in cyanobacteria and plants. Since bioavailability of this micronutrient largely depends on the Mn concentration in natural environments, cells have to manage its uptake in order to endure Mn fluctuations. Previous studies have shown that metal biosorptionmore » in cyanobacteria can occur by passive adsorption to their outer membrane (pool A), and by metabolically mediated internal uptake [2]. The fresh water cyanobacterium Synechocystis 6803 has been widely used as a model organism for studying photosynthetic processes. This Gram-negative organism has an intricate architecture of internal thylakoid membranes where photosynthetic electron transfer takes place. Here we report on the spatial distribution of Mn biosorbed by cells in both external pool A and intracellular pool B, as observed and analyzed by methods of TEM. The Synechocystis 6803 cells were cultured in BG11 medium at 30 C with continuous irradiance and constant air bubbling. To determine the influence of solid or liquid Mn substrate and its oxidation state on the cell biosorption ability, cells were exposed to two Mn substrates: 1mM solution of MnCl2, and 0.5mM suspension of nanocrystalline MnO2. Cells were incubated with the respective Mn solutions for 48 hours, harvested, and processed using a modified protocol for plastic embedding of bacterial samples containing minerals that was developed in our laboratory [3]. In order to preserve the fragile redox conditions within the cells, all the common heavy metal-based fixatives and stains were omitted, resulting in cells with very low contrast produced principally by electron-dense manganese precipitates. Thin sections were imaged and analyzed using JEOL 2010 HRTEM coupled with EDS (Oxford) and EELS (Gatan) systems. Manganese uptake was measured using a colorimetric method. Cells incubated with Mn solutions were able to take up about 150uM of Mn(II) or Mn(IV) in 48 hours. The predominant accumulation of Mn was associated with the outer membrane for both Mn substrates. Massive deposits seemed to be related in a large extent to the external polymeric substances (EPS) as shown in Fig. 1A-C. Elemental analyses of these precipitates revealed a signal consistent with manganese phosphate. The potential of EPS such as polysaccharides for biosorption or reduction of metals has been described [4], however, the fact that Mn bound to the EPS withstood multiple washes during TEM sample processing is remarkable. From our work with Gram-negative soil bacteria, we hypothesized that the periplasm, an area between the outer and plasma membrane, might be the storage space for internal Mn in pool B. This phenomenon was not observed at any time point for either culture exposed to the Mn. Instead, thin layers of Mn deposits were often found lining the outer and plasma membrane (F). In the MnCl2 solution only, we also observed fine deposits of Mn precipitates along the thylakoid membranes deep inside the cells (Fig. E). Localization of Mn precipitation sites in Synechocystis has important implications for better understanding of the Mn transport and storage processes within cyanobacterial cells, as well as of metal precipitation, solubilization and cycling in the environment.« less
Memon, Zainab Manzoor; Yilmaz, Erkan; Shah, Afsheen Mushtaque; Sahin, Ugur; Kazi, Tasneem Gul; Devrajani, Bikha Ram; Soylak, Mustafa
2017-12-01
Pulmonary tuberculosis (PTB) is a serious public threat throughout the world. PTB and smoking have a strong correlation. Malnutrition, poverty, addiction, overcrowding, illiteracy, unemployment, and poor hygienic conditions are the collective aspects for the disease progress. Pakistan is the fifth among 22 high tuberculosis (TB) burden countries and the fourth regarding multidrug-resistant tuberculosis (MDR-TB). The aim of study was to determine the concentration of essential and toxic elements from blood samples of smoker and nonsmoker PTB patients by inductively coupled plasma mass spectrometry (ICP-MS) followed by microwave acid digestion and compared with control subjects (n = 30). Eighty PTB patients were selected from different hospitals with age ranging 20-70 years. It was interpreted that the mean age among males and females was found to be 35.6 ± 1.4 and 33.5 ± 1.2, respectively, and the male patients were highly affected in contrast to females. Essential elements such as Mn, Fe, Zn, and Se were statistically found to be lower while Ca, Co, and Cu were found to be higher compared to the control group (p = 0.00). However, toxic elements like Al, Cr, Ni, As, Cd, and Pb were statistically elevated in smokers than nonsmokers. Further research is needed to understand the degree of the impact of essential trace elements on treatment outcome (follow-up) followed by balanced healthy nutritional supplementation along with medical therapy, consequently improving the pulmonary tuberculosis outcome and survival as well.
Ribeiro, Roberta de Oliveira Resende; Mársico, Eliane Teixeira; de Jesus, Edgar Francisco Oliveira; da Silva Carneiro, Carla; Júnior, Carlos Adam Conte; de Almeida, Eduardo; Filho, Virgílio Franco do Nascimento
2014-04-01
Trace and minor elements in Brazilian honey were analyzed by total reflection X-ray fluorescence spectroscopy. Up to 12 elements (K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, and Sr) were detected in 160 samples of honey from 4 regions of Rio de Janeiro State (Barra Mansa, Teresópolis, northern and southern Nova Friburgo). The results showed the samples from Teresópolis had higher rates of essential and nonessential elements than samples from the other regions, except for Ni. K and Ca were the most abundant elements in all samples, in the range of 116.5 to 987.0 μg g(-1) . Ni, Cu, Zn, Se, and Sr were identified in small concentrations (0.01 to 12.08 μg g(-1) ) in all samples, indicating a low level of contamination in all the regions. © 2014 Institute of Food Technologists®
Development and Evaluation of a Manganese and Iron Food Frequency Questionnaire for Pediatrics
Zipkin, Frida B; Falciglia, Grace A; Kuhnell, Pierce; Haynes, Erin N
2017-01-01
Manganese (Mn) is an essential nutrient, but overexposure can lead to neurotoxicity. Given the essentiality of Mn in the diet, particularly during children’s growth and development, it is imperative to quantify dietary Mn intake in populations that may be exposed to industrial sources of Mn. Dietary absorption of Mn is inversely associated with iron (Fe) stores, yet there is currently no food frequency questionnaire (FFQ) to assess dietary Mn and Fe intake. The study objective was to develop and evaluate the validity of a FFQ to measure dietary Mn and Fe intake in pediatrics by comparing the estimated intakes of Mn and Fe with biomarkers: Mn in blood and hair and Fe in serum. This study utilized a subset of the Communities Actively Researching Exposure Study (CARES) population residing in Guernsey County, Ohio. Dietary Mn was not correlated with either blood or hair Mn; however, dietary Mn and serum ferritin were significantly correlated, with a correlation coefficient of 0.51, p < 0.01. Moreover, dietary Fe and serum ferritin were also significantly correlated, with a correlation coefficient of 0.51, p < 0.01. This FFQ is a valid measurement tool for Fe intake as measured by serum ferritin; however, Mn intake did not correlate with either blood or hair Mn. PMID:28906436
Development and Evaluation of a Manganese and Iron Food Frequency Questionnaire for Pediatrics.
Zipkin, Frida B; Falciglia, Grace A; Kuhnell, Pierce; Haynes, Erin N
2017-09-14
Manganese (Mn) is an essential nutrient, but overexposure can lead to neurotoxicity. Given the essentiality of Mn in the diet, particularly during children's growth and development, it is imperative to quantify dietary Mn intake in populations that may be exposed to industrial sources of Mn. Dietary absorption of Mn is inversely associated with iron (Fe) stores, yet there is currently no food frequency questionnaire (FFQ) to assess dietary Mn and Fe intake. The study objective was to develop and evaluate the validity of a FFQ to measure dietary Mn and Fe intake in pediatrics by comparing the estimated intakes of Mn and Fe with biomarkers: Mn in blood and hair and Fe in serum. This study utilized a subset of the Communities Actively Researching Exposure Study (CARES) population residing in Guernsey County, Ohio. Dietary Mn was not correlated with either blood or hair Mn; however, dietary Mn and serum ferritin were significantly correlated, with a correlation coefficient of 0.51, p < 0.01. Moreover, dietary Fe and serum ferritin were also significantly correlated, with a correlation coefficient of 0.51, p < 0.01. This FFQ is a valid measurement tool for Fe intake as measured by serum ferritin; however, Mn intake did not correlate with either blood or hair Mn.
Austin, Christine; Gennings, Chris; Tammimies, Kristiina; Bölte, Sven; Arora, Manish
2017-01-01
Environmental exposures to essential and toxic elements may alter health trajectories, depending on the timing, intensity, and mixture of exposures. In epidemiologic studies, these factors are typically analyzed as a function of elemental concentrations in biological matrices measured at one or more points in time. Such an approach, however, fails to account for the temporal cyclicity in the metabolism of environmental chemicals, which if perturbed may lead to adverse health outcomes. Here, we conceptualize and apply a non-linear method–recurrence quantification analysis (RQA)–to quantify cyclical components of prenatal and early postnatal exposure profiles for elements essential to normal development, including Zn, Mn, Mg, and Ca, and elements associated with deleterious health effects or narrow tolerance ranges, including Pb, As, and Cr. We found robust evidence of cyclical patterns in the metabolic profiles of nutrient elements, which we validated against randomized twin-surrogate time-series, and further found that nutrient dynamical properties differ from those of Cr, As, and Pb. Furthermore, we extended this approach to provide a novel method of quantifying dynamic interactions between two environmental exposures. To achieve this, we used cross-recurrence quantification analysis (CRQA), and found that elemental nutrient-nutrient interactions differed from those involving toxicants. These rhythmic regulatory interactions, which we characterize in two geographically distinct cohorts, have not previously been uncovered using traditional regression-based approaches, and may provide a critical unit of analysis for environmental and dietary exposures in epidemiological studies. PMID:29112980
Chondritic Mn/Na ratio and limited post-nebular volatile loss of the Earth
NASA Astrophysics Data System (ADS)
Siebert, Julien; Sossi, Paolo A.; Blanchard, Ingrid; Mahan, Brandon; Badro, James; Moynier, Frédéric
2018-03-01
The depletion pattern of volatile elements on Earth and other differentiated terrestrial bodies provides a unique insight as to the nature and origin of planetary building blocks. The processes responsible for the depletion of volatile elements range from the early incomplete condensation in the solar nebula to the late de-volatilization induced by heating and impacting during planetary accretion after the dispersion of the H2-rich nebular gas. Furthermore, as many volatile elements are also siderophile (metal-loving), it is often difficult to deconvolve the effect of volatility from core formation. With the notable exception of the Earth, all the differentiated terrestrial bodies for which we have samples have non-chondritic Mn/Na ratios, taken as a signature of post-nebular volatilization. The bulk silicate Earth (BSE) is unique in that its Mn/Na ratio is chondritic, which points to a nebular origin for the depletion; unless the Mn/Na in the BSE is not that of the bulk Earth (BE), and has been affected by core formation through the partitioning of Mn in Earth's core. Here we quantify the metal-silicate partitioning behavior of Mn at deep magma ocean pressure and temperature conditions directly applicable to core formation. The experiments show that Mn becomes more siderophile with increasing pressure and temperature. Modeling the partitioning of Mn during core formation by combining our results with previous data at lower P-T conditions, we show that the core likely contains a significant fraction (20 to 35%) of Earth's Mn budget. However, we show that the derived Mn/Na value of the bulk Earth still lies on the volatile-depleted end of a trend defined by chondritic meteorites in a Mn/Na vs Mn/Mg plot, which tend to higher Mn/Na with increasing volatile depletion. This suggests that the material that formed the Earth recorded similar chemical fractionation processes for moderately volatile elements as chondrites in the solar nebula, and experienced limited post nebular volatilization.
Harangi, Sándor; Baranyai, Edina; Fehér, Milán; Tóth, Csilla Noémi; Herman, Petra; Stündl, László; Fábián, István; Tóthmérész, Béla; Simon, Edina
2017-05-01
Many oxbows are contaminated by Fe and Mn as a consequence of the elemental concentration of sediment and water originating from the Upper Tisza Region of Hungary. The phenomenon is partly caused by anthropogenic activities and mainly due to the geochemical characteristics of the region. The effects of Fe and Mn on the aquatic ecosystem of these wetlands were investigated in a model experiments in this study. Survival, individual body weight and the elemental concentrations of organs were determined in common carp (Cyprinus carpio) juveniles reared in Fe and Mn contaminated media (treatment 1: Fe 0.57 mg L -1 , Mn 0.29 mg L -1 , treatment 2: Fe 0.57 mg L -1 , Mn 0.625 mg L -1 , treatment 3: Fe 1.50 mg L -1 , Mn 0.29 mg L -1 , treatment 4: Fe 1.50 mg L -1 , Mn 0.625 mg L -1 and control: Fe 0.005 mg L -1 , Mn 0.003 mg L -1 ), for rearing time of 49 days. The treatment with Fe and Mn did not have any effect on the survival data and individual body weight in the levels tested. The highest concentration of Fe and Mn was found in the liver and brain of carp juveniles, while the lowest concentration of these elements occurred in the muscular tissue and gills. The treatment where Fe and Mn were applied in the highest concentrations resulted in a statistically higher level of these elements in the brain, grills and muscle tissues. The treatment where only Mn was present in the highest concentration caused increased level of Mn only in the liver. We found metal accumulation in almost every organ; however, the applied concentrations and exposure time did not affect the survival and average body weight of carp juveniles.
Dissolved trace elements in a nitrogen-polluted river near to the Liaodong Bay in Northeast China.
Bu, Hongmei; Song, Xianfang; Guo, Fen
2017-01-15
Dissolved trace element concentrations (Ba, Fe, Mn, Si, Sr, and Zn) were investigated in the Haicheng River near to the Liaodong Bay in Northeast China during 2010. Dissolved Ba, Fe, Mn, and Sr showed significant spatial variation, whereas dissolved Fe, Mn, and Zn displayed seasonal variations. Conditions such as water temperature, pH, and dissolved oxygen were found to have an important impact on redox reactions involving dissolved Ba, Fe, and Zn. Dissolved Fe and Mn concentrations were regulated by adsorption or desorption of Fe/Mn oxyhydroxides and the effects of organic carbon complexation on dissolved Ba and Sr were found to be significant. The sources of dissolved trace elements were found to be mainly from domestic sewage, industrial waste, agricultural surface runoff, and natural origin, with estimated seasonal and annual river fluxes established as important inputs of dissolved trace elements from the Haicheng River into the Liaodong Bay or Bohai Sea. Copyright © 2016 Elsevier Ltd. All rights reserved.
Laird, Brian D; Chan, Hing Man
2013-08-01
Fish, shellfish, wild game, and seaweed are important traditional foods that are essential to the physical and cultural well-being of Indigenous peoples in Canada. The goal of this study was to measure the concentration and bioaccessibility of As, Cd, Hg, Se, Cu and Mn in 45 commonly consumed traditional foods collected by harvested by the First Nations Food, Nutrition, and Environment Study (FNFNES) from 21 First Nations communities in British Columbia, Canada, in 2008-2009. A significant and negative correlation was observed between Hg concentration and Hg bioaccessibility. Metal bioaccessibility tended to be high; median values ranging between 52% (Mn) and 83% (Cu). The notable exceptions were observed for As in wild game organs (7-19%) and rabbit meat (4%) as well as Hg in salmon eggs (10%). Results of Principal Components Analysis confirmed the unique pattern of bioaccessibility of As and Hg in traditional foods, suggesting that, unlike other metals, As and Hg bioaccessibility are not simply controlled by food digestibility under the operating conditions of the in vitro model. These data provide useful information for dietary contaminant risk assessment and intake assessments of essential trace elements. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Narita, Hideki; Ikhlas, Muhammad; Kimata, Motoi; Nugroho, Agustinus Agung; Nakatsuji, Satoru; Otani, YoshiChika
2017-11-01
Toward realizing a thermopile made of the chiral anti-ferromagnet Mn3Sn, focused ion beam (FIB) lithography was employed to microfabricate a thermoelectric element consisting of a Ta/Al2O3/Mn3Sn layered structure. In this device, the Ta layer acts as a heater producing Joule heat diffusing across the Al2O3 insulating layer into the thin Mn3Sn layer. The measured Nernst signal exhibits a clear hysteresis in an applied temperature gradient and magnetic field at 300 K, and its magnitude is proportional to the square of the electrical current applied to the Ta heater. The spontaneous, zero field voltage signal in the device is of the order of a few μV, which is almost the same order of magnitude as observed in the bulk single-crystal Mn3Sn under a temperature gradient. The anomalous Nernst coefficient SANE of the microfabricated element was determined using a temperature gradient simulated by finite-element modeling. The obtained value of SANE is 0.27 μV/K, which is in good agreement with that of the reported experimental value of SANE (0.3 μV/K) for bulk single-crystal Mn3Sn. This result indicates that FIB microfabrication does not significantly alter the thermoelectric properties of bulk Mn3Sn. As the chiral antiferromagnet produces almost no stray field, our study opens the avenue for the fabrication of an efficient thermopile by densely packing the microfabricated antiferromagnetic elements.
NASA Astrophysics Data System (ADS)
Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee
2017-02-01
A facile, cost effective and additive-free successive ionic layer adsorption and reaction (SILAR) technique is demonstrated to develop layer-by-layer (LbL) assembly of reduced graphene oxide (RGO) and MnO2 (MnO2-RGOSILAR) on a stainless steel current collector, for designing light-weight and small size supercapacitor electrode. The transmission electron microscopy and field emission scanning electron microscopy images shows uniform distribution of RGO and MnO2 in the MnO2-RGOSILAR. The LbL (MnO2-RGOSILAR) demonstrates improved physical and electrochemical properties over the hydrothermally prepared MnO2-RGO (MnO2-RGOHydro). The electrochemical environment of MnO2-RGOSILAR is explained by constant phase element in the high frequency region, and a Warburg element in the low frequency region in the Z-View fitted Nyquist plot. The equivalent circuit of the MnO2-RGOHydro, displays the co-existence of EDL and constant phase element, indicating inhomogeneous distribution of MnO2 and RGO by the hydrothermal technique. An asymmetric supercapacitor device is designed with MnO2-RGOSILAR as positive electrode, and thermally reduced GO (TRGO) as negative electrode. The designed cell exhibits high energy density of ∼88 Wh kg-1, elevated power density of ∼23,200 W kg-1, and ∼79% retention in capacitance after 10,000 charge-discharge cycles.
Konieczynski, Pawel; Viapiana, Agnieszka; Lysiuk, Roman; Wesolowski, Marek
2018-03-01
Infusions prepared from medicinal herbs that are rich in flavonoids are very popular herbal remedies in societies of Eastern Europe. Therefore, the content of essential elements together with total flavonoids was analyzed in 65 commercially available samples of herbal drugs originating from Ukraine, Romania, and Belarus. The results showed that metallic elements (in mg kg -1 d.w.) have occurred in the following order: Fe > Mn > Zn > Cu, both for total and water-extractable species. Total flavonoids were determined in the range from 10.0 to 191.8 mg g -1 d.w. Several significant correlations have been found between the analytes, especially among water-extractable Fe with other metals, and total flavonoids and Fe, Zn, and Mn. Analysis of variance has revealed significant differences among studied samples due to their origin from different countries, especially between Belarussian samples and others. Differences owing to belonging to various plant species were also found, as it was noticed in the case of Polygoni aviculare herba in comparison with other botanical plant species. Moreover, multivariate statistical techniques, such as cluster analysis (CA) and principal component analysis (PCA) were used to gather herbal drugs based on similarity of chemical composition. CA grouped the samples into clusters with similar level of elements and total flavonoid contents, and PCA has indicated Hyperici herba, Tiliae flores, and Crataegi fructus as herbal remedies with close concentration of studied elements and flavonoids.
Cellular manganese content is developmentally regulated in human dopaminergic neurons
NASA Astrophysics Data System (ADS)
Kumar, Kevin K.; Lowe, Edward W., Jr.; Aboud, Asad A.; Neely, M. Diana; Redha, Rey; Bauer, Joshua A.; Odak, Mihir; Weaver, C. David; Meiler, Jens; Aschner, Michael; Bowman, Aaron B.
2014-10-01
Manganese (Mn) is both an essential biological cofactor and neurotoxicant. Disruption of Mn biology in the basal ganglia has been implicated in the pathogenesis of neurodegenerative disorders, such as parkinsonism and Huntington's disease. Handling of other essential metals (e.g. iron and zinc) occurs via complex intracellular signaling networks that link metal detection and transport systems. However, beyond several non-selective transporters, little is known about the intracellular processes regulating neuronal Mn homeostasis. We hypothesized that small molecules that modulate intracellular Mn could provide insight into cell-level Mn regulatory mechanisms. We performed a high throughput screen of 40,167 small molecules for modifiers of cellular Mn content in a mouse striatal neuron cell line. Following stringent validation assays and chemical informatics, we obtained a chemical `toolbox' of 41 small molecules with diverse structure-activity relationships that can alter intracellular Mn levels under biologically relevant Mn exposures. We utilized this toolbox to test for differential regulation of Mn handling in human floor-plate lineage dopaminergic neurons, a lineage especially vulnerable to environmental Mn exposure. We report differential Mn accumulation between developmental stages and stage-specific differences in the Mn-altering activity of individual small molecules. This work demonstrates cell-level regulation of Mn content across neuronal differentiation.
Metal characterization of white hawthorn organs and infusions.
Juranović Cindrić, Iva; Zeiner, Michaela; Konanov, Darija Mihajlov; Stingeder, Gerhard
2015-02-18
Hawthorn is one of the most commonly used European and North American phytopharmaceuticals. Because there is no information on metals in seeds, and only rare data for leaves and flowers, the aim of the present study was elemental analysis of the white hawthorn (Crataegus monogyna) by inductively coupled plasma emission spectrometry (ICP-AES) or inductively coupled plasma mass spectrometry (ICP-MS) after digestion in a microwave-assisted system. The limits of detection are below 2 μg/g for ICP-AES and 0.5 μg/g for ICP-MS. Hawthorn leaves and flowers contain essential elements at concentrations (mean values, RSD 2-8%) in mg/g of Ca, 1-4; K, 4-5; Mg, 1-2; and Na, <0.2); and at μg/g levels of Ba, 1-10; Co, <0.16; Cr, <1.4; Cu, 0.6-7; Fe, 1-37; Li, <0.5; Mn, 1-13; Mo, <0.17; Ni, <0.6; Sr, 0.2-2; and Zn, 1-31. Toxic elements were found in low quantities: As (<0.04), Cd (0.04-0.1), and Pb (0.1-2). Up to 10% of the metals is extracted into the infusions. The analyzed plant parts and infusions contain essential elements justifying its use as a medicinal plant, whereas the low quantities of harmful elements will not pose any risk to humans when consumed.
Measurement of trace elements in tree rings using the PIXE method
NASA Astrophysics Data System (ADS)
Aoki, Toru; Katayama, Yukio; Kagawa, Akira; Koh, Susumu; Yoshida, Kohji
1998-03-01
Standard materials were prepared in order to calculate element concentrations in tree samples using the particle induced X-ray emission (PIXE) method. Five standard solutions (1) Ti, Fe, Cu, As, Rb, Sr; (2) Ca, V, Co, Zn, As, Rb; (3) Ti, Mn, Ni, As, Sr; (4) K, Mn, Co, As, Rb, Sr; and (5) Ca, Mn, Cu, As, Rb, Sr, were added to filter papers. The dried filter papers were used as standard samples. Pellets of Pepperbush leaves (National Institute for Environmental Studies (NIES)) and Peach leaves (National Institute of Standards and Technology (NIST)) were used as references. The peak counts of Ca, Mn, Cu, Zn, Rb, and Sr in samples taken from a kaki ( Diospros kaki Thunb.) were measured and the concentrations (ppm) of the elements were calculated using the yield curve obtained from the standard filter papers. The concentrations of Mn, Zn, Rb, and Ca were compared with the data obtained from a separate INAA analysis. Concentrations of Mn, Zn, and Ca obtained by both methods were almost the same, but the concentrations of Rb differed slightly. The amounts of trace elements in samples taken from a sugi ( Cryptomeria japonica D. Don) were also measured.
Life Testing of Yb14MnSb11 for High Performance Thermoelectric Couples
NASA Technical Reports Server (NTRS)
Paik, Jong-Ah; Brandon, Erik; Caillat, Thierry; Ewell, Richard; Fleurial, Jean-Pierre
2011-01-01
The goal of this study is to verify the long term stability of Yb14MnSb11 for high performance thermoelectric (TE) couples. Three main requirements need to be satisfied to ensure the long term stability of thermoelectric couples: 1) stable thermoelectric properties, 2) stable bonding interfaces, and 3) adequate sublimation suppression. The efficiency of the couple is primarily based on the thermoelectric properties of the materials selected for the couple. Therefore, these TE properties should exhibit minimal degradation during the operating period of the thermoelectric couples. The stability of the bonding is quantified by low contact resistances of the couple interfaces. In order to ensure high efficiency, the contact resistances of the bonding interfaces should be negligible. Sublimation suppression is important because the majority of thermoelectric materials used for power generation have peak figures of merit at temperatures where sublimation rates are high. Controlling sublimation is also essential to preserve the efficiency of the couple. During the course of this research, three different life tests were performed with Yb14MnSb11 coupons. TE properties of Yb14MnSb11 exhibited no degradation after 6 months of aging at 1273K, and the electrical contact resistance between a thin metallization layer and the Yb14MnSb11 remained negligible after 1500hr aging at 1273K. A sublimation suppression layer for Yb14MnSb11 was developed and demonstrated for more than 18 months with coupon testing at 1273K. These life test data indicate that thermoelectric elements based on Yb14MnSb11 are a promising technology for use in future high performance thermoelectric power generating couples.
Alaimo, Agustina; Gorojod, Roxana M; Kotler, Mónica L
2011-08-01
Manganese (Mn) is a trace element known to be essential for maintaining the proper function and regulation of many biochemical and cellular reactions. However, chronic exposure to high levels of Mn in occupational or environmental settings can lead to its accumulation in the brain resulting in a degenerative brain disorder referred to as Manganism. Astrocytes are the main Mn store in the central nervous system and several lines of evidence implicate these cells as major players in the role of Manganism development. In the present study, we employed rat astrocytoma C6 cells as a sensitive experimental model for investigating molecular mechanisms involved in Mn neurotoxicity. Our results show that C6 cells undergo reactive oxygen species-mediated apoptotic cell death involving caspase-8 and mitochondrial-mediated pathways in response to Mn. Exposed cells exhibit typical apoptotic features, such as chromatin condensation, cell shrinkage, membrane blebbing, caspase-3 activation and caspase-specific cleavage of the endogenous substrate poly (ADP-ribose) polymerase. Participation of the caspase-8 dependent pathway was assessed by increased levels of FasL, caspase-8 activation and Bid cleavage. The involvement of the mitochondrial pathway was demonstrated by the disruption of the mitochondrial membrane potential, the opening of the mitochondrial permeability transition pore, cytochrome c release, caspase-9 activation and the increased mitochondrial levels of the pro-apoptotic Bcl-2 family proteins. In addition, our data also shows for the first time that mitochondrial fragmentation plays a relevant role in Mn-induced apoptosis. Taking together, these findings contribute to a deeper elucidation of the molecular signaling mechanisms underlying Mn-induced apoptosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Flow of essential elements in subcellular fractions during oxidative stress.
Lago, Larissa; Nunes, Emilene A; Vigato, Aryane A; Souza, Vanessa C O; Barbosa, Fernando; Sato, João R; Batista, Bruno L; Cerchiaro, Giselle
2017-02-01
Essential trace elements are commonly found in altered concentrations in the brains of patients with neurodegenerative diseases. Many studies in trace metal determination and quantification are conducted in tissue, cell culture or whole brain. In the present investigation, we determined by ICP-MS Fe, Cu, Zn, Ca, Se, Co, Cr, Mg, and Mn in organelles (mitochondria, nuclei) and whole motor neuron cell cultured in vitro. We performed experiments using two ways to access oxidative stress: cell treatments with H 2 O 2 or Aβ-42 peptide in its oligomeric form. Both treatments caused accumulation of markers of oxidative stress, such as oxidized proteins and lipids, and alteration in DNA. Regarding trace elements, cells treated with H 2 O 2 showed higher levels of Zn and lower levels of Ca in nuclei when compared to control cells with no oxidative treatments. On the other hand, cells treated with Aβ-42 peptide in its oligomeric form showed higher levels of Mg, Ca, Fe and Zn in nuclei when compared to control cells. These differences showed that metal flux in cell organelles during an intrinsic external oxidative condition (H 2 O 2 treatment) are different from an intrinsic external neurodegenerative treatment.
Banakar, V.K.; Hein, J.R.; Rajani, R.P.; Chodankar, A.R.
2007-01-01
The major element relationships in ferromanganese (Fe-Mn) crusts from Afanasiy-Nikitin seamount (ANS), eastern equatorial Indian Ocean, appear to be atypical. High positive correlations (r = 0.99) between Mn/Co and Fe/Co ratios, and lack of correlation of those ratios with Co, Ce, and Ce/Co, indicate that the ANS Fe-Mn crusts are distinct from Pacific seamount Fe-Mn crusts, and reflect region-specific chemical characteristics. The platinum group elements (PGE: Ir, Ru, Rh, Pt, and Pd) and Au in ANS Fe-Mn crusts are derived from seawater and are mainly of terrestrial origin, with a minor cosmogenic component. The Ru/Rh (0.5-2) and Pt/Ru ratios (7-28) are closely comparable to ratios in continental basalts, whereas Pd/Ir ratios exhibit values ( 0.75) correlations between water depth and Mn/Co, Fe/Co, Ce/Co, Co, and the PGEs. Fractionation of the PGE-Au from seawater during colloidal precipitation of the major-oxide phases is indicated by well-defined linear positive correlations (r > 0.8) of Co and Ce with Ir, Ru, Rh, and Pt; Au/Co with Mn/Co; and by weak or no correlations of Pd with water depth, Co-normalized major-element ratios, and with the other PGE (r < 0.5). The strong enrichment of Pt (up to 1 ppm) relative to the other PGE and its positive correlations with Ce and Co demonstrate a common link for the high concentrations of all three elements, which likely involves an oxidation reaction on the Mn-oxide and Fe-oxyhydroxide surfaces. The documented fractionation of PGE-Au and their positive association with redox sensitive Co and Ce may have applications in reconstructing past-ocean redox conditions and water masses.
Anderson, Joel G.; Fordahl, Steve C.; Cooney, Paula T.; Weaver, Tara L.; Colyer, Christa L.; Erikson, Keith M.
2011-01-01
Unlike other essential trace elements (e.g., zinc and iron) it is the toxicity of manganese (Mn) that is more common in human populations than its deficiency. Data suggest alterations in dopamine biology may drive the effects associated with Mn neurotoxicity, though recently γ-aminobutyric acid (GABA) has been implicated. In addition, iron deficiency (ID), a common nutritional problem, may cause disturbances in neurochemistry by facilitating accumulation of Mn in the brain. Previous data from our lab have shown decreased brain tissue levels of GABA as well as decreased 3H-GABA uptake in synaptosomes as a result of Mn exposure and ID. These results indicate a possible increase in the concentration of extracellular GABA due to alterations in expression of GABA transport and receptor proteins. In this study weanling-male Sprague-Dawley rats were randomly placed into one of four dietary treatment groups: control (CN; 35 mg Fe/kg diet), iron-deficient (ID; 6 mg Fe/kg diet), CN with Mn supplementation (via the drinking water; 1 g Mn/L) (CNMn), and ID with Mn supplementation (IDMn). Using in vivo microdialysis, an increase in extracellular GABA concentrations in the striatum was observed in response to Mn exposure and ID although correlational analysis reveals that extracellular GABA is related more to extracellular iron levels and not Mn. A diverse effect of Mn exposure and ID was observed in the regions examined via Western blot and RT-PCR analysis, with effects on mRNA and protein expression of GAT-1, GABAA, and GABAB differing between and within the regions examined. For example, Mn exposure reduced GAT-1 protein expression by approximately 50% in the substantia nigra, while increasing mRNA expression approximately four-fold, while in the caudate putamen mRNA expression was decreased with no effect on protein expression. These data suggest that Mn exposure results in an increase in extracellular GABA concentrations via altered expression of transport and receptor proteins, which may be the basis of the neurological characteristics of manganism. PMID:18771689
Menezes-Filho, José A; Paes, Ciro R; Pontes, Angela M de C; Moreira, Josino C; Sarcinelli, Paula N; Mergler, Donna
2009-11-01
Manganese (Mn) is an essential element, but an effective toxic at high concentrations. While there is an extensive literature on occupational exposure, few studies have examined adults and children living near important sources of airborne Mn. The objective of this study was to analyze hair Mn of children living in the vicinity of a ferro-manganese alloy production plant in the Great Salvador region, State of Bahia, Brazil and examine factors that influence this bioindicator of exposure. We examined 109 children in the age range of 1-10 years, living near the plant. Four separate housing areas were identified a priori on the bases of proximity to the emission sources and downwind location. A non-exposed group (n=43) of similar socio-economic status was also evaluated. Mn hair (MnH) concentration was measured by graphite atomic absorption spectrometry (GFAAS). Possible confounding hematological parameters were also assessed. Mean MnH concentration was 15.20 microg/g (1.10-95.50 microg/g) for the exposed children and 1.37 microg/g (0.39-5.58 microg/g) for the non-exposed. For the former, MnH concentrations were 7.95+/-1.40 microg/g (farthest from the plant), 11.81+/-1.11 microg/g (mid-region), 34.43+/-8.66 microg/g (closest to the plant) and 34.22+/-9.15 microg/g (directly downwind). Multiple regression analysis on log transformed MnH concentrations for the exposed children derived a model that explained 36.8% of the variability. In order of importance, area of children's residence, gender (girls>boys) and time of mother's residence in the area at the birth of the child, were significantly associated with MnH. Post hoc analyses indicated two groupings for exposure areas, with those living closest to and downwind of the plant displaying higher MnH concentrations compared to the others. The contribution of the time the mother lived in the community prior to the child's birth to the children's current MnH suggests that in utero exposure may play a role. A study of neurobehavioral performance with respect to Mn exposure in these children is currently underway.
Escande, Vincent; Renard, Brice-Loïc; Grison, Claude
2015-04-01
Among the phytotechnologies used for the reclamation of degraded mining sites, phytoextraction aims to diminish the concentration of polluting elements in contaminated soils. However, the biomass resulting from the phytoextraction processes (highly enriched in polluting elements) is too often considered as a problematic waste. The manganese-enriched biomass derived from native Mn-hyperaccumulating plants of New Caledonia was presented here as a valuable source of metallic elements of high interest in chemical catalysis. The preparation of the catalyst Eco-Mn1 and reagent Eco-Mn2 derived from Grevillea exul exul and Grevillea exul rubiginosa was investigated. Their unusual polymetallic compositions allowed to explore new reactivity of low oxidative state of manganese-Mn(II) for Eco-Mn1 and Mn(IV) for Eco-Mn2. Eco-Mn1 was used as a Lewis acid to catalyze the acetalization/elimination of aldehydes into enol ethers with high yields; a new green and stereoselective synthesis of (-)-isopulegol via the carbonyl-ene cyclization of (+)-citronellal was also performed with Eco-Mn1. Eco-Mn2 was used as a mild oxidative reagent and controlled the oxidation of aliphatic alcohols into aldehydes with quantitative yields. Oxidative cleavage was interestingly noticed when Eco-Mn2 was used in the presence of a polyol. Eco-Mn2 allowed direct oxidative iodination of ketones without using iodine, which is strongly discouraged by new environmental legislations. Finally, the combination of the properties in the Eco-Mn catalysts and reagents gave them an unprecedented potential to perform sequential tandem oxidation processes through new green syntheses of p-cymene from (-)-isopulegol and (+)-citronellal; and a new green synthesis of functionalized pyridines by in situ oxidation of 1,4-dihydropyridines.
NASA Astrophysics Data System (ADS)
Barouchas, Pantelis; Avramidis, Pavlos; Salachas, Georgios; Koulopoulos, Athanasios; Christodoulopoulou, Kyriaki; Liopa-Tsakalidi, Aglaia
2017-04-01
Thirty surface soil samples from northwestern Greece in the Ptolemais-Kozani basin, were collected and analyzed for their total content in thirteen elements (Al, Ca, Fe, K, Mg, Mn, Na, P, Cd, Cr, Cu, Ni, Pb, Zn) by ICP-AES and bioavailable content from a plant nutrition scope of view for (Ca, Fe, K, Mg, Mn, Na, P, Zn) by AAS and colorimetric techniques. Particle size distribution, Cation Exchange Capacity (CEC) and the magnetic susceptibility, in a low and a high frequency (at 47kHz and 0.47kHz), of soil samples were measured also in order to correlate the results. Total carbonates were tested by the pressure technique (BD Inventions, FOGII digital soil calcimeter). The concentrations of these elements were compared with international standards and guidelines. The results indicated that Cu, Cd, Zn and Pb are found enriched in the top soils of the study area, mainly as a consequence of natural processes from the surrounding rocks. Moreover, the bioavailability of some of these elements with a plant nutrition interest was tested and results indicate that they do not pose an immediate threat to the environment or crops as it all demonstrated values in an adequate range. Magnetic susceptibility in low and high frequency was correlated with clay content.
Cordova, Fabiano M.; Aguiar, Aderbal S.; Peres, Tanara V.; Lopes, Mark W.; Gonçalves, Filipe M.; Remor, Aline P.; Lopes, Samantha C.; Pilati, Célso; Latini, Alexandra S.; Prediger, Rui D. S.; Erikson, Keith M.; Aschner, Michael; Leal, Rodrigo B.
2012-01-01
Manganese (Mn) is an essential metal for development and metabolism. However, exposures to high Mn levels may be toxic, especially to the central nervous system (CNS). Neurotoxicity is commonly due to occupational or environmental exposures leading to Mn accumulation in the basal ganglia and a Parkinsonian-like disorder. Younger individuals are more susceptible to Mn toxicity. Moreover, early exposure may represent a risk factor for the development of neurodegenerative diseases later in life. The present study was undertaken to investigate the developmental neurotoxicity in an in vivo model of immature rats exposed to Mn (5, 10 and 20 mg/kg; i.p.) from postnatal day 8 (PN8) to PN12. Neurochemical analysis was carried out on PN14. We focused on striatal alterations in intracellular signaling pathways, oxidative stress and cell death. Moreover, motor alterations as a result of early Mn exposure (PN8-12) were evaluated later in life at 3-, 4- and 5-weeks-of-age. Mn altered in a dose-dependent manner the activity of key cell signaling elements. Specifically, Mn increased the phosphorylation of DARPP-32-Thr-34, ERK1/2 and AKT. Additionally, Mn increased reactive oxygen species (ROS) production and caspase activity, and altered mitochondrial respiratory chain complexes I and II activities. Mn (10 and 20 mg/kg) also impaired motor coordination in the 3rd, 4th and 5th week of life. Trolox™, an antioxidant, reversed several of the Mn altered parameters, including the increased ROS production and ERK1/2 phosphorylation. However, Trolox™ failed to reverse the Mn (20 mg/kg)-induced increase in AKT phosphorylation and motor deficits. Additionally, Mn (20 mg/kg) decreased the distance, speed and grooming frequency in an open field test; Trolox™ blocked only the decrease of grooming frequency. Taken together, these results establish that short-term exposure to Mn during a specific developmental window (PN8-12) induces metabolic and neurochemical alterations in the striatum that may modulate later-life behavioral changes. Furthermore, some of the molecular and behavioral events, which are perturbed by early Mn exposure are not directly related to the production of oxidative stress. PMID:22427945
The geochemical cycling of trace elements in a biogenic meromictic lake
NASA Astrophysics Data System (ADS)
Balistrieri, Laurie S.; Murray, James W.; Paul, Barbara
1994-10-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d -1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn).
The geochemical cycling of trace elements in a biogenic meromictic lake
Balistrieri, L.S.; Murray, J.W.; Paul, B.
1994-01-01
The geochemical processes affecting the behavior and speciation of As, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn in Hall Lake, Washington, USA, are assessed by examining dissolved and acid soluble particulate profiles of the elements and utilizing results from thermodynamic calculations. The water column of this meromictic lake is highly stratified and contains distinctive oxic, suboxic, and anoxic layers. Changes in the redox state of the water column with depth affect the distribution of all the elements studied. Most noticeable are increases in dissolved Co, Cr, Fe, Mn, Ni, Pb, and Zn concentrations across the oxic-suboxic boundary, increases in dissolved As, Co, Cr, Fe, Mn, and V concentrations with depth in the anoxic layer, significant decreases in dissolved Cu, Ni, Pb, and Zn concentrations in the anoxic region below the sulfide maximum, and large increases in acid soluble particulate concentrations of As, Cr, Cu, Fe, Mo, Ni, Pb, V, and Zn in the anoxic zone below the sulfide maximum. Thermodynamic calculations for the anoxic region indicate that all redox sensitive elements exist in their reduced forms, the primary dissolved forms of Cu, Ni, Pb, and Zn are metal sulfide solution complexes, and solid sulfide phases of Cu, Fe, Mo, and Pb are supersaturated. Calculations using a vertical diffusion and reaction model indicate that the oxidation rate constant for Mn(II) in Hall Lake is estimated to be 0.006 d-1 and is at the lower end of the range of microbial oxidation rates observed in other natural systems. The main geochemical processes influencing the distribution and speciation of trace elements in Hall Lake appear to be transformations of dissolved elements between their oxidation states (As, Cr, Cu, Fe, Mn, V), cocycling of trace elements with Mn and Fe (As, Co, Cr, Cu, Mo, Ni, Pb, V, Zn), formation of soluble metal sulfide complexes (Co, Cu, Ni, Pb, Zn), sorption (As, Co, Cr, Ni, V), and precipitation (Cu, Fe, Mn, Mo, Pb, Zn). ?? 1994.
Magnetic properties of doped Mn-Ga alloys made by mechanical milling and heat treatment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Daniel R.; National High Magnetic Field Laboratory, Tallahassee, FL 32310; Han, Ke
2016-05-15
Mn-Ga alloys have shown hard magnetic properties, even though these alloys contain no rare-earth metals. However, much work is needed before rare-earth magnets can be replaced. We have examined the magnetic properties of bulk alloys made with partial replacement of both the Mn and Ga elements in the Mn{sub 0.8}Ga{sub 0.2} system. Bulk samples of Mn-Ga-Bi, Mn-Ga-Al, Mn-Fe-Ga and Mn-(FeB)-Ga alloys were fabricated and studied using mechanically milling and heat treatments while altering the atomic percentage of the third element between 2.5 and 20 at%. The ternary alloy exhibits all hard magnetic properties at room temperature with large coercivity. Annealedmore » Mn-Ga-X bulk composites exhibit high coercivities up to 16.6 kOe and remanence up to 9.8 emu/g, that is increased by 115% over the binary system.« less
NASA Astrophysics Data System (ADS)
Qu, Chengrui; Zhang, Mo; Mann, Michael. D.
2018-03-01
The effect of combustion temperature on the emission of trace elementswas studied under O2/CO2 atmosphere during coal combustion in a laboratory scale fluidized bed combustor. The elemental composition of fine fly ash particles collected with a low pressure impactor(LPI)was quantified by X-Ray F1uorescence Spectrometer (XRF). The elemental composition of coal and bottom ash was quantified byinductively coupled plasma-atomic emission spectroscopy (ICP-AES). The results indicate that the contents of Mn, Zn, Cd and Cr in the fly ash increase with the rise of combustion temperature. It is found that the enrichment of Zn and Cd is greater in the submicrometer particles than the supermicrometer particles, but Mn and Cr do not enrich in the submicrometer particles. Mn, Zn, Cd and Cr display one peak around 0.1 μm. The relative enrichment factor (Rij) of four elements is in the order of Zn, Cd, Mn and Cr. Zn and Cd are mostly retained in fly ashwhileMn and Cr are retained in both the fly ash and bottom ash.
Biogeochemical features of maple and dandelion in Eastern Administrative District of Moscow
NASA Astrophysics Data System (ADS)
Vlasov, Dmitry
2014-05-01
Today more than half of world population and 73% of population in Russia live in cities. Moscow is the only one megacity in Russia with the population more than 11 million. The main source of technogenic impact in Moscow is transport. Plants can be used as indicators of urban environment heavy metals and metalloids (HM) pollution. Large scale biogeochemical research was done in Eastern Administrative District of Moscow. Apart from transport there are many industrial sources of pollution: metalworking, mechanical engineering, chemical, energetic and incinerator. This study focuses on detection of HM composition of woody plant leaves (maple - Acer platanoides) and herbaceous species leaves (dandelion - Taraxacum officinale). Plant material was collected on a regular greed with a step of 500-700 m. Background plants were sampled at 40 km west away from the city. Determination of Fe, Mn, Mo, Cd, Pb, Zn, Cu, As, Sb in plants was done using atomic absorption spectrometry after washing, drying and digestion with HNO3+H2O2. It was revealed that dandelion accumulates (index - concentration factors CF relatively background) Mo13Fe6Pb5Cd4.5As4Sb3, while maple Sb13As5.5Fe3Mo2Pb,Zn1.5. Geochemical specialization of plants in functional zones (industrial, transport, recreational, agricultural, residential areas with high-, middle- and low-rise buildings) was identified. The highest CF were determined for Mo in dandelion of all zones except industrial. In which the most accumulated elements are Fe and Mo, as well as Pb10As6Sb5Cu2. Arsenic is accumulated by dandelion in all zones. Copper is not concentrated by herbaceous species because of antagonism between Mo and Cu. The highest CF were determined for HM in maple of industrial zone. There trees concentrate Sb and As9Fe7Mo6Pb3Zn2. In the other zones levels of CF are lower in 2-5 times. Dandelion and maple don't accumulate Mn because of antagonism between Zn, Mo and Mn. Urban plants condition is estimated by the ratio between toxic (Cd, As, Sb, Pb) and essential (Cu, Fe, Mn, Mo, Zn) elements. For evaluation of intensity of photosynthesis and plants growth can be used Fe/Mn, Zn/Mn, Cu/Mn and Mo/Mn ratios. In dandelion and maple Fe/Mn is 6.6 and 3.3 times higher than in background vegetation, Pb/Mn - 5.5 and 2.5 times, (Cd+As+Sb+Pb)/(Cu+Fe+Mn+Mo+Zn) - 2.9 and 1.6 times respectively. In industrial, transport zones and residential area with high-rise buildings the largest increase of those ratios were discovered. Differences in geochemical specialization were shown by Sb/Mo ratio: in dandelion it is 5 times lower than in background plants, while in maple it is 4.5 times higher. The same situation was defined for As/Mo. Strong positive linear relationship between Sb deposition rates and Sb concentrations in maple was calculated (r=0.86). Furthermore moderate positive linear relationships between Cd concentrations in soils and dandelion (r=0.69), concentrations of mobile forms of Pb and Sb in soils and maple (r=0.67 and 0.66), Fe deposition rates and concentrations of this element in maple (r=0.51) were revealed.
Manganese-induced effects on cerebral trace element and nitric oxide of Hyline cocks.
Liu, Xiaofei; Zuo, Nan; Guan, Huanan; Han, Chunran; Xu, Shi Wen
2013-08-01
Exposure to Manganese (Mn) is a common phenomenon due to its environmental pervasiveness. To investigate the Mn-induced toxicity on cerebral trace element levels and crucial nitric oxide parameters on brain of birds, 50-day-old male Hyline cocks were fed either a commercial diet or a Mn-supplemented diet containing 600, 900, 1,800 mg kg(-1). After being treated with Mn for 30, 60, and 90 days, the following were determined: the changes in contents of copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), selenium (Se) in brain; inducible nitric oxide synthase-nitric oxide (iNOS-NO) system activity in brain; and histopathology and ultrastructure changes of cerebral cortex. The results showed that Mn was accumulated in brain and the content of Cu and Fe increased. However, the levels of Zn and Se decreased and the Ca content presented no obvious regularity. Exposure to Mn significantly elevated the content of NO and the expression of iNOS mRNA. Activity of total NO synthase (T NOS) and iNOS appeared with an increased tendency. These findings suggested that Mn exposure resulted in the imbalance of cerebral trace elements and influenced iNOS in the molecular level, which are possible underlying nervous system injury mechanisms induced by Mn exposure.
[Content of mineral elements of Gastrodia elata by principal components analysis].
Li, Jin-ling; Zhao, Zhi; Liu, Hong-chang; Luo, Chun-li; Huang, Ming-jin; Luo, Fu-lai; Wang, Hua-lei
2015-03-01
To study the content of mineral elements and the principal components in Gastrodia elata. Mineral elements were determined by ICP and the data was analyzed by SPSS. K element has the highest content-and the average content was 15.31 g x kg(-1). The average content of N element was 8.99 g x kg(-1), followed by K element. The coefficient of variation of K and N was small, but the Mn was the biggest with 51.39%. The highly significant positive correlation was found among N, P and K . Three principal components were selected by principal components analysis to evaluate the quality of G. elata. P, B, N, K, Cu, Mn, Fe and Mg were the characteristic elements of G. elata. The content of K and N elements was higher and relatively stable. The variation of Mn content was biggest. The quality of G. elata in Guizhou and Yunnan was better from the perspective of mineral elements.
NASA Astrophysics Data System (ADS)
Qian, Hui-Dong; Si, Ping-Zhan; Choi, Chul-Jin; Park, Jihoon; Cho, Kyung Mox
2018-05-01
The effects of elemental doping of Si and Fe on the ɛ→τ phase transformation and the magnetic properties of MnAl were studied. The magnetic powders of Si- and Fe-doped MnAl were prepared by using induction melting followed by water-quenching, annealing, and salt-assisted ball-milling. The Fe-doped MnAl powders are mainly composed of the L10-structured τ-phase, while the Si-doped MnAl are composed of τ-phase and a small fraction of γ2- and β-phases. A unique thin leaves-like morphology with thickness of several tens of nanometers and diameter size up to 500 nm were observed in the Si-doped MnAl powders. The Fe-doped MnAl powders show irregular shape with much larger dimensions in the range from several to 10 μm. The morphology difference of the samples was ascribed to the variation of the mechanical properties affected by different doping elements. The phase transformation temperatures of the ɛ-phase of the samples were measured. The doping of Fe decreases the onset temperature of the massive phase transformation in MnAl, while the Si-doping increases the massive phase transformation temperature. Both Fe and Si increase the Curie temperature of MnAl. A substantially enhanced coercivity up to 0.45 T and 0.42 T were observed in the ball-milled MnAl powders doped with Si and Fe, respectively.
Elemental ratios and enrichment factors in aerosols from the US-GEOTRACES North Atlantic transects
NASA Astrophysics Data System (ADS)
Shelley, Rachel U.; Morton, Peter L.; Landing, William M.
2015-06-01
The North Atlantic receives the highest aerosol (dust) input of all the oceanic basins. Dust deposition provides essential bioactive elements, as well as pollution-derived elements, to the surface ocean. The arid regions of North Africa are the predominant source of dust to the North Atlantic Ocean. In this study, we describe the elemental composition (Li, Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Cd, Sn, Sb, Cs, Ba, La, Ce, Nd, Pb, Th, U) of the bulk aerosol from samples collected during the US-GEOTRACES North Atlantic Zonal Transect (2010/11) in order to highlight the differences between a Saharan dust end-member and the reported elemental composition of the upper continental crust (UCC), and the implications this has for identifying trace element enrichment in aerosols across the North Atlantic basin. As aerosol titanium (Ti) is less soluble than aerosol aluminum (Al), it is a more conservative tracer for lithogenic aerosols and trace element-to-Ti ratios. However, the presence of Ti-rich fine aerosols can confound the interpretation of elemental enrichments, making Al a more robust tracer of aerosol lithogenic material in this region.
Elemental moment variation of bcc FexMn1-x on MgO(001)
NASA Astrophysics Data System (ADS)
Bhatkar, H.; Snow, R. J.; Arenholz, E.; Idzerda, Y. U.
2017-02-01
We report the growth, structural characterization, and electronic structure evolution of epitaxially grown bcc FexMn1-x on MgO(001). It is observed that the 20 nm thick FexMn1-x alloy films remained bcc from 0.65≤x≤1, much beyond the bulk stability range of 0.88≤x≤1. X-ray absorption spectroscopy and X-ray magnetic circular dichroism show that both the Fe and Mn L3 binding energies slightly increase with Mn incorporation and that the elemental moment of Fe in the 20 nm crystalline bcc alloy film remain nearly constant, then shows a dramatic collapse near x 0.84. The Mn MCD intensity is found to be small at all compositions that exhibit ferromagnetism
Hein, J.R.; Koschinsky, A.; Halliday, A.N.
2003-01-01
Hydrogenetic ferromanganese oxyhydroxide crusts (Fe-Mn crusts) precipitate out of cold ambient ocean water onto hard-rock surfaces (seamounts, plateaus, ridges) at water depths of about 400 to 4000 m throughout the ocean basins. The slow-growing (mm/Ma) Fe-Mn crusts concentrate most elements above their mean concentration in the Earth's crust. Tellurium is enriched more than any other element (up to about 50,000 times) relative to its Earth's crustal mean of about 1 ppb, compared with 250 times for the next most enriched element. We analyzed the Te contents for a suite of 105 bulk hydrogenetic crusts and 140 individual crust layers from the global ocean. For comparison, we analyzed 10 hydrothermal stratabound Mn-oxide samples collected from a variety of tectonic environments in the Pacific. In the Fe-Mn crust samples, Te varies from 3 to 205 ppm, with mean contents for Pacific and Atlantic samples of about 50 ppm and a mean of 39 ppm for Indian crust samples. Hydrothermal Mn samples have Te contents that range from 0.06 to 1 ppm. Continental margin Fe-Mn crusts have lower Te contents than open-ocean crusts, which is the result of dilution by detrital phases and differences in growth rates of the hydrogenetic phases. Correlation coefficient matrices show that for hydrothermal deposits, Te has positive correlations with elements characteristic of detrital minerals. In contrast, Te in open-ocean Fe-Mn crusts usually correlates with elements characteristic of the MnO2, carbonate fluorapatite, and residual biogenic phases. In continental margin crusts, Te also correlates with FeOOH associated elements. In addition, Te is negatively correlated with water depth of occurrence and positively correlated with crust thickness. Q-mode factor analyses support these relationships. However, sequential leaching results show that most of the Te is associated with FeOOH in Fe-Mn crusts and ???10% is leached with the MnO2. Thermodynamic calculations indicate that Te occurs predominantly as H5TeO6- in ocean water. The speciation of Te in ocean water and charge balance considerations indicate that Te should be scavenged by FeOOH, which is in agreement with our leaching results. The thermodynamically more stable Te(IV) is less abundant by factors of 2 to 3.5 than Te(VI) in ocean water. This can be explained by preferential (not exclusive) scavenging of Te(IV) by FeOOH at the Fe-Mn crust surface and by Fe-Mn colloids in the water column. We propose a model in which the extreme enrichment of Te in Fe-Mn crusts is likely the result of an oxidation reaction on the surface of FeOOH. A similar oxidation process has been confirmed for Co, Ce, and Tl at the surface of MnO2 in crusts, but has not been suggested previously to occur in association with FeOOH in Fe-Mn crusts. Mass-balance considerations indicate that ocean floor Fe-Mn deposits are the major sink for Te in the oceans. The concentration and redox chemistry of Te in the global ocean are likely controlled by scavenging on Fe-Mn colloids in the water column and Fe-Mn deposits on the ocean floor, as is also the case for Ce. ?? 2003 Elsevier Science Ltd.
Tuning the metamagnetism in a metallic helical antiferromagnet
NASA Astrophysics Data System (ADS)
Ma, S. C.; Liu, K.; Ma, C. C.; Ge, Q.; Zhang, J. T.; Hu, Y. F.; Liu, E. K.; Zhong, Z. C.
2017-12-01
The antiferromagnetic (AFM)-ferromagnetic (FM) conversion in martensite was observed in Mn/Ni-substitution upon FM elements, such as Fe or Co, in MnNiGe helical antiferromagnets. Here, we report an AFM-FM conversion and consequently a sharp magnetic-field-driven metamagnetic martensitic transformation from paramagnetic (PM) austenite to FM martensite in the Ni- and Mn-substituted MnNiGe alloys with indium, a non-magnetic and large-sized main group element. Accordingly, a giant magnetocaloric effect such that a twofold increase of the magnetic entropy change in MnNi0.92GeIn0.08 and even a nearly threefold increase in the Mn0.92NiGeIn0.08 alloy is obtained with respect to the MnNiGe0.95In0.05 alloy. The origin of AFM-FM conversion and resultantly sharp magnetic-field-induced PM-FM metamagnetic transformation is discussed based on the first-principles calculations and X-ray absorption spectroscopic results.
NASA Technical Reports Server (NTRS)
Haskin, L. A.; Blanchard, D. P.; Korotev, R.; Jacobs, J. W.; Brannon, J. A.; Herrmann, A. G.
1974-01-01
Analytical data have been obtained for Co, Sc, Hf, Zn, Cr, Ga, Rb, Cs, Ni, major elements, and rare earth elements in eight samples from boulder 1. The data for trace elements were obtained by radiochemical neutron activation analysis. Major elements, except Na and Mn, were obtained by atomic absorption spectral photometry. Values for Na and Mn were obtained by neutron activation analysis of the same powder that was later dissolved to provide the atomic absorption analyses.
Monitoring of essential and heavy metals in green tea from different geographical origins.
Brzezicha-Cirocka, Justyna; Grembecka, Małgorzata; Szefer, Piotr
2016-03-01
The present study measured the concentrations of toxic metals (Cd, Pb) and other elements (Ca, K, Mg, Na, P, Mn, Fe, Zn, Cu, Co, Cr, Ni) in tea leaves and their infusions. The total metal contents were determined by atomic absorption spectrometry. Phosphorus concentration was determined using an ultraviolet-visible spectrophotometer. Assessment of the mineral composition enabled determination of the leaching percentage and the risk of exceeding provisional tolerable weekly intake for Cd through daily tea consumption. The concentrations of bioelements were analyzed based on the recommended daily intake values for each. According to recently established standards, green tea was found to be a rich source of Mn. The average Pb and Cd levels in a 200-mL beverage were 0.002 and 0.003 mg, respectively. Indian teas had the highest percentage of Cd leaching (43.8%) and Chinese tea had the lowest (9.41%). Multivariate analysis techniques such as factor analysis and cluster analysis were used to differentiate samples according to geographical origin (China, India, or Japan). Potassium, P, Mn, Fe, Cu, Co, and Cd were effective descriptors for the identification of tea samples from China, India, and Japan.
Deficiency of macro- and micronutrients induced by Lentinula edodes.
Grotto, D; Gerenutti, M; Souza, V C O; Barbosa, F
2015-01-01
Mushroom Lentinula edodes has been widely studied therapeutically. However, there is no data regarding its daily intake level safety. Since L. edodes has many active compounds known to bind to metals, we evaluated macro and micronutrients in liver and kidney of healthy rats after subchronic exposure to L. edodes . Rats were divided into four groups, receiving water and L. edodes at 100, 400 and 800 mg/kg/day. The treatment lasted 30 days. Essential elements (Zn, Cu, Mg, Fe, Mn, Se, Co, Mo, and Li) were analyzed in an inductively coupled plasma mass spectrometer. Our results demonstrated a significant decrease in Cu, Fe, Mn and Co levels in liver of rats receiving L. edodes at the highest doses. In kidney, Mn, Mo and Li concentrations significantly dropped in the groups exposed to the highest doses. In this way, an important point is revealed concerning the food safety from L. edodes , once its chronic and high consumption could contribute to macro and micronutrients deficiency. Additionally, we speculate that the daily use of L. edodes could be unsuccessful for patients in mineral therapy besides being able to be unsafe for individuals with some propensity to mineral deficiency.
Yuan, Zong-Xiang; Chen, Hai-Bin; Li, Shao-Jun; Huang, Xiao-Wei; Mo, Yu-Huan; Luo, Yi-Ni; He, Sheng-Nan; Deng, Xiang-Fa; Lu, Guo-Dong; Jiang, Yue-Ming
2016-07-01
Manganese (Mn) overexposure induced neurological damages, which could be potentially protected by sodium para-aminosalicylic acid (PAS-Na). In this study, we systematically detected the changes of divalent metal elements in most of the organs and analyzed the distribution of the metals in Mn-exposed rats and the protection by PAS-Na. Sprague Dawley (SD) rats received intraperitoneal injections of 15mg/kg MnCl2·4H2O (5d/week for 3 weeks), followed by subcutaneous (back) injections of PAS-Na (100 and 200mg/kg, everyday for 5 weeks). The concentrations of Mn and other metal elements [Iron (Fe), Copper (Cu), Zinc (Zn), Magnesium (Mg), Calcium (Ca)] in major organs (liver, spleen, kidney, thighbone and iliac bone, cerebral cortex, hippocampus and testes) and blood by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The results showed that Mn overexposure significantly increased Mn in most organs, Fe and Zn in liver, Fe and Mg in blood; however decreased Fe, Cu, Zn, Mg and Ca in cortex, Cu and Zn in kidney, Cu and Mg in iliac bone, and Zn in blood. In contrast, PAS-Na treatment restored most changes particularly in cortex. In conclusion, excessive Mn exposure disturbed the balance of other metal elements but PAS-Na post-treatments could restore these alterations. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Battistini, Chiara; Bensby, Thomas
2015-05-01
Context. Elements heavier than Li are produced in the interiors of stars. However, for many elements the exact production sites and the timescales on which they are dispersed into the interstellar medium are unknown. Having a clear picture on the origins of the elements is important for our ability to trace and understand the formation and chemical evolution of the Milky Way and its stellar populations. Aims: The aim of this study is to investigate the origin and evolution of Sc, V, Mn, and Co for a homogeneous and statistically significant sample of stars probing the different populations of the Milky Way, in particular the thin and thick disks. Methods: Using high-resolution spectra obtained with the MIKE, FEROS, SOFIN, FIES, UVES, and HARPS spectrographs, we determine Sc, V, Mn, and Co abundances for a large sample of F and G dwarfs in the solar neighborhood. The method is based on spectral synthesis and using one-dimensional, plane-parallel, local thermodynamic equilibrium (LTE) model stellar atmospheres calculated with the MARCS 2012 code. The non-LTE (NLTE) corrections from the literature were applied to Mn and Co. Results: We find that the abundance trends derived for Sc (594 stars), V (466 stars), and Co (567 stars) are very similar to what has been observed for the α-elements in the thin and thick disks. On the contrary, Mn (569 stars) is generally underabundant relative to the Sun (i.e., [ Mn/Fe ] < 0) for [ Fe/H ] < 0. In addition, for Mn, when NLTE corrections are applied, the trend changes and is almost flat over the entire metallicity range of the stars in our sample (-2 ≲ [ Fe/H ] ≲ + 0.4). The [Sc/Fe]-[Fe/H] abundance trends show a small separation between the thin and thick disks, while for V and Co they completely overlap. For Mn there is a small difference in [Mn/Fe], but only when NLTE corrections are used. Comparisons with Ti as a reference element show flat trends for all the elements except for Mn that show well separated [Mn/Ti]-[Ti/H] trends for the thin and thick disks. Conclusions: The elements Sc and V present trends compatible with production from type II supernovae (SNII) events. In addition, Sc clearly shows a metallicity dependence for [ Fe/H ] < -1. Instead, Mn is produced in SNII events for [ Fe/H ] ≲ -0.4 and then type Ia supernovae start to produce Mn. Finally, Co appears to be produced mainly in SNII with suggestion of enrichment from hypernovae at low metallicities. This paper includes data gathered with the 6.5 m Magellan Telescopes located at the Las Campanas Observatory, Chile; the Nordic Optical Telescope (NOT) on La Palma, Spain; the Very Large Telescope (VLT) at the European Southern Observatory (ESO) on Paranal, Chile (ESO Proposal ID 69.B-0277 and 72.B-0179); the ESO 1.5-m, 2.2-m. and 3.6-m telescopes on La Silla, Chile (ESO Proposal ID 65.L-0019, 67.B-0108, 76.B-0416, 82.B-0610); and data from UVES Paranal Observatory Project (ESO DDT Program ID 266.D-5655).Full versions of Tables 2 and 5 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/577/A9Appendices are available in electronic form at http://www.aanda.org
Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trivedi, Sudhir B.; Kutcher, Susan W.; Rosemeier, Cory A.
2013-12-02
Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult duemore » to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.« less
Sakate, Daisuke; Iwazaki, Yoshiki; Kon, Yoshiaki; Yokoyama, Takaomi; Ohata, Masaki
2018-01-01
The mass transfer of additive elements during the sintering of barium titanate (BaTiO 3 ) ceramic was examined by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) in the present study. An analytical sample consisting of two pellets of BaTiO 3 with different concentrations of additive elements of manganese (Mn) and holmium (Ho) as well as silicon (Si) as a sintering reagent was prepared and measured by LA-ICP-MS with small laser irradiated diameter of 10 μm to evaluate the distributions and concentrations of additive elements in order to examine their mass transfers. As results, enrichments of Mn and Si as an additive element and a sintering reagent, respectively, were observed on the adhesive surface between two BaTiO 3 pellets, even though Ho did not show a similar phenomenon. The mass transfers of additive elements of Mn and Ho were also examined, and Mn seemed to show a larger mass transfer than that of Ho during the sintering process for BaTiO 3 ceramics. The results obtained in this study shows the effectives of LA-ICP-MS for the future improvement of MLCCs.
Enhancement of magnetic anisotropy in a Mn-Bi heterobimetallic complex.
Pearson, Tyler J; Fataftah, Majed S; Freedman, Danna E
2016-09-15
A novel Mn 2+ Bi 3+ heterobimetallic complex, featuring the closest MnBi interaction for a paramagnetic molecular species, exhibits unusually large axial zero-field splitting. We attribute this enhancement to the proximity of Mn 2+ to a heavy main group element, namely, bismuth.
NASA Astrophysics Data System (ADS)
Fernández-Olmo, Ignacio; Puente, Mariano; Montecalvo, Lucia; Irabien, Angel
2014-08-01
The bulk atmospheric deposition of the minor and trace elements As, Cd, Cr, Cu, Mn, Mo, Ni, Pb, Ti, V and Zn was investigated in Santander, a Northern Spanish coastal city. Bulk deposition samples were collected monthly for three years using a bottle/funnel device. Taking into account that heavy metals are bioavailable only in their soluble forms, water-soluble and water-insoluble fractions were evaluated separately for element concentration. The fluxes of the studied elements in the bulk deposition exhibited the following order: Zn > Mn ≫ Cu > Cr > Pb > V > Ni ≫ As > Mo > Cd. The fluxes of Zn and Mn were more than 10 times higher than those of the other elements, with maximum values of 554.5 and 334.1 μg m- 2 day- 1, respectively. Low solubilities (below 22%) were found for Cr, Ti and Pb, whereas the highest solubility was found for Zn (78%). With the exception of Cu, all of the studied metals in the water-soluble fraction of the atmospheric deposition showed seasonal dependence, due to the seasonal variability of precipitation. The enrichment factors (EFs) of Cu, Cd and Zn were higher than 100, indicating a clear anthropogenic origin. The EF of Mn (50) was below 100, but an exclusively industrial origin is suggested. Positive Matrix Factorisation (PMF) was used for the source apportionment of the studied minor and trace elements in the soluble fraction. Four factors were identified from PMF, and their chemical profiles were compared with those calculated from known sources that were previously identified in Santander Bay: two industrial sources, the first of which was characterised by Zn and Mn, which contributes 62.5% of the total deposition flux of the studied elements; a traffic source; and a maritime source. Zinc and Mn are considered to be the most characteristic pollutants of the studied area.
Community Exposure to Air Manganese and Motor and Cognitive Outcomes
Although manganese (Mn) is an essential nutrient, occupational studies have shown inhaling high levels of Mn can lead to adverse nervous system health effects. Few studies have examined the health effects of air-Mn exposure on adults in a community. We conducted a cross-sectional...
Nasreddine, L; Nashalian, O; Naja, F; Itani, L; Parent-Massin, D; Nabhani-Zeidan, M; Hwalla, N
2010-05-01
This study assesses, by the Total diet study approach, the adequacy of micronutrient intake (Co, Cu, Fe, Mn, Ni, Zn) and the dietary exposure of a Lebanese adult urban population to two toxic elements (Cd, Pb). The foods that made up the average 'total diet' were derived from a previous individual consumption survey. A total of 1215 individual foods were collected, prepared and cooked prior to analysis. Analytical quantification was performed using inductively coupled plasma mass spectrometry. Average daily intakes of Co (11.4 microg/day), Cu (1104.19 microg/day), Fe (13.00 mg/day), Mn (2.04 mg/day), Ni (126.27 microg/day) and Zn (10.97 mg/day) were below toxicological reference values and were found to satisfy nutritional recommendations, except for manganese in men and iron in women. Average dietary exposure to Pb and Cd represented 3.2% and 21.7% of the respective provisional tolerable weekly intakes. Estimates of dietary intakes of iron appeared to be inadequate for 63% of adult women. These findings should constitute a current measure of assessing the adequacy and safety of foods consumed in Lebanon and may be a basis for future monitoring studies. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Dorey, Narimane; Martin, Sophie; Oberhänsli, François; Teyssié, Jean-Louis; Jeffree, Ross; Lacoue-Labarthe, Thomas
2018-10-01
The marine organisms which inhabit the coastline are exposed to a number of anthropogenic pressures that may interact. For instance, the accumulation of toxic metals present in coastal waters is expected to be modified by ocean acidification through e.g. changes in physiological performance and/or elements availability. Changes in bioaccumulation due to lowering pH are likely to be differently affected depending on the nature (essential vs. non-essential) and speciation of each element. The Mediterranean is of high concern for possible cumulative effects due to strong human influences on the coastline. The aim of this study was to determine the effect of ocean acidification (from pH 8.1 down to -1.0 pH units) on the incorporation kinetics of six trace metals (Mn, Co, Zn, Se, Ag, Cd, Cs) and one radionuclide ( 241 Am) in the larvae of an economically- and ecologically-relevant sea urchin of the Mediterranean coastline: Paracentrotus lividus. The radiolabelled metals and radionuclides added in trace concentrations allowed precise tracing of their incorporation in larvae during the first 74 h of their development. Independently of the expected indirect effect of pH on larval size/developmental rates, Paracentrotus lividus larvae exposed to decreasing pHs incorporated significantly more Mn and Ag and slightly less Cd. The incorporation of Co, Cs and 241 Am was unchanged, and Zn and Se exhibited complex incorporation behaviors. Studies such as this are necessary prerequisites to the implementation of metal toxicity mitigation policies for the future ocean. We discuss possible reasons and mechanisms for the specific effect of pH on each metals. Copyright © 2018 Elsevier Ltd. All rights reserved.
Dubascoux, Stéphane; Andrey, Daniel; Vigo, Mario; Kastenmayer, Peter; Poitevin, Eric
2018-09-01
Nutritional information about human milk is essential as early human growth and development have been closely linked to the status and requirements of several macro- and micro-elements. However, methods addressing whole mineral profiling in human milk have been scarce due in part to their technical complexities to accurately and simultaneously measure the concentration of micro- and macro-trace elements in low volume of human milk. In the present study, a single laboratory validation has been performed using a "dilute and shoot" approach for the quantification of sodium (Na), magnesium (Mg), phosphorus (P), potassium (K), calcium (Ca), manganese (Mn), iron (Fe), copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mo) and iodine (I), in both human milk and milk preparations. Performances in terms of limits of detection and quantification, of repeatability, reproducibility and trueness have been assessed and verified using various reference or certified materials. For certified human milk sample (NIST 1953), recoveries obtained for reference or spiked values are ranged from 93% to 108% (except for Mn at 151%). This robust method using new technology ICP-MS/MS without high pressure digestion is adapted to both routinely and rapidly analyze human milk micro-sample (i.e. less than 250 μL) in the frame of clinical trials but also to be extended to the mineral profiling of milk preparations like infant formula and adult nutritionals. Copyright © 2018 Elsevier GmbH. All rights reserved.
Finite Element Modelling Full Vehicle Side Impact with Ultrahigh Strength Hot Stamped Steels
NASA Astrophysics Data System (ADS)
Taylor, T.; Fourlaris, G.; Cafolla, J.
2016-10-01
"Hot stamped boron steel" 22MnB5 has been imperative in meeting the automotive industry's demand for materials exhibiting higher tensile strength in the final component. In this paper, the crash performance of three experimental grades developed for automotive hot stamping technologies, exhibiting wider tensile property ranges than 22MnB5, was validated by finite element modelling full vehicle side impact with the experimental material data applied to the B-pillar reinforcement. The superior anti-intrusive crash performance of grade 38MnB5 was demonstrated, with 11 mm less intrusion of the B-pillar reinforcement compared to 22MnB5. Moreover, the superior "impact-energy absorptive" crash performance of grade 15MnCr5 was demonstrated, with 0.15 kJ greater impact-energy absorption by the B-pillar reinforcement compared to 22MnB5.
Shaver, S.A.; Hower, J.C.; Eble, C.F.; McLamb, E.D.; Kuers, K.
2006-01-01
Mean contents of trace elements and ash in channel, bench-column, and dump samples of the abandoned Bon Air coal (Lower Pennsylvanian) in Franklin County, Tennessee are similar to Appalachian COALQUAL mean values, but are slightly lower for As, Fe, Hg, Mn, Na, Th, and U, and slightly higher for ash, Be, Cd, Co, Cr, REEs, Sr, and V, at the 95% confidence level. Compared to channel samples, dump sample means are slightly lower in chalcophile elements (As, Cu, Fe, Ni, Pb, S, Sb, and V) and slightly higher in clay or heavy-mineral elements (Al, K, Mn, REEs, Th, Ti, U, and Y), but at the 95% confidence level, only As and Fe are different. Consistent abundances of clay or heavy-mineral elements in low-Br, high-S, high-ash benches that are relatively enriched in quartz and mire-to-levee species like Paralycopodites suggest trace elements are largely fluvial in origin. Factor analysis loadings and correlation coefficients between elements suggest that clays host most Al, Cr, K, Ti, and Th, significant Mn and V, and some Sc, U, Ba, and Ni. Heavy accessory minerals likely house most REEs and Y, lesser Sc, U, and Th, and minor Cr, Ni, and Ti. Pyrite appears to host As, some V and Ni, and perhaps some Cu, but Cu probably exists largely as chalcopyrite. Data suggest that organic debris houses most Be and some Ni and U, and that Pb and Sb occur as Pb-Sb sulfosalt(s) within organic matrix. Most Hg, and some Mn and Y, appear to be hosted by calcite, suggesting potential Hg remobilization from original pyrite, and Hg sorption by calcite, which may be important processes in abandoned coals. Most Co, Zn, Mo, and Cd, significant V and Ni, and some Mn probably occur in non-pyritic sulfides; Ba, Sr, and P are largely in crandallite-group phosphates. Selenium does not show organic or "clausthalite" affinities, but Se occurrence is otherwise unclear. Barium, Mn, Ni, Sc, U, and V, with strongly divided statistical affinities, likely occur subequally in multiple modes. For study area surface waters, highest levels of most trace elements occur in mine-adit or mine-dump drainage. Effluent flow rates strongly affect both acidity and trace element levels. Adit drainages where flow is only a trickle have the most acidic waters (pH 3.78-4.80) and highest trace element levels (up to two orders of magnitude higher than in non-mine site waters). Nonetheless, nearly all surface waters have low absolute concentrations of trace elements of environmental concern, and all waters sampled meet U.S. EPA primary drinking water standards and aquatic life criteria for all elements analyzed. Secondary drinking water standards are also met for all parameters except Al, pH, Fe, and Mn, but even in extreme cases (mine waters with pH as low as 3.78 and up to 1243 ppb Al, 6280 ppb Fe, and 721 ppb Mn, and non-mine dam-outflow waters with up to 18,400 ppb Fe and 1540 ppb Mn) downslope attenuation is apparently rapid, as down-drainage plateau-base streams show background levels for all these parameters. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhatt, Pramod; Mukadam, M. D.; Meena, S. S.; Mishra, S. K.; Mittal, R.; Sastry, P. U.; Mandal, B. P.; Yusuf, S. M.
2017-03-01
The ferroelectric materials are mainly focused on pure inorganic oxides; however, the organic molecule based materials have recently attracted great attention because of their multifunctional properties. The mixing of oxalate and phenanthroline ligands with metal ions (Fe or Mn) at room temperature followed by hydrothermal treatment results in the formation of one-dimensional single chain molecular magnets which exhibit room temperature dielectric and ferroelectric behavior. The compounds are chiral in nature, and exhibit a ferroelectric behavior, attributed to the polar point group C2, in which they crystallized. The compounds are also associated with a dielectric loss and thus a relaxation process. The observed electric dipole moment, essential for a ferroelectricity, has been understood quantitatively in terms of lattice distortions at two different lattice sites within the crystal structure. The studied single chain molecular magnetic materials with room temperature ferroelectric and dielectric properties could be of great technological importance in non-volatile memory elements, and high-performance insulators.
Ni, Y.; Zhang, Z.; Nlebedim, I. C.; ...
2015-06-11
Hall-effect (HE) sensors based on high-quality Mn-doped Bi 2Te 3 topological insulator (TI) thin films have been systematically studied in this paper. Improvement of Hall sensitivity is found after doping the magnetic element Mn into Bi 2Te 3. The sensors with low Mn concentrations, Mn xBi 2-xTe 3, x = 0.01 and 0.08 show the linear behavior of Hall resistance with sensitivity about 5 Ω/T. And their Hall sensitivity shows weak dependence on temperature. For sensors with high Mn concentration (x = 0.23), the Hall resistance with respect to magnetic field shows a hysteretic behavior. Moreover, its sensitivity shows almostmore » eight times as high as that of the HE sensors with low Mn concentration. The highest sensitivity can reach 43 Ω/T at very low magnetic field. This increase of Hall sensitivity is caused by the occurrence of anomalous HE (AHE) after ferromagnetic phase transition. Our work indicates that the magnetic-element-doped TIs with AHE are good candidates for HE sensors.« less
Biodistribution and PET Imaging of pharmacokinetics of manganese in mice using Manganese-52
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wooten, A. Lake; Aweda, Tolulope A.; Lewis, Benjamin C.
Manganese is essential to life, and humans typically absorb sufficient quantities of this element from a normal healthy diet; however, chronic, elevated ingestion or inhalation of manganese can be neurotoxic, potentially leading to manganism. Although imaging of large amounts of accumulated Mn(II) is possible by MRI, quantitative measurement of the biodistribution of manganese, particularly at the trace level, can be challenging. In this study, we produced the positron-emitting radionuclide 52Mn (t 1/2 = 5.6 d) by proton bombardment (E p<15 MeV) of chromium metal, followed by solid-phase isolation by cation-exchange chromatography. An aqueous solution of [ 52Mn]MnCl 2 was nebulizedmore » into a closed chamber with openings through which mice inhaled the aerosol, and a separate cohort of mice received intravenous (IV) injections of [ 52Mn]MnCl 2. Ex vivo biodistribution was performed at 1 h and 1 d post-injection/inhalation (p.i.). In both trials, we observed uptake in lungs and thyroid at 1 d p.i. Manganese is known to cross the blood-brain barrier, as confirmed in our studies following IV injection (0.86%ID/g, 1 d p.i.) and following inhalation of aerosol, (0.31%ID/g, 1 d p.i.). Uptake in salivary gland and pancreas were observed at 1 d p.i. (0.5 and 0.8%ID/g), but to a much greater degree from IV injection (6.8 and 10%ID/g). In a separate study, mice received IV injection of an imaging dose of [ 52Mn]MnCl 2, followed by in vivo imaging by positron emission tomography (PET) and ex vivo biodistribution. The results from this study supported many of the results from the biodistribution-only studies. In this work, we have confirmed results in the literature and contributed new results for the biodistribution of inhaled radiomanganese for several organs. In conclusion, our results could serve as supporting information for environmental and occupational regulations, for designing PET studies utilizing 52Mn, and/or for predicting the biodistribution of manganese-based MR contrast agents.« less
Biodistribution and PET Imaging of pharmacokinetics of manganese in mice using Manganese-52
Wooten, A. Lake; Aweda, Tolulope A.; Lewis, Benjamin C.; ...
2017-03-17
Manganese is essential to life, and humans typically absorb sufficient quantities of this element from a normal healthy diet; however, chronic, elevated ingestion or inhalation of manganese can be neurotoxic, potentially leading to manganism. Although imaging of large amounts of accumulated Mn(II) is possible by MRI, quantitative measurement of the biodistribution of manganese, particularly at the trace level, can be challenging. In this study, we produced the positron-emitting radionuclide 52Mn (t 1/2 = 5.6 d) by proton bombardment (E p<15 MeV) of chromium metal, followed by solid-phase isolation by cation-exchange chromatography. An aqueous solution of [ 52Mn]MnCl 2 was nebulizedmore » into a closed chamber with openings through which mice inhaled the aerosol, and a separate cohort of mice received intravenous (IV) injections of [ 52Mn]MnCl 2. Ex vivo biodistribution was performed at 1 h and 1 d post-injection/inhalation (p.i.). In both trials, we observed uptake in lungs and thyroid at 1 d p.i. Manganese is known to cross the blood-brain barrier, as confirmed in our studies following IV injection (0.86%ID/g, 1 d p.i.) and following inhalation of aerosol, (0.31%ID/g, 1 d p.i.). Uptake in salivary gland and pancreas were observed at 1 d p.i. (0.5 and 0.8%ID/g), but to a much greater degree from IV injection (6.8 and 10%ID/g). In a separate study, mice received IV injection of an imaging dose of [ 52Mn]MnCl 2, followed by in vivo imaging by positron emission tomography (PET) and ex vivo biodistribution. The results from this study supported many of the results from the biodistribution-only studies. In this work, we have confirmed results in the literature and contributed new results for the biodistribution of inhaled radiomanganese for several organs. In conclusion, our results could serve as supporting information for environmental and occupational regulations, for designing PET studies utilizing 52Mn, and/or for predicting the biodistribution of manganese-based MR contrast agents.« less
Effects of chemical elements in the trophic levels of natural salt marshes.
Kamiński, Piotr; Barczak, Tadeusz; Bennewicz, Janina; Jerzak, Leszek; Bogdzińska, Maria; Aleksandrowicz, Oleg; Koim-Puchowska, Beata; Szady-Grad, Małgorzata; Klawe, Jacek J; Woźniak, Alina
2016-06-01
The relationships between the bioaccumulation of Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Co, Cd, and Pb, acidity (pH), salinity (Ec), and organic matter content within trophic levels (water-soil-plants-invertebrates) were studied in saline environments in Poland. Environments included sodium manufactures, wastes utilization areas, dumping grounds, and agriculture cultivation, where disturbed Ca, Mg, and Fe exist and the impact of Cd and Pb is high. We found Zn, Cu, Mn, Co, and Cd accumulation in the leaves of plants and in invertebrates. Our aim was to determine the selectivity exhibited by soil for nutrients and heavy metals and to estimate whether it is important in elucidating how these metals are available for plant/animal uptake in addition to their mobility and stability within soils. We examined four ecological plant groups: trees, shrubs, minor green plants, and water macrophytes. Among invertebrates, we sampled breastplates Malacostraca, small arachnids Arachnida, diplopods Diplopoda, small insects Insecta, and snails Gastropoda. A higher level of chemical elements was found in saline polluted areas (sodium manufactures and anthropogenic sites). Soil acidity and salinity determined the bioaccumulation of free radicals in the trophic levels measured. A pH decrease caused Zn and Cd to increase in sodium manufactures and an increase in Ca, Zn, Cu, Cd, and Pb in the anthropogenic sites. pH increase also caused Na, Mg, and Fe to increase in sodium manufactures and an increase in Na, Fe, Mn, and Co in the anthropogenic sites. There was a significant correlation between these chemical elements and Ec in soils. We found significant relationships between pH and Ec, which were positive in saline areas of sodium manufactures and negative in the anthropogenic and control sites. These dependencies testify that the measurement of the selectivity of cations and their fluctuation in soils provide essential information on the affinity and binding strength in these environments. The chemical elements accumulated in soils and plants; however, further flow is selective and variable. The selectivity exhibited by soil systems for nutrients and heavy metals is important in elucidating how these metals become available for plant/animal uptake and also their mobility and stability in soils.
Momen, Awad A; Zachariadis, George A; Anthemidis, Aristidis N; Stratis, John A
2007-01-15
Two digestion procedures have been tested on nut samples for application in the determination of essential (Cr, Cu, Fe, Mg, Mn, Zn) and non-essential (Al, Ba, Cd, Pb) elements by inductively coupled plasma-optical emission spectrometry (ICP-OES). These included wet digestions with HNO(3)/H(2)SO(4) and HNO(3)/H(2)SO(4)/H(2)O(2). The later one is recommended for better analytes recoveries (relative error<11%). Two calibrations (aqueous standard and standard addition) procedures were studied and proved that standard addition was preferable for all analytes. Experimental designs for seven factors (HNO(3), H(2)SO(4) and H(2)O(2) volumes, digestion time, pre-digestion time, temperature of the hot plate and sample weight) were used for optimization of sample digestion procedures. For this purpose Plackett-Burman fractional factorial design, which involve eight experiments was adopted. The factors HNO(3) and H(2)O(2) volume, and the digestion time were found to be the most important parameters. The instrumental conditions were also optimized (using peanut matrix rather than aqueous standard solutions) considering radio-frequency (rf) incident power, nebulizer argon gas flow rate and sample uptake flow rate. The analytical performance, such as limits of detection (LOD<0.74mugg(-1)), precision of the overall procedures (relative standard deviation between 2.0 and 8.2%) and accuracy (relative errors between 0.4 and 11%) were assessed statistically to evaluate the developed analytical procedures. The good agreement between measured and certified values for all analytes (relative error <11%) with respect to IAEA-331 (spinach leaves) and IAEA-359 (cabbage) indicates that the developed analytical method is well suited for further studies on the fate of major elements in nuts and possibly similar matrices.
Hoekstra, P F; Braune, B M; Elkin, B; Armstrong, F A J; Muir, D C G
2003-06-20
Arctic fox (Alopex lagopus) and wolverine (Gulo gulo) tissues were collected in the Canadian Arctic from 1998 to 2001 and analyzed for various essential and non-essential elements. Several elements (Ag, Al, As, B, Ba, Be, Co, Cr, Mo, Ni, Sb, Sn, Sr, Tl, U and V) were near or below the detection limits in >95% arctic fox and wolverine samples. Concentrations of Cd, Cu, Fe, total Hg (THg), Mn, Pb, Se and Zn were quantifiable in >50% of the samples analyzed and reported herein. Hepatic elemental concentrations were not significantly different among arctic foxes collected at Ulukhaqtuuq (Holman), NT (n=13) and Arviat, NU (n=50), but were significantly greater than concentrations found in wolverine liver from Kugluktuk (Coppermine), NU (n=12). The mean (+/-1 S.E.) concentrations of Cd in kidney were also significantly greater in arctic fox (1.08+/-0.19 microg g(-1) wet wt.) than wolverine (0.67+/-0.18 microg g(-1) wet wt.). However, mean hepatic Cu concentrations (Ulukhaqtuuq: 5.5+/-0.64; Arviat: 7.1+/-0.49 microg g(-1) wet wt.) in arctic foxes were significantly lower than in wolverines (32+/-3.3 microg g(-1) wet wt.). Hepatic total Hg (THg) concentrations in arctic fox from this study were not significantly different from specimens collected in 1973, suggesting that THg concentrations have not changed dramatically over the past 30 years. The mono-methylmercury (MeHg) concentrations in selected (n=10) arctic fox liver samples from Arviat (0.14+/-0.07 microg g(-1) wet wt.) comprised 14% of THg. While the molar concentrations of THg were correlated with Se in arctic foxes and wolverines, the hepatic Hg/Se molar ratios were consistently lower than unity; suggesting that Se-mediated detoxification pathways of Hg are not overwhelmed at current exposure.
Dimovasili, Christina; Aschner, Michael; Plaitakis, Andreas; Zaganas, Ioannis
2015-09-01
Manganese (Mn) is an essential trace element that serves as co-factor for many important mammalian enzymes. In humans, the importance of this cation is highlighted by the fact that low levels of Mn cause developmental and metabolic abnormalities and, on the other hand, chronic exposure to excessive amounts of Mn is characterized by neurotoxicity, possibly mediated by perturbation of astrocytic mitochondrial energy metabolism. Here we sought to study the effect of Mn on the two human glutamate dehydrogenases (hGDH1 and hGDH2, respectively), key mitochondrial enzymes involved in numerous cellular processes, including mitochondrial metabolism, glutamate homeostasis and neurotransmission, and cell signaling. Our studies showed that, compared to magnesium (Mg) and calcium (Ca), Mn exerted a significant inhibitory effect on both human isoenzymes with hGDH2 being more sensitive than hGDH1, especially under conditions of low ADP levels. Specifically, in the presence of 0.25 mM ADP, the Mn IC50 was 1.14 ± 0.02 mM and 1.54 ± 0.08 mM for hGDH2 and for hGDH1, respectively (p = 0.0001). Increasing Mn levels potentiated this differential effect, with 3 mM Mn inhibiting hGDH2 by 96.5% and hGDH1 by 70.2%. At 1 mM ADP, the Mn IC50 was 1.84 ± 0.02 mM and 2.04 ± 0.07 mM (p = 0.01) for hGDH2 and hGDH1, respectively, with 3 mM Mn inhibiting hGDH2 by 93.6% and hGDH1 by 70.9%. These results were due to the sigmoidal inhibitory curve of Mn that was more pronounced for hGDH2 than for hGDH1. Indeed, at 0.25 mM, the Hill coefficient value was higher for hGDH2 (3.42 ± 0.20) than for hGDH1 (1.94 ± 0.25; p = 0.0002) indicating that interaction of Mn with hGDH2 was substantially more co-operative than for hGDH1. These findings, showing an enhanced sensitivity of the hGDH2 isoenzyme to Mn, especially at low ADP levels, might be of pathophysiological relevance under conditions of Mn neurotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Content and Bioaccumulation of Nine Mineral Elements in Ten Mushroom Species of the Genus Boletus
Wang, Xue-Mei; Zhang, Ji; Li, Tao; Wang, Yuan-Zhong; Liu, Hong-Gao
2015-01-01
Concentrations and bioconcentration potential of nine elements (Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn) in ten species of wild edible Boletus and the corresponding underlying soils were analyzed. The analyses were performed using inductively coupled plasma atomic emission spectrophotometer. Boletus showed relative abundant contents of P, K, Fe, Mg, Ca, and Na and less of Zn, Cu, and Mn. Caps compared to stalks were enriched in P, K, Cu, Mg, and Zn, while stalks were enriched in Mn. The elements such as P and K were accumulated (BCF > 1), while Ca, Fe, Mg, Mn, and Na were excluded (BCF < 1) in the fruiting bodies. The correlation analysis indicated high correlations between Cu, Mn, Ca, and Fe in the mushrooms as compared to the corresponding soils. Significant correlations were also obtained between Cu-P (r = 0.775), Fe-P (r = 0.728), and Zn-P (r = 0.76) for caps and Cu-Mg (r = 0.721), Fe-Mg (r = 0.719), Zn-Mg (r = 0.824), and Zn-P (r = 0.818) for stalks. The results of this study imply that ability of fungi to accumulate elements from substrate could be influenced by mushroom species and underlying soil substrates. PMID:26146585
Content and Bioaccumulation of Nine Mineral Elements in Ten Mushroom Species of the Genus Boletus.
Wang, Xue-Mei; Zhang, Ji; Li, Tao; Wang, Yuan-Zhong; Liu, Hong-Gao
2015-01-01
Concentrations and bioconcentration potential of nine elements (Ca, Cu, Fe, K, Mg, Mn, Na, P, and Zn) in ten species of wild edible Boletus and the corresponding underlying soils were analyzed. The analyses were performed using inductively coupled plasma atomic emission spectrophotometer. Boletus showed relative abundant contents of P, K, Fe, Mg, Ca, and Na and less of Zn, Cu, and Mn. Caps compared to stalks were enriched in P, K, Cu, Mg, and Zn, while stalks were enriched in Mn. The elements such as P and K were accumulated (BCF > 1), while Ca, Fe, Mg, Mn, and Na were excluded (BCF < 1) in the fruiting bodies. The correlation analysis indicated high correlations between Cu, Mn, Ca, and Fe in the mushrooms as compared to the corresponding soils. Significant correlations were also obtained between Cu-P (r = 0.775), Fe-P (r = 0.728), and Zn-P (r = 0.76) for caps and Cu-Mg (r = 0.721), Fe-Mg (r = 0.719), Zn-Mg (r = 0.824), and Zn-P (r = 0.818) for stalks. The results of this study imply that ability of fungi to accumulate elements from substrate could be influenced by mushroom species and underlying soil substrates.
Raimundo, Joana; Vale, Carlos; Martins, Inês; Fontes, Jorge; Graça, Gonçalo; Caetano, Miguel
2015-11-15
Concentrations of V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Cd and Pb were determined in muscle, liver and gonads of two ecologically contrasting fishes, Helicolenus dactylopterus (benthic) and Pagellus bogaraveo (benthopelagic). Elevated concentrations of As, Se and Cd found in tissues of both species appear to mirror the contribution of volcanic activity to the natural inputs of elements to Azorean waters. Results showed different element accumulation between the two species. Whereas higher concentrations were found in the liver of P. bogaraveo, elevated values were observed in the muscle of H. dactylopterus. Differences in accumulation are most likely related to metabolic rates, diet specificities and habitat. Concentrations in gonads varied up to four orders of magnitude, being higher and more variable in P. bogaraveo than H. dactylopterus. Elevated values of Cd were detected in gonads of both species despite its non-essential role on metabolic functions, presumably related to elimination. Copyright © 2015 Elsevier Ltd. All rights reserved.
Essential and toxic elements in honeys from a region of central Italy.
Meli, M A; Desideri, D; Roselli, C; Benedetti, C; Feduzi, L
2015-01-01
Levels of iron (Fe), manganese (Mn), chromium (Cr), copper (Cu), zinc (Zn), mercury (Hg), cadmium (Cd), and lead (Pb) in several types of honey produced in a region of Central Italy were determined by atomic absorption spectroscopy (AAS). The degree of humidity, sugar content, pH, free acidity, combined acidity (lactones), and total acidity were also measured. These elements were found to be present in honey in various proportions depending upon (1) the area foraged by bees, (2) flower type visited for collection of nectar, and (3) quality of water in the vicinity of the hive. Strong positive correlations occurred between Pb and Hg, Pb and Cd, Pb and Fe, Pb and Cr, Hg and Cd, and Hg and Fe. The honey products synthesized in Central Italy were of good quality, but not completely free of heavy metal contamination. Compared with established recommended daily intakes, heavy metals or trace element intoxication following honey consumption in Italy was found not to be a concern for human health.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macholdt, D. S.; Jochum, K. P.; Pöhlker, C.
We investigated rock varnishes collected from several locations and environments worldwide by a wide range of microanalytical techniques. These techniques were selected to address the challenges posed by the chemical and structural complexity within the micrometer- to nanometer-sized structures in these geological materials. Femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS), scanning transmission X-ray microscopy-near edge X-ray adsorption fine structure spectroscopy (STXM-NEXAFS) in combination with scanning electron microscopy (SEM) of focused ion beam (FIB) ultra-thin (100–200 nm) sections, conventional and polarization microscopy, as well as electron paramagnetic resonance (EPR) measurements were used to obtain information about these rock varnishes. Rockmore » varnishes from different environments, which cannot readily be distinguished based on their macroscopic appearance, differ significantly in their constituent elemental mass fractions, e.g., of Mn, Fe, Ni, Co, Ba, and Pb, and their rare earth element (REE) patterns. Structural characteristics such as the particle sizes of embedded dust grains, internal structures such as layers of Mn-, Fe-, and Ca -rich material, and structures such as cavities varied between varnishes from different environments and regions in the world. The EPR spectra were consistent with aged biogenic Mn oxides in all samples, but showed subtle differences between samples of different origin. Our observations allow us to separate rock varnishes into different types, with differences that might be indicators of distinct geneses. Five different types of rock varnish could be distinguished, Type I–V, of which only Type I might be used as potential paleoclimate archive. Each varnish type has specific characteristics in terms of their elemental composition, element distribution, and structures. The combination of element ratios (Mn/Ba, Al/Ni, Mn/REY, Mn/Ce, Mn/Pb, La N /Yb N , and Ce/Ce*), total REE contents, and structures can be used to separate the different types of rock varnish from each other.« less
NASA Astrophysics Data System (ADS)
Brandt, Frederik Ejvang; Holm, Paul Martin; Søager, Nina
2017-01-01
New high-precision minor element analysis of the most magnesian olivine cores (Fo85-88) in fifteen high-MgO (Mg#66-74) alkali basalts or trachybasalts from the Quaternary backarc volcanic province, Payenia, of the Andean Southern Volcanic Zone in Argentina displays a clear north-to-south decrease in Mn/Feol. This is interpreted as the transition from mainly peridotite-derived melts in the north to mainly pyroxenite-derived melts in the south. The peridotite-pyroxenite source variation correlates with a transition of rock compositions from arc-type to OIB-type trace element signatures, where samples from the central part of the province are intermediate. The southernmost rocks have, e.g., relatively low La/Nb, Th/Nb and Th/La ratios as well as high Nb/U, Ce/Pb, Ba/Th and Eu/Eu* = 1.08. The northern samples are characterized by the opposite and have Eu/Eu* down to 0.86. Several incompatible trace element ratios in the rocks correlate with Mn/Feol and also reflect mixing of two geochemically distinct mantle sources. The peridotite melt end-member carries an arc signature that cannot solely be explained by fluid enrichment since these melts have relatively low Eu/Eu*, Ba/Th and high Th/La ratios, which suggest a component of upper continental crust (UCC) in the metasomatizing agent of the northern mantle. However, the addition to the mantle source of crustal materials or varying oxidation state cannot explain the variation in Mn and Mn/Fe of the melts and olivines along Payenia. Instead, the correlation between Mn/Feol and whole-rock (wr) trace element compositions is evidence of two-component mixing of melts derived from peridotite mantle source enriched by slab fluids and UCC melts and a pyroxenite mantle source with an EM1-type trace element signature. Very low Ca/Fe ratios ( 1.1) in the olivines of the peridotite melt component and lower calculated partition coefficients for Ca in olivine for these samples are suggested to be caused by higher H2O contents in the magmas derived from subduction zone enriched mantle. Well-correlated Mn/Fe ratios in the wr and primitive olivines demonstrate that the Mn/Fewr of these basalts that only fractionated olivine and chromite reflects the Mn/Fe of the primitive melts and can be used as a proxy for the amount of pyroxenite melt in the magmas. Using Mn/Fewr for a large dataset of primitive Payenia rocks, we show that decreasing Mn/Fewr is correlated with decreasing Mn and increasing Zn/Mn as expected for pyroxenite melts.
NASA Astrophysics Data System (ADS)
Yudasari, N.; Prasetyo, S.; Suliyanti, M. M.
2018-03-01
The laser-induced breakdown spectroscopy (LIBS) technique was applied to detect the nutrient elements contained in fresh carrot. Nd:YAG laser the wavelength of 1064 nm was employed in the experiments for ablation. Employing simple set-up of LIBS and preparing the sample with less step method, we are able to detect 18 chemical elements including some fundamental element of carrot, i.e Mg, Al, Fe, Mn, Ti, Ca, and Mn. By applying normalized profiles calculation on some of the element, we are able to compare the concentration level of each element of the outer and inner part of carrot.
Rare earth doped zinc oxide varistors
McMillan, A.D.; Modine, F.A.; Lauf, R.J.; Alim, M.A.; Mahan, G.D.; Bartkowiak, M.
1998-12-29
A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2--4.0% oxide of at least one rare earth element, 0.5--4.0% Co{sub 3}O{sub 4}, 0.05--0.4% K{sub 2}O, 0.05--0.2% Cr{sub 2}O{sub 3}, 0--0.2% CaO, 0.00005--0.01% Al{sub 2}O{sub 3}, 0--2% MnO, 0--0.05% MgO, 0--0.5% TiO{sub 3}, 0--0.2% SnO{sub 2}, 0--0.02% B{sub 2}O{sub 3}, balance ZnO. 4 figs.
Rare earth doped zinc oxide varistors
McMillan, April D.; Modine, Frank A.; Lauf, Robert J.; Alim, Mohammad A.; Mahan, Gerald D.; Bartkowiak, Miroslaw
1998-01-01
A varistor includes a Bi-free, essentially homogeneous sintered body of a ceramic composition including, expressed as nominal weight %, 0.2-4.0% oxide of at least one rare earth element, 0.5-4.0% Co.sub.3 O.sub.4, 0.05-0.4% K.sub.2 O, 0.05-0.2% Cr.sub.2 O.sub.3, 0-0.2% CaO, 0.00005-0.01% Al.sub.2 O.sub.3, 0-2% MnO, 0-0.05% MgO, 0-0.5% TiO.sub.3, 0-0.2% SnO.sub.2, 0-0.02% B.sub.2 O.sub.3, balance ZnO.
Braunschweig, Holger; Damme, Alexander; Dück, Klaus; Fuß, Marco; Hörl, Christian; Kramer, Thomas; Krummenacher, Ivo; Kupfer, Thomas; Paprocki, Valerie; Schneider, Christoph
2015-10-12
We report the synthesis of [n]manganoarenophanes (n=1, 2) featuring boron, silicon, germanium, and tin as ansa-bridging elements. Their preparation was achieved by salt-elimination reactions of the dilithiated precursor [Mn(η(5) -C5 H4 Li)(η(6) -C6 H5 Li)]⋅pmdta (pmdta=N,N,N',N',N''-pentamethyldiethylenetriamine) with corresponding element dichlorides. Besides characterization by multinuclear NMR spectroscopy and elemental analysis, the identity of two single-atom-bridged derivatives, [Mn(η(5) -C5 H4 )(η(6) -C6 H5 )SntBu2 ] and [Mn(η(5) -C5 H4 )(η(6) -C6 H5 )SiPh2 ], could also be determined by X-ray structural analysis. We investigated for the first time the reactivity of these ansa-cyclopentadienyl-benzene manganese compounds. The reaction of the distannyl-bridged complex [Mn(η(5) -C5 H4 )(η(6) -C6 H5 )Sn2 tBu4 ] with elemental sulfur was shown to proceed through the expected oxidative addition of the Sn-Sn bond to give a triatomic ansa-bridge. The investigation of the ring-opening polymerization (ROP) capability of [Mn(η(5) -C5 H4 )(η(6) -C6 H5 )SntBu2 ] with [Pt(PEt3 )3 ] showed that an unexpected, unselective insertion into the Cipso -Sn bonds of [Mn(η(5) -C5 H4 )(η(6) -C6 H5 )SntBu2 ] had occurred. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
D'Havé, Helga; Scheirs, Jan; Mubiana, Valentine Kayawe; Verhagen, Ron; Blust, Ronny; De Coen, Wim
2005-09-01
Conventional metal exposure assessment in terrestrial mammals is generally based on organ analyses of sacrificed animals. Few studies on mammals use nondestructive methodologies despite the growing ethical concern over the use of destructive sampling. Nondestructive methods involve minimal stress to populations and permit successive biomonitoring of the same populations and individuals. In the present study we assessed metal exposure of hedgehogs (Erinaceus europaeus) by investigating relationships between concentrations of metals (Ag, Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn) and As in soil samples and in hair and spines of hedgehogs. Samples were collected in seven study sites along a metal pollution gradient, characterized by decreasing total soil Ag, As, Cd, Cu, Ni, and Pb concentrations with increasing distance from a nonferrous metallurgic factory. For a number of elements, soil contamination was related both to distance to the smelter and to habitat. Soil concentrations were positively related to levels in hair and spines for Ag, As, Cd, and Pb and thus to hedgehog exposure. Metal concentrations in soil did not relate to metal concentrations in hair and spines for essential elements (e.g., Cu, Fe, Mn, Ni, and Zn), except Co in hair and soil. Our results demonstrate that, at least for nonessential elements, concentrations in soils can be used to predict contamination of these elements in hedgehogs or vice versa. Furthermore, hedgehog exposure increased toward the smelter and was higher for hedgehogs foraging in grasslands than for animals foraging in the forest. Moreover, we believe that hair and spines are promising tools in terrestrial wildlife exposure assessment studies of metals and As.
Manganese superoxide dismutase: beyond life and death
Holley, Aaron K.; Dhar, Sanjit Kumar; Xu, Yong
2010-01-01
Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant enzyme that localizes to the mitochondria. Expression of MnSOD is essential for the survival of aerobic life. Transgenic mice expressing a luciferase reporter gene under the control of the human MnSOD promoter demonstrate that the level of MnSOD is reduced prior to the formation of cancer. Overexpression of MnSOD in transgenic mice reduces the incidences and multiplicity of papillomas in a DMBA/TPA skin carcinogenesis model. However, MnSOD deficiency does not lead to enhanced tumorigenicity of skin tissue similarly treated because MnSOD can modulate both the p53-mediated apoptosis and AP-1-mediated cell proliferation pathways. Apoptosis is associated with an increase in mitochondrial levels of p53 suggesting a link between MnSOD deficiency and mitochondrial-mediated apoptosis. Activation of p53 is preventable by application of a SOD mimetic (MnTE-2-PyP5+). Thus, p53 translocation to mitochondria and subsequent inactivation of MnSOD explain the observed mitochondrial dysfunction that leads to transcription-dependent mechanisms of p53-induced apoptosis. Administration of MnTE-2-PyP5+ following apoptosis but prior to proliferation leads to suppression of protein carbonyls and reduces the activity of AP-1 and the level of the proliferating cellular nuclear antigen, without reducing the activity of p53 or DNA fragmentation following TPA treatment. Remarkably, the incidence and multiplicity of skin tumors are drastically reduced in mice that receive MnTE-2-PyP5+ prior to cell proliferation. The results demonstrate the role of MnSOD beyond its essential role for survival and suggest a novel strategy for an antioxidant approach to cancer intervention. PMID:20454814
S. W. Huang; Lee, J. M.; Jeng, H. -T.; ...
2016-07-21
Oxygen is known to play an important role in the multiferroicity of rare earth manganites; however, how this role changes with rare earth elements is still not fully understood. To address this question, we have used resonant soft x-ray scattering spectroscopy to study the F-type (0; ; 0) diffraction peak from the antiferromagnetic order in DyMnO 3 and TbMnO 3. We focus on the measurements at O K-edge of these two manganites, supplemented by the results at Mn L2- and Dy M5-edge of DyMnO 3. We show that the electronic states of di erent elements are coupled more strongly inmore » DyMnO 3 than in TbMnO 3, presumably due to the stronger lattice distortion and the tendency to develop E-type antiferromagnetism in the ferroelectric state that promote the orbital hybridization. We also show that the anomaly in the correlation length of (0; ; 0) peak in DyMnO 3 signifies the exchange interaction between Mn and rare earth spins, which is absent in TbMnO 3. Our findings reveal the prominent role of oxygen orbitals in the multiferroicity of rare earth manganites and the distinct energetics between them.« less
Why did Nature choose manganese to make oxygen?
Armstrong, Fraser A
2007-01-01
This paper discusses the suitability of manganese for its function in catalysing the formation of molecular oxygen from water. Manganese is an abundant element. In terms of its inherent properties, Mn has a particularly rich redox chemistry compared with other d-block elements, with several oxidizing states accessible. The most stable-state Mn2+ behaves like a Group 2 element—it is mobile, weakly complexing, easily taken up by cells and redox-inactive in simple aqueous media. Only in the presence of suitable ligands does Mn2+ become oxidized, so it provides an uncomplicated building unit for the oxygen-evolving centre (OEC). The intermediate oxidation states Mn(III) and Mn(IV) are strongly complexed by O2− and form robust mixed-valence poly-oxo clusters in which the Mn(IV)/Mn(III) ratio can be elevated, one electron at a time, accumulating oxidizing potential and capacity. The OEC is a Mn4CaOx cluster that undergoes sequential oxidations by P680+ at potentials above 1 V, ultimately to a super-oxidized level that includes one Mn(V) or a Mn(IV)-oxyl radical. The latter is powerfully oxidizing and provides the crucial ‘power stroke’ necessary to generate an O–O bond. This leaves a centre still rich in Mn(IV), ensuring a rapid follow-through to O2. PMID:17971329
NASA Astrophysics Data System (ADS)
Goto, K. T.; Ito, T.; Suzuki, K.; Anbar, A. D.; Gordon, G. W.; Kashiwabara, T.; Takaya, Y.; Shimoda, G.; Nozaki, T.; Kiyokawa, S.; Tetteh, G. M.; Nyame, F. K.
2014-12-01
Multiple lines of evidence suggest that the first major oxidation of the atmosphere-ocean system occurred during the Paleoproterozoic. However, the course of this redox transition remains elusive. A number of large Mn deposits are distributed in Paleoproterozoic sedimentary successions. As Mn is a redox-sensitive element characterized by high redox potential, knowledge of the Mn cycle in Paleoproterozoic seawater may provide insight into redox evolution during this period. Here, we investigate the Mn cycle in Paleoproterozoic seawater based on the Re-Os and Mo isotope compositions, and the abundance of major and trace elements, in Mn-rich sedimentary rocks from the Nsuta deposit of the Birimian Supergroup, Ghana. The Mn ore is composed mainly of rhodochrosite and is distributed at the boundaries between sedimentary rocks and tholeiitic volcanic rocks. The Re-Os isochron age (2217 ± 100 Ma) we obtained was consistent with U-Pb zircon ages of the volcanic rocks. The manganophile elements, except for Mo, show no enrichment, which is similar to modern hydrothermal Mn oxides. The PAAS-normalized REE compositions show positive Ce anomaly, indicative of Ce enrichment due to the oxidation of Ce(III) by Mn(IV). These findings suggest that Mn ore formed from primary precipitation of Mn oxides from hydrothermal fluids as they were mixed with bottom seawater at ~2.2 Ga. Thus, the bottom seawater would have been sufficiently oxygenated for the precipitation of Mn oxides at ~2.2 Ga. The Nsuta ore samples exhibit slight Mo enrichment, but Mo/Mn ratios are orders of magnitude lower than those in modern hydrothermal Mn oxides. We also found that the Mo isotopes in the Nsuta ore are ~0.7‰ heavier than those in modern hydrothermal and hydrogenous Mn oxides. As Mo in hydrothermal Mn oxides is sourced primarily from seawater (Goto et al., in prep), these results may reflect smaller oceanic Mo inventory and heavier seawater Mo isotope composition at 2.2 Ga than those of present-day. Our calculation using a simple mass balance model suggests that substantial removal of light Mo by Mn oxides may have caused such oceanic conditions. Our findings are consistent with the recently proposed 'oxygen overshoot' model (Bekker and Holland, 2012) and low Mo contents in ~2.2-Ga black shales and sedimentary pyrites (e.g., Scott et al., 2008).
Tissue distribution of metals in white-fronted geese and spot-billed ducks from Korea.
Kim, Jungsoo; Oh, Jong-Min
2013-07-01
This study presents concentrations of Fe, Zn, Mn, Cu, Pb and Cd in livers, kidneys, muscles and bones of white-fronted geese Anser albifrons (geese) and spot-billed ducks Anas poecilorhyncha (ducks). Iron in livers, kidneys and muscles, Zn in muscles, Mn and Cd in every tissue, Cu in livers, muscles and bones and Pb in bones differed between species, and there were significant differences among tissues in both species. Essential elements such as Fe, Zn, Mn and Cu concentrations were within the background levels. Lead concentrations in livers of 7 of 14 geese and 7 of 19 ducks and in bones of 4 of 19 ducks exceeded background concentrations for waterfowl (5 μg/g dw for the liver, 10 μg/g dw for the bone). Almost all samples of both species had the background Cd concentrations in the liver (33 of 33 geese and ducks) and kidney (14 geese and 18 ducks). Tissue concentrations of Cd were greater in geese than ducks. In contrast, tissue concentrations of Pb in bones were greater in ducks than in geese. These different trends for Cd and Pb reflect a short and/or long term difference in exposure and degree of accumulation of these metals.
Bioavailability of zinc, copper, and manganese from infant diets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, J.G.
1987-01-01
A series of trace element absorption experiments were performed using the Sprague-Dawley suckling rat put and infant rhesis monkey (Macaca mulatta) with extrinsic radiolabeling to assess the bioavailability of Zn, Cu, and Mn from infant diets and to examine specific factors that affect absorption of these essential nutrients. Bioavailability of Cu as assessed by 6 h liver uptake (% of /sup 64/Cu dose) was highest from human milk and cow milk based formula and significantly lower from cow milk and soy based formula. Copper bioavailability from infant cereal products as assessed by whole body uptake (% of /sup 64/Cu dose)more » in d 20 rats, 9 h postintubation, was low compared to the bioavailability from cow milk or human milk alone. /sup 65/Zn uptake in d 20 rats, 9 h postintubation, was significantly lower from cereals fed alone or in combination with cow or human milk as compared to the uptake from the milks fed alone. Zn bioavailability varied among cereal diets, (lowest from cereals containing phytate and highest from cereal/fruit products). Mn bioavailability from infant diets was assessed using a modified suckling rat pup model. Bioavailability (24 h whole body retention of /sup 54/Mn) was high from all milks and commercial formulas tested.« less
Strontium and Trace Metals in the Mississippi River Mixing Zone
NASA Astrophysics Data System (ADS)
Xu, Y.; Marcantonio, F.
2001-12-01
Strontium is generally believed to be a conservative element, i.e., it is assumed that dissolved Sr moves directly from rivers through estuaries to the ocean. More recently, however, detailed sampling of rivers suggests a weak non-conservative behavior for Sr. Here, we present dissolved and suspended load Sr and trace metal data for samples retrieved along salinity transects in the estuarine mixing zone of the Mississippi River. Our cruises took place during times representing high, falling, and low Mississippi River discharge. Sr concentration and isotopic composition were analyzed for both dissolved particulate loads. Selected particle-reactive or redox-sensitive trace metals (Mn, Fe, U, V, Mo, Ti, and Pb) were analyzed simultaneously. In the dissolved load, Sr showed conservative behavior in both high- and low- discharge periods. Non-conservative behavior of Sr predominated during falling discharge in the summer. Significant positive correlations were found between Sr, Mo and Ti. U and V distributions were found to be essentially controlled by mixing of river water and seawater, but with significantly lower riverine concentrations during high-flow stage. Particulate element concentrations can be quite variable and heterogeneous. In this study, strong correlations were found between particulate Mn (and Fe) concentrations and particulate concentrations of Ti, U, V, and Pb. No such correlations with Mn (or Fe) were found for particulate Sr and Mo. There is a vast hypoxic zone along the coast of Louisiana in the Gulf of Mexico that exists during the summer months. Based on the Sr isotope systematics and the relationships between Sr and trace metals, we believe that this eutrophication may contribute to the non-conservative behaviors of Sr and other trace metals. We discuss the potential implications of this hypothesis on the Sr mass balance of present-day and past seawater.
The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)
NASA Technical Reports Server (NTRS)
Schuon, S. R.
1982-01-01
The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.
Black manganese-rich crusts on a Gothic cathedral
NASA Astrophysics Data System (ADS)
Macholdt, Dorothea S.; Herrmann, Siegfried; Jochum, Klaus Peter; Kilcoyne, A. L. David; Laubscher, Thomas; Pfisterer, Jonas H. K.; Pöhlker, Christopher; Schwager, Beate; Weber, Bettina; Weigand, Markus; Domke, Katrin F.; Andreae, Meinrat O.
2017-12-01
Black manganese-rich crusts are found worldwide on the façades of historical buildings. In this study, they were studied exemplarily on the façade of the Freiburger Münster (Freiburg Minster), Germany, and measured in-situ by portable X-ray fluorescence (XRF). The XRF was calibrated to allow the conversion from apparent mass fractions to Mn surface density (Mn mass per area), to compensate for the fact that portable XRF mass fraction measurements from thin layers violate the assumption of a homogeneous measurement volume. Additionally, 200-nm femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs LA-ICP-MS) measurements, scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS), Raman spectroscopy, and imaging by light microscopy were conducted to obtain further insight into the crust material, such as potential biogenic contributions, element distributions, trace element compositions, and organic functional groups. While black crusts of various types are present at many places on the minster's facade, crusts rich in Mn (with a Mn surface density >150 μg cm-2) are restricted to a maximum height of about 7 m. The only exceptions are those developed on the Renaissance-Vorhalle (Renaissance Portico) at a height of about 8 m. This part of the façade had been cleaned and treated with a silicon resin as recently as 2003. These crusts thus accumulated over a period of only 12 years. Yet, they are exceptionally Mn-rich with a surface density of 1200 μg cm-2, and therefore require an accumulation rate of about 100 μg cm-2 Mn per year. Trace element analyses support the theory that vehicle emissions are responsible for most of the Mn supply. Lead, barium, and zinc correlate with manganese, indicating that tire material, brake pads, and resuspended road dust are likely to be the element sources. Microscopic investigations show no organisms on or in the Mn-rich crusts. In contrast, Mn-free black crusts sampled at greater heights (>8 m) exhibited fungal and cyanobacterial encrustation. Carbon-rich spots were found by STXM-NEXAFS underneath one of the Mn-rich crusts. However, these carbon occurrences originate from soot and polycyclic aromatic hydrocarbons (PAHs) deposited on top of the crust, rather than from organisms responsible for the crust's formation, as shown by STXM-NEXAFS and Raman spectroscopic measurements. Our results suggest that the crusts develop abiogenically, with vehicle emissions as dominant element sources.
Magnetism in Mn-nanowires and -clusters as δ-doped layers in group IV semiconductors (Si, Ge)
NASA Astrophysics Data System (ADS)
Simov, K. R.; Glans, P.-A.; Jenkins, C. A.; Liberati, M.; Reinke, P.
2018-01-01
Mn doping of group-IV semiconductors (Si/Ge) is achieved by embedding nanostructured Mn-layers in group-IV matrix. The Mn-nanostructures are monoatomic Mn-wires or Mn-clusters and capped with an amorphous Si or Ge layer. The precise fabrication of δ-doped Mn-layers is combined with element-specific detection of the magnetic signature with x-ray magnetic circular dichroism. The largest moment (2.5 μB/Mn) is measured for Mn-wires with ionic bonding character and a-Ge overlayer cap; a-Si capping reduces the moment due to variations of bonding in agreement with theoretical predictions. The moments in δ-doped layers dominated by clusters is quenched with an antiferromagnetic component from Mn-Mn bonding.
Nayak, P; Behera, P R; Thirunavoukkarasu, M; Chand, P K
2011-03-01
The Energy Dispersive X-ray Fluorescence (ED-XRF) set-up incorporating a molybdenum secondary exciter was used for quantitative determination of major and minor elements in leaves of in vivo grown medicinal herb Phyllanthus amarus vis-á-vis its leaf-derived in vitro callus culture. The elements such as K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb were identified, quantified and compared between both the sources. Experimental results revealed that, compared to the naturally grown herb, in vitro leaf-derived callus cultures were more efficient in accumulating inorganic elements, especially trace elements, which are essential for growth and development and more importantly for prevention and cure of diseases. This investigation on a medicinal plant species is the first of its kind to have used the ED-XRF technique to demonstrate a comparative account of the elemental profile of in vitro callus cultures with their in vivo donor in order to explore the possibility of exploiting the former as a viable alternative and a renewable source of phytochemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.
Trace elements in fish from the Arabian Gulf and the Shatt al-Arab river, Iraq
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abaychi, J.; Al-Saad, H.T.
1988-02-01
In the Arabian Gulf region, recently, vast industrial, agricultural, economic and social developments have taken place, in addition to an increase in population. This may enhance the magnitude of environmental pollution year by year. No detailed study has been undertaken to assess the concentrations of trace elements in commercial species of fish from the Arabian Gulf and the Shatt al-Arab River, despite the fact that fish are considered an essential part of the diet in the region. Therefore, an investigation was carried out on the concentration of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn in themore » following fish species from the Arabian Gulf: Tylosurus strongylurus, Eleutheoronema tetradactum, Pomadasys arel, Platycephalus indicus, Ilisha elongata, Thryssa hamiltonii, Arius thalassinus, Acanthophagrus luteus, Johnieops sina, Liza dussumeiri, Hilsa ilisha, Nematolosa nasus and Otoliths argenteus, and on species from the Shatt al-Arab River: Mesopotamichthys sharpeyi, Barbus xanthopterus, Barbus scheich, Aspius vorax, Cyprinus carpio, and Barbus grypus. Trace element levels in sediment samples from the area were also determined since sediments can accumulate different elements and may reflect the extent of pollution by these elements.« less
Tailoring perpendicular magnetic coupling by XMCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idzerda, Y. U.; Snow, R.; Bhatkar, H.
2017-01-10
The elemental perpendicular magnetic anisotropy constants of both elements of a 20 nm bcc Co 88Mn 12 alloy film grown on MgO(001) and capped with Al, have been determined. By fitting a Stoner-Wohlfarth astroid model to the measured Co and Mn L 3 XMCD peak intensities as a function of incidence photon angle with the magnetic field applied co-axially with the photon propagation direction, the elemental perpendicular anisotropy constants were found to be –6.46 x 10 5 J/m 3 and –6.68 x 10 5 J/m 3, respectively. The modeling of the Co and Mn data both result in nearly themore » same anisotropy constant as expected for a single alloy film.« less
Heavy Metals in Soil and Salad in the Proximity of Historical Ferroalloy Emission
Ferri, Roberta; Donna, Filippo; Smith, Donald R.; Guazzetti, Stefano; Zacco, Annalisa; Rizzo, Luigi; Bontempi, Elza; Zimmerman, Neil J.; Lucchini, Roberto G.
2016-01-01
Emissions of manganese (Mn), lead (Pb), iron (Fe), zinc (Zn), copper (Cu) from ferro-alloy operations has taken place in Valcamonica, a pre-Alp valley in the province of Brescia, Italy, for about a century until 2001. Metal concentrations were measured in the soil of local home gardens and in the cultivated vegetables. Soil analysis was carried out using a portable X-Ray Fluorescence (XRF) spectrometer in both surface soil and at 10 cm depth. A subset of soil samples (n = 23) additionally was analysed using the modified BCR sequential extraction method and ICP-OES for intercalibration with XRF (XRF Mn = 1.33 * total OES Mn – 71.8; R = 0.830, p < 0.0001). Samples of salads (Lactuca sativa and Chichorium spp.) were analyzed with a Total Reflection X-Ray Fluorescence (TXRF) technique. Vegetable and soil metal measurements were performed in 59 home gardens of Valcamonica, and compared with 23 gardens from the Garda Lake reference area. Results indicate significantly higher levels of soil Mn (median 986 ppm vs 416 ppm), Pb (median 46.1 ppm vs 30.2 ppm), Fe (median 19,800 ppm vs 13,100 ppm) in the Valcamonica compared to the reference area. Surface soil levels of all metals were significantly higher in surface soil compared to deeper soil, consistent with atmospheric deposition. Significantly higher levels of metals were shown also in lettuce from Valcamonica for Mn (median 53.6 ppm vs 30.2) and Fe (median 153 vs 118). Metals in Chichorium spp. did not differ between the two areas. Surface soil metal levels declined with increasing distance from the closest ferroalloy plant, consistent with plant emissions as the source of elevated soil metal levels. A correlation between Mn concentrations in soil and lettuce was also observed. These data show that historic ferroalloy plant activity, which ended nearly a decade before this study, has contributed to the persistence of increased Mn levels in locally grown vegetables. Further research is needed to assess whether this increase can lead to adverse effects in humans and plants especially for Mn, an essential element that can be toxic in humans when exceeding the homeostatic ranges. PMID:27818841
Bakshi, Madhurima; Ram, S S; Ghosh, Somdeep; Chakraborty, Anindita; Sudarshan, M; Chaudhuri, Punarbasu
2017-05-01
This work describes the micro-spatial variation of elemental distribution in estuarine sediment and bioaccumulation of those elements in different mangrove species of the Indian Sundarbans. The potential ecological risk due to such elemental load on this mangrove-dominated habitat is also discussed. The concentrations of elements in mangrove leaves and sediments were determined using energy-dispersive X-ray fluorescence spectroscopy. Sediment quality and potential ecological risks were assessed from the calculated indices. Our data reflects higher concentration of elements, e.g., Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, and Pb, in the sediment, as compared to that reported by earlier workers. Biological concentration factors for K, Ca, Mn, Fe, Cu, and Zn in different mangroves indicated gradual elemental bioaccumulation in leaf tissues (0.002-1.442). Significant variation was observed for elements, e.g., Ni, Mn, and Ca, in the sediments of all the sites, whereas in the plants, significant variation was found for P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn. This was mostly due to the differences in uptake and accumulation potential of the plants. Various sediment quality indices suggested the surface sediments to be moderately contaminated and suffering from progressive deterioration. Cu, Cr, Zn, Mn, and Ni showed higher enrichment factors (0.658-1.469), contamination factors (1.02-2.7), and geo-accumulation index (0.043-0.846) values. The potential ecological risk index values considering Cu, Cr, Pb, and Zn were found to be within "low ecological risk" category (20.04-24.01). However, Cr and Ni in the Sundarban mangroves exceeded the effect range low and probable effect level limits. Strong correlation of Zn with Fe and K was observed, reflecting their similar transportation and accumulation process in both sediment and plant systems. The plant-sediment elemental correlation was found to be highly non-linear, suggesting role of some physiological and edaphic factors in the accumulation process. Overall, the study of micro-spatial distribution of elements can act as a useful tool for determining health of estuarine ecosystem.
Element-specific study of the temperature dependent magnetization of Co-Mn-Sb thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmalhorst, J.; Ebke, D.; Meinert, M.
Magnetron sputtered thin Co-Mn-Sb films were investigated with respect to their element-specific magnetic properties. Stoichiometric Co{sub 1}Mn{sub 1}Sb{sub 1} crystallized in the C1{sub b} structure has been predicted to be half-metallic and is therefore of interest for spintronics applications. It should show a characteristic antiferromagnetic coupling of the Mn and Co magnetic moments and a transition temperature T{sub C} of about 480K. Although the observed transition temperature of our 20nm thick Co{sub 32.4}Mn{sub 33.7}Sb{sub 33.8}, Co{sub 37.7}Mn{sub 34.1}Sb{sub 28.2} and Co{sub 43.2}Mn{sub 32.6}Sb{sub 24.2} films is in quite good agreement with the expected value, we found a ferromagnetic coupling ofmore » the Mn and Co magnetic moments which indicates that the films do not crystallize in the C1{sub b} structure and are probably not fully spin-polarized. The ratio of the Co and Mn moments does not change up to the transition temperature and the temperature dependence of the magnetic moments can be well described by the mean field theory.« less
Shen, Xiao-Feng; Zhang, Qi; Yan, Zhu-Yun; Yang, Xin-Jie; Guo, Xiao-Heng; Chen, Xin; Wan, De-Guang
2016-04-01
In order to investigate the content and distribution of available element in the rhizonsphere soil of the growing areas of Salvia miltiorrhiza Bunge, the contents of available element (N,P,K,B,Cu,Zn,Fe,Mn) in 26 soil samples were tested and evaluated. The results showed that the contents of available P and Fe were very plentiful, available K, Cu and Zn were rich, available N and Mn were deficient, available B was extremely deficient in all growing areas of S. miltiorrhiza of eight provinces in China. The correlation analysis showed that the contents of eight kinds of available elements were varying degree correlation. The stepwise regression analysis between the contents of available elements of rhizonsphere soil and ten kinds of active ingredients of Danshen (Salviae Miltiorrhizae Radix et Rhizoma) were researched. The results showed that the rates of contribution of available N,B,Mn and Fe to quality of Danshen were relatively large and they were the significant factors, and the other factors did not show statistical significance. The recommended fertilizing strategies is that the usage of N,B and Mn fertilizers should be controlled according to different stages of growth of S. miltiorrhiza, and P fertilizer should be reduced in all growing areas of S. miltiorrhiza. Copyright© by the Chinese Pharmaceutical Association.
Godson, Prince S; Magesh, N S; Peter, T Simon; Chandrasekar, N; Krishnakumar, S; Vincent, Salom Gnana Thanga
2018-01-01
Forty two surface sediment samples were collected in order to document baseline elemental concentration along the Southwest coast of Tamil Nadu, India. The elements detected were Manganese (Mn), Zinc (Zn), Iron (Fe), Copper (Cu), Nickel (Ni) and Lead (Pb). The concentration of Fe and Mn was primarily controlled by the riverine input. The source of Pb and Zn is attributed to leaded petrol and anti-biofouling paints. The calculated index (EF, Igeo and CF) suggests that the sediments of the study area are significantly enriched with all elements except Pb. The contamination factor showed the order of Mn>Zn>Fe>Cu>Ni>Pb. The sediment pollution index (SPI) revealed that the sediments belonged to low polluted to dangerous category. The correlation matrix and dendrogram showed that the elemental distribution was chiefly controlled by riverine input as well as anthropogenic activity in the coast. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Mimmo, T.; Terzano, R.; Medici, L.; Lettino, A.; Fiore, S.; Tomasi, N.; Pinton, R.; Cesco, S.
2012-04-01
Plants release significant amounts of high and low molecular weight organic compounds into the rhizosphere. Among these exudates organic acids (e.g. citric acid, malic acid, oxalic acid), phenolic compounds (e.g. flavonoids), amino acids and siderophores of microbial and/or plant origin strongly influence and modify the biogeochemical cycles of several elements, thus causing changes in their availability for plant nutrition. One class of these elements is composed by the trace elements; some of them are essential for plants even if in small concentrations and are considered micronutrients, such as Fe, Zn, Mn. Their solubility and bioavailability can be influenced, among other factors, by the presence in soil solution of low molecular weight root exudates acting as organic complexing agents that can contribute to the mineral weathering and therefore, to their mobilization in the soil solution. The mobilized elements, in function of the element and of its concentration, can be either important nutrients or toxic elements for plants. The objective of this study was to assess the influence of several root exudates (citric acid, malic acid, oxalic acid, genistein, quercetin and siderophores) on the mineralogy of two different soils (an agricultural calcareous soil and an acidic polluted soil) and to evaluate possible synergic or competitive behaviors. X-ray diffraction (XRD) coupled with Electron Probe Micro Analysis (EPMA) was used to identify the crystalline and amorphous phases which were subjected to mineral alteration when exposed to the action of root exudates. Solubilization of trace metals such as Cu, Zn, Ni, Cr, Pb, Cd as well as of major elements such as Si, Al, Fe and Mn was assessed by means of Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Soil microorganisms have proven to decrease mineral weathering by reducing the concentration of active root exudates in solution. Results obtained are an important cornerstone to better understand the biogeochemical processes acting in the rhizosphere which can play an important role in the availability of trace elements (either nutrient or toxic) for plant uptake. Research is supported by MIUR - FIRB "Futuro in ricerca", internal grant of Unibz (TN5031 & TN5046) and the Autonomous Province of Bolzano (Rhizotyr TN5218).
Dastych, Milan; Šenkyřík, Michal; Dastych, Milan; Novák, František; Wohl, Petr; Maňák, Jan; Kohout, Pavel
2016-01-01
The objective of the present study was to determine concentrations of zinc (Zn), copper (Cu), iron (Fe), selenium (Se) in blood plasma and manganese (Mn) in the whole blood in patients with long-term home parenteral nutrition (HPN) in comparison to the control group. We examined 68 patients (16 men and 52 women) aged from 28 to 68 years on a long-term HPN lasting from 4 to 96 months. The short bowel syndrome was an indication for HPN. The daily doses of Zn, Cu, Fe, Se and Mn in the last 3 months were determined. No significant differences in blood plasma were found for Zn, Cu and Fe in patients with HPN and in the control group (p > 0.05). The concentration of Mn in whole blood was significantly increased in HPN patients (p < 0.0001), while Se concentration in these patients was significantly decreased (p < 0.005). The concentration of Mn in the whole blood of 16 patients with cholestasis was significantly increased compared to the patients without cholestasis (p < 0.001). The Cu concentration was increased with no statistical significance. In long-term HPN, the status of trace elements in the patients has to be continually monitored and the daily substitution doses of these elements have to be flexibly adjusted. Dosing schedule needs to be adjusted especially in cases of cholestatic hepatopathy. A discussion about the optimal daily dose of Mn in patients on HPN is appropriate. For clinical practice, the availability of a substitution mixture of trace elements lacking Mn would be advantageous. © 2016 S. Karger AG, Basel.
The excretion of biotrace elements using the multitracer technique in tumour-bearing mice.
Wang, X; Tian, J; Yin, X M; Zhang, X; Wang, Q Z
2000-12-01
A radioactive multitracer solution obtained from the nuclear reaction of selenium with 25 MeV/nucleon 40Ar ions was used for investigation of trace element excretion into the faeces and urine of cancerous mice. The excretion rates of 22 elements (Na, K, Rb, Mg, Ca, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Mo, Nb, Tc, Ru, Ag and In) were simultaneously measured under strictly identical experimental conditions, in order to clarify the excretion behavior of these elements in cancerous mice. The faecal and urinary excretion rates of Mg, Sr, Ga, As, Sc, V, Cr, Mn, Co, Fe, Y, Zr, Nb, Ru and Mo in cancerous mice, showed the in highest value at 0-8 hours. The accumulative excretion of Ca, Mo, Y and Zr was decreased and Na, Fe, Mn and Co increased in tumour-bearing mice, when compared to normal mice.
A parameter free model for HgMn stars
NASA Astrophysics Data System (ADS)
Michaud, G.
Consideration is given to hydrodynamic and radiative acceleration calculations that may be performed within the context of a parameter-free model of HgMn stars. The model accounts for the formation of HgMn stars at temperatures too high to support an outer hydrogen convection zone by the settling of helium through a He II convection zone which eventually disappears, leaving a diffusive atmosphere with envelope heavy element abundances. Calculations of meridional circulation and the He II diffusion velocity are presented which demonstrate that the He II convection zone can disappear for equatorial rotation velocities less than or equal to 90 km/sec. Detailed radiative acceleration calculations performed for various elements are then reviewed which have reproduced the maximum anomalies observed for He, B, Si, Ca, Sr and Mn abundances in HgMn stars. The parameter-free model is noted to fail, however, in the case of Be.
Bhang, Soo-Young; Cho, Soo-Churl; Kim, Jae-Won; Hong, Yun-Chul; Shin, Min-Sup; Yoo, Hee Jeong; Cho, In Hee; Kim, Yeni; Kim, Bung-Nyun
2013-10-01
Manganese (Mn) is neurotoxic at high concentrations. However, Mn is an essential element that can protect against oxidative damage; thus, extremely low levels of Mn might be harmful. Our aim was to examine whether either high or low environmental Mn exposure is related to academic and attention function development among school-aged children. This cross-sectional study included 1089 children 8-11 years of age living in five representative areas in South Korea. Blood Mn, blood lead, and urine cotinine were measured. We assessed IQ with the Wechsler Abbreviated Scale of Intelligence; attention with a computerized continuous performance test called the Attention-deficit/hyperactivity disorder (ADHD) Diagnostic System (ADS), the Korean version of the Stroop Color-Word Test, the Children's Color Trails Test (CCTT), and the ADHD Rating Scale; academic functions with the Learning Disability Evaluation Scale (LDES); and emotional and behavioral problems with the Korean version of the Child Behavior Checklist (CBCL). We further assessed the presence of ADHD using a highly structured diagnostic interview, the Diagnostic Interview Schedule for Children Version IV (DISC-IV). The median blood concentration of Mn was 14.14 µg/L. We observed a nonlinear association between the CCTT2 completion time and the CPT commission error (F=3.14, p=0.03 and F=4.05, p=0.01, respectively). We divided the data into three groups: lower (<8.154 µg/L), and upper 5th percentile (>21.453 µg/L) and middle 90th percentile to determine whether a lack or overload of Mn could cause adverse effects. After adjusting for urine cotinine, blood lead, children's IQ, and other potential confounders, the high Mn group showed lower scores in thinking (B=-0.83, p=0.006), reading (B=-0.93, p=0.004), calculations (B=-0.72, p=0.005), and LQ (B=-4.06, p=0.006) in the LDES and a higher commission error in the CPT (B=8.02, p=0.048). The low Mn group showed lower color scores in the Stroop test (B=-3.24, p=0.040). We found that excess Mn in children is associated with lower scores of thinking, reading, calculation, and LQ in the LDES and higher scores of commission error in the ADS test. In contrast, lower Mn in children is associated with lower color scores in the Stroop test. The findings of this cross-sectional study suggest that excess exposure or deficiency of Mn can cause harmful effects in children. Copyright © 2013 Elsevier Inc. All rights reserved.
Mn distribution in natural sphalerites: a micronalytical and EPR study
NASA Astrophysics Data System (ADS)
di Benedetto, F.; Bernardini, G. P.; Cipriani, C.; Plant, D.; Romanelli, M.; Vaughan, D. J.
2003-04-01
Electron Paramagnetic Resonance (EPR) has been successfully applied to determine the local coordination and distribution of transition metal cations in sulphides and sulphosalts (Di Benedetto et al., 2002). Due to its enhanced sensitivity and element-specificity it is one of the best tools to monitor Mn(II) behaviour down to very low concentrations. In order to reach a fuller understanding of the spectroscopic results, a microanalytical study has also been undertaken by means of Electron Microprobe Analysis. Operating conditions were chosen to achieve the lowest possible detection limits, taking into account that Mn can replace Zn in the sphalerite lattice both as a minor and trace element, and that EPR can detect Mn(II) below the ppm range. Six natural samples from the Museo di Storia Naturale, Università di Firenze, were selected to have pure single crystals and avoid magnetically active phases associated with the sphalerite. The Mn concentration determined ranges between 30 and 14300 ppm and Mn content varies considerably within the same sample, leading to differences up to the 50% as compared to the mean value. X-ray images confirm Mn to be distributed with an unusual pattern, unrelated to the other common Zn-replacing cations, Fe and Cd, present in the samples. Powder EPR spectra reveal at least three different Mn(II) signals: two sextets, overlapping in all samples containing Mn as trace element, and a single line, present only in the more concentrated samples. While the latter have been attributed to an inhomogeneous Mn distribution, due to an enhanced Mn-Mn superexchange interaction, the difference between the two sextets, observed by means of EEPR investigations in a synthetic sphalerite (Di Benedetto et al., 2002), appears unrelated to the Mn concentration and may be attributed to small differences in the local coordination of Mn(II) ions. This, in turn, may be explained by the segregation of small amounts of Mn into polytypic domains, features which usually characterise large sphalerite crystals. This study shows the distinctive behaviour of Mn in sphalerite, both at the micron and submicron scales. These features point to sphalerites "preserving" the out-of-equilibrium conditions of their genesis. Mn(II) magnetic interactions may play an important role in the stabilisation of polytypic hexagonal domains during the growth of sphalerite crystals. Di Benedetto, F., Bernardini, G.P., Caneschi, A., Cipriani, C., Danti, C., Pardi, L. and Romanelli, M. (2002): EPR and magnetic investigations on sulfides and sulfosalts. Eur. J. Mineral., 4(6), 1053.
Bicarbonate requirement for the water-oxidizing complex of photosystem II.
Klimov, V V; Baranov, S V
2001-01-05
It is well established that bicarbonate stimulates electron transfer between the primary and secondary electron acceptors, Q(A) and Q(B), in formate-inhibited photosystem II; the non-heme Fe between Q(A) and Q(B) plays an essential role in the bicarbonate binding. Strong evidence of a bicarbonate requirement for the water-oxidizing complex (WOC), both O2 evolving and assembling from apo-WOC and Mn2+, of photosystem II (PSII) preparations has been presented in a number of publications during the last 5 years. The following explanations for the involvement of bicarbonate in the events on the donor side of PSII are considered: (1) bicarbonate serves as an electron donor (alternative to water or as a way of involvement of water molecules in the oxidative reactions) to the Mn-containing O2 center; (2) bicarbonate facilitates reassembly of the WOC from apo-WOC and Mn2+ due to formation of the complexes MnHCO3+ and Mn(HCO3)2 leading to an easier oxidation of Mn2+ with PSII; (3) bicarbonate is an integral component of the WOC essential for its function and stability; it may be considered a direct ligand to the Mn cluster; (4) the WOC is stabilized by bicarbonate through its binding to other components of PSII.
Trace element inhibition of phytase activity.
Santos, T; Connolly, C; Murphy, R
2015-02-01
Nowadays, 70 % of global monogastric feeds contains an exogenous phytase. Phytase supplementation has enabled a more efficient utilisation of phytate phosphorous (P) and reduction of P pollution. Trace minerals, such as iron (Fe), zinc (Zn), copper (Cu) and manganese (Mn) are essential for maintaining health and immunity as well as being involved in animal growth, production and reproduction. Exogenous sources of phytase and trace elements are regularly supplemented to monogastric diets and usually combined in a premix. However, the possibility for negative interaction between individual components within the premix is high and is often overlooked. Therefore, this initial study focused on assessing the potential in vitro interaction between inorganic and organic chelated sources of Fe, Zn, Cu and Mn with three commercially available phytase preparations. Additionally, this study has investigated if the degree of enzyme inhibition was dependent of the type of chelated sources. A highly significant relationship between phytase inhibition, trace mineral type as well as mineral source and concentration, p < 0.001 was verified. The proteinate sources of OTMs were consistently and significantly less inhibitory than the majority of the other sources, p < 0.05. This was verified for Escherichia coli and Peniophora lycii phytases for Fe and Zn, as well as for Cu with E. coli and Aspergillus niger phytases. Different chelate trace mineral sources demonstrated diversifying abilities to inhibit exogenous phytase activity.
Huynh, Michael; Ozel, Tuncay; Liu, Chong; Lau, Eric C.
2017-01-01
Oxygen evolution reaction (OER) catalysts that are earth-abundant and are active and stable in acid are unknown. Active catalysts derived from Co and Ni oxides dissolve at low pH, whereas acid stable systems such as Mn oxides (MnOx) display poor OER activity. We now demonstrate a rational approach for the design of earth-abundant catalysts that are stable and active in acid by treating activity and stability as decoupled elements of mixed metal oxides. Manganese serves as a stabilizing structural element for catalytically active Co centers in CoMnOx films. In acidic solutions (pH 2.5), CoMnOx exhibits the OER activity of electrodeposited Co oxide (CoOx) with a Tafel slope of 70–80 mV per decade while also retaining the long-term acid stability of MnOx films for OER at 0.1 mA cm–2. Driving OER at greater current densities in this system is not viable because at high anodic potentials, Mn oxides convert to and dissolve as permanganate. However, by exploiting the decoupled design of the catalyst, the stabilizing structural element may be optimized independently of the Co active sites. By screening potential–pH diagrams, we replaced Mn with Pb to prepare CoFePbOx films that maintained the high OER activity of CoOx at pH 2.5 while exhibiting long-term acid stability at higher current densities (at 1 mA cm–2 for over 50 h at pH 2.0). Under these acidic conditions, CoFePbOx exhibits OER activity that approaches noble metal oxides, thus establishing the viability of decoupling functionality in mixed metal catalysts for designing active, acid-stable, and earth-abundant OER catalysts. PMID:29163926
Aschner, M; Lukey, B; Tremblay, A
2006-09-01
The manganese (Mn) research health program (MHRP) symposium was a full day session at the 22nd International Neurotoxicology Conference. Mn is a critical metal in many defense and defense-related private sector applications including steel making and fabrication, improved fuel efficiency, and welding, and a vital and large component in portable power sources (batteries). At the current time, there is much debate concerning the potential adverse health effects of the use of manganese in these and other applications. Due to the significant use of manganese by the Department of Defense, its contractors and its suppliers, the Manganese Health Research Program (MHRP) seeks to use the resources of the federal government, in tandem with manganese researchers, as well as those industries that are involved with manganese, to determine the exact health effects of manganese, as well as to devise proper safeguard measures for both public and private sector workers. Humans require manganese as an essential element; however, exposure to high levels of this metal is sometimes associated with adverse health effects, most notably within the central nervous system. Exposure scenarios vary extensively in relation to geographical location, urban versus rural environment, lifestyles, diet, and occupational setting. Furthermore, exposure may be brief or chronic, it may be to different types of manganese compounds (aerosols or salts of manganese with different physical and/or chemical properties), and it may occur at different life-stages (e.g., in utero, neonatal life, puberty, adult life, or senescence). These factors along with diverse genetic composition that imposes both a background and disease occurrence likely reflect on differential sensitivity of individuals to manganese exposure. Unraveling these complexities requires a multi-pronged research approach to address multiple questions about the role of manganese as an essential metal as well as its modulation of disease processes and dysfunction. A symposium on the Health Effects of Manganese (Mn) was held on Wednesday, September 14, 1005, to discuss advances in the understanding on role of Mn both in health and disease. The symposium was sponsored by the Manganese Health Research Program (MHRP). This summary provides background on the MHRP, identifies the speakers and topics discussed at the symposium, and identifies research needs and anticipated progress in understanding Mn health- and disease-related issues.
Distinctive phytotoxic effects of Cd and Ni on membrane functionality.
Sanz, Amparo; Llamas, Andreu; Ullrich, Cornelia I
2009-10-01
Metal ions essential for plant growth, such as Fe, Mn, Ni, Cu or Zn, are taken up by plants from the soil solution through metal transporters at the plasma membrane, mainly of the ZIP and Nramp families. These transport systems, however, can also give entry to other metals (Al, Cd, Hg, Pb). Non-nutritive elements, as well as the essential nutrients at higher than metabolic concentrations, can cause phytotoxicity. We have studied previously the effects of an essential (Ni) and a non essential (Cd) heavy metal on root cell plasma membranes, the first selective barrier encountered when entering the plant, using rice as model plant. Distinctive effects of Cd and Ni on membrane function (i.e., Em and membrane permeability) were observed in the short term. We have now confirmed the pattern of Em changes caused by Cd and Ni using barley roots and have also followed the effects of both metals in longer term in rice. Our data indicate that the distinct effects caused by Cd and Ni are due to differences in cellular responses, triggered when entering the cytoplasm (i.e., an efficient detoxifying mechanism for Cd), more than to different direct effects on membranes.
Mattioli, Giuseppe; Zaharieva, Ivelina; Dau, Holger; Guidoni, Leonardo
2015-08-19
Amorphous transition-metal (hydr)oxides are considered as the most promising catalysts that promote the oxidation of water to molecular oxygen, protons, and "energized" electrons, and, in turn, as fundamental parts of "artificial leaves" that can be exploited for large scale generation of chemical fuels (e.g., hydrogen) directly from sunlight. We present here a joint theoretical-experimental investigation of electrodeposited amorphous manganese oxides with different catalytic activities toward water oxidation (MnCats). Combining the information content of X-ray absorption fine structure (XAFS) measurements with the predictive power of ab initio calculations based on density functional theory, we have been able to identify the essential structural and electronic properties of MnCats. We have elucidated (i) the localization and structural connection of Mn(II), Mn(III), and Mn(IV) ions in such amorphous oxides and (ii) the distribution of protons at the MnCat/water interface. Our calculations result in realistic 3D models of the MnCat atomistic texture, formed by the interconnection of small planar Mn-oxo sheets cross-linked through different kinds of defective Mn atoms, isolated or arranged in closed cubane-like units. Essential for the catalytic activity is the presence of undercoordinated Mn(III)O5 units located at the boundary of the amorphous network, where they are ready to act as hole traps that trigger the oxidation of neighboring water molecules when the catalyst is exposed to an external positive potential. The present validation of a sound 3D model of MnCat improves the accuracy of XAFS fits and opens the way for the development of mechanistic schemes of its functioning beyond a speculative level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukasinovic-Pesic, V.; Rajakovic, L.J.
2009-07-01
The chemical compositions and trace element contents (Zn, Cu, Co, Cr, Ni, Pb, Cd, As, B, Hg, Sr, Se, Be, Ba, Mn, Th, V, U) in coal and coal ash samples from Tamnava-Zapadno Polje coal field in Serbia were studied. The coal from this field belongs to lignite. This high volatility coal has high moisture and low S contents, moderate ash yield, and high calorific value. The coal ash is abundant in alumosilicates. Many trace elements such as Ni > Cd > Cr > B > As > Cu > Co > Pb > V > Zn > Mn inmore » the coal and Ni > Cr > As > B > Cu > Co = Pb > V > Zn > Mn in the coal ash are enriched in comparison with Clarke concentrations.« less
Essential trace elements and antioxidant status in relation to severity of HIV in Nigerian patients.
Olaniyi, J A; Arinola, O G
2007-01-01
This study was designed to determine the plasma levels of some antioxidants and trace elements in three severity groups of HIV patients compared with non-HIV-infected controls. The plasma levels of antioxidants (total antioxidant, albumin, bilirubin and uric acid) and trace elements (Mg, Fe, Zn, Mn, Cu, Cr, Cd and Se) were estimated spectrophotometrically in controls and patients with CD4 counts of <200; 200-499 and > or =500 cells/microl. Uric acid and Zn were significantly higher, while vitamin E and all the trace elements (except Zn) were significantly lower in HIV-infected patients compared to healthy controls. The highest level of uric acid was observed in those with CD4 counts of <200 cells/microl. All the trace elements (except Zn) were higher in HIV subjects with a CD4 count of 200-499 cells/microl compared to >500 cells/microl. Only uric acid and Zn showed significant correlation with CD4 count. Based on the results of this study, we recommend routine assessment and appropriate supplementation of antioxidants/trace elements in HIV subjects. This supplementation is hoped to strengthen the immune system and reduce the adverse consequences of HIV- related oxidative stress. Copyright 2007 S. Karger AG, Basel.
Metal accumulation screening of the Río Tinto flora (Huelva, Spain).
de la Fuente, Vicenta; Rufo, Lourdes; Rodríguez, Nuria; Amils, Ricardo; Zuluaga, Javier
2010-06-01
Río Tinto (Huelva, Spain) is located in one of the most important mining regions in the world. Its soils are characterized by their extreme acidity and elevated concentrations of heavy metals. Due to these characteristics, the Tinto ecosystem is considered unique and an ideal location to study biological adaptations to this type of habitat. Plant species that present these adaptations might be useful to mining and other metal pollution restoration programs. This study reports the results for the screening of Ca, Mg, Na, Mn, Fe, Ni, Cu, Zn, As, and Pb in aerial tissues of 97 plant species from the Tinto basin flora. In addition, plant-soil relationships were analyzed using the biological absorption coefficient (BAC) to detect the main plant adaptations in the Tinto flora. The species selected are representative of the biomass of the main dominant edaphophile and climatophile vegetation communities of the three river sections, forest, and subseral stages. Plant and soil elemental analyses were performed using inductively coupled plasma-mass spectrometry technique (ICP-MS). The results indicate that in general, Tinto flora shows a pattern of accumulation of the analyzed elements in aerial tissues which agrees with the nutritional requirements of vascular plants (macronutrients > micronutrients > indifferent or toxic elements). Among macronutrients, Ca seems to be an essential element in this habitat. This element accumulates in the aerial plant tissues. Basically, the Río Tinto flora is made of Fe, Cu, Zn, Ni, As, and Pb excluders, although some analyzed species of Erica, Quercus, Lavandula, Cistus, Genista, and Cytisus genera can be considered Mn accumulators. The results of this study make up a body of fundamental knowledge of the strategies used by plants to thrive in habitats with high concentrations of toxic heavy metals. This information is vital when it comes to planning a restoration program. Plants must be selected and used according to the requirements, always respecting the characteristics of the territory and facilitating the development of suitable vegetation.
Yi, Yaoyao; Li, Caiting; Zhao, Lingkui; Du, Xueyu; Gao, Lei; Chen, Jiaqiang; Zhai, Yunbo; Zeng, Guangming
2018-02-01
A series of low-cost Cu-Mn-mixed oxides supported on biochar (CuMn/HBC) synthesized by an impregnation method were applied to study the simultaneous removal of formaldehyde (HCHO) and elemental mercury (Hg 0 ) at 100-300° C from simulated flue gas. The metal loading value, Cu/Mn molar ratio, flue gas components, reaction mechanism, and interrelationship between HCHO removal and Hg 0 removal were also investigated. Results suggested that 12%CuMn/HBC showed the highest removal efficiency of HCHO and Hg 0 at 175° C corresponding to 89%and 83%, respectively. The addition of NO and SO 2 exhibited inhibitive influence on HCHO removal. For the removal of Hg 0 , NO showed slightly positive influence and SO 2 had an inhibitive effect. Meanwhile, O 2 had positive impact on the removal of HCHO and Hg 0 . The samples were characterized by SEM, XRD, BET, XPS, ICP-AES, FTIR, and H 2 -TPR. The sample characterization illustrated that CuMn/HBC possessed the high pore volume and specific surface area. The chemisorbed oxygen (O β ) and the lattice oxygen (O α ) which took part in the removal reaction largely existed in CuMn/HBC. What is more, MnO 2 and CuO (or Cu 2 O) were highly dispersed on the CuMn/HBC surface. The strong synergistic effect between Cu-Mn mixed oxides was critical to the removal reaction of HCHO and Hg 0 via the redox equilibrium of Mn 4+ + Cu + ↔ Mn 3+ + Cu 2+ .
Synthesis and structural stability of Cr-doped Li2MnSiO4/C cathode materials by solid-state method
NASA Astrophysics Data System (ADS)
Cheng, Hong-Mei; Zhao, Shi-Xi; Wu, Xia; Zhao, Jian-Wei; Wei, Lei; Nan, Ce-Wen
2018-03-01
The crystal structure of the Li2MnSiO4 cathode material would collapse during the charge and discharge process because of that the Mn-O coordination polyhedron changed from [MnO4] into [MnO6] in the process of Mn+2 to Mn+4, but the Cr element could remain [CrO4] crystal ligand from Cr+2 to Cr+4, so Cr element substitution was used to improve the structural stability of the Li2MnSiO4 cathode material. In this work, Li2Mn1-xCrxSiO4/C nanocomposites were synthesized by solid-state method. XRD, SEM and TEM observations show that the as-prepared Li2Mn1-xCrxSiO4/C materials presents an orthorhombic crystal structure (S.G. Pmn21), the particle size of Li2Mn1-xCrxSiO4/C powder ranges from 50 to 100 nm. The XRD and XPS results indicate that Cr+2 is successfully doped into Li2MnSiO4 lattice and has well compatibility with Li2MnSiO4. The electrochemical results display that Li2Mn92.5%Cr7.5%SiO4/C exhibits significantly enhanced cycle stability and discharge capability. The initial discharge capacity of the Li2Mn92.5%Cr7.5%SiO4/C sample is 255 mAh g-1, and the discharge capacity was still about 60 mAh g-1 after 50 cycles. Furthermore, the XRD patterns, TEM images and Raman analysis reveal that the Cr doping enhances the structural stability of Li2Mn1-xCrxSiO4/C and improves the electrochemical activity of the cathode. Thus, the Li2Mn92.5%Cr7.5%SiO4/C have shown potential applications for lithium ion batteries.
Shan, Ming-Qiu; Yu, Sheng; Yu, Li-Xia; Ding, An-Wei
2014-02-01
To study the main storage organ of each mineral element in Schizonepeta tenuifolia, and explain its reasonable harvesting time and medicinal parts in view of mineral elements. The mineral elements of Schizonepeta tenuifolia in different organs at different harvesting times were determined by ICP-AES technique. The mineral elements, K, Ca, Na, P, Mg, Mn, Zn, Cu, Fe, Mo, were determined in the study. The results showed that at different harvesting times, (1) the contents of K, P, Cu in fringe and the contents of Mg, Ca, Na, Fe, Mn, Zn in leaf were highest among different organs. (2) among the macroelements, the contents of K and Ca were highest while the content of Na was lowest; among the microelements, the content of Fe was highest while the content of Mo was lowest. (3) in item, the proportion of K:P was highest while the proportion of Zn: Cu was lowest; in fringe, the proportions of Ca:Mg and Fe:Mn were lowest. (4) within the harvest period, variations of the mineral elements were not obvious. In the stem of Schizonepeta tenuifolia, the contents of every mineral elements were lower than other organs, including leaves and spikes. Considering the mineral elements, the correlations of harvesting time and content change were not remarkable.
NASA Astrophysics Data System (ADS)
McFadden, Anthony; Wilson, Nathaniel; Brown-Heft, Tobias; Pennachio, Daniel; Pendharkar, Mihir; Logan, John A.; Palmstrøm, Chris J.
2017-12-01
The interface formation in epitaxial MgO /Co2MnSi (001) films was studied using in-situ X-ray photoelectron spectroscopy (XPS). MgO was deposited on single crystal Co2MnSi (001) layers using e-beam evaporation: a technique which is expected to oxidize the Co2MnSi layer somewhat due to the rise in oxygen partial pressure during MgO deposition while leaving the deposited MgO oxygen deficient. Not unexpectedly, we find that e-beam evaporation of MgO raises the oxygen background in the deposition chamber to a level that readily oxidizes the Co2MnSi surface, with oxygen bonding preferentially to Mn and Si over Co. Interestingly, this oxidation causes an elemental segregation, with Mn-Si effectively moving toward the surface, resulting in an MgO /Co2MnSi interface with a composition significantly differing from the original surface of the unoxidized Co2MnSi film. As MgO is deposited on the oxidized Co2MnSi , the Mn-oxides are reduced, while the Si oxide remains, and is only somewhat reduced after additional annealing in ultrahigh vacuum. Annealing after the MgO is grown on Co2MnSi causes oxygen to move away from the oxidized Co2MnSi interface toward the surface and into the MgO. This observation is consistent with an increase in the tunneling magnetoresistance ratio with post-growth annealing measured in fabricated magnetic tunnel junctions (MTJs). The findings are discussed in light of fabrication of MgO/Heusler based MTJs, where the exponential decay of tunneling probability with contact separation exemplifies the importance of the ferromagnet/tunnel barrier interface.
Bastos, Wanderley R; Vieira, Solange M; Manzatto, Ângelo G; Dórea, José G; Rubira, Marcelo C; de Souza, Victor Francisco P; da Costa Junior, Walkimar A; Souza Bastos, Maria T
2017-10-01
Infant exposure to neurotoxic elements is a public health issue that needs monitoring with regard to breast milk composition. We studied six neurotoxic elements in breast milk samples at different stages of lactation in mothers from Porto Velho, Brazil. We used a flow-injection mercury system (FIMS) to determine total Hg concentrations and an inductively coupled plasma optical emission spectrometer (ICP-OES) to determine the concentrations of Al, As, Cd, Pb, and Mn in 106 donors of a human milk bank. Association rules analyses were applied to determine the pattern of binary and ternary mixtures of the measured exposants. The metal concentration was mostly below the limit of detection (LOD) for Cd (99%), Pb (84%), and Hg (72%), and it was above the LOD for As (53%), Mn (60%), and Al (82%), respectively. Median concentrations (dry weight) of Al, As, Hg, Mn, and Pb were 1.81 μg/g, 13.8 ng/g, 7.1 ng/g, 51.1 ng/g, and 0.43 μg/g, respectively. Al is singly the most frequent element to which infants are exposed. Occurring binary combination (> LOD) was 56% for Al-Mn, 41% for Al-As, 22% for Al-Hg, and 13% for Al-Pb. In 100% of neonates, exposure to Al-ethylmercury (EtHg) occurred through immunization with thimerosal-containing vaccines (TCV). Association rules analysis revealed that Al was present in all of the multilevel combinations and hierarchical levels and that it showed a strong link with other neurotoxic elements (especially with Mn, As, and Hg). (a) Nursing infants are exposed to combinations of neurotoxicants by different routes, dosages, and at different stages of development; (b) In breastfed infants, the binary exposures to Al and total Hg can occur through breast milk and additionally through TCV (EtHg and Al); (c) The measured neurotoxic elements were found at low frequencies in breast milk and at concentrations that pose no public health concerns for milk banking.
Donohue, Patrick H; Hill, Eddy; Huss, Gary R
2018-02-01
Pallasite meteorites, which consist primarily of olivine and metal, may be remnants of disrupted core-mantle boundaries of differentiated asteroids or planetesimals. The early thermal histories of pallasites are potentially recorded by minor- and trace-element zonation in olivine. However, constraining this history requires knowledge of element behavior under the conditions of pallasite formation, which is lacking for many of the main elements of interest (e.g., Co, Cr, Mn). In this study, we experimentally determined metal/olivine partition coefficients for Fe, Ni, Co, Cr, and Mn in a pallasite analogue at subsolidus temperatures. Metal/olivine partition coefficients ( K M ) increase in the order K Mn < K Cr < 1 < K Fe < K Co < K Ni , with five orders of magnitude separating K Mn from K Ni . Transition metals also become more siderophile with increasing experimental temperature (900 to 1550°C). The experiments incidentally produced diffusion profiles in olivine for these elements; Our results suggest they diffuse through olivine at similar rates. Core compositions of pallasite olivines are consistent with high-temperature equilibration with FeNi-metal. Olivine zonation toward crystal rims varies significantly for the investigated transition metals. We suggest rim zonation results from partial re-equilibration during late stage crystallization of minor phases (e.g., chromite, phosphates). This re- equilibration occurred over short timescales relative to overall pallasite cooling, likely tied to initial cooling rates on the order of 100-300°C/Myr.
Trace Element Cycling in Lithogenic Particles at Station ALOHA
NASA Astrophysics Data System (ADS)
Morton, P. L.; Weisend, R.; Landing, W. M.; Fitzsimmons, J. N.; Hayes, C. T.; Boyle, E. A.
2014-12-01
Trace element cycling in marine particles is influenced by atmospheric deposition, vertical export, biological uptake and remineralization, scavenging, and lateral transport processes. To investigate the cycling of lithogenic particles in the central North Pacific Ocean, surface and vertical profile samples of marine suspended particulate matter (SPM) were collected July-August 2012 during the HOE-DYLAN cruises at Station ALOHA. In the late summer, atmospheric dust inputs from the Gobi desert (which peak during the spring, April-May) were sparse, as indicated by low surface particulate Ti (pTi) concentrations. In contrast, surface pAl concentrations did not follow pTi trends as expected, but appear to be dominated by scavenging/uptake of dissolved Al during diatom blooms. Surface pMn concentrations were low, but vertical profiles of pMn and pMn/pTi reveal a strong sedimentary source at 200 m, originating from the Hawaiian continental shelf through a combination of redox mobilization and resuspension processes. The redox active elements Ce and Co can have chemistries similar to that of Mn, but in these samples the pCe and pCo distributions were distinct from Mn and each other in both surface trends and vertical profiles. Surface pREE (e.g., La, Ce, Pr) were highest during the earliest sampling events and quickly decreased to consistently low concentrations, while vertical distributions were characterized by scavenging onto biotic particles and mid-depth inputs. The surface particulate Co trend is similar to those of pAl and pP, while the pCo vertical profiles reflect surface enrichment but low concentrations and little variability at depth. A second, complementary poster is also being presented which examines the biological influence over particulate trace element cycling (Weisend et al., "Particulate Trace Element Cycling in a Diatom Bloom at Station ALOHA").
Mleczek, Mirosław; Siwulski, Marek; Stuper-Szablewska, Kinga; Sobieralski, Krzysztof; Magdziak, Zuzanna; Goliński, Piotr
2013-01-01
The aim of the study was to compare accumulation efficiency of Al, Ba and nutritional elements (Ca, Fe, K, Mg, Mn, Na) exhibited by six edible mushrooms collected in particular regions of Poland during the last 20 years. The studied mushroom species were Boletus edulis, Cantharellus cibarius, Lactarius deliciosus, Leccinum aurantiacum, Suillus luteus and Xerocomus badius. The highest and the lowest concentrations of the elements in tested mushroom species were 11 - 410, 34 - 337, 16785 - 34600, 140 - 607, 12 - 75 and 16 - 143 mg kg(-1)d.m., respectively. The highest average concentrations of Al, Mg and Mn were observed in Suillus luteus fruiting bodies, while for Ba, Ca, K and Na it was in Lactarius deliciosus. BCF >1 was found for K and Mg in all tested mushroom species and additionally for the highest Ca and Na concentrations of all tested mushroom species except for C. cibarius and S. luteus, respectively. For the other tested elements (Al, Ba, Fe and Mn) BCF values < 1 were recorded.
Evaluation of Macro- and Microelement Levels in Black Tea in View of Its Geographical Origin.
Brzezicha-Cirocka, Justyna; Grembecka, Małgorzata; Ciesielski, Tomasz; Flaten, Trond Peder; Szefer, Piotr
2017-04-01
The aim of this study was to evaluate the elemental composition of black tea samples and their infusions in view of their geographical origin. In total, 14 elements were analyzed, 13 (Ca, K, Mg, Na, Mn, Fe, Zn, Cu, Cr, Ni, Co, Cd, and Pb) by flame atomic absorption spectrometry, and P by UV-Vis spectrometry, after mineralization of samples. It was found that K was the most abundant macroelement in the analyzed samples, whereas among microelements, the highest concentration was found for Mn. Based on the obtained data, the percentage of elements leached into the infusions as well as the daily elemental intake from tea were calculated. The daily intake from tea was compared to the recommended daily allowances (RDAs), and the highest percentages of the RDAs were found for Mn (15 %) and Co (10 %). To study the relations between elemental composition and country of origin of samples, factor analysis and cluster analysis were applied. These multivariate techniques proved to be efficient tools able to differentiate samples according to their provenance as well as plantation within the common regions.
Tan, Wenjuan; Du, Wenchao; Barrios, Ana C; Armendariz, Raul; Zuverza-Mena, Nubia; Ji, Zhaoxia; Chang, Chong Hyun; Zink, Jeffrey I; Hernandez-Viezcas, Jose A; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L
2017-03-01
Little is known about the effects of surface coating on the interaction of engineered nanoparticles (ENPs) with plants. In this study, basil (Ocimum basilicum) was cultivated for 65 days in soil amended with unmodified, hydrophobic (coated with aluminum oxide and dimethicone), and hydrophilic (coated with aluminum oxide and glycerol) titanium dioxide nanoparticles (nano-TiO 2 ) at 125, 250, 500, and 750 mg nano-TiO 2 kg -1 soil. ICP-OES/MS, SPAD meter, and UV/Vis spectrometry were used to determine Ti and essential elements in tissues, relative chlorophyll content, carbohydrates, and antioxidant response, respectively. Compared with control, hydrophobic and hydrophilic nano-TiO 2 significantly reduced seed germination by 41% and 59%, respectively, while unmodified and hydrophobic nano-TiO 2 significantly decreased shoot biomass by 31% and 37%, respectively (p ≤ 0.05). Roots exposed to hydrophobic particles at 750 mg kg -1 had 87% and 40% more Ti than the pristine and hydrophilic nano-TiO 2 ; however, no differences were found in shoots. The three types of particles affected the homeostasis of essential elements: at 500 mg kg - 1 , unmodified particles increased Cu (104%) and Fe (90%); hydrophilic increased Fe (90%); while hydrophobic increased Mn (339%) but reduced Ca (71%), Cu (58%), and P (40%). However, only hydrophobic particles significantly reduced root elongation by 53%. Unmodified, hydrophobic, and hydrophilic particles significantly reduced total sugar by 39%, 38%, and 66%, respectively, compared with control. Moreover, unmodified particles significantly decreased reducing sugar (34%), while hydrophobic particles significantly reduced starch (35%). Although the three particles affected basil plants, coated particles impacted the most its nutritional quality, since they altered more essential elements, starch, and reducing sugars. Copyright © 2017 Elsevier Ltd. All rights reserved.
Assadpour, S; Nabavi, S M; Nabavi, S F; Dehpour, A A; Ebrahimzadeh, M A
2016-12-01
A plethora of scientific evidence showed that several plant species from the genus Allium (Alliaceae) possess multiple therapeutic effects. Present paper aimed to examine the antioxidant and antihemolytic activities of the essential oil and methanol extract Allium rotundum L. through different in vitro assays. 1,1-diphenyl-2-picryl hydroxyl radical (DPPH), nitric oxide as well as hydrogen peroxide scavenging, Fe2+ chelating, reducing power and also hemoglobin-induced linoleic acid peroxidation assay systems have been utilized to examine antioxidant effects of these samples. Total amounts of phenolic and flavonoid contents were calculated. The antihemolytic effect was investigated against hemolysis induced by hydrogen peroxide in rat erythrocytes. Also, mineral contents of plant were evaluated by atomic absorption spectroscopy. IC50 for DPPH radical-scavenging activity were 284 ± 11.64 for methanol extract and 1264 ± 45.60 µg ml-1 for essential oil, respectively. The extract has shown better reducing effects versus essential oil. The extract also demonstrated better activity in nitric oxide-scavenging activity. IC50 were 464 ± 19.68 for extract and 1093 ± 38.25 µg ml-1 for essential oil. The extract shows better activity than essential oil in Fe2+ chelating system. IC50 were 100 ± 3.75 for extract and 1223 ± 36.25 µg ml-1 for essential oil. The A. rotundum extract and essential oil showed significant H2O2 scavenging effects at dose-dependent manners. IC50 was 786 ± 29.08 mg ml-1 for essential oil. The amounts of eight elements were determined. The concentrations of elements were in the order: Mn> Fe> Zn> Cu> Ni> Cd. The extract showed a higher antioxidant effect in all tested models including DPPH, nitric oxide, reducing power as well as iron chelating and antihemolytic activities than essential oil. The latter showed more potent antioxidant activity in scavenging H2O2 and lipid peroxidation model. Antioxidant activities of extract may be attributed at least in part, due to its phenolic and flavonoid contents.
Redox dynamics of manganese as a mitochondrial life-death switch
Smith, Matthew Ryan; Fernandes, Jolyn; Go, Young-Mi; Jones, Dean P.
2017-01-01
Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause “manganism”, a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch. PMID:28212723
Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution.
Asaduzzaman, Khandoker; Khandaker, Mayeen Uddin; Binti Baharudin, Nurul Atiqah; Amin, Yusoff Bin Mohd; Farook, Mohideen Salihu; Bradley, D A; Mahmoud, Okba
2017-06-01
With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Khidkhan, Kraisiri; Imsilp, Kanjana; Poapolathep, Amnart; Poapolathep, Saranya; Tanhan, Phanwimol
2017-04-15
Environmental pollutants have raised more concerns for human health risk, especially via consumption of contaminated food. Terrestrial as well as aquatic animals are capable of bioaccumulation a variety of toxic substances including metallic elements. With increasing anthropogenic activities along the coastal areas, living organisms have more chances to be exposed to released contaminants. In this study, seven metallic elements (Cd, Cu, Fe, Mn, Ni, Pb and Zn) were determined in sediments and water from Don Hoi Lot sandbar, Samutsongkharm province, Thailand. Potential human health risks via the consumption of two benthic bivalves Solen corneus (Larmarck, 1818) and Meretrix meretrix (Linnaeus, 1758) were also estimated using the target hazard quotients (THQs). The variations of metallic element concentrations were apparent between wet and dry season. Fe was the predominate metallic element in the sediment and the remaining were Mn>Pb>Zn>Ni>Cu>Cd. Whereas metallic element concentrations in water were Pb>Ni>Fe>Zn>Cu>Mn>Cd. PCA analysis confirmed that the contaminations of these metallic elements were from Mae Klong river surface water. Most Pb THQ values in both S. corneus and M. meretrix were >1 indicating that human health risk is of concern. However, the sum of THQs of an individual metallic element should also be considered since multiple metallic elements exposure is so common. Copyright © 2017 Elsevier B.V. All rights reserved.
Tabatadze, T; Zhorzholiani, L; Kherkheulidze, M; Kandelaki, E; Ivanashvili, T
2015-11-01
Our study aims evaluation of level of essential trace elements and heavy metals in the hair samples of children with autistic spectrum disorder (ASD) and identification of changes that are associated with autistic spectrum disorders. Case-control study was conducted at Child Development Center of Iashvili Children's Central Hospital (LD).We studied 60 children aged from 4 to 5 years old. The concentrations of 28 elements among (Ca,Zn, K, Fe, Cu, Se, Mn, Cr, S, Br, Cl, Co, Ag, V, Ni, Rb, Mo, Sr, Ti, Ba, Pb, As, Hg, Cd, Sb, Zr, Sn, Bi) them trace elements and toxic metals) were determined in scalp hair samples of children (n=30) with autistic spectrum disorder (ASD) and from control group of healthy children (n=30) with matched sex and age. Micro-elemental status was detected in the hair, with roentgen-fluorescence spectrometer method (Method MBИ 081/12-4502-000, Apparatus ALVAX- CIP, USA - UKRAIN) .To achieve the similarity of study and control groups, pre and postnatal as well as family and social history were assessed and similar groups were selected. Children with genetic problems, malnourished children, children from families with social problems were excluded from the study. The diagnosis of ASD were performed by pediatrician and psychologist (using M-CHAT and ADOS) according to DSM IV (Diagnostic and Statistical Manual of Mental Disorders from the American Psychiatric association) criteria. The study was statistically analyzed using computer program SPSS 19. Deficiencies of essential trace microelements revealed in both group, but there was significant difference between control and studied groups. The most deficient element was zinc (92% in target and 20% in control), then - manganese (55% and 8%) and selenium (38% and 4%). In case of cooper study revealed excess concentration of this element only in target group in 50% of cases. The contaminations to heavy metals were detected in case of lead (78% and 16), mercury (43% and 10%) and cadmium (38% and 8%). The study statistical results indicated, that deficient concentrations of trace elements such as zinc, manganese, molybdenum and selenium in hair significantly linked with ASD (Kramer's V was 0,740; 0,537; 0,333; 0,417 accordingly). In case of cooper we got excess levels of this element and this data was highly linked with autism spectrum disorder. We got high associations and significant values between of lead, mercury and cadmium concentrations and ASD. Study results indicate that there are significant differences of hair essential trace elements concentrations in children with autism spectrum disorder comparing with healthy children group. The result obtained also showed high contamination to heavy metals such as lead, mercury and cadmium in ASD children compared to healthy ones. So, our study demonstrated alteration in levels of toxic heavy metals and essential trace elements in children with autistic spectrum disorders as compared to healthy children. This suggests a possible pathophysiological role of heavy metals and trace elements in the genesis of symptoms of autism spectrum disorders.
Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.
2008-01-01
Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along, the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms. Copyright 2008 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.
2008-08-01
Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 Å and 7 Å manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean 8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of Mn mineralization. Factor analyses indicate various mixtures of two dominant components: hydrothermal Mn oxide for the stratabound Mn and detrital aluminosilicate for the Mn-cemented sandstone; and two minor components, hydrothermal Fe oxyhydroxide and biocarbonate/biosilica. Our conceptual model shows that Mn mineralization was produced by hydrothermal convection cells within arc volcanoes and sedimentary prisms that occur along the flanks and within calderas. The main source of hydrothermal fluid was seawater that penetrated through fractures, faults, and permeable volcanic edifices. The fluids were heated by magma, enriched in metals by leaching of basement rocks and sediments, and mixed with magmatic fluids and gases. Dikes and sills may have been another source of heat that drove small-scale circulation within sedimentary prisms.
The Development of the Low-Cost Titanium Alloy Containing Cr and Mn Alloying Elements
NASA Astrophysics Data System (ADS)
Zhu, Kailiang; Gui, Na; Jiang, Tao; Zhu, Ming; Lu, Xionggang; Zhang, Jieyu; Li, Chonghe
2014-04-01
The α + β-type Ti-4.5Al-6.9Cr-2.3Mn alloy has been theoretically designed on the basis of assessment of the Ti-Al-Cr-Mn thermodynamic system and the relationship between the molybdenum equivalent and mechanical properties of titanium alloys. The alloy is successfully prepared by the split water-cooled copper crucible, and its microstructures and mechanical properties at room temperature are investigated using the OM, SEM, and the universal testing machine. The results show that the Ti-4.5Al-6.9Cr-2.3Mn alloy is an α + β-type alloy which is consistent with the expectation, and its fracture strength, yield strength, and elongation reach 1191.3, 928.4 MPa, and 10.7 pct, respectively. Although there is no strong segregation of alloying elements under the condition of as-cast, the segregation of Cr and Mn is obvious at the grain boundary after thermomechanical treatment.
NASA Astrophysics Data System (ADS)
Zhu, Yuanhu; Wang, Chunlei; Su, Wenbin; Liu, Jian; Li, Jichao; Du, Yanling; Zhang, Xinhua; Qin, Yalin; Mei, Liangmo
2015-01-01
Perovskite-type Ca0.98Dy0.02MnO3, Ca0.96Dy0.04MnO3, and Ca0.96Dy0.02 Re0.02MnO3 (Re = La, Nd, Sm) were prepared by solid-state reaction, and their thermoelectric properties were evaluated between 300 and 1000 K. All were single-phase, with an orthorhombic structure, and had metal-like temperature dependence of resistivity and Seebeck coefficient. The second doping element, Re = La, Nd, or Sm, introduced a larger carrier concentration, leading to a decrease in both resistivity and Seebeck coefficient. This contributed to lower thermal conductivity by introducing a second element into the system. The highest figure of merit, 0.20, was obtained for Re = La at 973 K; this was an increase of almost 100% compared with Ca0.98Dy0.02MnO3 at the same temperature.
Geochemical studies of Fe, Mn, Co, As, Cr, Sb, Zn, Sc and V in surface sediments from Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Wu, Run; Li, Pei-Quan; Miao, Lu-Tian; Zhang, Shu-Xin; Tian, Wei-Zhi
1994-12-01
The contents of nearly forty-elements in surface sediments in Jiaozhou Bay were determined using a Neutron Activation Analysis Technique (Grancini, et al., 1976; Li Peiquan et al., 1985, 1986; Li Xiuxia et al., 1986). This paper's detailed discussion on only nine elements (Fe, Mn, Co, Cr, Sc, As, Sb, Zn and V) includes their distributions, concentrations, correlationships, material sources, background, etc. Based on Zavaristski's classification method, Fe, Mn, Co, Cr and V belong to the second group; As and Sb to the eighth groups: Sc and Zn to the third and sixth groups. It was found that their notably good correlationship is mainly due to the similarity of their ionic structures and that their variation is controlled by the Fe content (except Mn). The source of sediments is mainly terristrial material, and the composition of sediment is similar to that of shale and shale+clay. The contents for a large number of elements are within the scope of the background level, but there still is pollution of Zn and Cr, at least in a few stations.
Phase diagram of the Pr-Mn-O system in composition-temperature-oxygen pressure coordinates
NASA Astrophysics Data System (ADS)
Vedmid', L. B.; Yankin, A. M.; Fedorova, O. M.; Kozin, V. M.
2016-05-01
The phase relations in the Pr-Mn-O system were studied by the static method at lowered oxygen pressure in combination with thermal analysis and high-temperature X-ray diffraction. The equilibrium oxygen pressure in dissociation of PrMn2O5 and PrMnO3 was measured, and the thermodynamic characteristics of formation of these compounds from elements were calculated. The P- T- x phase diagram of the Pr-Mn-O system was constructed in the "composition-oxygen pressure-temperature" coordinates.
Soumya, S L; Nair, Bindu R
2016-05-01
Though the fruits of Averrhoa bilimbi and A. carambola are economically and medicinally important, they remain underutilized. The present study reports heavy metal quantitation in the fruit samples of A. bilimbi and A. carambola (Oxalidaceae), collected at two stages of maturity. Heavy metals are known to interfere with the functioning of vital cellular components. Although toxic, some elements are considered essential for human health, in trace quantities. Heavy metals such as Cr, Mn, Co, Cu, Zn, As, Se, Pb, and Cd were analyzed by atomic absorption spectroscopy (AAS). The samples under investigation included, A. bilimbi unripe (BU) and ripe (BR), A. carambola sour unripe (CSU) and ripe (CSR), and A. carambola sweet unripe (CTU) and ripe (CTR). Heavy metal analysis showed that relatively higher level of heavy metals was present in BR samples compared to the rest of the samples. The highest amount of As and Se were recorded in BU samples while Mn content was highest in CSU samples and Co in CSR. Least amounts of Cr, Zn, Se, Cd, and Pb were noted in CTU while, Mn, Cu, and As were least in CTR. Thus, the sweet types of A. carambola (CTU, CTR) had comparatively lower heavy metal content. There appears to be no reason for concern since different fruit samples of Averrhoa studied presently showed the presence of various heavy metals in trace quantities.
Mobility of nutrients and trace metals during weathering in the late Archean
NASA Astrophysics Data System (ADS)
Hao, Jihua; Sverjensky, Dimitri A.; Hazen, Robert M.
2017-08-01
The evolution of the geosphere and biosphere depends on the availability of bio-essential nutrients and trace metals. Consequently, the chemical and isotopic variability of trace elements in the sedimentary record have been widely used to infer the existence of early life and fluctuations in the near-surface environment on the early Earth, particularly fluctuations in the redox state of the atmosphere. In this study, we applied late Archean weathering models (Hao et al., 2017), developed to estimate the behavior of major elements and the composition of late Archean world average river water, to explore the behavior of nutrient and trace metals and their potential for riverine transport. We focused on P, Mn, Cr, and Cu during the weathering of olivine basalt. In our standard late Archean weathering model (pCO2,g = 10-1.5 bars, pH2,g = 10-5.0 bars), crustal apatite was totally dissolved by the acidic rainwater during weathering. Our model quantitatively links the pCO2,g of the atmosphere to phosphate levels transported by rivers. The development of late Archean river water (pH = 6.4) resulted in riverine phosphate of at least 1.7 μmolar, much higher than at the present-day. At the end of the early Proterozoic snowball Earth event when pCO2,g could be 0.01-0.10 bars, river water may have transported up to 70 μmolar phosphate, depending on the availability of apatite, thereby stimulating high levels of oxygenic photosynthesis in the marine environment. Crustal levels of Mn in olivine dissolved completely during weathering, except at large extents of weathering where Mn was stored as a component of a secondary carbonate mineral. The corresponding Mn content of river water, about 1.2 μmolar, is higher than in modern river water. Whiffs of 10-5 mole O2 gas or HNO3 kg-1 H2O resulted in the formation of pyrolusite (MnO2) and abundant hematite and simultaneous dramatic decreases in the concentration of Mn(II) in the river water. Chromite dissolution resulted in negligible dissolved Cr in Archean river water. However, amorphous Cr(OH)3 representing easily-weatherable Cr-bearing minerals dissolved totally during the weathering simulations, resulting in concentrations of Cr(III) in the river water of up to 0.14 μmolar, higher than at the present-day. Late Archean weathering of accessory chalcopyrite produced chalcocite and bornite, and extremely low concentrations of Cu (<10-15 molar) because of the low solubilities of the copper sulfides. However, pulses of either O2,g or HNO3 produced native copper, chalcocite, and bornite, much more hematite, and river water containing levels of dissolved Cu comparable to the present-day. Copper mineralogy predicted by weathering models might provide a new correlation with evidence from studies of copper mineral evolution. Overall, our results implied that the redox state of the atmosphere, the pH of surface waters, and the availability of easily-weatherable minerals are all important factors controlling the dissolution of trace elements in river water. Interpretation of the sedimentary signatures of trace elements should consider not only the redox state but also the pH and availability of accessory minerals.
Content and distribution of macro- and micro-elements in the body of pasture-fed young horses.
Grace, N D; Pearce, S G; Firth, E C; Fennessy, P F
1999-03-01
To determine the content and distribution of Na, K, Ca, P, Mg, S, Cu, Mn, Fe and Zn in the body of pasture-fed young horses and then use a factorial model to calculate the dietary mineral requirements for growth. Twenty-one foals were killed at about 150 days of age and the organs, soft tissues, skin and bones and a sample of muscle were dissected out and weighted. The mineral concentrations of elements in all soft tissues and bones were measured by inductively coupled emission spectrometry. The total mineral element composition associated with a tissue was determined from the weight of tissue and its mineral element concentration. Expressed as a percent of total body mineral elements, muscle contained 20% Na, 78% K, 32% Mg, 62% Cu, 36% Mn and 57% Zn, bone contained 47% Na, 99% Ca, 81% P, 62% Mg, 30% Mn and 28% Zn while the organs accounted for a smaller percentage ranging from 0.06% for Ca to 26% for Fe. In liver Cu accounted for 9.2% of total body Cu. Each kilogram of empty body weight was associated with 1.0 g Na, 2.5 g K, 17.1 g Ca, 10.1 g P, 0.4 g Mg, 1.1 mg Cu, 0.39 mg Mn, 52.5 mg Fe and 21.4 mg Zn. The mineral element content of body weight gain is a component used in the factorial model to determine dietary mineral element requirements for growth. The calculated dietary mineral requirements, expressed per kg dry matter, for a 200 kg horse gaining 1.0 kg/day were 1.0 g Na, 2.1 g K, 4.6 g Ca, 3.5 g P, 0.7 g Mg, 4.5 mg Cu and 25 mg Zn.
Evaluation of elemental enrichments in surface sediments off southwestern Taiwan
NASA Astrophysics Data System (ADS)
Chen, Chen-Tung; Kandasamy, Selvaraj
2008-05-01
Surface slices of 20 sediment cores, off southwestern Taiwan, and bed sediment of River Kaoping were measured for major and trace elements (Al, As, Ca, Cd, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Si, Ti, V, and Zn) to evaluate the geochemical processes responsible for their distribution, including elemental contamination. Major element/Al ratio and mean grain size indicate quartz-dominated, coarse grained sediments that likely derived from sedimentary rocks of Taiwan and upper crust of Yangtze Craton. Bi-plot of SiO2 versus Fe2O{3/T} suggests the possible iron enrichment in sediments of slag dumping sites. Highest concentrations of Cr, Mn, P, S, and Zn found in sediments of dumping sites support this. Correlation analysis shows dual associations, detrital and organic carbon, for Cr, P, S, and V with the latter association typical for sediments in dumping sites. Normalization of trace elements to Al indicates high enrichment factors (>2) for As, Cd, Pb, and Zn, revealing contamination. Factor analysis extracted four geochemical associations with the principal factor accounted for 25.1% of the total variance and identifies the combined effects of dumped iron and steel slag-induced C-S-Fe relationship owing to authigenic precipitation of Fe-Mn oxyhydroxides and/or metal sulfides, and organic matter complexation of Fe, Mn, Ca, Cr, P, and V. Factors 2, 3, and 4 reveal detrital association (Ti, Al, Ni, Pb, Cu, and V), effect of sea salt (Cl, Mg, Na, and K) and anthropogenic component (As and Zn)-carbonate link, respectively, in the investigated sediments.
Wiche, Oliver; Székely, Balazs; Kummer, Nicolai-Alexeji; Moschner, Christin; Heilmeier, Hermann
2016-09-01
This study aims to investigate how intercropping of oat (Avena sativa L.) with white lupin (Lupinus albus L.) affects the mobile fractions of trace metals (Fe, Mn, Pb, Cd, Th, U, Sc, La, Nd, Ge) in soil solution. Oat and white lupin were cultivated in monocultures and mixed cultures with differing oat/white lupin ratios (11% and 33% lupin, respectively). Temporal variation of soil solution chemistry was compared with the mobilization of elements in the rhizosphere of white lupin and concentrations in plant tissues. Relative to the monocrops, intercropping of oat with 11% white lupin significantly increased the concentrations of Fe, Pb, Th, La and Nd in soil solution as well as the concentrations of Fe, Pb, Th, Sc, La and Nd in tissues of oat. Enhanced mobility of the mentioned elements corresponded to a depletion of elements in the rhizosphere soil of white lupin. In mixed cultures with 33% lupin, concentrations in soil solution only slightly increased. We conclude that intercropping with 11% white lupin might be a promising tool for phytoremediation and phytomining research enhancing mobility of essential trace metals as well as elements with relevance for phytoremediation (Pb, Th) and phytomining (La, Nd, Sc) in soil.
Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.
Lee, Chung-Hyo
2018-02-01
We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.
On the Role of High Amounts of Mn Element in CdS Structure
NASA Astrophysics Data System (ADS)
Gonullu, Meryem Polat; Kose, Salih
2017-03-01
CdS and MnS are technologically important semiconducting materials. In this work, due to the limited ability of these materials separately, a detailed characterization of the new samples formed by the combined use of them has been reported. CdS films, with the incorporation of Mn in a wide range of concentrations, have been produced by a low-cost Ultrasonic Spray Pyrolysis set-up. Spectroscopic Ellipsometry (SE) has been used to determine the thicknesses and optical constants ( n, k) of the samples. It has been determined that samples with high amounts of Mn have lower refractive index values. Absorbance spectra have shown additional band edges along with the one belonging to CdS, for samples with Mn concentrations higher than 50 pct. This has been attributed to a phase separation above this limit. Raman spectroscopy analysis which shows additional Raman peaks belonging to MnS phase also supports these findings. Depending on this phase separation, crystalline structure has been deteriorated. Surface properties of the samples have been investigated by SEM and AFM. Elemental analysis has been performed by EDS. Resistivity measurements performed by a four-probe set-up have shown that samples containing high amount of Mn have lower electrical resistivity values.
Vascular plants as ecological indicators of metals in alpine vegetation (Karkonosze, SW Poland).
Wojtuń, Bronisław; Samecka-Cymerman, Aleksandra; Żołnierz, Ludwik; Rajsz, Adam; Kempers, Alexander J
2017-08-01
Calluna vulgaris, Carex rigida, Deschampsia flexuosa, Nardus stricta and Vaccinium myrtillus are abundant in the vegetation of mountainous areas in Northern and Central Europe. Knowledge of their ability to accumulate increased amounts of metals could be useful in the evaluation of environmental pollution in the alpine tundra of high mountains. Additionally, this investigation may contribute to understanding the rate and direction of recent vegetation change in Karkonosze and similar types of environments. Our investigation revealed that Carex rigida, C. vulgaris and V. myrtillus contain excessive Mn concentrations in shoots with the highest BF for this element compared to the BFs of other elements. C. rigida, with Cu, Mn and Zn concentrations exceeding the toxicity thresholds for plants, seems to be the best metal phytoaccumulator for Nardus stricta grasslands Carici (rigidae)-Nardetum (CrN) and alpine heathlands Carici (rigidae)-Festucetum airoidis (CrFa) associations in the Karkonosze. Based on relevant BFs >1, it can be stated that the following plant available metals were transferred to shoots: Cu, Mn and Ni by C. vulgaris; Cd, Cu, Mn, Ni and Zn by C. rigida; Cd, Cu, Mn, Ni and Zn by D. flexuosa; Cu, Mn, Ni and Zn by N. stricta and Cu, Mn and Zn by V. myrtillus.
Comparative Hair Trace Element Profile in the Population of Sakhalin and Taiwan Pacific Islands.
Skalny, Anatoly V; Skalnaya, Margarita G; Serebryansky, Eugeny P; Zhegalova, Irina V; Grabeklis, Andrei R; Skalnaya, Oxana A; Skalnaya, Anastasia A; Huang, Pai-Tsang; Wu, Cheng-Chi; Bykov, Anatoly T; Tinkov, Alexey A
2017-11-17
The objective of the current study is to perform a comparative analysis of hair trace element content in 393 apparently healthy adults living in Taipei, Taiwan, Republic of China (94 women and 46 men) and Yuzhno-Sakhalinsk, Sakhalin, Russia (186 women and 67 men). The obtained data indicate that Yuzhno-Sakhalinsk inhabitants were characterized by significantly higher hair Co, Cr, Mn, and V levels, exceeding the respective Taipei values by a factor of 3, 2, 7, and 5, respectively (all p < 0.001). Hair Cu, Fe, and Si levels were also higher in examinees from Yuzhno-Sakhalinsk than those from Taipei by 10% (p = 0.001), 61% (p < 0.001), and 68% (p < 0.001), respectively. It is notable that the only essential element, being significantly higher (+ 30%; p < 0.001) in Taipei inhabitants, is selenium. Yuzhno-Sakhalinsk inhabitants were characterized by 60% higher levels of hair Sn, and nearly two- and threefold higher scalp hair content of Be and Cd in comparison to Taipei values, respectively (all p < 0.001). Oppositely, the examinees from Taipei had 14% (p = 0.040) and 47% (p = 0.001) higher levels of hair As and Hg as compared to Yuzhno-Sakhalinsk inhabitants. Further analysis demonstrated that men from both Yuzhno-Sakhalinsk and Taipei were characterized by significantly higher hair Mn, As, and Pb levels in comparison to women. The intensive development of heavy industry in Yuzhno-Sakhalinsk may result in increased metal emissions, whereas fish consumption may result in elevation of hair Hg, As, and Se levels in Taiwan inhabitants.
Redox dynamics of manganese as a mitochondrial life-death switch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Matthew Ryan; Fernandes, Jolyn; Go, Young-Mi
Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca{sup +2}-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80{sup th} birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposuresmore » to Mn cause “manganism”, a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H{sub 2}O{sub 2} production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch. - Highlights: • Either insufficient or excess manganese activates mitochondria-mediated cell death. • The optimal healthy Mn exposure window is very narrow. • Mitochondrial H{sub 2}O{sub 2} production depends on Mn across physiologic to toxicologic range. • Integrative omics needed to understand complex Mn interaction in cell fate. • Mn is central to redox interface between an organism and its environment.« less
Fourier transform imaging of impurities in the unit cells of crystals: Mn in GaAs
NASA Astrophysics Data System (ADS)
Lee, T.-L.; Bihler, C.; Schoch, W.; Limmer, W.; Daeubler, J.; Thieß, S.; Brandt, M. S.; Zegenhagen, J.
2010-06-01
The lattice sites of Mn in ferromagnetic (Ga,Mn)As thin films were imaged using the x-ray standing wave technique. The model-free images, obtained straightforwardly by Fourier inversion, disclose immediately that the Mn mostly substitutes the Ga with a small fraction residing on minority sites. The images further reveal variations in the Mn concentrations of the different sites upon post-growth treatments. Subsequent model refinement based on the directly reconstructed images resolves with high precision the complete Mn site distributions. It is found that post-growth annealing increases the fraction of substitutional Mn at the expense of interstitial Mn whereas hydrogenation has little influence on the Mn site distribution. Our study offers an element-specific high-resolution imaging approach for accurately determining the detailed site distributions of dilute concentrations of atoms in crystals.
Metal oxide nanoparticle-modified graphene oxide for removal of elemental mercury.
Liu, Yuxi; Chen, Gang; Tian, Chong; Gupta, Rajender; Wang, Xiaogang; Zeng, Hongbo
2018-06-05
Mercury is an extremely toxic element that is primarily released by anthropogenic activities and natural sources. Controlling Hg emissions, especially from coal combustion flue gas, is of practical importance in protecting the environment and preventing human health risks. In the present work, three metal oxides (MnO 2 , CuO, and ZnO) were loaded on graphene oxide (GO) sorbents (designated as MnO 2 -GO, CuO-GO, and ZnO-GO). All three adsorbents were successfully synthesized and were well characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results indicated that the metal oxide nanoparticles (NPs) successfully decorated the GO. The elemental Hg adsorption capabilities of the three sorbents were subsequently evaluated using an in-house built setup for cold vapour atomic fluorescence spectrophotometry (CVAFS) with argon as the carrier gas for mercury detection. The testing temperature ranged from 50°C to 200°C at intervals of 50°C. MnO 2 -GO showed an excel lent Hg 0 adsorption capacity via chemisorption from 50 to 150°C and a mercury removal efficiency as high as 85% at 200°C, indicating that the MnO 2 -NP-modified GO is applicable for enhancing gas-phase elemental mercury removal. However, neither CuO-GO nor ZnO-GO performed well. This work provides useful insights into the development of novel sorbent materials for the elemental mercury removal from flue gases.
In which regions is breast-feeding safer from the impact of toxic elements from the environment?
Cinar, Nursan; Ozdemir, Sami; Yucel, Oya; Ucar, Fatma
2011-11-01
Owing to its unique nutritional and immunological characteristics, breast milk is the most important food source for infants. But, children are at greater risk for exposure to environmental toxicants from breast milk. The aim of this study was to evaluate the influence of environmental pollution on essential and toxic element contents of breast milk and determine the risky locations in our population. This study was conducted on women who were breastfeeding (n=90). Milk samples were collected at three locations in Marmara region, Turkey: highly industrialized region highly affected by pollution, urbanized region moderately and rural area that is affected little. Breast milk samples (5 mL) were collected at approximately one month postpartum (mature milk). The concentrations of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) in milk samples were compared to the milk samples coming from different locations.Lead, cadmium, nickel, chromium, iron and manganese levels in the breast milk are highest and engrossing especially in rural areas compared to the other regions but cobalt, copper, zinc levels are highest in highly industrial areas. The levels of essential and toxic elements in breast milk can vary in different regions. The levels presented in our study are above some countries' data albeit not at toxic levels. Because of global effects, environmental pollution is not the problem for industrializing regions only. Rural area also may not be safe for breastfeed babies.
Early diagenesis and trace element accumulation in North American Arctic margin sediments
NASA Astrophysics Data System (ADS)
Kuzyk, Zou Zou A.; Gobeil, Charles; Goñi, Miguel A.; Macdonald, Robie W.
2017-04-01
Concentrations of redox-sensitive elements (S, Mn, Mo, U, Cd, Re) were analyzed in a set of 27 sediment cores collected along the North American Arctic margin (NAAM) from the North Bering Sea to Davis Strait via the Canadian Archipelago. Sedimentary distributions and accumulation rates of the elements were used to evaluate early diagenesis in sediments along this section and to estimate the importance of this margin as a sink for key elements in the polar and global oceans. Distributions of Mn, total S and reduced inorganic S demonstrated that diagenetic conditions and thus sedimentary carbon turnover in the NAAM is organized regionally: undetectable or very thin layers (<0.5 cm) of surface Mn enrichment occurred in the Bering-Chukchi shelves; thin layers (1-5 cm) of surface Mn enrichment occurred in Barrow Canyon and Lancaster Sound; and thick layers (5-20 cm) of surface Mn enrichment occurred in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Inventories of authigenic S below the Mn-rich layer decreased about fivefold from Bering-Chukchi shelf and Barrow Canyon to Lancaster Sound and more than ten-fold from Bering-Chukchi shelf to Beaufort Shelf, Canadian Archipelago and Davis Strait. The Mn, total S and reduced inorganic S distributions imply strong organic carbon (OC) flux and metabolism in the Bering-Chukchi shelves, lower aerobic OC metabolism in Barrow Canyon and Lancaster Sound, and deep O2 penetration and much lower OC metabolism in the Beaufort Shelf, Canadian Archipelago, and Davis Strait. Accumulation rates of authigenic S, Mo, Cd, Re, and U displayed marked spatial variability along the NAAM reflecting the range in sedimentary redox conditions. Strong relationships between the accumulation rates and vertical carbon flux, estimated from regional primary production values and water depth at the coring sites, indicate that the primary driver in the regional patterns is the supply of labile carbon to the seabed. Thus, high primary production combined with a shallow water column (average 64 m) leads to high rates of authigenic trace element accumulation in sediments from the Bering-Chukchi shelves. High to moderate primary production combined with deep water (average 610 m) leads to moderate rates of authigenic trace element accumulation in sediments from Lancaster Sound. Low to very low primary production combined with moderate water depths (average 380 m) leads to low rates of authigenic trace element accumulation in sediments in the Beaufort Shelf, Davis Strait and Canadian Archipelago. Authigenic Mo accumulation rates show a significant relationship with vascular plant input to the sediments, implying that terrestrial organic matter contributes significantly to metabolism in Arctic margin sediments. Our results suggest that the broad and shallow shelf of the Chukchi Sea, which has high productivity sustained by imported nutrients, contributes disproportionately to global biogeochemical cycles.
Wang, Wen-ming; Zhang, Zhen-hua; Song, Hai-xing; Liu, Qiang; Rong, Xiang-min; Guan, Chun-yun; Zeng, Jing; Yuan, Dan
2015-07-01
Effect of elevated atmospheric-CO2 (780 µmol . mol-1) on the absorption and transportation of secondary nutrient elements (calcium, magnesium, sulphur) and micronutrient elements (iron, manganese, zinc, molybdenum and boron) in oilseed rape at the stem elongation stage were studied by greenhouse simulated method. Compared with the ambient CO2 condition, the content of Zn in stem was increased and the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with no nitrogen (N) application; the contents of Ca, S, B and Zn were increased, and the contents of Mg, Mn, Mo and Fe were decreased under the elevated atmospheric CO2 with N application (0.2 g N . kg-1 soil); except the content of Mo in leaf was increased, the contents of other nutrient elements were decreased under the elevated atmospheric-CO2 with two levels of N application. Compared with the ambient CO2 condition, the amounts of Ca and S relative to the total amount of secondary nutrient elements in stem and the amounts of B and Zn relative to the total amount of micronutrient elements in stem were increased under the elevated-CO2 treatment with both levels of N application, and the corresponding values of Mg, Fe, Mn and Mo were decreased; no-N application treatment increased the proportion of Ca distributed into the leaves, and the proportion of Mg distributed into leaves was increased by the normal-N application level; the proportions of Mn, Zn and Mo distributed into the leaves were increased at both N application levels. Without N application, the elevation of atmospheric CO2 increased the transport coefficients of SFe, Mo and SS,B, but decreased the transport coefficients of SMg,Fe, SMg, Mn and SS,Fe, indicating the proportions of Mo, S transported into the upper part of plant tissues was higher than that of Fe, and the corresponding value of B was higher than that observed for S, the corresponding value of Mg was higher than that of Fe and Mn. Under normal-N application, the elevation of atmospheric CO2 increased the transport coefficients of SMg,Fe, SMg,Mn and SS,B, but decreased the transport coefficients of SCa, Mg, SFe,Mo and SS,Fe indicating the proportions of Fe, Mn and Ca transported into the upper part of plant tissues was higher than that of Mg; the corresponding value of B was higher than that observed for S, the corresponding value of Fe was higher than that of Mo, and the corresponding value of S was higher than that of Fe.
Bent Laue X-ray Fluorescence Imaging of Manganese in Biological Tissues—Preliminary Results
NASA Astrophysics Data System (ADS)
Zhu, Ying; Bewer, Brian; Zhang, Honglin; Nichol, Helen; Thomlinson, Bill; Chapman, Dean
2010-06-01
Manganese (Mn) is not abundant in human brain tissue, but it is recognized as a neurotoxin. The symptoms of manganese intoxication are similar to Parkinson's disease (PD), but the link between environmental, occupational or dietary Mn exposure and PD in humans is not well established. X-ray Absorption Spectroscopy (XAS) and in particular X-ray fluorescence can provide precise information on the distribution, concentration and chemical form of metals. However the scattered radiation and fluorescence from the adjacent abundant element, iron (Fe), may interfere with and limit the ability to detect ultra-dilute Mn. A bent Laue analyzer based Mn fluorescence detection system has been designed and fabricated to improve elemental specificity in XAS imaging. This bent Laue analyzer of logarithmic spiral shape placed upstream of an energy discriminating detector should improve the energy resolution from hundreds of eV to several eV. The bent Laue detection system was validated by imaging Mn fluorescence from Mn foils, gelatin calibration samples and adult Drosophila at the Hard X-ray MicroAnalysis (HXMA) beamline at the Canadian Light Source (CLS). Optimization of the design parameters, fabrication procedures and preliminary experimental results are presented along with future plans.
Volatile elements in Allende inclusions. [Mn, Na and Cl relation to meteorite evolution
NASA Technical Reports Server (NTRS)
Grossman, L.; Ganapathy, R.
1975-01-01
New data are presented on the relatively volatile elements (Mn, Na, and Cl) in coarse- and fine-grained Ca/Al-rich inclusions of different textures and mineralogy in the Allende meteorite. It is shown that the coarse-grained inclusions condensed from the solar nebula at high temperature and contained vanishingly small quantities of volatile elements at that time. Later, volatiles were added to these during the metamorphism of the Allende parent body. The fine-grained inclusions were also affected by the addition of volatiles during this metamorphism but, unlike the coarse-grained ones, they incorporated large amounts of volatiles when they condensed from the solar nebula, accounting for their higher volatile element contents.
PIXE as a complement to ICP-OES trace metal analysis in Sudanese medicinal plants.
Mubark Ebrahim, Ammar; Etayeb, M A; Khalid, H; Noun, Manale; Roumie, M; Michalke, B
2014-08-01
This paper compares trace element concentrations (Ca, K, Sr, Fe, Mn, Zn, Ni, Cu, Co and Cr) in 27 Sudanese medical plants determined in parallel by PIXE and ICP-OES to get information on which technique is preferable at different matrices and element concentrations. PIXE correlates well to ICP-OES for Sr, Mn, Ca, K, Zn and Fe determinations. ICP-OES seems to be the superior technique over PIXE when measuring low concentrated elements (chromium, cobalt, nickel and copper) in the medicinal plants. Copyright © 2014 Elsevier Ltd. All rights reserved.
Trace-element evidence for the origin of desert varnish by direct aqueous atmospheric deposition
NASA Astrophysics Data System (ADS)
Thiagarajan, Nivedita; Aeolus Lee, Cin-Ty
2004-07-01
Smooth rock surfaces in arid environments are often covered with a thin coating of Fe-Mn oxyhydroxides known as desert varnish. It is debated whether such varnish is formed (a) by slow diagenesis of dust particles deposited on rock surfaces, (b) by leaching from the underlying rock substrate, or (c) by direct deposition of dissolved constituents in the atmosphere. Varnishes collected from smooth rock surfaces in the Mojave Desert and Death Valley, California are shown here to have highly enriched and fractionated trace-element abundances relative to upper continental crust (UCC). They are highly enriched in Co, Ni, Pb and the rare-earth elements (REEs). In particular, they have anomalously high Ce/La and low Y/Ho ratios. These features can only be explained by preferential scavenging of Co, Ni, Pb and the REEs by Fe-Mn oxyhydroxides in an aqueous environment. High field strength elements (HFSEs: Zr, Hf, Ta, Nb, Th), however, show only small enrichments despite the fact that these elements should also be strongly scavenged by Fe-Mn oxyhydroxides. This suggests that their lack of enrichment is a feature inherited from a solution initially poor in HFSEs. The first two scenarios for varnish formation can be ruled out as follows. The high enrichment factors of Fe, Mn and many trace elements cannot be generated by mass loss associated with post-depositional diagenesis of dust particles because such a process predicts only a small increase in concentration. In addition, the highly fractionated abundance patterns of particle reactive element pairs (e.g., Ce/La and Y/Ho) rules out leaching of the rock substrate. This is because if leaching were to occur, varnishes would grow from the inside to the outside, and thus any particle-reactive trace element leached from the substrate would be quantitatively sequestered in the Fe-Mn oxyhydroxide layers, prohibiting any significant elemental fractionations. One remaining possibility is that the Fe, Mn and trace metals in varnish are derived from leaching of dust particles entrained in rain or fog droplets either in the atmosphere or during wet atmospheric deposition. The high trace metal enrichment factors require that most of the dust was physically removed before or during varnish formation. The remaining aqueous counterpart would be depleted in HFSEs and Th relative to the REEs, Co, Ni and Pb because the former are more insoluble and hence largely retained in the removed dust fraction. The high Ce/La ratios suggest that precipitation of trace metals may have been governed by equilibrium partitioning in an excess of wet atmospheric deposition. If varnishes are indeed derived from wet atmospheric deposition, they may provide a record of the aqueous component of atmospheric dust inputs to various environments.
NASA Astrophysics Data System (ADS)
Xing, Jia; Wei, Yinghui; Hou, Lifeng
2018-06-01
In this review, the influences of alloying elements on the phase constitution, density, and stacking fault energy of Fe-(15-35) Mn-(5-12) Al-(0.3-1.2) C lightweight steel are discussed. The mechanical properties of austenite single-phase and austenite-ferrite dual-phase Fe-Mn-Al-C steels processed by different procedures are also statistically analyzed. The austenite single-phase steel was found to possess superior strength and plasticity. Three reasonable explanations for the mechanism of plastic deformation are presented, namely, shear band-induced plasticity, microband-induced plasticity, and slip band refinement-induced plasticity.
NASA Astrophysics Data System (ADS)
Xing, Jia; Wei, Yinghui; Hou, Lifeng
2018-04-01
In this review, the influences of alloying elements on the phase constitution, density, and stacking fault energy of Fe-(15-35) Mn-(5-12) Al-(0.3-1.2) C lightweight steel are discussed. The mechanical properties of austenite single-phase and austenite-ferrite dual-phase Fe-Mn-Al-C steels processed by different procedures are also statistically analyzed. The austenite single-phase steel was found to possess superior strength and plasticity. Three reasonable explanations for the mechanism of plastic deformation are presented, namely, shear band-induced plasticity, microband-induced plasticity, and slip band refinement-induced plasticity.
Anthrax and the geochemistry of soils in the contiguous United States
Griffin, Dale W.; Silvestri, Erin E.; Bowling, Charlena Y.; Boe, Timothy; Smith, David B.; Nichols, Tonya L.
2014-01-01
Soil geochemical data from sample sites in counties that reported occurrences of anthrax in wildlife and livestock since 2000 were evaluated against counties within the same states (MN, MT, ND, NV, OR, SD and TX) that did not report occurrences. These data identified the elements, calcium (Ca), manganese (Mn), phosphorus (P) and strontium (Sr), as having statistically significant differences in concentrations between county type (anthrax occurrence versus no occurrence). Tentative threshold values of the lowest concentrations of each of these elements (Ca = 0.43 wt %, Mn = 142 mg/kg, P = 180 mg/kg and Sr = 51 mg/kg) and average concentrations (Ca = 1.3 wt %, Mn = 463 mg/kg, P = 580 mg/kg and Sr = 170 mg/kg) were identified from anthrax-positive counties as prospective investigative tools in determining whether an outbreak had “potential” or was “likely” at any given geographic location in the contiguous United States.
NASA Astrophysics Data System (ADS)
Sudakshina, B.; Arun, B.; Chandrasekhar, K. Devi; Yang, H. D.; Vasundhara, M.
2018-05-01
We have investigated the temperature dependence of electrical transport and dielectric properties along with magnetoresistance and magneto dielectric behavior in Nd0.67Ba0.33Mn0.9TR0.1O3 (TR= Cr, Fe, Co, Ni, Cu) manganites. All the compounds crystallized into an orthorhombic structure with Imma space group. Nd0.67Ba0.33MnO3 shows insulating to metallic behavior at intermediate temperatures, but, with the substitution of transitional elements it shows insulating in nature, down to lowest temperature measured for all the compounds. Dielectric measurement shows the intrinsic behavior of these lossy materials. A large value of magneto resistance is obtained for all the compounds and considerable amount of magneto-dielectric effect is shown for all the substituted compounds at lower temperatures.
NASA Astrophysics Data System (ADS)
Goto, Kosuke T.; Nozaki, Tatsuo; Toyofuku, Takashi; Augustin, Adolpho H.; Shimoda, Gen; Chang, Qing; Kimura, Jun-Ichi; Kameo, Koji; Kitazato, Hiroshi; Suzuki, Katsuhiko
2017-12-01
Hydrogenous ferromanganese (Fe-Mn) crusts can provide records of long-term environmental changes during the Cenozoic. To understand the paleoceanographic conditions in the southwestern Atlantic Ocean, we investigated depth profiles of major- and trace-element concentrations as well as Os and Pb isotopic compositions in a Fe-Mn crust collected from the southern flank of the São Paulo Ridge in the southwestern Atlantic. Major and trace element data plotted on ternary Mn-Fe-10×(Ni+Co+Cu) and rare-earth element plus yttrium (REY) discrimination diagrams indicate that the analyzed sample is a typical hydrogenous Fe-Mn crust. The obtained 187Os/188Os data were matched to the Cenozoic seawater Os isotope evolution curve reconstructed from pelagic sediments. The result suggests that the Fe-Mn crust has accreted over 30 Myr with growth rates of 0.5-3 mm/Myr, although the sample likely grew in two directions during the early stage of its growth. We found no evidence of growth hiatus in the sample, which may contrast with the growth histories of many Pacific Fe-Mn crusts. Hence, the conditions favorable for the accretion of hydrogenous Fe-Mn crusts were likely to have developed on the São Paulo Ridge over the past 30 Myr. The Pb isotopic compositions show very limited ranges (e.g., 206Pb/204Pb=18.80-18.85), and are similar to those of pre-anthropogenic seawater in the Southern Ocean. As the São Paulo Ridge is located near the Vema Channel, which is presently a major path of Antarctic Bottom Water, we suggest that a strong northward bottom current has continuously swept detrital and biogenic sediments from the ridge, and played a vital role in the Fe-Mn crust formation since 30 Ma.
Hashimoto, Hirokazu; Jiang, Wen; Yoshimura, Takeshi; Moon, Kyeong-Hye; Bok, Jinwoong; Ikenaka, Kazuhiro
2017-11-06
In the mouse neural tube, sonic hedgehog (Shh) secreted from the floor plate (FP) and the notochord (NC) regulates ventral patterning of the neural tube, and later is essential for the generation of oligodendrocyte precursor cells (OPCs). During early development, the NC is adjacent to the neural tube and induces ventral domains in it, including the FP. In the later stage of development, during gliogenesis in the spinal cord, the pMN domain receives strong Shh signaling input. While this is considered to be essential for the generation of OPCs, the actual role of this strong input in OPC generation remains unclear. Here we studied OPC generation in bromi mutant mice which show abnormal ciliary structure. Shh signaling occurs within cilia and has been reported to be weak in bromi mutants. At E11.5, accumulation of Patched1 mRNA, a Shh signaling reporter, is observed in the pMN domain of wild type but not bromi mutants, whereas expression of Gli1 mRNA, another Shh reporter, disappeared. Thus, Shh signaling input to the pMN domain at E12.5 was reduced in bromi mutant mice. In these mutants, induction of the FP structure was delayed and its size was reduced compared to wild type mice. Furthermore, while the p3 and pMN domains were induced, the length of the Nkx2.2-positive region and the number of Olig2-positive cells decreased. The number of OPCs was also significantly decreased in the E12.5 and E14.5 bromi mutant spinal cord. In contrast, motor neuron (MN) production, detected by HB9 expression, significantly increased. It is likely that the transition from MN production to OPC generation in the pMN domain is impaired in bromi mutant mice. These results suggest that strong Shh input to the pMN domain is not required for OPC generation but is essential for producing a sufficient number of OPCs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rautio, Anni; Kunnasranta, Mervi; Valtonen, Anu; Ikonen, Mirva; Hyvärinen, Heikki; Holopainen, Ismo J; Kukkonen, Jussi V K
2010-11-01
Many insectivores have been shown to be sensitive to heavy metals and therefore suitable for biomonitoring purposes. In Finland, the hibernation period of the European hedgehog (Erinaceus europaeus) is long, and during hibernation the stress caused by environmental toxins may be crucial. Concentrations of cadmium (Cd), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), molybdenum (Mo), nickel (Ni), lead (Pb), arsenic (As), and selenium (Se) were measured in a population of hedgehogs in the town of Joensuu in eastern Finland during the summers of 2004 and 2005. The analyzed tissues were kidney, liver, hair, and spine. The sampled hedgehogs (n = 65) were mainly road-killed animals. As expected, the concentrations of heavy metals were low because the hedgehogs were living in a comparatively unpolluted area. Significant increases with age were found in Cd concentrations (kidney, liver, and spine) and some essential elements (Se in spine, kidney, and liver; Mo in kidney and liver; Cu in spine; Fe in liver; and Mn in spine). Age accumulation and correlations between Se and Cd and between Mo and Cd may indicate the protective roles of Se and Mo against Cd toxicity in hedgehogs, in which Cd is already at comparatively low concentrations. Sex had no significant effect on concentrations of the elements studied. In conclusion, age is an important parameter to be taken into account when studying heavy-metal concentrations in hedgehogs and other insectivores.
Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean
NASA Astrophysics Data System (ADS)
Özsoy, Türkan; Örnektekin, Sermin
2009-10-01
Spatial/temporal variabilities of rainwater constituents are examined based on soluble/insoluble trace elements, pH and electrical conductivity measurements in rainfall sampled during December 2003-May 2005 at two urban and two suburban sites in Mersin, an industrialized city of 850,000 inhabitants on the southern coast of Turkey. In the analyses, backward air mass trajectories for rainy days were used in addition to factor analyses, enrichment factors, phase distributions and correlations between trace elements. The pH varied from 4.8 to 8.5 with an average value of 6.2, reflecting a mainly alkaline regime. Mean concentrations of trace elements collected from urban and suburban sites are spatially variable. Based on the overall data, total concentrations of trace elements were ordered as Ca > Na > Fe > Al > Mg > K > Zn > Mn > Sr > Pb > Ni > Cr > Ba > Cu > Co > Cd. Mainly terrigeneous (Ca, Fe, Al) and, to a lesser extent, sea salt particles (Na, Mg) were shown to be the major source of trace elements. Excluding major cations, the solubilities of trace elements were found to be ordered as Sr > Zn > Ba > Mn > Cu > Ni > Cr > Fe > Al, confirming the lower solubility of crustal elements. Cd, Co and Pb were excluded from the above evaluation because of the low numbers of soluble samples allowing quantitative measurements. The solubilities of Al, Fe, Mn and particularly of Ni were found to be considerably lower than those reported for various sites around the world, most likely due to the effect of pH. During the entire sampling period, a total of 28 dust transport episodes associated with 31 red rain events were identified. Extremely high mean concentration ratios of Al (8.2), Fe (14.4) and Mn (13.1) were observed in red rain, compared to normal rain. The degree of this enhancement displayed a decrease from crustal to anthropogenic origin elements and the lowest enhancements were found for anthropogenic origin elements of Zn and Cd (both having a ratio of 1.1). Aerosol dust was found to be the main source of almost all analyzed elements in Mersin precipitation, regardless that they are crustal or anthropic derived elements. The magnitude of crustal source contribution to trace element budget of precipitation was at its highest levels for crustal originated elements, most probably due to much higher scavenging ratios of crustal elements compared to anthropogenic ones.
Manganese oxide mineralogy in an exhalative environment from the Solomon Islands
NASA Astrophysics Data System (ADS)
Taylor, G. R.
1983-04-01
The mineralogy and chemistry of oxidate facies sediments associated with a Solomon Island cupriferous pyrite deposit are described. Systematic variations in sediment composition are consistent with the gradual imposition of an oxidising environment on a pool of exhaled solution lying in a topographic depression on the sea floor. Manganese is first precipitated in the Mn2+ oxidation state as pyrochroite, γMn(OH)2. With later seafloor weathering and diagenesis, this oxidises initially to the Mn3+ intermediate minerals manganite (γMnO.OH) or, in the presence of iron hydroxides, to groutite (αMnO.OH). Subsequently, these oxidise further to Mn4+ as the βMnO2 dimorphs pyrolusite or ramsdellite, respectively. Todorokite (δMnO2) is indicative of more oxidising conditions and is found in the upper horizons of the manganiferous sediment. It is invariably non-stoichiometric in composition and its Mn2+/Mn4+ ratio is a direct function of the Eh prevailing during its precipitation. Adsorption of Na+, K+, Ca2+ and Ba2+ions at the time of formation stabilises the todorokite structure and provides an explanation for its persistence (with its Mn2+ions) in association with the completely oxidised Mn4+ mineral, βMnO2, pyrolusite. The enrichment of Cu, Zn and Pb in manganiferous sediments from both pelagic and exhalative environments is associated with the occurrence of goethite. The enrichment of K, Ba and Ca in manganiferous sediments from a similar range in environments is associated with the occurrence of todorokite. Both the mineralogy and trace element characteristics of a manganiferous sediment are thus a function of the environment of deposition rather than the ultimate source of the metals concerned. The trace element contents of manganiferous “floaters” should therefore only be used as an indicator of related sulphide mineralisation in the presence of other favourable factors.
Trace elements in agroecosystems and impacts on the environment.
He, Zhenli L; Yang, Xiaoe E; Stoffella, Peter J
2005-01-01
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.
Kobelja, Kristina; Nemet, Ivan; Župan, Ivan; Čulin, Jelena; Rončević, Sanda
2016-12-01
Determination of metal content in biominerals provides essential information with respect to relations between biomineralization processes and environmental status. Mussels are species that have a great potential as bio-marker species and therefore, they are in the focus of numerous biomineralization and ecological studies. In this study, elemental profile of mussel shell of Noah's Ark (Arca noe, Linnaeus, 1758), which inhabit eastern Adriatic Sea was obtained by determination of seventeen elements content using inductively coupled plasma optical emission spectrometry (ICP-OES). Shell samples were collected from marine protected area and from marine shipping route in eastern Adriatic Sea. The accuracy of applied analytical procedure based on microwave decomposition of shell samples was tested by use of reference materials of limestone and by matrix-matched standards. By aid of chemometric methods, the elemental profile along with variability of elements content of shell was obtained. The impact of different environment on elements content was established by use of multivariate statistical PCA method. Discernment between two groups of samples was manifested. Among results of main, minor and trace elements content, the last one which denoted to Cd, Co, Cu, Pb, and Mn was expressed as principal distinctive feature of shell samples collected from different sampling sites. Elemental profiling of mussel shell Noah's Ark provides novel insight in species status as well as in environmental status on the observed locations. Copyright © 2016 Elsevier GmbH. All rights reserved.
Bonanno, Giuseppe; Lo Giudice, Rosa; Pavone, Pietro
2012-08-01
Trace element impact was assessed using mosses in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy) and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, releasing sedimentary fluids (hydrocarbons and NaCl brines) along with magmatic gases (mainly CO(2) and He). To date, scarce data are available about the presence of trace elements, and no biomonitoring campaigns are reported about the cumulative effects of such emissions. In this study, concentrations of Al, As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, V, and Zn were detected in the moss Bryum argenteum, in soil and water. Results showed that the trace element contribution of the Salinelle to the general pollution was significant for Al, Mn, Ni, and Zn. The comparison of trace concentrations in mosses from Salinelle and Etna showed that the mud volcanoes release a greater amount of Al and Mn, whereas similar values of Ni were found. Natural emissions of trace elements could be hazardous in human settlements, in particular, the Salinelle seem to play an important role in environmental pollution.
First-principles study of Co- and Cu-doped Ni2MnGa along the tetragonal deformation path
NASA Astrophysics Data System (ADS)
Zelený, M.; Sozinov, A.; Straka, L.; Björkman, T.; Nieminen, R. M.
2014-05-01
The influence of Co and Cu doping on Ni-Mn-Ga Heusler alloy is investigated using the first-principles exact muffin-tin orbital method in combination with the coherent-potential approximation. Single-element doping and simultaneous doping by both elements are investigated in Ni50-xCoxMn25-yGa25-zCuy+z alloys, with dopant concentrations x ,y, and z up to 7.5 at. %. Doping with Co in the Ni sublattice decreases the (c/a)NM ratio of the nonmodulated (NM) martensite, but it simultaneously increases the cubic phase stability with respect to the NM phase. Doping with Cu in the Mn or in Ga sublattices does not change the (c/a)NM ratio significantly and it decreases the cubic phase stability. For simultaneous doping by Co in the Ni sublattice and Cu in the Mn or Ga sublattices, the effects of the individual dopants are independent and about the same as for the single-element doping. Thus, the (c/a)NM ratio can be adjusted by Co doping while the phase stability can be balanced by Cu doping, resulting in stable martensite with a reduced (c/a)NM. The local stability of the cubic phase with respect to the tetragonal deformation can be understood on the basis of a density-of-states analysis.
Toxic elements and bio-metals in Cantharellus mushrooms from Poland and China.
Falandysz, Jerzy; Chudzińska, Maria; Barałkiewicz, Danuta; Drewnowska, Małgorzata; Hanć, Anetta
2017-04-01
Data on multi-trace element composition and content relationships have been obtained for Cantharellus cibarius, C. tubaeformis, and C. minor mushrooms from Poland and China by inductive coupled plasma-dynamic reaction cell-mass spectroscopy. There is no previous data published on As, Li, V, Tl, and U in chanterelles from Poland and on Ba, Co, Cr, Ni, Rb, and Sr in chanterelles from China. The results implied a role of the soil background geochemistry at the collection site with the occurrence of Ag, As, Ba, Cr, Cs, Li, Mn, Pb, Rb, Sr, U, and V in the fruiting bodies. Both geogenic Cd and anthropogenic Cd can contribute in load of this element in chanterelles from the Świetokrzyskie Mts. region in Poland, while geogenic source can be highly dominant in the background areas of Yunnan. An essentiality of Cu and Zn and effort by mushroom to maintain their physiological regulation could be reflected by data for Cantharellus mushrooms from both regions of the world, but its geogenic source (and possibly anthropogenic) can matter also in the region of the Świetokrzyskie Mountains in Poland. The elements Co, Ni, and Tl were at the same order of magnitude in contents in C. cibarius in Poland and Yunnan, China. C. tubaeformis differed from C. cibarius by a lower content of correlated Co, Ni, and Zn. Soil which is polymetallic and highly weathered in Yunnan can be suggested as a natural geogenic source of greater concentrations of As, Ba, Cr, Li, Pb, Sr, U, and V in the chanterelles there while lower of Mn and Rb, when related to chanterelles in Poland. A difference in Cs content between the sites can be attributed as an effect of the 137 Cs release from the Chernobyl accident, in which Poland was much more affected than Yunnan, where deposition was negligible.
Manganese: it turns iron into steel (and does so much more)
Cannon, William F.
2014-01-01
Manganese is a common ferrous metal with atomic weight of 25 and the chemical symbol Mn. It constitutes roughly 0.1 percent of the Earth’s crust, making it the 12th most abundant element. Its early uses were limited largely to pigments and oxidants in chemical processes and experiments, but the significance of manganese to human societies exploded with the development of modern steelmaking technology in the 1860s. U.S consumption of manganese is about 500,000 metric tons each year, predominantly by the steel industry. Because manganese is essential and irreplaceable in steelmaking and its global mining industry is dominated by just a few nations, it is considered one of the most critical mineral commodities for the United States.
Romero, M B; Polizzi, P; Chiodi, L; Robles, A; Das, K; Gerpe, M
2017-02-01
Franciscana dolphins are the most impacted small cetacean in the Southwestern Atlantic Ocean, classified as Vulnerable A3d by IUCN. Essential (Fe, Mo, Mn, Cr, Ni, Co) and non-essential (Ag, Pb, Sn) trace elements (TEs) were measured in liver, kidney, and brain samples of by-catch Franciscana dolphins that were living in estuarine (n = 21) and marine (n = 21) habitats (1) to assess whether TEs posed a threat and (2) to evaluate the suitability of TEs for discriminating ecological populations of this species in Argentinean waters. Essential TEs showed little variation in tissues from both groups in agreement with levels reported for other cetaceans and suggesting that these concentrations correspond to normal physiological levels. Non-essential TEs were higher in estuarine juveniles and adults dolphins than in marine specimens. These results suggest anthropogenic sources associated with estuarine area and that Franciscana dolphins are good sentinels of the impact of the environment. The difference in the concentrations of TEs beetwen ecological populations appeared to be related to distinct exposures in both geographical areas, and it is suggested that Ag and Sn concentrations in adults are good chemical tracers of anthropogenic input of TEs. These results provide additional information for improved management and regulatory policy.
Sensitivity of trace element pyritization to pyrite oxidation processes
NASA Astrophysics Data System (ADS)
Moreira, Manuel; Díaz, Rut; Mendoza, Ursula; Capilla, Ramses; Böttcher, Michael; Luiza Albuquerque, Ana; Machado, Wilson
2014-05-01
Total trace elements concentration variability in marine sediments has been widely used as a proxy for redox conditions and marine paleoprodutivity. However, partial extraction procedures reduce influences of detrital sedimentary fractions, and information on trace element geochemical partitioning can contribute to provide comprehensive evidences on elemental sensitivity to particular processes. The potential effect of sedimentary pyrite re-oxidative cycling on the degree of trace metal pyritization (DTMP) has not been previously evaluated. This study investigates this effect in 4 sediment cores from the continental shelf under the influence of a tropical upwelling system (Cabo Frio, Brazil). The relation of DTMP with stable isotope signals (δ34SCRS) of chromium reducible sulfur, which becomes lighter in response to intense pyrite re-oxidative cycling in the study area, suggests high (As, Cd and Mn), low (Cu and Zn) or negligible (Cr and Ni) re-oxidation influences. The oldest, pyrite-richer sediments provide an apparent threshold for intense pyrite re-oxidation, after which most trace elements (As, Cd, Zn and Mn) presented more accentuated pyritization. A middle shelf core presented negative correlations of reactive (HCl-soluble) Mn, Cu and Ni with pyrite iron, suggesting Mn oxide (and associated metals) depletion in reaction with pyrite. Results provided evidences for coupled influences from both aerobic and anaerobic oxidative processes on trace elements incorporation into pyrite. Pyrite δ34S signatures under the oxic bottom water from the study area were similar to those from euxinic sedimentary environments, suggesting that pyrite re-oxidative cycling can affect trace element susceptibility to be incorporated and preserved into pyrite in a wide range of sedimentary conditions. The evaluation of trace elements sensitivity to these processes can contribute to improve the use of multiple DTMP data (e.g., as paleoredox proxies). Considering that S re-oxidative cycling is ubiquitous in many sedimentary conditions, such coupled use of DTMP and δ34SCRS proxies can be possibly applied to a large variety of sedimentary environments.
Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lanza, Nina L.; Wiens, Roger C.; Arvidson, Raymond E.
We report that the Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. In conclusion, based on the strong association between Mn-oxide depositionmore » and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.« less
Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars
Lanza, Nina L.; Wiens, Roger C.; Arvidson, Raymond E.; ...
2016-07-28
We report that the Curiosity rover observed high Mn abundances (>25 wt % MnO) in fracture-filling materials that crosscut sandstones in the Kimberley region of Gale crater, Mars. The correlation between Mn and trace metal abundances plus the lack of correlation between Mn and elements such as S, Cl, and C, reveals that these deposits are Mn oxides rather than evaporites or other salts. On Earth, environments that concentrate Mn and deposit Mn minerals require water and highly oxidizing conditions; hence, these findings suggest that similar processes occurred on Mars. In conclusion, based on the strong association between Mn-oxide depositionmore » and evolving atmospheric dioxygen levels on Earth, the presence of these Mn phases on Mars suggests that there was more abundant molecular oxygen within the atmosphere and some groundwaters of ancient Mars than in the present day.« less
Sample Introduction Using the Hildebrand Grid Nebulizer for Plasma Spectrometry
1988-01-01
linear dynamic ranges, precision, and peak width were de- termined for elements in methanol and acetonitrile solutions. , (1)> The grid nebulizer was...FIA) with ICP-OES detection were evaluated. Detec- tion limits, linear dynamic ranges, precision, and peak width were de- termined for elements in...Concentration vs. Log Peak Area for Mn, 59 Cd, Zn, Au, Ni in Methanol (CMSC) 3-28 Log Concentration vs. Log Peak Area for Mn, 60 Cd, Au, Ni in
Findings on the phytoextraction and phytostabilization of soils contaminated with heavy metals.
Cheraghi, M; Lorestani, B; Khorasani, N; Yousefi, N; Karami, M
2011-12-01
As a result of human activities such as mining, metal pollution has become one of the most serious environmental problems today. Phytoremediation, an emerging cost-effective, non-intrusive, and aesthetically pleasing technology that uses the remarkable ability of plants to concentrate elements can be potentially used to remediate metal-contaminated sites. The aim of this work was to assess the extent of metal accumulation by plants found in a mining area in Hamedan province with the ultimate goal of finding suitable plants for phytoextraction and phytostabilization (two processes of phytoremediation). To this purpose, shoots and roots of the 12 plant species and the associated soil samples were collected and analyzed by measurement of total concentrations of some elements (Fe, Mn, Zn, and Cu) using atomic absorption spectrophotometer and then biological absorption coefficient, bioconcentration factor, and translocation factor parameters calculated for each element. Our results showed that none of the plants were suitable for phytoextraction and phytostabilization of Fe, Zn, and Cu, while Chenopodium botrys, Stipa barbata, Cousinia bijarensis, Scariola orientalis, Chondrila juncea, and Verbascum speciosum, with a high biological absorption coefficient for Mn, were suitable for phytoextraction of Mn, and C. bijarensis, C. juncea, V. speciosum, S. orientalis, C. botrys, and S. barbata, with a high bioconcentration factor and low translocation factor for Mn, had the potential for the phytostabilization of this element.
van Thriel, Christoph; Quetscher, Clara; Pesch, Beate; Lotz, Anne; Lehnert, Martin; Casjens, Swaantje; Weiss, Tobias; Van Gelder, Rainer; Plitzke, Katrin; Brüning, Thomas; Beste, Christian
2017-08-01
Manganese (Mn) is an essential trace element with well characterized neurotoxic effects in high concentrations. Neurochemically, the initial neurotoxic effect of Mn is the perturbation of striatal γ-aminobutyric acid levels. Specific tasks for the assessment of cognitive functions subserved by fronto-striatal loops are available as the stop-change task (SCT) assessing control of multi-component behavior and action cascading. In a cross-sectional study, fifty male welders and 28 age-matched controls completed the SCT during a whole day examination. Reaction times, responses accuracy, and event-related potentials (ERPs) from electroencephalogram (EEG) recordings were analyzed. The shift exposure of the welders to respirable Mn was stratified by 20 µg/m 3 in 23 low-exposed (median = 4.7 µg/m 3 ) and 27 high-exposed welders (median = 86.0 µg/m 3 ). Welders graduation was lower and was therefore included in the analyses. The task-related factor (stop-change delay, SCD) modified the responses as expected; however, the lack of an interaction "SCD × group" revealed no differences between welders and controls. EEG data showed that the "SCD" modulated the amplitude of the P3 ERP in controls stronger than in welders. There was no difference between the two groups of welders and no association between airborne or systemic Mn and the P3 ERP. Moreover, the P3 amplitude was smaller in subjects with lower education. These results showed that multitasking performance and cognitive flexibility are not impaired in welders. The electrophysiological results gave a weak hint that relevant neurobiological processes were different in welders as compared to controls but this may be related to lower education.
Sevilla-Perea, A; Mingorance, M D
2015-08-01
An approach was devised for revegetation of a mining dump soil, sited in a semiarid region, with basic pH as well as Fe and Mn enrichment. A field experiment was conducted involving the use of co-compost (a mixture of urban sewage sludge and plant remains) along with a commercial biofertilizer (a gel suspension which contains arbuscular mycorrhizal fungus) to reinforce the benefits of the former. Four treatments were studied: unamended soil; application of conditioners separately and in combination. Pistachio, caper, rosemary, thyme and juniper were planted. We evaluated the effects of the treatments using soil quality (physicochemical properties, total content of hazardous elements, nutrient availability, microbial biomass and enzyme activities) and plant establishment indicators (survival, growth, vigor, nutrient content in leaves, nutrient balances and mycorrhizal root colonization). Thyme and juniper did not show a suitable survival rate (<50%) whereas 70-100% of the pistachio, rosemary and caper survived for at least 27 months. In unamended soil, plant growth was severely hampered by P, N, K and Zn deficiencies as well as Fe and Mn excess. Overall, the treatments affected the soil and plant indicators as follows: biofertilizer + co-compost > co-compost > biofertilizer > unamended. The application of co-compost was therefore essential with regard to improving soil fertility; furthermore, it increased leaf N and P content, whereas leaf Fe and Mn concentrations showed a decrease. The combined treatment, however, provided the best results. The positive interaction between the two soil conditioners might be related to the capacity of the biofertilizer to increase nutrient uptake from the composted residue, and to protect plants against Fe and Mn toxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rodionova, Irina A.; Zuccola, Harmon J.; Sorci, Leonardo; ...
2015-01-28
Nicotinate mononucleotide adenylyltransferase NadD is an essential enzyme in the biosynthesis of the NAD cofactor, which has been implicated as a target for developing new antimycobacterial therapies. Here we report the crystal structure of Mycobacterium tuberculosis NadD ( MtNadD) at a resolution of 2.4 Å. A remarkable new feature of the MtNadD structure, compared with other members of this enzyme family, is a 310 helix that locks the active site in an over-closed conformation. As a result, MtNadD is rendered inactive as it is topologically incompatible with substrate binding and catalysis. Directed mutagenesis was also used to further dissect themore » structural elements that contribute to the interactions of the two MtNadD substrates, i.e. ATP and nicotinic acid mononucleotide (NaMN). For inhibitory profiling of partially active mutants and wild type MtNadD, we used a small molecule inhibitor of MtNadD with moderate affinity ( Ki ~ 25 μM) and antimycobacterial activity (MIC 80) ~ 40-80 μM). This analysis revealed interferences with some of the residues in the NaMN binding subsite consistent with the competitive inhibition observed for the NaMN substrate (but not ATP). A detailed steady-state kinetic analysis of MtNadD suggests that ATP must first bind to allow efficient NaMN binding and catalysis. This sequential mechanism is consistent with the requirement of transition to catalytically competent (open) conformation hypothesized from structural modeling. A possible physiological significance of this mechanism is to enable the down-regulation of NAD synthesis under ATP-limiting dormancy conditions. Lastly, these findings point to a possible new strategy for designing inhibitors that lock the enzyme in the inactive over-closed conformation.« less
Ondrasek, Gabrijel; Rengel, Zed; Romic, Davor
2018-04-30
Naturally-occurring highly-complexed and polymerised organics such as humic acids (HA), due to their large negative charge, play a crucial role in biogeochemistry of trace metals (TM). Toxic (Cd) as well as essential (Zn, Cu, Mn) TM bind strongly to HA, but how these organo-metalic forms influence metal uptake by plants is poorly understood. A solution culture study was conducted to characterize the effects of different concentrations of HA (0-225mg/L) on the growth and element uptake/distribution in roots, shoots and hypocotyls of radish (Raphanus sativus L.) exposed to Cd (0.5mg/L) contamination. After 10-d-exposure to applied treatments, Cd induced phytotoxicity; in contrast, different concentrations of HA had no influence on biomass, but decreased concentration of most TM in examined tissues (Cu by 4.2-fold, Zn by 2.2-fold, Cd by 1.6-fold and Mn by 34%) and their total plant accumulation (Cu by 73%, Cd by 39%, Zn by 29% and Mn by 22%). HA influenced the transport/distribution of TM, decreasing accumulation in roots and increasing their translocation/deposition in shoots, with no effect on TM content in edible hypocotyls. Chemical speciation modelling of the rooting medium confirmed predominance of free metallic forms in the control (no HA) and the pronounced organo-metal complexation in the HA treatments. The results provide evidence of strong capacity of HA to decrease phytoavailability and uptake of Cd, Zn, Cu and Mn while being non-toxic even at relatively high concentration (225mg/L). Thus, HA, as naturally present soil components, control mobility and phyto-extraction of most TM as well as their phyto-accumulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Liu, Yu; Huang, Yuanchun; Xiao, Zhengbing; Jia, Guangze
2017-07-19
To better understand the effect of the components of molten 2219 Al alloy on the hydrogen content dissolved in it, the H adsorption on various positions of alloying element clusters of Cu, Mn and Al, as well as the inclusion of Al₂O₃, MgO and Al₄C₃, were investigated by means of first principles calculation, and the thermodynamic stability of H adsorbed on each possible site was also studied on the basis of formation energy. Results show that the interaction between Al, MgO, Al₄C₃ and H atoms is mainly repulsive and energetically unfavorable; a favorable interaction between Cu, Mn, Al₂O₃ and H atoms was determined, with H being more likely to be adsorbed on the top of the third atomic layer of Cu(111), the second atomic layer of Mn(111), and the O atom in the third atomic layer of Al₂O₃, compared with other sites. It was found that alloying elements Cu and Mn and including Al₂O₃ may increase the hydrogen adsorption in the molten 2219 Al alloy with Al₂O₃ being the most sensitive component in this regard.
NASA Astrophysics Data System (ADS)
Miyano, Yumiko; Yoshiasa, Akira; Tobase, Tsubasa; Isobe, Hiroshi; Hongu, Hidetomo; Okube, Maki; Nakatsuka, Akihiko; Sugiyama, Kazumasa
2016-05-01
Ni, Cr, Fe, Ca and Mn K-edge XANES and EXAFS spectra were measured on K-T boundary clays from Stevns Klint in Denmark. According to XANES spectra and EXAFS analyses, the local structures of Ni, Cr and Fe in K-T boundary clays is similar to Ni(OH)2, Cr2O3 and FeOOH, respectively. It is assumed that the Ni, Cr and Fe elements in impact related glasses is changing into stable hydrate and oxide by the weathering and diagenesis at the surface of the Earth. Ca in K-T boundary clays maintains the diopside-like structure. Local structure of Ca in K-T clays seems to keep information on the condition at meteorite impact. Mn has a local structure like MnCO3 with divalent state. It is assumed that the origin on low abundant of Mn in the Fe-group element in K-T clays was the consumption by life activity and the diffusion to other parts.
Liu, B; Zheng, Y F
2011-03-01
Pure iron was determined to be a valid candidate material for biodegradable metallic stents in recent animal tests; however, a much faster degradation rate in physiological environments was desired. C, Mn, Si, P, S, B, Cr, Ni, Pb, Mo, Al, Ti, Cu, Co, V and W are common alloying elements in industrial steels, with Cr, Ni, Mo, Cu, Ti, V and Si being acknowledged as beneficial in enhancing the corrosion resistance of iron. The purpose of the present work (using Fe-X binary alloy models) is to explore the effect of the remaining alloying elements (Mn, Co, Al, W, B, C and S) and one detrimental impurity element Sn on the biodegradability and biocompatibility of pure iron by scanning electron microscopy, X-ray diffraction, metallographic observation, tensile testing, microhardness testing, electrochemical testing, static (for 6 months) and dynamic (for 1 month with various dissolved oxygen concentrations) immersion testing, cytotoxicity testing, hemolysis and platelet adhesion testing. The results showed that the addition of all alloying elements except for Sn improved the mechanical properties of iron after rolling. Localized corrosion of Fe-X binary alloys was observed in both static and dynamic immersion tests. Except for the Fe-Mn alloy, which showed a significant decrease in corrosion rate, the other Fe-X binary alloy corrosion rates were close to that of pure iron. It was found that compared with pure iron all Fe-X binary alloys decreased the viability of the L929 cell line, none of experimental alloying elements significantly reduced the viability of vascular smooth muscle cells and all the elements except for Mn increased the viability of the ECV304 cell line. The hemolysis percentage of all Fe-X binary alloy models were less than 5%, and no sign of thrombogenicity was observed. In vitro corrosion and the biological behavior of these Fe-X binary alloys are discussed and a corresponding mechanism of corrosion of Fe-X binary alloys in Hank's solution proposed. As a concluding remark, Co, W, C and S are recommended as alloying elements for biodegradable iron-based biomaterials. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Keiluweit, M.; Bougoure, J.; Pett-Ridge, J.; Kleber, M.; Nico, P. S.
2011-12-01
Lignin comprises a dominant proportion of carbon fluxes into the soil (representing up to 50% of plant litter and roots). Two lines of evidence suggest that manganese (Mn) acts as a strong controlling factor on the residence time of lignin in soil ecosystems. First, Mn content is highly correlated with litter decomposition in temperate and boreal forest soil ecosystems and, second, microbial agents of lignin degradation have been reported to rely on reactive Mn(III)-complexes to specifically oxidize lignin. However, few attempts have been made to isolate the mechanisms responsible for the apparent Mn-dependence of lignin decomposition in soils. Here we tested the hypothesis that Mn(III)-oxalate complexes may act as a perforating 'pretreatment' for structurally intact plant cell walls. We propose that these diffusible oxidizers are small enough to penetrate and react with non-porous ligno-cellulose in cell walls. This process was investigated by reacting single Zinnia elegans tracheary elements with Mn(III)-oxalate complexes in a continuous flow-through microreactor. The uniformity of cultured tracheary elements allowed us to examine Mn(III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as synchrotron-based infrared and X-ray spectromicroscopy. Our results show that Mn(III)-complexes substantially oxidize specific lignin components of the cell wall, solubilize decomposition products, severely undermine the cell wall integrity, and cause cell lysis. We conclude that Mn(III)-complexes induce oxidative damage in plant cell walls that renders ligno-cellulose substrates more accessible for microbial lignin- and cellulose-decomposing enzymes. Implications of our results for the rate limiting impact of soil Mn speciation and availability on litter decomposition in forest soils will be discussed.
Electronic structure and x-ray spectroscopy of Cu2MnAl1-xGax
NASA Astrophysics Data System (ADS)
Rai, D. P.; Ekuma, C. E.; Boochani, A.; Solaymani, S.; Thapa, R. K.
2018-04-01
We explore the electronic and related properties of Cu2MnAl1-xGax with a first-principles, relativistic multiscattering Green function approach. We discuss our results in relation to existing experimental data and show that the electron-core hole interaction is essential for the description of the optical spectra especially in describing the X-ray absorption and magnetic circular dichroism spectra at the L2,3 edges of Cu and Mn.
Klimov, V V; Hulsebosch, R J; Allakhverdiev, S I; Wincencjusz, H; van Gorkom, H J; Hoff, A J
1997-12-23
It was previously shown in the photosystem II membrane preparation DT-20 that photoxidation of the oxygen-evolving manganese cluster was blocked by 0.1 mM formate, unless 0.2 mM bicarbonate was present as well [Wincencjusz, H., Allakhverdiev, S. I., Klimov, V. V., and Van Gorkom, H. J. (1996) Biochim. Biophys. Acta 1273, 1-3]. Here it is shown by measurements of EPR signal II that oxidation of the secondary electron donor, YZ, is not inhibited. However, the reduction of is greatly slowed and occurs largely by back reaction with reduced acceptors. Bicarbonate is shown to prevent the loss of fast electron donation to . The release of about one or two free Mn2+ per photosystem II during formate treatment, and the fact that these effects are mimicked by Mn-depletion, suggests that formate may act by replacing a bicarbonate which is essential for Mn binding. Irreversible light-induced rebinding in an EPR-silent form of Mn2+ that was added to Mn-depleted DT-20 was indeed found to depend on the presence of bicarbonate, as did the reconstitution in such material of both the fast electron donation to and the UV absorbance changes characteristic of a functional oxygen-evolving complex. It is concluded that bicarbonate may be an essential ligand of the functional Mn cluster.
Trace element emissions from spontaneous combustion of gob piles in coal mines, Shanxi, China
Zhao, Y.; Zhang, Jiahua; Chou, C.-L.; Li, Y.; Wang, Z.; Ge, Y.; Zheng, C.
2008-01-01
The emissions of potentially hazardous trace elements from spontaneous combustion of gob piles from coal mining in Shanxi Province, China, have been studied. More than ninety samples of solid waste from gob piles in Shanxi were collected and the contents of twenty potentially hazardous trace elements (Be, F, V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Sn, Sb, Hg, Tl, Pb, Th, and U) in these samples were determined. Trace element contents in solid waste samples showed wide ranges. As compared with the upper continental crust, the solid waste samples are significantly enriched in Se (20x) and Tl (12x) and are moderately enriched in F, As, Mo, Sn, Sb, Hg, Th, and U (2-5x). The solid waste samples are depleted in V, Cr, Mn, Co, Ni, Cu, and Zn. The solid waste samples are enriched in F, V, Mn, Cr, Co, Ni, Cu, Zn, Sb, Th, and U as compared with the Shanxi coals. Most trace elements are higher in the clinker than in the unburnt solid waste except F, Sn, and Hg. Trace element abundances are related to the ash content and composition of the samples. The content of F is negatively correlated with the ash content, while Pb is positively correlated with the ash. The concentrations of As, Mn, Zn, and Cd are highly positively correlated with Fe2O3 in the solid waste. The As content increases with increasing sulfur content in the solid waste. The trace element emissions are calculated for mass balance. The emission factors of trace elements during the spontaneous combustion of the gobs are determined and the trace element concentrations in the flue gas from the spontaneous combustion of solid waste are calculated. More than a half of F, Se, Hg and Pb are released to the atmosphere during spontaneous combustion. Some trace element concentrations in flue gas are higher than the national emission standards. Thus, gob piles from coal mining pose a serious environmental problem. ?? 2007 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Park, Sang-Gyu; Lee, Ki-Hyoung; Min, Ki-Deuk; Kim, Min-Chul; Lee, Bong-Sang
2012-07-01
It is well known that SA508 Gr.4N low alloy steel offers improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel. In this study, the effects of Cr, Mn, and Ni on temper embrittlement in SA508 Gr.4N low alloy steel were evaluated from the viewpoint of thermodynamic parameters such as P diffusivity and C activity. The changes of the ductile-brittle transition temperatures before and after aging were correlated with varying alloying element content, and the diffusivity of P and the activity of C were calculated and correlated with the transition behaviors. The addition of Ni, Cr, and Mn reduce the resistance to temper embrittlement, showing increased Transition-Temperature Shift (TTS) and an increased fraction of intergranular fracture. Although the diffusivity of P is changed by the addition of alloying elements, it does not considerably affect the temper embrittlement. The Mn and Cr content in the matrix significantly reduce the C activity, with showing an inversely proportional relationship to TTS. The change of susceptibility to temper embrittlement caused by Cr and Mn addition could be explained by the variation of C activity. Unlike Cr and Mn, Ni has little effect on the temper embrittlement and C activity.
Abdel-Gaber, Rewaida; Abdel-Ghaffar, Fathy; Abdallah Shazly, Mohamed; Morsy, Kareem; Al Quraishy, Saleh; Mohamed, Sanna; Mehlhorn, Heinz
2017-06-01
Parasites are one of the most serious limiting factors in aquaculture. The Electric catfish Malapterurus electricus was subjected to study the prevalence and mean intensity of parasitic infections throughout the whole year of 2015. Heavy metals accumulation in host fish and parasites were determined in relation to water quality and sediments of two different sites of Lake Manzala (Manzala and Bahr El-Baqar), Egypt. A total of 100 specimens of Electric catfish were collected and examined for the presence of helminth parasites. Two parasite species were recovered and morphologically identified. These were cestoda Electrotaenia malapteruri and nematode Dujardinnascaris malapteruri. Heavy metal analysis in water and sediments showed that measured heavy metals in Bahr El-Baqar were found in risky levels higher than permissible limits and Manzala site. Sediments were found to contain a higher level of metals than water samples. Heavy metals accumulation in recovered parasites and their host were also determined and showed significantly higher concentrations in parasites compared to their host tissues. According to bioconcentration factors, E. malapteruri showed that highest accumulation rate for all recorded elements up to 302. Essential elements like Cu and Fe were found in significantly higher concentrations in D. malapteruri, whereas E. malapteruri accumulated elements Cd, Pb, Ni, Mn, Zn and Ca to a significantly higher degree. Accordingly, the ratios (C[D.malapteruri]/C[E. malapteruri]) for most essential elements were higher than 0.5. Therefore, fish cestodes can be regarded as useful bio-indicators more than nematodes when evaluating the environmental pollution of aquatic ecosystems by heavy metals.
Brophy, Megan Brunjes; Nakashige, Toshiki G.; Gaillard, Aleth; Nolan, Elizabeth M.
2014-01-01
Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9 dimer interface. We present a 16-member CP mutant family where mutations in the S100A9 C-terminal tail (residues 96–114) are employed to evaluate the contributions of this region, which houses three histidines and four acidic residues, to Mn(II) coordination at site 2. The results from analytical size-exclusion chromatography, Mn(II) competition titrations, and electron paramagnetic resonance spectroscopy establish that the C-terminal tail is essential for high-affinity Mn(II) coordination by native CP in solution. The studies indicate that His103 and His105 (HXH motif) of the tail complete the Mn(II) coordination sphere in solution, affording an unprecedented biological His6 site. These solution studies are in agreement with a Mn(II)-CP crystal structure reported recently (PNAS 2013, 110, 3841). Remarkably high-affinity Mn(II) binding is retained when either H103 or H105 are mutated to Ala, when the HXH motif is shifted from positions 103–105 to 104–106, and when the human tail is substituted by the C-terminal tail of murine S100A9. Nevertheless, antibacterial activity assays employing human CP mutants reveal that the native disposition of His residues is important for conferring growth inhibition against Escherichia coli and Staphylococcus aureus. Within the S100 family, the S100A8/S100A9 heterooligomer is essential for providing high-affinity Mn(II) binding; the S100A7ox, S100A9(C3S), S100A12, and S100B homodimers do not exhibit such Mn(II)-binding capacity. PMID:24245608
NASA Astrophysics Data System (ADS)
Milićević, Tijana; Relić, Dubravka; Popović, Aleksandar
2015-04-01
Translocation of elements from soil to plant has a major impact on the growing plants and on their quality in any agricultural field. In this study, soil samples were collected from agricultural area Radmilovac, Serbia during grapevine season in 2013. Bioavailable elements from soil to plant (grapevine) were isolated by five different extractants: 0.11 mol L-1 CH3COOH, 0.05 mol L-1 Na-EDTA, 0.01 mol L-1 CaCl2, 1 mol L-1 NH4NO3 and distilled water during 2 and 16 h. Concentrations of 22 bioavailable macroelements: Al, Ca, Fe, K, Mg, Mn, Na, P, S, Si and microelements: B, Be, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, V, Zn were determined by ICP-OES. The best extractant for Al, B, Be, Mg, Mo, Si and Zn was CH3COOH, Na-EDTA for Ca, Cd, Co, Cu, Fe, K, Mn, Ni, P, Pb, V, and distilled water for Na and S. Acetic acid has been proven to be an aggressive extractant and it can be used for isolation of higher concentrations of plant bioavailable elements from soil, rather than distilled water, CaCl2 and NH4NO3. The acidity of CH3COOH enhances the extraction of bioavailable fraction of microelements from various substrates and destruction of carbonates as well. However, it can be concluded that there is no unique extractant for isolation of the most bioavailable fraction for all elements from the soil. It can be noticed that the most common concentrations of macroelements, K and Mn, are in correlation with concentrations of microelements, Cd, Co, Ni and Zn. This indicates that the most of their concentrations in soils are followed by microelements, whose concentrations are much lower than concentrations of macroelements. However, as these correlations are the most common, it can be concluded that the pairs of macro- and microelements (e.g. Mn-Cd, Mn-Co, Ni-Cd, Ni-Co, Ni-Mn, Zn-Cd, Zn-Co, Zn-Mn, Zn-Ni) have the same source in soil and can be isolated by the same extractant. It is interesting to note that the concentrations of Ca and Mg extracted from soil using CH3COOH are in correlation and that neither of these macroelements is in correlation with the concentration of microelements isolated with the same extractant. The concentrations of Cu and S extracted from soil by distilled water during 16 h are in correlation. These elements could have entered only through the soil surface layer while grapevines were primarily treated by fungicide copper(II)-sulphate. In addition, the concentration of S is correlated with the concentrations of Mn, P and Na. It can be assumed that the correlation between these elements points to their origin from the pesticides used in agriculture production.
Carrier-induced ferromagnetism in the insulating Mn-doped III-V semiconductor InP
NASA Astrophysics Data System (ADS)
Bouzerar, Richard; May, Daniel; Löw, Ute; Machon, Denis; Melinon, Patrice; Zhou, Shengqiang; Bouzerar, Georges
2016-09-01
Although InP and GaAs have very similar band structure their magnetic properties appear to drastically differ. Critical temperatures in (In,Mn)P are much smaller than those of (Ga,Mn)As and scale linearly with Mn concentration. This is in contrast to the square-root behavior found in (Ga,Mn)As. Moreover the magnetization curve exhibits an unconventional shape in (In,Mn)P contrasting with the conventional one of well-annealed (Ga,Mn)As. By combining several theoretical approaches, the nature of ferromagnetism in Mn-doped InP is investigated. It appears that the magnetic properties are essentially controlled by the position of the Mn acceptor level. Our calculations are in excellent agreement with recent measurements for both critical temperatures and magnetizations. The results are only consistent with a Fermi level lying in an impurity band, ruling out the possibility to understand the physical properties of Mn-doped InP within the valence band scenario. The quantitative success found here reveals a predictive tool of choice that should open interesting pathways to address magnetic properties in other compounds.
Radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires
NASA Astrophysics Data System (ADS)
Shevyrtalov, S.; Zhukov, A.; Medvedeva, S.; Lyatun, I.; Zhukova, V.; Rodionova, V.
2018-05-01
In this manuscript, radial elemental and phase separation in Ni-Mn-Ga glass-coated microwires with high excess Ni as a result of high-temperature annealing was observed. Partial manganese evaporation from the outer part of the metallic nucleus and glass melting results in the formation of manganese oxide at the surface. The lack of manganese due to its evaporation induces Ni3Ga formation in the intermediate part, while in the middle part of the metallic nucleus, the residual L21 phase with an average chemical composition of Ni60Mn9Ga31 remains. The layered structure exhibits soft ferromagnetic behavior below 270 K. The results were discussed taking into account the chemical composition, arising internal stresses, recrystallization, and atomic ordering.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fuxiang; Tong, Yang; Jin, Ke
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy
Zhang, Fuxiang; Tong, Yang; Jin, Ke; ...
2018-06-16
In order to study chemical complexity-induced lattice distortion in high-entropy alloys, the static Debye–Waller (D-W) factor of NiCoFeMnCr solid solution alloy is measured with low temperature neutron diffraction, ambient X-ray diffraction, and total scattering methods. Here, the static atomic displacement parameter of the multi-element component alloy at 0 K is 0.035–0.041 Å, which is obvious larger than that of element Ni (~0 Å). The atomic pair distance between individual atoms in the alloy investigated with extended X-ray absorption fine structure (EXAFS) measurements indicates that Mn has a slightly larger bond distance (~0.4%) with neighbor atoms than that of others.
2012-03-09
guides/ ranger-user-guide. [3] T . Davies, M. J . P. Cullen, A. J . Malcolm, M. H. Mawson , A. Staniforth, A. A. White, and N. Wood. A new dynamical core...element Ωe, a finite-dimensional approximation qN is formed by expanding q(x, t ) in basis functions ψj (x) such that q (e) N (x, t ) = MN ∑ j =1 ψj(x)q (e... j ( t ) (14) where MN = (N + 1) 3 is the number of nodes per element, N is the order of the basis functions, and the superscript (e) denotes element
Sheng, Huajin; Zeng, Jian; Liu, Yang; Wang, Xiaolu; Wang, Yi; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong
2016-01-01
Sulfur (S) is an essential macronutrient that has been proved to play an important role in regulating plant responses to various biotic and abiotic stresses. The present study was designed to investigate the effect of S status on polish wheat plant response to Mn toxicity. Results showed that Mn stress inhibited plant growth, disturbed photosynthesis and induced oxidative stress. In response to Mn stress, polish wheat plant activated several detoxification mechanisms to counteract Mn toxicity, including enhanced antioxidant defense system, increased Mn distribution in the cell wall and up-regulated genes involved in S assimilation. Moderate S application was found to alleviate Mn toxicity mainly by sequestering excess Mn into vacuoles, inhibiting Mn translocation from roots to shoots, stimulating activities of antioxidant enzymes and enhancing GSH production via up-regulating genes involved in S metabolism. However, application of high level S to Mn-stressed plants did not significantly alleviated Mn toxicity likely due to osmotic stress. In conclusion, moderate S application is beneficial to polish wheat plant against Mn toxicity, S exerts its effects via stimulating the antioxidant defense system and regulating the translocation and subcellular distribution of Mn, in which processes GSH plays an indispensable role. PMID:27695467
Wu, Yaketon; Zhang, Huimin; Liu, Guihua; Zhang, Jianqing; Wang, Jizhong; Yu, Yingxin; Lu, Shaoyou
2016-02-01
This study aimed to investigate the levels of trace elements in animal-derived food in Shenzhen, Southern China. The concentrations of 14 trace elements (Cd, Hg, Pb, As, Cr, Cu, Fe, Zn, Mn, Mo, Ni, Co, Se and Ti) in a total of 220 meat samples, collected from the local markets of Shenzhen were determined. Cu, Fe and Zn were the major elements, with concentrations approximately 2-3 orders of magnitude higher than those of other elements. However, the daily intakes of Cu, Fe and Zn merely via the consumption of the meat products were lower than the recommended nutrient intake values provided by the 2013 Chinese Dietary Guide. Among the non-essential trace elements, Cd was accumulated in animal viscera, and the concentration ratios of chicken gizzard/chicken, chicken liver/chicken, pig kidney/pork and pig liver/pork were 41.6, 55.2, 863 and 177, respectively. In addition, high concentrations of As were found in aquatic products, especially in marine fish. The concentration of As in marine fish was slightly higher than the limits recommended by China, USA and Croatia. The health risk assessment of trace elements through the consumption of meat products by adult residents in Shenzhen was evaluated by using the target hazard quotient (THQ) method. The total THQ was greater than 1, implying a potential health risk. Approximately 66% of total THQ values, mainly from As, were from the consumption of aquatic products. Copyright © 2015 Elsevier Ltd. All rights reserved.
Manganese speciation in Diplodon chilensis patagonicus shells: a XANES study
NASA Astrophysics Data System (ADS)
Soldati, A. L.; Vicente-Vilas, V.; Goettlicher, J.; Jacob, D. E.
2009-04-01
In addition to other types of climate archives, biogenic skeletons of a variety of different organisms (i.e. shells of bivalves, skeletal hard parts of corals or sponges) are increasingly used for high-resolution climate reconstructions. Bivalves are particularly suited for such analyses because they are geographically broadly distributed and have been shown to record climate and environmental information reliably and over long time intervals. Variation of environmental parameters such as food supply, substratum type, salinity, illumination, temperature, concentration of dissolved oxygen or oxygen/carbon dioxide ratio, among others, may affect growth pattern, shell structure, mineralogy, isotopic fractionation and chemistry. Thus, shell features, minor and trace element composition patterns and isotopic signals may serve as an archive of environmental history. In turn, palaeoclimatic parameters such as ambient temperature, precipitation gradients, seawater salinity and primary production can be reconstructed from the shells by means of sclerochronological and geochemical methods. However, the distribution of minor and trace elements in the biominerals is not only influenced by the environment or vital effects, but also by intrinsic biomineralisation parameters like the carbonate polymorphism and the mineral habit (Soldati et al., 2008a). Generally, it is assumed that the X2+ ions are replacing the Ca2+ ion in the calcium carbonate (CaCO3) structure, but newest findings show that amorphous (or disordered) phases may play a role in hosting some of the elements use as proxies (Meibom et al., 2008; and Finch and Allison, 2007). In this work we focused on the freshwater clam Diplodon chilensis patagonicus, a widely distributed inhabitant of lakes and rivers in southern South America. Thanks to its long life span and seasonal growth Diplodon mussels exhibit excellent characteristics to construct an accurate chronological archive, with time windows of up to around a century, resolving the environmental signal annually and even seasonally (Soldati et al., 2008b). High resolution trace elemental analysis by LA-ICPMS and EPMA in the shells show that elements like Mg and Mn are related to the seasonal pattern and can be enriched along the organic-rich annual shell growth lines. Thus, these elements could possibly be bound organically instead of occupying a defined site in the crystal lattice of the calcium carbonate phase. LA-ICP-MS results show that Mn concentrations in these Diplodon shells range between 1000-300 g/g and 100-10 g/g and that the areas of enrichment are in the micrometer range. Raman and XRD measurements at high spatial resolution failed in recognizing whether the Mn is in carbonate solid solution or not. Therefore, speciation techniques like X-ray absorption fine structure (XAFS) spectroscopy with a high lateral resolution are required to address this question. Prior to XAFS spectroscopy the samples were mapped with the intensity of the Mn Kα fluorescence emission line in order to locate the Mn rich areas of interest. Because of the Mn concentrations in the sub % range the XAFS spectra at the positions of interest have been recorded in fluorescence mode using a 7 element Si(Li) detector. This study focuses on the near edge (XANES: X-ray absorption near edge structure) part of the spectra. For data evaluation, XANES spectra of reference substances were additionally measured in order to get first hints to Mn valence and bonding. As standards were used Mn and Mn rich carbonates, Mn oxides with Mn in different oxidation states, and Mn in organic compounds (Mn-porphyrin and Mn-acetate). The XAFS measurements have been carried out at the SUL-X beamline of the synchrotron radiation source ANKA of the Forschungszentrum Karlsruhe. Data evaluation is ongoing. References MEIBOM, A., CUIF, J.P., HOULBREQUE, F., MOSTEFAOUI, S., DAUPHIN, Y., MEIBOM; K.L. & DUNBAR, R. (2008). Compositional variations at ultra-structure length scales in coral skeleton. Geochimica et Cosmochimica Acta 72: 1555-1569. FINCH, A.A. & ALLISON, N. (2007). Coordination of Sr and Mg in calcite and aragonite. Mineralogical Magazine 71: 539-552. SOLDATI A.L., JACOB D.E., WEHRMEISTER, U. & HOFMEISTER, W. (2008a). Structural characterization and chemical composition of aragonite and vaterite in freshwater cultured pearls. Mineralogical Magazine 72: 577-590. SOLDATI A.L., JACOB D., SCHÖNE B.R., BIANCHI M.M. & HAJDUK A. (2008b). Seasonal periodicity of growth and composition in valves of Diplodon chilensis patagonicus (D'Orbigny, 1835). Journal of Molluscan Studies, doi:10.1093/mollus/eyn044.
Records of River Variation in the Shells of Freshwater Bivalves
NASA Astrophysics Data System (ADS)
Carroll, M.; Romanek, C.
2005-12-01
The skeletons of hard-shelled invertebrates such as corals and bivalves are commonly used in marine settings as archives of environmental information. They are less commonly used in freshwater settings where variability in water chemistry makes it more difficult to calibrate chemical proxies such as the Sr:Ca in a shell. Our objective is to evaluate whether trace element concentrations in freshwater bivalve shells contain information on environmental conditions. Multiple elements (Ba, Cu, Mn and Sr) were analyzed within the shells of modern bivalves from four streams on DOE's Savannah River Site in S.C. Laser Ablation ICP-MS was used to measure elemental concentrations across five aragonitic shells from each site. These elements were chosen because they are present in detectable concentrations (ppm) in the shell and they have been suggested as useful proxies for temperature, rainfall, productivity and pollution. Results were compared to historical monthly site records of water chemistry and chemical analyses of water samples collected from the streams where the clams were found. The average shell concentrations of Sr and Mn were significantly different between sites and increased proportionally to water concentration. This was not observed for Ba and Cu. For example, the Ba concentrations of shells collected at a site downstream of a lake were higher than those for shells from stream sites with significantly higher dissolved Ba concentrations. Copper was only detected at dark growth lines with the number of lines and shell material between them varying between shells within the same stream. Intrashell profiles of Ba, Sr and Mn concentrations exhibited cyclical variation. The magnitude of cyclical variation for Mn and Sr within a shell corresponds with the annual variation in monthly water sample concentrations. Again, this pattern was not observed for Ba, especially in shells from the site downstream of a lake. This supports suggestions that particulate organic matter, to which Ba preferentially partitions, plays a role in bivalve Ba uptake. Finally, variations in Ba, Cu, Mn and Sr profiles across shells are not in unison. The individual elemental responses to biological and physicochemical effects suggest that the elemental records in freshwater bivalve shells can be interpreted as environmental proxies.
Apatite/Melt Partitioning Experiments Reveal Redox Sensitivity to Cr, V, Mn, Ni, Eu, W, Th, and U
NASA Technical Reports Server (NTRS)
Righter, K.; Yang, S.; Humayun, M.
2016-01-01
Apatite is a common mineral in terrestrial, planetary, and asteroidal materials. It is commonly used for geochronology (U-Pb), sensing volatiles (H, F, Cl, S), and can concentrate rare earth elements (REE) during magmatic fractionation and in general. Some recent studies have shown that some kinds of phosphate may fractionate Hf and W and that Mn may be redox sensitive. Experimental studies have focused on REE and other lithophile elements and at simplified or not specified oxygen fugacities. There is a dearth of partitioning data for chalcophile, siderophile and other elements between apatite and melt. Here we carry out several experiments at variable fO2 to study the partitioning of a broad range of trace elements. We compare to existing data and then focus on several elements that exhibit redox dependent partitioning behavior.
Effect of H+ ion activity and Ca2+ on the toxicity of metals in the environment.
Hutchinson, T C; Collins, F W
1978-01-01
The role of acidity in determining and restricting plant distribution and performance is discussed. In soils especially, a key effect of H+ ion concentration is on the solubility of potentially toxic heavy metals such as aluminum, managenese, zinc, iron, copper, and nickel. Al has been reported from many studies since the 1920's as the key determining toxic factor in acid soils. Some acid-tolerant species have been shown to be especially tolerant of Al, and mechanisms of tolerance have been suggested. Mn is also a commonly toxic factor at soil pH less than 5.0. Calcium has been shown to alleviate Mn toxicity. Low pH soils are also generally low in Ca, K, Na, and P; all essential major elements for plant growth. In lakes and marine situations acidic waters are uncommon as the waters are buffered. Calcium is again ameliorative of metal toxicities. The pH, redox, and valency state are critical in determining nutrient availability and metal speciation. Recent increases in the H+ ion content of precipitation have caused increased acidities of freshwater lakes in Scandinavia and eastern North America, which have depleted biota, including fish populations. PMID:31277
NASA Astrophysics Data System (ADS)
Gong, M.; Alexandru, A.; Chen, Y.; Doi, T.; Dong, S. J.; Draper, T.; Freeman, W.; Glatzmaier, M.; Li, A.; Liu, K. F.; Liu, Z.
2013-07-01
We present a calculation of the strangeness and charmness contents ⟨N|s¯s|N⟩ and ⟨N|c¯c|N⟩ of the nucleon from dynamical lattice QCD with 2+1 flavors. The calculation is performed with overlap valence quarks on 2+1-flavor domain-wall fermion gauge configurations. The configurations are generated by the RBC collaboration on a 243×64 lattice with sea-quark mass aml=0.005, ams=0.04, and inverse lattice spacing a-1=1.73GeV. Both actions have chiral symmetry which is essential in avoiding contamination due to the operator mixing with other flavors. The nucleon propagator and the quark loops are both computed with stochastic grid sources, while low-mode substitution and low-mode averaging methods are used respectively which substantially improve the signal-to-noise ratio. We obtain the strangeness matrix element fTs=ms⟨N|s¯s|N⟩/MN=0.0334(62), and the charmness content fTc=mc⟨N|c¯c|N⟩/MN=0.094(31) which is resolved from zero by 3σ precision for the first time.
Spin diffusion in the Mn2+ ion system of II-VI diluted magnetic semiconductor heterostructures
NASA Astrophysics Data System (ADS)
Maksimov, A. A.; Yakovlev, D. R.; Debus, J.; Tartakovskii, I. I.; Waag, A.; Karczewski, G.; Wojtowicz, T.; Kossut, J.; Bayer, M.
2010-07-01
The magnetization dynamics in diluted magnetic semiconductor heterostructures based on (Zn,Mn)Se and (Cd,Mn)Te were studied optically and simulated numerically. In samples with inhomogeneous magnetic ion distribution, these dynamics are contributed by spin-lattice relaxation and spin diffusion in the Mn spin system. A spin-diffusion coefficient of 7×10-8cm2/s was evaluated for Zn0.99Mn0.01Se from comparison of experiment and theory. Calculations of the exciton giant Zeeman splitting and the magnetization dynamics in ordered alloys and digitally grown parabolic quantum wells show perfect agreement with the experimental data. In both structure types, spin diffusion contributes essentially to the magnetization dynamics.
NASA Astrophysics Data System (ADS)
Belyanin, Maxim L.; Stepanova, Elena V.; Valiev, Rashid R.; Filimonov, Victor D.; Usov, Vladimir Y.; Borodin, Oleg Y.; Ågren, Hans
2016-11-01
In the present paper we describe the first synthesis and evaluation of a novel Mn (II) complex (DTPA-PPDA Mn (II)) which contains a C-15 fatty acid moiety that has high affinity to the heart muscle. The complexation energy of DTPA-PPDA Mn (II) evaluated by quantum chemistry methodology indicates that it essentially exceeds the corresponding value for the known DTPA Mn (II) complex. Molecular docking revealed that the affinity of the designed complex to the heart-type transport protein H-FABP well exceeds that of lauric acid. Phantom experiments in low-field MRI the designed contrast agent provides MR imaging comparable to gadopentetic acid.
NASA Technical Reports Server (NTRS)
Wignarajah, K.; Fisher, John W.; Pisharody, Suresh A.
2003-01-01
The nutritional requirements of humans and astronauts are well defined and show consistency, but the same cannot be said of human wastes. Nutrients taken up by humans can be considered to fall into two major categories - organic and inorganic fractions. Carbon, hydrogen, oxygen, nitrogen and sulfur are elements that are associated with the organic fraction. These elements are taken up in large amounts by humans and when metabolized released in wastes often in gaseous forms or as water. On the other hand, a large number of the elements are simply exchanged and can be accounted for in the liquid and solid wastes of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g P, S and Cl), 17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult human, these elements should not normally accumulate in humans, but will be excreted in the different human wastes. Knowledge of the partitioning of these elements between the different human waste fractions is fundamental to understanding (a) how these elements can be recovered for reuse in space habitats, and (b) to developing the processors for waste management. The current literature is exhaustive but sometimes also conflicting. We have used the existing knowledge of nutrition and waste from medical literature and NASA documentation to develop a consensus to typify and chemically characterize the various human wastes. The partitioning of these elements has been developed into a functional model.
Elemental composition of commercial sea cucumbers (holothurians).
Wen, J; Hu, C
2010-01-01
Toxic and essential elements in 11 different sea cucumber species were determined and compared with daily intake recommendations and maximum allowed levels. The contents of macro-elements contents in dried sea cucumber samples were found to be 25,000-152,000 mg kg(-1) for Na, 4000-8600 mg kg(-1) for Mg, 1100-5200 mg kg(-1) for K, 15,000-68,000 mg kg(-1) and 36,300-251,000 mg kg(-1) for Cl. Trace element concentrations in dried sea cucumber samples were found to be 11-100 mg kg(-1) for Zn, 41-660 mg kg(-1) for Fe, 3-74 mg kg(-1) for Cu, 1.1-16 mg kg(-1) for Mn, 1.4-3.7 mg kg(-1) for Se, 1.1-9.6 mg kg(-1) for Cr, and 0.3-5.1 mg kg(-1) for Ni. All sea cucumber species were rich sources of Na, Cl, Mg, Ca, Fe, Cu, Se and Cr for human consumption. Regarding contaminants, As, Cd and Pb concentrations in dried sea cucumbers were in the ranges of 1.1-6.1, 0.03-0.06 and 0.11-0.69 mg kg(-1), respectively. Moreover, Hg values of 11 sea cucumbers were below the detection limit (0.01 mg kg(-1)).
Several methods to determine heavy metals in the human brain
NASA Astrophysics Data System (ADS)
Andrási, Erzsébet; Igaz, Sarolta; Szoboszlai, Norbert; Farkas, Éva; Ajtony, Zsolt
1999-05-01
The determination of naturally occurring heavy metals in various parts of the human brain is discussed. The patients had no diseases in their central nervous systems (five individuals, mean age 70 years). Twenty brain parts were selected from both hemispheres. The analysis was carried out by graphite furnace atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and instrumental neutron activation analysis methods. Accuracy and precision of the applied techniques were tested by using standard reference materials. Two digestion methods were used to dissolve the brain samples for ICP-AES and GF-AAS. One was performed in a Parr-bomb and the second in a microwave oven. The present results show a non-homogeneous distribution of the essential elements (Cu, Fe, Mn, Zn) in normal human brain. Corresponding regions in both hemispheres showed an almost identical concentration of these elements. In the case of toxic elements (Pb, Cd) an average value in different brain regions can not be established because of the high variability of individual data. This study indicates that beside differences in Pb and Cd intake with foods or cigarette smoke inhalation, the main factors of the high inter-individual variability of these element concentrations in human brain parts may be a marked difference in individual elimination or accumulation capabilities.
Manganese (Mn) is ubiquitous in the environment and essential for normal growth and development, yet excessive exposure can lead to impairments in neurological function. This study modeled ambient Mn concentrations as an alternative to stationary and personal air sampling to asse...
The yeast p5 type ATPase, spf1, regulates manganese transport into the endoplasmic reticulum.
Cohen, Yifat; Megyeri, Márton; Chen, Oscar C W; Condomitti, Giuseppe; Riezman, Isabelle; Loizides-Mangold, Ursula; Abdul-Sada, Alaa; Rimon, Nitzan; Riezman, Howard; Platt, Frances M; Futerman, Anthony H; Schuldiner, Maya
2013-01-01
The endoplasmic reticulum (ER) is a large, multifunctional and essential organelle. Despite intense research, the function of more than a third of ER proteins remains unknown even in the well-studied model organism Saccharomyces cerevisiae. One such protein is Spf1, which is a highly conserved, ER localized, putative P-type ATPase. Deletion of SPF1 causes a wide variety of phenotypes including severe ER stress suggesting that this protein is essential for the normal function of the ER. The closest homologue of Spf1 is the vacuolar P-type ATPase Ypk9 that influences Mn(2+) homeostasis. However in vitro reconstitution assays with Spf1 have not yielded insight into its transport specificity. Here we took an in vivo approach to detect the direct and indirect effects of deleting SPF1. We found a specific reduction in the luminal concentration of Mn(2+) in ∆spf1 cells and an increase following it's overexpression. In agreement with the observed loss of luminal Mn(2+) we could observe concurrent reduction in many Mn(2+)-related process in the ER lumen. Conversely, cytosolic Mn(2+)-dependent processes were increased. Together, these data support a role for Spf1p in Mn(2+) transport in the cell. We also demonstrate that the human sequence homologue, ATP13A1, is a functionally conserved orthologue. Since ATP13A1 is highly expressed in developing neuronal tissues and in the brain, this should help in the study of Mn(2+)-dependent neurological disorders.
[Contents of nutrient elements in NH4(+)-N fertilizer and urea].
Wang, Zheng-Rui; Qu, Gui-Qin; Rui, Yu-Kui; Shen, Jian-Bo; Zhang, Fu-Suo
2009-03-01
Fertilizer contains not only one compound or one element, so it is important to determine the contents of other elements necessitous and beneficial to plant. All the other nutrient elements for plant, including necessitous elements and beneficial elements in ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2, were analyzed by method of ICP-MS. The results showed that ammonia nitrogen fertilizer ((NH4)2SO4) and CO(NH2)2 both contain many necessitous elements, Mg, P, K, Ca, Mn, Fe, Ni, Cu, Zn and Mo, thereinto the contents of Mg, P, K, Ca, Mn and Fe were on microg x g(-1) the level, and Ni, Cu, Zn and Mo were on the ng x g(-1) level; compared with CO(NH2)2, ammonia nitrogen fertilizer ((NH4)2SO4) contains more necessitous elements and beneficial elements except Mo and Si. All the above elements could influence the results of nitrogen fertilizer efficiency experiments, so pure fertilizer should be used in the future nitrogen fertilizer efficiency experiments and the comparative experiments of different form nitrogen fertilizer.
Barrio-Parra, F; Elío, J; De Miguel, E; García-González, J E; Izquierdo, M; Álvarez, R
2018-04-01
A total of 74 samples of soil, sediment, industrial sludge, and surface water were collected in a Mediterranean estuarine system in order to assess the potential ecological impact of elevated concentrations of Co and Mn associated with a Terephthalic (PTA) and Isophthalic (PIPA) acids production plant. Samples were analyzed for elemental composition (37 elements), pH, redox potential, organic carbon, and CaCO 3 content, and a group of 16 selected samples were additionally subjected to a Tessier sequential extraction. Co and Mn soil concentrations were significantly higher inside the industrial facility and around its perimeter than in background samples, and maximum dissolved Co and Mn concentrations were found in a creek near the plant's discharge point, reaching values 17,700 and 156 times higher than their respective background concentrations. The ecological risk was evaluated as a function of Co and Mn fractionation and bioavailability which were controlled by the environmental conditions generated by the advance of seawater into the estuarine system during high tide. Co appeared to precipitate near the river mouth due to the pH increase produced by the influence of seawater intrusion, reaching hazardous concentrations in sediments. In terms of their bioavailability and the corresponding risk assessment code, both Co and Mn present sediment concentrations that result in medium to high ecological risk whereas water concentrations of both elements reach values that more than double their corresponding Secondary Acute Values.
Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites.
Kwon, Ohhun; Sengodan, Sivaprakash; Kim, Kyeounghak; Kim, Gihyeon; Jeong, Hu Young; Shin, Jeeyoung; Ju, Young-Wan; Han, Jeong Woo; Kim, Guntae
2017-06-28
In perovskites, exsolution of transition metals has been proposed as a smart catalyst design for energy applications. Although there exist transition metals with superior catalytic activity, they are limited by their ability to exsolve under a reducing environment. When a doping element is present in the perovskite, it is often observed that the surface segregation of the doping element is changed by oxygen vacancies. However, the mechanism of co-segregation of doping element with oxygen vacancies is still an open question. Here we report trends in the exsolution of transition metal (Mn, Co, Ni and Fe) on the PrBaMn 2 O 5+δ layered perovskite oxide related to the co-segregation energy. Transmission electron microscopic observations show that easily reducible cations (Mn, Co and Ni) are exsolved from the perovskite depending on the transition metal-perovskite reducibility. In addition, using density functional calculations we reveal that co-segregation of B-site dopant and oxygen vacancies plays a central role in the exsolution.
Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites
Kwon, Ohhun; Sengodan, Sivaprakash; Kim, Kyeounghak; Kim, Gihyeon; Jeong, Hu Young; Shin, Jeeyoung; Ju, Young-Wan; Han, Jeong Woo; Kim, Guntae
2017-01-01
In perovskites, exsolution of transition metals has been proposed as a smart catalyst design for energy applications. Although there exist transition metals with superior catalytic activity, they are limited by their ability to exsolve under a reducing environment. When a doping element is present in the perovskite, it is often observed that the surface segregation of the doping element is changed by oxygen vacancies. However, the mechanism of co-segregation of doping element with oxygen vacancies is still an open question. Here we report trends in the exsolution of transition metal (Mn, Co, Ni and Fe) on the PrBaMn2O5+δ layered perovskite oxide related to the co-segregation energy. Transmission electron microscopic observations show that easily reducible cations (Mn, Co and Ni) are exsolved from the perovskite depending on the transition metal-perovskite reducibility. In addition, using density functional calculations we reveal that co-segregation of B-site dopant and oxygen vacancies plays a central role in the exsolution. PMID:28656965
Project VeSElkA: results of abundance analysis for HD 53929 and HD 63975
NASA Astrophysics Data System (ADS)
Ndiaye, M. L.; LeBlanc, F.; Khalack, V.
2018-03-01
Project VeSElkA (Vertical Stratification of Element Abundances) has been initiated with the aim to detect and study the vertical stratification of element abundances in the atmosphere of chemically peculiar stars. Abundance stratification occurs in hydrodynamically stable stellar atmospheres due to the migration of the elements caused by atomic diffusion. Two HgMn stars, HD 53929 and HD 63975 were selected from the VeSElkA sample and analysed with the aim to detect some abundance peculiarities employing the ZEEMAN2 code. We present the results of abundance analysis of HD 53929 and HD 63975 observed recently with the spectropolarimeter ESPaDOnS at Canada-France-Hawaii Telescope. Evidence of phosphorus vertical stratification was detected in the atmosphere of these two stars. In both cases, phosphorus abundance increases strongly towards the superficial layers. The strong overabundance of Mn found in stellar atmosphere of both stars confirms that they are HgMn type stars.
Eqani, Syed Ali Musstjab Akber Shah; Kanwal, Ayesha; Bhowmik, Avit Kumar; Sohail, Mohammad; Ullah, Rizwan; Ali, Syeda Maria; Alamdar, Ambreen; Ali, Nadeem; Fasola, Mauro; Shen, Heqing
2016-06-01
This study aims to assess the spatial patterns of selected dust-borne trace elements alongside the river Indus Pakistan, their relation with anthropogenic and natural sources, and the potential risk posed to human health. The studied elements were found in descending concentrations: Mn, Zn, Pb, Cu, Ni, Cr, Co, and Cd. The Index of Geo-accumulation indicated that pollution of trace metals were higher in lower Indus plains than on mountain areas. In general, the toxic elements Cr, Mn, Co and Ni exhibited altitudinal trends (P < 0.05). The few exceptions to this trend were the higher values for all studied elements from the northern wet mountainous zone (low lying Himalaya). Spatial PCA/FA highlighted that the sources of different trace elements were zone specific, thus pointing to both geological influences and anthropogenic activities. The Hazard Index for Co and for Mn in children exceeded the value of 1 only in the riverine delta zone and in the southern low lying zone, whereas the Hazard Index for Pb was above the bench mark for both children and adults (with few exceptions) in all regions, thus indicating potential non-carcinogenic health risks. These results will contribute towards the environmental management of trace metal(s) with potential risk for human health throughout Pakistan. Copyright © 2016 Elsevier Ltd. All rights reserved.
[Analysis of surface composition of three-way catalysts of in-use vehicles].
Xie, Shu-xia; Hu, Jing-nan; Bao, Xiao-feng; Zhang, Ke-song; Li, Zhen-hua; Wang, Hai-tao
2010-07-01
The kinds and contents of surface elements in three-way catalysts of six light-duty in-use taxi cabs, which were mainly operated in Beijing and whose driving mileages were in the range of 34 x 10(4)-59 x 10(4) km, were determined by X-ray fluorescence spectrometry (XRF), and the effect of driving mileage on element content was investigated. Results showed that nearly 30 kinds of elements were present on the catalyst surface. The main elements of different samples were similar. The common elements of the pollutant on the front and rear catalysts were P, Ca, Zn and Mn etc., most of which are from engine oil and gasoline. S was only observed on the rear catalysts, indicating that S tends to deposit on the rear catalysts. After 34 x 10(4) km run, the P content increased very slowly and 40 x 10(4) km run S content reached a saturated value. While the contents of Ca, Zn and Mn still exhibit an increase tendency after 56 x 10(4) km. That means after 40 x 10(4) km driving mileage, the effects of P and S on the catalyst activity are minor, and the continuous deposit of Ca, Zn and Mn will lead to further decrease of the activity.
Structure of high-resolution K β1 ,3 x-ray emission spectra for the elements from Ca to Ge
NASA Astrophysics Data System (ADS)
Ito, Y.; Tochio, T.; Yamashita, M.; Fukushima, S.; Vlaicu, A. M.; Syrocki, Ł.; Słabkowska, K.; Weder, E.; Polasik, M.; Sawicka, K.; Indelicato, P.; Marques, J. P.; Sampaio, J. M.; Guerra, M.; Santos, J. P.; Parente, F.
2018-05-01
The K β x-ray spectra of the elements from Ca to Ge have been systematically investigated using a high-resolution antiparallel double-crystal x-ray spectrometer. Each K β1 ,3 natural linewidth has been corrected using the instrumental function of this type of x-ray spectrometer, and the spin doublet energies have been obtained from the peak position values in K β1 ,3 x-ray spectra. For all studied elements the corrected K β1 x-ray lines FWHM increase linearly as a function of Z . However, for K β3 x-ray lines this dependence is generally not linear in the case of 3 d elements but increases from Sc to Co elements. It has been found that the contributions of satellite lines are considered to be [K M ] shake processes. Our theoretically predicted synthetic spectra of Ca, Mn, Cu, and Zn are in very good agreement with our high-resolution measurements, except in the case of Mn, due to the open-shell valence configuration effect (more than 7000 transitions for diagram lines and more than 100 000 transitions for satellite lines) and the influence of the complicated structure of the metallic Mn.
Tong, Wen-Jie; Chen, Fu; Wen, Xin-Ya
2014-01-01
The absorption and accumulation of ten mineral elements in four kinds of organs (root, steam, leaf and flower disc) in Helianthus annuus L. plants cultured in Hetao Irrigation District under different level of salinity stress were determined by ICP-AES with wet digestion (HNO3 + HClO4). The results showed that: (1) The contents of Fe, Mn, Zn, Ca, and Na were highest in roots, so was K in stems, B and Mg in leaves and P in flower discs, while no significant difference was detected in the content of Cu among these organs; (2) The cumulants of Ca, Mg, P, Cu, B and Zn were highest in flower discs, so were Na, Fe and Mn in roots and K in stems; (3) In sunflower plants, the proportion of mineral element cumulant for K : Ca : Mg : P : Na was 16.71 : 5.23 : 3.86 : 1.23 : 1.00, and for Zn : Fe : B : Mn: Cu was 56.28 : 27.75 : 1.93 : 1.17 : 1.00, respectively; (4) The effect of salinity stress on absorption of mineral elements differed according to the kind of organ and element, root was the most sensitive to soil salt content, followed by stem and leaf, and the effect on flower disc seemed complex.
Rajan, Jay Prakash; Singh, Kshetrimayum Birla; Kumar, Sanjiv; Mishra, Raj Kumar
2014-09-01
To determine the trace elements content in the selected medicinal plants, namely, Eryngium foetidum L., Mimosa pudica L., Polygonum plebeium, and Prunus cerasoides D. Don traditionally used by the natives of the Mizoram, one of the north eastern states in India as their folklore medicines for curing skin diseases like eczema, leg and fingers infection, swelling and wound. A 3 MeV proton beam of proton induced X-ray emission technique, one of the most powerful techniques for its quick multi elemental trace analysis capability and high sensitivity was used to detect and characterized for trace elements. The studies revealed that six trace elements, namely, Fe, Zn, Cu, Mn, V, and Co detected in mg/L unit were present in varying concentrations in the selected medicinal plants with high and notable concentration of Fe, Zn, Mn and appreciable amount of the Cu, Co and V in all the plants. The results of the present study support the therapeutic usage of these medicinal plants in the traditional practices for curing skin diseases since they are found to contain appreciable amount of the Fe, Zn, Cu, Mn, V and Co. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Trace elements and antioxidant enzymes in Behçet's disease.
Saglam, K; Serce, A F; Yilmaz, M I; Bulucu, F; Aydin, A; Akay, C; Sayal, A
2002-07-01
Free oxygen radicals and insufficiency of antioxidant enzymes have been implicated in the pathogenesis of Behçet's disease (BD). Trace elements function as cofactors to antioxidant enzymes. The antioxidant system and trace elements were investigated in many different studies, including BD, but these subjects have not been investigated as a whole in these patients. The aim of the present study was to investigate the antioxidative system and trace elements in BD to contribute to the knowledge of pathogenesis and treatment of this disease. We examined glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities together with selenium (Se), copper (Cu), zinc (Zn), manganese (Mn), and iron (Fe) levels in plasma and erythrocytes of 50 patients with BD and 30 healthy controls. It was found that in patients with BD, erythrocyte GSH-Px and SOD activities and erythrocyte Se, plasma Fe, Mn, and Zn levels were significantly lower than those of controls and that plasma Cu, erythrocyte Zn, and Mn levels were significantly higher in patients with BD. Insufficient antioxidant enzyme activities were observed in patients with BD. The mechanism(s) of this phenomenon is not clear. Therefore, supplementation with trace elements involved in the antioxidative processes may increase scavenger enzyme activities, and consequently, an improvement in clinical symptoms may be expected.
NASA Astrophysics Data System (ADS)
Nissen, P. E.
2016-09-01
Aims: A previous study of correlations between element abundances and ages of solar twin stars in the solar neighborhood is extended to include Sc, Mn, Cu, and Ba to obtain new information on the nucleosynthetic history of these elements. Methods: HARPS spectra with S/N ≳ 600 are used to derive very precise (σ ~ 0.01 dex) differential abundances of Sc, Mn, Cu, and Ba for 21 solar twins and the Sun. The analysis is based on MARCS model atmospheres with parameters determined from the excitation and ionization balance of Fe lines. Stellar ages with internal errors less than 1 Gyr are obtained by interpolation in the log g - Teff diagram between isochrones based on the Aarhus Stellar Evolution Code. Results: For stars younger than 6 Gyr, [Sc/Fe], [Mn/Fe], [Cu/Fe], and [Ba/Fe] are tightly correlated with stellar age, which is also the case for the other elements previously studied; linear relations between [X/Fe] and age have χ^2red ˜ 1, and for most stars the residuals do not depend on elemental condensation temperature. For ages between 6 and 9 Gyr, the [X/Fe] - age correlations break down and the stars split up into two groups having respectively high and low [X/Fe] for the odd-Z elements Na, Al, Sc, and Cu. Conclusions: While stars in the solar neighborhood younger than ~ 6 Gyr were formed from interstellar gas with a smooth chemical evolution, older stars seem to have originated from regions enriched by supernovae with different neutron excesses. Correlations between abundance ratios and stellar age suggest that: (I) Sc is made in Type II supernovae along with the α-capture elements; (II) the Type II to Ia yield ratio is about the same for Mn and Fe; (III) Cu is mainly made by the weak s-process in massive stars; (iv) the Ba/Y yield ratio for asymptotic giant branch stars increases with decreasing stellar mass; (v) [Y/Mg] and [Y/Al] can be used as chemical clocks when determining ages of solar metallicity stars. Based on data products from observations made with ESO Telescopes at the La Silla Paranal Observatory under programs 072.C-0488, 088.C-0323, 183.C-0972, 188.C-0265.
Schnellverfahren zur flammenlosen AAS-Bestimmung von Spurenelementen in geologischen Proben
NASA Astrophysics Data System (ADS)
Schrön, W.; Bombach, G.; Beuge, P.
This paper reports experience with direct quantitative trace element determinations in powdered geological samples by nameless atomic absorption spectroscopy. Two methods were explored. The first one is based on the production of a sample aerosol by laser radiation in a specifically designed sample chamber and the subsequent transport of the aerosol into a graphite tube, which has been preheated to a stable temperature. This technique is suited for a large range of concentration and is relatively free from matrix interferences. The technique was tested for the elements Ag, As, Bi, Cd, Co, Mn, Ni, Pb, Sb, Se, Sr and Tl. The described sample chamber can be also used in combination with other spcctroscopic techniques. The second method explored permits the quantitative determination of trace elements at very low concentrations. Essentially an accurately weighed amount of sample is placed on a graphite rod and introduced into a graphite furnace by inserting the rod through the sample injection port. Atomization takes place also under stable temperature conditions. Using this technique detection limits were found to be 10 -11 g for Ag, 2 × 10 -11 g for Cd and 10 -10 g for Sb in silicate materials.
Antoniadis, Vasileios; Golia, Evangelia E; Shaheen, Sabry M; Rinklebe, Jörg
2017-04-01
Elevated concentrations of potentially toxic elements (PTEs) are usually found in areas of intense industrial activity. Thriasio Plain is a plain near Athens, Greece, where most of the heavy industry of the country has been situated for decades, but it also is a residential and horticultural area. We aimed at measuring the levels of PTEs in soils and indigenous plant species and assessing the health risk associated with direct soil ingestion. Samples of soils at roadsides and growing plants were collected from 31 sites of that area. Concentrations of Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V and Zn were measured in both soils (as pseudo-total) and aerial plant tissues. We found that As, Cd, Cr, Cu, Ni, Pb and Zn were higher than maximum regulatory limits. Element concentrations in plants were rather lower than expected, probably because indigenous plants have developed excluder behaviour over time. Copper and Zn soil-to-plant coefficients were highest among the other elements; for Cu this was unexpected, and probably associated with recent Cu-releasing industrial activity. Risk assessment analysis indicated that As was the element contributing more than 50 % of the health risk related to direct soil ingestion, followed by Cr, Pb, and, surprisingly, Mn. We concluded that in a multi-element contamination situation, elevated risk of PTEs (such as As, Cr and Pb) may reduce the tolerance limits of exposure to less-toxic elements (here, Mn).
Shape-Memory Effect and Pseudoelasticity in Fe-Mn-Based Alloys
NASA Astrophysics Data System (ADS)
La Roca, P.; Baruj, A.; Sade, M.
2017-03-01
Several Fe-based alloys are being considered as potential candidates for applications which require shape-memory behavior or superelastic properties. The possibility of using fabrication methods which are well known in the steel industry is very attractive and encourages a large amount of research in the field. In the present article, Fe-Mn-based alloys are mainly addressed. On the one hand, attention is paid to the shape-memory effect where the alloys contain (a) a maximum amount of Mn up to around 30 wt%, (b) several possible substitutional elements like Si, Cr, Ni, Co, and Nb and (c) some possible interstitial elements like C. On the other hand, superelastic alloys are analyzed, mainly the Fe-Mn-Al-Ni system discovered a few years ago. The most noticeable properties resulting from the martensitic transformations which are responsible for the mentioned properties, i.e., the fcc-hcp in the first case and the bcc-fcc in the latter are discussed. Selected potential applications are also analyzed.
NASA Technical Reports Server (NTRS)
Smith, J. V.; Hansen, E. C.; Steele, I. M.
1980-01-01
Lunar olivines from anorthosites, granulitic impactites, and rocks in the Mg-rich plutonic trend were subjected to electron probe measurements for Al, P, Ca, Ti, Cr and Mn, which show that the FeO/MnO ratio for lunar olivines lies between 80 and 110 with little difference among the rock types. The low values of Ca in lunar olivines indicate slow cooling to subsolidus temperatures, with blocking temperatures of about 750 C for 67667 and 1000 C for 60255,73-alpha determined by the Finnerty and Boyd (1978) experiments. An important paradox is noted in the low Ti content of Fe-rich olivines from anorthosites, although both Ti and Fe tend to become enriched in liquid during fractional distillation. Except for Ca and Mn, olivine from anorthosites has lower minor element values than other rock types. Formation from a chemically distinct system is therefore implied.
NASA Astrophysics Data System (ADS)
Zhang, Dazheng; Gao, Xiuhua; Su, Guanqiao; Du, Linxiu; Liu, Zhenguang; Hu, Jun
2017-05-01
The corrosion behavior of low-C medium-Mn steel in simulated marine immersion and splash zone environment was studied by static immersion corrosion experiment and wet-dry cyclic corrosion experiment, respectively. Corrosion rate, corrosion products, surface morphology, cross-sectional morphology, elemental distribution, potentiodynamic polarization curves and electrochemical impedance spectra were used to elucidate the corrosion behavior of low-C medium-Mn steel. The results show that corrosion rate in immersion zone is much less than that in splash zone owing to its relatively mild environment. Manganese compounds are detected in the corrosion products and only appeared in splash zone environment, which can deteriorate the protective effect of rust layer. With the extension of exposure time, corrosion products are gradually transformed into dense and thick corrosion rust from the loose and porous one in these two environments. But in splash zone environment, alloying elements of Mn appear significant enrichment in the rust layer, which decrease the corrosion resistance of the steel.
Zhou, Shanshan; Yuan, Haodong; Ma, Xiaoling; Liu, Ying
2017-01-01
Women have an increased risk for chemical element deficiencies during reproductive age, particularly due to higher chemical element requirements and poor diets. Twenty-one chemical elements (Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Se, Si, Sn, Sr, Ti, V and Zn) in hair samples, which were collected from 71 non-pregnant and 236 pregnant women living in the West Ujimqin Banner, central Inner Mongolia, China, were measured, and the environment, dietary habits and ethnic group influence factors associated with the biomarker were analyzed. The results indicated that the average values of the chemical element contents from hair were greatly different compared to those from other areas, especially the Al, Cd, Pb, Ca and Sr contents. There was no significant difference among the three ethnicities for any element except Mn and Ti in non-pregnant women. Compared to non-pregnant women, in the first trimester group, the levels of nine chemical elements (Ba, Cd, Cu, Pb, Se, Si, Sn and Ti) decreased, while the others increased, and the contents of all of the chemical elements decreased in the second trimester group, while in the third trimester, there was a slight increase. Three chemical elements (Cu, Mn and Zn) displayed a synergistic correlation between each other in the third trimester group, which may protect the placenta from some oxidant damage. The high levels of Cd and Pb in hair likely originate from house renovations and traffic pollution. This study provided basic and useful information on the levels of chemical elements in reproductive-age women, and the results of this study are helpful to control the contents and improve the health of pregnant and non-pregnant women. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Fasheng; Yin, Guanghua; Wang, Zhenying; McLaughlin, Neil; Geng, Xiaoyuan; Liu, Zuoxin
2013-01-01
Multifractal techniques were utilized to quantify the spatial variability of selected soil trace elements and their scaling relationships in a 10.24-ha agricultural field in northeast China. 1024 soil samples were collected from the field and available Fe, Mn, Cu and Zn were measured in each sample. Descriptive results showed that Mn deficiencies were widespread throughout the field while Fe and Zn deficiencies tended to occur in patches. By estimating single multifractal spectra, we found that available Fe, Cu and Zn in the study soils exhibited high spatial variability and the existence of anomalies ([α(q)max−α(q)min]≥0.54), whereas available Mn had a relatively uniform distribution ([α(q)max−α(q)min]≈0.10). The joint multifractal spectra revealed that the strong positive relationships (r≥0.86, P<0.001) among available Fe, Cu and Zn were all valid across a wider range of scales and over the full range of data values, whereas available Mn was weakly related to available Fe and Zn (r≥0.18, P<0.01) but not related to available Cu (r = −0.03, P = 0.40). These results show that the variability and singularities of selected soil trace elements as well as their scaling relationships can be characterized by single and joint multifractal parameters. The findings presented in this study could be extended to predict selected soil trace elements at larger regional scales with the aid of geographic information systems. PMID:23874944
Pii, Youry; Cesco, Stefano; Mimmo, Tanja
2015-09-01
The elemental composition of a tissue or organism is defined as ionome. However, the combined effects on the shoot ionome determined by the taxonomic character, the nutrient status and different substrates have not been investigated. This study tests the hypothesis that phylogenetic variation of monocots and dicots grown in iron deficiency can be distinguished by the shoot ionome. We analyzed 18 elements in barley, cucumber and tomato and in two substrates (hydroponic vs soil) with different nutritional regimes. Multivariate analysis evidenced a clear separation between the species. In hydroponic conditions the main drivers separating the species are non essential-nutrients as Ti, Al, Na and Li, which were positively correlated with macro- (P, K) and micronutrients (Fe, Zn, Mo, B). The separation between species is confirmed when plants are grown on soil, but the distribution is determined especially by macronutrients (S, P, K, Ca, Mg) and micronutrients (B). A number of macro (Mg, Ca, S, P, K) and micronutrients (Fe, Mn, Zn, Cu, Mo, B) contribute to plant growth and several other important physiological and metabolic plant activities. The results reported here confirmed that the synergism and antagonism between them and other non-essential elements (Ti, Al, Si, Na) define the plant taxonomic character. The ionome profile might thus be exploited as a tool for the diagnosis of plants physiological/nutritional status but also in defining biofortification strategies to optimize both mineral enrichment of staple food crops and the nutrient input as fertilizers. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Irradiation behavior of U 6Mn-Al dispersion fuel elements
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Wiencek, T. C.; Hayes, S. L.; Hofman, G. L.
2000-02-01
Irradiation testing of U 6Mn-Al dispersion fuel miniplates was conducted in the Oak Ridge Research Reactor (ORR). Post-irradiation examination showed that U 6Mn in an unrestrained plate configuration performs similarly to U 6Fe under irradiation, forming extensive and interlinked fission gas bubbles at a fission density of approximately 3×10 27 m-3. Fuel plate failure occurs by fission gas pressure driven `pillowing' on continued irradiation.
The abundances of the elements in sharp-lined early type stars
NASA Technical Reports Server (NTRS)
Adelman, Saul J.
1992-01-01
An International Ultraviolet Explorer (IUE) observing strategy that has yielded co-added spectra with enhanced S/N ratios for several A and B stars was established. New observations by Roby and Adelman using the same technique were added two new Hg-Mn stars into this sample. A long-term study of elemental abundances in this uniform, high-quality set of IUE spectra for 13 stars was begun. The first stages of this project are reported: abundances for N, Cr, Mn, Fe, Co, and Ni. The study of the Fe-peak elements show that our data set can provide accurate abundances and that abundances obtained from UV and optical spectra often are in good agreement. The groundwork for selfconsistent abundance analyses of more exotic elements in our long term project was provided.
Losfeld, Guillaume; L'Huillier, Laurent; Fogliani, Bruno; Mc Coy, Stéphane; Grison, Claude; Jaffré, Tanguy
2015-04-01
Relationships between the trace-elements (TE) content of plants and associated soil have been widely investigated especially to understand the ecology of TE hyperaccumulating species to develop applications using TE phytoextraction. Many studies have focused on the possibility of quantifying the soil TE fraction available to plants, and used bioconcentration (BC) as a measure of the plants ability to absorb TE. However, BC only offers a static view of the dynamic phenomenon of TE accumulation. Accumulation kinetics are required to fully account for TE distributions in plants. They are also crucial to design applications where maximum TE concentrations in plant leaves are needed. This paper provides a review of studies of BC (i.e. soil-plant relationships) and leaf-age in relation to TE hyperaccumulation. The paper focuses of Ni and Mn accumulators and hyperaccumulators from New Caledonia who were previously overlooked until recent Ecocatalysis applications emerged for such species. Updated data on Mn hyperaccumulators and accumulators from New Caledonia are also presented and advocate further investigation of the hyperaccumulation of this element. Results show that leaf-age should be considered in the design of sample collection and allowed the reclassification of Grevillea meisneri known previously as a Mn accumulator to a Mn hyperaccumulator.
Liu, Yu; Huang, Yuanchun; Jia, Guangze
2017-01-01
To better understand the effect of the components of molten 2219 Al alloy on the hydrogen content dissolved in it, the H adsorption on various positions of alloying element clusters of Cu, Mn and Al, as well as the inclusion of Al2O3, MgO and Al4C3, were investigated by means of first principles calculation, and the thermodynamic stability of H adsorbed on each possible site was also studied on the basis of formation energy. Results show that the interaction between Al, MgO, Al4C3 and H atoms is mainly repulsive and energetically unfavorable; a favorable interaction between Cu, Mn, Al2O3 and H atoms was determined, with H being more likely to be adsorbed on the top of the third atomic layer of Cu(111), the second atomic layer of Mn(111), and the O atom in the third atomic layer of Al2O3, compared with other sites. It was found that alloying elements Cu and Mn and including Al2O3 may increase the hydrogen adsorption in the molten 2219 Al alloy with Al2O3 being the most sensitive component in this regard. PMID:28773185
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unnikrishnan, V. K.; Nayak, Rajesh; Kartha, V. B.
2014-09-15
Laser-induced breakdown spectroscopy (LIBS), an atomic emission spectroscopy method, has rapidly grown as one of the best elemental analysis techniques over the past two decades. Homogeneity testing and quantitative analysis of manganese (Mn) in manganese-doped glasses have been carried out using an optimized LIBS system employing a nanosecond ultraviolet Nd:YAG laser as the source of excitation. The glass samples have been prepared using conventional vitrification methods. The laser pulse irradiance on the surface of the glass samples placed in air at atmospheric pressure was about 1.7×10{sup 9} W/cm{sup 2}. The spatially integrated plasma emission was collected and imaged on tomore » the spectrograph slit using an optical-fiber-based collection system. Homogeneity was checked by recording LIBS spectra from different sites on the sample surface and analyzing the elemental emission intensities for concentration determination. Validation of the observed LIBS results was done by comparison with scanning electron microscope- energy dispersive X-ray spectroscopy (SEM-EDX) surface elemental mapping. The analytical performance of the LIBS system has been evaluated through the correlation of the LIBS determined concentrations of Mn with its certified values. The results are found to be in very good agreement with the certified concentrations.« less
Chen, Xiao-li; Morewane, M B; Xue, Xu-zhang; Guo, Wen-zhong; Wang, Li-chun
2015-02-01
Dandelion (Taraxacum mongolicum) was hydroponically cultured in a completely enclosed plant factory, in which fluorescence and LED emitting spectra of different bands were used as the sole light source for plant growth. Effects of spectral component on the growth of dandelion were studied and the contents of ten inorganic elements such as K, P, Ca, Mg, Na, Fe, Mn, Zn, Cu and B in dandelion were analyzed by ICP-AES technology. The results showed that: (1) Under the condition of similar photosynthetic active radiation (PAR), single R or combined spectrums of FLRB were beneficial for biomass accumulation, while single B was the contrary; (2) Macroelements content ratio in Taraxacum mongolicum grown under FLwas K:Ca:P:Mg : Na=79.74:32.39:24.32:10.55:1.00, microelements content ratio was Fe:Mn:B:Zn:Cu = 9.28:9.71:3.82:2.08:1.00; (3) Red light (peak at 660 nm) could promote the absorptions of Ca, Fe, Mn, Zn, while absorption of Cu was not closely related to spectral conditions; (4) Thehighest accumulation of Ca, Na, Mn and Zn were obtained in aerial parts of Taraxacum mongolicum plants grown under pure red spectrum R, while the accumulation of the rest six elements reached the highest level under the mixed spectrum FLRB.
NASA Astrophysics Data System (ADS)
Macholdt, D.; Jochum, K. P.; Otter, L.; Stoll, B.; Weis, U.; Pöhlker, C.; Müller, M.; Kappl, M.; Weber, B.; Kilcoyne, A. L. D.; Weigand, M.; Al-Amri, A. M.; Andreae, M. O.
2015-12-01
Rock varnishes are up to 250 μm thick, Mn- and Fe-rich, dark black to brownish-orange lustrous rock coatings. Water and aeolian dust (60-70%), in combination with biological oxidation or inorganic precipitation processes, or even a combination of both, induce varnish growth rates of a few μm per 1000 a, indicating that element enrichment and aging processes are of major importance for the varnish formation. A combination of 200 nm-fs laser- and 213 nm-ns laser ablation- inductively coupled plasma-mass spectrometry (LA-ICP-MS), focused ion beam (FIB) slicing, and scanning transmission X-ray microscopy-near edge X-ray absorption fine structure spectroscopy (STXM-NEXAFS) was chosen for high-spatial-resolution analyses. The aim was to identify provenance, chemistry, and dynamics of the varnishes, and their formation over the millennia. To this end, mineral dust and adjacent varnishes were sampled in six arid to semi-arid deserts, in Israel, South Africa, California, and Saudi Arabia. Dust minerals incorporated in the varnishes were examined by STXM-NEXAFS spectroscopic and element mapping at the nm scale. Varnishes from different locations can be distinguished by element ratio plots of Pb/Ni vs. Mn/Ba. A comparison of dust element ratios of particles <50 μm to ratios of adjacent varnishes reveals much lower values for dust. However, the factors between the element ratios of dust and of varnish are similar for four of six regions (Mn/Ba: 6 ± 2; Pb/Ni: 4 ± 3). Two of the six regions diverge, which are South African (Mn/Ba: 20, Pb/Ni: 0.5) and Californian (Anza Borrego Desert: Mn/Ba: 4.5; Pb/Ni: 16.5) varnishes.The results indicate that the enrichment and degradation processes might be similar for most locations, and that Mn and Pb are preferably incorporated and immobilized in most varnishes compared to Ba and Ni. The Pb/Ni ratios of the South African varnishes are indicators for either a preferred incorporation of Ni compared to Pb from available dust, and therefore possibly a different genesis, or it shows a changed dust source over time, or even an additional element source. The latter two arguments, or even Pb pollution by automobiles, might also be true for the Anza Borrego varnish with its higher Pb/Ni ratios. Our investigations of dust and the rock coatings at the nm scale may help to unravel the genesis of rock varnish.
Koschinsky, A.; Hein, J.R.
2003-01-01
Marine Fe-Mn oxyhydroxide crusts form by precipitation of dissolved components from seawater. Three hydrogenetic crust samples (one phosphatized) and two hydrothermal Mn-oxide samples were subjected to a sequential-leaching procedure in order to determine the host phases of 40 elements. Those host-phase associations are discussed with respect to element speciation in seawater. The partitioning of elements between the two major phases, Mn oxide and Fe oxyhydroxide, can in a first-order approximation be explained by a simple sorption model related to the inorganic speciation of the elements in seawater, as has been proposed in earlier models. Free and weakly complexed cations, such as alkali and alkaline earth metals, Mn, Co, Ni, Zn, T1(I), and partly Y, are sorbed preferentially on the negatively charged surface of the MnO2 in hydrogenetic crusts. The driving force is a strong coulombic interaction. All neutral or negatively charged chloro (Cd, Hg, T1), carbonate (Cu, Y, Pb, and U), and hydroxide (Be, Sc, Ti, Fe, Zr, Nb, In, Sn, Sb, Te, Hf, Ta, Bi, Th, and T1(III)) complexes and oxyanions (V, Cr, As, Se, Mo, and W) bind to the slightly positively charged surface of the amorphous FeOOH phase. While coulombic interaction can explain the sorption of the negatively charged species, the binding of neutral species is based on specific chemical interaction. Organic complexation of elements in deep-ocean water seems to be at most of minor importance. Surface oxidation can explain some strong metal associations, e.g. of Co and T1 with the MnO2 and Te with the FeOOH. Sorption reactions initially driven by coulombic forces are often followed by the formation of specific bonds between the adsorbate and the atoms of the oxide surface. Differences in the associations of some metals between the non-phosphatized and phosphatized hydrogenetic crusts and between the hydrogenetic and the hydrothermal samples reflect the different physico-chemical environments of formation and speciations in oxic seawater vs. less-oxic fluids, especially for the redox-sensitive metals such as Mo and V. These environmental-related differences indicate that the methodology of chemical speciation used here in combination with spectroscopic methods may allow for the detection of changes in paleoceanographic conditions recorded during the several tens of millions of years of crust growth. ?? 2003 Elsevier Science B.V. All rights reserved.
Process for treating alkaline wastes for vitrification
Hsu, Chia-lin W.
1994-01-01
According to its major aspects and broadly stated, the present invention is a process for treating alkaline waste materials, including high level radioactive wastes, for vitrification. The process involves adjusting the pH of the wastes with nitric acid, adding formic acid (or a process stream containing formic acid) to reduce mercury compounds to elemental mercury and MnO{sub 2} to the Mn(II) ion, and mixing with class formers to produce a melter feed. The process minimizes production of hydrogen due to noble metal-catalyzed formic acid decomposition during, treatment, while producing a redox-balanced feed for effective melter operation and a quality glass product. An important feature of the present invention is the use of different acidifying and reducing, agents to treat the wastes. The nitric acid acidifies the wastes to improve yield stress and supplies acid for various reactions; then the formic acid reduces mercury compounds to elemental mercury and MnO{sub 2}) to the Mn(II) ion. When the pH of the waste is lower, reduction of mercury compounds and MnO{sub 2}) is faster and less formic acid is needed, and the production of hydrogen caused by catalytically-active noble metals is decreased.
Otachi, Elick O; Körner, Wilfried; Avenant-Oldewage, Annemariè; Fellner-Frank, Christine; Jirsa, Franz
2014-06-01
This study presents the distribution of 15 major and trace elements in sediments and fish and their pericardial parasites from Lake Naivasha, Kenya. The lake is one of the few freshwater lakes in the Great Rift Valley and is under strong anthropogenic pressure mainly due to agricultural activities. Its fish provide a valuable protein source for approximately 100,000 people in the area. Fish and their parasites have been acknowledged as indicators of environmental quality due to their accumulation potential for both essential and nonessential trace elements. A total of 34 specimens of the blue spotted tilapia Oreochromis leucostictus and pooled samples of their pericardial parasite, the anisakid nematode Contracaecum multipapillatum (larvae 3), were examined. Element concentrations were determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and graphite furnace atomic absorption spectrometry (GF-AAS). The concentrations of elements in the sediments reflected the geology of the area and did not point to pollution: none of the investigated trace elements, including Pb, Cd, Cu, and Zn, showed elevated values. In contrast, concentrations in the fish muscle were elevated for Li, Sr, Cd, and Zn, with high target hazard quotients (THQ > 0.1) indicating a potential health risk to the consumers of this fish. Fish liver showed significantly higher concentrations of the trace elements Fe, Mn, Cd, and Cu compared to the muscle and C. multipapillatum. In the parasite, Zn had the highest concentration, but the worms only minimally accumulated trace elements in relation to their fish host.
[Determination of 22 inorganic elements in different parts of Lantana camara by ICP-OES].
Zhou, Wei-ming; Wang, Ru-yi; Chen, Liu-sheng; Huang, Chuan-bin
2014-10-01
To determine the contents of 22 inorganic elements in different parts of Lantana camara by inductively coupled plasma optical emission spectroscopy (ICP-OES). HNO3-H2O2 digested system was used to completely decompose the organic compounds effectually by microwave digestion. The 22 inorganic elements such as K, Ca, Mg, Fe, Al, Na, Zn, Mn and Cr were determined by ICP-OES under set up working conditions. The contents of K, Ca and Mg were the most in different parts of Lantana camara; The contents of K, Ca, Mg, Mn, Sr and Cu in the leaf were more those that in the root and branch; The contents of Fe, Na, Cr and Ni in the root were more than those in the leaf and branch; The contents of Mn, Zn, Sr and Cu in the branch were more than those in the root and the leaf; The contents of Pb and Cd were higher than the national standard and Cr had high content in different parts of Lantana camara. The determination method is quick, easy and accurate with high sensitivity, which can determine the contents of 22 inorganic elements accurately in different parts of Lantana camara.
Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong
2016-01-29
Mn was an important alloying element used in Al-Mg-Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al-5Mg-Mn alloy with low Fe content (<0.1 wt %), intermetallic Al₆(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al₆(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al-5Mg-Mn alloys (0.5 wt % Fe), intermetallic Al₆(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al₆(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al₆(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al₆(Fe,Mn) to become the primary phase at a lower Mn content.
NASA Astrophysics Data System (ADS)
Hu, Q. B.; Hu, Y.; Zhang, S.; Tang, W.; He, X. J.; Li, Z.; Cao, Q. Q.; Wang, D. H.; Du, Y. W.
2018-01-01
The MnCoSi compound is a potential magnetostriction material since the magnetic field can drive a metamagnetic transition from an antiferromagnetic phase to a high magnetization phase in it, which accompanies a large lattice distortion. However, a large driving magnetic field, magnetic hysteresis, and poor mechanical properties seriously hinder its application for magnetostriction. By substituting Fe for Mn and introducing vacancies of the Mn element, textured and dense Mn0.97Fe0.03CoSi and Mn0.88CoSi compounds are prepared through a high-magnetic-field solidification approach. As a result, large room-temperature and reversible magnetostriction effects are observed in these compounds at a low magnetic field. The origin of this large magnetostriction effect and potential applications are discussed.
Trace elements in ALS patients and their relationships with clinical severity.
Oggiano, Riccardo; Solinas, Giuliana; Forte, Giovanni; Bocca, Beatrice; Farace, Cristiano; Pisano, Andrea; Sotgiu, Maria Alessandra; Clemente, Simonetta; Malaguarnera, Michele; Fois, Alessandro Giuseppe; Pirina, Pietro; Montella, Andrea; Madeddu, Roberto
2018-04-01
An exploratory study of trace elements in ALS and their relationships with clinical severity was detected. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder that causes irreversible damage in humans, with the consequent loss of function of motoneurons (MNs), with a prognosis up to 5 years after diagnosis. Except to genetic rare cases it is not known the etiology of the disorder. Aim of our research is to investigate the possible role of heavy metals in the severity of the disease. In this study, by the use of plasma mass (ICP-MS), we have analyzed the content of essential and heavy metals such: Pb, Cd, Al, Hg, Mn, Fe, Cu, Zn, Se, Mg, and Ca, in blood, urine and hair of ALS patients and controls; moreover we divided the patients in two groups for disease severity and analyzed the difference among the groups, in order to study a possible involvement of metals in the severity of the damage. Our results suggest a protective role of Selenium, involved in protective antioxidant mechanisms, and a risk factor in the case of presence of Lead in blood. The levels of the other metals are not easy to interpret, because these may be due to life style and for essential metals a consequence of the disease condition, not a cause. Copyright © 2018 Elsevier Ltd. All rights reserved.
Gough, L.P.; Severson, R.C.; Jackson, L.L.
1988-01-01
Element-concentration baselines are given for Parmelia sulcata and associated soils. Parmelia chlorochroa was found sporadically and therefore only representative concentration ranges are reported for this species. Element data include (1) for lichens; Al, As, Ba, B, Ca, Cr, Cu, Fe, Hg, Mn, Ni, P, Sr, S, Ti, V, Y, and Zn; and (2) for soils: Al, Ba, Be, Ca, Cs, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Nb, P, Pb, Sr, S, Ti, V, Y, and Zn. Very little (usually 7.2 km); thus, P sulcata is, in general, chemically similar throughout the park. This same uniformity was found for soil geochemistry. Numerous samples collected at close intervals would be required, therefore, to produce detailed element-concentration maps for P. sulcata and soils. No instances of elemental phytotoxic conditions were found; however, P. sulcata apparently possesses large concentrations of Ba, Cu, Fe, Pb, S, V, and possibly Zn.
Correlations between elements in the fur of wild animals.
Długaszek, Maria; Kopczyński, Krzysztof
2014-07-01
There is little data on the elemental composition of wild animals fur. In the paper, an attempt has been made to evaluate the concentration of elements in the fur of roe deer, wild boar and hare. The contents of following elements: calcium (Ca), magnesium (Mg), zinc (Zn), copper (Cu), iron (Fe), manganese (Mn), lead (Pb), cadmium (Cd), aluminium (Al), chromium (Cr), nickel (Ni) were determined by atomic absorption spectrometry method. Their content was in the range 0.01 (Cd) to 1,519 (Ca) μg/g. Correlations between the content of Mn, Al, Ca, Pb, Cr, Ni in the fur of animals, liver and muscle tissues were found. Thus it can be assumed that the fur of wild animals can provide an information on the bioavailability of elements and environmental exposure and can be considered as an useful biomarker in animals and environmental studies, although research on this subject should be continued.
A Study in HRT Resolution: Seeking Maximum Sensitivity Among Variations in Sensing Element Material
NASA Technical Reports Server (NTRS)
Morales, Jeremy M.
2005-01-01
The EXACT (Experiments Along Coexistence near Tricriticality) project endeavors to perform the most rigorous test to date of Renormalization Group theory. In most cases, the theory gives only approximate solutions, but it offers exact predictions in the case of the He-3-He-4 tricritical point. Currently, the project is focused on maximizing the performance of the low-temperature system's HRT (high resolution thermometer) near the tricritical point. The HRT uses a PdMn sensing element, the qualities of which change based on its Mn concentration and whether or not it is annealed. All sensing element combinations will be catalogued, and through the data, the optimum configuration will be reported.
Environmental implications of material leached from coal.
Moyo, Stanley; Mujuru, Munyaradzi; McCrindle, Rob I; Mokgalaka-Matlala, Ntebogeng
2011-05-01
Samples of coal were collected from different seams at a South African coal mine and comparative leaching experiments were carried out under various pH conditions and times to investigate the leaching behavior and potential environmental impact of possibly hazardous elements such as As, Cd, Co, Cr, Mn, Ni, Pb, Th and U. The calculated leaching intensities, sequential extraction results and cumulative percentages demonstrate that the leaching behavior of the elements is strongly influenced by the pH, the leaching time and the properties and occurrences of the elements. The leached concentrations of As, Cd, Co, Cr, Mn, Ni and Pb exceeded the maximum concentrations recommended by the Environmental Protection Agency (EPA) for surface water.
Growth of beta-MnO2 Films on TiO2(110) by Oxygen-Plasma-Assisted Molecular Beam Epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chambers, Scott A.; Liang, Yong
Discusses the essential need to understand the heterogeneous chemistry of mineral surfaces at a molecular level for accurate modeling of surface complexion processes in natural environments. Describes the first MBE growth and characterization of ultrathin films of B-MnO2 on TiO2 (110).
Bau, M.; Koschinsky, A.; Dulski, P.; Hein, J.R.
1996-01-01
In order to evaluate details of the partitioning behaviours of Y, rare earth elements (REEs), and Ti between inorganic metal oxide surfaces and seawater, we studied the distribution of these elements in hydrogenetic marine ferromanganese (Fe-Mn) crusts from the Central Pacific Ocean. Nonphosphatized Fe-Mn crusts display shale-normalized rare earths and yttrium (REYSN) patterns (Y inserted between Dy and Ho) that are depleted in light REEs (LREEs) and which show negative anomalies for YSN, and positive anomalies for LaSN, EuSN, GdSN, and in most cases, CeSN. They show considerably smaller Y/ Ho ratios than seawater or common igneous and clastic rocks, indicating that Y and Ho are fractionated in the marine environment. Compared to P-poor crusts, REYSN patterns of phosphatized Fe-Mn crusts are similar, but yield pronounced positive YSN anomalies, stronger positive LaSN anomalies, and enrichment of the HREEs relative to the MREEs. The data suggest modification of REY during phosphatization and indicate that studies requiring primary REY distributions or isotopic ratios should be restricted to nonphosphatized (layers of) Fe-Mn crusts. Apparent bulk coefficients, KMD, describing trace metal partitioning between nonphosphatized hydrogenetic Fe-Mn crusts and seawater, are similar for Pr to Eu and decrease for Eu to Yb. Exceptionally high values of KCeD, which are similar to those of Ti, result from oxidative scavenging of Ce and support previous suggestions that Ce(IV) is a hydroxide-dominated element in seawater. Yttrium and Gd show lower KD values than their respective neighbours in the REY series. Results of modelling the exchange equilibrium between REY dissolved in seawater and REY sorbed on hydrous Fe-Mn oxides corroborate previous studies that suggested the surface complexation of REY can be approximated by their first hydroxide binding constant. Negative "anomalies" occur for stabilities of bulk surface complexes of Gd, La, and particularly Y. The differences in inorganic surface complex stability between Y and Ho and between Gd and its REE neighbours are similar to those shown by the stabilities of complexes with aminocarboxylic acids and are significantly larger than those shown by stabilities of complexes with carboxylic acids. Hence, sorption of Y and REEs onto hydrous Fe-Mn oxides may contribute significantly to the positive YSN and GdSN anomalies in seawater.
Iron and manganese oxide mineralization in the Pacific
Hein, J.R.; Koschinsky, A.; Halbach, P.; Manheim, F.T.; Bau, M.; Kang, J.-K.; Lubick, N.
1997-01-01
Iron, manganese, and iron-manganese deposits occur in nearly all geomorphologic and tectonic environments in the ocean basins and form by one or more of four processes: (1) hydrogenetic precipitation from cold ambient seawater, (2) precipitation from hydrothermal fluids, (3) precipitation from sediment pore waters that have been modified from bottom water compositions by diagenetic reactions in the sediment column and (4) replacement of rocks and sediment. Iron and manganese deposits occur in five forms: nodules, crusts, cements, mounds and sediment-hosted stratabound layers. Seafloor oxides show a wide range of compositions from nearly pure iron to nearly pure manganese end members. Fe/Mn ratios vary from about 24 000 (up to 58% elemental Fe) for hydrothermal seamount ironstones to about 0.001 (up to 52% Mn) for hydrothermal stratabound manganese oxides from active volcanic arcs. Hydrogenetic Fe-Mn crusts that occur on most seamounts in the ocean basins have a mean Fe/Mn ratio of 0.7 for open-ocean seamount crusts and 1.2 for continental margin seamount crusts. Fe-Mn nodules of potential economic interest from the Clarion-Clipperton Zone have a mean Fe/Mn ratio of 0.3, whereas the mean ratio for nodules from elsewhere in the Pacific is about 0.7. Crusts are enriched in Co, Ni and Pt and nodules in Cu and Ni, and both have significant concentrations of Pb, Zn, Ba, Mo, V and other elements. In contrast, hydrothermal deposits commonly contain only minor trace metal contents, although there are many exceptions, for example, with Ni contents up to 0.66%, Cr to 1.2%, and Zn to 1.4%. Chondrite-normalized REE patterns generally show a positive Ce anomaly and abundant ΣREEs for hydrogenetic and mixed hydrogenetic-diagenetic deposits, whereas the Ce anomaly is negative for hydrothermal deposits and ΣREE contents are low. However, the Ce anomaly in crusts may vary from strongly positive in East Pacific crusts to slightly negative in West Pacific crusts, which may reflect the redox conditions of seawater. The concentration of elements in hydrogenetic Fe-Mn crusts depends on a wide variety of water column and crust surface characteristics, whereas concentration of elements in hydrothermal oxide deposits depends of the intensity of leaching, rock types leached, and precipitation of sulphides at depth in the hydrothermal system.
Vollet, Kaitlin; Dietrich, Kim N.
2016-01-01
Manganese (Mn) is both an essential micronutrient and potential neurotoxicant. This dual role underlies a growing body of literature demonstrating that Mn exhibits a biphasic dose-response relationship with neurocognitive outcomes. We reviewed recent epidemiologic studies from 2007–2016 that investigated the relationship between Mn exposure and cognitive outcomes across the lifespan: early life, school-aged children, and adulthood. In total, 27 research articles were included in this review: 12 pediatric and 15 adult studies (10 occupational and five environmental exposures). The majority of these studies provided evidence of the negative effects of Mn exposure on cognition. The pediatric literature provides evidence that both high and low levels of Mn are negatively associated with intellectual development. Future Mn research should include examination of non-linear relationships and multiple neurotoxicants across the lifespan, and particularly during critical developmental windows. PMID:27722879
New Perspectives on the Essential Trace Elements.
ERIC Educational Resources Information Center
Frieden, Earl
1985-01-01
Provides a comprehensive overview of the 19 essential trace elements, examining: the concept of essentiality; evolution of these elements; possible future essential elements; the lanthanides and actinides; how essential trace elements work; the metalloenzymes; the nonmetals; iodine and the thyroid hormones; and antagonism among these elements. (JN)
Nutrient-substituted hydroxyapatites: synthesis and characterization
NASA Technical Reports Server (NTRS)
Golden, D. C.; Ming, D. W.
1999-01-01
Incorporation of Mg, S, and plant-essential micronutrients into the structure of synthetic hydroxyapatite (HA) may be advantageous for closed-loop systems, such as will be required on Lunar and Martian outposts, because these apatites can be used as slow-release fertilizers. Our objective was to synthesize HA with Ca, P, Mg, S, Fe, Cu, Mn, Zn, Mo, B, and Cl incorporated into the structure, i.e., nutrient-substituted apatites. Hydroxyapatite, carbonate hydroxyapatite (CHA), nutrient-substituted hydroxyapatite (NHA), and nutrient-substituted carbonate hydroxyapatite (NCHA) were synthesized by precipitating from solution. Chemical and mineralogical analysis of precipitated samples indicated a considerable fraction of the added cations were incorporated into HA, without mineral impurities. Particle size of the HA was in the 1 to 40 nm range, and decreased with increased substitution of nutrient elements. The particle shape of HA was elongated in the c-direction in unsubstituted HA and NHA but more spherical in CHA and NCHA. The substitution of cations and anions in the HA structure was confirmed by the decrease of the d[002] spacing of HA with substitution of ions with an ionic radius less than that of Ca or P. The DTPA-extractable Cu ranged from 8 to 8429 mg kg-1, Zn ranged from 57 to 1279 mg kg-1, Fe from 211 to 2573 mg kg-1, and Mn from 190 to 1719 mg kg-1, depending on the substitution level of each element in HA. Nutrient-substituted HA has the potential to be used as a slow-release fertilizer to supply micronutrients, S, and Mg in addition to Ca and P.
Kubová, Jana; Matús, Peter; Bujdos, Marek; Hagarová, Ingrid; Medved', Ján
2008-05-30
The prediction of soil metal phytoavailability using the chemical extractions is a conventional approach routinely used in soil testing. The adequacy of such soil tests for this purpose is commonly assessed through a comparison of extraction results with metal contents in relevant plants. In this work, the fractions of selected risk metals (Al, As, Cd, Cu, Fe, Mn, Ni, Pb, Zn) that can be taken up by various plants were obtained by optimized BCR (Community Bureau of Reference) three-step sequential extraction procedure (SEP) and by single 0.5 mol L(-1) HCl extraction. These procedures were validated using five soil and sediment reference materials (SRM 2710, SRM 2711, CRM 483, CRM 701, SRM RTH 912) and applied to significantly different acidified soils for the fractionation of studied metals. The new indicative values of Al, Cd, Cu, Fe, Mn, P, Pb and Zn fractional concentrations for these reference materials were obtained by the dilute HCl single extraction. The influence of various soil genesis, content of essential elements (Ca, Mg, K, P) and different anthropogenic sources of acidification on extraction yields of individual risk metal fractions was investigated. The concentrations of studied elements were determined by atomic spectrometry methods (flame, graphite furnace and hydride generation atomic absorption spectrometry and inductively coupled plasma optical emission spectrometry). It can be concluded that the data of extraction yields from first BCR SEP acid extractable step and soil-plant transfer coefficients can be applied to the prediction of qualitative mobility of selected risk metals in different soil systems.
Trace Element Compositions of Pallasite Olivine Grains and Pallasite Origin
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Herrin, J. S.
2010-01-01
Pallasites are mixtures of metal with magnesian olivine. Most have similar metal compositions and olivine oxygen isotopic compositions; these are the main-group pallasites (PMG). The Eagle Station grouplet of pallasites (PES) have distinctive metal and olivine compositions and oxygen isotopic compositions. Pallasites are thought to have formed at the core-mantle boundary of their parent asteroids by mixing molten metal with solid olivine of either cumulatic or restitic origin. We have continued our investigation of pallasite olivines by doing in situ trace element analyses in order to further constrain their origin. We determined Al, P, Ca, Ga and first row transition element contents of olivine grains from suite of PMG and PES by LA-ICP-MS at JSC. Included in the PMG suite are some that have anomalous metal compositions (PMG-am) and atypically ferroan olivines (PMG-as). Our EMPA work has shown that there are unanticipated variations in olivine Fe/Mn, even within those PMG that have uni-form Fe/Mg. Manganese is homologous with Fe2+, and thus can be used the same way to investigate magmatic fractionation processes. It has an advantage for pallasite studies in that it is unaffected by redox exchange with the metal. PMG can be divided into three clusters on the basis of Mn/Mg; low, medium and high that can be thought of as less, typically and more fractionated in an igneous sense. The majority of PMG have medium Mn/Mg ratios. PMG-am occur in all three clusters; there does not seem to be any relationship between putative olivine igneous fractionation and metal composition. The PMG-as and one PMG-am make up the high Mn/Mg cluster; no PMG are in this cluster. The high Mn/Mg cluster ought to be the most fractionated (equivalent to the most Fe-rich in igneous suites), yet they have among the lowest contents of incompatible lithophile elements Al and Ti and the two PMG-as in this cluster also have low Ca and Sc contents. This is inconsistent with simple igneous fractionation on a single, initially homogeneous parent asteroid. For Al and Ti, the low and high Mn/Mg clusters have generally uniform contents, while the medium cluster has wide ranges. This is also true of analyses of duplicate grains from the medium cluster pallasites which can have very different Al and Ti contents. Those from the low and high clusters do not. These observations suggest that pallasite olivines are not cumulates, but rather are restites from high degrees of melting. The moderately siderophile elements P and Ga show wide ranges in the high Mn/Mg cluster, but very uniform compositions in the medium cluster, opposite the case for Al and Ti. There is no correlation of P or Ga and Fe/Mn as might be expected if redox processes controlled the contents of moderately siderophile elements in the olivines. The lack of correlation of P could reflect equilibration with phosphates, although there is no correlation of Ca with P as might be expected
NASA Astrophysics Data System (ADS)
Rani, Reena; Yadav, Kamlesh
2015-08-01
Barium manganite (BaMnO3), a perovskite based material, has been studied extensively. BaMnO3 properties can be changed by doping different elements at manganese (Mn) lattice site. We have prepared BaMnO3 and BaMn1-xCrxO3 (x=0.1, 0.2, 0.3, 0.4, 0.5) by Microwave Synthesizer. Data obtained from Fourier Transform Infrared Spectroscopy (FTIR) that the band gap of pure BaMnO3 is less as compare to the Cr doped BaMnO3. It is also clear from the FTIR that the band gap decreased with increasing the concentration of chromium. Broaden peak at 3201 cm-1 correspond to the stretching vibration of hydroxyl group (OH or H2O). The peaks appear on 724, 863 and 974 cm-1 is corresponding to the stretching vibration of metal oxide (M-O) bonds in the BaMnO3. BaMnO3 have applications in memory storage devices.
Fabrication of Mg-X-O (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn) barriers for magnetic tunnel junctions
NASA Astrophysics Data System (ADS)
Yakushiji, K.; Kitagawa, E.; Ochiai, T.; Kubota, H.; Shimomura, N.; Ito, J.; Yoda, H.; Yuasa, S.
2018-05-01
We fabricated magnetic tunnel junctions with a 3d-transition material(X)-doped MgO (Mg-X-O) barrier, and evaluated the effect of the doping on magnetoresistance (MR) and microstructure. Among the variations of X (X = Fe, Co, Ni, Cr, Mn, Ti, V, and Zn), X = Fe and Mn showed a high MR ratio of more than 100%, even at a low resistance-area product of 3 Ωμm2. The microstructure analysis revealed that (001) textured orientation formed for X = Fe and Mn despite substantial doping (about 10 at%). The elemental mappings indicated that Fe atoms in the Mg-Fe-O barrier were segregated at the interfaces, while Mn atoms were evenly involved in the Mg-Mn-O barrier. This suggests that MgO has high adaptability for Fe and Mn dopants in terms of high MR ratio.
Complex doping chemistry owing to Mn incorporation in nanocrystalline anatase TiO2 powders.
Guo, Meilan; Gao, Yun; Shao, G
2016-01-28
Mn-doped TiO2 powders with a wide range of nominal doping levels were fabricated using a one-step hydrothermal method followed by 400 °C annealing. Anatase powders with a uniform size distribution below 10 nm were obtained. The maximum solubility of Mn in the TiO2 lattice was around 30%, beyond which the Mn3O4 compound appeared as a secondary phase. The optical absorption edges for Mn-doped anatase TiO2 were red-shifted effectively through increasing Mn content. Alloying chemistry and associated elemental valences were elaborated through combining X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), and theoretical simulation in the framework of density functional theory (DFT). The results showed that the Mn species exhibited mixed valence states of 3+ and 4+ in anatase TiO2, with the latter being the key to remarkable photocatalytic performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurosaki, Y., E-mail: yosuke.kurosaki.uy@hitachi.com; Yabuuchi, S.; Nishide, A.
We report a lowered lattice thermal conductivity in nm-scale MnSi{sub 1.7}/Si multilayers which were fabricated by controlling thermal diffusions of Mn and Si atoms. The thickness of the constituent layers is 1.5–5.0 nm, which is comparable to the phonon mean free path of both MnSi{sub 1.7} and Si. By applying the above nanostructures, we reduced the lattice thermal conductivity down to half that of bulk MnSi{sub 1.7}/Si composite materials. The obtained value of 1.0 W/K m is the experimentally observed minimum in MnSi{sub 1.7}-based materials without any heavy element doping and close to the minimum thermal conductivity. We attribute the reduced latticemore » thermal conductivity to phonon scattering at the MnSi{sub 1.7}/Si interfaces in the multilayers.« less
NASA Astrophysics Data System (ADS)
Foster, A. L.; Klofas, J. M.; Hein, J. R.; Koschinsky, A.; Bargar, J.; Dunham, R. E.; Conrad, T. A.
2011-12-01
Marine ferromanganese crusts and nodules ("Fe-Mn crusts") are considered a potential mineral resource due to their accumulation of several economically-important elements at concentrations above mean crustal abundances. They are typically composed of intergrown Fe oxyhydroxide and Mn oxide; thicker (older) crusts can also contain carbonate fluorapatite. We used X-ray absorption fine-structure (XAFS) spectroscopy, a molecular-scale structure probe, to determine the speciation of several elements (Te, Bi, Mo, Zr, Pt) in Fe-Mn crusts. As a first step in analysis of this dataset, we have conducted principal component analysis (PCA) of Te K-edge and Mo K-edge, k3-weighted XAFS spectra. The sample set consisted of 12 homogenized, ground Fe-Mn crust samples from 8 locations in the global ocean. One sample was subjected to a chemical leach to selectively remove Mn oxides and the elements associated with it. The samples in the study set contain 50-205 mg/kg Te (average = 88) and 97-802 mg/kg Mo (average = 567). PCAs of background-subtracted, normalized Te K-edge and Mo K-edge XAFS spectra were performed on a data matrix of 12 rows x 122 columns (rows = samples; columns = Te or Mo fluorescence value at each energy step) and results were visualized without rotation. The number of significant components was assessed by the Malinowski indicator function and ability of the components to reconstruct the features (minus noise) of all sample spectra. Two components were significant by these criteria for both Te and Mo PCAs and described a total of 74 and 75% of the total variance, respectively. Reconstruction of potential model compounds by the principal components derived from PCAs on the sample set ("target transformation") provides a means of ranking models in terms of their utility for subsequent linear-combination, least-squares (LCLS) fits (the next step of data analysis). Synthetic end-member models of Te4+, Te6+, and Mo adsorbed to Fe(III) oxyhydroxide and Mn oxide were tested. Te6+ sorbed to Fe oxyhydroxide and Mo sorbed to Fe oxyhydroxide were identified as the best models for Te and Mo PCAs, respectively. However, in the case of Mo, least-squares fits contradicted these results, indicating that about 80% of Mo in crust samples was associated with Mn oxides. Ultimately it was discovered that the sample from which Mn oxide had been leached was skewing the results in the Mo PCA but not in the Te PCA. When the leached sample was removed and the Mo PCA repeated (n = 11), target transformation indicated that Mo sorbed to Mn oxide was indeed the best model for the set. Our results indicate that Te and Mo are strongly partitioned into different phases in these Fe-Mn crusts, and emphasize the importance of evaluating outliers and their effects on PCA.
Qamar, Wajhul; Al-Ghadeer, Abdul Rahman; Ali, Raisuddin; Abuelizz, Hatem A
2017-08-01
The main objective was to determine the elemental profile of the lung lining fluid of rats which are used as model animals in various experiments. Lung lining fluid elemental constitution obtained after bronchoalveolar lavage fluid (BALF) was analyzed by inductively coupled plasma mass spectrometry (ICP-MS) to determine the biological trace elements along with calcium and magnesium. BALF was collected from healthy rats using a tracheal cannula. However, cells in BALF were counted to monitor any underlying inflammatory lung condition. Cell free BALF samples were processed and analyzed for the elements including magnesium (Mg), calcium (Ca), chromium (Cr), manganese (Mn), iron (Fe), nickel (Ni), copper (Cu), zinc (Zn), selenium (Se), bromine (Br), and iodine (I). In view of this, calcium concentration was the highest (6318.08 ± 3094.3 μg/L) and copper concentration was the lowest (0.89 ± 0.21 μg/L). The detected elements, from high to low concentration, include Ca > Mg > Fe > Br > I > Cr > Ni > Zn > Mn > Se > Cu. Pearson's correlation analysis revealed no significant correlation between cell count and concentration of any of the element detected in BALF. Correlation analysis also revealed significant positive correlation among Fe, I, Cr, Ni, and Mn. Ca was found to be correlated negatively with Cu and positively with Se. Br and Mg found to be positively correlated with each other. Zn remained the only element that was not found to be correlated with any of the elements in the rat BALF.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, J.H.; Zayed, A.; Zhu, Y.L.
1999-10-01
Interest is increasing in using wetland plants in constructed wetlands to remove toxic elements from polluted wastewater. To identify those wetland plants that hyperaccumulate trace elements, 12 plant species were tested for their efficiency to bioconcentrate 10 potentially toxic trace elements including As, b, Cd, Cr, Cu, Pb, Mn, Hg, Ni, and Se. Individual plants were grown under carefully controlled conditions and supplied with 1 mg L{sup {minus}1} of each trace element individually for 10 d. Except B, all elements accumulated to much higher concentrations in roots than in shoots. Highest shoot tissue concentrations (mg kg{sup {minus}1} DW) of themore » various trace elements were attained by the following species: umbrella plant (Cyperus alternifolius L.) for Mn (198) and Cr (44); water zinnia (Wedelia trilobata Hitchc.) for Cd (148) and Ni (80); smartweed (Polygonum hydropiperoides Michx.) for Cu (95) and Pb (64); water lettuce (Pistia stratiotes L.) for Hg (92), As (34), and Se (39); and mare's tail (hippuris vulgaris L.) for B (1132). Whereas, the following species attained the highest root tissue concentrations (mg kg{sup {minus}1} DW); stripped rush (Baumia rubiginosa) for Mn (1683); parrot's feather (Myriophyllum brasiliense Camb.) for Cd (1426) and Ni (1077); water lettuce for Cu (1038), Hg (1217), and As (177); smartweed for Cr (2980) and Pb (1882); mare's tail for B (1277); and monkey flower (Mimulus guttatus Fisch.) for Se (384). From a phytoremediation perspective, smartweed was probably the best plant species for trace element removal from wastewater due to its faster growth and higher plant density.« less
Feng, Lili; Xuan, Zhewen; Zhao, Hongbo; Bai, Yang; Guo, Junming; Su, Chang-Wei; Chen, Xiaokai
2014-01-01
Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance.
Trace elemental correlation study in malignant and normal breast tissue by PIXE technique
NASA Astrophysics Data System (ADS)
Raju, G. J. Naga; Sarita, P.; Kumar, M. Ravi; Murty, G. A. V. Ramana; Reddy, B. Seetharami; Lakshminarayana, S.; Vijayan, V.; Lakshmi, P. V. B. Rama; Gavarasana, Satyanarayana; Reddy, S. Bhuloka
2006-06-01
Particle induced X-ray emission technique was used to study the variations in trace elemental concentrations between normal and malignant human breast tissue specimens and to understand the effects of altered homeostasis of these elements in the etiology of breast cancer. A 3 MeV proton beam was used to excite the biological samples of normal and malignant breast tissues. The elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, As, Se, Br, Rb and Sr were identified and their relative concentrations were estimated. Almost all the elements were found to be elevated (p < 0.05, Wilcoxon signed-ranks test) in the cancerous tissues when compared with normal tissues. The excess levels of trace elements observed in the cancerous breast tissues could either be a cause or a consequence of breast cancer. Regarding their role in the initiation or promotion of breast cancer, one possible interpretation is that the elevated levels of Cu, Fe and Cr could have led to the formation of free radicals or other reactive oxygen species (ROS) that adversely affect DNA thereby causing breast cancer, which is mainly attributed to genetic abnormalities. Moreover, since Cu and Fe are required for angiogenesis, elevated concentrations of these elements are likely to promote breast cancer by increasing the blood supply for tumor growth. On the other hand elevated concentrations of elements in breast cancer tissues might also be a consequence of the cancer. This can be understood in terms of the biochemical and histological differences between normal and cancerous breast tissues. Tumors, characterized by unregulated multiplication of cells, need an ever-increasing supply of essential nutrients including trace elements. This probably results in an increased vascularity of malignant tissues, which in turn leads to enhancement of elemental concentrations in tumors.
Ramanathan, AL.
2018-01-01
A geochemical and speciation study of As, Fe, Mn, Zn, and Cu was performed using sequential extraction and statistical approaches in the core sediments taken at two locations—Rigni Chhapra and Chaube Chhapra—of the central Gangetic basin (India). A gradual increase in the grain size (varying from clay to coarse sands) was observed in both the core profiles up to 30.5 m depth. The concentrations of analyzed elements ranged as follows: 6.9–14.2 mg/kg for As, 13,849–31,088 mg/kg for Fe, 267–711 mg/kg for Mn, 45–164 mg/kg for Cu for Rigni Chhapra while for Chaube Chhapra the range was 7.5–13.2 mg/kg for As, 10,936–37,052 mg/kg for Fe, 267–1052 mg/kg for Mn, 60–198 mg/kg for Zn and 60–108 mg/kg for Cu. Significant amounts (53–95%) of all the fractionated elemental concentrations were bound within the crystal structure of the minerals as a residual fraction. The reducible fraction was the second most dominant fraction for As (7% and 8%), Fe (3%), Mn (20% and 26%), and Cu (7% and 6%) respectively for both the cores. It may be released when aquifers subjected to changing redox conditions. The acid soluble fraction was of most interest because it could quickly mobilize into the water system which formed the third most dominating among all three fractions. Four color code of sediments showed an association with total As concentration and did not show a relation with any fraction of all elements analyzed. The core sediment was observed enriched with As and other elements (Cu, Fe, Mn, and Zn). However, it fell under uncontaminated to moderately contaminate which might exhibit a low risk in prevailing natural conditions. X-ray diffraction analyses indicated the availability of siderite and magnetite minerals in the core sediments in a section of dark grey with micaceous medium sand with organic matter (black). PMID:29360767
Mn-Cr isotopic systematics of individual Chainpur chondrules. [Abstract only
NASA Technical Reports Server (NTRS)
Nyquist, L.; Lindstrom, D.; Wiesmann, H.; Martinez, R.; Bansal, B.; Mittlefehldt, D.; Shih, C.-Y.; Wentworth, S.
1994-01-01
Twenty-eight chondrules separated from Chainpur (LL3.4) were surveyed for abundances of Mn, Cr, Na, Fe, Sc, Hf, Ir, and Zn by Instrumental Neutron Activation Analysis (INAA). Six, weighting 0.6-1.5 mg each, were chosen for Scanning Electron Microscopy (SEM)/Energy Dispersive X-ray (EDX) and high-precision Ce-isotopic studies. LL-chondrite-normalized (Mn/Fe)(sub LL) and (Sc/Fe)(sub LL) were found to be useful in categorizing them. Five chondrules (CH-16, -17, -18, -23, and -28) were in the range 0.5 less than (Mn/Fe)(sub LL) less than 1. 4 and 0.5 less than (Sc/Fe)(sub LL) less than 1.4. The sixth (CH-25) had (Mn/Fe)(sub LL) and (Sc/Fe)(sub LL) ratios of 0.40 and 8.1, respectively, and was enriched in the refractory lithophile elements Sc and Hf and the refractory siderophile element Ir by 2.7 and 4.4x LL abundances respectively. SEM/EDX of exterior surfaces of the chondrules showed they consisted of varying proportions of low- and high-Ca pyroxenes, olivine, glass, kamacite/taenite, and Fe-sulfides. Chromium-53/chromium-52 for the six chondrules and bulk Chainpur (WR) are presented. Chromium-54/chromium-52 is close to terrestrial and does not correlate with Mn/Cr. We provisionally ignore the possibility of initial Cr isotopic heterogeneities among the chondrules. Omitting both the CH-25 and WR data, a linear regression gives initial (Mn-53/Mn-55)(sub I) = 8 +/- 4 x 10(exp -6), corresponding to chondrule formation at Delta(t)(sub LEW) = -9 +/- 4 Ma prior to igneous crystallization of the LEW 86010 angrite. If initial (Mn-53/Mn-55)(sub 0) in the solar system were as high as approximately 4.4 x 10(exp -5) when Allende CAI formed, our data suggest Chainpur chondrules formed approximately 9 Ma later, in qualitative agreement with 'late' I-Xe formation ages for most Chainpur chondrules.
Heusler Alloyed Electrodes Integrated in Magnetic Tunnel-Junctions
NASA Astrophysics Data System (ADS)
Hütten, Andreas; Kämmerer, Sven; Schmalhorst, Jan; Reiss, Günter
As a consequence of the growing theoretically predictions of 100% spin polarized half- and full-Heusler compounds over the past 6 years, Heusler alloys are among the most promising materials class for future magnetoelectronic and spintronic applications. We have integrated Co2MnSi as a representative of the full-Heusler compound family as one magnetic electrode into technological relevant magnetic tunnel junctions. The resulting tunnel magnetoresistance at 20 K was determined to be 95% corresponding to a Co2MnSi spin polarization of 66% in combination with an AlOx barrier thickness of 1.8 nm. For magnetic tunnel junctions prepared with an initially larger Al layer prior to oxidation the tunnel magnetoresistance at 20 K increases to about 108% associated with a Co2MnSi spin polarization of 72% clearly proving that Co2MnSi is already superior to 3d-based magnetic elements or their alloys. The corresponding room temperature values of the tunnel magnetoresistance are 33% and 41%, respectively. Structural and magnetic properties of the Co2MnSi AlOx - barrier interface have been studied with X-ray diffraction, electron and X-ray absorption spectroscopy and X-ray magnetic circular dichroism and it is shown that the ferromagnetic order of Mn and Co spins at this interface is only induced in optimally annealed Co2MnSi layer. The underlying atomic ordering mechanism responsible for achieving about its theoretical magnetic moment could be assigned to the elimination of Co-Si antisite defects whereas the reduction of Co-Mn antisite defects results in large tunnel magnetoresistance. The presence of a step like tunnel barrier which is already created during plasma oxidation while preparing the AlOx tunnel barrier has been identified as the current limitation to achieve larger tunnel magnetoresistance and hence larger spin polarization and is a direct consequence of the oxygen affinity of the Co2MnSi - Heusler elements Mn and Si.
The AMBRE project: Iron-peak elements in the solar neighbourhood
NASA Astrophysics Data System (ADS)
Mikolaitis, Š.; de Laverny, P.; Recio-Blanco, A.; Hill, V.; Worley, C. C.; de Pascale, M.
2017-04-01
Context. The pattern of chemical abundance ratios in stellar populations of the Milky Way is a fingerprint of the Galactic chemical history. In order to interpret such chemical fossils of Galactic archaeology, chemical evolution models have to be developed. However, despite the complex physics included in the most recent models, significant discrepancies between models and observations are widely encountered. Aims: The aim of this paper is to characterise the abundance patterns of five iron-peak elements (Mn, Fe, Ni, Cu, and Zn) for which the stellar origin and chemical evolution are still debated. Methods: We automatically derived iron peak (Mn, Fe, Ni, Cu, and Zn) and α element (Mg) chemical abundances for 4666 stars, adopting classical LTE spectral synthesis and 1D atmospheric models. Our observational data collection is composed of high-resolution, high signal-to-noise ratios HARPS and FEROS spectra, which were previously parametrised by the AMBRE project. Results: We used the bimodal distribution of the magnesium-to-iron abundance ratios to chemically classify our sample stars into different Galactic substructures: thin disc, metal-poor and high-α metal rich, high-α, and low-α metal-poor populations. Both high-α and low-α metal-poor populations are fully distinct in Mg, Cu, and Zn, but these substructures are statistically indistinguishable in Mn and Ni. Thin disc trends of [Ni/Fe] and [Cu/Fe] are very similar and show a small increase at supersolar metallicities. Also, both thin and thick disc trends of Ni and Cu are very similar and indistinguishable. Yet, Mn looks very different from Ni and Cu. [Mn/Fe] trends of thin and thick discs actually have noticeable differences: the thin disc is slightly Mn richer than the thick disc. The [Zn/Fe] trends look very similar to those of [α/Fe] trends. The typical dispersion of results in both discs is low (≈0.05 dex for [Mg, Mn, and Cu/Fe]) and is even much lower for [Ni/Fe] (≈0.035 dex). Conclusions: It is clearly demonstrated that Zn is an α-like element and could be used to separate thin and thick disc stars. Moreover, we show that the [Mn/Mg] ratio could also be a very good tool for tagging Galactic substructures. From the comparison with Galactic chemical evolutionary models, we conclude that some recent models can partially reproduce the observed Mg, Zn, and, Cu behaviours in thin and thick discs and metal-poor sequences. Models mostly fail to reproduce Mn and Ni in all metallicity domains, however, models adopting yields normalised from solar chemical properties reproduce Mn and Ni better, suggesting that there is still a lack of realistic theoretical yields of some iron-peak elements. The very low scatter (≈0.05 dex) in thin and thick disc sequences could provide an observational constrain for Galactic evolutionary models that study the efficiency of stellar radial migration. Based on observations collected at ESO telescopes under the AMBRE programme. Full Table 5 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A22
Role of polar compensation in interfacial ferromagnetism of LaNiO3/CaMnO3 superlattices
NASA Astrophysics Data System (ADS)
Flint, C. L.; Jang, H.; Lee, J.-S.; N'Diaye, A. T.; Shafer, P.; Arenholz, E.; Suzuki, Y.
2017-07-01
Polar compensation can play an important role in the determination of interfacial electronic and magnetic properties in oxide heterostructures. Using x-ray absorption spectroscopy, x-ray magnetic circular dichroism, bulk magnetometry, and transport measurements, we find that interfacial charge redistribution via polar compensation is essential for explaining the evolution of interfacial ferromagnetism in LaNiO3/CaMnO3 superlattices as a function of LaNiO3 layer thickness. In insulating superlattices (four unit cells or less of LaNiO3), magnetism is dominated by Ni-Mn superexchange, while itinerant electron-based Mn-Mn double exchange plays a role in thicker metallic superlattices. X-ray magnetic circular dichroism and resonant x-ray scattering show that Ni-Mn superexchange contributes to the magnetization even in metallic superlattices. This Ni-Mn superexchange interaction can be explained in terms of polar compensation at the LaNiO3-CaMnO3 interface. These results highlight the different mechanisms responsible for interfacial ferromagnetism and the importance of understanding compensation due to polar mismatch at oxide-based interfaces when engineering magnetic properties.
Structural changes in the S 3 state of the oxygen evolving complex in photosystem II
Hatakeyama, Makoto; Ogata, Koji; Fujii, Katsushi; ...
2016-03-19
The S 3 state of the Mn 4CaO 5-cluster in photosystem II was investigated by DFT calculations and compared with EXAFS data. Considering previously proposed mechanism; a water molecule is inserted into an open coordination site of Mn upon S 2 to S 3 transition that becomes a substrate water, we examined if the water insertion is essential for the S 3 formation, or if one cannot eliminate other possible routes that do not require a water insertion at the S 3 stage. The novel S 3 state structure consisting of only short 2.7–2.8 Å MnMn distances was discussed.
Structural changes in the S 3 state of the oxygen evolving complex in photosystem II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatakeyama, Makoto; Ogata, Koji; Fujii, Katsushi
The S 3 state of the Mn 4CaO 5-cluster in photosystem II was investigated by DFT calculations and compared with EXAFS data. Considering previously proposed mechanism; a water molecule is inserted into an open coordination site of Mn upon S 2 to S 3 transition that becomes a substrate water, we examined if the water insertion is essential for the S 3 formation, or if one cannot eliminate other possible routes that do not require a water insertion at the S 3 stage. The novel S 3 state structure consisting of only short 2.7–2.8 Å MnMn distances was discussed.
End-of-life Zn-MnO2 batteries: electrode materials characterization.
Cabral, Marta; Pedrosa, F; Margarido, F; Nogueira, C A
2013-01-01
Physical and chemical characterization of several sizes and shapes of alkaline and saline spent Zn-MnO2 batteries was carried out, aiming at contributing for a better definition of the applicable recycling processes. The characterization essays included the mass balance of the components, cathode and anode elemental analysis, the identification of zinc and manganese bearing phases and the morphology analysis of the electrode particles. The electrode materials correspond to 64-79% of the total weigh of the batteries, with the cathodes having clearly the highest contribution (usually more than 50%). The steel components, mainly from the cases, are also important (17-30%). Elemental analysis showed that the electrodes are highly concentrated in zinc (from 48-87% in anodes) and manganese (from 35-50% in cathodes). X-Ray powder diffraction allowed for identifying several phases in the electrodes, namely zinc oxide, in the anodes of all the types of saline and alkaline batteries tested, while zinc hydroxide chloride and ammine zinc chloride only appear in some types of saline batteries. The manganese found in the cathode materials is present as two main phases, MnO x Mn2O3 and ZnO x Mn2O3, the latter corroborating that zinc migration from anode to cathode occurs during the batteries lifespan. A unreacted MnO2 phase was also found presenting a low crystalline level. Leaching trials with diluted HCI solutions of alkaline and saline battery samples showed that all zinc species are reactive attaining easily over than 90% leaching yields, and about 30% of manganese, present as Mn(II/III) forms. The MnO2 phase is less reactive and requires higher temperatures to achieve a more efficient solubilization.
Hydrogenetic Ferromanganese Crusts of the California Continental Margin
NASA Astrophysics Data System (ADS)
Conrad, Tracey A.
Hydrogenetic Ferromanganese (Fe-Mn) crusts grow from seawater and in doing so sequester elements of economic interest and serve as archives of past seawater chemistry. Ferromanganese crusts have been extensively studied in open-ocean environments. However, few studies have examined continent-proximal Fe-Mn crusts especially from the northeast Pacific. This thesis addresses Fe-Mn crusts within the northeast Pacific California continental margin (CCM), which is a dynamic geological and oceanographic environment. In the first of three studies, I analyzed the chemical and mineralogical composition of Fe-Mn crusts and show that continental-proximal processes greatly influence the chemistry and mineralogy of CCM Fe-Mn crusts. When compared to global open-ocean Fe-Mn crusts, CCM crusts have higher concentrations of iron, silica, and thorium with lower concentrations of many elements of economic interest including manganese, cobalt, and tellurium, among other elements. The mineralogy of CCM Fe-Mn crusts is also unique with more birnessite and todorokite present than found in open-ocean samples. Unlike open-ocean Fe-Mn crusts, carbonate-fluorapatite is not present in CCM crusts. This lack of phosphatization makes CCM Fe-Mn crusts excellent candidates for robust paleoceanography records. The second and third studies in this thesis use isotope geochemistry on select CCM Fe-Mn crusts from four seamounts in the CCM to study past terrestrial inputs into the CCM and sources and behavior of Pb and Nd isotopes over the past 7 million years along the northeast Pacific margin. The second study focuses on riverine inputs into the Monterey Submarine Canyon System and sources of the continental material. Osmium isotopes in the crusts are compared to the Cenozoic Os seawater curve to develop an age model for the samples that show the crusts range in age of initiation of crust growth from approximately 20 to 6 Myr. Lead and neodymium isotopes measured in select Fe-Mn crusts show that large amounts of terrestrial material entered the CCM via the Monterey Canyon from prior to 6.8+/-0.5 until 4.5 +/-0.5 Myr ago. These data combined with reconstructions of the paleo-coastline indicate that incision of the modern Monterey Canyon started around 7 Myr ago. Isotope plots of potential source regions indicate that the source of the material is the border of the southern Sierra Nevada and western Basin and Range. This answers a long-standing and fundamental question about the timing and formation of the Monterey Canyon, the dominant feature of the Monterey Bay. The third study presented here uses the differences in lead and neodymium isotopic values in CCM Fe-Mn crusts over time compared to open-ocean Pacific, North Pacific, and Arctic Ocean Fe-Mn crusts to identify regional time-series trends and sources for these important oceanographic tracers. I found that sediment fluxes and inputs of terrestrial material from North American rivers effects the lead and neodymium isotope composition of regional seawater.
[Application of ICP-MS to Identify the Botanic Source of Characteristic Honey in South Yunnan].
Wei, Yue; Chen, Fang; Wang, Yong; Chen, Lan-zhen; Zhang, Xue-wen; Wang, Yan-hui; Wu, Li-ming; Zhou, Qun
2016-01-01
By adopting inductively coupled plasma mass spectrometry (ICP-MS) combined with chemometric analysis technology, 23 kinds of minerals in four kinds of characteristic honey derived from Yunnan province were analyzed. The result showed that 21 kinds of mineral elements, namely Na, Mg, K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sb, Ba, Tl and Pb, have significant differences among different varieties of honey. The results of principal component analysis (PCA) showed that the cumulative variance contribution rate of the first four main components reached 77.74%, seven kinds of elements (Mg, Ca, Mn, Co, Sr, Cd, Ba) from the first main component contained most of the honey information. Through the stepwise discriminant analysis, seven kinds of elements (Mg, K, Ca, Cr, Mn, Sr, Pb) were filtered. out and used to establish the discriminant function model, and the correct classification rates of the proposed model reached 90% and 86.7%, respectively, which showed elements contents could be effectively indicators to discriminate the four kinds characteristic honey in southern Yunnan Province. In view of all the honey samples were harvested from apiaries located at south Yunnan Province where have similar climate, soil and other environment conditions, the differences of the mineral elements contents for the honey samples mainly due to their corresponding nectariferous plant. Therefore, it is feasible to identify honey botanical source through the differences of mineral elements.
NASA Astrophysics Data System (ADS)
Thongjamroon, S.; Ding, J.; Herng, T. S.; Tang, I. M.; Thongmee, S.
2017-10-01
The effects of Mn doping on the ferromagnetic properties of the dilute magnetic semiconductor Zn1-xMnxO nanorods (NR's) having the nominal composit-ions x = 0, 0.01, 0.03, 0.04 and 0.05 grown by a low temperature hydrothermal method are studied. Energy dispersive X-ray (EDX) is used to determine the actual amounts of the elements in each NR's. X-ray diffraction, scanning electron microscopy, photoluminescence and vibrating sample magnetometer measurements are used to observe the effects of the Mn substitution on the properties of the doped ZnO and to relate the changes in the properties to changes in the defect content. It is observed that the saturation magnetization of the Mn ions in the wurtzite structure varies from 0.0210 μB/Mn2+ to 0.0234 μB/Mn2+ reaching a high of 0.0251 μB/Mn2+ as the Mn concentrations is varied from 0.9 to 7.36 atomic%. It is argued that the changes in the saturation magnetization are due to the competition between the direct Mn-Mn exchange interaction and the indirect Mn-O-Mn exchange interaction in the doped Mn ZnO NP's.
THE WEATHERING OF A SULFIDE OREBODY: SPECIATION AND FATE OF SOME POTENTIAL CONTAMINANTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtin-Nomade, Alexandra; Grosbois, Cecile; Marcus, Matthew A.
2010-07-16
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogenically modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., {approx}500 mg/L Cu, {approx}3700 mg/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less thanmore » 10 {mu}m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (mXAS), scanning X-ray diffraction (mSXRD) and scanning X-ray fluorescence (mSXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially in the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity in this site.« less
Aqueous Alteration of Endeavour Crater Rim Apron Rocks
NASA Technical Reports Server (NTRS)
Mittlefehldt, David W.; Ming, Douglas W.; Gellert, Ralf; Clark, Benton C.; Morris, Richard V.; Yen, Albert S.; Arvidson, Raymond E.; Crumpler, Larry S.; Farrand, William H.; Grant, John A.;
2014-01-01
Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis of the Endeavour rim phyllosilicates. The aqueous alteration history of Endeavour rim rocks is complicated by different styles of alteration that have spanned the Noachian and Hesperian. Late stage acidic aqueous alteration of Grasberg fm materials is likely penecontemporaneous with the diagenesis of the sulfate-rich sediments of Meridiani Planum.
Aqueous Alteration of Endeavour Crater Rim Apron Rocks
NASA Astrophysics Data System (ADS)
Ming, D. W.; Mittlefehldt, D. W.; Gellert, R.; Clark, B. C.; Morris, R. V.; Yen, A. S.; Arvidson, R. E.; Crumpler, L. S.; Farrand, W. H.; Grant, J. A., III; Jolliff, B. L.; Parker, T. J.; Peretyazhko, T.
2014-12-01
Mars Exploration Rover Opportunity is exploring Noachian age rocks of the rim of 22 km diameter Endeavour crater. Overlying the pre-impact lithologies and rim breccias is a thin apron of fine-grained sediments, the Grasberg fm, forming annuli on the lower slopes of rim segments. Hesperian Burns fm sandstones overly the Grasberg fm. Grasberg rocks have major element compositions that are distinct from Burns fm sandstones, especially when comparing interior compositions exposed by the Rock Abrasion Tool. Grasberg rocks are also different from Endeavour rim breccias, but have general compositional similarities to them. Grasberg sediments are plausibly fine-grained materials derived from the impact breccias. Veins of CaSO4 transect Grasberg fm rocks demonstrating post-formation aqueous alteration. Minor/trace elements show variations consistent with mobilization by aqueous fluids. Grasberg fm rocks have low Mn and high Fe/Mn ratios compared to the other lithologies. Manganese likely was mobilized and removed from the Grasberg host rock by redox reactions. We posit that Fe2+ from acidic solutions associated with formation of the Burns sulfate-rich sandstones acted as an electron donor to reduce more oxidized Mn to Mn2+. The Fe contents of Grasberg rocks are slightly higher than in other rocks suggesting precipitation of Fe phases in Grasberg materials. Pancam spectra show that Grasberg rocks have a higher fraction of ferric oxide minerals than other Endeavour rim rocks. Solutions transported Mn2+ into the Endeavour rim materials and oxidized and/or precipitated it in them. Grasberg has higher contents of the mobile elements K, Zn, Cl, and Br compared to the rim materials. Similar enrichments of mobile elements were measured by the Spirit APXS on West Spur and around Home Plate in Gusev crater. Enhancements in these elements are attributed to interactions of hydrothermal acidic fluids with the host rocks. Interactions of fluids with the Grasberg fm postdate the genesis of the Endeavour rim phyllosilicates. The aqueous alteration history of Endeavour rim rocks is complicated by different styles of alteration that have spanned the Noachian and Hesperian. Late stage acidic aqueous alteration of Grasberg fm materials is likely penecontemporaneous with the diagenesis of the sulfate-rich sediments of Meridiani Planum.
The weathering of a sulfide orebody: Speciation and fate of some potential contaminants
Courtin-Nomade, A.; Grosbois, C.; Marcus, M.A.; Fakra, S.C.; Beny, J.-M.; Foster, A.L.
2009-01-01
Various potentially toxic trace elements such as As, Cu, Pb and Zn have been remobilized by the weathering of a sulfide orebody that was only partially mined at Leona Heights, California. As a result, this body has both natural and anthropogeni- cally modified weathering profiles only 500 m apart. The orebody is located in a heavily urbanized area in suburban Oakland, and directly affects water quality in at least one stream by producing acidic conditions and relatively high concentrations of dissolved elements (e.g., ??500 ??g/L Cu, ??3700 ??g/L Zn). Micrometric-scale mineralogical investigations were performed on the authigenic metal-bearing phases (less than 10 ??m in size) using electron-probe micro-analysis (EPMA), micro-Raman, micro X-ray absorption spectroscopy (??XAS), scanning X-ray diffraction ((??SXRD) and scanning X-ray fluorescence (??-SXRF) mapping techniques. Those measurements were coupled with classical mineralogical laboratory techniques, X-ray diffraction (XRD) and scanning electron microscopy (SEM). Authigenic metal-bearing phases identified are mainly sulfates (jarosite, epsomite, schwertmannite), Fe (oxy-)hydroxides (goethite, hematite and poorly crystalline Fe products) and poorly crystalline Mn (hydr-)oxides. Sulfates and Fe (oxy-)hydroxides are the two main secondary products at both sites, whereas Mn (hydr-) oxides were only observed in the samples from the non-mining site. In these samples, the various trace elements show different affinities for Fe or Mn compounds. Lead is preferentially associated with Mn (hydr-)oxides and As with Fe (oxy-)hydroxides or sulfates. Copper association with Mn and Fe phases is questionable, and the results obtained rather indicate that Cu is present as individual Cu-rich grains (Cu hydroxides). Some ochreous precipitates were found at both sites and correspond to a mixture of schwertmannite, goethite and jarosite containing some potentially toxic trace elements such as Cu, Pb and Zn. According to the trace element distribution and relative abundance of the unweathered sulfides, this orebody still represents a significant reservoir of potential contaminants for the watershed, especially at the non-mining site, as a much greater proportion of sulfides is left to react and because of the lower porosity at this site.
Liu, Yulin; Huang, Gaoren; Sun, Yimeng; Zhang, Li; Huang, Zhenwei; Wang, Jijie; Liu, Chunzhong
2016-01-01
Mn was an important alloying element used in Al–Mg–Mn alloys. However, it had to be limited to a low level (<1.0 wt %) to avoid the formation of coarse intermetallics. In order to take full advantage of the benefits of Mn, research was carried out to investigate the possibility of increasing the content of Mn by studying the effect of cooling rate on the formation of Fe- and Mn-rich intermetallics at different content levels of Mn and Fe. The results indicated that in Al–5Mg–Mn alloy with low Fe content (<0.1 wt %), intermetallic Al6(Fe,Mn) was small in size and amount. With increasing Mn content, intermetallic Al6(Fe,Mn) increased, but in limited amount. In high-Fe-containing Al–5Mg–Mn alloys (0.5 wt % Fe), intermetallic Al6(Fe,Mn) became the dominant phase, even in the alloy with low Mn content (0.39 wt %). Cooling rate played a critical role in the refinement of the intermetallics. Under near-rapid cooling, intermetallic Al6(Fe,Mn) was extremely refined. Even in the high Mn and/or high-Fe-containing alloys, it still demonstrated fine Chinese script structures. However, once the alloy composition passed beyond the eutectic point, the primary intermetallic Al6(Fe,Mn) phase displayed extremely coarse platelet-like morphology. Increasing the content of Fe caused intermetallic Al6(Fe,Mn) to become the primary phase at a lower Mn content. PMID:28787888
Enhanced analgesic effects of tramadol and common trace element coadministration in mice.
Alexa, Teodora; Marza, Aurelia; Voloseniuc, Tudor; Tamba, Bogdan
2015-10-01
Chronic pain is managed mostly by the daily administration of analgesics. Tramadol is one of the most commonly used drugs, marketed in combination with coanalgesics for enhanced effect. Trace elements are frequent ingredients in dietary supplements and may enhance tramadol's analgesic effect either through synergic mechanisms or through analgesic effects of their own. Swiss Weber male mice were divided into nine groups and were treated with a combination of the trace elements Mg, Mn, and Zn in three different doses and a fixed dose of tramadol. Two groups served as positive (tramadol alone) and negative (saline) controls. Nociceptive assessment by tail-flick (TF) and hot-plate (HP) tests was performed at baseline and at 15, 30, 45, and 60 min after intraperitoneal administration. Response latencies were recorded and compared with the aid of ANOVA testing. All three trace elements enhanced tramadol's analgesic effect, as assessed by TF and HP test latencies. Coadministration of these trace elements led to an increase of approximately 30% in the average pain inhibition compared with the tramadol-alone group. The most effective doses were 0.6 mg/kg b.w. for Zn, 75 mg/kg b.w. for Mg, and 7.2 mg/kg b.w. for Mn. Associating trace elements such as Zn, Mg, and Mn with the standard administration of tramadol increases the drug's analgesic effect, most likely a consequence of their synergic action. These findings impact current analgesic treatment because the addition of these trace elements may reduce the tramadol dose required to obtain analgesia. © 2015 Wiley Periodicals, Inc.
Possible roles of manganese redox chemistry in the sulfur cycle
NASA Technical Reports Server (NTRS)
Nealson, K. H.
1985-01-01
Sulfate reducing bacteria (SRB) are very potent MnO2 reducers by virtue of their sulfide production: H2S reacts rapidly with MnO2 to yield Mn(2), elemental sulfur, and water. In manganese rich zones, Mn cycles rapidly if sulfate is present to drive the reduction and the MnO2 precipitates and sinks into anaerobic zones. The production of sulfide (by organisms requiring organic carbon compounds) to reduce manganese oxides might act to couple the carbon and sulfur cycles in water bodies in which the two cycles are physically separated. Iron has been proposed for this provision of reducing power by (Jorgensen, 1983), but since MnS is soluble and FeS is very insoluble in water, it is equally likely that manganese rather than iron provides the electrons to the more oxidized surface layers.
Lu, Lingli; Tian, Shengke; Liao, Haibing; Zhang, Jie; Yang, Xiaoe; Labavitch, John M.; Chen, Wenrong
2013-01-01
Knowledge of mineral localization within rice grains is important for understanding the role of different elements in seed development, as well as for facilitating biofortification of seed micronutrients in order to enhance seeds’ values in human diets. In this study, the concentrations of minerals in whole rice grains, hulls, brown rice, bran and polished rice were quantified by inductively coupled plasma mass spectroscopy. The in vivo mineral distribution patterns in rice grains and shifts in those distribution patterns during progressive stages of germination were analyzed by synchrotron X-ray microfluorescence. The results showed that half of the total Zn, two thirds of the total Fe, and most of the total K, Ca and Mn were removed by the milling process if the hull and bran were thoroughly polished. Concentrations of all elements were high in the embryo regions even though the local distributions within the embryo varied between elements. Mobilization of the minerals from specific seed locations during germination was also element-specific. High mobilization of K and Ca from grains to growing roots and leaf primordia was observed; the flux of Zn to these expanding tissues was somewhat less than that of K and Ca; the mobilization of Mn or Fe was relatively low, at least during the first few days of germination. PMID:23451212
Uzunova, Ellie L
2011-03-03
The trioxide clusters with stoichiometry MO3, and the structural isomers with side-on and end-on bonded oxygen atoms, are studied by DFT with the B1LYP functional. For the first half of the 3d elements row (Sc to Cr), pyramidal or distorted pyramidal structures dominate among the trioxide and oxoperoxide ground states, while the remaining elements form planar trioxides, oxoperoxides, oxosuperoxides, and ozonides. Low-lying trioxide clusters are formed by Ti, V, Cr, and Mn, among which the distorted pyramidal VO3 in the (2)A'' state, the pyramidal CrO3 in the (1)A1 state, and the planar MnO3 in the (2)A1' state are global minima. With the exception of the middle-row elements Mn, Fe, and Co, the magnetic moment of the ground-state clusters is formed with a major contribution from unpaired electrons located at the oxygen atoms. The stability of trioxides and oxoperoxides toward release of molecular oxygen is significantly higher for Sc, Ti, and V than for the remaining elements of the row. A trend of increasing the capability to dissociate one oxygen molecule is observed from Cr to Cu, with the exception of OFe(O2) being more reactive than OCo(O2). A gradual increase of reactivity from Ti to Cu is observed for the complete fragmentation reaction M + O + O2.
Trace elements quantified by the APXS on Mars
NASA Astrophysics Data System (ADS)
Gellert, R.; Berger, J. A.; Boyd, N.; O'Connell-Cooper, C.; Desouza, E.; Thompson, L. M.; VanBommel, S.; Yen, A.
2017-12-01
The APXS accurately quantifies many trace elements within the dime-sized sample: Ni, Cu, Zn, Ga, Ge, Pb, Br, Se, As, and Y with 20 ppm detection limit (DL) and Rb, Sr, Zr, Co, Cr, and Mn with 200 ppm DL. Together with the major and minor elements, this gives important constraints for a variety of formation processes of the investigated soils, floats or extensive bedrock on Mars. The global soil, found at all rover landing sites, was used to define an average Mars value for Ni, Zn, Cr and Mn, with a consistent value of Fe/Mn 50 for soils and igneous rocks. All other APXS trace elements are below DL. Strong enrichments or depletions can both give evidence for the formation processes and link together groups of rocks and indicate their common diagenetic origin. Felsic rocks at Gale and Gusev have Cr, Ni and Zn far below soil, indicating their likely igneous origin. Further, similarly low values are found in elevated silica samples in the Murray Fm. at Gale where these elements have been mobilized and leached by fluids. High Sr and Ga was found in the host rock surrounding the Garden City vein system, which contains also high Ge, Mn and Cu, indicating mobilization in high temperature and/or acidic fluids after the Murray was lithified. The fracture fill sample Stephen at Windjana is high in Zn, Co and Cu. Germanium is enriched in the Murray Fm with very consistent values of about 100 ppm over many kilometers and 200 meters elevation, similar to perviously found bedrock at Yellowknife Bay and Windjana in Gale. Zinc is highly elevated but changes significantly with elevation in Murray, often correlated with Fe/Mn, possibly indicating changing redox conditions. Pb and Se are highly enriched at Pahrump (150, 75 ppm, resp.), drop first to low values and increase again uphill towards HematiteRidge. Nodules found at Pahrump show striking evidence for (Mg, Ni)-sulfates with Nickel up to 4% in the sulfates. All together these trends might indicate hydrothermal activity. The MER APXS instruments with somewhat higher DL found similar patterns. Elevated Ge was found at Home plate, Gusev crater, and at the rim of Endeavour crater at Meridiani Planum. Together with detailed investigations of SNC meteorites, the APXS detected trace elements supplement the bulk chemistry significantly and allow new insights into the formation processes encountered on Mars
Zhang, Wei-kun; Gan, Hua-yang; Bi, Xiang-yang; Wang, Jia-sheng
2016-04-15
Totally 128 surficial sediments samples were collected from the coastal wetlands, northeastern Hainan Island and analyzed for their concentrations of 14 elements including Al2O3, Fe2O3, MnO, Cu, Ni, Sr, Zn, V, Pb, Cr, Zr, As, Cd and Hg, TOC and grain sizes. The mean concentrations of trace metals V, Cr, Ni, Cu, Zn, As, Pb, Cd and Hg were (40.13 +/- 32.65), (35.92 +/- 26.90), (13.03 +/- 11.46), (11.56 +/- 10.27)-, (48.75 +/- 27.00), (5.48 +/- 1.60), ( 18.70 +/- 8.66), (0.054 +/- 0.045 ), (0.050 +/- 0.050) microg x g(-1), respectively, which were much lower than those in Pearl River Estuary, Yangzi River Estuary, Bohai Bay, upper crust and average shale. The average concentrations of Sr and Zr were much higher, reaching up to (1253.60 +/- 1649.58) microg x g(-1) and (372.40 +/- 516.49) microg x g(-1), respectively. The spatial distribution patterns of Al2O3, Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr, Cd and Hg concentrations were the same as each other except for those of As, Sr and Zr. Generally, relatively high concentrations of these elements only appeared in the Haikou Bay, Nandu estuary, Dongzhai Harbor, Qinglan Harbor and Xiaohai in study area. The factor analysis revealed that the trace elements Al2O3 Fe2O3, MnO, Cu, Ni, Zn, V, Pb, Cr and part of Hg were mainly originated from the rock material by natural weathering processes, while the Cd and a part of Hg were from the biological source controlled by TOC. As and part of MnO were influenced by anthropogenic source, especially by aquacultures. Zr and some MnO were derived from heavy minerals dominated by the coarse grain of sediments. In contrast to the ERL, ERM and the results of enrichment factors (EF) , the environment of study area was good in general and the degree of contamination by trace elements was low on the whole. However, there are still some places where anthropogenic input have caused serious enrichments of trace elements and the occasional adverse effect on benthic organism induced by Ni could probably occur in 22% areas of all the sampling stations.
Nicolau, Lídia; Monteiro, Sílvia S; Pereira, Andreia T; Marçalo, Ana; Ferreira, Marisa; Torres, Jordi; Vingada, José; Eira, Catarina
2017-07-01
Pollution is among the most significant threats that endanger sea turtles worldwide. Waters off the Portuguese mainland are acknowledged as important feeding grounds for juvenile loggerheads. However, there is no data on trace element concentrations in marine turtles occurring in these waters. We present the first assessment of trace element concentrations in loggerhead turtles (Caretta caretta) occurring off the coast of mainland Portugal. Also, we compare our results with those from other areas and discuss parameters that may affect element concentrations. Trace element concentrations (As, Cd, Cu, Pb, Mn, Hg, Ni, Se, Zn) were determined in kidney, liver and muscle samples from 38 loggerheads stranded between 2011 and 2013. As was the only element with higher concentrations in muscle (14.78 μg g -1 ww) than in liver or kidney. Considering non-essential elements, Cd presented the highest concentrations in kidney (34.67 μg g -1 ) and liver (5.03 μg g -1 ). Only a weak positive link was found between renal Cd and turtle size. Inter-elemental correlations were observed in both liver and kidney tissues. Hepatic Hg values (0.30 ± 0.03 μg g -1 ) were higher than values reported in loggerheads in the Canary Islands but lower than in Mediterranean loggerheads. Cd concentrations in the present study were only exceeded by values found in turtles from the Pacific. Although many endogenous and exogenous parameters related with complex life cycle changes and wide geographic range may influence trace element accumulation, the concentrations of Cd are probably related to the importance of crustaceans in loggerhead diet in the Portuguese coast. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wignarajah, Kanapathipillai; Pisharody, Suresh; Fisher, John W.
2003-01-01
The elemental composition of food consumed by astronauts is well defined. The major elements carbon, hydrogen, oxygen, nitrogen and sulfur are taken up in large amounts and these are often associated with the organic fraction (carbohydrates, proteins, fats etc) of human tissue. On the other hand, a number of the elements are located in the extracellular fluids and can be accounted for in the liquid and solid waste fraction of humans. These elements fall into three major categories - cationic macroelements (e.g. Ca, K, Na, Mg and Si), anionic macroelements (e.g. P, S and Cl and 17 essential microelements, (e.g. Fe, Mn, Cr, Co, Cu, Zn, Se and Sr). When provided in the recommended concentrations to an adult healthy human, these elements should not normally accumulate in humans and will eventually be excreted in the different human wastes. Knowledge of the partitioning of these elements between the different human waste fractions is important in understanding (a) developing waste separation technologies, (b) decision-making on how these elements can be recovered for reuse in space habitats, and (c) to developing the processors for waste management. Though considerable literature exists on these elements, there is a lack of understanding and often conflicting data. Two major reasons for these problems include the lack of controlled experimental protocols and the inherently large variations between human subjects (Parker and Gallagher, 1988). We have used the existing knowledge of human nutrition and waste from the available literature and NASA documentation to build towards a consensus to typify and chemically characterize the various human wastes. It is our belief, that this could be a building block towards integrating a human life support and waste processing in a closed system.
Derivation of an occupational exposure level for manganese in welding fumes.
Bailey, Lisa A; Kerper, Laura E; Goodman, Julie E
2018-01-01
Exposure to high levels of manganese (Mn) in occupational settings is known to lead to adverse neurological effects. Since Mn is an essential nutrient, there are mechanisms that maintain its homeostatic control in the body, and there is some level of Mn in air that does not perturb Mn homeostasis. However, the Mn exposure concentrations at which no adverse effects are expected in occupational settings vary considerably across regulatory agencies. We set out to derive a Mn Occupational Exposure Level (OEL) for welders based on a review of studies that evaluated Mn exposure concentrations from welding fumes and: (1) neurological effects in welders; (2) levels of Mn in the brains of welders (via pallidal index [PI] estimated from magnetic resonance imaging [MRI]); (3) other biomarkers of Mn exposure in welders (i.e., blood and urine); and (4) Mn brain concentrations, PI, and corresponding neurological effects in non-human primates. Our analysis suggests uncertainty in quantifying dose-response associations for Mn from many of the occupational welding studies. The few welding studies that adequately estimate exposure suggest a possible OEL of 100-140μg/m 3 for respirable Mn. This range is consistent with other epidemiology studies, studies of biomarkers of Mn exposure in welders, and with studies in non-human primates, though future studies could provide a stronger basis for deriving a Mn occupational guideline for welders. Copyright © 2017 Elsevier B.V. All rights reserved.
Genome-wide association study to identify candidate loci and genes for Mn toxicity tolerance in rice
Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby
2018-01-01
Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits. PMID:29425206
Shrestha, Asis; Dziwornu, Ambrose Kwaku; Ueda, Yoshiaki; Wu, Lin-Bo; Mathew, Boby; Frei, Michael
2018-01-01
Manganese (Mn) is an essential micro-nutrient for plants, but flooded rice fields can accumulate high levels of Mn2+ leading to Mn toxicity. Here, we present a genome-wide association study (GWAS) to identify candidate loci conferring Mn toxicity tolerance in rice (Oryza sativa L.). A diversity panel of 288 genotypes was grown in hydroponic solutions in a greenhouse under optimal and toxic Mn concentrations. We applied a Mn toxicity treatment (5 ppm Mn2+, 3 weeks) at twelve days after transplanting. Mn toxicity caused moderate damage in rice in terms of biomass loss and symptom formation despite extremely high shoot Mn concentrations ranging from 2.4 to 17.4 mg g-1. The tropical japonica subpopulation was more sensitive to Mn toxicity than other subpopulations. Leaf damage symptoms were significantly correlated with Mn uptake into shoots. Association mapping was conducted for seven traits using 416741 single nucleotide polymorphism (SNP) markers using a mixed linear model, and detected six significant associations for the traits shoot manganese concentration and relative shoot length. Candidate regions contained genes coding for a heavy metal transporter, peroxidase precursor and Mn2+ ion binding proteins. The significant marker SNP-2.22465867 caused an amino acid change in a gene (LOC_Os02g37170) with unknown function. This study demonstrated significant natural variation in rice for Mn toxicity tolerance and the possibility of using GWAS to unravel genetic factors responsible for such complex traits.
Trace elements and electrolytes in human resting mixed saliva after exercise
Chicharro, J. L.; Serrano, V.; Urena, R.; Gutierrez, A. M.; Carvajal, A.; Fernandez-, H; Lucia, A.
1999-01-01
OBJECTIVES: Exercise is known to cause changes in the concentration of salivary components such as amylase, Na, and Cl. The aim of this investigation was to evaluate the effect of physical exercise on the levels of trace elements and electrolytes in whole (mixed) saliva. METHODS: Forty subjects performed a maximal exercise test on a cycle ergometer. Samples of saliva were obtained before and immediately after the exercise test. Sample concentrations of Fe, Mg, Sc, Cr, Mn, Co, Cu, Zn, Se, Sr, Ag, Sb, Cs, and Hg were determined by inductively coupled plasma mass spectrometry and concentrations of Ca and Na by atomic absorption spectrometry. RESULTS: After exercise, Mg and Na levels showed a significant increase (p < 0.05) while Mn levels fell (p < 0.05). Zn/Cu molar ratios were unaffected by exercise. CONCLUSIONS: Intense physical exercise induced changes in the concentrations of only three (Na, Mg, and Mn) of the 16 elements analysed in the saliva samples. Further research is needed to assess the clinical implications of these findings. PMID:10378074
Heshmati, Ali; Karami-Momtaz, Javad; Nili-Ahmadabadi, Amir; Ghadimi, Sabah
2017-04-01
This study was conducted to determine and compare the concentrations of mercury (Hg), cadmium (Cd), arsenic (As), lead (Pb), nickel (Ni), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn), cobalt (Co), and selenium (Se) in the muscle of wild and farmed carp (Cyprinus carpio) and wild and farmed Caspian kutum (Rutilus frisii kutum) collected from south-western Caspian Sea areas of Iran between December 2014 and March 2015. In addition, risk assessment of consumers to exposure to metals through fish consumption was estimated. In all the samples, the arsenic concentration was lower than the detection limit. The Pb, Cd, Hg and Mn concentrations were significantly higher in the wild fish samples compared to the farmed fish samples. There was no significant difference in the Fe, Zn, Cu, Co, Ni and Se concentrations of the wild and farmed carp and the wild and farmed Caspian kutum. Iron displayed the highest concentration of all the analysed metals in both the wild and farmed fish, followed by Zn and Cu. The highest Hg, Cd, Pb, Ni, Fe, Zn, Cu, Mn, Co and Se concentrations were 0.056, 0.011, 0.065, 0.120, 4.151, 3.792, 2.948, 2.690, 0.037 and 0.162 μg g -1 , respectively. The estimated daily intake of all metals was acceptable, and the hazard quotient values showed that consumption of the analysed fish posed no health risk to consumers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Experimental performance of an internal resistance heater for Langley 6-inch expansion tube driver
NASA Technical Reports Server (NTRS)
Creel, T. R., Jr.
1972-01-01
An experimental investigation of the heating characteristics of an internal resistance heating element was conducted in the driver of the Langley 6-inch expansion tube to obtain actual operating conditions, to compare these results to theory, and to determine whether any modification need be made to the heater element. The heater was operated in pressurized helium from 138. MN/sq m to 62.1 MN/sq m. This investigation revealed large temperature variations within the heater element caused primarily by area reductions at insulator locations. These large temperature variations were reduced by welding small tabs over all grooves. Previous predictions of heater element and driver gas temperature were unacceptable so new equations were derived. These equations predict element and gas temperature within 10 percent of the test data when either the constant power cycle or the interrupted power cycle is used. Visual observation of the heater element, when exposed to the atmosphere with power on, resulted in a decision to limit the heater element to 815 K. Experimental shock Mach numbers are in good agreement with theory.
Taghaddos, Elaheh; Ma, T; Zhong, Hui; Zhou, Qifa; Wan, M X; Safari, Ahmad
2018-04-01
This paper discusses the fabrication and characterization of 3.5-MHz single-element transducers for therapeutic applications in which the active elements are made of hard lead-free BNT-based and hard commercial PZT (PZT-841) piezoceramics. Composition of (BiNa 0.88 K 0.08 Li 0.04 ) 0.5 (Ti 0.985 Mn 0.015 )O 3 (BNKLT88-1.5Mn) was used to develop lead-free piezoelectric ceramic. Mn-doped samples exhibited high mechanical quality factor ( ) of 970, thickness coupling coefficient ( ) of 0.48, a dielectric constant ( ) of 310 (at 1 kHz), depolarization temperature ( ) of 200 °C, and coercive field ( ) of 52.5 kV/cm. Two different unfocused single-element transducers using BNKLT88-1.5Mn and PZT-841 with the same center frequency of 3.5 MHz and similar aperture size of 10.7 and 10.5 mm were fabricated. Pulse-echo response, acoustic frequency spectrum, acoustic pressure field, and acoustic intensity field of transducers were characterized. The BNT-based transducer shows linear response up to the peak-to-peak voltage of 105 V in which the maximum rarefactional acoustic pressure of 1.1 MPa, and acoustic intensity of 43 W/cm 2 were achieved. Natural focal point of this transducer was at 60 mm from the surface of the transducer.
Box, Stephen E.; Bookstrom, Arthur A.; Ikramuddin, Mohammed; Lindsay, James
2001-01-01
(Fe), manganese (Mn), arsenic (As), and cadmium (Cd). In general inter-laboratory correlations are better for samples within the compositional range of the Standard Reference Materials (SRMs) from the National Institute of Standards and Technology (NIST). Analyses by EWU are the most accurate relative to the NIST standards (mean recoveries within 1% for Pb, Fe, Mn, and As, 3% for Zn and 5% for Cd) and are the most precise (within 7% of the mean at the 95% confidence interval). USGS-EDXRF is similarly accurate for Pb and Zn. XRAL and ACZ are relatively accurate for Pb (within 5-8% of certified NIST values), but were considerably less accurate for the other 5 elements of concern (10-25% of NIST values). However, analyses of sample splits by more than one laboratory reveal that, for some elements, XRAL (Pb, Mn, Cd) and ACZ (Pb, Mn, Zn, Fe) analyses were comparable to EWU analyses of the same samples (when values are within the range of NIST SRMs). These results suggest that, for some elements, XRAL and ACZ dissolutions are more effective on the matrix of the CdA samples than on the matrix of the NIST samples (obtained from soils around Butte, Montana). Splits of CdA samples analyzed by CHEMEX were the least accurate, yielding values 10-25% less than those of EWU.
NASA Astrophysics Data System (ADS)
Bradley, A. M.
2013-12-01
My poster will describe dc3dm, a free open source software (FOSS) package that efficiently forms and applies the linear operator relating slip and traction components on a nonuniformly discretized rectangular planar fault in a homogeneous elastic (HE) half space. This linear operator implements what is called the displacement discontinuity method (DDM). The key properties of dc3dm are: 1. The mesh can be nonuniform. 2. Work and memory scale roughly linearly in the number of elements (rather than quadratically). 3. The order of accuracy of my method on a nonuniform mesh is the same as that of the standard method on a uniform mesh. Property 2 is achieved using my FOSS package hmmvp [AGU 2012]. A nonuniform mesh (property 1) is natural for some problems. For example, in a rate-state friction simulation, nucleation length, and so required element size, scales reciprocally with effective normal stress. Property 3 assures that if a nonuniform mesh is more efficient than a uniform mesh (in the sense of accuracy per element) at one level of mesh refinement, it will remain so at all further mesh refinements. I use the routine DC3D of Y. Okada, which calculates the stress tensor at a receiver resulting from a rectangular uniform dislocation source in an HE half space. On a uniform mesh, straightforward application of this Green's function (GF) yields a DDM I refer to as DDMu. On a nonuniform mesh, this same procedure leads to artifacts that degrade the order of accuracy of the DDM. I have developed a method I call IGA that implements the DDM using this GF for a nonuniformly discretized mesh having certain properties. Importantly, IGA's order of accuracy on a nonuniform mesh is the same as DDMu's on a uniform one. Boundary conditions can be periodic in the surface-parallel direction (in both directions if the GF is for a whole space), velocity on any side, and free surface. The mesh must have the following main property: each uniquely sized element must tile each element larger than itself. A mesh generated by a family of quadtrees has this property. Using multiple quadtrees that collectively cover the domain enables the elements to have a small aspect ratio. Mathematically, IGA works as follows. Let Mn be the nonuniform mesh. Define Mu to be the uniform mesh that is composed of the smallest element in Mn. Every element e in Mu has associated subelements in Mn that tile e. First, a linear operator Inu mapping data on Mn to Mu implements smooth (C^1) interpolation; I use cubic (Clough-Tocher) interpolation over a triangulation induced by Mn. Second, a linear operator Gu implements DDMu on Mu. Third, a linear operator Aun maps data on Mu to Mn. These three linear operators implement exact IGA (EIGA): Gn = Aun Gu Inu. Computationally, there are several more details. EIGA has the undesirable property that calculating one entry of Gn for receiver ri requires calculating multiple entries of Gu, no matter how far away from ri the smallest element is. Approximate IGA (AIGA) solves this problem by restricting EIGA to a neighborhood around each receiver. Associated with each neighborhood is a minimum element size s^i that indexes a family of operators Gu^i. The order of accuracy of AIGA is the same as that of EIGA and DDMu if each neighborhood is kept constant in spatial extent as the mesh is refined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Ji-Hwan; Lu, Ping; Hoffman, Jason
2016-12-19
We construct the elemental distribution and lattice strain maps from the measured atomic column positions in a (LaNiO3)(4)/(LaMnO3)(2) superlattice over a large field of view. The correlation between the distribution of B-cations and the lattice parameter in the form of Vegard's law is validated using atomic resolution energy dispersive x-ray spectroscopy (EDS). The maps show negligible Mn intermixing in the LaNiO3 layer, while Ni intermixing in the LaMnO3 layer improves away from the substrate interface to 9.5 atomic% from the 8th period onwards, indicating that the superlattice interfacial sharpness is established as the distance from the substrate increases. The mapsmore » allow an observation of the compositional defects of the B-sites, which is not possible by Z-contrast alone. Thus, this study demonstrates a promising approach for atomic scale correlative study of lattice strain and composition, and a method for the calibration of atomic resolution EDS maps.« less
Role of Reactive Mn Complexes in a Litter Decomposition Model System
NASA Astrophysics Data System (ADS)
Nico, P. S.; Keiluweit, M.; Bougoure, J.; Kleber, M.; Summering, J. A.; Maynard, J. J.; Johnson, M.; Pett-Ridge, J.
2012-12-01
The search for controls on litter decomposition rates and pathways has yet to return definitive characteristics that are both statistically robust and can be understood as part of a mechanistic or numerical model. Herein we focus on Mn, an element present in all litter that is likely an active chemical agent of decomposition. Berg and co-workers (2010) found a strong correlation between Mn concentration in litter and the magnitude of litter degradation in boreal forests, suggesting that litter decomposition proceeds more efficiently in the presence of Mn. Although there is much circumstantial evidence for the potential role of Mn in lignin decomposition, few reports exist on mechanistic details of this process. For the current work, we are guided by the hypothesis that the dependence of decomposition on Mn is due to Mn (III)-oxalate complexes act as a 'pretreatment' for structurally intact ligno-carbohydrate complexes (LCC) in fresh plant cell walls (e.g. in litter, root and wood). Manganese (III)-ligand complexes such as Mn (III)-oxalate are known to be potent oxidizers of many different organic and inorganic compounds. In the litter system, the unique property of these complexes may be that they are much smaller than exo-enzymes and therefore more easily able to penetrate LCC complexes in plant cell walls. By acting as 'diffusible oxidizers' and reacting with the organic matrix of the cell wall, these compounds can increase the porosity of fresh litter thereby facilitating access of more specific lignin- and cellulose decomposing enzymes. This possibility was investigated by reacting cell walls of single Zinnia elegans tracheary elements with Mn (III)-oxalate complexes in a continuous flow reactor. The uniformity of these individual plant cells allowed us to examine Mn (III)-induced changes in cell wall chemistry and ultrastructure on the micro-scale using fluorescence and electron microscopy as well as IR and X-ray spectromicroscopy. This presentation will discuss the chemical changes induced by reaction of Mn (III)-complexes with the Zinnia cells, the impact of such reactions on cell integrity, and potential implications for soil C cycling.
Inferring episodic atmospheric iron fluxes in the Western South Atlantic
NASA Astrophysics Data System (ADS)
Evangelista, Heitor; Maldonado, Juan; dos Santos, Elaine A.; Godoi, Ricardo H. M.; Garcia, Carlos A. E.; Garcia, Virginia M. T.; Jonhson, Erling; Dias da Cunha, Kenya; Leite, Carlos Barros; Van Grieken, René; Van Meel, Katleen; Makarovska, Yaroslava; Gaiero, Diego M.
2010-02-01
Iron (Fe) and other trace elements such as Zn, Mn, Ni and Cu are known as key-factors in marine biogeochemical cycles. It is believed that ocean primary productivity blooms in iron deficient regions can be triggered by iron in aeolian dust. Up to now, scarce aerosol elemental composition, based on measurements over sea at the Western South Atlantic (WSA), exist. An association between the Patagonian semi-desert dust/Fe and chlorophyll-a variability at the Argentinean continental shelf is essentially inferred from models. We present here experimental data of Fe enriched aerosols over the WSA between latitudes 22°S-62°S, during 4 oceanographic campaigns between 2002 and 2005. These data allowed inferring the atmospheric Fe flux onto different latitudinal bands which varied from 30.4 to 1688 nmolFe m -2 day -1 (October 29th-November 15th, 2003); 5.83-1586 nmolFe m -2 day -1 (February 15th-March 6th, 2004) and 4.73-586 nmolFe m -2 day -1(October 21st-November 5th, 2005).
Ogunlaja, Olumuyiwa O O; Moodley, Roshila; Baijnath, Himansu; Jonnalagadda, Sreekantha B
2017-02-01
Ficussur (Moraceae) is an indigenous medicinal plant with a wide distribution in Africa. In this study, the nutritional potential fruit of this indigenous plant to meet domestic food demands and reduce food insecurity in KwaZulu-Natal. South Africa, was investigated. The proximate composition and concentrations of metals in the edible fruits collected from eight different sites in KwaZulu-Natal were determined to assess for nutritional value and the concentrations of metals in the growth soil was determined to evaluate the impact of soil quality on elemental uptake. The fruits contained high levels of moisture (88.8%) and carbohydrates (65.6%). The concentrations of elements in the fruits were found to be in decreasing order of Ca>Mg >Fe >Zn>Cu >Mn> Se with low levels of toxic metals (As, Cd, Co and Pb). This study shows that the consumption of the fruits of F. sur can contribute positively to the nutritional needs of rural communities in South Africa for most essential nutrients without posing the risk of adverse health effects.
Pokrovsky, O S; Shirokova, L S
2013-02-01
This work describes variation of element concentration in surface water of a subarctic organic-rich lake during the diurnal cycle of photosynthesis. An unusually hot summer 2010 in European part of subarctic Russia produced elevated surface water temperature (28-30 °C) and caused massive cyanobacterial bloom. Diurnal variation of ~40 dissolved macro and trace elements and organic carbon were recorded in the humic Lake Svyatoe in the White Sea drainage basin. Two days continuous measurements with 3 h sampling steps at the surface (0.5 m) allowed tracing cyanobacterial activity via pH and O₂ measurement and revealed constant concentrations (within ±20-30%) of all major elements (Na, Mg, Cl, SO₄, K, Ca), organic and inorganic carbon and most trace elements (Li, B, Sc, Ti, Ni, Cu, Ga, As, Rb, Sr, Y, Zr, Mo, Sb, medium and heavy REEs, Hf, Pb, Th, U). The concentration of Mn demonstrated a factor of 3 decrease during the day following Mn adsorption onto cyanobacterial cells due to ~1 pH unit raise during the photosynthesis and Mn release during the night due to desorption from the cell surface. The role of Mn(II) photo-oxidation by reactive oxygen species could be also pronounced, although its contribution to Mn diurnal variation was much smaller than the adsorption at the cell surfaces. Similar pattern, but with much lesser variations (c.a., 10-20%), was recorded for Ba and Fe. On-site ultrafiltration technique allowed to distinguish between low molecular weight (LMW) complexes (<1 kDa) and high molecular weight (HMW) colloids (1 kDa-0.22 μm) and to assess their diurnal pattern. Colloidal Al and Fe were the highest during the night, when the contribution of HMW allochthonous colloids was maximal. Typical insoluble trivalent and tetravalent elements exhibited constant complexation (>80-90%) with HMW allochthonous organics, independent on the diel photosynthetic cycle. Finally, biologically-relevant metals (Cu, Co, Cr, V, and Ni) demonstrated significant variations of colloidal fractions (from 10 to 60%) not directly related to the photosynthesis. The majority of possible metal nutrients, being strongly associated with organic and organo-mineral colloids do not exhibit any measurable concentration variation during photosynthesis. The two types of element behavior during cyanobacterial bloom in the water column--constant concentration and sinusoidal variations--likely depend on element speciation in solution and their relative affinity to surfaces of aquatic microorganisms and complexation with authochthonous and allochthonous organic matter. Copyright © 2012 Elsevier Ltd. All rights reserved.
Buzatu, Traian; Popescu, Gabriela; Birloaga, Ionela; Săceanu, Simona
2013-03-01
Used batteries contain numerous metals in high concentrations and if not disposed of with proper care, they can negatively affect our environment. These metals represent 83% of all spent batteries and therefore it is important to recover metals such as Zn and Mn, and reuse them for the production of new batteries. The recovery of Zn and Mn from used batteries, in particular from Zn-C and alkaline ones has been researched using hydrometallurgical methods. After comminution and classification of elemental components, the electrode paste resulting from these processes was treated by chemical leaching. Prior to the leaching process the electrode paste has been subjected to two washing steps, in order to remove the potassium, which is an inconvenient element in this type of processes. To simultaneously extract Zn and Mn from this paste, the leaching method in alkaline medium (NaOH solution) and acid medium (sulphuric acid solution) was used. Also, to determine the efficiency of extraction of Zn and Mn from used batteries, the following variables were studied: reagents concentration, S/L ratio, temperature, time. The best results for extraction yield of Zn and Mn were obtained under acid leaching conditions (2M H2SO4, 1h, 80°C). Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon
2008-08-01
Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.
NASA Astrophysics Data System (ADS)
Gandois, L.; Agnan, Y.; Leblond, S.; Séjalon-Delmas, N.; Le Roux, G.; Probst, A.
2014-10-01
In order to assess the influence of local environment and spatial integration of Trace Metals (TM) by biomonitors, Al, As, Cd, Cr, Cs, Cu, Fe, Mn, Ni, Pb, Sb, Sn, V and Zn and some rare earth element (REE) concentrations have been measured in lichens and mosses collected in three French forest sites located in three distinct mountainous areas, as well as in the local soil and bedrock, and in both bulk deposition (BD) and throughfall (TF). Similar enrichment factors (EF) were calculated using lichens and mosses and local bedrock for most elements, except for Cs, Mn, Ni, Pb, and Cu which were significantly (KW, p < 0.05) more enriched in mosses. Similar REE ratios were measured in soils, bedrock, lichens and mosses at each study sites, indicating a regional integration of atmospheric deposition by both biomonitors. Both TM signature and REE composition of mosses revealed that this biomonitor is highly influenced by throughfall composition, and reflect atmospheric deposition interaction with the forest canopy. This explained the higher enrichment measured in mosses for elements which concentration in deposition were influenced by the canopy, either due to leaching (Mn), direct uptake (Ni), or dry deposition dissolution (Pb, Cu, Cs).
Trace elements in muscle of three fish species from Todos os Santos Bay, Bahia State, Brazil.
de Santana, Carolina Oliveira; de Jesus, Taíse Bomfim; de Aguiar, William Moura; de Jesus Sant'anna Franca-Rocha, Washington; Soares, Carlos Alberto Caroso
2017-03-01
In this study, an analysis was performed on the concentrations of the trace elements Al, As, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn in muscle of two carnivorous and one planktivorous fish species collected at Todos os Santos Bay (BTS). The accumulation order of the trace elements in Lutjanus analis was Al >Zn >Fe >Cr >Ba >Ni. In Cetengraulis edentulus, the order was Al >Fe >Zn >Cr >Ni >Mn >As. In the species Diapterus rhombeus, the order was Al >Fe >Zn >Cr >Ni >Mn >Cd. To determine the risk related to the consumption of fish, toxicity guidelines were used as standard references. It was observed that the species C. edentulus contained concentrations of As exceeding WHO limits, but these concentrations were acceptable according to the Agência Nacional de Vigilância Sanitária (ANVISA) guidelines. Cd levels were found only in D. rhombeus and in low concentrations according to the determinations of WHO and ANVISA. Pb levels were not detected in any of the three fish species. The analyzed elements did not differ statistically according to the species and feeding habits. The results point to possible risks of human contamination by As related to the consumption of the fish species C. edentulus from the BTS.
Gunst, S; Weinbruch, S; Wentzel, M; Ortner, H M; Skogstad, A; Hetland, S; Thomassen, Y
2000-02-01
Aerosol particle samples were collected at ELKEM ASA ferromanganese (FeMn) and silicomanganese (SiMn) smelters at Porsgrunn, Norway, during different production steps: raw material mixing, welding of protective steel casings, tapping of FeMn and slag, crane operation moving the ladles with molten metal, operation of the Metal Oxygen Refinement (MOR) reactor and casting of SiMn. Aerosol fractions were assessed for the analysis of the bulk elemental composition as well as for individual particle analysis. The bulk elemental composition was determined by inductively coupled plasma atomic emission spectrometry. For individual particle analysis, an electron microprobe was used in combination with wavelength-dispersive techniques. Most particles show a complex composition and cannot be attributed to a single phase. Therefore, the particles were divided into six groups according to their chemical composition: Group I, particles containing mainly metallic Fe and/or Mn; Group II, slag particles containing mainly Fe and/or Mn oxides; Group III, slag particles consisting predominantly of oxidized flux components such as Si, Al, Mg, Ca, Na and K; Group IV, particles consisting mainly of carbon; Group V, mixtures of particles from Groups II, III and IV; Group VI, mixtures of particles from Groups II and III. In raw material mixing, particles originating from the Mn ores were mostly found. In the welding of steel casings, most particles were assigned to Group II, Mn and Fe oxides. During the tapping of slag and metal, mostly slag particles from Group III were found (oxides of the flux components). During movement of the ladles, most particles came from Group II. At the MOR reactor, most of the particles belonged to the slag phase consisting of the flux components (Group III). The particles collected during the casting of SiMn were mainly attributed to the slag phase (Groups III and V). Due to the compositional complexity of the particles, toxicological investigations on the kinetics of pure compounds may not be easily associated with the results of this study.
Manganese deposition in drinking water distribution systems.
Gerke, Tammie L; Little, Brenda J; Barry Maynard, J
2016-01-15
This study provides a physicochemical assessment of manganese deposits on brass and lead components from two fully operational drinking water distributions systems. One of the systems was maintained with chlorine; the other, with secondary chloramine disinfection. Synchrotron-based in-situ micro X-ray adsorption near edge structure was used to assess the mineralogy. In-situ micro X-ray fluorescence mapping was used to demonstrate the spatial relationships between manganese and potentially toxic adsorbed metal ions. The Mn deposits ranged in thickness from 0.01 to 400 μm. They were composed primarily of Mn oxides/oxhydroxides, birnessite (Mn(3+) and Mn(4+)) and hollandite (Mn(2+) and Mn(4+)), and a Mn silicate, braunite (Mn(2+) and Mn(4+)), in varying proportions. Iron, chromium, and strontium, in addition to the alloying elements lead and copper, were co-located within manganese deposits. With the exception of iron, all are related to specific health issues and are of concern to the U.S. Environmental Protection Agency (U.S. EPA). The specific properties of Mn deposits, i.e., adsorption of metals ions, oxidation of metal ions and resuspension are discussed with respect to their influence on drinking water quality. Copyright © 2015 Elsevier B.V. All rights reserved.
Elemental analysis and nutritional value of edible Trifolium (clover) species.
Gounden, Thaveshan; Moodley, Roshila; Jonnalagadda, Sreekantha B
2018-04-30
Trifolium species, commonly known as clover species, have a cosmopolitan distribution and, as such, are used in many different traditional systems of medicine and consumed by many communities all over the world. In this study, the elemental distribution and nutritional value of five edible Trifolium species, namely, Trifolium africanum, Trifolium burchellianum, Trifolium repens, Trifolium dubium and Trifolium pratense were investigated to evaluate the potential of these plant species to alleviate malnutrition, thereby contributing toward the fight against food insecurity. Trifolium species were found to be a rich alternate source of essential nutrients with concentrations of elements being in decreasing order of Ca > Mg > Fe > Mn > Zn > Se > Cu > Cr > Pb > Ni > Co > Cd > As and with adequate levels of lipids (4.2 to 8.6%), proteins (35.1 to 45.4%) and carbohydrates (26.7 to 47.0%). Trifolium species were found to be rich in Se (contributing greater than 516% toward its RDA) with T. dubium having a concentration of 0.53 mg 10 g -1 , dry mass, which is higher than Brazil nuts. T. pratense was found to be the most suitable species for human consumption due to it having low levels of toxic metals (As, Cd and Pb) while being rich in macro- and micro-elements, especially Fe (7.84 mg 10 g -1 , dry mass) and Se (0.36 mg 10 g -1 , dry mass).
Abandoned mine slags analysis by EPMA WDS X-ray mapping
NASA Astrophysics Data System (ADS)
Guimarães, F.; Rosado, L.; Morais, C.; Candeias, A. E.; Pinto, A. P.; Mirão, J.
2010-02-01
Mining activity on the Iberian Pyritic Belt (Portugal and Spain) started before Phoenician times, became particularly intense during the Roman occupation of the Iberian Peninsula (for gold), and after the industrial revolution (for gold, copper, zinc, lead and sulphur). The commonest ore of this region is a massive polymetalic sulphide accumulation, where pyrite (FeS2) is the main mineral, with variable concentrations of chalcopyrite (CuFeS2), sphalerite (ZnS), galena (PbS), arsenopyrite (FeAsS2), other sulphides and sulfosalts which include minor elements like Mn, Co, Ni, Se, Cd, Sb, Te, Hg and Bi. Some of the main and minor elements of these ores are hazardous and the drainage basins of pollutant source areas often induce health concerns in the resident population. Electron probe microanalysis study followed previous optical and XRD analysis of the slags. The study focused on the identification of phases how sulphide and metallic phases are distributed within the material and infer about leachable elements during weathering. Electron probe X-ray maps show evidences of different behaviour between the elements: Ca and Zn are completely leached; iron is retained in oxyhydroxides, lead and arsenic precipitate as sulphates. Electron probe microanalysis studies are essential to understand complex materials as earth materials. Nevertheless, care is required to a correct interpretation of data and most quantitative compositional data are not trustworthy.
Trace metal partitioning in Thalassia testudinum and sediments in the Lower Laguna Madre, Texas.
Whelan, Thomas; Espinoza, Jorge; Villarreal, Xiomara; Cottagoma, Maria
2005-01-01
Seagrass communities dominate the Laguna Madre, which accounts for 25% of the coastal region of Texas. Seagrasses are essential to the health of the Laguna Madre (LM) and have experienced an overall decline in coverage in the Lower Laguna Madre (LLM) since 1967. Little is known on the existing environmental status of the LLM. This study focuses on the trace metal chemistry of four micronutrient metals, Fe, Mn, Cu, and Zn, and two non-essential metals, Pb and As, in the globally important seagrass Thalassia testudinum. Seasonal trends show that concentrations of most essential trace metals increase in the tissue during the summer months. With the exception of (1) Cu in the vertical shoot and root, and (2) Mn in the roots, no significant positive correlation exists between the rhizosphere sediment and T. testudinum tissue. Iron indicates a negative correlation between the morphological units and the rhizosphere sediments. No other significant relationship was found between the sediments and the T. testudinum tissue. Mn was enriched up to 10-fold in the leaf tissue relative to the other morphological units and also enriched relative to the rhizosphere sediments. Both Cu and Mn appear to be enriched in leaf tissue compared to other morphological units and also enriched relative to the Cu and Mn in the rhizoshpere sediments. Sediments cores taken in barren areas were slightly elevated in Zn relative to the rhizosphere sediments, whereas no other metals showed statistical differences between barren sediment cores and rhizosphere sediments. However, no correlation was measured in T. testudinum tissue and Zn in rhizosphere sediments. Previous studies suggested that Fe/Mn ratios could indicate differences between seagrass environments. Our results indicate that there is an influence from the Rio Grande in the Fe/Mn signature in sediments, and that ratio is not reflected in the T. testudinum tissue. The results from this study show that the LLM contains trace metal concentrations less than or equal to values for uncontaminated locations worldwide. In addition, there appears to be a complex partitioning in the trace metals in the morphological units of T. testudinum tissue and that analysis only of the leaf may not be indicative of the trace metal levels in this important seagrass species.
NASA Astrophysics Data System (ADS)
Darwish, Mohamed Abdallah Gad; Pöllmann, Hebert
2015-12-01
Determination of chemical elements, Al, Cd, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, P, Pb, Sc, Sr, Ti, Y, and Zn have been performed in agricultural and desert soils and alfalfa (Medicago sativa) at Aswan area. Consequently, the pollution indices, univariate and multivariate statistical methods have been applied, in order to assess the geochemical characteristics of these elements and their impact on soil environmental quality and plant, and to reach for their potential input sources. The investigation revealed that the mean and range values of all element concentrations in agricultural soil are higher than those in desert soil. Furthermore, the agricultural soil displayed various degrees of enrichment and pollution of Cd, Zn, Mo, Co, P, Ti, Pb. The geochemical pattern of integrated pollution indices gave a clear image of extreme and strong pollution in the agricultural soil stations, their poor quality with high risk to human health and considered as a tocsin for an alert. In contrast, the desert soil is the good environmental quality and safe for plant, animal and human health. Alfalfa is tolerant plant and considered as a biomarker for P and Mo in polluted agricultural soil. Four geochemical associations of analyzing elements in agricultural soil and three ones in desert soil have been generated, and their enhancements were essentially caused by various anthropogenic activities and geogenic sources. The investigation also revealed that the broad extended desert soil is fruitful and promising as cultivable lands for agricultural processes in the futures.
Miedico, Oto; Iammarino, Marco; Paglia, Giuseppe; Tarallo, Marina; Mangiacotti, Michele; Chiaravalle, A Eugenio
2016-06-01
In this work, environmental heavy metal contamination in the Val d'Agri area of Southern Italy was monitored, measuring the accumulation of 18 heavy metals (U, Hg, Pb, Cd, As, Sr, Sn, V, Ni, Cr, Mo, Co, Cu, Zn, Ca, Mn, Fe, and Al) in the organs of animals raised in the surrounding area (kidney, lung, and liver of bovine and ovine species). Val d'Agri features various oil processing centers which are potentially a significant source of environmental pollution, making it essential to perform studies that will outline the state of the art on which any recovery plans and interventions may be developed. The analysis was carried out using official and accredited analytical methods based on inductively coupled plasma mass spectrometry, and the measurements were statistically processed in order to give a contribution to risk assessment. Even though five samples showed Pb and Cd concentrations above the limits defined in the European Commission Regulation (EC) No 1881/2006, the mean concentrations of most elements suggest that contamination in this area is low. Consequently, these results also suggest that there is no particular risk for human exposure to toxic trace elements. Nevertheless, the findings of this work confirm that element accumulation in ovine species is correlated with geographical livestock area. Therefore, ovine-specific organs might be used as bioindicators for monitoring contamination by specific toxic elements in exposed areas.
PIXE and ICP-MS Analysis of Andrographis Paniculata Medicinal Plant
NASA Astrophysics Data System (ADS)
Chandrasekhar Rao, J.; Naidu, B. G.; Sarita, P.; Srikanth, S.; Naga Raju, G. J.
2017-08-01
The concentrations of elements Li, Be, Al, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Ag, Cd, Ba, Pb and U in Andrographis Paniculata medicinal plant used in the treatment of Diabetes Mellitus were determined by using Particle Induced X-ray Emission (PIXE) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) techniques. This plant was collected from four different geographical locations in Andhra Pradesh, India in order to assess the regional variation of elemental concentrations. Appreciable levels of K, Ca, Cr, Mn, Cu and Zn determined in this plant can be correlated to the antidiabetic property of Andrographis Paniculata since these elements are known to regulate and potentiate insulin action. Presence of toxic elements As, Cd and Pb necessitates the adoption of precautionary measures while prescribing dosage of the herbal medicine prepared from this plant for the treatment diabetes mellitus.
Wang, Nai-Xing; Cui, Xue-Gui; Du, Ai-Qin; Mao, Hong-Zhi
2007-06-01
Flame atomic absorption spectrometry with air-acetylene flame was used for the determination of inorganic metal elements in different parts ( flower, leaf, stem and root) of Sonchus oleraceus L. The contents of Ca, Mg, K, Na, Fe, Mn, Cu, Zn, Cr, Co, Ni, Pb and Cd in the flower, leaf, stem and root of Sonchus oleraceus L were compared. The order from high to low of the additive weight (microg x g(-1)) for the 13 kinds of metal elements is as follows: leaf (77 213.72) > flower (47 927.15) > stem(42 280.99) > root (28 131.18). From the experimental results it was found that there were considerable differences in the contents of the metal elements in different parts, and there were richer contents of Fe, Zn, Mn and Cu in root and flower, which are necessary to human health, than in other parts.
Band gap tuning in transition metal oxides by site-specific substitution
Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok
2013-12-24
A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.
Amemiya, T
1999-12-01
To examine the effect of vitamins and trace elements on ocular tissue. Rats or mice were fed diets deficient in the trace elements Zn, Cu, Mn, Se, Mg, and Cr or in vitamins A, B12, C, and E. In some rats Al and vitamin A were injected in excessive amounts. We studied the conjunctiva, cornea, retina, and optic nerve with a light microscope, transmission and scanning electron microscopes, an energy dispersive X-ray analyser, and an ion microscope. Histochemical, cytochemical, and immunohistochemical techniques were applied to the pathological specimens. Deficiencies of Zn, Cu, Mn, and vitamins A, C and E caused a loss of goblet cells in the conjunctiva and a prominent decrease of microvilli and microplicae in the conjunctiva and cornea. The elements in the goblet cells were changed in these conditions. In addition, epithelial cells showed poor fibrous development and abnormal distribution of chromatin in the nucleus. Zn, Cu, Mn, and vitamins A and E deficiencies caused photoreceptor cells to degenerate and disappear. Se deficiency reduced the horizontal and amacrine cells. Vitamin B12 deficiency reduced nerve fibers in the nerve fiber layer of the retina. Mg deficiency induced multifocal necrosis in the retinal pigment epithelium and apoptotic nuclear changes in the photoreceptor cells. Cr deficiency showed abnormal phagocytosis of the photoreceptor outer segment discs in the retinal pigment epithelium. Vitamin B12 was found to be related to the circadian rhythm in the retina. Deficiencies of Zn, Cu, Mn, and vitamins A, B12, and E induced degeneration and disappearance of myelin lamellae in the myelinated optic nerve fibers. In hypervitaminosis A, lipid droplets appeared in the retinal pigment epithelium and alcohol dehydrogenase disappeared in the retinal pigment epithelium and photoreceptor outer segments. Excessive Al was toxic to the retina, which showed disappearance of photoreceptor cells. Al deposits were seen in dendrites and neurons in the outer plexiform layer. Zn seemed to be necessary for corneal epithelial cell wound healing. Trace elements usually are contained in enzymes, which have many metabolic functions. They are related to synthesis and breakdown of many substances. Some trace elements such as Zn, Cu, Mn, and Se and vitamins including vitamins A, C, and E prevent peroxidation of lipids. Some vitamins have an affinity for specific tissues such as epithelial cells, nerve fibers, and neuronal cells and are needed for cell differentiation, development, and maintenance. Cu, Zn, Mn, Se, Mg, and Cr and vitamins A, B12, C, and E are necessary for maintenance of cellular structure and metabolism.
Amemiya
2000-05-01
Purpose: To examine the effect of vitamins and trace elements on ocular tissue.Materials and Methods: Rats or mice were fed diets deficient in the trace elements Zn, Cu, Mn, Se, Mg, and Cr or in vitamins A, B(12), C, and E. In some rats Al and vitamin A were injected in excessive amounts. We studied the conjunctiva, cornea, retina, and optic nerve with a light microscope, transmission and scanning electron microscopes, an energy dispersive X-ray analyzer, and an ion microscope. Histochemical, cytochemical, and immunohistochemical techniques were applied to the pathological specimens.Results: Deficiencies of Zn, Cu, Mn, and vitamins A, C and E caused a loss of goblet cells in the conjunctiva and a prominent decrease of microvilli and microplicae in the conjunctiva and cornea. The elements in the goblet cells were changed in these conditions. In addition, epithelial cells showed poor fibrous development and abnormal distribution of chromatin in the nucleus.Zn, Cu, Mn, and vitamins A and E deficiencies caused photoreceptor cells to degenerate and disappear. Se deficiency reduced the horizontal and amacrine cells. Vitamin B(12) deficiency reduced nerve fibers in the nerve fiber layer of the retina. Mg deficiency induced multifocal necrosis in the retinal pigment epithelium and apoptotic nuclear changes in the photoreceptor cells. Cr deficiency showed abnormal phagocytosis of the photoreceptor outer segment discs in the retinal pigment epithelium. Vitamin B(12) was found to be related to the circadian rhythm in the retina.Deficiencies of Zn, Cu, Mn, and vitamins A, B(12), and E induced degeneration and disappearance of myelin lamellae in the myelinated optic nerve fibers.In hypervitaminosis A, lipid droplets appeared in the retinal pigment epithelium and alcohol dehydrogenase disappeared in the retinal pigment epithelium and photoreceptor outer segments. Excessive Al was toxic to the retina, which showed disappearance of photoreceptor cells. Al deposits were seen in dendrites and neurons in the outer plexiform layer.Zn seemed to be necessary for corneal epithelial cell wound healing.Discussion: Trace elements usually are contained in enzymes, which have many metabolic functions. They are related to synthesis and breakdown of many substances. Some trace elements such as Zn, Cu, Mn, and Se and vitamins including vitamins A, C, and E prevent peroxidation of lipids. Some vitamins have an affinity for specific tissues such as epithelial cells, nerve fibers, and neuronal cells and are needed for cell differentiation, development, and maintenance.Conclusion: Cu, Zn, Mn, Se, Mg, and Cr and vitamins A, B(12), C, and E are necessary for maintenance of cellular structure and metabolism.
Badran, M; Morsy, R; Soliman, H; Elnimr, T
2016-01-01
The trace elements metabolism has been reported to possess specific roles in the pathogenesis and progress of diabetes mellitus. Due to the continuous increase in the population of patients with Type 2 diabetes (T2D), this study aims to assess the levels and inter-relationships of fast blood glucose (FBG) and serum trace elements in Type 2 diabetic patients. This study was conducted on 40 Egyptian Type 2 diabetic patients and 36 healthy volunteers (Hospital of Tanta University, Tanta, Egypt). The blood serum was digested and then used to determine the levels of 24 trace elements using an inductive coupled plasma mass spectroscopy (ICP-MS). Multivariate statistical analysis depended on correlation coefficient, cluster analysis (CA) and principal component analysis (PCA), were used to analysis the data. The results exhibited significant changes in FBG and eight of trace elements, Zn, Cu, Se, Fe, Mn, Cr, Mg, and As, levels in the blood serum of Type 2 diabetic patients relative to those of healthy controls. The statistical analyses using multivariate statistical techniques were obvious in the reduction of the experimental variables, and grouping the trace elements in patients into three clusters. The application of PCA revealed a distinct difference in associations of trace elements and their clustering patterns in control and patients group in particular for Mg, Fe, Cu, and Zn that appeared to be the most crucial factors which related with Type 2 diabetes. Therefore, on the basis of this study, the contributors of trace elements content in Type 2 diabetic patients can be determine and specify with correlation relationship and multivariate statistical analysis, which confirm that the alteration of some essential trace metals may play a role in the development of diabetes mellitus. Copyright © 2015 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.
2016-08-01
The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, G.-F., E-mail: wgf1979@126.com; Zhang, X., E-mail: zhangx@hit.edu.cn; Sun, S.-W., E-mail: s-shuwen@163.com
3-(4-(1H-Benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one (L{sup 1}, 1) and its Mn(II) complex, [Mn(L{sup 1}){sub 2}(SCN){sub 2}]{sub ∞} (2), were synthesized and characterized by elemental analyses, IR spectroscopy and single-crystal X-ray diffraction. The Mn(II) ion in 2 is six-coordinated to four nitrogen atoms of two L{sup 1} ligands, two SCN-ligands, and two oxygen atoms of other two L{sup 1} ligands to form a distorted octahedral geometry. Therefore, each L{sup 1} links Mn ions through the O and N atoms to generate 2D sheet structure.
NASA Astrophysics Data System (ADS)
Kim, H.; Bishop, J. K.
2013-12-01
Groundwater flowing through weathered bedrock dictates the runoff chemistry to streams in many catchments yet; its chemical evolution has been rarely documented. In particular, observations of Fe and Mn dynamics in groundwater are extremely challenging due to their high reactivity. To preserve the sample integrity for these elements we have developed a new sampling scheme that is applicable to autosamplers; a gravitational filtration system (GFS). GFS is capable of filtering samples by gravity within 30 minutes after the sampling. The GFS samples showed a good agreement with reference samples, which were collected following the standard sampling method for trace metals (i.e. immediate filtration and acidification). Since October 2011, GFS has been employed to monitor Fe and Mn in perched groundwater that moves through weathered argillite in an intensively instrumented hillslope (Rivendell), in the Angelo Coast Range Reserve. The study site is located at the headwaters of the Eel River, northern California, characterized by a typical coastal Californian Mediterranean climate. We collected groundwater samples at 3 wells along the hillslope (upslope (W10), mid-slope (W3) and near the creek (W1)) with 1-3 day intervals. Additionally, rainwater and throughfall samples were collected at a meadow near the hillslope and at the middle of the hillslope, respectively. The results from our observations indicate that Fe and Mn exhibit distinct spatial and temporal behavior under variable hydrologic conditions. The concentrations of Fe in throughfall vs. rainwater were similar (0.45μM vs. 0.49μM), but Mn in throughfall was 10-fold higher than that in rainwater (1.2 μM vs. 0.1 μM). In the early rainy season, W10's water table was deep (-18m) and Fe and Mn in W10 were 30-150 nM and 1-2 μM, respectively. As the rainy season proceeds, W10's water table rose by 4-6m, indicating the arrival of new water. At this time, Mn in W10 decreased to ~0.1 μM, synchronizing with the water table rise, and remained unchanged throughout the season. In contrast, Fe slowly declined to <10nM for this high water table regime. During the summer recession limb, Fe and Mn concentrations in W10 began to increase. During the dry summer, the concentrations of Fe and Mn at W3 were 2-3μM and 15-20 μM, respectively. At the beginning of the rainy seasons, the W3 water table slowly rose (<1 m) and both Fe and Mn decreased by 10-fold. The concentrations of Fe and Mn decreased to 20-70nM and 0.1 μM, respectively, when W3's water table became highly dynamic and fluctuated about 4 m. At W1, Fe and Mn remained in the 50-100nM and 5-10 μM ranges, respectively; however, the water table was extremely responsive to rainfall inputs. Mn in W1 was briefly diluted to <0.1 μM during large rainstorms and rebounded within several days. In the late summer of 2012, Fe and Mn in W1 increased up to 2-6 μM and 80 μM, respectively. These high-frequency observations of Fe and Mn will provide insight into the biogeochemical cycles of redox sensitive elements in upland terrains, allowing for better quantitative estimation of these elemental fluxes.
2014-01-01
Two α-MnO2 crystals with caddice-clew-like and urchin-like morphologies are prepared by the hydrothermal method, and their structure and electrochemical performance are characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), galvanostatic cell cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). The morphology of the MnO2 prepared under acidic condition is urchin-like, while the one prepared under neutral condition is caddice-clew-like. The identical crystalline phase of MnO2 crystals is essential to evaluate the relationship between electrochemical performances and morphologies for lithium-ion battery application. In this study, urchin-like α-MnO2 crystals with compact structure have better electrochemical performance due to the higher specific capacity and lower impedance. We find that the relationship between electrochemical performance and morphology is different when MnO2 material used as electrochemical supercapacitor or as anode of lithium-ion battery. For lithium-ion battery application, urchin-like MnO2 material has better electrochemical performance. PMID:24982603
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel.
Li, Fangjie; Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-10-19
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as "pre-alloying", has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7-4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3-5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards.
Impacts of Modification of Alloying Method on Inclusion Evolution in RH Refining of Silicon Steel
Li, Huigai; Zheng, Shaobo; You, Jinglin; Han, Ke; Zhai, Qijie
2017-01-01
This study explores the effect of introducing additional alloy elements not only in a different order but also at different stages of the Ruhrstahl-Heraeus (RH) process of low-carbon silicon steel production. A more economical method, described as “pre-alloying”, has been introduced. The evolution of MnO-FeO inclusions produced by pre-alloying was investigated. Results show that spherical 3FeO·MnO inclusions form first, then shelled FeO·zMnO (z = 0.7–4) inclusions nucleate on the surface of pre-existing 3FeO·MnO. Spherical FeO·zMnO (z = 3–5) is further evolved from shelled 3FeO·MnO by diffusion. Because these MnO-FeO inclusions float up into the slag before degassing, the pre-alloying process does not affect the quality of the melt in the end. Both carbon content and inclusion size conform to industry standards. PMID:29048379
Rare-earth-free high energy product manganese-based magnetic materials.
Patel, Ketan; Zhang, Jingming; Ren, Shenqiang
2018-06-14
The constant drive to replace rare-earth metal magnets has initiated great interest in an alternative. Manganese (Mn) has emerged to be a potential candidate as a key element in rare-earth-free magnets. Its five unpaired valence electrons give it a large magnetocrystalline energy and the ability to form several intermetallic compounds. These factors have led Mn-based magnets to be a potential replacement for rare-earth permanent magnets for several applications, such as efficient power electronics, energy generators, magnetic recording and tunneling applications, and spintronics. For past few decades, Mn-based magnets have been explored in many different forms, such as bulk magnets, thin films, and nanoparticles. Here, we review the recent progress in the synthesis and structure-magnetic property relationships of Mn-based rare-earth-free magnets (MnBi, MnAl and MnGa). Furthermore, we discuss their potential to replace rare-earth magnetic materials through the control of their structure and composition to achieve the theoretically predicted magnetic properties.
Elemental investigation of Syrian medicinal plants using PIXE analysis
NASA Astrophysics Data System (ADS)
Rihawy, M. S.; Bakraji, E. H.; Aref, S.; Shaban, R.
2010-09-01
Particle induced X-ray emission (PIXE) technique has been employed to perform elemental analysis of K, Ca, Mn, Fe, Cu, Zn, Br and Sr for Syrian medicinal plants used traditionally to enhance the body immunity. Plant samples were prepared in a simple dried base. The results were verified by comparing with those obtained from both IAEA-359 and IAEA-V10 reference materials. Relative standard deviations are mostly within ±5-10% suggest good precision. A correlation between the elemental content in each medicinal plant with its traditional remedial usage has been proposed. Both K and Ca are found to be the major elements in the samples. Fe, Mn and Zn have been detected in good levels in most of these plants clarifying their possible contribution to keep the body immune system in good condition. The contribution of the elements in these plants to the dietary recommended intakes (DRI) has been evaluated. Advantages and limitations of PIXE analytical technique in this investigation have been reviewed.
Fahad, S. M.; Islam, A. F. M. Mahmudul; Ahmed, Mahiuddin; Alam, Md. Rezaul; Alam, Md. Ferdous; Khalik, Md. Farhan; Hossain, Md. Lokman; Abedin, Md. Joynal
2015-01-01
The concentrations of 18 different elements (K, Ca, Fe, Cl, P, Zn, S, Mn, Ti, Cr, Rb, Co, Br, Sr, Ru, Si, Ni, and Cu) were analyzed in five selected vegetables through Proton Induced X-ray Emission (PIXE) technique. The objective of this study was to provide updated information on concentrations of elements in vegetables available in the local markets at Savar subdistrict in Bangladesh. These elements were found in varying concentrations in the studied vegetables. The results also indicated that P, Cl, K, Ca, Mn, Fe, and Zn were found in all vegetables. Overall, K and Ca exhibited the highest concentrations. Cu and Ni exhibited the lowest concentrations in vegetables. The necessity of these elements was also evaluated, based on the established limits of regulatory standards. The findings of this study suggest that the consumption of these vegetables is not completely free of health risks. PMID:26229953
Bimetallic Co-Mn Perovskite Fluorides as Highly-Stable Electrode Materials for Supercapacitors.
Shi, Wei; Ding, Rui; Li, Xudong; Xu, Qilei; Ying, Danfeng; Huang, Yongfa; Liu, Enhui
2017-11-02
Bimetallic Co-Mn perovskite fluorides (KCo x Mn 1-x F 3 , denoted as K-Co-Mn-F) with various Co/Mn ratios (1:0, 12:1, 6:1, 3:1, 1:1, 1:3, 0:1) were prepared through a one-pot solvothermal strategy and further used as electrode materials for supercapacitors. The optimal K-Co-Mn-F candidate (Co/Mn=6:1) showed a size range of 0.1-1 μm and uniform elemental distribution; exhibiting small changes in XRD peaks and XPS binding energy in comparison to the bare K-Co-F and K-Mn-F, due to the structural/electronic effects. Owing to the stronger synergistic effect of Co/Mn redox species, the K-Co-Mn-F (Co/Mn=6:1) electrode exhibited superior specific capacity and rate behavior (113-100 C g -1 at 1-16 Ag -1 ) together with excellent cycling stability (118 % for 5000 cycles at 8 Ag -1 ), and the activated carbon (AC)//K-Co-Mn-F (Co/Mn=6:1) asymmetric capacitor showed superior energy and power densities (8.0-2.4 Wh kg -1 at 0.14-8.7 kW kg -1 ) along with high cycling stability (90 % for 10 000 cycles at 5 Ag -1 ). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optimization of Layered Cathode Materials for Lithium-Ion Batteries
Julien, Christian; Mauger, Alain; Zaghib, Karim; Groult, Henri
2016-01-01
This review presents a survey of the literature on recent progress in lithium-ion batteries, with the active sub-micron-sized particles of the positive electrode chosen in the family of lamellar compounds LiMO2, where M stands for a mixture of Ni, Mn, Co elements, and in the family of yLi2MnO3•(1 − y)LiNi½Mn½O2 layered-layered integrated materials. The structural, physical, and chemical properties of these cathode elements are reported and discussed as a function of all the synthesis parameters, which include the choice of the precursors and of the chelating agent, and as a function of the relative concentrations of the M cations and composition y. Their electrochemical properties are also reported and discussed to determine the optimum compositions in order to obtain the best electrochemical performance while maintaining the structural integrity of the electrode lattice during cycling. PMID:28773717
Yueh, Fang-Yu; Sharma, Ramesh C; Singh, Jagdish P; Zhang, Hansheng; Spencer, William A
2002-11-01
The analytical figure of merit of the potential of laser-induced breakdown spectroscopy (LIBS) has been evaluated for detection of trace element in liquid. LIBS data of Mg, Cr, Mn, and Re were studied. Various optical geometries, which produce the laser spark in and at the liquid sample, were tested. The calibration curves for Mg, Cr, Mn, and Re were obtained at the optimized experimental conditions with bulk liquid and in liquid jet. It was found that measurements using a liquid jet provide better detection limits than bulk liquid measurements. The limits of detection (LOD) of Mg, Cr, Mn, and Re in the present liquid jet measurement are found to be 0.1, 0.4, 0.7, and 8 ppm, respectively. The LOD of Mg using Mg 279.55 nm was compared with the values found in other liquid work.
Manganese toxicity upon overexposure
Crossgrove, Janelle; Zheng, Wei
2014-01-01
Manganese (Mn) is a required element and a metabolic byproduct of the contrast agent mangafodipir trisodium (MnDPDP). The Mn released from MnDPDP is initially sequestered by the liver for first-pass elimination, which allows an enhanced contrast for diagnostic imaging. The administration of intravenous Mn impacts its homeostatic balance in the human body and can lead to toxicity. Human Mn deficiency has been reported in patients on parenteral nutrition and in micronutrient studies. Mn toxicity has been reported through occupational (e.g. welder) and dietary overexposure and is evidenced primarily in the central nervous system, although lung, cardiac, liver, reproductive and fetal toxicity have been noted. Mn neurotoxicity results from an accumulation of the metal in brain tissue and results in a progressive disorder of the extrapyramidal system which is similar to Parkinson's disease. In order for Mn to distribute from blood into brain tissue, it must cross either the blood–brain barrier (BBB) or the blood–cerebrospinal fluid barrier (BCB). Brain import, with no evidence of export, would lead to brain Mn accumulation and neurotoxicity. The mechanism for the neurodegenerative damage specific to select brain regions is not clearly understood. Disturbances in iron homeostasis and the valence state of Mn have been implicated as key factors in contributing to Mn toxicity. Chelation therapy with EDTA and supplementation with levodopa are the current treatment options, which are mildly and transiently efficacious. In conclusion, repeated administration of Mn, or compounds that readily release Mn, may increase the risk of Mn-induced toxicity. PMID:15617053
Tensile and high cycle fatigue behaviors of high-Mn steels at 298 and 110 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Wongyu; Jeong, Daeho; Sung, Hyokyung
Tensile and high cycle fatigue behaviors of high-Mn austenitic steels, including 25Mn, 25Mn0.2Al, 25Mn0.5Cu, 24Mn4Cr, 22Mn3Cr and 16Mn2Al specimens, were investigated at 298 and 110 K. Depending on the alloying elements, tensile ductility of high-Mn steels either increased or decreased with decreasing temperature from 298 to 110 K. Reasonable correlation between the tendency for martensitic tranformation, the critical twinning stress and the percent change in tensile elongation suggested that tensile deformation of high-Mn steels was strongly influenced by SFE determining TRIP and TWIP effects. Tensile strength was the most important parameter in determining the resistance to high cycle fatigue ofmore » high-Mn steels with an exceptional work hardening capability at room and cryogenic temperatures. The fatigue crack nucleation mechanism in high-Mn steels did not vary with decreasing tempertature, except Cr-added specimens with grain boundary cracking at 298 K and slip band cracking at 110 K. The EBSD (electron backscatter diffraction) analyses suggested that the deformation mechanism under fatigue loading was significantly different from tensile deformation which could be affected by TRIP and TWIP effects. - Highlights: •The resistances to HCF of various high-Mn steels were measured. •The variables affecting tensile and HCF behaviors of high-Mn steels were assessed. •The relationship between tensile and the HCF behaviors of high-Mn steels was established.« less
Novel Co- or Ni-Mn binary oxide catalysts with hydroxyl groups for NH3-SCR of NOx at low temperature
NASA Astrophysics Data System (ADS)
Gao, Fengyu; Tang, Xiaolong; Yi, Honghong; Zhao, Shunzheng; Wang, Jiangen; Shi, Yiran; Meng, Xiaomi
2018-06-01
Novel hydroxyl-containing Me-Mn binary oxides (Me = Co, Ni) were prepared for the selective catalytic reduction of NOx with NH3 by a combined complexation-esterification method. The binary oxides of Co-MnOx and Ni-MnOx with mixed crystal phases of Mn3O4 and Co3O4, Mn2O3 and NiMnO3 were obtained at 550 °C. SCR activity decreased in the order of Mn3O4-Co3O4-OH > Mn2O3-NiMnO3-OH > Mn2O3-OH > Mn3O4-OH, benefiting from the high concentration of chemisorbed oxygen and effective electron transformation of cations. Mn2O3-containing catalysts had better selectivity to N2 than those containing Mn3O4. Higher selectivity to N2O over Mn3O4-containing catalysts was attributed to the depth dehydrogenation of coordinated NH3 by the active oxygen species with lower Mnsbnd O band energy. The typical Eley-Rideal mechanism over Mn3O4-OH and Mn3O4-Co3O4-OH, and the additional formation pathway of NH4NO3 species over Mn2O3-OH and Mn2O3-NiMnO3-OH catalysts were proposed via the in-situ DRIFTS experiments. Although the Co and Ni elements had a good role in delaying the poisoning of SO2, these catalysts were eventually sulfated by SO2 over the postponement, which might due to the metal sulfate and ammonia hydrogensulfite species.
Nordløkken, Marit; Berg, Torunn; Flaten, Trond Peder; Steinnes, Eiliv
2015-01-01
Concentrations of essential and non-essential elements in five widespread species of natural boreal vegetation were studied with respect to seasonal variation and contribution from different sources. The plant species included in the study were Betula pubescens, Sorbus aucuparia, Vaccinium myrtillus, Vaccinium uliginosum, Calluna vulgaris and Deschampsia flexuosa. Concentrations of elements essential to plants remained essentially constant or decreased slightly throughout the growing season. Concentrations of most non-essential elements increased or tended to increase on a dry mass basis from June to July as well as from July to September. The increasing trend for these elements was observed for all species except C. vulgaris. Principal component analysis (PCA) of the material indicated a common source for many of the non-essential elements; Sc, Ti, V, Ga, As, Y, Sb, lanthanides, Pb, Bi, and U, i.e. both elements presumably of geogenic origin and elements associated with trans-boundary air pollution. Uptake by plant roots appeared to be the main source of nutrient elements as well as some non-essential elements. Copyright © 2014 Elsevier B.V. All rights reserved.
Measuring the content of 17 elements in the flesh of Prunus cerasifera and its cultivars by ICP-MS.
Shen, Jing; Xue, Hai-Yan; Li, Gai-Ru; Lu, Yi; Yao, Jun
2014-09-01
The present study compared the contents of inorganic elements in the pulp of purple, red, and yellow Prunus cerasifera with its cultivars. A method was established for the analysis of 17 kinds of trace elements (K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Be, Li, Se, Sr, Cr, Pb, Cd, As and Hg) in the flesh of Prunus cerasifera by microwave digestion-ICP-MS. The detection method is simple and quick, yet shoes high precision and high sensitivity. The recovery rate of 17 elements ranged, from 93.5% to 110.4%. The analysis results showed that the contents of 17 elements in the flesh of purple, red, and yellow Prunus cerasifera and its cultivars are similar, containing extremely rich K elements (as high as 1 per thousand) and higher contents of Ca, Mg, Na, Fe and Mn. The contents of Cu, Zn, Li, Se, Sr and Cr are also present. The contents of Pb, Cd, As, Hg and other harmful element are either very low or not detectable. The experimental results for the study of trace elements in pulp of Prunus cerasifera and its cultivars provide empirical data for. future research in this area.
Seasonal variations of trace elements in precipitation at the largest city in Tibet, Lhasa
NASA Astrophysics Data System (ADS)
Guo, Junming; Kang, Shichang; Huang, Jie; Zhang, Qianggong; Tripathee, Lekhendra; Sillanpää, Mika
2015-02-01
Precipitation samples were collected from March 2010 to August 2012 at an urban site in Lhasa, the capital and largest city of Tibet. The volume weighted mean (VWM) concentrations of 17 trace elements in precipitation were higher during the non-monsoon season than in the monsoon season, but inverse seasonal variations occurred for wet deposition fluxes of most of the trace elements. Concentrations for most of trace elements were negatively correlated with precipitation amount, indicating that below-cloud scavenging of trace elements was an important mechanism contributing to wet deposition of these elements. The elements Al, Sc, V, Cr, Mn, Fe, Mn, Ni, and U displayed low crustal enrichment factors (EFs), whereas Co, Cu, Zn, As, Cd Sn, Pb, and Bi showed high EF values in precipitation, suggesting that anthropogenic activities might be important contributors of these elements at Lhasa. However, this present work indicates a much lower anthropogenic emission at Lhasa than in seriously polluted regions. Our study will not only provide insights for assessing the current status of the atmospheric environment in Lhasa but also enhance our understanding for updating the baseline for environmental protection over the Tibetan Plateau.
NASA Astrophysics Data System (ADS)
Ertl, Andreas; Giester, Gerald; Schüssler, Ulrich; Brätz, Helene; Okrusch, Martin; Tillmanns, Ekkehart; Bank, Hermann
2013-04-01
Cu- and Mn-bearing tourmalines from Brazil and Mozambique were characterised chemically (EMPA and LA-ICP-MS) and by X-ray single-crystal structure refinement. All these samples are rich in Al, Li and F (fluor-elbaite) and contain significant amounts of CuO (up to ~1.8 wt%) and MnO (up to ~3.5 wt%). Structurally investigated samples show a pronounced positive correlation between the < Y-O> distances and the (Li + Mn2+ + Cu + Fe2+) content (apfu) at this site with R 2 = 0.90. An excellent negative correlation exists between the < Y-O> distances and the Al2O3 content ( R 2 = 0.94). The samples at each locality generally show a strong negative correlation between the X-site vacancies and the (MnO + FeO) content. The Mn content in these tourmalines depends on the availability of Mn, on the formation temperature, as well as on stereochemical constraints. Because of a very weak correlation between MnO and CuO we believe that the Cu content in tourmaline is essentially dependent on the availability of Cu and on stereochemical constraints.
Theory of the magnetism in La2NiMnO6
NASA Astrophysics Data System (ADS)
Sanyal, Prabuddha
2017-12-01
The magnetism of ordered and disordered La2NiMnO6 is explained using a model involving double exchange and superexchange. An important feature of this model is the majority spin hybridization in the large coupling limit, which results in ferromagnetism rather than ferrimagnetism as in Sr2FeMoO6 . The ferromagnetic insulating ground state in the ordered phase is explained. The essential role played by the Ni-Mn superexchange between the Ni eg electron spins and the Mn t2 g core electron spins in realizing this ground state is outlined. In the presence of antisite disorder, the model system is found to exhibit a tendency of becoming a spin glass at low temperatures, while it continues to retain a ferromagnetic transition at higher temperatures, similar to recent experimental observations [D. Choudhury et al., Phys. Rev. Lett. 108, 127201 (2012), 10.1103/PhysRevLett.108.127201]. This reentrant spin glass or reentrant ferromagnetic behavior is explained in terms of the competition of the ferromagnetic double exchange between the Ni eg and the Mn eg electrons, and the ferromagnetic Ni-Mn superexchange, with the antiferromagnetic antisite Mn-Mn superexchange.
"Mobile Nurse" platform for ubiquitous medicine.
Struzik, Z R; Yoshiuchi, K; Sone, M; Ishikawa, T; Kikuchi, H; Kumano, H; Watsuji, T; Natelson, B H; Yamamoto, Y
2007-01-01
We introduce "Mobile Nurse" (MN) - an emerging platform for the practice of ubiquitous medicine. By implementing in a dynamic setting of daily life the patient care traditionally provided by the clinical nurses on duty, MN aims at integral data collection and shortening the response time to the patient. MN is also capable of intelligent interaction with the patient and is able to learn from the patient's behavior and disease sign evaluation for improved personalized treatment. In this paper, we outline the most essential concepts around the hardware, software and methodological designs of MN. We provide an example of the implementation, and elaborate on the possible future impact on medical practice and biomedical science research. The main innovation of MN, setting it apart from current tele-medicine systems, is the ability to integrate the patient's signs and symptoms on site, providing medical professionals with powerful tools to elucidate disease mechanisms, to make proper diagnoses and to prescribe treatment.
Suwalsky, M; Villena, F; Sotomayor, C P
2010-01-01
While traces of manganese (Mn) take part in important and essential functions in biology, elevated exposures have been shown to cause significant toxicity. Chronic exposure to the metal leads to manganese neurotoxicity (or manganism), a brain disorder that resembles Parkinsonism. Toxic effect mechanisms of Mn is not understood, toxic concentrations of manganese are not well defined and blood manganese concentration at which neurotoxicity occurs has not been identified. There are reports indicating that the most abundant Mn-species in Mn carriers within blood is the Mn-citrate complex. Despite the well-documented information about the toxic effects of Mn, there are scarce reports concerning the effects of manganese compounds on both structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of Mn with cell membranes, MnCl(2), and the Mn-citrate complex were incubated with intact erythrocytes, isolated unsealead human erythrocyte membranes (IUM), and molecular models of the erythrocyte membrane. These consisted in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of the erythrocyte membrane, respectively. The capacity of the Mn compounds to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction, IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). In all these systems it was found that Mn(2+) exerted considerable higher structural perturbations than the Mn-citrate complex.
Photosystem II Functionality in Barley Responds Dynamically to Changes in Leaf Manganese Status
Schmidt, Sidsel B.; Powikrowska, Marta; Krogholm, Ken S.; Naumann-Busch, Bianca; Schjoerring, Jan K.; Husted, Søren; Jensen, Poul E.; Pedas, Pai R.
2016-01-01
A catalytic manganese (Mn) cluster is required for the oxidation of water in the oxygen-evolving complex (OEC) of photosystem II (PSII) in plants. Despite this essential role of Mn in generating the electrons driving photosynthesis, limited information is available on how Mn deficiency affects PSII functionality. We have here used parameters derived from measurements of fluorescence induction kinetics (OJIP transients), non-photochemical quenching (NPQ) and PSII subunit composition to investigate how latent Mn deficiency changes the photochemistry in two barley genotypes differing in Mn efficiency. Mn deficiency caused dramatic reductions in the quantum yield of PSII and led to the appearance of two new inflection points, the K step and the D dip, in the OJIP fluorescence transients, indicating severe damage to the OEC. In addition, Mn deficiency decreased the ability to induce NPQ in the light, rendering the plants incapable of dissipating excess energy in a controlled way. Thus, the Mn deficient plants became severely affected in their ability to recover from high light-induced photoinhibition, especially under strong Mn deficiency. Interestingly, the Mn-efficient genotype was able to maintain a higher NPQ than the Mn-inefficient genotype when exposed to mild Mn deficiency. However, during severe Mn deficiency, there were no differences between the two genotypes, suggesting a general loss of the ability to disassemble and repair PSII. The pronounced defects of PSII activity were supported by a dramatic decrease in the abundance of the OEC protein subunits, PsbP and PsbQ in response to Mn deficiency for both genotypes. We conclude that regulation of photosynthetic performance by means of maintaining and inducing NPQ mechanisms contribute to genotypic differences in the Mn efficiency of barley genotypes growing under conditions with mild Mn deficiency. PMID:27933084
Elder, John F.
2007-01-01
A study of concentrations and distribution of major and trace elements in surficial bottom sediments of Little Rock Lake in northern Wisconsin included examination of spatial variation and grain-size effects. No significant differences with respect to metal distribution in sediments were observed between the two basins of the lake, despite the experimental acidification of one of the basins from pH 6.1 to 4.6. The concentrations of most elements in the lake sediments were generally similar to soil concentrations in the area and were well below sediment quality criteria. Two exceptions were lead and zinc, whose concentrations in July 1990 exceeded the criteria of 50 μg/g and 100 μg/g, respectively, in both littoral and pelagic sediments. Concentrations of some elements, particularly Cu, Pb, and Zn, increased along transects from nearshore to midlake, following a similar gradient of sedimentary organic carbon. In contrast, Mn, Fe, and alkali/alkaline-earth elements were at maximum concentrations in nearshore sediments. These elements are less likely to partition to organic particles, and their distribution is more dependent on mineralogical composition, grain size, and other factors. Element concentrations varied among different sediment grain-size fractions, although a simple inverse relation to grain size was not observed. Fe, Mn, Pb, and Zn were more concentrated in a grain-size range 20–60 tm than in either the very fine or the coarse fractions, possibly because of the aggregation of smaller particles cemented together by organic and Fe/Mn hydrous-oxide coatings.
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
Li, Boyan; Zhang, Lei; Li, Chengliang; ...
2018-04-18
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
The effect of Mn/Ni on thermodynamic properties of critical nucleus in Fe-Cu-Mn (Ni) ternary alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Boyan; Zhang, Lei; Li, Chengliang
The aging- or radiation-induced hardening of Cu/Mn/Ni precipitates in Fe alloys is one of property degradation mechanisms in structural materials in nuclear reactors. Experiments show that aging or radiation leads the formation of Cu-rich precipitates, and the addition of Mn or Ni elements enhances the precipitation kinetics. In this study, the phase-field model coupled with the constrained string method have been applied to investigate the thermodynamic properties of critical nuclei such as the minimum energy path of Cu/Mn/Ni precipitation in Fe-Cu-Mn and Fe-Cu-Ni ternary alloys. The chemical free energies used in the model are taken from CALPHAD. The simulation resultsmore » show that the formation of Cu/Mn/Ni clusters needs to overcome an energy barrier, and the precipitate has a Core-Shell structure. The thermodynamic properties of the critical nucleus are influenced by temperature and Cu/Mn/Ni overall concentrations, which are in accordance with the simulation results as well as the experimental observations.« less
Inter-Domain Roaming Mechanism Transparent to Mobile Nodes among PMIPv6 Networks
NASA Astrophysics Data System (ADS)
Park, Soochang; Lee, Euisin; Jin, Min-Sook; Kim, Sang-Ha
In Proxy Mobile IPv6 (PMIPv6), when a Mobile Node (MN) enters a PMIPv6 domain and attaches to an access link, the router on the access link detects attachment of the MN by the link-layer access. All elements of PMIPv6 including the router then provide network-based mobility management service for the MN. If the MN moves to another router in this PMIPv6 domain, the new router emulates attachment to the previous router by providing same network prefix to the MN. In other words, PMIPv6 provides rapid mobility management based on layer-2 attachment and transparent mobility support to the MN by emulating layer-3 attachment with respect to intra-domain roaming. However, when the MN moves to other PMIPv6 domains, although the domains also provide the network-based mobility management service, the MN should exploit the host-based mobility management protocol, i.e. Mobile IPv6 (MIPv6), for the inter-domain roaming. Hence, this letter proposes the rapid and transparent inter-domain roaming mechanism controlled by the networks adopting PMIPv6.
Evaluation of heavy metals content in dietary supplements in Lebanon.
Korfali, Samira Ibrahim; Hawi, Tamer; Mroueh, Mohamad
2013-01-18
The consumption of dietary supplements is widely spread and on the rise. These dietary supplements are generally used without prescriptions, proper counseling or any awareness of their health risk. The current study aimed at analyzing the metals in 33 samples of imported dietary supplements highly consumed by the Lebanese population, using 3 different techniques, to ensure the safety and increase the awareness of the citizen to benefit from these dietary supplements. Some samples had levels of metals above their maximum allowable levels (Fe: 24%, Zn: 33%, Mn: 27%, Se: 15%, Mo: 12% of samples), but did not pose any health risk because they were below permitted daily exposure limit and recommended daily allowance except for Fe in 6% of the samples. On the other hand, 34% of the samples had Cu levels above allowable limit where 18% of them were above their permitted daily exposure and recommended daily allowance. In contrast, all samples had concentration of Cr, Hg, and Pb below allowable limits and daily exposure. Whereas, 30% of analyzed samples had levels of Cd above allowable levels, and were statistically correlated with Ca, and Zn essential minerals. Similarly 62% of the samples had levels of As above allowable limits and As levels were associated with Fe and Mn essential minerals. Dietary supplements consumed as essential nutrients for their Ca, Zn, Fe and Mn content should be monitored for toxic metal levels due to their natural geochemical association with these essential metals to provide citizens the safe allowable amounts.
Salton Sea 1/sup 0/ x 2/sup 0/ NTMS area California and Arizona: data report (abbreviated)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heffner, J.D.
1980-09-01
Surface sediment samples were collected at 997 sites. Ground water samples were collected at 76 sites. Neutron activation analysis results are given for uranium and 16 other elements in sediments, and for uranium and 9 other elements in ground water. Mass spectrometry results are given for helium in ground water. Data from ground water sites include (1) water chemistry measurements (pH, conductivity, and alkalinity) (2) physical measurements (water temperature, well description where applicable, and scintillometer reading) and (3) elemental analyses (U, Al, Br, Cl, Dy, F, He, Mg, Mn, Na and V). Data from sediment sites include (1) stream watermore » chemistry measurements from sites where water was available and (2) elemental analyses (U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Sc, Sm, Na, Ti, V, and Yb). Sample site descriptors are given. Areal distribution maps, histograms, and cumulative frequency plots for the elements listed above; U/Th and U/Hf ratios; and scintillometer readings at sediment sample sites are included. Analyses of the sediment fraction finer than 149..mu..m show high uranium values clustered in the Eagle and Chuckwalla Mountains. High uranium values in the 420 ..mu..m to 1000 ..mu..m fraction are clustered in the McCoy Mountains. Both fractions show groups of high values in the Chocolate Mountains at the Southeastern edge of the Chocolate Mountains Aerial Gunnery Range. Aerial distribution of analytical values shows that high values of many elements in both size fractions are grouped around the Eagle Mountains and the Chuckwalla Mountains. Fe, Mn, Ti, V, Sc, Hf, and the rare earth elements, all of which typically occur in high-density minerals, have higher average (log mean) concentrations in the finer fraction than in the coarser fraction.« less
In vitro analysis of the properties of Beiqishen tea.
Blázovics, A; Szentmihályi, K; Lugasi, A; Balázs, A; Hagymási, K; Bányai, E; Then, M; Rapavi, E; Héthelyi, E
2003-10-01
Chinese Beiqishen tea was studied in an in vitro test system. Phytochemical screening, trace element analysis, and the analysis of antioxidant properties were carried out. Characteristic constituents were determined by chromatographic (capillary gas chromatography and GCQ Ion Trap mass spectrometry) and spectrometric (ultraviolet and UV-VIS) methods. Element concentrations were determined by inductively coupled plasma optical emission spectrometry. Antioxidant capacity was studied by spectrophotometric and luminometric techniques using a Berthold Lumat 9501 luminometer. Hydrogen-donating activity, reducing power, and total scavenger capacity were measured. Total polyphenol content was 20.77 +/- 0.52 g/100 g of drug; total flavonoid content was 0.485 +/- 0.036 g/100 g of drug; and tannin content was 9.063 +/- 0.782 g/100 g of drug. Caffeine content was 1.08 mg/100 g of drug. Essential oils were identified by gas chromatography: (+)-limonene (21%), p-cymene (1.7%), estragol (3.2%), beta-ocimene (1.4%), and thymol (2.6%). Metallic ion analysis showed significantly high concentrations of Al, As, Ba, Cr, Cu, Fe, Mn, Ni, and Ti in the drug. Antioxidant and scavenger properties were identified as a function of concentration. The tea infusion contained some non-desirable trace elements and caffeine in addition to polyphenols and tannins in high concentrations. Therefore, the consumption of this tea may involve risks.
Magnetic analytic bond-order potential for modeling the different phases of Mn at zero Kelvin
NASA Astrophysics Data System (ADS)
Drain, John F.; Drautz, Ralf; Pettifor, D. G.
2014-04-01
It is known that while group VII 4d Tc and 5d Re have hexagonally close-packed (hcp) ground states, 3d Mn adopts a complex χ-phase ground state, exhibiting complex noncollinear magnetic ordering. Density functional theory (DFT) calculations have shown that without magnetism, the χ phase is still the ground state of Mn implying that magnetism and the resultant atomic-size difference between large- and small-moment atoms are not the critical factors, as is commonly believed, in driving the anomalous stability of the χ phase over hcp. Using a canonical tight-binding (TB) model, it is found that for a more than half-filled d band, while harder potentials stabilize close-packed hcp, a softer potential stabilizes the more open χ phase. By analogy with the structural trend from open to close-packed phases down the group IV elements, the anomalous stability of the χ phase in Mn is shown to be due to 3d valent Mn lacking d states in the core which leads to an effectively softer atomic repulsion between the atoms than in 4d Tc and 5d Re. Subsequently, an analytic bond-order potential (BOP) is developed to investigate the structural and magnetic properties of elemental Mn at 0 K. It is derived within BOP theory directly from a new short-ranged orthogonal d-valent TB model of Mn, the parameters of which are fitted to reproduce the DFT binding energy curves of the four experimentally observed phases of Mn, namely, α, β, γ, δ, and ɛ-Mn. Not only does the BOP reproduce qualitatively the DFT binding energy curves of the five different structure types, it also predicts the complex collinear antiferromagnetic (AFM) ordering in α-Mn, the ferrimagnetic ordering in β-Mn, and the AFM ordering in γ-, δ-, and ɛ-Mn that are found by DFT. A BOP expansion including 14 moments is sufficiently converged to reproduce most of the properties of the TB model with the exception of the elastic shear constants, which require further moments. The current TB model, however, predicts values of the shear moduli and the vacancy formation energies that are approximately a factor of 2 too small, so that a future more realistic model for MD simulations will require these properties to be included from the outset in the fitting database.
Opportunities to improve the in vivo measurement of manganese in human hands.
Aslam; Chettle, D R; Pejović-Milić, A; Waker, A J
2009-01-07
Manganese (Mn) is an element which is both essential for regulating neurological and skeletal functions in the human body and also toxic when humans are exposed to excessive levels. Its excessive inhalation as a result of exposure through industrial and environmental emissions can cause neurological damage, which may manifest as memory deficit, loss of motor control and reduction in the refinement of certain body motions. A number of clinical studies demonstrate that biological monitoring of Mn exposure using body fluids, particularly blood, plasma/serum and urine is of very limited use and reflect only the most recent exposure and rapidly return to within normal ranges. In this context, a non-invasive neutron activation technique has been developed at the McMaster University accelerator laboratory that could provide an alternative to measure manganese stored in the bones of exposed subjects. In a first pilot study we conducted recently on non-exposed human subjects to measure the ratio of Mn to Ca in hand bones, it was determined that the technique needed further development to improve the precision of the measurements. It could be achieved by improving the minimum detection limit (MDL) of the system from 2.1 microg Mn/g Ca to the reference value of 0.6 microg g(-1) Ca (range: 0.16-0.78 microg Mn/g Ca) for the non-exposed population. However, the developed procedure might still be a suitable means of screening patients and people exposed to excessive amounts of Mn, who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. To improve the MDL of the technique to the expected levels of Mn in a reference population, the present study investigates further optimization of irradiation conditions, which includes the optimal selection of proton beam energy, beam current and irradiation time and the effect of upgrading the 4pi detection system. The maximum local dose equivalent that could be given to the hand as a result of irradiation was constrained to be less than 150 mSv as opposed to the previously imposed dose equivalent limit of 20 mSv. A maximum beam current, which could be delivered on the lithium target to produce neutrons, was restricted to 500 microA. The length of irradiation intervals larger than 10 min, was considered inconvenient and impractical to implement with Mn measurements in humans. To fulfil the requirements for developing a protocol for in vivo bone Mn measurements, a revised estimate of the dose equivalent has been presented here. Beam energy of 1.98 MeV was determined to be optimal to complete the irradiation procedure within 10 min using 500 microA beam current. The local dose equivalent given to hand was estimated as 118 mSv, which is lower by a factor of 1.5 compared to that of 2.00 MeV. The optimized beam parameters are expected to improve the currently obtained detection limit of 2.1 microg Mn/g Ca to 0.6 microg Mn/g Ca. Using this dose equivalent delivered to the central location of the hand, the average dose equivalent to the hand of 74 mSv and an effective dose of approximately 70 microSv will be accompanying the non-invasive, in vivo measurements of bone Mn, which is little over the chest radiograph examination dose.
Opportunities to improve the in vivo measurement of manganese in human hands
NASA Astrophysics Data System (ADS)
Aslam; Chettle, D. R.; Pejović-Milić, A.; Waker, A. J.
2009-01-01
Manganese (Mn) is an element which is both essential for regulating neurological and skeletal functions in the human body and also toxic when humans are exposed to excessive levels. Its excessive inhalation as a result of exposure through industrial and environmental emissions can cause neurological damage, which may manifest as memory deficit, loss of motor control and reduction in the refinement of certain body motions. A number of clinical studies demonstrate that biological monitoring of Mn exposure using body fluids, particularly blood, plasma/serum and urine is of very limited use and reflect only the most recent exposure and rapidly return to within normal ranges. In this context, a non-invasive neutron activation technique has been developed at the McMaster University accelerator laboratory that could provide an alternative to measure manganese stored in the bones of exposed subjects. In a first pilot study we conducted recently on non-exposed human subjects to measure the ratio of Mn to Ca in hand bones, it was determined that the technique needed further development to improve the precision of the measurements. It could be achieved by improving the minimum detection limit (MDL) of the system from 2.1 µg Mn/g Ca to the reference value of 0.6 µg g-1 Ca (range: 0.16-0.78 µg Mn/g Ca) for the non-exposed population. However, the developed procedure might still be a suitable means of screening patients and people exposed to excessive amounts of Mn, who could develop many-fold increased levels of Mn in bones as demonstrated through various animal studies. To improve the MDL of the technique to the expected levels of Mn in a reference population, the present study investigates further optimization of irradiation conditions, which includes the optimal selection of proton beam energy, beam current and irradiation time and the effect of upgrading the 4π detection system. The maximum local dose equivalent that could be given to the hand as a result of irradiation was constrained to be less than 150 mSv as opposed to the previously imposed dose equivalent limit of 20 mSv. A maximum beam current, which could be delivered on the lithium target to produce neutrons, was restricted to 500 µA. The length of irradiation intervals larger than 10 min, was considered inconvenient and impractical to implement with Mn measurements in humans. To fulfil the requirements for developing a protocol for in vivo bone Mn measurements, a revised estimate of the dose equivalent has been presented here. Beam energy of 1.98 MeV was determined to be optimal to complete the irradiation procedure within 10 min using 500 µA beam current. The local dose equivalent given to hand was estimated as 118 mSv, which is lower by a factor of 1.5 compared to that of 2.00 MeV. The optimized beam parameters are expected to improve the currently obtained detection limit of 2.1 µg Mn/g Ca to 0.6 µg Mn/g Ca. Using this dose equivalent delivered to the central location of the hand, the average dose equivalent to the hand of 74 mSv and an effective dose of approximately 70 µSv will be accompanying the non-invasive, in vivo measurements of bone Mn, which is little over the chest radiograph examination dose.
Guo, Hua; Zhang, Na; Liu, Di; Wang, Ping; Ma, Xingyuan
2016-10-01
Mitochondrial antioxidant manganese superoxide dismutase (MnSOD) belongs to a group of genes whose expression is generally decreased significantly in patients with hepatoma. The proliferation of cancer cells with low expression of MnSOD exhibit high sensitivity to the elevated expression of MnSOD. However, due to the lack of ability to penetrate the cell membrane, the direct use and study of SOD for cancer treatment are largely hampered. In this work, cell penetrating peptide TAT was fused to the N-terminus of MnSOD to facilitate the penetration of MnSOD through cell membranes. Results showed that TAT-MnSOD wt treatment induced evident inhibitory effect on the proliferation of heptoma, with minimal effect on normal cells. It was further demonstrated that both the penetration of cells and enzymatic activity of MnSOD are essential to its inhibitory function, because only TAT-MnSOD wt, not inactive TAT-MnSOD mutant or MnSOD could successfully inhibit cell proliferation and reduce the intra-celluar reactive oxygen species (ROS). In addition, the lower oxidative stress delayed the cell cycle at G2/M and significantly slowed HepG2 cell growth in association with the dephosphorylation of survivin. Our results help in understanding the regulatory effects of MnSOD on cell viability and redox homestasis of heptoma and promise potential applications of TAT-MnSOD wt for clinical cancer therapy. Copyright © 2016. Published by Elsevier Masson SAS.
Trace Elements and Carbon and Nitrogen Stable Isotopes in Organisms from a Tropical Coastal Lagoon
van Hattum, B.; de Boer, J.; van Bodegom, P. M.; Rezende, C. E.; Salomons, W.
2010-01-01
Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (δ13C and δ15N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by 15N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between δ15N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption. PMID:20217062
Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon.
Pereira, A A; van Hattum, B; de Boer, J; van Bodegom, P M; Rezende, C E; Salomons, W
2010-10-01
Trace elements (Fe, Mn, Al, Zn, Cr, Cu, Ni, Pb, Cd, Hg, and As) and stable isotope ratios (delta(13)C and delta(15)N) were analyzed in sediments, invertebrates, and fishes from a tropical coastal lagoon influenced by iron ore mining and processing activities to assess the differences in trace element accumulation patterns among species and to investigate relations with trophic levels of the organisms involved. Overall significant negative relations between trophic level (given by (15)N) and trace element concentrations in gastropods and crustaceans showed differences in internal controls of trace element accumulation among the species of different trophic positions, leading to trace element dilution. Generally, no significant relation between delta(15)N and trace element concentrations was observed among fish species, probably due to omnivory in a number of species as well as fast growth. Trace element accumulation was observed in the fish tissues, with higher levels of most trace elements found in liver compared with muscle and gill. Levels of Fe, Mn, Al, and Hg in invertebrates, and Fe and Cu in fish livers, were comparable with levels in organisms and tissues from other contaminated areas. Trace element levels in fish muscle were below the international safety baseline standards for human consumption.
Ejaz, Sohail; Camer, Gerry Amor; Anwar, Khaleeq; Ashraf, Muhammad
2014-04-01
Environmental toxicants invariably affect all biological organisms resulting to sufferings ranging from subclinical to debilitating clinical conditions. This novel research aimed to determine the toxic burdens of increased environmental elements in some vital organs/tissues of the wild animals (starling, owl, crow and pigeon), exposed to air polluted environment were assessed using particle induced X-ray emission and histopathological approaches. The presence of significantly elevated amounts of elemental toxicants namely: Aluminum (Al), Chlorine (Cl), Iron (Fe), Potassium (K), Magnesium (Mg), Manganese (Mn), Silicon (Si) and Vanadium (V) from the skin, muscle, lungs, liver and kidney of sampled animals were in concurrence with the observed histopathological changes. The skin of sampled starling, owl, pigeon and crow spotlighted highly significant increase (P < 0.001) in Al, Cl, Mg and Si. Muscle samples with myodegenerative lesions and mineral depositions highlighted substantial augmentation (P < 0.001) in the amount of Al, Fe, Mn, Si and V. The lungs of starling, owl, and pigeon were severely intoxicated (P < 0.001) with increased amount of Al, Fe, K, Mn and Si producing pulmonary lesions of congestion, edema, pneumonitis and mineral debris depositions. Liver samples revealed that the sampled animals were laden with Cl, Fe, Mg, Mn and V with histopathological profound degenerative changes and hepatic necrosis. Kidney sections presented severe tubular degenerative and necrotic changes that may be attributed to increased amounts of Cl and Fe. These current findings implied that the environmental/elemental toxicants and the accompanying lesions that were discerned in the organs/tissues of sampled birds may as well be afflicting people living within the polluted area. Further assessment to more conclusively demonstrate correlations of current findings to those of the populace within the area is encouraged.
Chemical fluxes and origin of a manganese carbonate-oxide-silicate deposit in bedded chert
Huebner, J.S.; Flohr, M.J.K.; Grossman, J.N.
1992-01-01
Lens-like rhodochrosite-rich bodies within interbedded chert and shale are associated with basalt and/or graywacke in ophiolitic and orogenic zones. The Buckeye manganese mine in the Franciscan Complex of the California Coast Ranges is associated with metagraywacke. Despite blueschist-facies metamorphism, this deposit preserves the compositions and some textural features of its sedimentary protoliths. For this reason, it is a suitable deposit with which to compare more intensely altered deposits, or deposits originating in different paleoenvironments. Six Mn-rich and three Mn-poor minerals form monomineralic layers and mixtures: rhodochrosite, gageite, Mn-oxides (hausmannite, braunite), divalent Mn-silicates (caryopilite, taneyamalite), chlorite, quartz (metachert) and aegirine-augite. The Mn-rich protoliths have high Mn/Fe combined with relatively low concentrations of Ca, Al, Ti, Co, Ni, Cu, Th and REE. REE patterns of various protoliths are distinct. Rhodochrosite and gageite layers are depleted (seawater ?? 5 ?? 104) and flat, whereas patterns of metachert and the Mn-silicate-rich layers mimic the patterns of metashale and metagraywacke (seawater ?? 106). Hausmannite layers have flat patterns (seawater ?? 7 ?? 104) whereas braunite-rich layers are more enriched (seawater ?? 2 ?? 105) and show a distinct positive Ce anomaly. Factor analysis reveals components and fluxes attributed to sub-seafloor fluids (Ni, As, Zn, Sb, W, Mn), seawater (Mg, Au, V, Mo), detritus and veins (Ca, Ba, Sr). Silica is negatively correlated with the sub-seafloor factor. The observed variances indicate that water from the sediment column mixed with seawater, that deposition occurred near the sediment-seawater interface before mixtures of subsurface fluid and seawater homogenized, and that the system was not entirely closed during metamorphism. The variations in REE enrichment can be related to kinetics of deposition: rhodochrosite and gageite were precipitated most rapidly, and therefore were the protoliths that most effectively diluted the REE-rich background resulting from fine clastic material (derived from distal turbidites). The variation of the Ce anomaly and U/Th among diverse lithologies and the differences in Mn oxidation states are consistent with progressive dilution of reduced subsurface fluids with oxidized seawater. By this scheme, rhodochrosite, gageite and hausmannite were deposited from the most reduced fluids, braunite from intermediate mixtures, and Mn-silicates from the sub-seafloor fluids most diluted with fresh seawater. Comparison of the Buckeye with other lens-like and sheet-like deposits having high Mn/Fe and containing Mn3+ and/or Mn2+ suggests that each had three essential fluxes: a sub-seafloor source of Mn, a local source of very soluble silica and a source of relatively fresh, oxygenated water. Additional fluxes, such as clastics, appear to be more characteristic of the paleoenvironment than the three essential fluxes. ?? 1992.
Shaheen, Sabry M; Shams, Mohamed S; Khalifa, Mohamed R; El-Dali, Mohamed A; Rinklebe, Jörg
2017-08-01
Contamination of long-term sewage effluent irrigated soils by potentially toxic elements (PTEs) is a serious concern due to its high environmental and health risk. Our scientific hypothesis is that soil amendments can cause contradictory effects on the element mobilization and phytoavailability depending on the type of element and amendment. Therefore, we aimed to assess the impact of the application (1%) of several low cost amendments and environmental wastes on the (im)mobilization, availability, and uptake of Al, Cd, Cr, Cu, Fe, Mn, Ni, and Zn by sorghum (Sorghum bicolor) in a long term sewage effluent irrigated sandy soils collected from Egypt. The used materials include activated charcoal (AC), potassium humate (KH), phosphate rock (PR), phosphogypsum (PG), triple superphosphate (TSP), phosphoric acid (PA), sulfur (S), sugar beet factory lime (SBFL), cement bypass kiln dust (CBD), egg shell (ES), bone mill (BM), brick factory residual (BFR), ceramic powder (CP), and drinking water treatment residual (WTR). The mobilization and availability of the elements in the soil were extracted using NH 4 NO 3 and ammonium bicarbonate- diethylene triamine penta acetic acid (AB-DTPA), respectively. The above-ground biomass samples were analyzed for the elements studied. The results confirmed our hypothesis and concluded that although some amendments like S, PA, and TSP can be used for reducing the plant uptake of Al, Cr, and Fe, they might be used with KH for enhancing the phytoextraction of Cd, Cu, Mn, and Ni. Moreover, several wastes such as BFR and WTR might be used for enhancing the phytoextraction of Al, Cd, Cr, Cu, Fe, and Ni and reducing the uptake of Mn from the studied soil. Although SBFL decreased the plant uptake of Al, Fe, Mn, and Zn, it's increased the plant uptake of Cd, Cu, and Ni. Therefore, the amendments which reduce the plant uptake of an element might be suitable candidates for its immobilization, while the amendments which increase the plant uptake of an element might be used for enhancing its phytoextraction when using bioenergy crops like sorghum in similar contaminated sandy soils. The studied materials offered the potential for effective and low cost media for the treatment of PTEs contaminated sewage effluent irrigated sandy soils. These results should be verified in a field study. Copyright © 2017 Elsevier Inc. All rights reserved.
Seventeen trace elements - arsenic (As), barium (Ba), boron (B), cadmium (Cd), chromium (Cr), copper (Cu), Iron (Fe), lead (Pb), lithium (Li), manganese (Mn), mercury (Hg), nickle (Ni), selenium (Se), silver (Ag), tin (Sn), vanadium (V), and zinc (Zn) - were measured in human sca...
USDA-ARS?s Scientific Manuscript database
While many studies have examined the effect of microbial infections on the status of trace elements in mammalian tissues, similar studies have not been performed in insects. We used inductively coupled plasma-mass spectrometry (ICP-MS) to quantify changes in trace elements of Mg, Mn, Fe, Cu, Zn and ...
OsNRAMP5 contributes to manganese translocation and distribution in rice shoots.
Yang, Meng; Zhang, Yuanyuan; Zhang, Lejing; Hu, Jintao; Zhang, Xing; Lu, Kai; Dong, Huaxia; Wang, Dujun; Zhao, Fang-Jie; Huang, Chao-Feng; Lian, Xingming
2014-09-01
Manganese (Mn) is an essential micronutrient for plants playing an important role in many physiological functions. OsNRAMP5 is a major transporter responsible for Mn and cadmium uptake in rice, but whether it is involved in the root-to-shoot translocation and distribution of these metals is unknown. In this work, OsNRAMP5 was found to be highly expressed in hulls. It was also expressed in leaves but the expression level decreased with leaf age. High-magnification observations revealed that OsNRAMP5 was enriched in the vascular bundles of roots and shoots especially in the parenchyma cells surrounding the xylem. The osnramp5 mutant accumulated significantly less Mn in shoots than the wild-type plants even at high levels of Mn supply. Furthermore, a high supply of Mn could compensate for the loss in the root uptake ability in the mutant, but not in the root-to-shoot translocation of Mn, suggesting that the absence of OsNRAMP5 reduces the transport of Mn from roots to shoots. The results suggest that OsNRAMP5 plays an important role in the translocation and distribution of Mn in rice plants in addition to its role in Mn uptake. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Beltrán, María; Sánchez-Astudillo, María; Aparicio, Ramón; García-González, Diego L
2015-02-15
The geographical traceability of virgin olive oil can be controlled by chemical species that are linked to the production area. Trace elements are among these species. The hypothesis is that the transfer of elements from the soil to the oil is subjected to minor variations and therefore this chemical information can be used for geographical traceability. In order to confirm this hypothesis, the trace elements of virgin olive oils from south-western Spain were analysed, and the same elements were determined in the corresponding olive-pomaces and soils. The differences in the concentration were studied according to cultivars and locations. Results show some coincidences in the selection of elements in soils (W, Fe, Na), olive-pomace (W, Fe, Na, Mg, Mn, Ca, Ba, Li) and olive oils (W, Fe, Mg, Mn, Ca, Ba, Li, Bi), which supports their utility in traceability. In the case of olive oils, 93% of the samples were correctly classified in their geographical origins (96% for Beas, 77% for Gibraleón, 91% for Niebla, and 100% for Sanlúcar de Guadiana). Copyright © 2014 Elsevier Ltd. All rights reserved.
THE PARTITIONING OF ALLOYING ELEMENTS IN MALLEABLE IRONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoz, G.
1958-12-23
The partitioning of a number of alloying elements between the cementite and austenite phases of irons during first-stage graphitization has been determined. For the most part, the data were obtained by chemical analyses of the cementite chemically extracted from irons quenched after selected periods at l650 F. Spot checks of these results and some explorations of alloy distribution in the matrix were made with the electron probe microanalyzer. The results show that the elements V, Cr, Mo, and Mn (not combined with S) concentrate in the cementite phase and may further enrich in this phase during graphitization. Small but measurablemore » amounts of the elements Si, Cu, Ni, Co, and Al are also found in the cementite phase. Sulfur dissolves partially in the cementite phase but is removed insofar as MnS is formed. The finding of significant amounts of every alloying element investigated in the cementite phase suggests that the mechanism by which alloying elements influenee graphitization kinetics may involve a change in the thermodynamic stability of the cementite phase. (auth)« less
Profile of Trace Elements in Selected Medicinal Plants Used for the Treatment of Diabetes in Eritrea
Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere
2016-01-01
This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi, Meriandra dianthera, Lepidium sativum, Brassica nigra, and Nigella sativa. These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different (P < 0.05). PMID:27795982
Sium, Mussie; Kareru, Patrick; Keriko, Joseph; Girmay, Berhane; Medhanie, Ghebrehiwet; Debretsion, Semere
This study was designed to investigate the profile of certain trace elements having therapeutic properties related to diabetes mellitus. The investigated plants were Aloe camperi , Meriandra dianthera , Lepidium sativum , Brassica nigra, and Nigella sativa . These plants are traditionally used in the management of diabetes in Eritrea. The elemental analysis was conducted using inductively coupled plasma optical emission spectrometry (ICP-OES) and flame atomic absorption spectroscopy (FAAS) techniques. The accuracy of the methods was verified using in-house reference materials (CRMs) and no significant differences were observed between the measured and certified values. The analysis displayed variable concentrations of the different trace elements including Zn, Cr, V, Mn, and Se in the plants. Moreover, the levels of major elements, such as Mg, Ca, K, Na, and Ba, and heavy metals, such as Fe, Cu, Ni, Co, As, and Pb, were determined and found to be in the permissible limit defined by WHO. Among the plants, Meriandra dianthera showed the highest levels of Mn, Cr, V, and other elements and the values were significantly different ( P < 0.05).
Zhang, Y.; Mahowald, N.; Scanza, R. A.; ...
2015-10-12
Trace element deposition from desert dust has important impacts on ocean primary productivity, the quantification of which could be useful in determining the magnitude and sign of the biogeochemical feedback on radiative forcing. However, the impact of elemental deposition to remote ocean regions is not well understood and is not currently included in global climate models. In this study, emission inventories for eight elements primarily of soil origin, Mg, P, Ca, Mn, Fe, K, Al, and Si are determined based on a global mineral data set and a soil data set. The resulting elemental fractions are used to drive themore » desert dust model in the Community Earth System Model (CESM) in order to simulate the elemental concentrations of atmospheric dust. Spatial variability of mineral dust elemental fractions is evident on a global scale, particularly for Ca. Simulations of global variations in the Ca / Al ratio, which typically range from around 0.1 to 5.0 in soils, are consistent with observations, suggesting that this ratio is a good signature for dust source regions. The simulated variable fractions of chemical elements are sufficiently different; estimates of deposition should include elemental variations, especially for Ca, Al and Fe. The model results have been evaluated with observations of elemental aerosol concentrations from desert regions and dust events in non-dust regions, providing insights into uncertainties in the modeling approach. The ratios between modeled and observed elemental fractions range from 0.7 to 1.6, except for Mg and Mn (3.4 and 3.5, respectively). Using the soil database improves the correspondence of the spatial heterogeneity in the modeling of several elements (Ca, Al and Fe) compared to observations. Total and soluble dust element fluxes to different ocean basins and ice sheet regions have been estimated, based on the model results. The annual inputs of soluble Mg, P, Ca, Mn, Fe and K associated with dust using the mineral data set are 0.30 Tg, 16.89 Gg, 1.32 Tg, 22.84 Gg, 0.068 Tg, and 0.15 Tg to global oceans and ice sheets.« less
Liu, Shi-Yuan; Li, Shu-Jin; Wu, Shun; Wang, Li-Jun; Chou, Kuo-Chih
2018-07-15
Vanadium slag is a by-product from steelmaking process of vanadium-titanium magnetite, which mainly contains FeO, MnO, V 2 O 3 , and Cr 2 O 3 , The elements Fe and Mn are major components of Mn-Zn ferrite. The elements V and Cr are major components of V-Cr alloy. In view of the potential application in these study, a Mn 0.8 Zn 0.2 Fe 2 O 4 of high saturation magnetization (Ms = 68.6 emu/g) and low coercivity (Hc = 3.3 Oe) was successfully synthesized from the leaching solutions of vanadium slag by adding appropriate chemical reagents, ZnCl 2 and MnCl 2 ·4H 2 O, via roasting at 1300 °C for 1 h. The minor components (CaO and SiO 2 ) in the leaching solution of vanadium slag segregated to the grain boundaries resulting in increasing the resistivity of ferrite. The value of DC resistivity of Mn 0.8 Zn 0.2 Fe 2 O 4 at 25 °C reached 1230.7Ω m. The residue containing Fe, V and Cr was chlorinated by AlCl 3 and the Fe 3+ , V 3+ , and Cr 3+ ions were released into the NaCl-KCl eutectic. The current-time curve for the electrolysis of molten salt was investigated. Alloy (Fe, V, and Cr) of granular shape was obtained. The residue can be used to produce the mulite. This process provided a new approach to utilize slag from steelmaking. Copyright © 2018 Elsevier B.V. All rights reserved.
Sofianska, E; Michailidis, K
2015-03-01
The concentration and chemical fractionation of some heavy metals (Mn, Pb, Zn, Cu, Cd) and As in agricultural soils of the western Drama plain (northern Greece) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) technique. Drama plain constitutes the recipient of the effluents from Xiropotamos stream, which passes through the abandoned "25 km Mn-mine" place. Results showed that soils were found to have elevated concentrations of potentially harmful elements which are mainly associated with Mn mineralization. Peak total concentrations (in mg kg(-1)) of 130,013 for Mn, 1996 for Pb, 2140 for Zn, 147 for Cu, 28 for Cd, and 1077 for As were found in sampling points close and along both sides of the Xiropotamos stream, as a result of downstream transfer and dispersion of Mn mine wastes via flooding episodes. Contaminated sites are important sources of pollution and may pose significant environmental hazards for terrestrial and aquatic ecosystems. The geochemical influence of the mine wastes as a source of soil pollution is substantially reduced in sites 200 m remote of the Xiropotamos stream course. The chemical partitioning patterns indicated that the potential for Mn, Pb, Zn, Cu, Cd, and As remobilization and bioavailability is low, as most of these elements were present in the residual and/or the more stable Mn- and Fe-hydroxide fractions. The partitioning in significant percent (14-25 %) of Cd with the weakly bound exchangeable/carbonate fraction indicated that this metal could be highly mobile as well as bioavailable in the studied contaminated soils and this could be concern to human health.
NASA Astrophysics Data System (ADS)
Davis, C. V.; Thunell, R.; Astor, Y. M.
2017-12-01
The trace element to calcium ratios (TE/Ca) of planktic foraminifera shells are a valuable tool for paleoceanographic reconstructions, and represent a combination of environmental, ecological and biological signals. We present here a three-year record (2010-2013) of TE/Ca (Mg, Sr, Ba, Mn) from four species of foraminifera (Orbulina universa, Globigerina ruber, Globigerinella siphonifera, and Globorotalia menardii) collected by plankton tow in the modern Cariaco basin. Each tow is paired with in situ measurements of water column properties, allowing a direct comparison between shell geochemistry and calcification environment. A combination of Laser Ablation and solution ICP-MS analyses are used to document seasonality, primarily due to the alternating influence of wind-driven coastal upwelling and riverine inputs, in shell TE/Ca. Individual shell data further allows for the quantification of trace element heterogeneity among individual shells within single tows. All TE/Ca ratios vary temporally and show inter-individual variability within single tows. The spread in TE/Ca differs between element and species, with Mg/Ca ratios being the most variable. Despite this, Mg/Ca still tracks temperature changes in G. ruber, O. universa, and G. menardii, with G. ruber most closely reproducing sea surface temperature. Some species show chamber-to-chamber differences in trace element ratios, with G. ruber Mg/Ca and Ba/Ca decreasing in younger chambers (but not other elements) and Mg/Ca, Mn/Ca and Ba/Ca decreasing in younger chambers in G. siphonifera. We find the original Mn/Ca to be variable both temporally and between species, with G. menardii in some samples having extremely high ratios (100 μmol/mol). Assessing seasonal trends and environmental drivers of TE/Ca variability and quantifying the extent of inter-individual heterogeneity in these species will inform the use of their shells as geochemical proxies.
McCleskey, R. Blaine; Nordstrom, D. Kirk; Susong, David D.; Ball, James W.; Taylor, Howard E.
2010-01-01
The Gibbon River in Yellowstone National Park receives inflows from several geothermal areas, and consequently the concentrations of many trace elements are elevated compared to rivers in non-geothermal watersheds. Water samples and discharge measurements were obtained from the Gibbon River and its major tributaries near Norris Geyser Basin under the low-flow conditions of September 2006 allowing for the identification of solute sources and their downstream fate. Norris Geyser Basin, and in particular Tantalus Creek, is the largest source of many trace elements (Al, As, B, Ba, Br, Cs, Hg, Li, Sb, Tl, W, and REEs) to the Gibbon River. The Chocolate Pots area is a major source of Fe and Mn, and the lower Gibbon River near Terrace Spring is the major source of Be and Mo. Some of the elevated trace elements are aquatic health concerns (As, Sb, and Hg) and knowing their fate is important. Most solutes in the Gibbon River, including As and Sb, behave conservatively or are minimally attenuated over 29 km of fluvial transport. Some small attenuation of Al, Fe, Hg, and REEs occurs but primarily there is a transformation from the dissolved state to suspended particles, with most of these elements still being transported to the Madison River. Dissolved Hg and REEs loads decrease where the particulate Fe increases, suggesting sorption onto suspended particulate material. Attenuation from the water column is substantial for Mn, with little formation of Mn as suspended particulates.
Using X-ray Fluorescence to Date Petroglyphs
NASA Astrophysics Data System (ADS)
McNeil, James
2009-10-01
Petroglyphs were created by ancient peoples of the Colorado Plateau who pecked figures of cultural or religious significance into the desert varnish, the ubiquitous dark patina covering the rock surfaces of the region. Manganese (Mn) is a significant elemental component of desert varnish that is often at trace levels in the substrate rock. As such, F. Lytle has shown that under certain conditions, it may be possible to estimate the age of petroglpyhs using Mn levels. In this work we use x-ray fluorescence to measure Mn levels in the desert varnish of petroglyphs and then use dated graffiti to attempt to calibrate the Mn level with age. Preliminary results from petroglyph panels in eastern Utah will be presented.
NASA Astrophysics Data System (ADS)
Indriati Arifin, Yayu; Sakakibara, Masayuki; Sera, Koichiro
2017-06-01
We performed the Particle Induced X-ray Emission (PIXE) analysis on scalp hair samples of 115 ASGM miners and inhabitants of Gorontalo Utara regency. Along with mercury (Hg), we presented other trace elements such as Copper (Cu) and Manganese (Mn). Concentrations of Cu, Mn and Hg in the scalp hairs of ASGM miners are higher non miners. Significant and positive correlations coefficients between Cu and Hg concentration with Mn concentration may indicate that there are still unknown metabolism process related with ASGM activities.