Sample records for essential pathway identification

  1. Core Proteomic Analysis of Unique Metabolic Pathways of Salmonella enterica for the Identification of Potential Drug Targets.

    PubMed

    Uddin, Reaz; Sufian, Muhammad

    2016-01-01

    Infections caused by Salmonella enterica, a Gram-negative facultative anaerobic bacteria belonging to the family of Enterobacteriaceae, are major threats to the health of humans and animals. The recent availability of complete genome data of pathogenic strains of the S. enterica gives new avenues for the identification of drug targets and drug candidates. We have used the genomic and metabolic pathway data to identify pathways and proteins essential to the pathogen and absent from the host. We took the whole proteome sequence data of 42 strains of S. enterica and Homo sapiens along with KEGG-annotated metabolic pathway data, clustered proteins sequences using CD-HIT, identified essential genes using DEG database and discarded S. enterica homologs of human proteins in unique metabolic pathways (UMPs) and characterized hypothetical proteins with SVM-prot and InterProScan. Through this core proteomic analysis we have identified enzymes essential to the pathogen. The identification of 73 enzymes common in 42 strains of S. enterica is the real strength of the current study. We proposed all 73 unexplored enzymes as potential drug targets against the infections caused by the S. enterica. The study is comprehensive around S. enterica and simultaneously considered every possible pathogenic strain of S. enterica. This comprehensiveness turned the current study significant since, to the best of our knowledge it is the first subtractive core proteomic analysis of the unique metabolic pathways applied to any pathogen for the identification of drug targets. We applied extensive computational methods to shortlist few potential drug targets considering the druggability criteria e.g. Non-homologous to the human host, essential to the pathogen and playing significant role in essential metabolic pathways of the pathogen (i.e. S. enterica). In the current study, the subtractive proteomics through a novel approach was applied i.e. by considering only proteins of the unique metabolic pathways of the pathogens and mining the proteomic data of all completely sequenced strains of the pathogen, thus improving the quality and application of the results. We believe that the sharing of the knowledge from this study would eventually lead to bring about novel and unique therapeutic regimens against the infections caused by the S. enterica.

  2. Identification and expression of Smads associated with TGF-beta/activin/nodal signaling pathways in the rainbow trout (Oncorhynuchus mykiss)

    USDA-ARS?s Scientific Manuscript database

    The Smad proteins are essential components of the TGF-beta/activin/nodal family signaling pathway. We report the identification and characterization of transcripts representing 3 receptor Smads (Smad2a, Smad2b, Smad3), 2 common Smads (Smad4a, Smad4b) and one inhibitory Smad (Smad7). Phylogenetic an...

  3. Can essential oils be used as novel drench treatments for the eggs and juveniles of the pest snail Cornu aspersum in potted plants?

    USDA-ARS?s Scientific Manuscript database

    The horticultural trade is an important pathway for the introduction and spread of invasive gastropods because potted plants are essentially portable microhabitats, which protect snails and slugs, especially buried eggs and juveniles, from desiccation and molluscicides. The identification of a drenc...

  4. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    PubMed Central

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  5. Thiamin (Vitamin B1) Biosynthesis and Regulation: A Rich Source of Antimicrobial Drug Targets?

    PubMed Central

    Du, Qinglin; Wang, Honghai; Xie, Jianping

    2011-01-01

    Drug resistance of pathogens has necessitated the identification of novel targets for antibiotics. Thiamin (vitamin B1) is an essential cofactor for all organisms in its active form thiamin diphosphate (ThDP). Therefore, its metabolic pathways might be one largely untapped source of antibiotics targets. This review describes bacterial thiamin biosynthetic, salvage, and transport pathways. Essential thiamin synthetic enzymes such as Dxs and ThiE are proposed as promising drug targets. The regulation mechanism of thiamin biosynthesis by ThDP riboswitch is also discussed. As drug targets of existing antimicrobial compound pyrithiamin, the ThDP riboswitch might serves as alternative targets for more antibiotics. PMID:21234302

  6. Nicotinamide riboside kinase structures reveal new pathways to NAD+.

    PubMed

    Tempel, Wolfram; Rabeh, Wael M; Bogan, Katrina L; Belenky, Peter; Wojcik, Marzena; Seidle, Heather F; Nedyalkova, Lyudmila; Yang, Tianle; Sauve, Anthony A; Park, Hee-Won; Brenner, Charles

    2007-10-02

    The eukaryotic nicotinamide riboside kinase (Nrk) pathway, which is induced in response to nerve damage and promotes replicative life span in yeast, converts nicotinamide riboside to nicotinamide adenine dinucleotide (NAD+) by phosphorylation and adenylylation. Crystal structures of human Nrk1 bound to nucleoside and nucleotide substrates and products revealed an enzyme structurally similar to Rossmann fold metabolite kinases and allowed the identification of active site residues, which were shown to be essential for human Nrk1 and Nrk2 activity in vivo. Although the structures account for the 500-fold discrimination between nicotinamide riboside and pyrimidine nucleosides, no enzyme feature was identified to recognize the distinctive carboxamide group of nicotinamide riboside. Indeed, nicotinic acid riboside is a specific substrate of human Nrk enzymes and is utilized in yeast in a novel biosynthetic pathway that depends on Nrk and NAD+ synthetase. Additionally, nicotinic acid riboside is utilized in vivo by Urh1, Pnp1, and Preiss-Handler salvage. Thus, crystal structures of Nrk1 led to the identification of new pathways to NAD+.

  7. Identification and functional analysis of tomato BRI1 and BAK1 receptor kinase phosphorylation sites

    USDA-ARS?s Scientific Manuscript database

    Brassinosteroids (BRs) are essential plant hormones that are perceived at the cell surface by a membrane bound receptor kinase, BRASSINOSTEROID INSENSITIVE 1 (BRI1). BRI1 interacts with BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) to initiate a signal transduction pathway in which autophosphorylation an...

  8. Identification of Arabidopsis GPAT9 (At5g60620) as an essential gene involved in Triacylglycerol Biosynthesis

    USDA-ARS?s Scientific Manuscript database

    The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER) localized GPAT for both of these critical metabolic pathways was recognized more...

  9. Reading Without the Left Ventral Occipito-Temporal Cortex

    ERIC Educational Resources Information Center

    Seghier, Mohamed L.; Neufeld, Nicholas H.; Zeidman, Peter; Leff, Alex P.; Mechelli, Andrea; Nagendran, Arjuna; Riddoch, Jane M.; Humphreys, Glyn W.; Price, Cathy J.

    2012-01-01

    The left ventral occipito-temporal cortex (LvOT) is thought to be essential for the rapid parallel letter processing that is required for skilled reading. Here we investigate whether rapid written word identification in skilled readers can be supported by neural pathways that do not involve LvOT. Hypotheses were derived from a stroke patient who…

  10. Pathways of iron acquisition and utilization in Leishmania

    PubMed Central

    Flannery, Andrew R.; Renberg, Rebecca L.; Andrews, Norma W.

    2013-01-01

    Iron is essential for many metabolic pathways, but is toxic in excess. Recent identification of the ferric iron reductase LFR1, the ferrous iron transporter LIT1, and the heme transporter LHR1 greatly advanced our understanding of how Leishmania parasites acquire iron and regulate its uptake. LFR1 and LIT1 have close orthologs in plants, and are required for Leishmania virulence. Consistent with the lack of heme biosynthesis in trypanosomatids, LHR1 and LABCG5, a protein involved in heme salvage from hemoglobin, seem essential for Leishmania survival. LFR1, LIT1 and LHR1 are upregulated under low iron availability, in agreement with the need to prevent excessive iron uptake. Future studies should clarify how Leishmania interacts with the iron homeostasis machinery of its host cell, the macrophage. PMID:23962817

  11. Identification of agents effective against multiple toxins and viruses by host-oriented cell targeting.

    PubMed

    Zilbermintz, Leeor; Leonardi, William; Jeong, Sun-Young; Sjodt, Megan; McComb, Ryan; Ho, Chi-Lee C; Retterer, Cary; Gharaibeh, Dima; Zamani, Rouzbeh; Soloveva, Veronica; Bavari, Sina; Levitin, Anastasia; West, Joel; Bradley, Kenneth A; Clubb, Robert T; Cohen, Stanley N; Gupta, Vivek; Martchenko, Mikhail

    2015-08-27

    A longstanding and still-increasing threat to the effective treatment of infectious diseases is resistance to antimicrobial countermeasures. Potentially, the targeting of host proteins and pathways essential for the detrimental effects of pathogens offers an approach that may discover broad-spectrum anti-pathogen countermeasures and circumvent the effects of pathogen mutations leading to resistance. Here we report implementation of a strategy for discovering broad-spectrum host-oriented therapies against multiple pathogenic agents by multiplex screening of drugs for protection against the detrimental effects of multiple pathogens, identification of host cell pathways inhibited by the drug, and screening for effects of the agent on other pathogens exploiting the same pathway. We show that a clinically used antimalarial drug, Amodiaquine, discovered by this strategy, protects host cells against infection by multiple toxins and viruses by inhibiting host cathepsin B. Our results reveal the practicality of discovering broadly acting anti-pathogen countermeasures that target host proteins exploited by pathogens.

  12. The Essential Genome of Escherichia coli K-12.

    PubMed

    Goodall, Emily C A; Robinson, Ashley; Johnston, Iain G; Jabbari, Sara; Turner, Keith A; Cunningham, Adam F; Lund, Peter A; Cole, Jeffrey A; Henderson, Ian R

    2018-02-20

    Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. IMPORTANCE Incentives to define lists of genes that are essential for bacterial survival include the identification of potential targets for antibacterial drug development, genes required for rapid growth for exploitation in biotechnology, and discovery of new biochemical pathways. To identify essential genes in Escherichia coli , we constructed a transposon mutant library of unprecedented density. Initial automated analysis of the resulting data revealed many discrepancies compared to the literature. We now report more extensive statistical analysis supported by both literature searches and detailed inspection of high-density TraDIS sequencing data for each putative essential gene for the E. coli model laboratory organism. This paper is important because it provides a better understanding of the essential genes of E. coli , reveals the limitations of relying on automated analysis alone, and provides a new standard for the analysis of TraDIS data. Copyright © 2018 Goodall et al.

  13. The Tbr2 Molecular Network Controls Cortical Neuronal Differentiation Through Complementary Genetic and Epigenetic Pathways.

    PubMed

    Sessa, Alessandro; Ciabatti, Ernesto; Drechsel, Daniela; Massimino, Luca; Colasante, Gaia; Giannelli, Serena; Satoh, Takashi; Akira, Shizuo; Guillemot, Francois; Broccoli, Vania

    2017-06-01

    The T-box containing Tbr2 gene encodes for a transcription factor essential for the specification of the intermediate neural progenitors (INPs) originating the excitatory neurons of the cerebral cortex. However, its overall mechanism of action, direct target genes and cofactors remain unknown. Herein, we carried out global gene expression profiling combined with genome-wide binding site identification to determine the molecular pathways regulated by TBR2 in INPs. This analysis led to the identification of novel protein-protein interactions that control multiple features of INPs including cell-type identity, morphology, proliferation and migration dynamics. In particular, NEUROG2 and JMJD3 were found to associate with TBR2 revealing unexplored TBR2-dependent mechanisms. These interactions can explain, at least in part, the role of this transcription factor in the implementation of the molecular program controlling developmental milestones during corticogenesis. These data identify TBR2 as a major determinant of the INP-specific traits by regulating both genetic and epigenetic pathways. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Requirement for a phospholipase C in odor response: overlap between olfaction and vision in Drosophila.

    PubMed Central

    Riesgo-Escovar, J; Raha, D; Carlson, J R

    1995-01-01

    A central problem in sensory system biology is the identification of the signal transduction pathways used in different sensory modalities. Genetic analysis of transduction mutants provides a means of studying in vivo the contributions of different pathways. This report shows that odorant response in one olfactory organ of Drosophila melanogaster depends on the norpA phospholipase C (EC 3.1.4.3) gene, providing evidence for use of the inositol 1,4,5-trisphosphate (IP3) signal transduction pathway. Since the norpA gene is also essential to phototransduction, this work demonstrates overlap in the genetic and molecular underpinnings of vision and olfaction. Genetic and molecular data also indicate that some olfactory information flows through a pathway which does not depend on norpA. Images Fig. 1 Fig. 5 PMID:7708738

  15. Oncogenic NRAS, Required for Pathogenesis of Embryonic Rhabdomyosarcoma, Relies upon the HMGA2–IGF2BP2 Pathway

    PubMed Central

    Li, Zhizhong; Zhang, Yunyu; Ramanujan, Krishnan; Ma, Yan; Kirsch, David G.; Glass, David J.

    2013-01-01

    Embryonic rhabdomyosarcoma (ERMS) is the most common soft-tissue tumor in children. Here, we report the identification of the minor groove DNA-binding factor high mobility group AT-hook 2 (HMGA2) as a driver of ERMS development. HMGA2 was highly expressed in normal myoblasts and ERMS cells, where its expression was essential to maintain cell proliferation, survival in vitro, and tumor outgrowth in vivo. Mechanistic investigations revealed that upregulation of the insulin–like growth factor (IGF) mRNA-binding protein IGF2BP2 was critical for HMGA2 action. In particular, IGF2BP2 was essential for mRNA and protein stability of NRAS, a frequently mutated gene in ERMS. shRNA-mediated attenuation of NRAS or pharmacologic inhibition of the MAP-ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) effector pathway showed that NRAS and NRAS-mediated signaling was required for tumor maintenance. Taken together, these findings implicate the HMGA2–IGFBP2–NRAS signaling pathway as a critical oncogenic driver in ERMS. PMID:23536553

  16. PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways.

    PubMed

    Demir, E; Babur, O; Dogrusoz, U; Gursoy, A; Nisanci, G; Cetin-Atalay, R; Ozturk, M

    2002-07-01

    Availability of the sequences of entire genomes shifts the scientific curiosity towards the identification of function of the genomes in large scale as in genome studies. In the near future, data produced about cellular processes at molecular level will accumulate with an accelerating rate as a result of proteomics studies. In this regard, it is essential to develop tools for storing, integrating, accessing, and analyzing this data effectively. We define an ontology for a comprehensive representation of cellular events. The ontology presented here enables integration of fragmented or incomplete pathway information and supports manipulation and incorporation of the stored data, as well as multiple levels of abstraction. Based on this ontology, we present the architecture of an integrated environment named Patika (Pathway Analysis Tool for Integration and Knowledge Acquisition). Patika is composed of a server-side, scalable, object-oriented database and client-side editors to provide an integrated, multi-user environment for visualizing and manipulating network of cellular events. This tool features automated pathway layout, functional computation support, advanced querying and a user-friendly graphical interface. We expect that Patika will be a valuable tool for rapid knowledge acquisition, microarray generated large-scale data interpretation, disease gene identification, and drug development. A prototype of Patika is available upon request from the authors.

  17. Molecular pathways: regulation of metabolism by RB.

    PubMed

    Clem, Brian F; Chesney, Jason

    2012-11-15

    The discovery of the retinoblastoma (RB-1) gene as a tumor suppressor that is disrupted in a majority of human cancers either via direct or indirect genetic alterations has resulted in increased interest in its functions and downstream effectors. Although the canonical pathway that links this tumor suppressor to human cancers details its interaction with the E2F transcription factors and cell-cycle progression, recent studies have shown an essential role for RB-1 in the suppression of glycolytic and glutaminolytic metabolism. Characterization of the precise metabolic transporters and enzymes suppressed by the RB-E2F axis should enable the identification of small molecule antagonists that have selective and potent antitumor properties. ©2012 AACR.

  18. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy.

    PubMed

    Melo, Rossana C N; Weller, Peter F

    2016-10-01

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombrero Vesicles - EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1

    PubMed Central

    Barbie, David A.; Tamayo, Pablo; Boehm, Jesse S.; Kim, So Young; Moody, Susan E.; Dunn, Ian F.; Schinzel, Anna C.; Sandy, Peter; Meylan, Etienne; Scholl, Claudia; Fröhling, Stefan; Chan, Edmond M.; Sos, Martin L.; Michel, Kathrin; Mermel, Craig; Silver, Serena J.; Weir, Barbara A.; Reiling, Jan H.; Sheng, Qing; Gupta, Piyush B.; Wadlow, Raymond C.; Le, Hanh; Hoersch, Sebastian; Wittner, Ben S.; Ramaswamy, Sridhar; Livingston, David M.; Sabatini, David M.; Meyerson, Matthew; Thomas, Roman K.; Lander, Eric S.; Mesirov, Jill P.; Root, David E.; Gilliland, D. Gary; Jacks, Tyler; Hahn, William C.

    2009-01-01

    The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele1,2. Here we have used systematic RNA interference (RNAi) to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IκB kinase, TBK1, was selectively essential in cells that harbor mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-κB anti-apoptotic signals involving cREL and BCL-XL that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations identify TBK1 and NF-κB signaling as essential in KRAS mutant tumors and establish a general approach for the rational identification of co-dependent pathways in cancer. PMID:19847166

  20. Presenilin-Based Genetic Screens in Drosophila melanogaster Identify Novel Notch Pathway Modifiers

    PubMed Central

    Mahoney, Matt B.; Parks, Annette L.; Ruddy, David A.; Tiong, Stanley Y. K.; Esengil, Hanife; Phan, Alexander C.; Philandrinos, Panos; Winter, Christopher G.; Chatterjee, Runa; Huppert, Kari; Fisher, William W.; L'Archeveque, Lynn; Mapa, Felipa A.; Woo, Wendy; Ellis, Michael C.; Curtis, Daniel

    2006-01-01

    Presenilin is the enzymatic component of γ-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for γ-tubulin in the pathway. PMID:16415372

  1. Presenilin-based genetic screens in Drosophila melanogaster identify novel notch pathway modifiers.

    PubMed

    Mahoney, Matt B; Parks, Annette L; Ruddy, David A; Tiong, Stanley Y K; Esengil, Hanife; Phan, Alexander C; Philandrinos, Panos; Winter, Christopher G; Chatterjee, Runa; Huppert, Kari; Fisher, William W; L'Archeveque, Lynn; Mapa, Felipa A; Woo, Wendy; Ellis, Michael C; Curtis, Daniel

    2006-04-01

    Presenilin is the enzymatic component of gamma-secretase, a multisubunit intramembrane protease that processes several transmembrane receptors, such as the amyloid precursor protein (APP). Mutations in human Presenilins lead to altered APP cleavage and early-onset Alzheimer's disease. Presenilins also play an essential role in Notch receptor cleavage and signaling. The Notch pathway is a highly conserved signaling pathway that functions during the development of multicellular organisms, including vertebrates, Drosophila, and C. elegans. Recent studies have shown that Notch signaling is sensitive to perturbations in subcellular trafficking, although the specific mechanisms are largely unknown. To identify genes that regulate Notch pathway function, we have performed two genetic screens in Drosophila for modifiers of Presenilin-dependent Notch phenotypes. We describe here the cloning and identification of 19 modifiers, including nicastrin and several genes with previously undescribed involvement in Notch biology. The predicted functions of these newly identified genes are consistent with extracellular matrix and vesicular trafficking mechanisms in Presenilin and Notch pathway regulation and suggest a novel role for gamma-tubulin in the pathway.

  2. Reading without the left ventral occipito-temporal cortex

    PubMed Central

    Seghier, Mohamed L.; Neufeld, Nicholas H.; Zeidman, Peter; Leff, Alex P.; Mechelli, Andrea; Nagendran, Arjuna; Riddoch, Jane M.; Humphreys, Glyn W.; Price, Cathy J.

    2012-01-01

    The left ventral occipito-temporal cortex (LvOT) is thought to be essential for the rapid parallel letter processing that is required for skilled reading. Here we investigate whether rapid written word identification in skilled readers can be supported by neural pathways that do not involve LvOT. Hypotheses were derived from a stroke patient who acquired dyslexia following extensive LvOT damage. The patient followed a reading trajectory typical of that associated with pure alexia, re-gaining the ability to read aloud many words with declining performance as the length of words increased. Using functional MRI and dynamic causal modelling (DCM), we found that, when short (three to five letter) familiar words were read successfully, visual inputs to the patient’s occipital cortex were connected to left motor and premotor regions via activity in a central part of the left superior temporal sulcus (STS). The patient analysis therefore implied a left hemisphere “reading-without-LvOT” pathway that involved STS. We then investigated whether the same reading-without-LvOT pathway could be identified in 29 skilled readers and whether there was inter-subject variability in the degree to which skilled reading engaged LvOT. We found that functional connectivity in the reading-without-LvOT pathway was strongest in individuals who had the weakest functional connectivity in the LvOT pathway. This observation validates the findings of our patient’s case study. Our findings highlight the contribution of a left hemisphere reading pathway that is activated during the rapid identification of short familiar written words, particularly when LvOT is not involved. Preservation and use of this pathway may explain how patients are still able to read short words accurately when LvOT has been damaged. PMID:23017598

  3. Large-Scale Interaction Profiling of Protein Domains Through Proteomic Peptide-Phage Display Using Custom Peptidomes.

    PubMed

    Seo, Moon-Hyeong; Nim, Satra; Jeon, Jouhyun; Kim, Philip M

    2017-01-01

    Protein-protein interactions are essential to cellular functions and signaling pathways. We recently combined bioinformatics and custom oligonucleotide arrays to construct custom-made peptide-phage libraries for screening peptide-protein interactions, an approach we call proteomic peptide-phage display (ProP-PD). In this chapter, we describe protocols for phage display for the identification of natural peptide binders for a given protein. We finally describe deep sequencing for the analysis of the proteomic peptide-phage display.

  4. Identification of Arabidopsis GPAT9 (At5g60620) as an Essential Gene Involved in Triacylglycerol Biosynthesis1[OPEN

    PubMed Central

    Browse, John

    2016-01-01

    The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis. PMID:26586834

  5. Identification of Arabidopsis GPAT9 (At5g60620) as an Essential Gene Involved in Triacylglycerol Biosynthesis.

    PubMed

    Shockey, Jay; Regmi, Anushobha; Cotton, Kimberly; Adhikari, Neil; Browse, John; Bates, Philip D

    2016-01-01

    The first step in the biosynthesis of nearly all plant membrane phospholipids and storage triacylglycerols is catalyzed by a glycerol-3-phosphate acyltransferase (GPAT). The requirement for an endoplasmic reticulum (ER)-localized GPAT for both of these critical metabolic pathways was recognized more than 60 years ago. However, identification of the gene(s) encoding this GPAT activity has remained elusive. Here, we present the results of a series of in vivo, in vitro, and in silico experiments in Arabidopsis (Arabidopsis thaliana) designed to assign this essential function to AtGPAT9. This gene has been highly conserved throughout evolution and is largely present as a single copy in most plants, features consistent with essential housekeeping functions. A knockout mutant of AtGPAT9 demonstrates both male and female gametophytic lethality phenotypes, consistent with the role in essential membrane lipid synthesis. Significant expression of developing seed AtGPAT9 is required for wild-type levels of triacylglycerol accumulation, and the transcript level is directly correlated to the level of microsomal GPAT enzymatic activity in seeds. Finally, the AtGPAT9 protein interacts with other enzymes involved in ER glycerolipid biosynthesis, suggesting the possibility of ER-localized lipid biosynthetic complexes. Together, these results suggest that GPAT9 is the ER-localized GPAT enzyme responsible for plant membrane lipid and oil biosynthesis. © 2016 American Society of Plant Biologists. All Rights Reserved.

  6. PubMed Central

    GALLUS, R.; DE CARLINI, M.; PICCIOTTI, P.M.; MUZZI, E.; CICIRIELLO, E.; ORZAN, E.; CONTI, G.

    2016-01-01

    SUMMARY Diagnosis of child permanent hearing impairment (PHI) can be made with extreme timeliness compared to the past thanks to improvements in PHI identification through newborn hearing screening programmes. It now becomes essential to provide an effective amplification as quickly as possible in order to restore auditory function and favour speech and language development. The early fitting of hearing aids and possible later cochlear implantation indeed prompts the development of central auditory pathways, connections with secondary sensory brain areas, as well as with motor and articulatory cortex. The aim of this paper is to report the results of a strategic analysis that involves identification of strengths, weaknesses, opportunities and threats regarding the process of achieving early amplification in all cases of significant childhood PHI. The analysis is focused on the Italian situation and is part of the Italian Ministry of Health project CCM 2013 "Preventing Communication Disorders: a Regional Program for Early Identification, Intervention and Care of Hearing Impaired Children". PMID:27054389

  7. Pathways of metabolism of [1'-14C]-trans-anethole in the rat and mouse.

    PubMed

    Bounds, S V; Caldwell, J

    1996-07-01

    This study describes the metabolic fate of trans-4'-methoxyprop-[1-14C]enylbenzene, the natural flavor compound trans-anethole, in rats and mice given single doses of 250 mg/kg body weight. In both rats and mice, an essentially quantitative (> 95% of dose) recovery of 14C was obtained with the majority in the 0-24 hr urine. Separation and identification of 18 urinary anethole metabolites were achieved by radio-HPLC, chemical derivatization, and GC/ MS. Anethole undergoes three primary oxidation pathways-O-demethylation, omega-side chain oxidation, and side chain epoxidation-followed by a variety of secondary pathways of oxidation and hydration, the products of which are extensively conjugated with sulfate, glucuronic acid, glycine, and glutathione. A novel major metabolite has been characterized in the rat, apparently originating from conjugation of the epoxide with glutathione, namely S-[1-(4'-methoxyphenyl)-2-hydroxypropane]-N-acetylcysteine. These metabolites are discussed in terms of the pathways responsible for and the toxicological consequences of their formation.

  8. Predicting kinetics of polymorphic transformations from structure mapping and coordination analysis

    NASA Astrophysics Data System (ADS)

    Stevanović, Vladan; Trottier, Ryan; Musgrave, Charles; Therrien, Félix; Holder, Aaron; Graf, Peter

    2018-03-01

    To extend materials design and discovery into the space of metastable polymorphs, rapid and reliable assessment of transformation kinetics to lower energy structures is essential. Herein we focus on diffusionless polymorphic transformations and investigate routes to assess their kinetics using solely crystallographic arguments. As part of this investigation we developed a general algorithm to map crystal structures onto each other, and ascertain the low-energy (fast-kinetics) transformation pathways between them. Pathways with minimal dissociation of chemical bonds, along which the number of bonds (in ionic systems the first-shell coordination) does not decrease below that in the end structures, are shown to always be the fast-kinetics pathways. These findings enable the rapid assessment of the kinetics of polymorphic transformation and the identification of long-lived metastable structures. The utility is demonstrated on a number of transformations including those between high-pressure SnO2 phases, which lack a detailed atomic-level understanding.

  9. IGF-1, the cross road of the nutritional, inflammatory and hormonal pathways to frailty.

    PubMed

    Maggio, Marcello; De Vita, Francesca; Lauretani, Fulvio; Buttò, Valeria; Bondi, Giuliana; Cattabiani, Chiara; Nouvenne, Antonio; Meschi, Tiziana; Dall'Aglio, Elisabetta; Ceda, Gian Paolo

    2013-10-21

    The decline in functional capacity is a heterogeneous phenomenon in the elderly. An accelerated ageing determines a frail status. It results in an increased vulnerability to stressors for decreased physiological reserves. The early identification of a frail status is essential for preventing loss of functional capacity, and its clinical consequences. Frailty and mobility limitation result from an interplay of different pathways including multiple anabolic deficiency, inflammation, oxidative stress, and a poor nutritional status. However, the age-related decline in insulin-like growth factor 1 (IGF-1) bioactivity deserves special attention as it could represent the ideal crossroad of endocrine, inflammatory, and nutritional pathways to frailty. Several minerals, namely magnesium, selenium, and zinc, appear to be important determinants of IGF-1 bioactivity. This review aims to provide an overview of the potential usefulness of nutrients modulating IGF-1 as potential therapeutic targets in the prevention of mobility limitation occurring in frail older subjects.

  10. BMP regulates regional gene expression in the dorsal otocyst through canonical and non-canonical intracellular pathways

    PubMed Central

    2016-01-01

    The inner ear consists of two otocyst-derived, structurally and functionally distinct components: the dorsal vestibular and ventral auditory compartments. BMP signaling is required to form the vestibular compartment, but how it complements other required signaling molecules and acts intracellularly is unknown. Using spatially and temporally controlled delivery of signaling pathway regulators to developing chick otocysts, we show that BMP signaling regulates the expression of Dlx5 and Hmx3, both of which encode transcription factors essential for vestibular formation. However, although BMP regulates Dlx5 through the canonical SMAD pathway, surprisingly, it regulates Hmx3 through a non-canonical pathway involving both an increase in cAMP-dependent protein kinase A activity and the GLI3R to GLI3A ratio. Thus, both canonical and non-canonical BMP signaling establish the precise spatiotemporal expression of Dlx5 and Hmx3 during dorsal vestibular development. The identification of the non-canonical pathway suggests an intersection point between BMP and SHH signaling, which is required for ventral auditory development. PMID:27151948

  11. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways.

    PubMed

    Chen, Lei; Zhang, Yu-Hang; Wang, ShaoPeng; Zhang, YunHua; Huang, Tao; Cai, Yu-Dong

    2017-01-01

    Identifying essential genes in a given organism is important for research on their fundamental roles in organism survival. Furthermore, if possible, uncovering the links between core functions or pathways with these essential genes will further help us obtain deep insight into the key roles of these genes. In this study, we investigated the essential and non-essential genes reported in a previous study and extracted gene ontology (GO) terms and biological pathways that are important for the determination of essential genes. Through the enrichment theory of GO and KEGG pathways, we encoded each essential/non-essential gene into a vector in which each component represented the relationship between the gene and one GO term or KEGG pathway. To analyze these relationships, the maximum relevance minimum redundancy (mRMR) was adopted. Then, the incremental feature selection (IFS) and support vector machine (SVM) were employed to extract important GO terms and KEGG pathways. A prediction model was built simultaneously using the extracted GO terms and KEGG pathways, which yielded nearly perfect performance, with a Matthews correlation coefficient of 0.951, for distinguishing essential and non-essential genes. To fully investigate the key factors influencing the fundamental roles of essential genes, the 21 most important GO terms and three KEGG pathways were analyzed in detail. In addition, several genes was provided in this study, which were predicted to be essential genes by our prediction model. We suggest that this study provides more functional and pathway information on the essential genes and provides a new way to investigate related problems.

  12. Vesicular trafficking of immune mediators in human eosinophils revealed by immunoelectron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melo, Rossana C.N., E-mail: rossana.melo@ufjf.edu.br; Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, CLS 943, Boston, MA 02215; Weller, Peter F.

    Electron microscopy (EM)-based techniques are mostly responsible for our current view of cell morphology at the subcellular level and continue to play an essential role in biological research. In cells from the immune system, such as eosinophils, EM has helped to understand how cells package and release mediators involved in immune responses. Ultrastructural investigations of human eosinophils enabled visualization of secretory processes in detail and identification of a robust, vesicular trafficking essential for the secretion of immune mediators via a non-classical secretory pathway associated with secretory (specific) granules. This vesicular system is mainly organized as large tubular-vesicular carriers (Eosinophil Sombreromore » Vesicles – EoSVs) actively formed in response to cell activation and provides a sophisticated structural mechanism for delivery of granule-stored mediators. In this review, we highlight the application of EM techniques to recognize pools of immune mediators at vesicular compartments and to understand the complex secretory pathway within human eosinophils involved in inflammatory and allergic responses. - Highlights: • Application of EM to understand the complex secretory pathway in human eosinophils. • EM techniques reveal an active vesicular system associated with secretory granules. • Tubular vesicles are involved in the transport of granule-derived immune mediators.« less

  13. DiffSLC: A graph centrality method to detect essential proteins of a protein-protein interaction network.

    PubMed

    Mistry, Divya; Wise, Roger P; Dickerson, Julie A

    2017-01-01

    Identification of central genes and proteins in biomolecular networks provides credible candidates for pathway analysis, functional analysis, and essentiality prediction. The DiffSLC centrality measure predicts central and essential genes and proteins using a protein-protein interaction network. Network centrality measures prioritize nodes and edges based on their importance to the network topology. These measures helped identify critical genes and proteins in biomolecular networks. The proposed centrality measure, DiffSLC, combines the number of interactions of a protein and the gene coexpression values of genes from which those proteins were translated, as a weighting factor to bias the identification of essential proteins in a protein interaction network. Potentially essential proteins with low node degree are promoted through eigenvector centrality. Thus, the gene coexpression values are used in conjunction with the eigenvector of the network's adjacency matrix and edge clustering coefficient to improve essentiality prediction. The outcome of this prediction is shown using three variations: (1) inclusion or exclusion of gene co-expression data, (2) impact of different coexpression measures, and (3) impact of different gene expression data sets. For a total of seven networks, DiffSLC is compared to other centrality measures using Saccharomyces cerevisiae protein interaction networks and gene expression data. Comparisons are also performed for the top ranked proteins against the known essential genes from the Saccharomyces Gene Deletion Project, which show that DiffSLC detects more essential proteins and has a higher area under the ROC curve than other compared methods. This makes DiffSLC a stronger alternative to other centrality methods for detecting essential genes using a protein-protein interaction network that obeys centrality-lethality principle. DiffSLC is implemented using the igraph package in R, and networkx package in Python. The python package can be obtained from git.io/diffslcpy. The R implementation and code to reproduce the analysis is available via git.io/diffslc.

  14. Genes of the N-Methylglutamate Pathway Are Essential for Growth of Methylobacterium extorquens DM4 with Monomethylamine

    PubMed Central

    Gruffaz, Christelle; Muller, Emilie E. L.; Louhichi-Jelail, Yousra; Nelli, Yella R.; Guichard, Gilles

    2014-01-01

    Monomethylamine (MMA, CH3NH2) can be used as a carbon and nitrogen source by many methylotrophic bacteria. Methylobacterium extorquens DM4 lacks the MMA dehydrogenase encoded by mau genes, which in M. extorquens AM1 is essential for growth on MMA. Identification and characterization of minitransposon mutants with an MMA-dependent phenotype showed that strain DM4 grows with MMA as the sole source of carbon, energy, and nitrogen by the N-methylglutamate (NMG) pathway. Independent mutations were found in a chromosomal region containing the genes gmaS, mgsABC, and mgdABCD for the three enzymes of the pathway, γ-glutamylmethylamide (GMA) synthetase, NMG synthase, and NMG dehydrogenase, respectively. Reverse transcription-PCR confirmed the operonic structure of the two divergent gene clusters mgsABC-gmaS and mgdABCD and their induction during growth with MMA. The genes mgdABCD and mgsABC were found to be essential for utilization of MMA as a carbon and nitrogen source. The gene gmaS was essential for MMA utilization as a carbon source, but residual growth of mutant DM4gmaS growing with succinate and MMA as a nitrogen source was observed. Plasmid copies of gmaS and the gmaS homolog METDI4690, which encodes a protein 39% identical to GMA synthetase, fully restored the ability of mutants DM4gmaS and DM4gmaSΔmetdi4690 to use MMA as a carbon and nitrogen source. Similarly, chemically synthesized GMA, the product of GMA synthetase, could be used as a nitrogen source for growth in the wild-type strain, as well as in DM4gmaS and DM4gmaSΔmetdi4690 mutants. The NADH:ubiquinone oxidoreductase respiratory complex component NuoG was also found to be essential for growth with MMA as a carbon source. PMID:24682302

  15. Prediction of C. elegans Longevity Genes by Human and Worm Longevity Networks

    PubMed Central

    de Magalhães, João Pedro; Ruvkun, Gary; Fraifeld, Vadim E.; Curran, Sean P.

    2012-01-01

    Intricate and interconnected pathways modulate longevity, but screens to identify the components of these pathways have not been saturating. Because biological processes are often executed by protein complexes and fine-tuned by regulatory factors, the first-order protein-protein interactors of known longevity genes are likely to participate in the regulation of longevity. Data-rich maps of protein interactions have been established for many cardinal organisms such as yeast, worms, and humans. We propose that these interaction maps could be mined for the identification of new putative regulators of longevity. For this purpose, we have constructed longevity networks in both humans and worms. We reasoned that the essential first-order interactors of known longevity-associated genes in these networks are more likely to have longevity phenotypes than randomly chosen genes. We have used C. elegans to determine whether post-developmental inactivation of these essential genes modulates lifespan. Our results suggest that the worm and human longevity networks are functionally relevant and possess a high predictive power for identifying new longevity regulators. PMID:23144747

  16. New Targets and Inhibitors of Mycobacterial Sulfur Metabolism§

    PubMed Central

    Paritala, Hanumantharao; Carroll, Kate S.

    2015-01-01

    The identification of new antibacterial targets is urgently needed to address multidrug resistant and latent tuberculosis infection. Sulfur metabolic pathways are essential for survival and the expression of virulence in many pathogenic bacteria, including Mycobacterium tuberculosis. In addition, microbial sulfur metabolic pathways are largely absent in humans and therefore, represent unique targets for therapeutic intervention. In this review, we summarize our current understanding of the enzymes associated with the production of sulfated and reduced sulfur-containing metabolites in Mycobacteria. Small molecule inhibitors of these catalysts represent valuable chemical tools that can be used to investigate the role of sulfur metabolism throughout the Mycobacterial lifecycle and may also represent new leads for drug development. In this light, we also summarize recent progress made in the development of inhibitors of sulfur metabolism enzymes. PMID:23808874

  17. Achieving effective hearing aid fitting within one month after identification of childhood permanent hearing impairment.

    PubMed

    Bastanza, G; Gallus, R; De Carlini, M; Picciotti, P M; Muzzi, E; Ciciriello, E; Orzan, E; Conti, G

    2016-02-01

    Diagnosis of child permanent hearing impairment (PHI) can be made with extreme timeliness compared to the past thanks to improvements in PHI identification through newborn hearing screening programmes. It now becomes essential to provide an effective amplification as quickly as possible in order to restore auditory function and favour speech and language development. The early fitting of hearing aids and possible later cochlear implantation indeed prompts the development of central auditory pathways, connections with secondary sensory brain areas, as well as with motor and articulatory cortex. The aim of this paper is to report the results of a strategic analysis that involves identification of strengths, weaknesses, opportunities and threats regarding the process of achieving early amplification in all cases of significant childhood PHI. The analysis is focused on the Italian situation and is part of the Italian Ministry of Health project CCM 2013 "Preventing Communication Disorders: a Regional Program for Early Identification, Intervention and Care of Hearing Impaired Children". © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale.

  18. 43 CFR 11.25 - Preassessment screen-preliminary identification of resources potentially at risk.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... pathways. (1) The authorized official shall make a preliminary identification of potential exposure pathways to facilitate identification of resources at risk. (2) Factors to be considered in this... toxicological properties of the oil or hazardous substance. (3) Pathways to be considered shall include, as...

  19. 43 CFR 11.25 - Preassessment screen-preliminary identification of resources potentially at risk.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... pathways. (1) The authorized official shall make a preliminary identification of potential exposure pathways to facilitate identification of resources at risk. (2) Factors to be considered in this... toxicological properties of the oil or hazardous substance. (3) Pathways to be considered shall include, as...

  20. 43 CFR 11.25 - Preassessment screen-preliminary identification of resources potentially at risk.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... pathways. (1) The authorized official shall make a preliminary identification of potential exposure pathways to facilitate identification of resources at risk. (2) Factors to be considered in this... toxicological properties of the oil or hazardous substance. (3) Pathways to be considered shall include, as...

  1. 43 CFR 11.25 - Preassessment screen-preliminary identification of resources potentially at risk.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... pathways. (1) The authorized official shall make a preliminary identification of potential exposure pathways to facilitate identification of resources at risk. (2) Factors to be considered in this... toxicological properties of the oil or hazardous substance. (3) Pathways to be considered shall include, as...

  2. 43 CFR 11.25 - Preassessment screen-preliminary identification of resources potentially at risk.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... pathways. (1) The authorized official shall make a preliminary identification of potential exposure pathways to facilitate identification of resources at risk. (2) Factors to be considered in this... toxicological properties of the oil or hazardous substance. (3) Pathways to be considered shall include, as...

  3. Genetically modified mouse models to investigate thyroid development, function and growth.

    PubMed

    Löf, C; Patyra, K; Kero, A; Kero, J

    2018-06-01

    The thyroid gland produces thyroid hormones (TH), which are essential regulators for growth, development and metabolism. The thyroid is mainly controlled by the thyroid-stimulating hormone (TSH) that binds to its receptor (TSHR) on thyrocytes and mediates its action via different G protein-mediated signaling pathways. TSH primarily activates the G s -pathway, and at higher concentrations also the G q/11 -pathway, leading to an increase of intracellular cAMP and Ca 2+ , respectively. To date, the physiological importance of other G protein-mediated signaling pathways in thyrocytes is unclear. Congenital hypothyroidism (CH) is defined as the lack of TH at birth. In familial cases, high-throughput sequencing methods have facilitated the identification of novel mutations. Nevertheless, the precise etiology of CH yet remains unraveled in a proportion of cases. Genetically modified mouse models can reveal new pathophysiological mechanisms of thyroid diseases. Here, we will present an overview of genetic mouse models for thyroid diseases, which have provided crucial insights into thyroid gland development, function, and growth with a special focus on TSHR and microRNA signaling. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance.

    PubMed

    Walia, Mannu K; Ho, Patricia Mw; Taylor, Scott; Ng, Alvin Jm; Gupte, Ankita; Chalk, Alistair M; Zannettino, Andrew Cw; Martin, T John; Walkley, Carl R

    2016-04-12

    Mutations in the P53 pathway are a hallmark of human cancer. The identification of pathways upon which p53-deficient cells depend could reveal therapeutic targets that may spare normal cells with intact p53. In contrast to P53 point mutations in other cancer, complete loss of P53 is a frequent event in osteosarcoma (OS), the most common cancer of bone. The consequences of p53 loss for osteoblastic cells and OS development are poorly understood. Here we use murine OS models to demonstrate that elevated Pthlh (Pthrp), cAMP levels and signalling via CREB1 are characteristic of both p53-deficient osteoblasts and OS. Normal osteoblasts survive depletion of both PTHrP and CREB1. In contrast, p53-deficient osteoblasts and OS depend upon continuous activation of this pathway and undergo proliferation arrest and apoptosis in the absence of PTHrP or CREB1. Our results identify the PTHrP-cAMP-CREB1 axis as an attractive pathway for therapeutic inhibition in OS.

  5. Treponema pallidum Putative Novel Drug Target Identification and Validation: Rethinking Syphilis Therapeutics with Plant-Derived Terpenoids

    PubMed Central

    Tiwari, Sameeksha; Singh, Priyanka; Singh, Swati; Awasthi, Manika; Pandey, Veda P.

    2015-01-01

    Abstract Syphilis, a slow progressive and the third most common sexually transmitted disease found worldwide, is caused by a spirochete gram negative bacteria Treponema pallidum. Emergence of antibiotic resistant T. pallidum has led to a search for novel drugs and their targets. Subtractive genomics analyses of pathogen T. pallidum and host Homo sapiens resulted in identification of 126 proteins essential for survival and viability of the pathogen. Metabolic pathway analyses of these essential proteins led to discovery of nineteen proteins distributed among six metabolic pathways unique to T. pallidum. One hundred plant-derived terpenoids, as potential therapeutic molecules against T. pallidum, were screened for their drug likeness and ADMET (absorption, distribution, metabolism, and toxicity) properties. Subsequently the resulting nine terpenoids were docked with five unique T. pallidum targets through molecular modeling approaches. Out of five targets analyzed, D-alanine:D-alanine ligase was found to be the most promising target, while terpenoid salvicine was the most potent inhibitor. A comparison of the inhibitory potential of the best docked readily available natural compound, namely pomiferin (flavonoid) with that of the best docked terpenoid salvicine, revealed that salvicine was a more potent inhibitor than that of pomiferin. To the best of our knowledge, this is the first report of a terpenoid as a potential therapeutic molecule against T. pallidum with D-alanine:D-alanine ligase as a novel target. Further studies are warranted to evaluate and explore the potential clinical ramifications of these findings in relation to syphilis that has public health importance worldwide. PMID:25683888

  6. Genome-wide identification of microRNA targets in the neglected disease pathogens of the genus Echinococcus.

    PubMed

    Macchiaroli, Natalia; Maldonado, Lucas L; Zarowiecki, Magdalena; Cucher, Marcela; Gismondi, María Inés; Kamenetzky, Laura; Rosenzvit, Mara Cecilia

    2017-06-01

    MicroRNAs (miRNAs), a class of small non-coding RNAs, are key regulators of gene expression at post-transcriptional level and play essential roles in biological processes such as development. MiRNAs silence target mRNAs by binding to complementary sequences in the 3'untranslated regions (3'UTRs). The parasitic helminths of the genus Echinococcus are the causative agents of echinococcosis, a zoonotic neglected disease. In previous work, we performed a comprehensive identification and characterization of Echinococcus miRNAs. However, current knowledge about their targets is limited. Since target prediction algorithms rely on complementarity between 3'UTRs and miRNA sequences, a major limitation is the lack of accurate sequence information of 3'UTR for most species including parasitic helminths. We performed RNA-seq and developed a pipeline that integrates the transcriptomic data with available genomic data of this parasite in order to identify 3'UTRs of Echinococcus canadensis. The high confidence set of 3'UTRs obtained allowed the prediction of miRNA targets in Echinococcus through a bioinformatic approach. We performed for the first time a comparative analysis of miRNA targets in Echinococcus and Taenia. We found that many evolutionarily conserved target sites in Echinococcus and Taenia may be functional and under selective pressure. Signaling pathways such as MAPK and Wnt were among the most represented pathways indicating miRNA roles in parasite growth and development. Genome-wide identification and characterization of miRNA target genes in Echinococcus provide valuable information to guide experimental studies in order to understand miRNA functions in the parasites biology. miRNAs involved in essential functions, especially those being absent in the host or showing sequence divergence with respect to host orthologs, might be considered as novel therapeutic targets for echinococcosis control. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. IGF-1, the Cross Road of the Nutritional, Inflammatory and Hormonal Pathways to Frailty

    PubMed Central

    Maggio, Marcello; De Vita, Francesca; Lauretani, Fulvio; Buttò, Valeria; Bondi, Giuliana; Cattabiani, Chiara; Nouvenne, Antonio; Meschi, Tiziana; Dall’Aglio, Elisabetta; Ceda, Gian Paolo

    2013-01-01

    The decline in functional capacity is a heterogeneous phenomenon in the elderly. An accelerated ageing determines a frail status. It results in an increased vulnerability to stressors for decreased physiological reserves. The early identification of a frail status is essential for preventing loss of functional capacity, and its clinical consequences. Frailty and mobility limitation result from an interplay of different pathways including multiple anabolic deficiency, inflammation, oxidative stress, and a poor nutritional status. However, the age-related decline in insulin-like growth factor 1 (IGF-1) bioactivity deserves special attention as it could represent the ideal crossroad of endocrine, inflammatory, and nutritional pathways to frailty. Several minerals, namely magnesium, selenium, and zinc, appear to be important determinants of IGF-1 bioactivity. This review aims to provide an overview of the potential usefulness of nutrients modulating IGF-1 as potential therapeutic targets in the prevention of mobility limitation occurring in frail older subjects. PMID:24152751

  8. The non-receptor tyrosine kinase Lyn controls neutrophil adhesion by recruiting the CrkL–C3G complex and activating Rap1 at the leading edge

    PubMed Central

    He, Yuan; Kapoor, Ashish; Cook, Sara; Liu, Shubai; Xiang, Yang; Rao, Christopher V.; Kenis, Paul J. A.; Wang, Fei

    2011-01-01

    Establishing new adhesions at the extended leading edges of motile cells is essential for stable polarity and persistent motility. Despite recent identification of signaling pathways that mediate polarity and chemotaxis in neutrophils, little is known about molecular mechanisms governing cell–extracellular-matrix (ECM) adhesion in these highly polarized and rapidly migrating cells. Here, we describe a signaling pathway in neutrophils that is essential for localized integrin activation, leading edge attachment and persistent migration during chemotaxis. This pathway depends upon Gi-protein-mediated activation and leading edge recruitment of Lyn, a non-receptor tyrosine kinase belonging to the Src kinase family. We identified the small GTPase Rap1 as a major downstream effector of Lyn to regulate neutrophil adhesion during chemotaxis. Depletion of Lyn in neutrophil-like HL-60 cells prevented chemoattractant-induced Rap1 activation at the leading edge of the cell, whereas ectopic expression of Rap1 largely rescued the defects induced by Lyn depletion. Furthermore, Lyn controls spatial activation of Rap1 by recruiting the CrkL–C3G protein complex to the leading edge. Together, these results provide novel mechanistic insights into the poorly understood signaling network that controls leading edge adhesion during chemotaxis of neutrophils, and possibly other amoeboid cells. PMID:21628423

  9. Determination of new retention indices for quick identification of essential oils compounds.

    PubMed

    Hérent, Marie-France; De Bie, Véronique; Tilquin, Bernard

    2007-02-19

    The classical methods of chromatographic identification of compounds were based on calculation of retention indices by using different stationary phases. The aim of the work was to differentiate essential oils extracted from different plant species by identification of some of their major compounds. The method of identification was based on the calculation of new retention indices of essential oils compounds fractionated on a polar chromatographic column with temperature programming system. Similar chromatograms have been obtained on the same column for one plant family with two different temperature gradients allowing the rapid identification of essential oils of different species, sub-species or chemotypes of Citrus, Mentha and Thymus.

  10. Somatic Mutation Patterns in Hemizygous Genomic Regions Unveil Purifying Selection during Tumor Evolution

    PubMed Central

    Basu, Swaraj; Larsson, Erik

    2016-01-01

    Identification of cancer driver genes using somatic mutation patterns indicative of positive selection has become a major goal in cancer genomics. However, cancer cells additionally depend on a large number of genes involved in basic cellular processes. While such genes should in theory be subject to strong purifying (negative) selection against damaging somatic mutations, these patterns have been elusive and purifying selection remains inadequately explored in cancer. Here, we hypothesized that purifying selection should be evident in hemizygous genomic regions, where damaging mutations cannot be compensated for by healthy alleles. Using a 7,781-sample pan-cancer dataset, we first confirmed this in POLR2A, an essential gene where hemizygous deletions are known to confer elevated sensitivity to pharmacological suppression. We next used this principle to identify several genes and pathways that show patterns indicative of purifying selection to avoid deleterious mutations. These include the POLR2A interacting protein INTS10 as well as genes involved in mRNA splicing, nonsense-mediated mRNA decay and other RNA processing pathways. Many of these genes belong to large protein complexes, and strong overlaps were observed with recent functional screens for gene essentiality in human cells. Our analysis supports that purifying selection acts to preserve the remaining function of many hemizygously deleted essential genes in tumors, indicating vulnerabilities that might be exploited by future therapeutic strategies. PMID:28027311

  11. Lipolysis - a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores.

    PubMed

    Lass, Achim; Zimmermann, Robert; Oberer, Monika; Zechner, Rudolf

    2011-01-01

    Lipolysis is the biochemical pathway responsible for the catabolism of triacylglycerol (TAG) stored in cellular lipid droplets. The hydrolytic cleavage of TAG generates non-esterified fatty acids, which are subsequently used as energy substrates, essential precursors for lipid and membrane synthesis, or mediators in cell signaling processes. Consistent with its central importance in lipid and energy homeostasis, lipolysis occurs in essentially all tissues and cell types, it is most abundant, however, in white and brown adipose tissue. Over the last 5years, important enzymes and regulatory protein factors involved in lipolysis have been identified. These include an essential TAG hydrolase named adipose triglyceride lipase (ATGL) [annotated as patatin-like phospholipase domain-containing protein A2], the ATGL activator comparative gene identification-58 [annotated as α/β hydrolase containing protein 5], and the ATGL inhibitor G0/G1 switch gene 2. Together with the established hormone-sensitive lipase [annotated as lipase E] and monoglyceride lipase, these proteins constitute the basic "lipolytic machinery". Additionally, a large number of hormonal signaling pathways and lipid droplet-associated protein factors regulate substrate access and the activity of the "lipolysome". This review summarizes the current knowledge concerning the enzymes and regulatory processes governing lipolysis of fat stores in adipose and non-adipose tissues. Special emphasis will be given to ATGL, its regulation, and physiological function. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Developing a clinical pathway for the identification and management of anxiety and depression in adult cancer patients: an online Delphi consensus process.

    PubMed

    Shaw, Joanne M; Price, Melanie A; Clayton, Josephine M; Grimison, Peter; Shaw, Tim; Rankin, Nicole; Butow, Phyllis N

    2016-01-01

    People with cancer and their families experience high levels of psychological morbidity. However, many cancer services do not routinely screen patients for anxiety and depression, and there are no standardized clinical referral pathways. This study aimed to establish consensus on elements of a draft clinical pathway tailored to the Australian context. A two-round Delphi study was conducted to gain consensus among Australian oncology and psycho-oncology clinicians about the validity of 39 items that form the basis of a clinical pathway that includes screening, assessment, referral and stepped care management of anxiety and depression in the context of cancer. The expert panel comprised 87 multidisciplinary clinician members of the Australian Psycho-oncology Co-operative Research Group (PoCoG). Respondents rated their level of agreement with each statement on a 5-point Likert scale. Consensus was defined as >80% of respondents scoring within 2 points on the Likert scale. Consensus was reached for 21 of 39 items, and a further 15 items approached consensus except for specific contextual factors, after two Delphi rounds. Formal screening for anxiety and depression, a stepped care model of management and recommendations for inclusion of length of treatment and time to review were endorsed. Consensus was not reached on items related to roles and responsibilities, particularly those not applicable across cancer settings. This study identified a core set of evidence- and consensus-based principles considered essential to a stepped care model of care incorporating identification, referral and management of anxiety and depression in adult cancer patients.

  13. slalom encodes an adenosine 3′-phosphate 5′-phosphosulfate transporter essential for development in Drosophila

    PubMed Central

    Lüders, Florian; Segawa, Hiroaki; Stein, David; Selva, Erica M.; Perrimon, Norbert; Turco, Salvatore J.; Häcker, Udo

    2003-01-01

    Sulfation of all macromolecules entering the secretory pathway in higher organisms occurs in the Golgi and requires the high-energy sulfate donor adenosine 3′-phosphate 5′-phosphosulfate. Here we report the first molecular identification of a gene that encodes a transmembrane protein required to transport adenosine 3′-phosphate 5′-phosphosulfate from the cytosol into the Golgi lumen. Mutations in this gene, which we call slalom, display defects in Wg and Hh signaling, which are likely due to the lack of sulfation of glycos aminoglycans by the sulfotransferase sulfateless. Analysis of mosaic mutant ovaries shows that sll function is also essential for dorsal–ventral axis determination, suggesting that sll transports the sulfate donor required for sulfotransferase activity of the dorsal–ventral determinant pipe. PMID:12853478

  14. An Approach for Identification of Novel Drug Targets in Streptococcus pyogenes SF370 Through Pathway Analysis.

    PubMed

    Singh, Satendra; Singh, Dev Bukhsh; Singh, Anamika; Gautam, Budhayash; Ram, Gurudayal; Dwivedi, Seema; Ramteke, Pramod W

    2016-12-01

    Streptococcus pyogenes is one of the most important pathogens as it is involved in various infections affecting upper respiratory tract and skin. Due to the emergence of multidrug resistance and cross-resistance, S. Pyogenes is becoming more pathogenic and dangerous. In the present study, an in silico comparative analysis of total 65 metabolic pathways of the host (Homo sapiens) and the pathogen was performed. Initially, 486 paralogous enzymes were identified so that they can be removed from possible drug target list. The 105 enzymes of the biochemical pathways of S. pyogenes from the KEGG metabolic pathway database were compared with the proteins from the Homo sapiens by performing a BLASTP search against the non-redundant database restricted to the Homo sapiens subset. Out of these, 83 enzymes were identified as non-human homologous while 30 enzymes of inadequate amino acid length were removed for further processing. Essential enzymes were finally mined from remaining 53 enzymes. Finally, 28 essential enzymes were identified in S. pyogenes SF370 (serotype M1). In subcellular localization study, 18 enzymes were predicted with cytoplasmic localization and ten enzymes with the membrane localization. These ten enzymes with putative membrane localization should be of particular interest. Acyl-carrier-protein S-malonyltransferase, DNA polymerase III subunit beta and dihydropteroate synthase are novel drug targets and thus can be used to design potential inhibitors against S. pyogenes infection. 3D structure of dihydropteroate synthase was modeled and validated that can be used for virtual screening and interaction study of potential inhibitors with the target enzyme.

  15. Modeling central metabolism and energy biosynthesis across microbial life

    DOE PAGES

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal; ...

    2016-08-08

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.« less

  16. Modeling central metabolism and energy biosynthesis across microbial life

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edirisinghe, Janaka N.; Weisenhorn, Pamela; Conrad, Neal

    Here, automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. As a result, to overcome this challenge, we developed methods and tools to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of modelmore » organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. In conclusion, we predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.« less

  17. Modeling central metabolism and energy biosynthesis across microbial life.

    PubMed

    Edirisinghe, Janaka N; Weisenhorn, Pamela; Conrad, Neal; Xia, Fangfang; Overbeek, Ross; Stevens, Rick L; Henry, Christopher S

    2016-08-08

    Automatically generated bacterial metabolic models, and even some curated models, lack accuracy in predicting energy yields due to poor representation of key pathways in energy biosynthesis and the electron transport chain (ETC). Further compounding the problem, complex interlinking pathways in genome-scale metabolic models, and the need for extensive gapfilling to support complex biomass reactions, often results in predicting unrealistic yields or unrealistic physiological flux profiles. To overcome this challenge, we developed methods and tools ( http://coremodels.mcs.anl.gov ) to build high quality core metabolic models (CMM) representing accurate energy biosynthesis based on a well studied, phylogenetically diverse set of model organisms. We compare these models to explore the variability of core pathways across all microbial life, and by analyzing the ability of our core models to synthesize ATP and essential biomass precursors, we evaluate the extent to which the core metabolic pathways and functional ETCs are known for all microbes. 6,600 (80 %) of our models were found to have some type of aerobic ETC, whereas 5,100 (62 %) have an anaerobic ETC, and 1,279 (15 %) do not have any ETC. Using our manually curated ETC and energy biosynthesis pathways with no gapfilling at all, we predict accurate ATP yields for nearly 5586 (70 %) of the models under aerobic and anaerobic growth conditions. This study revealed gaps in our knowledge of the central pathways that result in 2,495 (30 %) CMMs being unable to produce ATP under any of the tested conditions. We then established a methodology for the systematic identification and correction of inconsistent annotations using core metabolic models coupled with phylogenetic analysis. We predict accurate energy yields based on our improved annotations in energy biosynthesis pathways and the implementation of diverse ETC reactions across the microbial tree of life. We highlighted missing annotations that were essential to energy biosynthesis in our models. We examine the diversity of these pathways across all microbial life and enable the scientific community to explore the analyses generated from this large-scale analysis of over 8000 microbial genomes.

  18. Physiotherapy co-management of rheumatoid arthritis: identification of red flags, significance to clinical practice and management pathways.

    PubMed

    Briggs, Andrew M; Fary, Robyn E; Slater, Helen; Ranelli, Sonia; Chan, Madelynn

    2013-12-01

    Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disease. Physiotherapy interventions for people with RA are predominantly targeted at ameliorating disability resulting from articular and peri-articular manifestations of the disease and providing advice and education to improve functional capacity and quality of life. To ensure safe and effective care, it is critical that physiotherapists are able to identify potentially serious articular and peri-articular manifestations of RA, such as instability of the cervical spine. Additionally, as primary contact professionals, it is essential that physiotherapists are aware of the potentially serious extra-articular manifestations of RA. This paper provides an overview of the practice-relevant manifestations associated with RA that might warrant further investigation by a medical practitioner (red flags), their relevance to physiotherapy practice, and recommended management pathways. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. The inextricable role of the kidney in hypertension

    PubMed Central

    Crowley, Steven D.; Coffman, Thomas M.

    2014-01-01

    An essential link between the kidney and blood pressure control has long been known. Here, we review evidence supporting the premise that an impaired capacity of the kidney to excrete sodium in response to elevated blood pressure is a major contributor to hypertension, irrespective of the initiating cause. In this regard, recent work suggests that novel pathways controlling key sodium transporters in kidney epithelia have a critical impact on hypertension pathogenesis, supporting a model in which impaired renal sodium excretion is a final common pathway through which vascular, neural, and inflammatory responses raise blood pressure. We also address recent findings calling into question long-standing notions regarding the relationship between sodium intake and changes in body fluid volume. Expanded understanding of the role of the kidney as both a cause and target of hypertension highlights key aspects of pathophysiology and may lead to identification of new strategies for prevention and treatment. PMID:24892708

  20. Conserved mRNA-binding proteomes in eukaryotic organisms.

    PubMed

    Matia-González, Ana M; Laing, Emma E; Gerber, André P

    2015-12-01

    RNA-binding proteins (RBPs) are essential for post-transcriptional regulation of gene expression. Recent high-throughput screens have dramatically increased the number of experimentally identified RBPs; however, comprehensive identification of RBPs within living organisms is elusive. Here we describe the repertoire of 765 and 594 proteins that reproducibly interact with polyadenylated mRNAs in Saccharomyces cerevisiae and Caenorhabditis elegans, respectively. Furthermore, we report the differential association of mRNA-binding proteins (mRPBs) upon induction of apoptosis in C. elegans L4-stage larvae. Strikingly, most proteins composing mRBPomes, including components of early metabolic pathways and the proteasome, are evolutionarily conserved between yeast and C. elegans. We speculate, on the basis of our evidence that glycolytic enzymes bind distinct glycolytic mRNAs, that enzyme-mRNA interactions relate to an ancient mechanism for post-transcriptional coordination of metabolic pathways that perhaps was established during the transition from the early 'RNA world' to the 'protein world'.

  1. Multiplexed Activity-based Protein Profiling of the Human Pathogen Aspergillus fumigatus Reveals Large Functional Changes upon Exposure to Human Serum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedner, Susan D.; Burnum, Kristin E.; Pederson, Leeanna M.

    2012-08-03

    Environmental and metabolic adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised lung. We employed an activity-based protein profiling (ABPP) approach utilizing a new aryl vinyl sulfonate probe and a serine hydrolase probe combined with quantitative LC-MS based accurate mass and time (AMT) tag proteomics for the identification of functional pathway adaptation of A. fumigatus to environmental variability relevant to pulmonary Invasive Aspergillosis. When the fungal pathogen was grown with human serum, metabolism and energy processes were markedly decreased compared to no serum culture. Additionally, functional pathways associated with amino acid and protein biosynthesismore » were limited as the fungus scavenged from the serum to obtain essential nutrients. Our approach revealed significant metabolic adaptation by A. fumigatus, and provides direct insight into this pathogen’s ability to survive and proliferate.« less

  2. Steps Toward Understanding Mitochondrial Fe/S Cluster Biogenesis.

    PubMed

    Melber, Andrew; Winge, Dennis R

    2018-01-01

    Iron-sulfur clusters (Fe/S clusters) are essential cofactors required throughout the clades of biology for performing a myriad of unique functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. Although Fe/S clusters can be synthesized in vitro and transferred to a client protein without enzymatic assistance, biology has evolved intricate mechanisms to assemble and transfer Fe/S clusters within the cellular environment. In eukaryotes, the foundation of all cellular clusters starts within the mitochondria. The focus of this review is to detail the mitochondrial Fe/S biogenesis (ISC) pathway along with the Fe/S cluster transfer steps necessary to mature Fe/S proteins. New advances in our understanding of the mitochondrial Fe/S biogenesis machinery will be highlighted. Additionally, we will address various experimental approaches that have been successful in the identification and characterization of components of the ISC pathway. © 2018 Elsevier Inc. All rights reserved.

  3. Activation of PTHrP-cAMP-CREB1 signaling following p53 loss is essential for osteosarcoma initiation and maintenance

    PubMed Central

    Walia, Mannu K; Ho, Patricia MW; Taylor, Scott; Ng, Alvin JM; Gupte, Ankita; Chalk, Alistair M; Zannettino, Andrew CW; Martin, T John; Walkley, Carl R

    2016-01-01

    Mutations in the P53 pathway are a hallmark of human cancer. The identification of pathways upon which p53-deficient cells depend could reveal therapeutic targets that may spare normal cells with intact p53. In contrast to P53 point mutations in other cancer, complete loss of P53 is a frequent event in osteosarcoma (OS), the most common cancer of bone. The consequences of p53 loss for osteoblastic cells and OS development are poorly understood. Here we use murine OS models to demonstrate that elevated Pthlh (Pthrp), cAMP levels and signalling via CREB1 are characteristic of both p53-deficient osteoblasts and OS. Normal osteoblasts survive depletion of both PTHrP and CREB1. In contrast, p53-deficient osteoblasts and OS depend upon continuous activation of this pathway and undergo proliferation arrest and apoptosis in the absence of PTHrP or CREB1. Our results identify the PTHrP-cAMP-CREB1 axis as an attractive pathway for therapeutic inhibition in OS. DOI: http://dx.doi.org/10.7554/eLife.13446.001 PMID:27070462

  4. Phospholipase D Signaling Pathways and Phosphatidic Acid as Therapeutic Targets in Cancer

    PubMed Central

    Bruntz, Ronald C.; Lindsley, Craig W.

    2014-01-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein–coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. PMID:25244928

  5. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer.

    PubMed

    Bruntz, Ronald C; Lindsley, Craig W; Brown, H Alex

    2014-10-01

    Phospholipase D is a ubiquitous class of enzymes that generates phosphatidic acid as an intracellular signaling species. The phospholipase D superfamily plays a central role in a variety of functions in prokaryotes, viruses, yeast, fungi, plants, and eukaryotic species. In mammalian cells, the pathways modulating catalytic activity involve a variety of cellular signaling components, including G protein-coupled receptors, receptor tyrosine kinases, polyphosphatidylinositol lipids, Ras/Rho/ADP-ribosylation factor GTPases, and conventional isoforms of protein kinase C, among others. Recent findings have shown that phosphatidic acid generated by phospholipase D plays roles in numerous essential cellular functions, such as vesicular trafficking, exocytosis, autophagy, regulation of cellular metabolism, and tumorigenesis. Many of these cellular events are modulated by the actions of phosphatidic acid, and identification of two targets (mammalian target of rapamycin and Akt kinase) has especially highlighted a role for phospholipase D in the regulation of cellular metabolism. Phospholipase D is a regulator of intercellular signaling and metabolic pathways, particularly in cells that are under stress conditions. This review provides a comprehensive overview of the regulation of phospholipase D activity and its modulation of cellular signaling pathways and functions. Copyright © 2014 by The American Society for Pharmacology and Experimental Therapeutics.

  6. Charting organellar importomes by quantitative mass spectrometry

    PubMed Central

    Peikert, Christian D.; Mani, Jan; Morgenstern, Marcel; Käser, Sandro; Knapp, Bettina; Wenger, Christoph; Harsman, Anke; Oeljeklaus, Silke; Schneider, André; Warscheid, Bettina

    2017-01-01

    Protein import into organelles is essential for all eukaryotes and facilitated by multi-protein translocation machineries. Analysing whether a protein is transported into an organelle is largely restricted to single constituents. This renders knowledge about imported proteins incomplete, limiting our understanding of organellar biogenesis and function. Here we introduce a method that enables charting an organelle's importome. The approach relies on inducible RNAi-mediated knockdown of an essential subunit of a translocase to impair import and quantitative mass spectrometry. To highlight its potential, we established the mitochondrial importome of Trypanosoma brucei, comprising 1,120 proteins including 331 new candidates. Furthermore, the method allows for the identification of proteins with dual or multiple locations and the substrates of distinct protein import pathways. We demonstrate the specificity and versatility of this ImportOmics method by targeting import factors in mitochondria and glycosomes, which demonstrates its potential for globally studying protein import and inventories of organelles. PMID:28485388

  7. Identification of hub subnetwork based on topological features of genes in breast cancer

    PubMed Central

    ZHUANG, DA-YONG; JIANG, LI; HE, QING-QING; ZHOU, PENG; YUE, TAO

    2015-01-01

    The aim of this study was to provide functional insight into the identification of hub subnetworks by aggregating the behavior of genes connected in a protein-protein interaction (PPI) network. We applied a protein network-based approach to identify subnetworks which may provide new insight into the functions of pathways involved in breast cancer rather than individual genes. Five groups of breast cancer data were downloaded and analyzed from the Gene Expression Omnibus (GEO) database of high-throughput gene expression data to identify gene signatures using the genome-wide global significance (GWGS) method. A PPI network was constructed using Cytoscape and clusters that focused on highly connected nodes were obtained using the molecular complex detection (MCODE) clustering algorithm. Pathway analysis was performed to assess the functional relevance of selected gene signatures based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Topological centrality was used to characterize the biological importance of gene signatures, pathways and clusters. The results revealed that, cluster1, as well as the cell cycle and oocyte meiosis pathways were significant subnetworks in the analysis of degree and other centralities, in which hub nodes mostly distributed. The most important hub nodes, with top ranked centrality, were also similar with the common genes from the above three subnetwork intersections, which was viewed as a hub subnetwork with more reproducible than individual critical genes selected without network information. This hub subnetwork attributed to the same biological process which was essential in the function of cell growth and death. This increased the accuracy of identifying gene interactions that took place within the same functional process and was potentially useful for the development of biomarkers and networks for breast cancer. PMID:25573623

  8. Comparative genomics identification of a novel set of temporally regulated hedgehog target genes in the retina.

    PubMed

    McNeill, Brian; Perez-Iratxeta, Carol; Mazerolle, Chantal; Furimsky, Marosh; Mishina, Yuji; Andrade-Navarro, Miguel A; Wallace, Valerie A

    2012-03-01

    The hedgehog (Hh) signaling pathway is involved in numerous developmental and adult processes with many links to cancer. In vertebrates, the activity of the Hh pathway is mediated primarily through three Gli transcription factors (Gli1, 2 and 3) that can serve as transcriptional activators or repressors. The identification of Gli target genes is essential for the understanding of the Hh-mediated processes. We used a comparative genomics approach using the mouse and human genomes to identify 390 genes that contained conserved Gli binding sites. RT-qPCR validation of 46 target genes in E14.5 and P0.5 retinal explants revealed that Hh pathway activation resulted in the modulation of 30 of these targets, 25 of which demonstrated a temporal regulation. Further validation revealed that the expression of Bok, FoxA1, Sox8 and Wnt7a was dependent upon Sonic Hh (Shh) signaling in the retina and their regulation is under positive and negative controls by Gli2 and Gli3, respectively. We also show using chromatin immunoprecipitation that Gli2 binds to the Sox8 promoter, suggesting that Sox8 is an Hh-dependent direct target of Gli2. Finally, we demonstrate that the Hh pathway also modulates the expression of Sox9 and Sox10, which together with Sox8 make up the SoxE group. Previously, it has been shown that Hh and SoxE group genes promote Müller glial cell development in the retina. Our data are consistent with the possibility for a role of SoxE group genes downstream of Hh signaling on Müller cell development. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  9. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses.

    PubMed

    Meena, Seema; Kumar, Sarma R; Venkata Rao, D K; Dwivedi, Varun; Shilpashree, H B; Rastogi, Shubhra; Shasany, Ajit K; Nagegowda, Dinesh A

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition.

  10. De Novo Sequencing and Analysis of Lemongrass Transcriptome Provide First Insights into the Essential Oil Biosynthesis of Aromatic Grasses

    PubMed Central

    Meena, Seema; Kumar, Sarma R.; Venkata Rao, D. K.; Dwivedi, Varun; Shilpashree, H. B.; Rastogi, Shubhra; Shasany, Ajit K.; Nagegowda, Dinesh A.

    2016-01-01

    Aromatic grasses of the genus Cymbopogon (Poaceae family) represent unique group of plants that produce diverse composition of monoterpene rich essential oils, which have great value in flavor, fragrance, cosmetic, and aromatherapy industries. Despite the commercial importance of these natural aromatic oils, their biosynthesis at the molecular level remains unexplored. As the first step toward understanding the essential oil biosynthesis, we performed de novo transcriptome assembly and analysis of C. flexuosus (lemongrass) by employing Illumina sequencing. Mining of transcriptome data and subsequent phylogenetic analysis led to identification of terpene synthases, pyrophosphatases, alcohol dehydrogenases, aldo-keto reductases, carotenoid cleavage dioxygenases, alcohol acetyltransferases, and aldehyde dehydrogenases, which are potentially involved in essential oil biosynthesis. Comparative essential oil profiling and mRNA expression analysis in three Cymbopogon species (C. flexuosus, aldehyde type; C. martinii, alcohol type; and C. winterianus, intermediate type) with varying essential oil composition indicated the involvement of identified candidate genes in the formation of alcohols, aldehydes, and acetates. Molecular modeling and docking further supported the role of identified protein sequences in aroma formation in Cymbopogon. Also, simple sequence repeats were found in the transcriptome with many linked to terpene pathway genes including the genes potentially involved in aroma biosynthesis. This work provides the first insights into the essential oil biosynthesis of aromatic grasses, and the identified candidate genes and markers can be a great resource for biotechnological and molecular breeding approaches to modulate the essential oil composition. PMID:27516768

  11. Identification of JAK/STAT pathway regulators—Insights from RNAi screens

    PubMed Central

    Müller, Patrick; Boutros, Michael; Zeidler, Martin P.

    2008-01-01

    While many core JAK/STAT pathway components have been discovered in Drosophila via classical genetic approaches, the identification of pathway regulators has been more challenging. Recently two cell-based RNAi screens for JAK/STAT pathway regulators have been undertaken using libraries of double-stranded RNAs targeting a large proportion of the predicted Drosophila transcriptome. While both screens identified multiple regulators, only relatively few loci are common to both data sets. Here we compare the two screens and discuss these differences. Although many factors are likely to be contributory, differences in the assay design are of key importance. Low levels of stimulation favouring the identification of negative pathway regulators and high levels of stimulation favouring the identification of positively acting factors. Ultimately, the results from both screens are likely to be largely complementary and have identified a range of novel candidate regulators of JAK/STAT pathway activity as a starting point for new research directions in the future. PMID:18586112

  12. miR-206 Inhibits Stemness and Metastasis of Breast Cancer by Targeting MKL1/IL11 Pathway.

    PubMed

    Samaeekia, Ravand; Adorno-Cruz, Valery; Bockhorn, Jessica; Chang, Ya-Fang; Huang, Simo; Prat, Aleix; Ha, Nahun; Kibria, Golam; Huo, Dezheng; Zheng, Hui; Dalton, Rachel; Wang, Yuhao; Moskalenko, Grigoriy Y; Liu, Huiping

    2017-02-15

    Purpose: Effective targeting of cancer stem cells is necessary and important for eradicating cancer and reducing metastasis-related mortality. Understanding of cancer stemness-related signaling pathways at the molecular level will help control cancer and stop metastasis in the clinic. Experimental Design: By analyzing miRNA profiles and functions in cancer development, we aimed to identify regulators of breast tumor stemness and metastasis in human xenograft models in vivo and examined their effects on self-renewal and invasion of breast cancer cells in vitro To discover the direct targets and essential signaling pathways responsible for miRNA functions in breast cancer progression, we performed microarray analysis and target gene prediction in combination with functional studies on candidate genes (overexpression rescues and pheno-copying knockdowns). Results: In this study, we report that hsa-miR-206 suppresses breast tumor stemness and metastasis by inhibiting both self-renewal and invasion. We identified that among the candidate targets, twinfilin ( TWF1 ) rescues the miR-206 phenotype in invasion by enhancing the actin cytoskeleton dynamics and the activity of the mesenchymal lineage transcription factors, megakaryoblastic leukemia (translocation) 1 (MKL1), and serum response factor (SRF). MKL1 and SRF were further demonstrated to promote the expression of IL11 , which is essential for miR-206's function in inhibiting both invasion and stemness of breast cancer. Conclusions: The identification of the miR-206/TWF1/MKL1-SRF/IL11 signaling pathway sheds lights on the understanding of breast cancer initiation and progression, unveils new therapeutic targets, and facilitates innovative drug development to control cancer and block metastasis. Clin Cancer Res; 23(4); 1091-103. ©2016 AACR . ©2016 American Association for Cancer Research.

  13. Gut microbiota functions: metabolism of nutrients and other food components.

    PubMed

    Rowland, Ian; Gibson, Glenn; Heinken, Almut; Scott, Karen; Swann, Jonathan; Thiele, Ines; Tuohy, Kieran

    2018-02-01

    The diverse microbial community that inhabits the human gut has an extensive metabolic repertoire that is distinct from, but complements the activity of mammalian enzymes in the liver and gut mucosa and includes functions essential for host digestion. As such, the gut microbiota is a key factor in shaping the biochemical profile of the diet and, therefore, its impact on host health and disease. The important role that the gut microbiota appears to play in human metabolism and health has stimulated research into the identification of specific microorganisms involved in different processes, and the elucidation of metabolic pathways, particularly those associated with metabolism of dietary components and some host-generated substances. In the first part of the review, we discuss the main gut microorganisms, particularly bacteria, and microbial pathways associated with the metabolism of dietary carbohydrates (to short chain fatty acids and gases), proteins, plant polyphenols, bile acids, and vitamins. The second part of the review focuses on the methodologies, existing and novel, that can be employed to explore gut microbial pathways of metabolism. These include mathematical models, omics techniques, isolated microbes, and enzyme assays.

  14. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility.

    PubMed

    Peddinti, Divyaswetha; Nanduri, Bindu; Kaya, Abdullah; Feugang, Jean M; Burgess, Shane C; Memili, Erdogan

    2008-02-22

    Male infertility is a major problem for mammalian reproduction. However, molecular details including the underlying mechanisms of male fertility are still not known. A thorough understanding of these mechanisms is essential for obtaining consistently high reproductive efficiency and to ensure lower cost and time-loss by breeder. Using high and low fertility bull spermatozoa, here we employed differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) and identified 125 putative biomarkers of fertility. We next used quantitative Systems Biology modeling and canonical protein interaction pathways and networks to show that high fertility spermatozoa differ from low fertility spermatozoa in four main ways. Compared to sperm from low fertility bulls, sperm from high fertility bulls have higher expression of proteins involved in: energy metabolism, cell communication, spermatogenesis, and cell motility. Our data also suggests a hypothesis that low fertility sperm DNA integrity may be compromised because cell cycle: G2/M DNA damage checkpoint regulation was most significant signaling pathway identified in low fertility spermatozoa. This is the first comprehensive description of the bovine spermatozoa proteome. Comparative proteomic analysis of high fertility and low fertility bulls, in the context of protein interaction networks identified putative molecular markers associated with high fertility phenotype.

  15. Comprehensive proteomic analysis of bovine spermatozoa of varying fertility rates and identification of biomarkers associated with fertility

    PubMed Central

    Peddinti, Divyaswetha; Nanduri, Bindu; Kaya, Abdullah; Feugang, Jean M; Burgess, Shane C; Memili, Erdogan

    2008-01-01

    Background Male infertility is a major problem for mammalian reproduction. However, molecular details including the underlying mechanisms of male fertility are still not known. A thorough understanding of these mechanisms is essential for obtaining consistently high reproductive efficiency and to ensure lower cost and time-loss by breeder. Results Using high and low fertility bull spermatozoa, here we employed differential detergent fractionation multidimensional protein identification technology (DDF-Mud PIT) and identified 125 putative biomarkers of fertility. We next used quantitative Systems Biology modeling and canonical protein interaction pathways and networks to show that high fertility spermatozoa differ from low fertility spermatozoa in four main ways. Compared to sperm from low fertility bulls, sperm from high fertility bulls have higher expression of proteins involved in: energy metabolism, cell communication, spermatogenesis, and cell motility. Our data also suggests a hypothesis that low fertility sperm DNA integrity may be compromised because cell cycle: G2/M DNA damage checkpoint regulation was most significant signaling pathway identified in low fertility spermatozoa. Conclusion This is the first comprehensive description of the bovine spermatozoa proteome. Comparative proteomic analysis of high fertility and low fertility bulls, in the context of protein interaction networks identified putative molecular markers associated with high fertility phenotype. PMID:18294385

  16. Biopsy in idiopathic pulmonary fibrosis: back to the future.

    PubMed

    Rossi, Giulio; Spagnolo, Paolo

    2017-09-01

    Idiopathic Pulmonary Fibrosis (IPF) is a relentlessly progressive, fibrosing interstitial pneumonia characterized by a radiologic and/or histologic pattern of usual interstitial pneumonia (UIP). The availability of two effective anti-fibrotic drugs in IPF has encouraged the identification and treatment of patients in early stages in order to maximize clinical benefit. The ability of high-resolution computed tomography (HRCT) to identify a 'definite' UIP pattern is suboptimal, particularly in the absence of honeycombing. Therefore, radiologic criteria for UIP are currently being redefined. Histology represents the major source of information to define a UIP pattern. Novel and less invasive approaches (particularly cryobiopsy) to sample interstitial lung diseases have demonstrated high sensitivity and specificity. In parallel, researchers are focusing on molecular mechanisms underlying IPF with the aim to identify more specific druggable targets. Lung tissue is therefore essential for diagnostic, pathogenetic and therapeutic purposes. Areas covered: We identified and critically reviewed the most relevant recent literature related to the limitations of current radiologic criteria, new lung sampling procedures, and molecular pathways in support of the need of lung tissue to better understand IPF. Expert commentary: The development of truly effective treatments for IPF requires the identification of key pathogenetic molecules and pathways. To this end, the availability of lung tissue is vital.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eberhard, Jeremy; Onder, Zeynep; Moroianu, Junona, E-mail: moroianu@bc.edu

    We previously discovered that nuclear import of high risk HPV16 E7 is mediated by a cNLS located within the zinc-binding domain via a pathway that is independent of karyopherins/importins (Angeline et al., 2003; Knapp et al., 2009). In this study we continued our characterization of the cNLS and nuclear import pathway of HPV16 E7. We find that an intact zinc-binding domain is essential for the cNLS function in mediating nuclear import of HPV16 E7. Mutagenesis of cysteine residues to alanine in each of the two CysXXCys motifs involved in zinc-binding changes the nuclear localization of the EGFP-16E7 and 2xEGFP-16E7 mutants.more » We further discover that a patch of hydrophobic residues, {sub 65}LRLCV{sub 69}, within the zinc-binding domain of HPV16 E7 mediates its nuclear import via hydrophobic interactions with the FG domain of the central channel nucleoporin Nup62. - Highlights: • An intact zinc-binding domain is essential for the nuclear localization of HPV16 E7. • Identification of a hydrophobic patch that is critical for the nuclear import of HPV16 E7. • HPV16 E7 interacts via its zinc-binding domain with the FG domain of Nup62.« less

  18. Information-dependent enrichment analysis reveals time-dependent transcriptional regulation of the estrogen pathway of toxicity.

    PubMed

    Pendse, Salil N; Maertens, Alexandra; Rosenberg, Michael; Roy, Dipanwita; Fasani, Rick A; Vantangoli, Marguerite M; Madnick, Samantha J; Boekelheide, Kim; Fornace, Albert J; Odwin, Shelly-Ann; Yager, James D; Hartung, Thomas; Andersen, Melvin E; McMullen, Patrick D

    2017-04-01

    The twenty-first century vision for toxicology involves a transition away from high-dose animal studies to in vitro and computational models (NRC in Toxicity testing in the 21st century: a vision and a strategy, The National Academies Press, Washington, DC, 2007). This transition requires mapping pathways of toxicity by understanding how in vitro systems respond to chemical perturbation. Uncovering transcription factors/signaling networks responsible for gene expression patterns is essential for defining pathways of toxicity, and ultimately, for determining the chemical modes of action through which a toxicant acts. Traditionally, transcription factor identification is achieved via chromatin immunoprecipitation studies and summarized by calculating which transcription factors are statistically associated with up- and downregulated genes. These lists are commonly determined via statistical or fold-change cutoffs, a procedure that is sensitive to statistical power and may not be as useful for determining transcription factor associations. To move away from an arbitrary statistical or fold-change-based cutoff, we developed, in the context of the Mapping the Human Toxome project, an enrichment paradigm called information-dependent enrichment analysis (IDEA) to guide identification of the transcription factor network. We used a test case of activation in MCF-7 cells by 17β estradiol (E2). Using this new approach, we established a time course for transcriptional and functional responses to E2. ERα and ERβ were associated with short-term transcriptional changes in response to E2. Sustained exposure led to recruitment of additional transcription factors and alteration of cell cycle machinery. TFAP2C and SOX2 were the transcription factors most highly correlated with dose. E2F7, E2F1, and Foxm1, which are involved in cell proliferation, were enriched only at 24 h. IDEA should be useful for identifying candidate pathways of toxicity. IDEA outperforms gene set enrichment analysis (GSEA) and provides similar results to weighted gene correlation network analysis, a platform that helps to identify genes not annotated to pathways.

  19. 77 FR 13009 - Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 80 [EPA-HQ-OAR-2011-0542; FRL-9642-3] RIN 2060-AR07 Regulation of Fuels and Fuel Additives: Identification of Additional Qualifying Renewable Fuel Pathways Under... of Sec. 80.1426 to identify additional renewable fuel production pathways and pathway components that...

  20. Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development

    PubMed Central

    Thammahong, Arsa; Puttikamonkul, Srisombat; Perfect, John R.; Brennan, Richard G.

    2017-01-01

    SUMMARY Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target. PMID:28298477

  1. Metabolome searcher: a high throughput tool for metabolite identification and metabolic pathway mapping directly from mass spectrometry and using genome restriction.

    PubMed

    Dhanasekaran, A Ranjitha; Pearson, Jon L; Ganesan, Balasubramanian; Weimer, Bart C

    2015-02-25

    Mass spectrometric analysis of microbial metabolism provides a long list of possible compounds. Restricting the identification of the possible compounds to those produced by the specific organism would benefit the identification process. Currently, identification of mass spectrometry (MS) data is commonly done using empirically derived compound databases. Unfortunately, most databases contain relatively few compounds, leaving long lists of unidentified molecules. Incorporating genome-encoded metabolism enables MS output identification that may not be included in databases. Using an organism's genome as a database restricts metabolite identification to only those compounds that the organism can produce. To address the challenge of metabolomic analysis from MS data, a web-based application to directly search genome-constructed metabolic databases was developed. The user query returns a genome-restricted list of possible compound identifications along with the putative metabolic pathways based on the name, formula, SMILES structure, and the compound mass as defined by the user. Multiple queries can be done simultaneously by submitting a text file created by the user or obtained from the MS analysis software. The user can also provide parameters specific to the experiment's MS analysis conditions, such as mass deviation, adducts, and detection mode during the query so as to provide additional levels of evidence to produce the tentative identification. The query results are provided as an HTML page and downloadable text file of possible compounds that are restricted to a specific genome. Hyperlinks provided in the HTML file connect the user to the curated metabolic databases housed in ProCyc, a Pathway Tools platform, as well as the KEGG Pathway database for visualization and metabolic pathway analysis. Metabolome Searcher, a web-based tool, facilitates putative compound identification of MS output based on genome-restricted metabolic capability. This enables researchers to rapidly extend the possible identifications of large data sets for metabolites that are not in compound databases. Putative compound names with their associated metabolic pathways from metabolomics data sets are returned to the user for additional biological interpretation and visualization. This novel approach enables compound identification by restricting the possible masses to those encoded in the genome.

  2. Combined zebrafish-yeast chemical-genetic screens reveal gene-copper-nutrition interactions that modulate melanocyte pigmentation.

    PubMed

    Ishizaki, Hironori; Spitzer, Michaela; Wildenhain, Jan; Anastasaki, Corina; Zeng, Zhiqiang; Dolma, Sonam; Shaw, Michael; Madsen, Erik; Gitlin, Jonathan; Marais, Richard; Tyers, Mike; Patton, E Elizabeth

    2010-01-01

    Hypopigmentation is a feature of copper deficiency in humans, as caused by mutation of the copper (Cu(2+)) transporter ATP7A in Menkes disease, or an inability to absorb copper after gastric surgery. However, many causes of copper deficiency are unknown, and genetic polymorphisms might underlie sensitivity to suboptimal environmental copper conditions. Here, we combined phenotypic screens in zebrafish for compounds that affect copper metabolism with yeast chemical-genetic profiles to identify pathways that are sensitive to copper depletion. Yeast chemical-genetic interactions revealed that defects in intracellular trafficking pathways cause sensitivity to low-copper conditions; partial knockdown of the analogous Ap3s1 and Ap1s1 trafficking components in zebrafish sensitized developing melanocytes to hypopigmentation in low-copper environmental conditions. Because trafficking pathways are essential for copper loading into cuproproteins, our results suggest that hypomorphic alleles of trafficking components might underlie sensitivity to reduced-copper nutrient conditions. In addition, we used zebrafish-yeast screening to identify a novel target pathway in copper metabolism for the small-molecule MEK kinase inhibitor U0126. The zebrafish-yeast screening method combines the power of zebrafish as a disease model with facile genome-scale identification of chemical-genetic interactions in yeast to enable the discovery and dissection of complex multigenic interactions in disease-gene networks.

  3. Identification of an inhibitor of the MurC enzyme, which catalyzes an essential step in the peptidoglycan precursor synthesis pathway.

    PubMed

    Zawadzke, Laura E; Norcia, Michael; Desbonnet, Charlene R; Wang, Hong; Freeman-Cook, Kevin; Dougherty, Thomas J

    2008-02-01

    The pathway for synthesis of the peptidoglycan precursor UDP-N-acetylmuramyl pentapeptide is essential in Gram-positive and Gram-negative bacteria. This pathway has been exploited in the recent past to identify potential new antibiotics as inhibitors of one or more of the Mur enzymes. In the present study, a high-throughput screen was employed to identify potential inhibitors of the Escherichia coli MurC (UDP-N-acetylmuramic acid:L-alanine ligase), the first of four paralogous amino acid-adding enzymes. Inhibition of ATP consumed during the MurC reaction, using an adaptation of a kinase assay format, identified a number of potential inhibitory chemotypes. After nonspecific inhibition testing and chemical attractiveness were assessed, C-1 emerged as a compound for further characterization. The inhibition of MurC by this compound was confirmed in both a kinetic-coupled enzyme assay and a direct nuclear magnetic resonance product detection assay. C-1 was found to be a low micromolar inhibitor of the E. coli MurC reaction, with preferential inhibition by one of two enantiomeric forms. Experiments indicated that it was a competitive inhibitor of ATP binding to the MurC enzyme. Further work with MurC enzymes from several bacterial sources revealed that while the compound was equally effective at inhibiting MurC from genera (Proteus mirabilis and Klebsiella pneumoniae) closely related to E. coli, MurC enzymes from more distant Gram-negative species such as Haemophilus influenzae, Acinetobacter baylyi, and Pseudomonas aeruginosa were not inhibited.

  4. Development of a risk-based index for source water protection planning, which supports the reduction of pathogens from agricultural activity entering water resources.

    PubMed

    Goss, Michael; Richards, Charlene

    2008-06-01

    Source water protection planning (SWPP) is an approach to prevent contamination of ground and surface water in watersheds where these resources may be abstracted for drinking or used for recreation. For SWPP the hazards within a watershed that could contribute to water contamination are identified together with the pathways that link them to the water resource. In rural areas, farms are significant potential sources of pathogens. A risk-based index can be used to support the assessment of the potential for contamination following guidelines on safety and operational efficacy of processes and practices developed as beneficial approaches to agricultural land management. Evaluation of the health risk for a target population requires knowledge of the strength of the hazard with respect to the pathogen load (massxconcentration). Manure handling and on-site wastewater treatment systems form the most important hazards, and both can comprise confined and unconfined source elements. There is also a need to understand the modification of pathogen numbers (attenuation) together with characteristics of the established pathways (surface or subsurface), which allow the movement of the contaminant species from a source to a receptor (water source). Many practices for manure management have not been fully evaluated for their impact on pathogen survival and transport in the environment. A key component is the identification of potential pathways of contaminant transport. This requires the development of a suitable digital elevation model of the watershed for surface movement and information on local groundwater aquifer systems for subsurface flows. Both require detailed soils and geological information. The pathways to surface and groundwater resources can then be identified. Details of land management, farm management practices (including animal and manure management) and agronomic practices have to be obtained, possibly from questionnaires completed by each producer within the watershed. To confirm that potential pathways are active requires some microbial source tracking. One possibility is to identify the molecular types of Escherichia coli present in each hazard on a farm. An essential part of any such index is the identification of mitigation strategies and practices that can reduce the magnitude of the hazard or block open pathways.

  5. Implementation of an Inpatient Pediatric Sepsis Identification Pathway.

    PubMed

    Bradshaw, Chanda; Goodman, Ilyssa; Rosenberg, Rebecca; Bandera, Christopher; Fierman, Arthur; Rudy, Bret

    2016-03-01

    Early identification and treatment of severe sepsis and septic shock improves outcomes. We sought to identify and evaluate children with possible sepsis on a pediatric medical/surgical unit through successful implementation of a sepsis identification pathway. The sepsis identification pathway, a vital sign screen and subsequent physician evaluation, was implemented in October 2013. Quality improvement interventions were used to improve physician and nursing adherence with the pathway. We reviewed charts of patients with positive screens on a monthly basis to assess for nursing recognition/physician notification, physician evaluation for sepsis, and subsequent physician diagnosis of sepsis and severe sepsis/septic shock. Adherence data were analyzed on a run chart and statistical process control p-chart. Nursing and physician pathway adherence of >80% was achieved over a 6-month period and sustained for the following 6 months. The direction of improvements met standard criteria for special causes. Over a 1-year period, there were 963 admissions to the unit. Positive screens occurred in 161 (16.7%) of these admissions and 38 (23.5%) of these had a physician diagnosis of sepsis, severe sepsis, or septic shock. One patient with neutropenia and septic shock had a negative sepsis screen due to lack of initial fever. Using quality improvement methodology, we successfully implemented a sepsis identification pathway on our pediatric unit. The pathway provided a standardized process to identify and evaluate children with possible sepsis requiring timely evaluation and treatment. Copyright © 2016 by the American Academy of Pediatrics.

  6. Mitochondrial Calcium Transport in Trypanosomes

    PubMed Central

    Docampo, Roberto; Vercesi, Anibal E.; Huang, Guozhong

    2014-01-01

    The biochemical peculiarities of trypanosomes were fundamental for the recent molecular identification of the long-sought channel involved in mitochondrial Ca2+ uptake, the mitochondrial Ca2+ uniporter or MCU. This discovery led to the finding of numerous regulators of the channel, which form a high molecular weight complex with MCU. Some of these regulators have been bioinformatically identified in trypanosomes, which are the first eukaryotic organisms described for which MCU is essential. In trypanosomes MCU is important for buffering cytosolic Ca2+ changes and for activation of the bioenergetics of the cells. Future work on this pathway in trypanosomes promises further insight into the biology of these fascinating eukaryotes, as well as the potential for novel target discovery. PMID:25218432

  7. Network Medicine: A Network-based Approach to Human Disease

    PubMed Central

    Barabási, Albert-László; Gulbahce, Natali; Loscalzo, Joseph

    2011-01-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The emerging tools of network medicine offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction are essential to identify new diseases genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases. PMID:21164525

  8. Identification of the first diphenyl ether gene cluster for pestheic acid biosynthesis in plant endophyte Pestalotiopsis fici.

    PubMed

    Xu, Xinxin; Liu, Ling; Zhang, Fan; Wang, Wenzhao; Li, Jinyang; Guo, Liangdong; Che, Yongsheng; Liu, Gang

    2014-01-24

    The diphenyl ether pestheic acid was isolated from the endophytic fungus Pestalotiopsis fici, which is proposed to be the biosynthetic precursor of the unique chloropupukeananes. The pestheic acid biosynthetic gene (pta) cluster was identified in the fungus through genome scanning. Sequence analysis revealed that this gene cluster encodes a nonreducing polyketide synthase, a number of modification enzymes, and three regulators. Gene disruption and intermediate analysis demonstrated that the biosynthesis proceeded through formation of the polyketide backbone, cyclization of a polyketo acid to a benzophenone, chlorination, and formation of the diphenyl ether skeleton through oxidation and hydrolyzation. A dihydrogeodin oxidase gene, ptaE, was essential for diphenyl ether formation, and ptaM encoded a flavin-dependent halogenase catalyzing chlorination in the biosynthesis. Identification of the pta cluster laid the foundation to decipher the genetic and biochemical mechanisms involved in the pathway. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dysregulated Pathway Identification of Alzheimer's Disease Based on Internal Correlation Analysis of Genes and Pathways.

    PubMed

    Kong, Wei; Mou, Xiaoyang; Di, Benteng; Deng, Jin; Zhong, Ruxing; Wang, Shuaiqun

    2017-11-20

    Dysregulated pathway identification is an important task which can gain insight into the underlying biological processes of disease. Current pathway-identification methods focus on a set of co-expression genes and single pathways and ignore the correlation between genes and pathways. The method proposed in this study, takes into account the internal correlations not only between genes but also pathways to identifying dysregulated pathways related to Alzheimer's disease (AD), the most common form of dementia. In order to find the significantly differential genes for AD, mutual information (MI) is used to measure interdependencies between genes other than expression valves. Then, by integrating the topology information from KEGG, the significant pathways involved in the feature genes are identified. Next, the distance correlation (DC) is applied to measure the pairwise pathway crosstalks since DC has the advantage of detecting nonlinear correlations when compared to Pearson correlation. Finally, the pathway pairs with significantly different correlations between normal and AD samples are known as dysregulated pathways. The molecular biology analysis demonstrated that many dysregulated pathways related to AD pathogenesis have been discovered successfully by the internal correlation detection. Furthermore, the insights of the dysregulated pathways in the development and deterioration of AD will help to find new effective target genes and provide important theoretical guidance for drug design. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. The Central Role of cAMP in Regulating Plasmodium falciparum Merozoite Invasion of Human Erythrocytes

    PubMed Central

    More, Kunal R.; Siddiqui, Faiza Amber; Pachikara, Niseema; Ramdani, Ghania; Langsley, Gordon; Chitnis, Chetan E.

    2014-01-01

    All pathogenesis and death associated with Plasmodium falciparum malaria is due to parasite-infected erythrocytes. Invasion of erythrocytes by P. falciparum merozoites requires specific interactions between host receptors and parasite ligands that are localized in apical organelles called micronemes. Here, we identify cAMP as a key regulator that triggers the timely secretion of microneme proteins enabling receptor-engagement and invasion. We demonstrate that exposure of merozoites to a low K+ environment, typical of blood plasma, activates a bicarbonate-sensitive cytoplasmic adenylyl cyclase to raise cytosolic cAMP levels and activate protein kinase A, which regulates microneme secretion. We also show that cAMP regulates merozoite cytosolic Ca2+ levels via induction of an Epac pathway and demonstrate that increases in both cAMP and Ca2+ are essential to trigger microneme secretion. Our identification of the different elements in cAMP-dependent signaling pathways that regulate microneme secretion during invasion provides novel targets to inhibit blood stage parasite growth and prevent malaria. PMID:25522250

  11. In vivo and in silico determination of essential genes of Campylobacter jejuni.

    PubMed

    Metris, Aline; Reuter, Mark; Gaskin, Duncan J H; Baranyi, Jozsef; van Vliet, Arnoud H M

    2011-11-01

    In the United Kingdom, the thermophilic Campylobacter species C. jejuni and C. coli are the most frequent causes of food-borne gastroenteritis in humans. While campylobacteriosis is usually a relatively mild infection, it has a significant public health and economic impact, and possible complications include reactive arthritis and the autoimmune diseases Guillain-Barré syndrome. The rapid developments in "omics" technologies have resulted in the availability of diverse datasets allowing predictions of metabolism and physiology of pathogenic micro-organisms. When combined, these datasets may allow for the identification of potential weaknesses that can be used for development of new antimicrobials to reduce or eliminate C. jejuni and C. coli from the food chain. A metabolic model of C. jejuni was constructed using the annotation of the NCTC 11168 genome sequence, a published model of the related bacterium Helicobacter pylori, and extensive literature mining. Using this model, we have used in silico Flux Balance Analysis (FBA) to determine key metabolic routes that are essential for generating energy and biomass, thus creating a list of genes potentially essential for growth under laboratory conditions. To complement this in silico approach, candidate essential genes have been determined using a whole genome transposon mutagenesis method. FBA and transposon mutagenesis (both this study and a published study) predict a similar number of essential genes (around 200). The analysis of the intersection between the three approaches highlights the shikimate pathway where genes are predicted to be essential by one or more method, and tend to be network hubs, based on a previously published Campylobacter protein-protein interaction network, and could therefore be targets for novel antimicrobial therapy. We have constructed the first curated metabolic model for the food-borne pathogen Campylobacter jejuni and have presented the resulting metabolic insights. We have shown that the combination of in silico and in vivo approaches could point to non-redundant, indispensable genes associated with the well characterised shikimate pathway, and also genes of unknown function specific to C. jejuni, which are all potential novel Campylobacter intervention targets.

  12. Structural Basis of Specific Recognition of Non-Reducing Terminal N-Acetylglucosamine by an Agrocybe aegerita Lectin

    PubMed Central

    Ren, Xiao-Ming; Li, De-Feng; Jiang, Shuai; Lan, Xian-Qing; Hu, Yonglin; Sun, Hui; Wang, Da-Cheng

    2015-01-01

    O-linked N-acetylglucosaminylation (O-GlcNAcylation) is a reversible post-translational modification that plays essential roles in many cellular pathways. Research in this field, however, is hampered by the lack of suitable probes to identify, accumulate, and purify the O-GlcNAcylated proteins. We have previously reported the identification of a lectin from the mushroom Agrocybe aegerita, i.e., Agrocybe aegerita lectin 2, or AAL2, that could bind terminal N-acetylglucosamine with higher affinities and specificity than other currently used probes. In this paper, we report the crystal structures of AAL2 and its complexes with GlcNAc and GlcNAcβ1-3Galβ1-4GlcNAc and reveal the structural basis of GlcNAc recognition by AAL2 and residues essential for the binding of terminal N-acetylglucosamine. Study on AAL2 may enable us to design a protein probe that can be used to identify and purify O-GlcNAcylated proteins more efficiently. PMID:26114302

  13. Global Identification of New Substrates for the Yeast Endoribonuclease, RNase Mitochondrial RNA Processing (MRP)*

    PubMed Central

    Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E.

    2012-01-01

    RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27Kip1, SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease. PMID:22977255

  14. Global identification of new substrates for the yeast endoribonuclease, RNase mitochondrial RNA processing (MRP).

    PubMed

    Aulds, Jason; Wierzbicki, Sara; McNairn, Adrian; Schmitt, Mark E

    2012-10-26

    RNase mitochondrial RNA processing (MRP) is an essential, evolutionarily conserved endoribonuclease composed of 10 different protein subunits and a single RNA. RNase MRP has established roles in multiple pathways including ribosome biogenesis, cell cycle regulation, and mitochondrial DNA replication. Although each of these functions is important to cell growth, additional functions may exist given the essential nature of the complex. To identify novel RNase MRP substrates, we utilized RNA immunoprecipitation and microarray chip analysis to identify RNA that physically associates with RNase MRP. We identified several new potential substrates for RNase MRP including a cell cycle-regulated transcript, CTS1; the yeast homolog of the mammalian p27(Kip1), SIC1; and the U2 RNA component of the spliceosome. In addition, we found RNase MRP to be involved in the regulation of the Ty1 transposon RNA. These results reinforce and broaden the role of RNase MRP in cell cycle regulation and help to identify new roles of this endoribonuclease.

  15. [Importance of the tumor stem cell hypothesis for understanding ovarian cancer].

    PubMed

    Vochem, R; Einenkel, J; Horn, L-C; Ruschpler, P

    2014-07-01

    Despite complex surgical and systemic therapies epithelial ovarian cancer has a poor prognosis. A small quantity of tumorigenic cells termed cancer stem cells (CSC) are responsible for the development of chemoresistance and high rates of recurrence. This review presents the CSC hypothesis and describes methods of identification and enrichment of CSCs as well as approaches for the therapeutic use of these findings. A systematic literature review based on PubMed and Web of Science was carried out. The CSC model is based on a hierarchical structure of tumors with few CSCs and variably differentiated tumor cells constituting the tumor bulk. Only the CSCs possess tumorigenic potential. Other essential functional characteristics of CSCs are their potential for self-renewal and their ability to differentiate into further cell types. The CSCs are structurally characterized by different surface markers and changes in certain signaling pathways. Currently there are phase I and II studies in progress investigating specific influences on CSCs. Various clinical characteristics of the course of disease in ovarian cancer are aptly represented by the tumor stem cell model. In spite of precisely defined functional characteristics of CSCs, surface markers and signaling pathways show individual differences and vary between tumor entities. This complicates identification and enrichment. Current experimental findings in various approaches and even first clinical studies raise hopes for a personalized cancer therapy targeting CSCs.

  16. A global characterization and identification of multifunctional enzymes.

    PubMed

    Cheng, Xian-Ying; Huang, Wei-Juan; Hu, Shi-Chang; Zhang, Hai-Lei; Wang, Hao; Zhang, Jing-Xian; Lin, Hong-Huang; Chen, Yu-Zong; Zou, Quan; Ji, Zhi-Liang

    2012-01-01

    Multi-functional enzymes are enzymes that perform multiple physiological functions. Characterization and identification of multi-functional enzymes are critical for communication and cooperation between different functions and pathways within a complex cellular system or between cells. In present study, we collected literature-reported 6,799 multi-functional enzymes and systematically characterized them in structural, functional, and evolutionary aspects. It was found that four physiochemical properties, that is, charge, polarizability, hydrophobicity, and solvent accessibility, are important for characterization of multi-functional enzymes. Accordingly, a combinational model of support vector machine and random forest model was constructed, based on which 6,956 potential novel multi-functional enzymes were successfully identified from the ENZYME database. Moreover, it was observed that multi-functional enzymes are non-evenly distributed in species, and that Bacteria have relatively more multi-functional enzymes than Archaebacteria and Eukaryota. Comparative analysis indicated that the multi-functional enzymes experienced a fluctuation of gene gain and loss during the evolution from S. cerevisiae to H. sapiens. Further pathway analyses indicated that a majority of multi-functional enzymes were well preserved in catalyzing several essential cellular processes, for example, metabolisms of carbohydrates, nucleotides, and amino acids. What's more, a database of known multi-functional enzymes and a server for novel multi-functional enzyme prediction were also constructed for free access at http://bioinf.xmu.edu.cn/databases/MFEs/index.htm.

  17. The application of powerful promoters to enhance gene expression in industrial microorganisms.

    PubMed

    Zhou, Shenghu; Du, Guocheng; Kang, Zhen; Li, Jianghua; Chen, Jian; Li, Huazhong; Zhou, Jingwen

    2017-02-01

    Production of useful chemicals by industrial microorganisms has been attracting more and more attention. Microorganisms screened from their natural environment usually suffer from low productivity, low stress resistance, and accumulation of by-products. In order to overcome these disadvantages, rational engineering of microorganisms to achieve specific industrial goals has become routine. Rapid development of metabolic engineering and synthetic biology strategies provide novel methods to improve the performance of industrial microorganisms. Rational regulation of gene expression by specific promoters is essential to engineer industrial microorganisms for high-efficiency production of target chemicals. Identification, modification, and application of suitable promoters could provide powerful switches at the transcriptional level for fine-tuning of a single gene or a group of genes, which are essential for the reconstruction of pathways. In this review, the characteristics of promoters from eukaryotic, prokaryotic, and archaea microorganisms are briefly introduced. Identification of promoters based on both traditional biochemical and systems biology routes are summarized. Besides rational modification, de novo design of promoters to achieve gradient, dynamic, and logic gate regulation are also introduced. Furthermore, flexible application of static and dynamic promoters for the rational engineering of industrial microorganisms is highlighted. From the perspective of powerful promoters in industrial microorganisms, this review will provide an extensive description of how to regulate gene expression in industrial microorganisms to achieve more useful goals.

  18. Porphyrins and Porphyria Diagnosis

    MedlinePlus

    ... diagnosis The porphyrias are caused by deficiencies of enzymes of the heme biosynthetic pathway. This pathway, like ... heme. Heme is essential for life, and each enzyme is also essential, because it is responsible for ...

  19. Central Role of the Trehalose Biosynthesis Pathway in the Pathogenesis of Human Fungal Infections: Opportunities and Challenges for Therapeutic Development.

    PubMed

    Thammahong, Arsa; Puttikamonkul, Srisombat; Perfect, John R; Brennan, Richard G; Cramer, Robert A

    2017-06-01

    Invasive fungal infections cause significant morbidity and mortality in part due to a limited antifungal drug arsenal. One therapeutic challenge faced by clinicians is the significant host toxicity associated with antifungal drugs. Another challenge is the fungistatic mechanism of action of some drugs. Consequently, the identification of fungus-specific drug targets essential for fitness in vivo remains a significant goal of medical mycology research. The trehalose biosynthetic pathway is found in a wide variety of organisms, including human-pathogenic fungi, but not in humans. Genes encoding proteins involved in trehalose biosynthesis are mechanistically linked to the metabolism, cell wall homeostasis, stress responses, and virulence of Candida albicans , Cryptococcus neoformans , and Aspergillus fumigatus . While there are a number of pathways for trehalose production across the tree of life, the TPS/TPP (trehalose-6-phosphate synthase/trehalose-6-phosphate phosphatase) pathway is the canonical pathway found in human-pathogenic fungi. Importantly, data suggest that proteins involved in trehalose biosynthesis play other critical roles in fungal metabolism and in vivo fitness that remain to be fully elucidated. By further defining the biology and functions of trehalose and its biosynthetic pathway components in pathogenic fungi, an opportunity exists to leverage this pathway as a potent antifungal drug target. The goal of this review is to cover the known roles of this important molecule and its associated biosynthesis-encoding genes in the human-pathogenic fungi studied to date and to employ these data to critically assess the opportunities and challenges facing development of this pathway as a therapeutic target. Copyright © 2017 American Society for Microbiology.

  20. Neural computational modeling reveals a major role of corticospinal gating of central oscillations in the generation of essential tremor.

    PubMed

    Qu, Hong-En; Niu, Chuanxin M; Li, Si; Hao, Man-Zhao; Hu, Zi-Xiang; Xie, Qing; Lan, Ning

    2017-12-01

    Essential tremor, also referred to as familial tremor, is an autosomal dominant genetic disease and the most common movement disorder. It typically involves a postural and motor tremor of the hands, head or other part of the body. Essential tremor is driven by a central oscillation signal in the brain. However, the corticospinal mechanisms involved in the generation of essential tremor are unclear. Therefore, in this study, we used a neural computational model that includes both monosynaptic and multisynaptic corticospinal pathways interacting with a propriospinal neuronal network. A virtual arm model is driven by the central oscillation signal to simulate tremor activity behavior. Cortical descending commands are classified as alpha or gamma through monosynaptic or multisynaptic corticospinal pathways, which converge respectively on alpha or gamma motoneurons in the spinal cord. Several scenarios are evaluated based on the central oscillation signal passing down to the spinal motoneurons via each descending pathway. The simulated behaviors are compared with clinical essential tremor characteristics to identify the corticospinal pathways responsible for transmitting the central oscillation signal. A propriospinal neuron with strong cortical inhibition performs a gating function in the generation of essential tremor. Our results indicate that the propriospinal neuronal network is essential for relaying the central oscillation signal and the production of essential tremor.

  1. The O-Mannosyltransferase PMT4 Is Essential for Normal Appressorium Formation and Penetration in Ustilago maydis[W][OA

    PubMed Central

    Fernández-Álvarez, Alfonso; Elías-Villalobos, Alberto; Ibeas, José I.

    2009-01-01

    In Saccharomyces cerevisiae, the PMT, KRE2/MNT1, and MNN1 mannosyltransferase protein families catalyze the steps of the O-mannosylation pathway, sequentially adding mannoses to target proteins. We have identified members of all three families and analyzed their roles in pathogenesis of the maize smut fungus Ustilago maydis. Furthermore, we have shown that PMT4, one of the three PMT family members in U. maydis, is essential for tumor formation in Zea mays. Significantly, PMT4 seems to be required only for pathogenesis and is dispensable for other aspects of the U. maydis life cycle. We subsequently show that the deletion of pmt4 results in a strong reduction in the frequency of appressorium formation, with the few appressoria that do form lacking the capacity to penetrate the plant cuticle. Our findings suggest that the O-mannosylation pathway plays a key role in the posttranslational modification of proteins involved in the pathogenic development of U. maydis. The fact that PMT homologs are not found in plants may open new avenues for the development of fungal control strategies. Moreover, the discovery of a highly specific requirement for a single O-mannosyltransferase should aid in the identification of the proteins directly involved in fungal plant penetration, thus leading to a better understanding of plant–fungi interactions. PMID:19880800

  2. Comprehensive functional analysis of Rab GTPases in Drosophila nephrocytes.

    PubMed

    Fu, Yulong; Zhu, Jun-Yi; Zhang, Fujian; Richman, Adam; Zhao, Zhanzheng; Han, Zhe

    2017-06-01

    The Drosophila nephrocyte is a critical component of the fly renal system and bears structural and functional homology to podocytes and proximal tubule cells of the mammalian kidney. Investigations of nephrocyte cell biological processes are fundamental to understanding the insect renal system. Nephrocytes are highly active in endocytosis and vesicle trafficking. Rab GTPases regulate endocytosis and trafficking but specific functions of nephrocyte Rabs remain undefined. We analyzed Rab GTPase expression and function in Drosophila nephrocytes and found that 11 out of 27 Drosophila Rabs were required for normal activity. Rabs 1, 5, 7, 11 and 35 were most important. Gene silencing of the nephrocyte-specific Rab5 eliminated all intracellular vesicles and the specialized plasma membrane structures essential for nephrocyte function. Rab7 silencing dramatically increased clear vacuoles and reduced lysosomes. Rab11 silencing increased lysosomes and reduced clear vacuoles. Our results suggest that Rab5 mediates endocytosis that is essential for the maintenance of functionally critical nephrocyte plasma membrane structures and that Rabs 7 and 11 mediate alternative downstream vesicle trafficking pathways leading to protein degradation and membrane recycling, respectively. Elucidating molecular pathways underlying nephrocyte function has the potential to yield important insights into human kidney cell physiology and mechanisms of cell injury that lead to disease. The Drosophila nephrocyte is emerging as a useful in vivo model system for molecular target identification and initial testing of therapeutic approaches in humans.

  3. Identification of a molecular pH sensor in coral.

    PubMed

    Barott, Katie L; Barron, Megan E; Tresguerres, Martin

    2017-11-15

    Maintaining stable intracellular pH (pHi) is essential for homeostasis, and requires the ability to both sense pH changes that may result from internal and external sources, and to regulate downstream compensatory pH pathways. Here we identified the cAMP-producing enzyme soluble adenylyl cyclase (sAC) as the first molecular pH sensor in corals. sAC protein was detected throughout coral tissues, including those involved in symbiosis and calcification. Application of a sAC-specific inhibitor caused significant and reversible pHi acidosis in isolated coral cells under both dark and light conditions, indicating sAC is essential for sensing and regulating pHi perturbations caused by respiration and photosynthesis. Furthermore, pHi regulation during external acidification was also dependent on sAC activity. Thus, sAC is a sensor and regulator of pH disturbances from both metabolic and external origin in corals. Since sAC is present in all coral cell types, and the cAMP pathway can regulate virtually every aspect of cell physiology through post-translational modifications of proteins, sAC is likely to trigger multiple homeostatic mechanisms in response to pH disturbances. This is also the first evidence that sAC modulates pHi in any non-mammalian animal. Since corals are basal metazoans, our results indicate this function is evolutionarily conserved across animals. © 2017 The Author(s).

  4. RIOK3 Is an Adaptor Protein Required for IRF3-Mediated Antiviral Type I Interferon Production

    PubMed Central

    Feng, Jun; De Jesus, Paul D.; Su, Victoria; Han, Stephanie; Gong, Danyang; Wu, Nicholas C.; Tian, Yuan; Li, Xudong; Wu, Ting-Ting; Chanda, Sumit K.

    2014-01-01

    ABSTRACT Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-β. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3. IMPORTANCE The innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection. PMID:24807708

  5. Identification of metabolic pathways using pathfinding approaches: a systematic review.

    PubMed

    Abd Algfoor, Zeyad; Shahrizal Sunar, Mohd; Abdullah, Afnizanfaizal; Kolivand, Hoshang

    2017-03-01

    Metabolic pathways have become increasingly available for various microorganisms. Such pathways have spurred the development of a wide array of computational tools, in particular, mathematical pathfinding approaches. This article can facilitate the understanding of computational analysis of metabolic pathways in genomics. Moreover, stoichiometric and pathfinding approaches in metabolic pathway analysis are discussed. Three major types of studies are elaborated: stoichiometric identification models, pathway-based graph analysis and pathfinding approaches in cellular metabolism. Furthermore, evaluation of the outcomes of the pathways with mathematical benchmarking metrics is provided. This review would lead to better comprehension of metabolism behaviors in living cells, in terms of computed pathfinding approaches. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  6. Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways.

    PubMed

    Li, Chunquan; Han, Junwei; Yao, Qianlan; Zou, Chendan; Xu, Yanjun; Zhang, Chunlong; Shang, Desi; Zhou, Lingyun; Zou, Chaoxia; Sun, Zeguo; Li, Jing; Zhang, Yunpeng; Yang, Haixiu; Gao, Xu; Li, Xia

    2013-05-01

    Various 'omics' technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways.

  7. Discovering Mercury Protein Modifications in Whole Proteomes Using Natural Isotope Distributions Observed in Liquid Chromatography-Tandem Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polacco, Benjamin J.; Purvine, Samuel O.; Zink, Erika M.

    2011-08-01

    The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury’s seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate,more » we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.« less

  8. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis

    PubMed Central

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan MHAI; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Purpose Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim–sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. Materials and methods In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein–protein interaction. Results In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Conclusion Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to develop and discover more effective and specific therapeutic agents against S. sanguinis. PMID:25473301

  9. Identification and analysis of potential targets in Streptococcus sanguinis using computer aided protein data analysis.

    PubMed

    Chowdhury, Md Rabiul Hossain; Bhuiyan, Md IqbalKaiser; Saha, Ayan; Mosleh, Ivan Mhai; Mondol, Sobuj; Ahmed, C M Sabbir

    2014-01-01

    Streptococcus sanguinis is a Gram-positive, facultative aerobic bacterium that is a member of the viridans streptococcus group. It is found in human mouths in dental plaque, which accounts for both dental cavities and bacterial endocarditis, and which entails a mortality rate of 25%. Although a range of remedial mediators have been found to control this organism, the effectiveness of agents such as penicillin, amoxicillin, trimethoprim-sulfamethoxazole, and erythromycin, was observed. The emphasis of this investigation was on finding substitute and efficient remedial approaches for the total destruction of this bacterium. In this computational study, various databases and online software were used to ascertain some specific targets of S. sanguinis. Particularly, the Kyoto Encyclopedia of Genes and Genomes databases were applied to determine human nonhomologous proteins, as well as the metabolic pathways involved with those proteins. Different software such as Phyre2, CastP, DoGSiteScorer, the Protein Function Predictor server, and STRING were utilized to evaluate the probable active drug binding site with its known function and protein-protein interaction. In this study, among 218 essential proteins of this pathogenic bacterium, 81 nonhomologous proteins were accrued, and 15 proteins that are unique in several metabolic pathways of S. sanguinis were isolated through metabolic pathway analysis. Furthermore, four essentially membrane-bound unique proteins that are involved in distinct metabolic pathways were revealed by this research. Active sites and druggable pockets of these selected proteins were investigated with bioinformatic techniques. In addition, this study also mentions the activity of those proteins, as well as their interactions with the other proteins. Our findings helped to identify the type of protein to be considered as an efficient drug target. This study will pave the way for researchers to develop and discover more effective and specific therapeutic agents against S. sanguinis.

  10. Expanding the Substantial Interactome of NEMO Using Protein Microarrays

    PubMed Central

    Fenner, Beau J.; Scannell, Michael; Prehn, Jochen H. M.

    2010-01-01

    Signal transduction by the NF-kappaB pathway is a key regulator of a host of cellular responses to extracellular and intracellular messages. The NEMO adaptor protein lies at the top of this pathway and serves as a molecular conduit, connecting signals transmitted from upstream sensors to the downstream NF-kappaB transcription factor and subsequent gene activation. The position of NEMO within this pathway makes it an attractive target from which to search for new proteins that link NF-kappaB signaling to additional pathways and upstream effectors. In this work, we have used protein microarrays to identify novel NEMO interactors. A total of 112 protein interactors were identified, with the most statistically significant hit being the canonical NEMO interactor IKKbeta, with IKKalpha also being identified. Of the novel interactors, more than 30% were kinases, while at least 25% were involved in signal transduction. Binding of NEMO to several interactors, including CALB1, CDK2, SAG, SENP2 and SYT1, was confirmed using GST pulldown assays and coimmunoprecipitation, validating the initial screening approach. Overexpression of CALB1, CDK2 and SAG was found to stimulate transcriptional activation by NF-kappaB, while SYT1 overexpression repressed TNFalpha-dependent NF-kappaB transcriptional activation in human embryonic kidney cells. Corresponding with this finding, RNA silencing of CDK2, SAG and SENP2 reduced NF-kappaB transcriptional activation, supporting a positive role for these proteins in the NF-kappaB pathway. The identification of a host of new NEMO interactors opens up new research opportunities to improve understanding of this essential cell signaling pathway. PMID:20098747

  11. CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures

    PubMed Central

    Strnad, Ondrej; Brezovsky, Jan; Kozlikova, Barbora; Gora, Artur; Sustr, Vilem; Klvana, Martin; Medek, Petr; Biedermannova, Lada; Sochor, Jiri; Damborsky, Jiri

    2012-01-01

    Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz. PMID:23093919

  12. CAVER 3.0: a tool for the analysis of transport pathways in dynamic protein structures.

    PubMed

    Chovancova, Eva; Pavelka, Antonin; Benes, Petr; Strnad, Ondrej; Brezovsky, Jan; Kozlikova, Barbora; Gora, Artur; Sustr, Vilem; Klvana, Martin; Medek, Petr; Biedermannova, Lada; Sochor, Jiri; Damborsky, Jiri

    2012-01-01

    Tunnels and channels facilitate the transport of small molecules, ions and water solvent in a large variety of proteins. Characteristics of individual transport pathways, including their geometry, physico-chemical properties and dynamics are instrumental for understanding of structure-function relationships of these proteins, for the design of new inhibitors and construction of improved biocatalysts. CAVER is a software tool widely used for the identification and characterization of transport pathways in static macromolecular structures. Herein we present a new version of CAVER enabling automatic analysis of tunnels and channels in large ensembles of protein conformations. CAVER 3.0 implements new algorithms for the calculation and clustering of pathways. A trajectory from a molecular dynamics simulation serves as the typical input, while detailed characteristics and summary statistics of the time evolution of individual pathways are provided in the outputs. To illustrate the capabilities of CAVER 3.0, the tool was applied for the analysis of molecular dynamics simulation of the microbial enzyme haloalkane dehalogenase DhaA. CAVER 3.0 safely identified and reliably estimated the importance of all previously published DhaA tunnels, including the tunnels closed in DhaA crystal structures. Obtained results clearly demonstrate that analysis of molecular dynamics simulation is essential for the estimation of pathway characteristics and elucidation of the structural basis of the tunnel gating. CAVER 3.0 paves the way for the study of important biochemical phenomena in the area of molecular transport, molecular recognition and enzymatic catalysis. The software is freely available as a multiplatform command-line application at http://www.caver.cz.

  13. Two Novel Transcriptional Regulators Are Essential for Infection-related Morphogenesis and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae

    PubMed Central

    Yan, Xia; Li, Ya; Yue, Xiaofeng; Wang, Congcong; Que, Yawei; Kong, Dandan; Ma, Zhonghua; Talbot, Nicholas J.; Wang, Zhengyi

    2011-01-01

    The cyclic AMP-dependent protein kinase A signaling pathway plays a major role in regulating plant infection by the rice blast fungus Magnaporthe oryzae. Here, we report the identification of two novel genes, MoSOM1 and MoCDTF1, which were discovered in an insertional mutagenesis screen for non-pathogenic mutants of M. oryzae. MoSOM1 or MoCDTF1 are both necessary for development of spores and appressoria by M. oryzae and play roles in cell wall differentiation, regulating melanin pigmentation and cell surface hydrophobicity during spore formation. MoSom1 strongly interacts with MoStu1 (Mstu1), an APSES transcription factor protein, and with MoCdtf1, while also interacting more weakly with the catalytic subunit of protein kinase A (CpkA) in yeast two hybrid assays. Furthermore, the expression levels of MoSOM1 and MoCDTF1 were significantly reduced in both Δmac1 and ΔcpkA mutants, consistent with regulation by the cAMP/PKA signaling pathway. MoSom1-GFP and MoCdtf1-GFP fusion proteins localized to the nucleus of fungal cells. Site-directed mutagenesis confirmed that nuclear localization signal sequences in MoSom1 and MoCdtf1 are essential for their sub-cellular localization and biological functions. Transcriptional profiling revealed major changes in gene expression associated with loss of MoSOM1 during infection-related development. We conclude that MoSom1 and MoCdtf1 functions downstream of the cAMP/PKA signaling pathway and are novel transcriptional regulators associated with cellular differentiation during plant infection by the rice blast fungus. PMID:22144889

  14. Functional Analysis of the Aspergillus nidulans Kinome

    PubMed Central

    De Souza, Colin P.; Hashmi, Shahr B.; Osmani, Aysha H.; Andrews, Peter; Ringelberg, Carol S.; Dunlap, Jay C.; Osmani, Stephen A.

    2013-01-01

    The filamentous fungi are an ecologically important group of organisms which also have important industrial applications but devastating effects as pathogens and agents of food spoilage. Protein kinases have been implicated in the regulation of virtually all biological processes but how they regulate filamentous fungal specific processes is not understood. The filamentous fungus Aspergillus nidulans has long been utilized as a powerful molecular genetic system and recent technical advances have made systematic approaches to study large gene sets possible. To enhance A. nidulans functional genomics we have created gene deletion constructs for 9851 genes representing 93.3% of the encoding genome. To illustrate the utility of these constructs, and advance the understanding of fungal kinases, we have systematically generated deletion strains for 128 A. nidulans kinases including expanded groups of 15 histidine kinases, 7 SRPK (serine-arginine protein kinases) kinases and an interesting group of 11 filamentous fungal specific kinases. We defined the terminal phenotype of 23 of the 25 essential kinases by heterokaryon rescue and identified phenotypes for 43 of the 103 non-essential kinases. Uncovered phenotypes ranged from almost no growth for a small number of essential kinases implicated in processes such as ribosomal biosynthesis, to conditional defects in response to cellular stresses. The data provide experimental evidence that previously uncharacterized kinases function in the septation initiation network, the cell wall integrity and the morphogenesis Orb6 kinase signaling pathways, as well as in pathways regulating vesicular trafficking, sexual development and secondary metabolism. Finally, we identify ChkC as a third effector kinase functioning in the cellular response to genotoxic stress. The identification of many previously unknown functions for kinases through the functional analysis of the A. nidulans kinome illustrates the utility of the A. nidulans gene deletion constructs. PMID:23505451

  15. Biosynthesis of 2′-Chloropentostatin and 2′-Amino-2′-Deoxyadenosine Highlights a Single Gene Cluster Responsible for Two Independent Pathways in Actinomadura sp. Strain ATCC 39365

    PubMed Central

    Gao, Yaojie; Xu, Gudan; Wu, Pan; Liu, Jin; Cai, You-sheng; Deng, Zixin

    2017-01-01

    ABSTRACT 2′-Chloropentostatin (2′-Cl PTN, 2′-chloro-2′-deoxycoformycin) and 2′-amino-2′-deoxyadenosine (2′-amino dA) are two adenosine-derived nucleoside antibiotics coproduced by Actinomadura sp. strain ATCC 39365. 2′-Cl PTN is a potent adenosine deaminase (ADA) inhibitor featuring an intriguing 1,3-diazepine ring, as well as a chlorination at C-2′ of ribose, and 2′-amino dA is an adenosine analog showing bioactivity against RNA-type virus infection. However, the biosynthetic logic of them has remained poorly understood. Here, we report the identification of a single gene cluster (ada) essential for the biosynthesis of 2′-Cl PTN and 2′-amino dA. Further systematic genetic investigations suggest that 2′-Cl PTN and 2′-amino dA are biosynthesized by independent pathways. Moreover, we provide evidence that a predicted cation/H+ antiporter, AdaE, is involved in the chlorination step during 2′-Cl PTN biosynthesis. Notably, we demonstrate that 2′-amino dA biosynthesis is initiated by a Nudix hydrolase, AdaJ, catalyzing the hydrolysis of ATP. Finally, we reveal that the host ADA (designated ADA1), capable of converting adenosine/2′-amino dA to inosine/2′-amino dI, is not very sensitive to the powerful ADA inhibitor pentostatin. These findings provide a basis for the further rational pathway engineering of 2′-Cl PTN and 2′-amino dA production. IMPORTANCE 2′-Cl PTN/PTN and 2′-amino dA have captivated the great interests of scientists, owing to their unusual chemical structures and remarkable bioactivities. However, the precise logic for their biosynthesis has been elusive for decades. Actually, the identification and elucidation of their biosynthetic pathways not only enrich the biochemical repertoire of novel enzymatic reactions but may also lay solid foundations for the pathway engineering and combinatorial biosynthesis of this family of purine nucleoside antibiotics to generate novel hybrid analogs with improved features. PMID:28258148

  16. Tumour cell dormancy as a contributor to the reduced survival of GBM patients who received standard therapy.

    PubMed

    Tong, Luqing; Yi, Li; Liu, Peidong; Abeysekera, Iruni Roshanie; Hai, Long; Li, Tao; Tao, Zhennan; Ma, Haiwen; Xie, Yang; Huang, Yubao; Yu, Shengping; Li, Jiabo; Yuan, Feng; Yang, Xuejun

    2018-07-01

    Glioblastoma multiforme (GBM) is a fatal cancer with varying life expectancy, even for patients undergoing the same standard therapy. Identification of differentially expressed genes in GBM patients with different survival rates may benefit the development of effective therapeutic strategies. In the present study, key pathways and genes correlated with survival in GBM patients were screened with bioinformatic analysis. Included in the study were 136 eligible patients who had undertaken surgical resection of GBM followed by temozolomide (TMZ) chemoradiation and long-term therapy with TMZ. A total of 383 differentially expressed genes (DEGs) related to GBM survival were identified. Gene Ontology and pathway enrichment analysis as well as hub gene screening and module analysis were performed. As expected, angiogenesis and migration of GBM cells were closely correlated with a poor prognosis. Importantly, the results also indicated that cell dormancy was an essential contributor to the reduced survival of GBM patients. Given the lack of specific targeted genes and pathways known to be involved in tumour cell dormancy, we proposed enriched candidate genes related to the negative regulation of cell proliferation, signalling pathways regulating pluripotency of stem cells and neuroactive ligand-receptor interaction, and 3 hub genes (FTH1, GRM1 and DDIT3). Maintaining persistent cell dormancy or preventing tumour cells from entering dormancy during chemoradiation should be a promising therapeutic strategy.

  17. Essential Oils of Hyptis pectinata Chemotypes: Isolation, Binary Mixtures and Acute Toxicity on Leaf-Cutting Ants.

    PubMed

    Feitosa-Alcantara, Rosana B; Bacci, Leandro; Blank, Arie F; Alves, Péricles B; Silva, Indira Morgana de A; Soares, Caroline A; Sampaio, Taís S; Nogueira, Paulo Cesar de L; Arrigoni-Blank, Maria de Fátima

    2017-04-12

    Leaf-cutting ants are pests of great economic importance due to the damage they cause to agricultural and forest crops. The use of organosynthetic insecticides is the main form of control of these insects. In order to develop safer technology, the objective of this work was to evaluate the formicidal activity of the essential oils of two Hyptis pectinata genotypes (chemotypes) and their major compounds on the leaf-cutting ants Acromyrmex balzani Emery and Atta sexdens rubropilosa Forel. Bioassays of exposure pathways (contact and fumigation) and binary mixtures of the major compounds were performed. The major compounds identified in the essential oils of H. pectinata were β-caryophyllene, caryophyllene oxide and calamusenone. The essential oils of H. pectinata were toxic to the ants in both exposure pathways. Essential oils were more toxic than their major compounds alone. The chemotype calamusenone was more toxic to A. balzani in both exposure pathways. A. sexdens rubropilosa was more susceptible to the essential oil of the chemotype β-caryophyllene in both exposure pathways. In general, the binary mixtures of the major compounds resulted in additive effect of toxicity. The essential oils of H. pectinata is a raw material of great potential for the development of new insecticides.

  18. Network Medicine: From Cellular Networks to the Human Diseasome

    NASA Astrophysics Data System (ADS)

    Barabasi, Albert-Laszlo

    2014-03-01

    Given the functional interdependencies between the molecular components in a human cell, a disease is rarely a consequence of an abnormality in a single gene, but reflects the perturbations of the complex intracellular network. The tools of network science offer a platform to explore systematically not only the molecular complexity of a particular disease, leading to the identification of disease modules and pathways, but also the molecular relationships between apparently distinct (patho)phenotypes. Advances in this direction not only enrich our understanding of complex systems, but are also essential to identify new disease genes, to uncover the biological significance of disease-associated mutations identified by genome-wide association studies and full genome sequencing, and to identify drug targets and biomarkers for complex diseases.

  19. Investigation of the functional role of CSLD proteins in plant cell wall deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nielsen, Erik Etlar

    The overall goal of this research proposal was to characterize the molecular machinery responsible for polarized secretion of cell wall components in Arabidopsis thaliana. We have used the polarized expansion that occurs during root hair cell growth to identify membrane trafficking pathways involved in polarized secretion of cell wall components to the expanding tips of these cells, and we have recently shown that CSLD3 is preferentially targeted to the apical plasma membranes in root hair cells, where it plays essential roles during cell wall deposition in these cells. The specific aims of the project are designed to answer the followingmore » objective: Identification of the cell wall polysaccharide class that CSLD proteins synthesize.« less

  20. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies.

    PubMed

    Pabla, N; Dong, Z

    2008-05-01

    Cisplatin is one of the most widely used and most potent chemotherapy drugs. However, side effects in normal tissues and organs, notably nephrotoxicity in the kidneys, limit the use of cisplatin and related platinum-based therapeutics. Recent research has shed significant new lights on the mechanism of cisplatin nephrotoxicity, especially on the signaling pathways leading to tubular cell death and inflammation. Renoprotective approaches are being discovered, but the protective effects are mostly partial, suggesting the need for combinatorial strategies. Importantly, it is unclear whether these approaches would limit the anticancer effects of cisplatin in tumors. Examination of tumor-bearing animals and identification of novel renoprotective strategies that do not diminish the anticancer efficacy of cisplatin are essential to the development of clinically applicable interventions.

  1. IDENTIFICATION OF THE ROLE OF APOPTOSIS PATHWAYS POTENTIALLY INVOLVED IN FORMALDEHYDE-INDUCED CARCINOGENESIS USING CDNA ARRAYS

    EPA Science Inventory

    Identification of the Role of Apoptosis Pathways Potentially Involved in Formaldehyde- Induced Carcinogenesis Using cDNA Arrays.

    Formaldehyde (FA) is a genotoxic chemical found in household, medicinal, and industrial products. Although the major source of human exposure is...

  2. Prioritizing and modelling of putative drug target proteins of Candida albicans by systems biology approach.

    PubMed

    Ismail, Tariq; Fatima, Nighat; Muhammad, Syed Aun; Zaidi, Syed Saoud; Rehman, Nisar; Hussain, Izhar; Tariq, Najam Us Sahr; Amirzada, Imran; Mannan, Abdul

    2018-01-01

    Candida albicans (Candida albicans) is one of the major sources of nosocomial infections in humans which may prove fatal in 30% of cases. The hospital acquired infection is very difficult to treat affectively due to the presence of drug resistant pathogenic strains, therefore there is a need to find alternative drug targets to cure this infection. In silico and computational level frame work was used to prioritize and establish antifungal drug targets of Candida albicans. The identification of putative drug targets was based on acquiring 5090 completely annotated genes of Candida albicans from available databases which were categorized into essential and non-essential genes. The result indicated that 9% of proteins were essential and could become potential candidates for intervention which might result in pathogen eradication. We studied cluster of orthologs and the subtractive genomic analysis of these essential proteins against human genome was made as a reference to minimize the side effects. It was seen that 14% of Candida albicans proteins were evolutionary related to the human proteins while 86% are non-human homologs. In the next step of compatible drug target selections, the non-human homologs were sequentially compared to the human microbiome data to minimize the potential effects against gut flora which accumulated to 38% of the essential genome. The sub-cellular localization of these candidate proteins in fungal cellular systems indicated that 80% of them are cytoplasmic, 10% are mitochondrial and the remaining 10% are associated with the cell wall. The role of these non-human and non-gut flora putative target proteins in Candida albicans biological pathways was studied. Due to their integrated and critical role in Candida albicans replication cycle, four proteins were selected for molecular modeling. For drug designing and development, four high quality and reliable protein models with more than 70% sequence identity were constructed. These proteins are used for the docking studies of the known and new ligands (unpublished data). Our study will be an effective framework for drug target identifications of pathogenic microbial strains and development of new therapies against the infections they cause.

  3. A Systematic Review on the Existing Screening Pathways for Lynch Syndrome Identification.

    PubMed

    Tognetto, Alessia; Michelazzo, Maria Benedetta; Calabró, Giovanna Elisa; Unim, Brigid; Di Marco, Marco; Ricciardi, Walter; Pastorino, Roberta; Boccia, Stefania

    2017-01-01

    Lynch syndrome (LS) is the most common hereditary colon cancer syndrome, accounting for 3-5% of colorectal cancer (CRC) cases, and it is associated with the development of other cancers. Early detection of individuals with LS is relevant, since they can take advantage of life-saving intensive care surveillance. The debate regarding the best screening policy, however, is far from being concluded. This prompted us to conduct a systematic review of the existing screening pathways for LS. We performed a systematic search of MEDLINE, ISI Web of Science, and SCOPUS online databases for the existing screening pathways for LS. The eligibility criteria for inclusion in this review required that the studies evaluated a structured and permanent screening pathway for the identification of LS carriers. The effectiveness of the pathways was analyzed in terms of LS detection rate. We identified five eligible studies. All the LS screening pathways started from CRC cases, of which three followed a universal screening approach. Concerning the laboratory procedures, the pathways used immunohistochemistry and/or microsatellite instability testing. If the responses of the tests indicated a risk for LS, the genetic counseling, performed by a geneticist or a genetic counselor, was mandatory to undergo DNA genetic testing. The overall LS detection rate ranged from 0 to 5.2%. This systematic review reported different existing pathways for the identification of LS patients. Although current clinical guidelines suggest to test all the CRC cases to identify LS cases, the actual implementation of pathways for LS identification has not been realized. Large-scale screening programs for LS have the potential to reduce morbidity and mortality for CRC, but coordinated efforts in educating all key stakeholders and addressing public needs are still required.

  4. Vitamin D Pathway Status and the Identification of Target Genes in the Mouse Mammary Gland

    DTIC Science & Technology

    2013-01-01

    12 Palmer HG et al. The vitamin D receptor is a Wnt effector that controls hair follicle differentiation and specifies tumor type in adult epidermis...AD_________________ Award Number: W81XWH-11-1-0152 TITLE: Vitamin D pathway status and the...December 2012 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-11-1-0152 Vitamin D pathway status and the identification of target genes in the

  5. Subpathway-GM: identification of metabolic subpathways via joint power of interesting genes and metabolites and their topologies within pathways

    PubMed Central

    Li, Chunquan; Han, Junwei; Yao, Qianlan; Zou, Chendan; Xu, Yanjun; Zhang, Chunlong; Shang, Desi; Zhou, Lingyun; Zou, Chaoxia; Sun, Zeguo; Li, Jing; Zhang, Yunpeng; Yang, Haixiu; Gao, Xu; Li, Xia

    2013-01-01

    Various ‘omics’ technologies, including microarrays and gas chromatography mass spectrometry, can be used to identify hundreds of interesting genes, proteins and metabolites, such as differential genes, proteins and metabolites associated with diseases. Identifying metabolic pathways has become an invaluable aid to understanding the genes and metabolites associated with studying conditions. However, the classical methods used to identify pathways fail to accurately consider joint power of interesting gene/metabolite and the key regions impacted by them within metabolic pathways. In this study, we propose a powerful analytical method referred to as Subpathway-GM for the identification of metabolic subpathways. This provides a more accurate level of pathway analysis by integrating information from genes and metabolites, and their positions and cascade regions within the given pathway. We analyzed two colorectal cancer and one metastatic prostate cancer data sets and demonstrated that Subpathway-GM was able to identify disease-relevant subpathways whose corresponding entire pathways might be ignored using classical entire pathway identification methods. Further analysis indicated that the power of a joint genes/metabolites and subpathway strategy based on their topologies may play a key role in reliably recalling disease-relevant subpathways and finding novel subpathways. PMID:23482392

  6. Obesity genetics in mouse and human: back and forth, and back again

    PubMed Central

    Yazdi, Fereshteh T.; Clee, Susanne M.

    2015-01-01

    Obesity is a major public health concern. This condition results from a constant and complex interplay between predisposing genes and environmental stimuli. Current attempts to manage obesity have been moderately effective and a better understanding of the etiology of obesity is required for the development of more successful and personalized prevention and treatment options. To that effect, mouse models have been an essential tool in expanding our understanding of obesity, due to the availability of their complete genome sequence, genetically identified and defined strains, various tools for genetic manipulation and the accessibility of target tissues for obesity that are not easily attainable from humans. Our knowledge of monogenic obesity in humans greatly benefited from the mouse obesity genetics field. Genes underlying highly penetrant forms of monogenic obesity are part of the leptin-melanocortin pathway in the hypothalamus. Recently, hypothesis-generating genome-wide association studies for polygenic obesity traits in humans have led to the identification of 119 common gene variants with modest effect, most of them having an unknown function. These discoveries have led to novel animal models and have illuminated new biologic pathways. Integrated mouse-human genetic approaches have firmly established new obesity candidate genes. Innovative strategies recently developed by scientists are described in this review to accelerate the identification of causal genes and deepen our understanding of obesity etiology. An exhaustive dissection of the molecular roots of obesity may ultimately help to tackle the growing obesity epidemic worldwide. PMID:25825681

  7. Membrane protease degradomics: proteomic identification and quantification of cell surface protease substrates.

    PubMed

    Butler, Georgina S; Dean, Richard A; Smith, Derek; Overall, Christopher M

    2009-01-01

    The modification of cell surface proteins by plasma membrane and soluble proteases is important for physiological and pathological processes. Methods to identify shed and soluble substrates are crucial to further define the substrate repertoire, termed the substrate degradome, of individual proteases. Identifying protease substrates is essential to elucidate protease function and involvement in different homeostatic and disease pathways. This characterisation is also crucial for drug target identification and validation, which would then allow the rational design of specific targeted inhibitors for therapeutic intervention. We describe two methods for identifying and quantifying shed cell surface protease targets in cultured cells utilising Isotope-Coded Affinity Tags (ICAT) and Isobaric Tags for Relative and Absolute Quantification (iTRAQ). As a model system to develop these techniques, we chose a cell-membrane expressed matrix metalloproteinase, MMP-14, but the concepts can be applied to proteases of other classes. By over-expression, or conversely inhibition, of a particular protease with careful selection of control conditions (e.g. vector or inactive protease) and differential labelling, shed proteins can be identified and quantified by mass spectrometry (MS), MS/MS fragmentation and database searching.

  8. Comparative genomics study for the identification of drug and vaccine targets in Staphylococcus aureus: MurA ligase enzyme as a proposed candidate.

    PubMed

    Ghosh, Soma; Prava, Jyoti; Samal, Himanshu Bhusan; Suar, Mrutyunjay; Mahapatra, Rajani Kanta

    2014-06-01

    Now-a-days increasing emergence of antibiotic-resistant pathogenic microorganisms is one of the biggest challenges for management of disease. In the present study comparative genomics, metabolic pathways analysis and additional parameters were defined for the identification of 94 non-homologous essential proteins in Staphylococcus aureus genome. Further study prioritized 19 proteins as vaccine candidates where as druggability study reports 34 proteins suitable as drug targets. Enzymes from peptidoglycan biosynthesis, folate biosynthesis were identified as candidates for drug development. Furthermore, bacterial secretory proteins and few hypothetical proteins identified in our analysis fulfill the criteria of vaccine candidates. As a case study, we built a homology model of one of the potential drug target, MurA ligase, using MODELLER (9v12) software. The model has been further selected for in silico docking study with inhibitors from the DrugBank database. Results from this study could facilitate selection of proteins for entry into drug design and vaccine production pipelines. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Visual processing of music notation: a study of event-related potentials.

    PubMed

    Lee, Horng-Yih; Wang, Yu-Sin

    2011-04-01

    In reading music, the acquisition of pitch information depends mostly on the spatial position of notes, hence more spatial processing, whereas the acquisition of temporal information depends mostly on the visual features of notes and object recognition. This study used both electrophysiological and behavioral methods to compare the processing of pitch and duration in reading single musical notes. It was observed that in the early stage of note reading, identification of pitch could elicit greater N1 and N2 amplitude than identification of duration at the parietal lobe electrodes. In the later stages of note reading, identifying pitch elicited a greater negative slow wave at parietal electrodes than did identifying note duration. The sustained contribution of parietal processes for pitch suggests that the dorsal pathway is essential for pitch processing. However, the duration task did not elicit greater amplitude of any early ERP components than the pitch task at temporal electrodes. Accordingly, a double dissociation, suggesting involvement of the dorsal visual stream, was not observed in spatial pitch processing and ventral visual stream in processing of note durations.

  10. Ocean Transport Pathways to a World Heritage Fringing Coral Reef: Ningaloo Reef, Western Australia.

    PubMed

    Xu, Jiangtao; Lowe, Ryan J; Ivey, Gregory N; Jones, Nicole L; Zhang, Zhenlin

    2016-01-01

    A Lagrangian particle tracking model driven by a regional ocean circulation model was used to investigate the seasonally varying connectivity patterns within the shelf circulation surrounding the 300 km long Ningaloo Reef in Western Australia (WA) during 2009-2010. Forward-in-time simulations revealed that surface water was transported equatorward and offshore in summer due to the upwelling-favorable winds. In winter, however, water was transported polewards down the WA coast due to the seasonally strong Leeuwin Current. Using backward-in-time simulations, the subsurface transport pathways revealed two main source regions of shelf water reaching Ningaloo Reef: (1) a year-round source to the northeast in the upper 100 m of water column; and (2) during the summer, an additional source offshore and to the west of Ningaloo in depths between ~30 and ~150 m. Transient wind-driven coastal upwelling, onshore geostrophic transport and stirring by offshore eddies were identified as the important mechanisms influencing the source water origins. The identification of these highly time-dependent transport pathways and source water locations is an essential step towards quantifying how key material (e.g., nutrients, larvae, contaminants, etc.) is exchanged between Ningaloo Reef and the surrounding shelf ocean, and how this is mechanistically coupled to the complex ocean dynamics in this region.

  11. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock.

    PubMed

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf.

  12. Ocean Transport Pathways to a World Heritage Fringing Coral Reef: Ningaloo Reef, Western Australia

    PubMed Central

    Xu, Jiangtao; Lowe, Ryan J.; Ivey, Gregory N.; Jones, Nicole L.; Zhang, Zhenlin

    2016-01-01

    A Lagrangian particle tracking model driven by a regional ocean circulation model was used to investigate the seasonally varying connectivity patterns within the shelf circulation surrounding the 300 km long Ningaloo Reef in Western Australia (WA) during 2009–2010. Forward-in-time simulations revealed that surface water was transported equatorward and offshore in summer due to the upwelling-favorable winds. In winter, however, water was transported polewards down the WA coast due to the seasonally strong Leeuwin Current. Using backward-in-time simulations, the subsurface transport pathways revealed two main source regions of shelf water reaching Ningaloo Reef: (1) a year-round source to the northeast in the upper 100 m of water column; and (2) during the summer, an additional source offshore and to the west of Ningaloo in depths between ~30 and ~150 m. Transient wind-driven coastal upwelling, onshore geostrophic transport and stirring by offshore eddies were identified as the important mechanisms influencing the source water origins. The identification of these highly time-dependent transport pathways and source water locations is an essential step towards quantifying how key material (e.g., nutrients, larvae, contaminants, etc.) is exchanged between Ningaloo Reef and the surrounding shelf ocean, and how this is mechanistically coupled to the complex ocean dynamics in this region. PMID:26790154

  13. Yeast as a model system to study metabolic impact of selenium compounds

    PubMed Central

    Herrero, Enrique; Wellinger, Ralf E.

    2015-01-01

    Inorganic Se forms such as selenate or selenite (the two more abundant forms in nature) can be toxic in Saccharomyces cerevisiae cells, which constitute an adequate model to study such toxicity at the molecular level and the functions participating in protection against Se compounds. Those Se forms enter the yeast cell through other oxyanion transporters. Once inside the cell, inorganic Se forms may be converted into selenide through a reductive pathway that in physiological conditions involves reduced glutathione with its consequent oxidation into diglutathione and alteration of the cellular redox buffering capacity. Selenide can subsequently be converted by molecular oxygen into elemental Se, with production of superoxide anions and other reactive oxygen species. Overall, these events result in DNA damage and dose-dependent reversible or irreversible protein oxidation, although additional oxidation of other cellular macromolecules cannot be discarded. Stress-adaptation pathways are essential for efficient Se detoxification, while activation of DNA damage checkpoint and repair pathways protects against Se-mediated genotoxicity. We propose that yeast may be used to improve our knowledge on the impact of Se on metal homeostasis, the identification of Se-targets at the DNA and protein levels, and to gain more insights into the mechanism of Se-mediated apoptosis. PMID:28357286

  14. Sterol Composition of Clinically Relevant Mucorales and Changes Resulting from Posaconazole Treatment.

    PubMed

    Müller, Christoph; Neugebauer, Thomas; Zill, Patrizia; Lass-Flörl, Cornelia; Bracher, Franz; Binder, Ulrike

    2018-05-19

    Mucorales are fungi with increasing importance in the clinics. Infections take a rapidly progressive course resulting in high mortality rates. The ergosterol biosynthesis pathway and sterol composition are of interest, since they are targeted by currently applied antifungal drugs. Nevertheless, Mucorales often exhibit resistance to these drugs, resulting in therapeutic failure. Here, sterol patterns of six clinically relevant Mucorales ( Lichtheimia corymbifera , Lichtheimia ramosa , Mucor circinelloides , Rhizomucor pusillus , Rhizopus arrhizus , and Rhizopus microsporus ) were analysed in a targeted metabolomics fashion after derivatization by gas chromatography-mass spectrometry. Additionally, the effect of posaconazole (POS) treatment on the sterol pattern of R. arrhizus was evaluated. Overall, fifteen different sterols were detected with species dependent variations in the total and relative sterol amount. Sterol analysis from R. arrhizus hyphae confronted with sublethal concentrations of posaconazole revealed the accumulation of 14-methylergosta-8,24-diene-3,6-diol, which is a toxic sterol that was previously only detected in yeasts. Sterol content and composition were further compared to the well-characterized pathogenic mold Aspergillus fumigatus . This work contributes to a better understanding of the ergosterol biosynthesis pathway of Mucorales, which is essential to improve antifungal efficacy, the identification of targets for novel drug design, and to investigate the combinatorial effects of drugs targeting this pathway.

  15. Identification of a new binding site in E. coli FabH using Molecular dynamics simulations: validation by computational alanine mutagenesis and docking studies.

    PubMed

    Ramamoorthy, Divya; Turos, Edward; Guida, Wayne C

    2013-05-24

    FabH (Fatty acid biosynthesis, enzyme H, also referred to as β-ketoacyl-ACP-synthase III) is a key condensing enzyme in the type II fatty acid synthesis (FAS) system. The FAS pathway in bacteria is essential for growth and survival and vastly differs from the human FAS pathway. Enzymes involved in this pathway have arisen as promising biomolecular targets for discovery of new antibacterial drugs. However, currently there are no clinical drugs that selectively target FabH, and known inhibitors of FabH all act within the active site. FabH exerts its catalytic function as a dimer, which could potentially be exploited in developing new strategies for inhibitor design. The aim of this study was to elucidate structural details of the dimer interface region by means of computational modeling, including molecular dynamics (MD) simulations, in order to derive information for the structure-based design of new FabH inhibitors. The dimer interface region was analyzed by MD simulations, trajectory snapshots were collected for further analyses, and docking studies were performed with potential small molecule disruptors. Alanine mutation and docking studies strongly suggest that the dimer interface could be a potential target for anti-infection drug discovery.

  16. PHD3-dependent hydroxylation of HCLK2 promotes the DNA damage response

    PubMed Central

    Xie, Liang; Pi, Xinchun; Mishra, Ashutosh; Fong, Guohua; Peng, Junmin; Patterson, Cam

    2012-01-01

    The DNA damage response (DDR) is a complex regulatory network that is critical for maintaining genome integrity. Posttranslational modifications are widely used to ensure strict spatiotemporal control of signal flow, but how the DDR responds to environmental cues, such as changes in ambient oxygen tension, remains poorly understood. We found that an essential component of the ATR/CHK1 signaling pathway, the human homolog of the Caenorhabditis elegans biological clock protein CLK-2 (HCLK2), associated with and was hydroxylated by prolyl hydroxylase domain protein 3 (PHD3). HCLK2 hydroxylation was necessary for its interaction with ATR and the subsequent activation of ATR/CHK1/p53. Inhibiting PHD3, either with the pan-hydroxylase inhibitor dimethyloxaloylglycine (DMOG) or through hypoxia, prevented activation of the ATR/CHK1/p53 pathway and decreased apoptosis induced by DNA damage. Consistent with these observations, we found that mice lacking PHD3 were resistant to the effects of ionizing radiation and had decreased thymic apoptosis, a biomarker of genomic integrity. Our identification of HCLK2 as a substrate of PHD3 reveals the mechanism through which hypoxia inhibits the DDR, suggesting hydroxylation of HCLK2 is a potential therapeutic target for regulating the ATR/CHK1/p53 pathway. PMID:22797300

  17. dEMBF: A Comprehensive Database of Enzymes of Microalgal Biofuel Feedstock

    PubMed Central

    Misra, Namrata; Panda, Prasanna Kumar; Parida, Bikram Kumar; Mishra, Barada Kanta

    2016-01-01

    Microalgae have attracted wide attention as one of the most versatile renewable feedstocks for production of biofuel. To develop genetically engineered high lipid yielding algal strains, a thorough understanding of the lipid biosynthetic pathway and the underpinning enzymes is essential. In this work, we have systematically mined the genomes of fifteen diverse algal species belonging to Chlorophyta, Heterokontophyta, Rhodophyta, and Haptophyta, to identify and annotate the putative enzymes of lipid metabolic pathway. Consequently, we have also developed a database, dEMBF (Database of Enzymes of Microalgal Biofuel Feedstock), which catalogues the complete list of identified enzymes along with their computed annotation details including length, hydrophobicity, amino acid composition, subcellular location, gene ontology, KEGG pathway, orthologous group, Pfam domain, intron-exon organization, transmembrane topology, and secondary/tertiary structural data. Furthermore, to facilitate functional and evolutionary study of these enzymes, a collection of built-in applications for BLAST search, motif identification, sequence and phylogenetic analysis have been seamlessly integrated into the database. dEMBF is the first database that brings together all enzymes responsible for lipid synthesis from available algal genomes, and provides an integrative platform for enzyme inquiry and analysis. This database will be extremely useful for algal biofuel research. It can be accessed at http://bbprof.immt.res.in/embf. PMID:26727469

  18. The functional cancer map: a systems-level synopsis of genetic deregulation in cancer.

    PubMed

    Krupp, Markus; Maass, Thorsten; Marquardt, Jens U; Staib, Frank; Bauer, Tobias; König, Rainer; Biesterfeld, Stefan; Galle, Peter R; Tresch, Achim; Teufel, Andreas

    2011-06-30

    Cancer cells are characterized by massive dysegulation of physiological cell functions with considerable disruption of transcriptional regulation. Genome-wide transcriptome profiling can be utilized for early detection and molecular classification of cancers. Accurate discrimination of functionally different tumor types may help to guide selection of targeted therapy in translational research. Concise grouping of tumor types in cancer maps according to their molecular profile may further be helpful for the development of new therapeutic modalities or open new avenues for already established therapies. Complete available human tumor data of the Stanford Microarray Database was downloaded and filtered for relevance, adequacy and reliability. A total of 649 tumor samples from more than 1400 experiments and 58 different tissues were analyzed. Next, a method to score deregulation of KEGG pathway maps in different tumor entities was established, which was then used to convert hundreds of gene expression profiles into corresponding tumor-specific pathway activity profiles. Based on the latter, we defined a measure for functional similarity between tumor entities, which yielded to phylogeny of tumors. We provide a comprehensive, easy-to-interpret functional cancer map that characterizes tumor types with respect to their biological and functional behavior. Consistently, multiple pathways commonly associated with tumor progression were revealed as common features in the majority of the tumors. However, several pathways previously not linked to carcinogenesis were identified in multiple cancers suggesting an essential role of these pathways in cancer biology. Among these pathways were 'ECM-receptor interaction', 'Complement and Coagulation cascades', and 'PPAR signaling pathway'. The functional cancer map provides a systematic view on molecular similarities across different cancers by comparing tumors on the level of pathway activity. This work resulted in identification of novel superimposed functional pathways potentially linked to cancer biology. Therefore, our work may serve as a starting point for rationalizing combination of tumor therapeutics as well as for expanding the application of well-established targeted tumor therapies.

  19. De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis

    DOE PAGES

    Cárdenas-Conejo, Yair; Carballo-Uicab, Víctor; Lieberman, Meric; ...

    2015-10-28

    Bixin or annatto is a commercially important natural orange-red pigment derived from lycopene that is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to identify the methylerythritol phosphate (MEP) and carotenoid pathways genes. In order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two different developmental stages of seeds frommore » B. orellana were used for the construction of indexed mRNA libraries, sequenced on the Illumina HiSeq 2500 platform and assembled de novo using Velvet, CLC Genomics Workbench and CAP3 software. A total of 52,549 contigs were obtained with average length of 1,924 bp. Two phylogenetic analyses of inferred proteins, in one case encoded by thirteen general, single-copy cDNAs, in the other from carotenoid and MEP cDNAs, indicated that B. orellana is closely related to sister Malvales species cacao and cotton. Using homology, we identified 7 and 14 core gene products from the MEP and carotenoid pathways, respectively. Surprisingly, previously defined bixin pathway cDNAs were not present in our transcriptome. Here we propose a new set of gene products involved in bixin pathway. In conclusion, the identification and qRT-PCR quantification of cDNAs involved in annatto production suggest a hypothetical model for bixin biosynthesis that involve coordinated activation of some MEP, carotenoid and bixin pathway genes. These findings provide a better understanding of the mechanisms regulating these pathways and will facilitate the genetic improvement of B. orellana.« less

  20. De novo transcriptome sequencing in Bixa orellana to identify genes involved in methylerythritol phosphate, carotenoid and bixin biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cárdenas-Conejo, Yair; Carballo-Uicab, Víctor; Lieberman, Meric

    Bixin or annatto is a commercially important natural orange-red pigment derived from lycopene that is produced and stored in seeds of Bixa orellana L. An enzymatic pathway for bixin biosynthesis was inferred from homology of putative proteins encoded by differentially expressed seed cDNAs. Some activities were later validated in a heterologous system. Nevertheless, much of the pathway remains to be clarified. For example, it is essential to identify the methylerythritol phosphate (MEP) and carotenoid pathways genes. In order to investigate the MEP, carotenoid, and bixin pathways genes, total RNA from young leaves and two different developmental stages of seeds frommore » B. orellana were used for the construction of indexed mRNA libraries, sequenced on the Illumina HiSeq 2500 platform and assembled de novo using Velvet, CLC Genomics Workbench and CAP3 software. A total of 52,549 contigs were obtained with average length of 1,924 bp. Two phylogenetic analyses of inferred proteins, in one case encoded by thirteen general, single-copy cDNAs, in the other from carotenoid and MEP cDNAs, indicated that B. orellana is closely related to sister Malvales species cacao and cotton. Using homology, we identified 7 and 14 core gene products from the MEP and carotenoid pathways, respectively. Surprisingly, previously defined bixin pathway cDNAs were not present in our transcriptome. Here we propose a new set of gene products involved in bixin pathway. In conclusion, the identification and qRT-PCR quantification of cDNAs involved in annatto production suggest a hypothetical model for bixin biosynthesis that involve coordinated activation of some MEP, carotenoid and bixin pathway genes. These findings provide a better understanding of the mechanisms regulating these pathways and will facilitate the genetic improvement of B. orellana.« less

  1. Analysis of the main active ingredients and bioactivities of essential oil from Osmanthus fragrans Var. thunbergii using a complex network approach.

    PubMed

    Wang, Le; Tan, Nana; Hu, Jiayao; Wang, Huan; Duan, Dongzhu; Ma, Lin; Xiao, Jian; Wang, Xiaoling

    2017-12-28

    Osmanthus fragrans has been used as folk medicine for thousands of years. The extracts of Osmanthus fragrans flowers were reported to have various bioactivities including free radical scavenging, anti-inflammation, neuroprotection and antitumor effects. However, there is still lack of knowledge about its essential oil. In this work, we analyzed the chemical composition of the essential oil from Osmanthus fragrans var. thunbergii by GC-MS. A complex network approach was applied to investigate the interrelationships between the ingredients, target proteins, and related pathways for the essential oil. Statistical characteristics of the networks were further studied to explore the main active ingredients and potential bioactivities of O. fragrans var. thunbergii essential oil. A total of 44 ingredients were selected from the chemical composition of O. fragrans var. thunbergii essential oil, and that 191 potential target proteins together with 70 pathways were collected for these compounds. An ingredient-target-pathway network was constructed based on these data and showed scale-free property as well as power-law degree distribution. Eugenol and geraniol were screened as main active ingredients with much higher degree values. Potential neuroprotective and anti-tumor effect of the essential oil were also found. A core subnetwork was extracted from the ingredient-target-pathway network, and indicated that eugenol and geraniol contributed most to the neuroprotection of this essential oil. Furthermore, a pathway-based protein association network was built and exhibited small-world property. MAPK1 and MAPK3 were considered as key proteins with highest scores of centrality indices, which might play an important role in the anti-tumor effect of the essential oil. This work predicted the main active ingredients and bioactivities of O. fragrans var. thunbergii essential oil, which would benefit the development and utilization of Osmanthus fragrans flowers. The application of complex network theory was proved to be effective in bioactivities studies of essential oil. Moreover, it provides a novel strategy for exploring the molecular mechanisms of traditional medicines.

  2. Prediction and identification of sequences coding for orphan enzymes using genomic and metagenomic neighbours

    PubMed Central

    Yamada, Takuji; Waller, Alison S; Raes, Jeroen; Zelezniak, Aleksej; Perchat, Nadia; Perret, Alain; Salanoubat, Marcel; Patil, Kiran R; Weissenbach, Jean; Bork, Peer

    2012-01-01

    Despite the current wealth of sequencing data, one-third of all biochemically characterized metabolic enzymes lack a corresponding gene or protein sequence, and as such can be considered orphan enzymes. They represent a major gap between our molecular and biochemical knowledge, and consequently are not amenable to modern systemic analyses. As 555 of these orphan enzymes have metabolic pathway neighbours, we developed a global framework that utilizes the pathway and (meta)genomic neighbour information to assign candidate sequences to orphan enzymes. For 131 orphan enzymes (37% of those for which (meta)genomic neighbours are available), we associate sequences to them using scoring parameters with an estimated accuracy of 70%, implying functional annotation of 16 345 gene sequences in numerous (meta)genomes. As a case in point, two of these candidate sequences were experimentally validated to encode the predicted activity. In addition, we augmented the currently available genome-scale metabolic models with these new sequence–function associations and were able to expand the models by on average 8%, with a considerable change in the flux connectivity patterns and improved essentiality prediction. PMID:22569339

  3. G1 arrest and differentiation can occur independently of Rb family function

    PubMed Central

    Wirt, Stacey E.; Adler, Adam S.; Gebala, Véronique; Weimann, James M.; Schaffer, Bethany E.; Saddic, Louis A.; Viatour, Patrick; Vogel, Hannes; Chang, Howard Y.; Meissner, Alex

    2010-01-01

    The ability of progenitor cells to exit the cell cycle is essential for proper embryonic development and homeostasis, but the mechanisms governing cell cycle exit are still not fully understood. Here, we tested the requirement for the retinoblastoma (Rb) protein and its family members p107 and p130 in G0/G1 arrest and differentiation in mammalian cells. We found that Rb family triple knockout (TKO) mouse embryos survive until days 9–11 of gestation. Strikingly, some TKO cells, including in epithelial and neural lineages, are able to exit the cell cycle in G0/G1 and differentiate in teratomas and in culture. This ability of TKO cells to arrest in G0/G1 is associated with the repression of key E2F target genes. Thus, G1 arrest is not always dependent on Rb family members, which illustrates the robustness of cell cycle regulatory networks during differentiation and allows for the identification of candidate pathways to inhibit the expansion of cancer cells with mutations in the Rb pathway. PMID:21059851

  4. Molecular chaperones and photoreceptor function

    PubMed Central

    Kosmaoglou, Maria; Schwarz, Nele; Bett, John S.; Cheetham, Michael E.

    2008-01-01

    Molecular chaperones facilitate and regulate protein conformational change within cells. This encompasses many fundamental cellular processes: including the correct folding of nascent chains; protein transport and translocation; signal transduction and protein quality control. Chaperones are, therefore, important in several forms of human disease, including neurodegeneration. Within the retina, the highly specialized photoreceptor cell presents a fascinating paradigm to investigate the specialization of molecular chaperone function and reveals unique chaperone requirements essential to photoreceptor function. Mutations in several photoreceptor proteins lead to protein misfolding mediated neurodegeneration. The best characterized of these are mutations in the molecular light sensor, rhodopsin, which cause autosomal dominant retinitis pigmentosa. Rhodopsin biogenesis is likely to require chaperones, while rhodopsin misfolding involves molecular chaperones in quality control and the cellular response to protein aggregation. Furthermore, the specialization of components of the chaperone machinery to photoreceptor specific roles has been revealed by the identification of mutations in molecular chaperones that cause inherited retinal dysfunction and degeneration. These chaperones are involved in several important cellular pathways and further illuminate the essential and diverse roles of molecular chaperones. PMID:18490186

  5. piRNA-directed cleavage of meiotic transcripts regulates spermatogenesis.

    PubMed

    Goh, Wee Siong Sho; Falciatori, Ilaria; Tam, Oliver H; Burgess, Ralph; Meikar, Oliver; Kotaja, Noora; Hammell, Molly; Hannon, Gregory J

    2015-05-15

    MIWI catalytic activity is required for spermatogenesis, indicating that piRNA-guided cleavage is critical for germ cell development. To identify meiotic piRNA targets, we augmented the mouse piRNA repertoire by introducing a human meiotic piRNA cluster. This triggered a spermatogenesis defect by inappropriately targeting the piRNA machinery to mouse mRNAs essential for germ cell development. Analysis of such de novo targets revealed a signature for pachytene piRNA target recognition. This enabled identification of both transposable elements and meiotically expressed protein-coding genes as targets of native piRNAs. Cleavage of genic targets began at the pachytene stage and resulted in progressive repression through meiosis, driven at least in part via the ping-pong cycle. Our data support the idea that meiotic piRNA populations must be strongly selected to enable successful spermatogenesis, both driving the response away from essential genes and directing the pathway toward mRNA targets that are regulated by small RNAs in meiotic cells. © 2015 Goh et al.; Published by Cold Spring Harbor Laboratory Press.

  6. Gene essentiality, conservation index and co-evolution of genes in cyanobacteria.

    PubMed

    Tiruveedula, Gopi Siva Sai; Wangikar, Pramod P

    2017-01-01

    Cyanobacteria, a group of photosynthetic prokaryotes, dominate the earth with ~ 1015 g wet biomass. Despite diversity in habitats and an ancient origin, cyanobacterial phylum has retained a significant core genome. Cyanobacteria are being explored for direct conversion of solar energy and carbon dioxide into biofuels. For this, efficient cyanobacterial strains will need to be designed via metabolic engineering. This will require identification of target knockouts to channelize the flow of carbon toward the product of interest while minimizing deletions of essential genes. We propose "Gene Conservation Index" (GCI) as a quick measure to predict gene essentiality in cyanobacteria. GCI is based on phylogenetic profile of a gene constructed with a reduced dataset of cyanobacterial genomes. GCI is the percentage of organism clusters in which the query gene is present in the reduced dataset. Of the 750 genes deemed to be essential in the experimental study on S. elongatus PCC 7942, we found 494 to be conserved across the phylum which largely comprise of the essential metabolic pathways. On the contrary, the conserved but non-essential genes broadly comprise of genes required under stress conditions. Exceptions to this rule include genes such as the glycogen synthesis and degradation enzymes, deoxyribose-phosphate aldolase (DERA), glucose-6-phosphate 1-dehydrogenase (zwf) and fructose-1,6-bisphosphatase class1, which are conserved but non-essential. While the essential genes are to be avoided during gene knockout studies as potentially lethal deletions, the non-essential but conserved set of genes could be interesting targets for metabolic engineering. Further, we identify clusters of co-evolving genes (CCG), which provide insights that may be useful in annotation. Principal component analysis (PCA) plots of the CCGs are demonstrated as data visualization tools that are complementary to the conventional heatmaps. Our dataset consists of phylogenetic profiles for 23,643 non-redundant cyanobacterial genes. We believe that the data and the analysis presented here will be a great resource to the scientific community interested in cyanobacteria.

  7. Simultaneous Identification of Multiple Driver Pathways in Cancer

    PubMed Central

    Leiserson, Mark D. M.; Blokh, Dima

    2013-01-01

    Distinguishing the somatic mutations responsible for cancer (driver mutations) from random, passenger mutations is a key challenge in cancer genomics. Driver mutations generally target cellular signaling and regulatory pathways consisting of multiple genes. This heterogeneity complicates the identification of driver mutations by their recurrence across samples, as different combinations of mutations in driver pathways are observed in different samples. We introduce the Multi-Dendrix algorithm for the simultaneous identification of multiple driver pathways de novo in somatic mutation data from a cohort of cancer samples. The algorithm relies on two combinatorial properties of mutations in a driver pathway: high coverage and mutual exclusivity. We derive an integer linear program that finds set of mutations exhibiting these properties. We apply Multi-Dendrix to somatic mutations from glioblastoma, breast cancer, and lung cancer samples. Multi-Dendrix identifies sets of mutations in genes that overlap with known pathways – including Rb, p53, PI(3)K, and cell cycle pathways – and also novel sets of mutually exclusive mutations, including mutations in several transcription factors or other genes involved in transcriptional regulation. These sets are discovered directly from mutation data with no prior knowledge of pathways or gene interactions. We show that Multi-Dendrix outperforms other algorithms for identifying combinations of mutations and is also orders of magnitude faster on genome-scale data. Software available at: http://compbio.cs.brown.edu/software. PMID:23717195

  8. Mapping Human Pluripotent-to-Cardiomyocyte Differentiation: Methylomes, Transcriptomes, and Exon DNA Methylation “Memories”

    PubMed Central

    Tompkins, Joshua D.; Jung, Marc; Chen, Chang-yi; Lin, Ziguang; Ye, Jingjing; Godatha, Swetha; Lizhar, Elizabeth; Wu, Xiwei; Hsu, David; Couture, Larry A.; Riggs, Arthur D.

    2016-01-01

    The directed differentiation of human cardiomyocytes (CMs) from pluripotent cells provides an invaluable model for understanding mechanisms of cell fate determination and offers considerable promise in cardiac regenerative medicine. Here, we utilize a human embryonic stem cell suspension bank, produced according to a good manufacturing practice, to generate CMs using a fully defined and small molecule-based differentiation strategy. Primitive and cardiac mesoderm purification was used to remove non-committing and multi-lineage populations and this significantly aided the identification of key transcription factors, lncRNAs, and essential signaling pathways that define cardiomyogenesis. Global methylation profiles reflect CM development and we report on CM exon DNA methylation “memories” persisting beyond transcription repression and marking the expression history of numerous developmentally regulated genes, especially transcription factors. PMID:26981572

  9. Signals for the lysosome: a control center for cellular clearance and energy metabolism

    PubMed Central

    Settembre, Carmine; Fraldi, Alessandro; Medina, Diego L.

    2015-01-01

    Preface For a long time lysosomes were considered merely to be cellular “incinerators” involved in the degradation and recycling of cellular waste. However, there is now compelling evidence indicating that lysosomes have a much broader function and that they are involved in fundamental processes such as secretion, plasma membrane repair, signaling and energy metabolism. Furthermore, the essential role of lysosomes in the autophagic pathway puts these organelles at the crossroads of several cellular processes, with significant implications for health and disease. The identification of a master gene, transcription factor EB (TFEB), that regulates lysosomal biogenesis and autophagy, has revealed how the lysosome adapts to environmental cues, such as starvation, and suggests novel therapeutic strategies for modulating lysosomal function in human disease. PMID:23609508

  10. Brain nuclear receptors and body weight regulation

    PubMed Central

    O’Malley, Bert W.; Elmquist, Joel K.

    2017-01-01

    Neural pathways, especially those in the hypothalamus, integrate multiple nutritional, hormonal, and neural signals, resulting in the coordinated control of body weight balance and glucose homeostasis. Nuclear receptors (NRs) sense changing levels of nutrients and hormones, and therefore play essential roles in the regulation of energy homeostasis. Understanding the role and the underlying mechanisms of NRs in the context of energy balance control may facilitate the identification of novel targets to treat obesity. Notably, NRs are abundantly expressed in the brain, and emerging evidence indicates that a number of these brain NRs regulate multiple aspects of energy balance, including feeding, energy expenditure and physical activity. In this Review we summarize some of the recent literature regarding effects of brain NRs on body weight regulation and discuss mechanisms underlying these effects. PMID:28218618

  11. Autosomal-Recessive Hypophosphatemic Rickets Is Associated with an Inactivation Mutation in the ENPP1 Gene

    PubMed Central

    Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti

    2010-01-01

    Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. PMID:20137772

  12. In silico screening for Plasmodium falciparum enoyl-ACP reductase inhibitors

    NASA Astrophysics Data System (ADS)

    Lindert, Steffen; Tallorin, Lorillee; Nguyen, Quynh G.; Burkart, Michael D.; McCammon, J. Andrew

    2015-01-01

    The need for novel therapeutics against Plasmodium falciparum is urgent due to recent emergence of multi-drug resistant malaria parasites. Since fatty acids are essential for both the liver and blood stages of the malarial parasite, targeting fatty acid biosynthesis is a promising strategy for combatting P. falciparum. We present a combined computational and experimental study to identify novel inhibitors of enoyl-acyl carrier protein reductase ( PfENR) in the fatty acid biosynthesis pathway. A small-molecule database from ChemBridge was docked into three distinct PfENR crystal structures that provide multiple receptor conformations. Two different docking algorithms were used to generate a consensus score in order to rank possible small molecule hits. Our studies led to the identification of five low-micromolar pyrimidine dione inhibitors of PfENR.

  13. High-throughput screening identifies artesunate as selective inhibitor of cancer stemness: Involvement of mitochondrial metabolism.

    PubMed

    Subedi, Amit; Futamura, Yushi; Nishi, Mayuko; Ryo, Akihide; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-09-02

    Cancer stem cells (CSCs) have robust systems to maintain cancer stemness and drug resistance. Thus, targeting such robust systems instead of focusing on individual signaling pathways should be the approach allowing the identification of selective CSC inhibitors. Here, we used the alkaline phosphatase (ALP) assay to identify inhibitors for cancer stemness in induced cancer stem-like (iCSCL) cells. We screened several compounds from natural product chemical library and evaluated hit compounds for their efficacy on cancer stemness in iCSCL tumorspheres. We identified artesunate, an antimalarial drug, as a selective inhibitor of cancer stemness. Artesunate induced mitochondrial dysfunction that selectively inhibited cancer stemness of iCSCL cells, indicating an essential role of mitochondrial metabolism in cancer stemness. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Use of essential gene, encoding prophobilinogen deaminase from extreme psychrophilic Colwellia sp. C1, to generate temperature-sensitive strain of Francisella novicida.

    PubMed

    Pankowski, J A

    2016-08-01

    Previously, several essential genes from psychrophilic bacteria have been substituted for their homologues in mesophilic bacterial pathogens to make the latter temperature sensitive. It has been noted that an essential ligA gene from an extreme psychrophile, Colwellia sp. C1, yielded a gene product that is inactivated at 27°C, the lowest that has been observed for any psychrophilic enzyme, and hypothesized that other essential proteins of that strain would also have low inactivation temperatures. This work describes the partial sequencing of the genome of Colwellia sp. C1 strain and the identification of 24 open reading frames encoding homologues of highly conserved bacterial essential genes. The gene encoding porphobilinogen deaminase (hemC), which is involved in the pathway of haem synthesis, has been tested for its ability to convert Francisella novicida into a temperature-sensitive strain. The hybrid strain carrying the C1-derived hemC gene exhibited a temperature-sensitive phenotype with a restrictive temperature of 36°C. These results support the conclusion that Colwellia sp. C1 is a rich source of heat-labile enzymes. The issue of biosafety is often raised when it comes to work with pathogenic organisms. The main concern is caused by the risk of researchers being exposed to infectious doses of dangerous microbes. This paper analyses essential genes identified in partial genomic sequence of the psychrophilic bacterium Collwelia sp. C1. These sequences can be used as a mean of generating temperature-sensitive strains of pathogenic bacteria. Such strains are incapable of surviving at the temperature of human body. This means they could be applied as vaccines or for safer work with dangerous organisms. © 2016 The Society for Applied Microbiology.

  15. An overview of the essential differences and similarities of system identification techniques

    NASA Technical Reports Server (NTRS)

    Mehra, Raman K.

    1991-01-01

    Information is given in the form of outlines, graphs, tables and charts. Topics include system identification, Bayesian statistical decision theory, Maximum Likelihood Estimation, identification methods, structural mode identification using a stochastic realization algorithm, and identification results regarding membrane simulations and X-29 flutter flight test data.

  16. Identification of DreI as an Antiviral Factor Regulated by RLR Signaling Pathway

    PubMed Central

    Li, Shun; Sun, Fan; Zhang, Yi-Bing; Gui, Jian-Fang; Zhang, Qi-Ya

    2012-01-01

    Background Retinoic acid-inducible gene I (RIG-I)–like receptors (RLRs) had been demonstrated to prime interferon (IFN) response against viral infection via the conserved RLR signaling in fish, and a novel fish-specific gene, the grass carp reovirus (GCRV)-induced gene 2 (Gig2), had been suggested to play important role in host antiviral response. Methodology/Principal Findings In this study, we cloned and characterized zebrafish Gig2 homolog (named Danio rerio Gig2-I, DreI), and revealed its antiviral role and expressional regulation signaling pathway. RT-PCR, Western blot and promoter activity assay indicate that DreI can be induced by poly I:C, spring viremia of carp virus (SVCV) and recombinant IFN (rIFN), showing that DreI is a typical ISG. Using the pivotal signaling molecules of RLR pathway, including RIG-I, MDA5 and IRF3 from crucian carp, it is found that DreI expression is regulated by RLR cascade and IRF3 plays an important role in this regulation. Furthermore, promoter mutation assay confirms that the IFN-stimulated regulatory elements (ISRE) in the 5′ flanking region of DreI is essential for its induction. Finally, overexpression of DreI leads to establish a strong antiviral state against SVCV and Rana grylio virus (RGV) infection in EPC (Epithelioma papulosum cyprinid) cells. Conclusions/Significance These data indicate that DreI is an antiviral protein, which is regulated by RLR signaling pathway. PMID:22412872

  17. The Roles of Unfolded Protein Response Pathways in Chlamydia Pathogenesis.

    PubMed

    George, Zenas; Omosun, Yusuf; Azenabor, Anthony A; Partin, James; Joseph, Kahaliah; Ellerson, Debra; He, Qing; Eko, Francis; Bandea, Claudiu; Svoboda, Pavel; Pohl, Jan; Black, Carolyn M; Igietseme, Joseph U

    2017-02-01

    Chlamydia is an obligate intracellular bacterium that relies on host cells for essential nutrients and adenosine triphosphate (ATP) for a productive infection. Although the unfolded protein response (UPR) plays a major role in certain microbial infectivity, its role in chlamydial pathogenesis is unknown. We hypothesized that Chlamydia induces UPR and exploits it to upregulate host cell uptake and metabolism of glucose, production of ATP, phospholipids, and other molecules required for its replicative development and host survival. Using a combination of biochemical and pathway inhibition assays, we showed that the 3 UPR pathway transducers-protein kinase RNA-activated (PKR)-like ER kinase (PERK), inositol-requiring enzyme-1α (IRE1α), and activating transcription factor-6α (ATF6α)-were activated during Chlamydia infection. The kinase activity of PERK and ribonuclease (RNase) of IRE1α mediated the upregulation of hexokinase II and production of ATP via substrate-level phosphorylation. In addition, the activation of PERK and IRE1α promoted autophagy formation and apoptosis resistance for host survival. Moreover, the activation of IRE1α resulted in the generation of spliced X-box binding protein 1 (sXBP1) and upregulation of lipid production. The vital role of UPR pathways in Chlamydia development and pathogenesis could lead to the identification of potential molecular targets for therapeutics against Chlamydia. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. A new screening pathway for identifying asymptomatic patients using dental panoramic radiographs

    NASA Astrophysics Data System (ADS)

    Hayashi, Tatsuro; Matsumoto, Takuya; Sawagashira, Tsuyoshi; Tagami, Motoki; Katsumata, Akitoshi; Hayashi, Yoshinori; Muramatsu, Chisako; Zhou, Xiangrong; Iida, Yukihiro; Matsuoka, Masato; Katagi, Kiyoji; Fujita, Hiroshi

    2012-03-01

    To identify asymptomatic patients is the challenging task and the essential first step in diagnosis. Findings of dental panoramic radiographs include not only dental conditions but also radiographic signs that are suggestive of possible systemic diseases such as osteoporosis, arteriosclerosis, and maxillary sinusitis. Detection of such signs on panoramic radiographs has a potential to provide supplemental benefits for patients. However, it is not easy for general dental practitioners to pay careful attention to such signs. We addressed the development of a computer-aided detection (CAD) system that detects radiographic signs of pathology on panoramic images, and the design of the framework of new screening pathway by cooperation of dentists and our CAD system. The performance evaluation of our CAD system showed the sensitivity and specificity in the identification of osteoporotic patients were 92.6 % and 100 %, respectively, and those of the maxillary sinus abnormality were 89.6 % and 73.6 %, respectively. The detection rate of carotid artery calcifications that suggests the need for further medical evaluation was approximately 93.6 % with 4.4 false-positives per image. To validate the utility of the new screening pathway, preliminary clinical trials by using our CAD system were conducted. To date, 223 panoramic images were processed and 4 asymptomatic patients with suspected osteoporosis, 7 asymptomatic patients with suspected calcifications, and 40 asymptomatic patients with suspected maxillary sinusitis were detected in our initial trial. It was suggested that our new screening pathway could be useful to identify asymptomatic patients with systemic diseases.

  19. Recent advances in prostate development and links to prostatic diseases

    PubMed Central

    Powers, Ginny L.

    2013-01-01

    The prostate is a branched ductal-acinar gland that is part of the male reproductive tract. Prostate development depends upon the integration of steroid hormone signals, paracrine interactions between the stromal and epithelial tissue layers, and the actions of cell autonomous factors. Several genes and signalling pathways are known to be required for one or more steps of prostate development including epithelial budding, duct elongation, branching morphogenesis, and/or cellular differentiation. Recent progress in the field of prostate development has included the application of genome-wide technologies including serial analysis of gene expression (SAGE), expression profiling microarrays, and other large scale approaches to identify new genes and pathways that are essential for prostate development. The aggregation of experimental results into online databases by organized multi-lab projects including the Genitourinary Developmental Molecular Atlas Project (GUDMAP) has also accelerated the understanding of molecular pathways that function during prostate development and identified links between prostate anatomy and molecular signaling. Rapid progress has also recently been made in understanding the nature and role of candidate stem cells in the developing and adult prostate. This has included the identification of putative prostate stem cell markers, lineage tracing, and organ reconstitution studies. However, several issues regarding their origin, precise nature, and possible role(s) in disease remain unresolved. Nevertheless, several links between prostatic developmental mechanisms and the pathogenesis of prostatic diseases including benign prostatic hyperplasia and prostate cancer have led to recent progress on targeting developmental pathways as therapeutic strategies for these diseases. PMID:23335485

  20. Pro-Inflammatory and Pro-Oxidant Status of Pancreatic Islet In Vitro Is Controlled by TLR-4 and HO-1 Pathways

    PubMed Central

    Vivot, Kevin; Langlois, Allan; Bietiger, William; Dal, Stéphanie; Seyfritz, Elodie; Pinget, Michel; Jeandidier, Nathalie; Maillard, Elisa; Gies, Jean-Pierre; Sigrist, Séverine

    2014-01-01

    Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation. PMID:25343247

  1. Arabidopsis Chlorophyll Biosynthesis: An Essential Balance between the Methylerythritol Phosphate and Tetrapyrrole Pathways[C][W

    PubMed Central

    Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet

    2013-01-01

    Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)–derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis. PMID:24363312

  2. Arabidopsis chlorophyll biosynthesis: an essential balance between the methylerythritol phosphate and tetrapyrrole pathways.

    PubMed

    Kim, Se; Schlicke, Hagen; Van Ree, Kalie; Karvonen, Kristine; Subramaniam, Anant; Richter, Andreas; Grimm, Bernhard; Braam, Janet

    2013-12-01

    Chlorophyll, essential for photosynthesis, is composed of a chlorin ring and a geranylgeranyl diphosphate (GGPP)-derived isoprenoid, which are generated by the tetrapyrrole and methylerythritol phosphate (MEP) biosynthesis pathways, respectively. Although a functional MEP pathway is essential for plant viability, the underlying basis of the requirement has been unclear. We hypothesized that MEP pathway inhibition is lethal because a reduction in GGPP availability results in a stoichiometric imbalance in tetrapyrrolic chlorophyll precursors, which can cause deadly photooxidative stress. Consistent with this hypothesis, lethality of MEP pathway inhibition in Arabidopsis thaliana by fosmidomycin (FSM) is light dependent, and toxicity of MEP pathway inhibition is reduced by genetic and chemical impairment of the tetrapyrrole pathway. In addition, FSM treatment causes a transient accumulation of chlorophyllide and transcripts associated with singlet oxygen-induced stress. Furthermore, exogenous provision of the phytol molecule reduces FSM toxicity when the phytol can be modified for chlorophyll incorporation. These data provide an explanation for FSM toxicity and thereby provide enhanced understanding of the mechanisms of FSM resistance. This insight into MEP pathway inhibition consequences underlines the risk plants undertake to synthesize chlorophyll and suggests the existence of regulation, possibly involving chloroplast-to-nucleus retrograde signaling, that may monitor and maintain balance of chlorophyll precursor synthesis.

  3. Identification of a pathway for intelligible speech in the left temporal lobe

    PubMed Central

    Scott, Sophie K.; Blank, C. Catrin; Rosen, Stuart; Wise, Richard J. S.

    2017-01-01

    Summary It has been proposed that the identification of sounds, including species-specific vocalizations, by primates depends on anterior projections from the primary auditory cortex, an auditory pathway analogous to the ventral route proposed for the visual identification of objects. We have identified a similar route in the human for understanding intelligible speech. Using PET imaging to identify separable neural subsystems within the human auditory cortex, we used a variety of speech and speech-like stimuli with equivalent acoustic complexity but varying intelligibility. We have demonstrated that the left superior temporal sulcus responds to the presence of phonetic information, but its anterior part only responds if the stimulus is also intelligible. This novel observation demonstrates a left anterior temporal pathway for speech comprehension. PMID:11099443

  4. ESEA: Discovering the Dysregulated Pathways based on Edge Set Enrichment Analysis

    PubMed Central

    Han, Junwei; Shi, Xinrui; Zhang, Yunpeng; Xu, Yanjun; Jiang, Ying; Zhang, Chunlong; Feng, Li; Yang, Haixiu; Shang, Desi; Sun, Zeguo; Su, Fei; Li, Chunquan; Li, Xia

    2015-01-01

    Pathway analyses are playing an increasingly important role in understanding biological mechanism, cellular function and disease states. Current pathway-identification methods generally focus on only the changes of gene expression levels; however, the biological relationships among genes are also the fundamental components of pathways, and the dysregulated relationships may also alter the pathway activities. We propose a powerful computational method, Edge Set Enrichment Analysis (ESEA), for the identification of dysregulated pathways. This provides a novel way of pathway analysis by investigating the changes of biological relationships of pathways in the context of gene expression data. Simulation studies illustrate the power and performance of ESEA under various simulated conditions. Using real datasets from p53 mutation, Type 2 diabetes and lung cancer, we validate effectiveness of ESEA in identifying dysregulated pathways. We further compare our results with five other pathway enrichment analysis methods. With these analyses, we show that ESEA is able to help uncover dysregulated biological pathways underlying complex traits and human diseases via specific use of the dysregulated biological relationships. We develop a freely available R-based tool of ESEA. Currently, ESEA can support pathway analysis of the seven public databases (KEGG; Reactome; Biocarta; NCI; SPIKE; HumanCyc; Panther). PMID:26267116

  5. Teaching Bird Identification & Vocabulary with Twitter

    ERIC Educational Resources Information Center

    Hallman, Tyler A.; Robinson, W. Douglas

    2015-01-01

    Species identification is essential to biology, conservation, and management. The ability to focus on specific diagnostic characteristics of a species helps improve the speed and accuracy of identification. Birds are excellent subjects for teaching species identification because, in combination with their different shapes and sizes, their plumages…

  6. A novel dysregulated pathway-identification analysis based on global influence of within-pathway effects and crosstalk between pathways

    PubMed Central

    Han, Junwei; Li, Chunquan; Yang, Haixiu; Xu, Yanjun; Zhang, Chunlong; Ma, Jiquan; Shi, Xinrui; Liu, Wei; Shang, Desi; Yao, Qianlan; Zhang, Yunpeng; Su, Fei; Feng, Li; Li, Xia

    2015-01-01

    Identifying dysregulated pathways from high-throughput experimental data in order to infer underlying biological insights is an important task. Current pathway-identification methods focus on single pathways in isolation; however, consideration of crosstalk between pathways could improve our understanding of alterations in biological states. We propose a novel method of pathway analysis based on global influence (PAGI) to identify dysregulated pathways, by considering both within-pathway effects and crosstalk between pathways. We constructed a global gene–gene network based on the relationships among genes extracted from a pathway database. We then evaluated the extent of differential expression for each gene, and mapped them to the global network. The random walk with restart algorithm was used to calculate the extent of genes affected by global influence. Finally, we used cumulative distribution functions to determine the significance values of the dysregulated pathways. We applied the PAGI method to five cancer microarray datasets, and compared our results with gene set enrichment analysis and five other methods. Based on these analyses, we demonstrated that PAGI can effectively identify dysregulated pathways associated with cancer, with strong reproducibility and robustness. We implemented PAGI using the freely available R-based and Web-based tools (http://bioinfo.hrbmu.edu.cn/PAGI). PMID:25551156

  7. An OGA-Resistant Probe Allows Specific Visualization and Accurate Identification of O-GlcNAc-Modified Proteins in Cells.

    PubMed

    Li, Jing; Wang, Jiajia; Wen, Liuqing; Zhu, He; Li, Shanshan; Huang, Kenneth; Jiang, Kuan; Li, Xu; Ma, Cheng; Qu, Jingyao; Parameswaran, Aishwarya; Song, Jing; Zhao, Wei; Wang, Peng George

    2016-11-18

    O-linked β-N-acetyl-glucosamine (O-GlcNAc) is an essential and ubiquitous post-translational modification present in nucleic and cytoplasmic proteins of multicellular eukaryotes. The metabolic chemical probes such as GlcNAc or GalNAc analogues bearing ketone or azide handles, in conjunction with bioorthogonal reactions, provide a powerful approach for detecting and identifying this modification. However, these chemical probes either enter multiple glycosylation pathways or have low labeling efficiency. Therefore, selective and potent probes are needed to assess this modification. We report here the development of a novel probe, 1,3,6-tri-O-acetyl-2-azidoacetamido-2,4-dideoxy-d-glucopyranose (Ac 3 4dGlcNAz), that can be processed by the GalNAc salvage pathway and transferred by O-GlcNAc transferase (OGT) to O-GlcNAc proteins. Due to the absence of a hydroxyl group at C4, this probe is less incorporated into α/β 4-GlcNAc or GalNAc containing glycoconjugates. Furthermore, the O-4dGlcNAz modification was resistant to the hydrolysis of O-GlcNAcase (OGA), which greatly enhanced the efficiency of incorporation for O-GlcNAcylation. Combined with a click reaction, Ac 3 4dGlcNAz allowed the selective visualization of O-GlcNAc in cells and accurate identification of O-GlcNAc-modified proteins with LC-MS/MS. This probe represents a more potent and selective tool in tracking, capturing, and identifying O-GlcNAc-modified proteins in cells and cell lysates.

  8. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism

    PubMed Central

    2015-01-01

    Background Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. Results ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids, cofactors and vitamins. Conclusions The ECemble method is able to hierarchically assign high quality enzyme annotations to genomic and metagenomic data. This study demonstrated the real application of ECemble to understand the indispensable role played by microbe-encoded enzymes in the healthy functioning of human metabolic systems. PMID:26099921

  9. Application of a hierarchical enzyme classification method reveals the role of gut microbiome in human metabolism.

    PubMed

    Mohammed, Akram; Guda, Chittibabu

    2015-01-01

    Enzymes are known as the molecular machines that drive the metabolism of an organism; hence identification of the full enzyme complement of an organism is essential to build the metabolic blueprint of that species as well as to understand the interplay of multiple species in an ecosystem. Experimental characterization of the enzymatic reactions of all enzymes in a genome is a tedious and expensive task. The problem is more pronounced in the metagenomic samples where even the species are not adequately cultured or characterized. Enzymes encoded by the gut microbiota play an essential role in the host metabolism; thus, warranting the need to accurately identify and annotate the full enzyme complements of species in the genomic and metagenomic projects. To fulfill this need, we develop and apply a method called ECemble, an ensemble approach to identify enzymes and enzyme classes and study the human gut metabolic pathways. ECemble method uses an ensemble of machine-learning methods to accurately model and predict enzymes from protein sequences and also identifies the enzyme classes and subclasses at the finest resolution. A tenfold cross-validation result shows accuracy between 97 and 99% at different levels in the hierarchy of enzyme classification, which is superior to comparable methods. We applied ECemble to predict the entire complements of enzymes from ten sequenced proteomes including the human proteome. We also applied this method to predict enzymes encoded by the human gut microbiome from gut metagenomic samples, and to study the role played by the microbe-derived enzymes in the human metabolism. After mapping the known and predicted enzymes to canonical human pathways, we identified 48 pathways that have at least one bacteria-encoded enzyme, which demonstrates the complementary role of gut microbiome in human gut metabolism. These pathways are primarily involved in metabolizing dietary nutrients such as carbohydrates, amino acids, lipids, cofactors and vitamins. The ECemble method is able to hierarchically assign high quality enzyme annotations to genomic and metagenomic data. This study demonstrated the real application of ECemble to understand the indispensable role played by microbe-encoded enzymes in the healthy functioning of human metabolic systems.

  10. Integrated proteomics, genomics, metabolomics approaches reveal oxalic acid as pathogenicity factor in Tilletia indica inciting Karnal bunt disease of wheat.

    PubMed

    Pandey, Vishakha; Singh, Manoj; Pandey, Dinesh; Kumar, Anil

    2018-05-18

    Tilletia indica incites Karnal bunt (KB) disease in wheat. To date, no KB resistant wheat cultivar could be developed due to non-availability of potential biomarkers related to pathogenicity/virulence for screening of resistant wheat genotypes. The present study was carried out to compare the proteomes of T. indica highly (TiK) and low (TiP) virulent isolates. Twenty one protein spots consistently observed as up-regulated/differential in the TiK proteome were selected for identification by MALDI-TOF/TOF. Identified sequences showed homology with fungal proteins playing essential role in plant infection and pathogen survival, including stress response, adhesion, fungal penetration, invasion, colonization, degradation of host cell wall, signal transduction pathway. These results were integrated with T. indica genome sequence for identification of homologs of candidate pathogenicity/virulence related proteins. Protein identified in TiK isolate as malate dehydrogenase that converts malate to oxaloacetate which is precursor of oxalic acid. Oxalic acid is key pathogenicity factor in phytopathogenic fungi. These results were validated by GC-MS based metabolic profiling of T. indica isolates indicating that oxalic acid was exclusively identified in TiK isolate. Thus, integrated omics approaches leads to identification of pathogenicity/virulence factor(s) that would provide insights into pathogenic mechanisms of fungi and aid in devising effective disease management strategies.

  11. Advances in Raman spectroscopy for In Situ Identification of Minerals and Organics on Diverse Planetary Surfaces: from Mars to Titan

    NASA Astrophysics Data System (ADS)

    Blacksberg, J.; Alerstam, E.; Maruyama, Y.; Cochrane, C.; Rossman, G. R.

    2015-12-01

    We present recent developments in time-resolved Raman spectroscopy for in situ planetary surface exploration, aimed at identification of both minerals and organics. Raman is a non-destructive surface technique that requires no sample preparation. Raman spectra are highly material specific and can be used for identification of a wide range of unknown samples. In combination with micro-scale imaging and point mapping, Raman spectroscopy can be used to directly interrogate rocks and regolith materials, while placing compositional analyses within a microtextural context, essential for understanding surface evolutionary pathways. Due to these unique capabilities, Raman spectroscopy is of great interest for the exploration of all rocky and icy bodies, for example Mars, Venus, the Moon, Mars' moons, asteroids, comets, Europa, and Titan. In this work, we focus on overcoming one of the most difficult challenges faced in Raman spectroscopy: interference from background fluorescence of the very minerals and organics that we wish to characterize. To tackle this problem we use time-resolved Raman spectroscopy, which separates the Raman from background processes in the time domain. This same technique also enables operation in daylight without the need for light shielding. Two key components are essential for the success of this technique: a fast solid-state detector and a short-pulse laser. Our detector is a custom developed Single Photon Avalanche Diode (SPAD) array, capable of sub-ns time-gating. Our pulsed lasers are solid-state miniature pulsed microchip lasers. We discuss optimization of laser and detector parameters for our application. We then present Raman spectra of particularly challenging planetary analog samples to demonstrate the unique capabilities of this time-resolved Raman instrument, for example, Mars-analog clays and Titan-analog organics. The research described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA).

  12. Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver

    EPA Science Inventory

    Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver D.B. Johnson, 1 W.O. Ward, 2 V.L. Bass, 2 M.C.J. Schladweiler, 2A.D. Ledbetter, 2 D. Andrews, and U.P. Kodavanti 2 1 Curriculum in Toxicology, UNC School of Medicine, Cha...

  13. Up-Regulation of 1-Deoxy-d-Xylulose-5-Phosphate Synthase Enhances Production of Essential Oils in Transgenic Spike Lavender1

    PubMed Central

    Muñoz-Bertomeu, Jesús; Arrillaga, Isabel; Ros, Roc; Segura, Juan

    2006-01-01

    Spike lavender (Lavandula latifolia) is an aromatic shrub cultivated worldwide for the production of essential oils. The major constituents of these oils are monoterpenes, which are obtained from isopentenyl diphosphate and dimethylallyl diphosphate precursors through the plastidial methylerythritol phosphate (MEP) pathway and/or the cytosolic mevalonate pathway. 1-Deoxy-d-xylulose-5-P synthase (DXS) catalyzes the first step of the MEP pathway. A cDNA coding for the Arabidopsis (Arabidopsis thaliana) DXS was constitutively expressed in spike lavender. Gas chromatography/mass spectrometry analyses revealed that transgenic plants accumulated significantly more essential oils compared to controls (from 101.5% to 359.0% and from 12.2% to 74.1% yield increase compared to controls in leaves and flowers, respectively). T0 transgenic plants were grown for 2 years, self-pollinated, and the T1 seeds obtained. The inheritance of the DXS transgene was studied in the T1 generation. The increased essential oil phenotype observed in the transgenic T0 plants was maintained in the progeny that inherited the DXS transgene. Total chlorophyll and carotenoid content in DXS progenies that inherited the transgene depended on the analyzed plant, showing either no variation or a significant decrease in respect to their counterparts without the transgene. Transgenic plants had a visual phenotype similar to untransformed plants (controls) in terms of morphology, growth habit, flowering, and seed germination. Our results demonstrate that the MEP pathway contributes to essential oil production in spike lavender. They also demonstrate that the DXS enzyme plays a crucial role in monoterpene precursor biosynthesis and, thus, in essential oil production in spike lavender. In addition, our results provide a strategy to increase the essential oil production in spike lavender by metabolic engineering of the MEP pathway without apparent detrimental effects on plant development and fitness. PMID:16980564

  14. Identification and characterization of the furfural and 5-(hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14

    PubMed Central

    Koopman, Frank; Wierckx, Nick; de Winde, Johannes H.; Ruijssenaars, Harald J.

    2010-01-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates pose significant problems for the production of second-generation biofuels and biochemicals. Among these inhibitors, 5-(hydroxymethyl)furfural (HMF) and furfural are specifically notorious. In this study, we describe the complete molecular identification and characterization of the pathway by which Cupriavidus basilensis HMF14 metabolizes HMF and furfural. The identification of this pathway enabled the construction of an HMF and furfural-metabolizing Pseudomonas putida. The genetic information obtained furthermore enabled us to predict the HMF and furfural degrading capabilities of sequenced bacterial species that had not previously been connected to furanic aldehyde metabolism. These results pave the way for in situ detoxification of lignocellulosic hydrolysates, which is a major step toward improved efficiency of utilization of lignocellulosic feedstock. PMID:20194784

  15. Glutathione Transferase U13 Functions in Pathogen-Triggered Glucosinolate Metabolism.

    PubMed

    Piślewska-Bednarek, Mariola; Nakano, Ryohei Thomas; Hiruma, Kei; Pastorczyk, Marta; Sanchez-Vallet, Andrea; Singkaravanit-Ogawa, Suthitar; Ciesiołka, Danuta; Takano, Yoshitaka; Molina, Antonio; Schulze-Lefert, Paul; Bednarek, Paweł

    2018-01-01

    Glutathione (GSH) and indole glucosinolates (IGs) exert key functions in the immune system of the model plant Arabidopsis ( Arabidopsis thaliana ). Appropriate GSH levels are important for execution of both pre- and postinvasive disease resistance mechanisms to invasive pathogens, whereas an intact PENETRATION2 (PEN2)-pathway for IG metabolism is essential for preinvasive resistance in this species. Earlier indirect evidence suggested that the latter pathway involves conjugation of GSH with unstable products of IG metabolism and further processing of the resulting adducts to biologically active molecules. Here we describe the identification of Glutathione- S -Transferase class-tau member 13 (GSTU13) as an indispensable component of the PEN2 immune pathway for IG metabolism. gstu13 mutant plants are defective in the pathogen-triggered biosynthesis of end products of the PEN2 pathway, including 4-O-β-d-glucosyl-indol-3-yl formamide, indole-3-ylmethyl amine, and raphanusamic acid. In line with this metabolic defect, lack of functional GSTU13 results in enhanced disease susceptibility toward several fungal pathogens including Erysiphe pisi , Colletotrichum gloeosporioides , and Plectosphaerella cucumerina Seedlings of gstu13 plants fail also to deposit the (1,3)-β-glucan cell wall polymer, callose, after recognition of the bacterial flg22 epitope. We show that GSTU13 mediates specifically the role of GSH in IG metabolism without noticeable impact on other immune functions of this tripeptide. We postulate that GSTU13 connects GSH with the pathogen-triggered PEN2 pathway for IG metabolism to deliver metabolites that may have numerous functions in the innate immune system of Arabidopsis. © 2018 American Society of Plant Biologists. All Rights Reserved.

  16. Identification of Ftr1 and Zrt1 as iron and zinc micronutrient transceptors for activation of the PKA pathway in Saccharomyces cerevisiae

    PubMed Central

    Schothorst, Joep; Zeebroeck, Griet V.; Thevelein, Johan M.

    2017-01-01

    Multiple types of nutrient transceptors, membrane proteins that combine a transporter and receptor function, have now been established in a variety of organisms. However, so far all established transceptors utilize one of the macronutrients, glucose, amino acids, ammonium, nitrate, phosphate or sulfate, as substrate. This is also true for the Saccharomyces cerevisiae transceptors mediating activation of the PKA pathway upon re-addition of a macronutrient to glucose-repressed cells starved for that nutrient, re-establishing a fermentable growth medium. We now show that the yeast high-affinity iron transporter Ftr1 and high-affinity zinc transporter Zrt1 function as transceptors for the micronutrients iron and zinc. We show that replenishment of iron to iron-starved cells or zinc to zinc-starved cells triggers within 1-2 minutes a rapid surge in trehalase activity, a well-established PKA target. The activation with iron is dependent on Ftr1 and with zinc on Zrt1, and we show that it is independent of intracellular iron and zinc levels. Similar to the transceptors for macronutrients, Ftr1 and Zrt1 are strongly induced upon iron and zinc starvation, respectively, and they are rapidly downregulated by substrate-induced endocytosis. Our results suggest that transceptor-mediated signaling to the PKA pathway may occur in all cases where glucose-repressed yeast cells have been starved first for an essential nutrient, causing arrest of growth and low activity of the PKA pathway, and subsequently replenished with the lacking nutrient to re-establish a fermentable growth medium. The broadness of the phenomenon also makes it likely that nutrient transceptors use a common mechanism for signaling to the PKA pathway. PMID:28357393

  17. A pathway-directed positive growth restoration assay to facilitate the discovery of lipid A and fatty acid biosynthesis inhibitors in Acinetobacter baumannii

    PubMed Central

    Wang, Lisha; Chan, Helen; De Pascale, Gianfranco; Six, David A.; Wei, Jun-Rong; Dean, Charles R.

    2018-01-01

    Acinetobacter baumannii ATCC 19606 can grow without lipooligosaccharide (LOS). Lack of LOS can result from disruption of the early lipid A biosynthetic pathway genes lpxA, lpxC or lpxD. Although LOS itself is not essential for growth of A. baumannii ATCC 19606, it was previously shown that depletion of the lipid A biosynthetic enzyme LpxK in cells inhibited growth due to the toxic accumulation of lipid A pathway intermediates. Growth of LpxK-depleted cells was restored by chemical inhibition of LOS biosynthesis using CHIR-090 (LpxC) and fatty acid biosynthesis using cerulenin (FabB/F) and pyridopyrimidine (acetyl-CoA-carboxylase). Here, we expand on this by showing that inhibition of enoyl-acyl carrier protein reductase (FabI), responsible for converting trans-2-enoyl-ACP into acyl-ACP during the fatty acid elongation cycle also restored growth during LpxK depletion. Inhibition of fatty acid biosynthesis during LpxK depletion rescued growth at 37°C, but not at 30°C, whereas rescue by LpxC inhibition was temperature independent. We exploited these observations to demonstrate proof of concept for a targeted medium-throughput growth restoration screening assay to identify small molecule inhibitors of LOS and fatty acid biosynthesis. The differential temperature dependence of fatty acid and LpxC inhibition provides a simple means by which to separate growth stimulating compounds by pathway. Targeted cell-based screening platforms such as this are important for faster identification of compounds inhibiting pathways of interest in antibacterial discovery for clinically relevant Gram-negative pathogens. PMID:29505586

  18. Gene Network Polymorphism Illuminates Loss and Retention of Novel RNAi Silencing Components in the Cryptococcus Pathogenic Species Complex.

    PubMed

    Feretzaki, Marianna; Billmyre, R Blake; Clancey, Shelly Applen; Wang, Xuying; Heitman, Joseph

    2016-03-01

    RNAi is a ubiquitous pathway that serves central functions throughout eukaryotes, including maintenance of genome stability and repression of transposon expression and movement. However, a number of organisms have lost their RNAi pathways, including the model yeast Saccharomyces cerevisiae, the maize pathogen Ustilago maydis, the human pathogen Cryptococcus deuterogattii, and some human parasite pathogens, suggesting there may be adaptive benefits associated with both retention and loss of RNAi. By comparing the RNAi-deficient genome of the Pacific Northwest Outbreak C. deuterogattii strain R265 with the RNAi-proficient genomes of the Cryptococcus pathogenic species complex, we identified a set of conserved genes that were lost in R265 and all other C. deuterogattii isolates examined. Genetic and molecular analyses reveal several of these lost genes play roles in RNAi pathways. Four novel components were examined further. Znf3 (a zinc finger protein) and Qip1 (a homolog of N. crassa Qip) were found to be essential for RNAi, while Cpr2 (a constitutive pheromone receptor) and Fzc28 (a transcription factor) are involved in sex-induced but not mitosis-induced silencing. Our results demonstrate that the mitotic and sex-induced RNAi pathways rely on the same core components, but sex-induced silencing may be a more specific, highly induced variant that involves additional specialized or regulatory components. Our studies further illustrate how gene network polymorphisms involving known components of key cellular pathways can inform identification of novel elements and suggest that RNAi loss may have been a core event in the speciation of C. deuterogattii and possibly contributed to its pathogenic trajectory.

  19. Fragmentation pathways and structural characterization of organophosphorus compounds related to the Chemical Weapons Convention by electron ionization and electrospray ionization tandem mass spectrometry.

    PubMed

    Hosseini, Seyed Esmaeil; Saeidian, Hamid; Amozadeh, Ali; Naseri, Mohammad Taghi; Babri, Mehran

    2016-12-30

    For unambiguous identification of Chemical Weapons Convention (CWC)-related chemicals in environmental samples, the availability of mass spectra, interpretation skills and rapid microsynthesis of suspected chemicals are essential requirements. For the first time, the electron ionization single quadrupole and electrospray ionization tandem mass spectra of a series of O-alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates (Scheme 1, cpd 4) were studied for CWC verification purposes. O-Alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates were prepared through a microsynthetic method and were analyzed using electron ionization and electrospray ionization mass spectrometry with gas and liquid chromatography, respectively, as MS-inlet systems. General EI and ESI fragmentation pathways were proposed and discussed, and collision-induced dissociation studies of the protonated derivatives of these compounds were performed to confirm proposed fragment ion structures by analyzing mass spectra of deuterated analogs. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as McLafferty rearrangement, hydrogen rearrangement and a previously unknown intramolecular electrophilic aromatic substitution reaction. The EI and ESI fragmentation routes of the synthesized compounds 4 were investigated with the aim of detecting and identifying CWC-related chemicals during on-site inspection and/or off-site analysis and toxic chemical destruction monitoring. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Corticotropin-Releasing Factor Critical for Zebrafish Camouflage Behavior Is Regulated by Light and Sensitive to Ethanol

    PubMed Central

    Wagle, Mahendra; Mathur, Priya; Guo, Su

    2011-01-01

    The zebrafish camouflage response is an innate “hard-wired” behavior that offers an excellent opportunity to explore neural circuit assembly and function. Moreover, the camouflage response is sensitive to ethanol, making it a tractable system for understanding how ethanol influences neural circuit development and function. Here we report the identification of corticotropin releasing factor (CRF) as a critical component of the camouflage response pathway. We further show that ethanol, having no direct effect on the visual sensory system or the melanocytes, acts downstream of retinal ganglion cells and requires the CRF-proopiomelanocortin (POMC) pathway to exert its effect on camouflage. Treatment with ethanol, as well as alteration of light exposure that changes sensory input into the camouflage circuit, robustly modifies CRF expression in subsets of neurons. Activity of both Adenylyl Cyclase 5 and Extracellular signal Regulated Kinase (ERK) is required for such ethanol- or light- induced plasticity of crf expression. These results reveal an essential role of a peptidergic pathway in camouflage that is regulated by light and influenced by ethanol at concentrations relevant to abuse and anxiolysis, in a cAMP- and ERK- dependent manner. We conclude that this ethanol-modulated camouflage response represents a novel and relevant system for molecular genetic dissection of a neural circuit that is regulated by light and sensitive to ethanol. PMID:21209207

  1. Corticotropin-releasing factor critical for zebrafish camouflage behavior is regulated by light and sensitive to ethanol.

    PubMed

    Wagle, Mahendra; Mathur, Priya; Guo, Su

    2011-01-05

    The zebrafish camouflage response is an innate "hard-wired" behavior that offers an excellent opportunity to explore neural circuit assembly and function. Moreover, the camouflage response is sensitive to ethanol, making it a tractable system for understanding how ethanol influences neural circuit development and function. Here we report the identification of corticotropin-releasing factor (CRF) as a critical component of the camouflage response pathway. We further show that ethanol, having no direct effect on the visual sensory system or the melanocytes, acts downstream of retinal ganglion cells and requires the CRF-proopiomelanocortin pathway to exert its effect on camouflage. Treatment with ethanol, as well as alteration of light exposure that changes sensory input into the camouflage circuit, robustly modifies CRF expression in subsets of neurons. Activity of both adenylyl cyclase 5 and extracellular signal-regulated kinase (ERK) is required for such ethanol-induced or light-induced plasticity of crf expression. These results reveal an essential role of a peptidergic pathway in camouflage that is regulated by light and influenced by ethanol at concentrations relevant to abuse and anxiolysis, in a cAMP-dependent and ERK-dependent manner. We conclude that this ethanol-modulated camouflage response represents a novel and relevant system for molecular genetic dissection of a neural circuit that is regulated by light and sensitive to ethanol.

  2. Identification of Differentially Expressed miRNAs between White and Black Hair Follicles by RNA-Sequencing in the Goat (Capra hircus)

    PubMed Central

    Wu, Zhenyang; Fu, Yuhua; Cao, Jianhua; Yu, Mei; Tang, Xiaohui; Zhao, Shuhong

    2014-01-01

    MicroRNAs (miRNAs) play a key role in many biological processes by regulating gene expression at the post-transcriptional level. A number of miRNAs have been identified from livestock species. However, compared with other animals, such as pigs and cows, the number of miRNAs identified in goats is quite low, particularly in hair follicles. In this study, to investigate the functional roles of miRNAs in goat hair follicles of goats with different coat colors, we sequenced miRNAs from two hair follicles samples (white and black) using Solexa sequencing. A total of 35,604,016 reads were obtained, which included 30,878,637 clean reads (86.73%). MiRDeep2 software identified 214 miRNAs. Among them, 205 were conserved among species and nine were novel miRNAs. Furthermore, DESeq software identified six differentially expressed miRNAs. Quantitative PCR confirmed differential expression of two miRNAs, miR-10b and miR-211. KEGG pathways were analyzed using the DAVID website for the predicted target genes of the differentially expressed miRNAs. Several signaling pathways including Notch and MAPK pathways may affect the process of coat color formation. Our study showed that the identified miRNAs might play an essential role in black and white follicle formation in goats. PMID:24879525

  3. Cancer Transcriptome Dataset Analysis: Comparing Methods of Pathway and Gene Regulatory Network-Based Cluster Identification.

    PubMed

    Nam, Seungyoon

    2017-04-01

    Cancer transcriptome analysis is one of the leading areas of Big Data science, biomarker, and pharmaceutical discovery, not to forget personalized medicine. Yet, cancer transcriptomics and postgenomic medicine require innovation in bioinformatics as well as comparison of the performance of available algorithms. In this data analytics context, the value of network generation and algorithms has been widely underscored for addressing the salient questions in cancer pathogenesis. Analysis of cancer trancriptome often results in complicated networks where identification of network modularity remains critical, for example, in delineating the "druggable" molecular targets. Network clustering is useful, but depends on the network topology in and of itself. Notably, the performance of different network-generating tools for network cluster (NC) identification has been little investigated to date. Hence, using gastric cancer (GC) transcriptomic datasets, we compared two algorithms for generating pathway versus gene regulatory network-based NCs, showing that the pathway-based approach better agrees with a reference set of cancer-functional contexts. Finally, by applying pathway-based NC identification to GC transcriptome datasets, we describe cancer NCs that associate with candidate therapeutic targets and biomarkers in GC. These observations collectively inform future research on cancer transcriptomics, drug discovery, and rational development of new analysis tools for optimal harnessing of omics data.

  4. Predicting response to EGFR inhibitors in metastatic colorectal cancer: current practice and future directions.

    PubMed

    Shankaran, Veena; Obel, Jennifer; Benson, Al B

    2010-01-01

    The identification of KRAS mutational status as a predictive marker of response to antibodies against the epidermal growth factor receptor (EGFR) has been one of the most significant and practice-changing recent advances in colorectal cancer research. Recently, data suggesting a potential role for other markers (including BRAF mutations, loss of phosphatase and tension homologue deleted on chromosome ten expression, and phosphatidylinositol-3-kinase-AKT pathway mutations) in predicting response to anti-EGFR therapy have emerged. Ongoing clinical trials and correlative analyses are essential to definitively identify predictive markers and develop therapeutic strategies for patients who may not derive benefit from anti-EGFR therapy. This article reviews recent clinical trials supporting the predictive role of KRAS, recent changes to clinical guidelines and pharmaceutical labeling, investigational predictive molecular markers, and newer clinical trials targeting patients with mutated KRAS.

  5. [The French National Compound Library: advances and future prospects].

    PubMed

    Mahuteau-Betzer, Florence

    2015-04-01

    The French National Compound Library (Chimiothèque Nationale) has been created in 2003 and is the federation of local collections. It contains more than 56 000 small molecules and natural compounds synthesised or isolated in different laboratories over the past years. This explains the diversity of the collection. The strength of this initiative is the ability to connect chemists and biologists for the development of hits. This development involves the synthesis of analogues or/and chemical tools to find new targets. These collaborations lead to the identification of new chemical probes. These probes able to modulate a biological function are essential to study biological pathways. They can also be useful for therapeutic applications. This article will describe the major achievements and perspectives of the French Chemical Library. © 2015 médecine/sciences – Inserm.

  6. Genome‐Wide MicroRNA and Gene Analysis of Mesenchymal Stem Cell Chondrogenesis Identifies an Essential Role and Multiple Targets for miR‐140‐5p

    PubMed Central

    Tselepi, Maria; Gómez, Rodolfo; Woods, Steven; Hui, Wang; Smith, Graham R.; Shanley, Daryl P.; Clark, Ian M.; Young, David A.

    2015-01-01

    Abstract microRNAs (miRNAs) are abundantly expressed in development where they are critical determinants of cell differentiation and phenotype. Accordingly miRNAs are essential for normal skeletal development and chondrogenesis in particular. However, the question of which miRNAs are specific to the chondrocyte phenotype has not been fully addressed. Using microarray analysis of miRNA expression during mesenchymal stem cell chondrogenic differentiation and detailed examination of the role of essential differentiation factors, such as SOX9, TGF‐β, and the cell condensation phase, we characterize the repertoire of specific miRNAs involved in chondrocyte development, highlighting in particular miR‐140 and miR‐455. Further with the use of mRNA microarray data we integrate miRNA expression and mRNA expression during chondrogenesis to underline the particular importance of miR‐140, especially the ‐5p strand. We provide a detailed identification and validation of direct targets of miR‐140‐5p in both chondrogenesis and adult chondrocytes with the use of microarray and 3′UTR analysis. This emphasizes the diverse array of targets and pathways regulated by miR‐140‐5p. We are also able to confirm previous experimentally identified targets but, additionally, identify a novel positive regulation of the Wnt signaling pathway by miR‐140‐5p. Wnt signaling has a complex role in chondrogenesis and skeletal development and these findings illustrate a previously unidentified role for miR‐140‐5p in regulation of Wnt signaling in these processes. Together these developments further highlight the role of miRNAs during chondrogenesis to improve our understanding of chondrocyte development and guide cartilage tissue engineering. Stem Cells 2015;33:3266–3280 PMID:26175215

  7. A molecular systems approach to modelling human skin pigmentation: identifying underlying pathways and critical components.

    PubMed

    Raghunath, Arathi; Sambarey, Awanti; Sharma, Neha; Mahadevan, Usha; Chandra, Nagasuma

    2015-04-29

    Ultraviolet radiations (UV) serve as an environmental stress for human skin, and result in melanogenesis, with the pigment melanin having protective effects against UV induced damage. This involves a dynamic and complex regulation of various biological processes that results in the expression of melanin in the outer most layers of the epidermis, where it can exert its protective effect. A comprehensive understanding of the underlying cross talk among different signalling molecules and cell types is only possible through a systems perspective. Increasing incidences of both melanoma and non-melanoma skin cancers necessitate the need to better comprehend UV mediated effects on skin pigmentation at a systems level, so as to ultimately evolve knowledge-based strategies for efficient protection and prevention of skin diseases. A network model for UV-mediated skin pigmentation in the epidermis was constructed and subjected to shortest path analysis. Virtual knock-outs were carried out to identify essential signalling components. We describe a network model for UV-mediated skin pigmentation in the epidermis. The model consists of 265 components (nodes) and 429 directed interactions among them, capturing the manner in which one component influences the other and channels information. Through shortest path analysis, we identify novel signalling pathways relevant to pigmentation. Virtual knock-outs or perturbations of specific nodes in the network have led to the identification of alternate modes of signalling as well as enabled determining essential nodes in the process. The model presented provides a comprehensive picture of UV mediated signalling manifesting in human skin pigmentation. A systems perspective helps provide a holistic purview of interconnections and complexity in the processes leading to pigmentation. The model described here is extensive yet amenable to expansion as new data is gathered. Through this study, we provide a list of important proteins essential for pigmentation which can be further explored to better understand normal pigmentation as well as its pathologies including vitiligo and melanoma, and enable therapeutic intervention.

  8. Identification of entomopathogenic fungi

    USDA-ARS?s Scientific Manuscript database

    This chapter provides essential assistance for the identification of the most important genera (and main species) of fungal pathogens affecting insects, mites, and spiders. The key allows identifications regardless of which major spore types might be present with the specimen. The phylogenetic affi...

  9. Phylogenomics and barcoding of Panax: toward the identification of ginseng species.

    PubMed

    Manzanilla, V; Kool, A; Nguyen Nhat, L; Nong Van, H; Le Thi Thu, H; de Boer, H J

    2018-04-03

    The economic value of ginseng in the global medicinal plant trade is estimated to be in excess of US$2.1 billion. At the same time, the evolutionary placement of ginseng (Panax ginseng) and the complex evolutionary history of the genus is poorly understood despite several molecular phylogenetic studies. In this study, we use a full plastome phylogenomic framework to resolve relationships in Panax and to identify molecular markers for species discrimination. We used high-throughput sequencing of MBD2-Fc fractionated Panax DNA to supplement publicly available plastid genomes to create a phylogeny based on fully assembled and annotated plastid genomes from 60 accessions of 8 species. The plastome phylogeny based on a 163 kbp matrix resolves the sister relationship of Panax ginseng with P. quinquefolius. The closely related species P. vietnamensis is supported as sister of P. japonicus. The plastome matrix also shows that the markers trnC-rps16, trnS-trnG, and trnE-trnM could be used for unambiguous molecular identification of all the represented species in the genus. MBD2 depletion reduces the cost of plastome sequencing, which makes it a cost-effective alternative to Sanger sequencing based DNA barcoding for molecular identification. The plastome phylogeny provides a robust framework that can be used to study the evolution of morphological characters and biosynthesis pathways of ginsengosides for phylogenetic bioprospecting. Molecular identification of ginseng species is essential for authenticating ginseng in international trade and it provides an incentive for manufacturers to create authentic products with verified ingredients.

  10. Dissecting Escherichia coli Outer Membrane Biogenesis Using Differential Proteomics

    PubMed Central

    Martorana, Alessandra M.; Motta, Sara; Di Silvestre, Dario; Falchi, Federica; Dehò, Gianni; Mauri, Pierluigi; Sperandeo, Paola; Polissi, Alessandra

    2014-01-01

    The cell envelope of Gram-negative bacteria is a complex multi-layered structure comprising an inner cytoplasmic membrane and an additional asymmetric lipid bilayer, the outer membrane, which functions as a selective permeability barrier and is essential for viability. Lipopolysaccharide, an essential glycolipid located in the outer leaflet of the outer membrane, greatly contributes to the peculiar properties exhibited by the outer membrane. This complex molecule is transported to the cell surface by a molecular machine composed of seven essential proteins LptABCDEFG that form a transenvelope complex and function as a single device. While advances in understanding the mechanisms that govern the biogenesis of the cell envelope have been recently made, only few studies are available on how bacterial cells respond to severe envelope biogenesis defects on a global scale. Here we report the use of differential proteomics based on Multidimensional Protein Identification Technology (MudPIT) to investigate how Escherichia coli cells respond to a block of lipopolysaccharide transport to the outer membrane. We analysed the envelope proteome of a lptC conditional mutant grown under permissive and non permissive conditions and identified 123 proteins whose level is modulated upon LptC depletion. Most such proteins belong to pathways implicated in cell envelope biogenesis, peptidoglycan remodelling, cell division and protein folding. Overall these data contribute to our understanding on how E. coli cells respond to LPS transport defects to restore outer membrane functionality. PMID:24967819

  11. Identification of essential genes and synthetic lethal gene combinations in Escherichia coli K-12.

    PubMed

    Mori, Hirotada; Baba, Tomoya; Yokoyama, Katsushi; Takeuchi, Rikiya; Nomura, Wataru; Makishi, Kazuichi; Otsuka, Yuta; Dose, Hitomi; Wanner, Barry L

    2015-01-01

    Here we describe the systematic identification of single genes and gene pairs, whose knockout causes lethality in Escherichia coli K-12. During construction of precise single-gene knockout library of E. coli K-12, we identified 328 essential gene candidates for growth in complex (LB) medium. Upon establishment of the Keio single-gene deletion library, we undertook the development of the ASKA single-gene deletion library carrying a different antibiotic resistance. In addition, we developed tools for identification of synthetic lethal gene combinations by systematic construction of double-gene knockout mutants. We introduce these methods herein.

  12. Identification of Cellular Proteins Required for Replication of Human Immunodeficiency Virus Type 1

    PubMed Central

    Dziuba, Natallia; Ferguson, Monique R.; O'Brien, William A.; Sanchez, Anthony; Prussia, Andrew J.; McDonald, Natalie J.; Friedrich, Brian M.; Li, Guangyu; Shaw, Michael W.; Sheng, Jinsong; Hodge, Thomas W.; Rubin, Donald H.

    2012-01-01

    Abstract Cellular proteins are essential for human immunodeficiency virus type 1 (HIV-1) replication and may serve as viable new targets for treating infection. Using gene trap insertional mutagenesis, a high-throughput approach based on random inactivation of cellular genes, candidate genes were found that limit virus replication when mutated. Disrupted genes (N=87) conferring resistance to lytic infection with several viruses were queried for an affect on HIV-1 replication by utilizing small interfering RNA (siRNA) screens in TZM-bl cells. Several genes regulating diverse pathways were found to be required for HIV-1 replication, including DHX8, DNAJA1, GTF2E1, GTF2E2, HAP1, KALRN, UBA3, UBE2E3, and VMP1. Candidate genes were independently tested in primary human macrophages, toxicity assays, and/or Tat-dependent β-galactosidase reporter assays. Bioinformatics analyses indicated that several host factors present in this study participate in canonical pathways and functional processes implicated in prior genome-wide studies. However, the genes presented in this study did not share identity with those found previously. Novel antiviral targets identified in this study should open new avenues for mechanistic investigation. PMID:22404213

  13. Identification of cellular proteins required for replication of human immunodeficiency virus type 1.

    PubMed

    Dziuba, Natallia; Ferguson, Monique R; O'Brien, William A; Sanchez, Anthony; Prussia, Andrew J; McDonald, Natalie J; Friedrich, Brian M; Li, Guangyu; Shaw, Michael W; Sheng, Jinsong; Hodge, Thomas W; Rubin, Donald H; Murray, James L

    2012-10-01

    Cellular proteins are essential for human immunodeficiency virus type 1 (HIV-1) replication and may serve as viable new targets for treating infection. Using gene trap insertional mutagenesis, a high-throughput approach based on random inactivation of cellular genes, candidate genes were found that limit virus replication when mutated. Disrupted genes (N=87) conferring resistance to lytic infection with several viruses were queried for an affect on HIV-1 replication by utilizing small interfering RNA (siRNA) screens in TZM-bl cells. Several genes regulating diverse pathways were found to be required for HIV-1 replication, including DHX8, DNAJA1, GTF2E1, GTF2E2, HAP1, KALRN, UBA3, UBE2E3, and VMP1. Candidate genes were independently tested in primary human macrophages, toxicity assays, and/or Tat-dependent β-galactosidase reporter assays. Bioinformatics analyses indicated that several host factors present in this study participate in canonical pathways and functional processes implicated in prior genome-wide studies. However, the genes presented in this study did not share identity with those found previously. Novel antiviral targets identified in this study should open new avenues for mechanistic investigation.

  14. Fas palmitoylation by the palmitoyl acyltransferase DHHC7 regulates Fas stability

    PubMed Central

    Rossin, A; Durivault, J; Chakhtoura-Feghali, T; Lounnas, N; Gagnoux-Palacios, L; Hueber, A-O

    2015-01-01

    The death receptor Fas undergoes a variety of post-translational modifications including S-palmitoylation. This protein acylation has been reported essential for an optimal cell death signaling by allowing both a proper Fas localization in cholesterol and sphingolipid-enriched membrane nanodomains, as well as Fas high-molecular weight complexes. In human, S-palmitoylation is controlled by 23 members of the DHHC family through their palmitoyl acyltransferase activity. In order to better understand the role of this post-translational modification in the regulation of the Fas-mediated apoptosis pathway, we performed a screen that allowed the identification of DHHC7 as a Fas-palmitoylating enzyme. Indeed, modifying DHHC7 expression by specific silencing or overexpression, respectively, reduces or enhances Fas palmitoylation and DHHC7 co-immunoprecipitates with Fas. At a functional level, DHHC7-mediated palmitoylation of Fas allows a proper Fas expression level by preventing its degradation through the lysosomes. Indeed, the decrease of Fas expression obtained upon loss of Fas palmitoylation can be restored by inhibiting the lysosomal degradation pathway. We describe the modification of Fas by palmitoylation as a novel mechanism for the regulation of Fas expression through its ability to circumvent its degradation by lysosomal proteolysis. PMID:25301068

  15. Dynamic quantitative proteomics characterization of TNF-α-induced necroptosis.

    PubMed

    Wang, Yang; Huang, Zhi-Hao; Li, Yang-Jia; He, Gui-Wei; Yu, Ru-Yuan; Yang, Jie; Liu, Wan-Ting; Li, Bin; He, Qing-Yu

    2016-12-01

    Emerging evidence suggested that necroptosis has essential functions in many human inflammatory diseases, but the molecular mechanisms of necroptosis remain unclear. Here, we employed SILAC quantitatively dynamic proteomics to compare the protein changes during TNF-α-induced necroptosis at different time points in murine fibrosarcoma L929 cells with caspase-8 deficiency, and then performed the systematical analysis on the signaling networks involved in the progress using bioinformatics methods. Our results showed that a total of 329, 421 and 378 differentially expressed proteins were detected at three stages of necroptosis, respectively. Gene ontology and ingenuity pathway analysis (IPA) revealed that the proteins regulated at early stages of necroptosis (2, 6 h) were mainly involved in mitochondria dysfunction, oxidative phosphorylation and Nrf-2 signaling, while the expression levels of the proteins related to ubiquitin, Nrf-2, and NF-κB pathways were found to have changes at last stages of necroptosis (6, 18 h). Taken together, we demonstrated for the first time that dysfunction of mitochondria and ubiquitin-proteasome signaling contributed to the initiation and execution of necroptosis. These findings may provide clues for the identification of important regulators in necroptosis and the development of novel therapeutic strategies for the related diseases.

  16. Model Identification in Time-Series Analysis: Some Empirical Results.

    ERIC Educational Resources Information Center

    Padia, William L.

    Model identification of time-series data is essential to valid statistical tests of intervention effects. Model identification is, at best, inexact in the social and behavioral sciences where one is often confronted with small numbers of observations. These problems are discussed, and the results of independent identifications of 130 social and…

  17. Promotion of Bone Morphogenetic Protein Signaling by Tetraspanins and Glycosphingolipids

    PubMed Central

    Szymczak, Lindsey C.; Aydin, Taner; Yun, Sijung; Constas, Katharine; Schaeffer, Arielle; Ranjan, Sinthu; Kubba, Saad; Alam, Emad; McMahon, Devin E.; He, Jingpeng; Shwartz, Neta; Tian, Chenxi; Plavskin, Yevgeniy; Lindy, Amanda; Dad, Nimra Amir; Sheth, Sunny; Amin, Nirav M.; Zimmerman, Stephanie; Liu, Dennis; Schwarz, Erich M.; Smith, Harold; Krause, Michael W.; Liu, Jun

    2015-01-01

    Bone morphogenetic proteins (BMPs) belong to the transforming growth factor β (TGFβ) superfamily of secreted molecules. BMPs play essential roles in multiple developmental and homeostatic processes in metazoans. Malfunction of the BMP pathway can cause a variety of diseases in humans, including cancer, skeletal disorders and cardiovascular diseases. Identification of factors that ensure proper spatiotemporal control of BMP signaling is critical for understanding how this pathway is regulated. We have used a unique and sensitive genetic screen to identify the plasma membrane-localized tetraspanin TSP-21 as a key new factor in the C. elegans BMP-like “Sma/Mab” signaling pathway that controls body size and postembryonic M lineage development. We showed that TSP-21 acts in the signal-receiving cells and genetically functions at the ligand-receptor level. We further showed that TSP-21 can associate with itself and with two additional tetraspanins, TSP-12 and TSP-14, which also promote Sma/Mab signaling. TSP-12 and TSP-14 can also associate with SMA-6, the type I receptor of the Sma/Mab pathway. Finally, we found that glycosphingolipids, major components of the tetraspanin-enriched microdomains, are required for Sma/Mab signaling. Our findings suggest that the tetraspanin-enriched membrane microdomains are important for proper BMP signaling. As tetraspanins have emerged as diagnostic and prognostic markers for tumor progression, and TSP-21, TSP-12 and TSP-14 are all conserved in humans, we speculate that abnormal BMP signaling due to altered expression or function of certain tetraspanins may be a contributing factor to cancer development. PMID:25978409

  18. Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella asteris: The anti-cancer bisanthraquinone skyrin.

    PubMed

    Jahn, Linda; Schafhauser, Thomas; Wibberg, Daniel; Rückert, Christian; Winkler, Anika; Kulik, Andreas; Weber, Tilmann; Flor, Liane; van Pée, Karl-Heinz; Kalinowski, Jörn; Ludwig-Müller, Jutta; Wohlleben, Wolfgang

    2017-09-10

    Fungal aromatic polyketides display a very diverse and widespread group of natural products. Due to their excellent light absorption properties and widely studied biological activities, they offer numerous application for food, textile and pharmaceutical industry. The biosynthetic pathways of fungal aromatic polyketides usually involve a set of successive enzymes, in which a non-reductive polyketide synthase iteratively catalyzes the essential assembly of simple building blocks into (often polycyclic) aromatic compounds. However, only a limited number of such pathways have been described so far and further elucidation of the individual biosynthetic steps is needed to fully exploit the biotechnological and medicinal potential of these compounds. Here, we identified the bisanthraquinone skyrin as the main pigment of the fungus Cyanodermella asteris, an endophyte that has recently been isolated from the traditional Chinese medicinal plant Aster tataricus. The genome of C. asteris was sequenced, assembled and annotated, which enables first insights into a genome from a non-lichenized member of the class Lecanoromycetes. Genetic and in silico analyses led to the identification of a gene cluster of five genes suggested to encode the enzymatic pathway for skyrin. Our study is a starting point for rational pathway engineering in order to drive the production towards higher yields or more active derivatives. Moreover, our investigations revealed a large potential of secondary metabolite production in C. asteris as well as in all Lecanoromycetes of which genomes were available. These findings convincingly emphasize that Lecanoromycetes are prolific producers of secondary metabolites. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Prequels to Synthetic Biology: From Candidate Gene Identification and Validation to Enzyme Subcellular Localization in Plant and Yeast Cells.

    PubMed

    Foureau, E; Carqueijeiro, I; Dugé de Bernonville, T; Melin, C; Lafontaine, F; Besseau, S; Lanoue, A; Papon, N; Oudin, A; Glévarec, G; Clastre, M; St-Pierre, B; Giglioli-Guivarc'h, N; Courdavault, V

    2016-01-01

    Natural compounds extracted from microorganisms or plants constitute an inexhaustible source of valuable molecules whose supply can be potentially challenged by limitations in biological sourcing. The recent progress in synthetic biology combined to the increasing access to extensive transcriptomics and genomics data now provide new alternatives to produce these molecules by transferring their whole biosynthetic pathway in heterologous production platforms such as yeasts or bacteria. While the generation of high titer producing strains remains per se an arduous field of investigation, elucidation of the biosynthetic pathways as well as characterization of their complex subcellular organization are essential prequels to the efficient development of such bioengineering approaches. Using examples from plants and yeasts as a framework, we describe potent methods to rationalize the study of partially characterized pathways, including the basics of computational applications to identify candidate genes in transcriptomics data and the validation of their function by an improved procedure of virus-induced gene silencing mediated by direct DNA transfer to get around possible resistance to Agrobacterium-delivery of viral vectors. To identify potential alterations of biosynthetic fluxes resulting from enzyme mislocalizations in reconstituted pathways, we also detail protocols aiming at characterizing subcellular localizations of protein in plant cells by expression of fluorescent protein fusions through biolistic-mediated transient transformation, and localization of transferred enzymes in yeast using similar fluorescence procedures. Albeit initially developed for the Madagascar periwinkle, these methods may be applied to other plant species or organisms in order to establish synthetic biology platform. © 2016 Elsevier Inc. All rights reserved.

  20. A Pathway Closely Related to the d-Tagatose Pathway of Gram-Negative Enterobacteria Identified in the Gram-Positive Bacterium Bacillus licheniformis

    PubMed Central

    Van der Heiden, Edwige; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M.; Galleni, Moreno; Joris, Bernard

    2013-01-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus. PMID:23524682

  1. A pathway closely related to the (D)-tagatose pathway of gram-negative enterobacteria identified in the gram-positive bacterium Bacillus licheniformis.

    PubMed

    Van der Heiden, Edwige; Delmarcelle, Michaël; Lebrun, Sarah; Freichels, Régine; Brans, Alain; Vastenavond, Christian M; Galleni, Moreno; Joris, Bernard

    2013-06-01

    We report the first identification of a gene cluster involved in d-tagatose catabolism in Bacillus licheniformis. The pathway is closely related to the d-tagatose pathway of the Gram-negative bacterium Klebsiella oxytoca, in contrast to the d-tagatose 6-phosphate pathway described in the Gram-positive bacterium Staphylococcus aureus.

  2. Virtual Lead Identification of Farnesyltransferase Inhibitors Based on Ligand and Structure-Based Pharmacophore Techniques

    PubMed Central

    Al-Balas, Qosay A.; Amawi, Haneen A.; Hassan, Mohammad A.; Qandil, Amjad M.; Almaaytah, Ammar M.; Mhaidat, Nizar M.

    2013-01-01

    Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor’s binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski’s “rule of five” and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774) were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection. PMID:24276257

  3. Virtual lead identification of farnesyltransferase inhibitors based on ligand and structure-based pharmacophore techniques.

    PubMed

    Al-Balas, Qosay A; Amawi, Haneen A; Hassan, Mohammad A; Qandil, Amjad M; Almaaytah, Ammar M; Mhaidat, Nizar M

    2013-05-27

    Farnesyltransferase enzyme (FTase) is considered an essential enzyme in the Ras signaling pathway associated with cancer. Thus, designing inhibitors for this enzyme might lead to the discovery of compounds with effective anticancer activity. In an attempt to obtain effective FTase inhibitors, pharmacophore hypotheses were generated using structure-based and ligand-based approaches built in Discovery Studio v3.1. Knowing the presence of the zinc feature is essential for inhibitor's binding to the active site of FTase enzyme; further customization was applied to include this feature in the generated pharmacophore hypotheses. These pharmacophore hypotheses were thoroughly validated using various procedures such as ROC analysis and ligand pharmacophore mapping. The validated pharmacophore hypotheses were used to screen 3D databases to identify possible hits. Those which were both high ranked and showed sufficient ability to bind the zinc feature in active site, were further refined by applying drug-like criteria such as Lipiniski's "rule of five" and ADMET filters. Finally, the two candidate compounds (ZINC39323901 and ZINC01034774) were allowed to dock using CDOCKER and GOLD in the active site of FTase enzyme to optimize hit selection.

  4. Cellular compartmentalization of secondary metabolism

    PubMed Central

    Kistler, H. Corby; Broz, Karen

    2015-01-01

    Fungal secondary metabolism is often considered apart from the essential housekeeping functions of the cell. However, there are clear links between fundamental cellular metabolism and the biochemical pathways leading to secondary metabolite synthesis. Besides utilizing key biochemical precursors shared with the most essential processes of the cell (e.g., amino acids, acetyl CoA, NADPH), enzymes for secondary metabolite synthesis are compartmentalized at conserved subcellular sites that position pathway enzymes to use these common biochemical precursors. Co-compartmentalization of secondary metabolism pathway enzymes also may function to channel precursors, promote pathway efficiency and sequester pathway intermediates and products from the rest of the cell. In this review we discuss the compartmentalization of three well-studied fungal secondary metabolite biosynthetic pathways for penicillin G, aflatoxin and deoxynivalenol, and summarize evidence used to infer subcellular localization. We also discuss how these metabolites potentially are trafficked within the cell and may be exported. PMID:25709603

  5. Reconstruction of the metabolic network of Pseudomonas aeruginosa to interrogate virulence factor synthesis

    NASA Astrophysics Data System (ADS)

    Bartell, Jennifer A.; Blazier, Anna S.; Yen, Phillip; Thøgersen, Juliane C.; Jelsbak, Lars; Goldberg, Joanna B.; Papin, Jason A.

    2017-03-01

    Virulence-linked pathways in opportunistic pathogens are putative therapeutic targets that may be associated with less potential for resistance than targets in growth-essential pathways. However, efficacy of virulence-linked targets may be affected by the contribution of virulence-related genes to metabolism. We evaluate the complex interrelationships between growth and virulence-linked pathways using a genome-scale metabolic network reconstruction of Pseudomonas aeruginosa strain PA14 and an updated, expanded reconstruction of P. aeruginosa strain PAO1. The PA14 reconstruction accounts for the activity of 112 virulence-linked genes and virulence factor synthesis pathways that produce 17 unique compounds. We integrate eight published genome-scale mutant screens to validate gene essentiality predictions in rich media, contextualize intra-screen discrepancies and evaluate virulence-linked gene distribution across essentiality datasets. Computational screening further elucidates interconnectivity between inhibition of virulence factor synthesis and growth. Successful validation of selected gene perturbations using PA14 transposon mutants demonstrates the utility of model-driven screening of therapeutic targets.

  6. Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review

    PubMed Central

    Dhifi, Wissal; Bellili, Sana; Jazi, Sabrine; Bahloul, Nada; Mnif, Wissem

    2016-01-01

    This review covers literature data summarizing, on one hand, the chemistry of essential oils and, on the other hand, their most important activities. Essential oils, which are complex mixtures of volatile compounds particularly abundant in aromatic plants, are mainly composed of terpenes biogenerated by the mevalonate pathway. These volatile molecules include monoterpenes (hydrocarbon and oxygenated monoterpens), and also sesquiterpenes (hydrocarbon and oxygenated sesquiterpens). Furthermore, they contain phenolic compounds, which are derived via the shikimate pathway. Thanks to their chemical composition, essential oils possess numerous biological activities (antioxidant, anti-inflammatory, antimicrobial, etc…) of great interest in food and cosmetic industries, as well as in the human health field. PMID:28930135

  7. Implementing Guided Pathways: Early Insights from the AACC Pathways Colleges

    ERIC Educational Resources Information Center

    Jenkins, Davis; Lahr, Hana; Fink, John

    2017-01-01

    Across the United States, a growing number of colleges are redesigning their programs and student support services according to the "guided pathways" model. Central to this approach are efforts to clarify pathways to program completion, career advancement, and further education. Equally essential are efforts to help students explore…

  8. Essential protein discovery based on a combination of modularity and conservatism.

    PubMed

    Zhao, Bihai; Wang, Jianxin; Li, Xueyong; Wu, Fang-Xiang

    2016-11-01

    Essential proteins are indispensable for the survival of a living organism and play important roles in the emerging field of synthetic biology. Many computational methods have been proposed to identify essential proteins by using the topological features of interactome networks. However, most of these methods ignored intrinsic biological meaning of proteins. Researches show that essentiality is tied not only to the protein or gene itself, but also to the molecular modules to which that protein belongs. The results of this study reveal the modularity of essential proteins. On the other hand, essential proteins are more evolutionarily conserved than nonessential proteins and frequently bind each other. That is to say, conservatism is another important feature of essential proteins. Multiple networks are constructed by integrating protein-protein interaction (PPI) networks, time course gene expression data and protein domain information. Based on these networks, a new essential protein identification method is proposed based on a combination of modularity and conservatism of proteins. Experimental results show that the proposed method outperforms other essential protein identification methods in terms of a number essential protein out of top ranked candidates. Copyright © 2016. Published by Elsevier Inc.

  9. Identification of terpenes and essential oils by means of static headspace gas chromatography-ion mobility spectrometry.

    PubMed

    Rodríguez-Maecker, Roman; Vyhmeister, Eduardo; Meisen, Stefan; Rosales Martinez, Antonio; Kuklya, Andriy; Telgheder, Ursula

    2017-11-01

    Static headspace gas chromatography-ion mobility spectrometry (SHS GC-IMS) is a relatively new analytical technique that has considerable potential for analysis of volatile organic compounds (VOCs). In this study, SHS GC-IMS was used for the identification of the major terpene components of various essential oils (EOs). Based on the data obtained from 25 terpene standards and 50 EOs, a database for fingerprint identification of characteristic terpenes and EOs was generated utilizing SHS GC-IMS for authenticity testing of fragrances in foods, cosmetics, and personal care products. This database contains specific normalized IMS drift times and GC retention indices for 50 terpene components of EOs. Initially, the SHS GC-IMS parameters, e.g., drift gas and carrier gas flow rates, drift tube, and column temperatures, were evaluated to determine suitable operating conditions for terpene separation and identification. Gas chromatography-mass spectrometry (GC-MS) was used as a reference method for the identification of terpenes in EOs. The fingerprint pattern based on the normalized IMS drift times and retention indices of 50 terpenes is presented for 50 EOs. The applicability of the method was proven on examples of ten commercially available food, cosmetic, and personal care product samples. The results confirm the suitability of SHS GC-IMS as a powerful analytical technique for direct identification of terpene components in solid and liquid samples without any pretreatment. Graphical abstract Fingerprint pattern identification of terpenes and essential oils using static headspace gas chromatography-ion mobility spectrometry.

  10. The genetic makeup of the Drosophila piRNA pathway.

    PubMed

    Handler, Dominik; Meixner, Katharina; Pizka, Manfred; Lauss, Kathrin; Schmied, Christopher; Gruber, Franz Sebastian; Brennecke, Julius

    2013-06-06

    The piRNA (PIWI-interacting RNA) pathway is a small RNA silencing system that acts in animal gonads and protects the genome against the deleterious influence of transposons. A major bottleneck in the field is the lack of comprehensive knowledge of the factors and molecular processes that constitute this pathway. We conducted an RNAi screen in Drosophila and identified ~50 genes that strongly impact the ovarian somatic piRNA pathway. Many identified genes fall into functional categories that indicate essential roles for mitochondrial metabolism, RNA export, the nuclear pore, transcription elongation, and chromatin regulation in the pathway. Follow-up studies on two factors demonstrate that components acting at distinct hierarchical levels of the pathway were identified. Finally, we define CG2183/Gasz as an essential primary piRNA biogenesis factor in somatic and germline cells. Based on the similarities between insect and vertebrate piRNA pathways, our results have far-reaching implications for the understanding of this conserved genome defense system. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Identification of Putative Cardiovascular System Developmental Toxicants using a Classification Model based on Signaling Pathway-Adverse Outcome Pathways

    EPA Science Inventory

    An important challenge for an integrative approach to developmental systems toxicology is associating putative molecular initiating events (MIEs), cell signaling pathways, cell function and modeled fetal exposure kinetics. We have developed a chemical classification model based o...

  12. 40 CFR 300.420 - Remedial site evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... existing information about a release such as information on the pathways of exposure, exposure targets, and... known contaminants; (iii) A description of pathways of migration of contaminants; (iv) An identification...

  13. 40 CFR 300.420 - Remedial site evaluation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... existing information about a release such as information on the pathways of exposure, exposure targets, and... known contaminants; (iii) A description of pathways of migration of contaminants; (iv) An identification...

  14. 40 CFR 300.420 - Remedial site evaluation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... existing information about a release such as information on the pathways of exposure, exposure targets, and... known contaminants; (iii) A description of pathways of migration of contaminants; (iv) An identification...

  15. PathNER: a tool for systematic identification of biological pathway mentions in the literature

    PubMed Central

    2013-01-01

    Background Biological pathways are central to many biomedical studies and are frequently discussed in the literature. Several curated databases have been established to collate the knowledge of molecular processes constituting pathways. Yet, there has been little focus on enabling systematic detection of pathway mentions in the literature. Results We developed a tool, named PathNER (Pathway Named Entity Recognition), for the systematic identification of pathway mentions in the literature. PathNER is based on soft dictionary matching and rules, with the dictionary generated from public pathway databases. The rules utilise general pathway-specific keywords, syntactic information and gene/protein mentions. Detection results from both components are merged. On a gold-standard corpus, PathNER achieved an F1-score of 84%. To illustrate its potential, we applied PathNER on a collection of articles related to Alzheimer's disease to identify associated pathways, highlighting cases that can complement an existing manually curated knowledgebase. Conclusions In contrast to existing text-mining efforts that target the automatic reconstruction of pathway details from molecular interactions mentioned in the literature, PathNER focuses on identifying specific named pathway mentions. These mentions can be used to support large-scale curation and pathway-related systems biology applications, as demonstrated in the example of Alzheimer's disease. PathNER is implemented in Java and made freely available online at http://sourceforge.net/projects/pathner/. PMID:24555844

  16. Gene Transfers Shaped the Evolution of De Novo NAD+ Biosynthesis in Eukaryotes

    PubMed Central

    Ternes, Chad M.; Schönknecht, Gerald

    2014-01-01

    NAD+ is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD+ biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD+ biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD+ biosynthesis in eukaryotes was shaped by numerous gene transfers. PMID:25169983

  17. Identification of Altered Metabolic Pathways in Plasma and CSF in Mild Cognitive Impairment and Alzheimer’s Disease Using Metabolomics

    PubMed Central

    Trushina, Eugenia; Dutta, Tumpa; Persson, Xuan-Mai T.; Mielke, Michelle M.; Petersen, Ronald C.

    2013-01-01

    Alzheimer’s Disease (AD) currently affects more than 5 million Americans, with numbers expected to grow dramatically as the population ages. The pathophysiological changes in AD patients begin decades before the onset of dementia, highlighting the urgent need for the development of early diagnostic methods. Compelling data demonstrate that increased levels of amyloid-beta compromise multiple cellular pathways; thus, the investigation of changes in various cellular networks is essential to advance our understanding of early disease mechanisms and to identify novel therapeutic targets. We applied a liquid chromatography/mass spectrometry-based non-targeted metabolomics approach to determine global metabolic changes in plasma and cerebrospinal fluid (CSF) from the same individuals with different AD severity. Metabolic profiling detected a total of significantly altered 342 plasma and 351 CSF metabolites, of which 22% were identified. Based on the changes of >150 metabolites, we found 23 altered canonical pathways in plasma and 20 in CSF in mild cognitive impairment (MCI) vs. cognitively normal (CN) individuals with a false discovery rate <0.05. The number of affected pathways increased with disease severity in both fluids. Lysine metabolism in plasma and the Krebs cycle in CSF were significantly affected in MCI vs. CN. Cholesterol and sphingolipids transport was altered in both CSF and plasma of AD vs. CN. Other 30 canonical pathways significantly disturbed in MCI and AD patients included energy metabolism, Krebs cycle, mitochondrial function, neurotransmitter and amino acid metabolism, and lipid biosynthesis. Pathways in plasma that discriminated between all groups included polyamine, lysine, tryptophan metabolism, and aminoacyl-tRNA biosynthesis; and in CSF involved cortisone and prostaglandin 2 biosynthesis and metabolism. Our data suggest metabolomics could advance our understanding of the early disease mechanisms shared in progression from CN to MCI and to AD. PMID:23700429

  18. A genetic screen for modifiers of Drosophila caspase Dcp-1 reveals caspase involvement in autophagy and novel caspase-related genes.

    PubMed

    Kim, Young-Il; Ryu, Taewoo; Lee, Judong; Heo, Young-Shin; Ahnn, Joohong; Lee, Seung-Jae; Yoo, OokJoon

    2010-01-25

    Caspases are cysteine proteases with essential functions in the apoptotic pathway; their proteolytic activity toward various substrates is associated with the morphological changes of cells. Recent reports have described non-apoptotic functions of caspases, including autophagy. In this report, we searched for novel modifiers of the phenotype of Dcp-1 gain-of-function (GF) animals by screening promoter element- inserted Drosophila melanogaster lines (EP lines). We screened approximately 15,000 EP lines and identified 72 Dcp-1-interacting genes that were classified into 10 groups based on their functions and pathways: 4 apoptosis signaling genes, 10 autophagy genes, 5 insulin/IGF and TOR signaling pathway genes, 6 MAP kinase and JNK signaling pathway genes, 4 ecdysone signaling genes, 6 ubiquitination genes, 11 various developmental signaling genes, 12 transcription factors, 3 translation factors, and 11 other unclassified genes including 5 functionally undefined genes. Among them, insulin/IGF and TOR signaling pathway, MAP kinase and JNK signaling pathway, and ecdysone signaling are known to be involved in autophagy. Together with the identification of autophagy genes, the results of our screen suggest that autophagy counteracts Dcp-1-induced apoptosis. Consistent with this idea, we show that expression of eGFP-Atg5 rescued the eye phenotype caused by Dcp-1 GF. Paradoxically, we found that over-expression of full-length Dcp-1 induced autophagy, as Atg8b-GFP, an indicator of autophagy, was increased in the eye imaginal discs and in the S2 cell line. Taken together, these data suggest that autophagy suppresses Dcp-1-mediated apoptotic cell death, whereas Dcp-1 positively regulates autophagy, possibly through feedback regulation. We identified a number of Dcp-1 modifiers that genetically interact with Dcp-1-induced cell death. Our results showing that Dcp-1 and autophagy-related genes influence each other will aid future investigations of the complicated relationships between apoptosis and autophagy.

  19. Hippo Signaling in Mitosis: An Updated View in Light of the MEN Pathway.

    PubMed

    Hergovich, Alexander

    2017-01-01

    The Hippo pathway is an essential tumor suppressor signaling network that coordinates cell proliferation, death, and differentiation in higher eukaryotes. Intriguingly, the core components of the Hippo pathway are conserved from yeast to man, with the yeast analogs of mammalian MST1/2 (fly Hippo), MOB1 (fly Mats), LATS1/2 (fly Warts), and NDR1/2 (fly Tricornered) functioning as essential components of the mitotic exit network (MEN). Here, we update our previous summary of mitotic functions of Hippo core components in Drosophila melanogaster and mammals, with particular emphasis on similarities between the yeast MEN pathway and mitotic Hippo signaling. Mitotic functions of YAP and TAZ, the two main effectors of Hippo signaling, are also discussed.

  20. From position-specific isotope labeling towards soil fluxomics: a novel toolbox to assess the microbial impact on biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Apostel, C.; Dippold, M. A.; Kuzyakov, Y.

    2015-12-01

    Understanding the microbial impact on C and nutrient cycles is one of the most important challenges in terrestrial biogeochemistry. Transformation of low molecular weight organic substances (LMWOS) is a key step in all biogeochemical cycles because 1) all high molecular substances pass the LMWOS pool during their degradation and 2) only LMWOS can be taken up by microorganisms intact. Thus, the transformations of LMWOS are dominated by biochemical pathways of the soil microorganisms. Thus, understanding fluxes and transformations in soils requires a detailed knowledge on the microbial metabolic network and its control mechanism. Tracing C fate in soil by isotopes became on of the most applied and promising biogeochemistry tools but studies were nearly exclusively based on uniformly labeled substances. However, such tracers do not allow the differentiation of the intact use of the initial substances from its transformation to metabolites. The novel tool of position-specific labeling enables to trace molecule atoms separately and thus to determine the cleavage of molecules - a prerequisite for metabolic tracing. Position-specific labeling of basic metabolites and quantification of isotope incorporation in CO2 and bulk soil enabled following the basic metabolic pathways of microorganisms. However, the combination of position-specific 13C labeling with compound-specific isotope analysis of microbial biomarkers and metabolites like phospholipid fatty acids (PLFA) or amino sugars revealed new insights into the soil fluxome: First, it enables tracing specific anabolic pathways in diverse microbial communities in soils e.g. carbon starvation pathways versus pathways reflecting microbial growth. Second, it allows identification of specific pathways of individual functional microbial groups in soils in situ. Tracing metabolic pathways and understanding their regulating factors are crucial for soil C fluxomics i.e. the unravaling of the complex network of C transformations. Quantitative models to assess microbial group specific metabolic pathways can be generated and parameterized by this approach. The knowledge of submolecular C transformation steps and its regulating factors is essential for understanding C cycling and long-term C storage in soils.

  1. The Essential Genome of Escherichia coli K-12

    PubMed Central

    2018-01-01

    ABSTRACT Transposon-directed insertion site sequencing (TraDIS) is a high-throughput method coupling transposon mutagenesis with short-fragment DNA sequencing. It is commonly used to identify essential genes. Single gene deletion libraries are considered the gold standard for identifying essential genes. Currently, the TraDIS method has not been benchmarked against such libraries, and therefore, it remains unclear whether the two methodologies are comparable. To address this, a high-density transposon library was constructed in Escherichia coli K-12. Essential genes predicted from sequencing of this library were compared to existing essential gene databases. To decrease false-positive identification of essential genes, statistical data analysis included corrections for both gene length and genome length. Through this analysis, new essential genes and genes previously incorrectly designated essential were identified. We show that manual analysis of TraDIS data reveals novel features that would not have been detected by statistical analysis alone. Examples include short essential regions within genes, orientation-dependent effects, and fine-resolution identification of genome and protein features. Recognition of these insertion profiles in transposon mutagenesis data sets will assist genome annotation of less well characterized genomes and provides new insights into bacterial physiology and biochemistry. PMID:29463657

  2. Structure of aryl O -demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohler, Amanda C.; Mills, Matthew J. L.; Adams, Paul D.

    Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, wasmore » previously available. LigM-catalyzed demethylation enables further modification and rin g opening of the single-ring aromatics vanillate and 3-Omethylgallate, which are common byproducts of biofuel production. We characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. Our results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.« less

  3. Structure of aryl O -demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism

    DOE PAGES

    Kohler, Amanda C.; Mills, Matthew J. L.; Adams, Paul D.; ...

    2017-04-03

    Some strains of soil and marine bacteria have evolved intricate metabolic pathways for using environmentally derived aromatics as a carbon source. Many of these metabolic pathways go through intermediates such as vanillate, 3-O-methylgallate, and syringate. Demethylation of these compounds is essential for downstream aryl modification, ring opening, and subsequent assimilation of these compounds into the tricarboxylic acid (TCA) cycle, and, correspondingly, there are a variety of associated aryl demethylase systems that vary in complexity. Intriguingly, only a basic understanding of the least complex system, the tetrahydrofolate-dependent aryl demethylase LigM from Sphingomonas paucimobilis, a bacterial strain that metabolizes lignin-derived aromatics, wasmore » previously available. LigM-catalyzed demethylation enables further modification and rin g opening of the single-ring aromatics vanillate and 3-Omethylgallate, which are common byproducts of biofuel production. We characterize aryl O-demethylation by LigM and report its 1.81-Å crystal structure, revealing a unique demethylase fold and a canonical folate-binding domain. Structural homology and geometry optimization calculations enabled the identification of LigM's tetrahydrofolate-binding site and protein-folate interactions. Computationally guided mutagenesis and kinetic analyses allowed the identification of the enzyme's aryl-binding site location and determination of its unique, catalytic tyrosine-dependent reaction mechanism. This work defines LigM as a distinct demethylase, both structurally and functionally, and provides insight into demethylation and its reaction requirements. Our results afford the mechanistic details required for efficient utilization of LigM as a tool for aryl O-demethylation and as a component of synthetic biology efforts to valorize previously underused aromatic compounds.« less

  4. Identification, characterization and distribution of monoterpene indole alkaloids in Rauwolfia species by Orbitrap Velos Pro mass spectrometer.

    PubMed

    Kumar, Sunil; Singh, Awantika; Bajpai, Vikas; Kumar, Brijesh

    2016-01-25

    Monoterpene indole alkaloids (MIAs) are medicinally important class of compounds abundant in the roots of Rauwolfia species (Apocynaceae). MIAs such as yohimbine (aphrodisiac agent) and reserpine (antihypertensive, tranquilizer) are the official drugs included in Model List of Essential Drugs of World Health Organization (WHO). Therefore, we have attempt to identify and characterize the MIAs in the crude extracts of six Rauwolfia species using ultrahigh-performance liquid chromatography coupled with Orbitrap Velos Pro hybrid mass spectrometer. The identity of the MIAs were construed using the high resolution tandem mass spectrometry (HRMS/MS) spectra of standard compounds 'yohimbine' and 'reserpine' in higher energy collisional dissociation (HCD) and collision-induced dissociation (CID) modes. The diagnostic fragment ions found in HCD mode was highly affected by variation of normalized collision energy (NCE) and gave few product ions ('C-F') while CID produced intense and more diagnostic product ions ('A-F'). Consequently, CID-MS/MS mode provided significantly more structural information about basic skeleton and therefore the recommended mode for analysis of MIAs. Furthermore, six diagnostic fragmentation pathways were established by multi-stage mass analysis (MS(n) (n=5)) analysis which gave information regarding the substitution. Fragment ions 'A-F' revealed the number and position of substituents on indole and terpene moieties. The proposed diagnostic fragmentation pathways have been successfully applied for identification and characterization of MIAs in crude root extracts of six Rauwolfia species. Ten bioactive reserpine class of MIAs were tentatively identified and characterized on the basis of chromatographic and mass spectrometric features as well as HRMS/MS an MS(n) (n=4) analysis. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Identification of urinary metabolites of imperatorin with a single run on an LC/Triple TOF system based on multiple mass defect filter data acquisition and multiple data mining techniques.

    PubMed

    Qiao, Shi; Shi, Xiaowei; Shi, Rui; Liu, Man; Liu, Ting; Zhang, Kerong; Wang, Qiao; Yao, Meicun; Zhang, Lantong

    2013-08-01

    The detection of drug metabolites, especially for minor metabolites, continues to be a challenge because of the complexity of biological samples. Imperatorin (IMP) is an active natural furocoumarin component originating from many traditional Chinese herbal medicines and is expected to be pursued as a new vasorelaxant agent. In the present study, a generic and efficient approach was developed for the in vivo screening and identification of IMP metabolites using liquid chromatography-Triple TOF mass spectrometry. In this approach, a novel on-line data acquisition method mutiple mass defect filter (MMDF) combined with dynamic background subtraction was developed to trace all probable urinary metabolites of IMP. Comparing with the traditionally intensity-dependent data acquisition method, MMDF method could give the information of low-level metabolites masked by background noise and endogenous components. Thus, the minor metabolites in complex biological matrices could be detected. Then, the sensitive and specific multiple data-mining techniques extracted ion chromatography, mass defect filter, product ion filter, and neutral loss filter were used for the discovery of IMP metabolites. Based on the proposed strategy, 44 phase I and 7 phase II metabolites were identified in rat urine after oral administration of IMP. The results indicated that oxidization was the main metabolic pathway and that different oxidized substituent positions had a significant influence on the fragmentation of the metabolites. Two types of characteristic ions at m/z 203 and 219 can be observed in the MS/MS spectra. This is the first study of IMP metabolism in vivo. The interpretation of the MS/MS spectra of these metabolites and the proposed metabolite pathway provide essential data for further pharmacological studies of other linear-type furocoumarins.

  6. Identification and comparison of aberrant key regulatory networks in breast, colon, liver, lung, and stomach cancers through methylome database analysis.

    PubMed

    Kim, Byungtak; Kang, Seongeun; Jeong, Gookjoo; Park, Sung-Bin; Kim, Sun Jung

    2014-01-01

    Aberrant methylation of specific CpG sites at the promoter is widely responsible for genesis and development of various cancer types. Even though the microarray-based methylome analyzing techniques have contributed to the elucidation of the methylation change at the genome-wide level, the identification of key methylation markers or top regulatory networks appearing common in highly incident cancers through comparison analysis is still limited. In this study, we in silico performed the genome-wide methylation analysis on each 10 sets of normal and cancer pairs of five tissues: breast, colon, liver, lung, and stomach. The methylation array covers 27,578 CpG sites, corresponding to 14,495 genes, and significantly hypermethylated or hypomethylated genes in the cancer were collected (FDR adjusted p-value <0.05; methylation difference >0.3). Analysis of the dataset confirmed the methylation of previously known methylation markers and further identified novel methylation markers, such as GPX2, CLDN15, and KL. Cluster analysis using the methylome dataset resulted in a diagram with a bipartite mode distinguishing cancer cells from normal cells regardless of tissue types. The analysis further revealed that breast cancer was closest with lung cancer, whereas it was farthest from colon cancer. Pathway analysis identified that either the "cancer" related network or the "cancer" related bio-function appeared as the highest confidence in all the five cancers, whereas each cancer type represents its tissue-specific gene sets. Our results contribute toward understanding the essential abnormal epigenetic pathways involved in carcinogenesis. Further, the novel methylation markers could be applied to establish markers for cancer prognosis.

  7. Cancer heterogeneity: converting a limitation into a source of biologic information.

    PubMed

    Rübben, Albert; Araujo, Arturo

    2017-09-08

    Analysis of spatial and temporal genetic heterogeneity in human cancers has revealed that somatic cancer evolution in most cancers is not a simple linear process composed of a few sequential steps of mutation acquisitions and clonal expansions. Parallel evolution has been observed in many early human cancers resulting in genetic heterogeneity as well as multilineage progression. Moreover, aneuploidy as well as structural chromosomal aberrations seems to be acquired in a non-linear, punctuated mode where most aberrations occur at early stages of somatic cancer evolution. At later stages, the cancer genomes seem to get stabilized and acquire only few additional rearrangements. While parallel evolution suggests positive selection of driver mutations at early stages of somatic cancer evolution, stabilization of structural aberrations at later stages suggests that negative selection takes effect when cancer cells progressively lose their tolerance towards additional mutation acquisition. Mixing of genetically heterogeneous subclones in cancer samples reduces sensitivity of mutation detection. Moreover, driver mutations present only in a fraction of cancer cells are more likely to be mistaken for passenger mutations. Therefore, genetic heterogeneity may be considered a limitation negatively affecting detection sensitivity of driver mutations. On the other hand, identification of subclones and subclone lineages in human cancers may lead to a more profound understanding of the selective forces which shape somatic cancer evolution in human cancers. Identification of parallel evolution by analyzing spatial heterogeneity may hint to driver mutations which might represent additional therapeutic targets besides driver mutations present in a monoclonal state. Likewise, stabilization of cancer genomes which can be identified by analyzing temporal genetic heterogeneity might hint to genes and pathways which have become essential for survival of cancer cell lineages at later stages of cancer evolution. These genes and pathways might also constitute patient specific therapeutic targets.

  8. A Systems Biology-Based Investigation into the Pharmacological Mechanisms of Sheng-ma-bie-jia-tang Acting on Systemic Lupus Erythematosus by Multi-Level Data Integration.

    PubMed

    Huang, Lin; Lv, Qi; Liu, Fenfen; Shi, Tieliu; Wen, Chengping

    2015-11-12

    Sheng-ma-bie-jia-tang (SMBJT) is a Traditional Chinese Medicine (TCM) formula that is widely used for the treatment of Systemic Lupus Erythematosus (SLE) in China. However, molecular mechanism behind this formula remains unknown. Here, we systematically analyzed targets of the ingredients in SMBJT to evaluate its potential molecular mechanism. First, we collected 1,267 targets from our previously published database, the Traditional Chinese Medicine Integrated Database (TCMID). Next, we conducted gene ontology and pathway enrichment analyses for these targets and determined that they were enriched in metabolism (amino acids, fatty acids, etc.) and signaling pathways (chemokines, Toll-like receptors, adipocytokines, etc.). 96 targets, which are known SLE disease proteins, were identified as essential targets and the rest 1,171 targets were defined as common targets of this formula. The essential targets directly interacted with SLE disease proteins. Besides, some common targets also had essential connections to both key targets and SLE disease proteins in enriched signaling pathway, e.g. toll-like receptor signaling pathway. We also found distinct function of essential and common targets in immune system processes. This multi-level approach to deciphering the underlying mechanism of SMBJT treatment of SLE details a new perspective that will further our understanding of TCM formulas.

  9. Cardiovascular metabolic syndrome: mediators involved in the pathophysiology from obesity to coronary heart disease.

    PubMed

    Roos, Cornelis J; Quax, Paul H A; Jukema, J Wouter

    2012-02-01

    Patients with obesity and diabetes mellitus are at increased risk for cardiovascular events and have a higher cardiovascular morbidity and mortality. This worse prognosis is partly explained by the late recognition of coronary heart disease in these patients, due to the absence of symptoms. Early identification of coronary heart disease is vital, to initiate preventive medical therapy and improve prognosis. At present, with the use of cardiovascular risk models, the identification of coronary heart disease in these patients remains inadequate. To this end, biomarkers should improve the early identification of patients at increased cardiovascular risk. The first part of this review describes the pathophysiologic pathway from obesity to coronary heart disease. The second part evaluates several mediators from this pathophysiologic pathway for their applicability as biomarkers for the identification of coronary heart disease.

  10. The identification and characterisation of a functional interaction between arginyl-tRNA-protein transferase and topoisomerase II.

    PubMed

    Barker, Catherine R; Mouchel, Nathalie A P; Jenkins, John R

    2006-04-07

    Topoisomerase II is required for the viability of all eukaryotic cells. It plays important roles in DNA replication, recombination, chromosome segregation, and the maintenance of the nuclear scaffold. Proteins that interact with and regulate this essential enzyme are of great interest. To investigate the role of proteins interacting with the N-terminal domain of the Saccharomyces cerevisiae topoisomerase II, we used a yeast two-hybrid protein interaction screen. We identified an interaction between arginyl-tRNA-protein transferase (Ate1) and the N-terminal domain of the S. cerevisiae topoisomerase II, including the potential site of interaction. Ate1 is a component of the N-end rule protein degradation pathway which targets proteins for degradation. We also propose a previously unidentified role for Ate1 in modulating the level of topoisomerase II through the cell cycle.

  11. Definition of RNA Polymerase II CoTC Terminator Elements in the Human Genome

    PubMed Central

    Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J.; Dye, Michael J.

    2013-01-01

    Summary Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. PMID:23562152

  12. Differentially regulated gene expression associated with hepatitis C virus clearance.

    PubMed

    Grimes, Carolyn Z; Hwang, Lu-Yu; Wei, Peng; Shah, Dimpy P; Volcik, Kelly A; Brown, Eric L

    2013-03-01

    Human chronic hepatitis C virus (HCV) infections pose a significant public health threat, necessitating the development of novel treatments and vaccines. HCV infections range from spontaneous resolution to end-stage liver disease. Approximately 10-30% of HCV infections undergo spontaneous resolution independent of treatment by yet-to-be-defined mechanisms. These individuals test positive for anti-HCV antibodies in the absence of detectable viral serum RNA. To identify genes associated with HCV clearance, this study compared gene expression profiles between current drug users chronically infected with HCV and drug users who cleared their HCV infection. This analysis identified 91 differentially regulated (up- or downregulated by twofold or more) genes potentially associated with HCV clearance. The majority of genes identified were associated with immune function, with the remaining genes categorized either as cancer related or 'other'. Identification of factors and pathways that may influence virus clearance will be essential to the development of novel treatment strategies.

  13. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene.

    PubMed

    Levy-Litan, Varda; Hershkovitz, Eli; Avizov, Luba; Leventhal, Neta; Bercovich, Dani; Chalifa-Caspi, Vered; Manor, Esther; Buriakovsky, Sophia; Hadad, Yair; Goding, James; Parvari, Ruti

    2010-02-12

    Human disorders of phosphate (Pi) handling and hypophosphatemic rickets have been shown to result from mutations in PHEX, FGF23, and DMP1, presenting as X-linked recessive, autosomal-dominant, and autosomal-recessive patterns, respectively. We present the identification of an inactivating mutation in the ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) gene causing autosomal-recessive hypophosphatemic rickets (ARHR) with phosphaturia by positional cloning. ENPP1 generates inorganic pyrophosphate (PPi), an essential physiologic inhibitor of calcification, and previously described inactivating mutations in this gene were shown to cause aberrant ectopic calcification disorders, whereas no aberrant calcifications were present in our patients. Our surprising result suggests a different pathway involved in the generation of ARHR and possible additional functions for ENPP1. Copyright (c) 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  14. Identification of Genes That Interact With Drosophila liquid facets

    PubMed Central

    Eun, Suk Ho; Lea, Kristi; Overstreet, Erin; Stevens, Samuel; Lee, Ji-Hoon; Fischer, Janice A.

    2007-01-01

    We have performed mutagenesis screens of the Drosophila X chromosome and the autosomes for dominant enhancers of the rough eye resulting from overexpression of liquid facets. The liquid facets gene encodes the homolog of vertebrate endocytic Epsin, an endocytic adapter protein. In Drosophila, Liquid facets is a core component of the Notch signaling pathway required in the signaling cells for ligand endocytosis and signaling. Why ligand internalization by the signaling cells is essential for signaling is a mystery. The requirement for Liquid facets is a hint at the answer, and the genes identified in this screen provide further clues. Mutant alleles of clathrin heavy chain, Rala, split ends, and auxilin were identified as enhancers. We describe the mutant alleles and mutant phenotypes of Rala and aux. We discuss the relevance of all of these genetic interactions to the function of Liquid facets in Notch signaling. PMID:17179082

  15. A neuro-inspired model-based closed-loop neuroprosthesis for the substitution of a cerebellar learning function in anesthetized rats

    NASA Astrophysics Data System (ADS)

    Hogri, Roni; Bamford, Simeon A.; Taub, Aryeh H.; Magal, Ari; Giudice, Paolo Del; Mintz, Matti

    2015-02-01

    Neuroprostheses could potentially recover functions lost due to neural damage. Typical neuroprostheses connect an intact brain with the external environment, thus replacing damaged sensory or motor pathways. Recently, closed-loop neuroprostheses, bidirectionally interfaced with the brain, have begun to emerge, offering an opportunity to substitute malfunctioning brain structures. In this proof-of-concept study, we demonstrate a neuro-inspired model-based approach to neuroprostheses. A VLSI chip was designed to implement essential cerebellar synaptic plasticity rules, and was interfaced with cerebellar input and output nuclei in real time, thus reproducing cerebellum-dependent learning in anesthetized rats. Such a model-based approach does not require prior system identification, allowing for de novo experience-based learning in the brain-chip hybrid, with potential clinical advantages and limitations when compared to existing parametric ``black box'' models.

  16. Early Identification and Treatment of Communication and Swallowing Deficits in Parkinson Disease

    PubMed Central

    Ciucci, Michelle R.; Grant, Laura M.; Paul Rajamanickam, Eunice S.; Hilby, Breanna L.; Blue, Katherine V.; Jones, Corinne A.; Kelm-Nelson, Cynthia A.

    2015-01-01

    Parkinson disease (PD) is a complex, progressive, neurodegenerative disorder that leads to a wide range of deficits including fine and gross sensorimotor impairment, autonomic dysfunction, mood disorders, and cognitive decline. Traditionally, the focus for diagnosis and treatment has been on sensorimotor impairment related to dopamine depletion. It is now widely recognized, however, that PD-related pathology affects multiple central nervous system neurotransmitters and pathways. Communication and swallowing functions can be impaired even in the early stages, significantly affecting health and quality of life. The purpose of this article is to review the literature on early intervention for communication and swallowing impairment in PD. Overarching themes were that (1) studies and interpretation of data from studies in early PD are limited; (2) best therapy practices have not been established, in part due to the heterogeneous nature of PD; and (3) as communication and swallowing problems are pervasive in PD, further treatment research is essential. PMID:24166192

  17. The changing nature of the Brucella-containing vacuole.

    PubMed

    Celli, Jean

    2015-07-01

    Bacteria of the genus Brucella are intracellular vacuolar pathogens of mammals that cause the worldwide zoonosis brucellosis, and reside within phagocytes of infected hosts to promote their survival, persistence and proliferation. These traits are essential to the bacterium's ability to cause disease and have been the subject of much investigation to gain an understanding of Brucella pathogenic mechanisms. Although the endoplasmic reticulum-derived nature of the Brucella replicative niche has been long known, major strides have recently been made in deciphering the molecular mechanisms of its biogenesis, including the identification of bacterial determinants and host cellular pathways involved in this process. Here I will review and discuss the most recent advances in our knowledge of Brucella intracellular pathogenesis, with an emphasis on bacterial exploitation of the host endoplasmic reticulum-associated functions, and how autophagy-related processes contribute to the bacterium's intracellular cycle. © 2015 John Wiley & Sons Ltd.

  18. Identification of a motor to auditory pathway important for vocal learning

    PubMed Central

    Roberts, Todd F.; Hisey, Erin; Tanaka, Masashi; Kearney, Matthew; Chattree, Gaurav; Yang, Cindy F.; Shah, Nirao M.; Mooney, Richard

    2017-01-01

    Summary Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor’s song. Ablating these neurons in adults had little effect on previously learned songs, but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of song’s temporal features normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing. PMID:28504672

  19. A Normalization-Free and Nonparametric Method Sharpens Large-Scale Transcriptome Analysis and Reveals Common Gene Alteration Patterns in Cancers.

    PubMed

    Li, Qi-Gang; He, Yong-Han; Wu, Huan; Yang, Cui-Ping; Pu, Shao-Yan; Fan, Song-Qing; Jiang, Li-Ping; Shen, Qiu-Shuo; Wang, Xiao-Xiong; Chen, Xiao-Qiong; Yu, Qin; Li, Ying; Sun, Chang; Wang, Xiangting; Zhou, Jumin; Li, Hai-Peng; Chen, Yong-Bin; Kong, Qing-Peng

    2017-01-01

    Heterogeneity in transcriptional data hampers the identification of differentially expressed genes (DEGs) and understanding of cancer, essentially because current methods rely on cross-sample normalization and/or distribution assumption-both sensitive to heterogeneous values. Here, we developed a new method, Cross-Value Association Analysis (CVAA), which overcomes the limitation and is more robust to heterogeneous data than the other methods. Applying CVAA to a more complex pan-cancer dataset containing 5,540 transcriptomes discovered numerous new DEGs and many previously rarely explored pathways/processes; some of them were validated, both in vitro and in vivo , to be crucial in tumorigenesis, e.g., alcohol metabolism ( ADH1B ), chromosome remodeling ( NCAPH ) and complement system ( Adipsin ). Together, we present a sharper tool to navigate large-scale expression data and gain new mechanistic insights into tumorigenesis.

  20. Golden Rice and 'Golden' crops for human nutrition.

    PubMed

    Beyer, Peter

    2010-11-30

    Micronutrients are essential for a healthy life. Humans do not produce micronutrients, and hence they must obtain them through the foodchain. Staple crops are the predominant food source of mankind, but need to be complemented by other foodstuffs because they are generally deficient in one or the other micronutrient. Breeding for micronutrient-dense crops is not always a viable option because of the absence of genetic variability for the desired trait. Moreover, sterility issues and the complex genetic makeup of some crop plants make them unamenable to conventional breeding. In these cases, genetic modification remains the only viable option. The tools to produce a number of micronutrients in staple crops have recently become available thanks to the identification of the genes involved in the corresponding biochemical pathways at an unprecedented rate. Discarding genetic modification as a viable option is definitely not in the interest of human wellbeing. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Multiple oxygen entry pathways in globin proteins revealed by intrinsic pathway identification method

    NASA Astrophysics Data System (ADS)

    Takayanagi, Masayoshi; Kurisaki, Ikuo; Nagaoka, Masataka

    2015-12-01

    Each subunit of human hemoglobin (HbA) stores an oxygen molecule (O2) in the binding site (BS) cavity near the heme group. The BS is buried in the interior of the subunit so that there is a debate over the O2 entry pathways from solvent to the BS; histidine gate or multiple pathways. To elucidate the O2 entry pathways, we executed ensemble molecular dynamics (MD) simulations of T-state tetramer HbA in high concentration O2 solvent to simulate spontaneous O2 entry from solvent into the BS. By analyzing 128 independent 8 ns MD trajectories by intrinsic pathway identification by clustering (IPIC) method, we found 141 and 425 O2 entry events into the BS of the α and β subunits, respectively. In both subunits, we found that multiple O2 entry pathways through inside cavities play a significant role for O2 entry process of HbA. The rate constants of O2 entry estimated from the MD trajectories correspond to the experimentally observed values. In addition, by analyzing monomer myoglobin, we verified that the high O2 concentration condition can reproduce the ratios of each multiple pathway in the one-tenth lower O2 concentration condition. These indicate the validity of the multiple pathways obtained in our MD simulations.

  2. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    PubMed Central

    Maldini, Mariateresa; Natella, Fausta; Baima, Simona; Morelli, Giorgio; Scaccini, Cristina; Langridge, James; Astarita, Giuseppe

    2015-01-01

    The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower) is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle). We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the potential of an unbiased omics approach for the comprehensive study of the metabolism. PMID:26084047

  3. Transcriptomic variation of eyestalk reveals the genes and biological processes associated with molting in Portunus trituberculatus

    PubMed Central

    Zhang, Longtao; Liu, Ping; Li, Jian

    2017-01-01

    Background Molting is an essential biological process throughout the life history of crustaceans, which is regulated by many neuropeptide hormones expressed in the eyestalk. To better understand the molting mechanism in Portunus trituberculatus, we used digital gene expression (DGE) to analyze single eyestalk samples during the molting cycle by high-throughput sequencing. Results We obtained 14,387,942, 12,631,508 and 13,060,062 clean sequence reads from inter-molt (InM), pre-molt (PrM) and post-molt (PoM) cDNA libraries, respectively. A total of 1,394 molt-related differentially expressed genes (DEGs) were identified. GO and KEGG enrichment analysis identified some important processes and pathways with key roles in molting regulation, such as chitin metabolism, peptidase inhibitor activity, and the ribosome. We first observed a pattern associated with the neuromodulator-related pathways during the molting cycle, which were up-regulated in PrM and down-regulated in PoM. Four categories of important molting-related transcripts were clustered and most of them had similar expression patterns, which suggests that there is a connection between these genes throughout the molt cycle. Conclusion Our work is the first molt-related investigation of P. trituberculatus focusing on the eyestalk at the whole transcriptome level. Together, our results, including DEGs, identification of molting-related biological processes and pathways, and observed expression patterns of important genes, provide a novel insight into the function of the eyestalk in molting regulation. PMID:28394948

  4. Identification of the absorbed components and metabolites of modified Huo Luo Xiao Ling Dan in rat plasma by UHPLC-Q-TOF/MS/MS.

    PubMed

    Wang, Nannan; Zhao, Xiaoning; Li, Yiran; Cheng, Congcong; Huai, Jiaxin; Bi, Kaishun; Dai, Ronghua

    2018-06-01

    To reveal the material basis of Huo Luo Xiao Ling Dan (HLXLD), a sensitive and selective ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) method was developed to identify the absorbed components and metabolites in rat plasma after oral administration of HLXLD. The plasma samples were pretreated by liquid-liquid extraction and separated on a Shim-pack XR-ODS C 18 column (75 × 3.0 mm, 2.2 μm) using a gradient elution program. With the optimized conditions and single sample injection of each positive or negative ion mode, a total of 109 compounds, including 78 prototype compounds and 31 metabolites, were identified or tentatively characterized. The fragmentation patterns of representative compounds were illustrated as well. The results indicated that aromatization and hydration were the main metabolic pathways of lactones and tanshinone-related metabolites; demethylation and oxidation were the major metabolic pathways of alkaloid-related compounds; methylation and sulfation were the main metabolic pathways of phenolic acid-related metabolites. It is concluded the developed UHPLC-Q-TOF/MS method with high sensitivity and resolution is suitable for identifying and characterizing the absorbed components and metabolites of HLXLD, and the results will provide essential data for further studying the relationship between the chemical components and pharmacological activity of HLXLD. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Predicting essential genes for identifying potential drug targets in Aspergillus fumigatus.

    PubMed

    Lu, Yao; Deng, Jingyuan; Rhodes, Judith C; Lu, Hui; Lu, Long Jason

    2014-06-01

    Aspergillus fumigatus (Af) is a ubiquitous and opportunistic pathogen capable of causing acute, invasive pulmonary disease in susceptible hosts. Despite current therapeutic options, mortality associated with invasive Af infections remains unacceptably high, increasing 357% since 1980. Therefore, there is an urgent need for the development of novel therapeutic strategies, including more efficacious drugs acting on new targets. Thus, as noted in a recent review, "the identification of essential genes in fungi represents a crucial step in the development of new antifungal drugs". Expanding the target space by rapidly identifying new essential genes has thus been described as "the most important task of genomics-based target validation". In previous research, we were the first to show that essential gene annotation can be reliably transferred between distantly related four Prokaryotic species. In this study, we extend our machine learning approach to the much more complex Eukaryotic fungal species. A compendium of essential genes is predicted in Af by transferring known essential gene annotations from another filamentous fungus Neurospora crassa. This approach predicts essential genes by integrating diverse types of intrinsic and context-dependent genomic features encoded in microbial genomes. The predicted essential datasets contained 1674 genes. We validated our results by comparing our predictions with known essential genes in Af, comparing our predictions with those predicted by homology mapping, and conducting conditional expressed alleles. We applied several layers of filters and selected a set of potential drug targets from the predicted essential genes. Finally, we have conducted wet lab knockout experiments to verify our predictions, which further validates the accuracy and wide applicability of the machine learning approach. The approach presented here significantly extended our ability to predict essential genes beyond orthologs and made it possible to predict an inventory of essential genes in Eukaryotic fungal species, amongst which a preferred subset of suitable drug targets may be selected. By selecting the best new targets, we believe that resultant drugs would exhibit an unparalleled clinical impact against a naive pathogen population. Additional benefits that a compendium of essential genes can provide are important information on cell function and evolutionary biology. Furthermore, mapping essential genes to pathways may also reveal critical check points in the pathogen's metabolism. Finally, this approach is highly reproducible and portable, and can be easily applied to predict essential genes in many more pathogenic microbes, especially those unculturable. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Frankincense, pine needle and geranium essential oils suppress tumor progression through the regulation of the AMPK/mTOR pathway in breast cancer.

    PubMed

    Ren, Peng; Ren, Xiang; Cheng, Lei; Xu, Lixin

    2018-01-01

    BC (BC), as the most common malignancy in women worldwide, is associated with high morbidity and mortality. However, chemoresistance and toxicity are the main causes that limit the success of treatment in aggressive BC cases. Thus, there is a vital need to identify and develop novel therapeutic agents. Frankincense, pine needle and geranium essential oils have been reported to play critical biological activities in cancer. However, to the best of our knowledge whether frankincense, pine needle and geranium essential oils have any effect on the progression of BC in MCF-7 cells remains unclear. In the present study, we assessed the possible effects of frankincense, pine needle and geranium essential oils on cell viability, proliferation, migration and invasion as well as the possible mechanisms. MCF-7 cells were treated with oils, and associations with BC were investigated. In the present study, we clearly revealed that frankincense, pine needle and geranium essential oils suppressed cell viability, proliferation, migration and invasion in human BC MCF-7 cells. Further data demonstrated that frankincense, pine needle and geranium essential oils induced apoptosis, but did not affect cell cycle progression. Consistent with the in vitro activities, frankincense essential oil was effective in inhibiting tumor growth and inducing tumor cell apoptosis in a human BC mouse model. In addition, these 3 essential oils modulated the activity of the AMPK/mTOR signaling pathway. In conclusion, the present study indicated that frankincense, pine needle and geranium essential oils were involved in the progression of BC cells possibly through the AMPK/mTOR pathway.

  7. Proteome Profiling Reveals Potential Toxicity and Detoxification Pathways Following Exposure of BEAS-2B Cells to Engineered Nanoparticle Titanium Dioxide

    EPA Science Inventory

    Identification of toxicity pathways linked to chemical -exposure is critical for a better understanding of biological effects of the exposure, toxic mechanisms, and for enhancement of the prediction of chemical toxicity and adverse health outcomes. To identify toxicity pathways a...

  8. Identification and Characterization of the Genes and Enzymes Belonging to the Bile Acid Catabolic Pathway in Pseudomonas.

    PubMed

    Luengo, José M; Olivera, Elías R

    2017-01-01

    The study of the catabolic potential of microbial species isolated from different habitats has allowed the identification and characterization of bacteria able to assimilate bile acids and other steroids (e.g., testosterone and 4-androsten-3,17-dione). From soil samples, we have isolated several strains belonging to genus Pseudomonas that grow efficiently in chemical defined media containing some cyclopentane-perhydro-phenantrene derivatives as carbon sources. Genetic and biochemical studies performed with one of these bacteria (P. putida DOC21) allowed the identification of the genes and enzymes belonging to the 9,10-seco pathway, the route involved in the aerobic assimilation of steroids. In this manuscript, we describe the most relevant methods required for (1) isolation and characterization of these species; (2) determining the chromosomal location, nucleotide sequence, and functional analysis of the catabolic genes (or gene clusters) encoding the enzymes from this pathway; and (3) the tools employed to establish the role of some of the proteins that participate in this route.

  9. Joint Identification of Genetic Variants for Physical Activity in Korean Population

    PubMed Central

    Kim, Jayoun; Kim, Jaehee; Min, Haesook; Oh, Sohee; Kim, Yeonjung; Lee, Andy H.; Park, Taesung

    2014-01-01

    There has been limited research on genome-wide association with physical activity (PA). This study ascertained genetic associations between PA and 344,893 single nucleotide polymorphism (SNP) markers in 8842 Korean samples. PA data were obtained from a validated questionnaire that included information on PA intensity and duration. Metabolic equivalent of tasks were calculated to estimate the total daily PA level for each individual. In addition to single- and multiple-SNP association tests, a pathway enrichment analysis was performed to identify the biological significance of SNP markers. Although no significant SNP was found at genome-wide significance level via single-SNP association tests, 59 genetic variants mapped to 76 genes were identified via a multiple SNP approach using a bootstrap selection stability measure. Pathway analysis for these 59 variants showed that maturity onset diabetes of the young (MODY) was enriched. Joint identification of SNPs could enable the identification of multiple SNPs with good predictive power for PA and a pathway enriched for PA. PMID:25026172

  10. 60 YEARS OF POMC: From POMC and α-MSH to PAM, molecular oxygen, copper, and vitamin C.

    PubMed

    Kumar, Dhivya; Mains, Richard E; Eipper, Betty A

    2016-05-01

    A critical role for peptide C-terminal amidation was apparent when the first bioactive peptides were identified. The conversion of POMC into adrenocorticotropic hormone and then into α-melanocyte-stimulating hormone, an amidated peptide, provided a model system for identifying the amidating enzyme. Peptidylglycine α-amidating monooxygenase (PAM), the only enzyme that catalyzes this modification, is essential; mice lacking PAM survive only until mid-gestation. Purification and cloning led to the discovery that the amidation of peptidylglycine substrates proceeds in two steps: peptidylglycine α-hydroxylating monooxygenase catalyzes the copper- and ascorbate-dependent α-hydroxylation of the peptidylglycine substrate; peptidyl-α-hydroxyglycine α-amidating lyase cleaves the N-C bond, producing amidated product and glyoxylate. Both enzymes are contained in the luminal domain of PAM, a type 1 integral membrane protein. The structures of both catalytic cores have been determined, revealing how they interact with metals, molecular oxygen, and substrate to catalyze both reactions. Although not essential for activity, the intrinsically disordered cytosolic domain is essential for PAM trafficking. A phylogenetic survey led to the identification of bifunctional membrane PAM in Chlamydomonas, a unicellular eukaryote. Accumulating evidence points to a role for PAM in copper homeostasis and in retrograde signaling from the lumen of the secretory pathway to the nucleus. The discovery of PAM in cilia, cellular antennae that sense and respond to environmental stimuli, suggests that much remains to be learned about this ancient protein. © 2016 Society for Endocrinology.

  11. Kinetic modeling of plant metabolism and its predictive power: peppermint essential oil biosynthesis as an example.

    PubMed

    Lange, Bernd Markus; Rios-Estepa, Rigoberto

    2014-01-01

    The integration of mathematical modeling with analytical experimentation in an iterative fashion is a powerful approach to advance our understanding of the architecture and regulation of metabolic networks. Ultimately, such knowledge is highly valuable to support efforts aimed at modulating flux through target pathways by molecular breeding and/or metabolic engineering. In this article we describe a kinetic mathematical model of peppermint essential oil biosynthesis, a pathway that has been studied extensively for more than two decades. Modeling assumptions and approximations are described in detail. We provide step-by-step instructions on how to run simulations of dynamic changes in pathway metabolites concentrations.

  12. Free radical-mediated systemic immunity in plants.

    PubMed

    Wendehenne, David; Gao, Qing-Ming; Kachroo, Aardra; Kachroo, Pradeep

    2014-08-01

    Systemic acquired resistance (SAR) is a form of defense that protects plants against a broad-spectrum of secondary infections by related or unrelated pathogens. SAR related research has witnessed considerable progress in recent years and a number of chemical signals and proteins contributing to SAR have been identified. All of these diverse constituents share their requirement for the phytohormone salicylic acid, an essential downstream component of the SAR pathway. However, recent work demonstrating the essential parallel functioning of nitric oxide (NO)-derived and reactive oxygen species (ROS)-derived signaling together with SA provides important new insights in the overlapping pathways leading to SAR. This review discusses the potential significance of branched pathways and the relative contributions of NO/ROS-derived and SA-derived pathways in SAR. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Sea anemone model has a single Toll-like receptor that can function in pathogen detection, NF-κB signal transduction, and development

    PubMed Central

    Brennan, Joseph J.; Messerschmidt, Jonathan L.; Williams, Leah M.; Matthews, Bryan J.; Reynoso, Marinaliz; Gilmore, Thomas D.

    2017-01-01

    In organisms from insects to vertebrates, Toll-like receptors (TLRs) are primary pathogen detectors that activate downstream pathways, specifically those that direct expression of innate immune effector genes. TLRs also have roles in development in many species. The sea anemone Nematostella vectensis is a useful cnidarian model to study the origins of TLR signaling because its genome encodes a single TLR and homologs of many downstream signaling components, including the NF-κB pathway. We have characterized the single N. vectensis TLR (Nv-TLR) and demonstrated that it can activate canonical NF-κB signaling in human cells. Furthermore, we show that the intracellular Toll/IL-1 receptor (TIR) domain of Nv-TLR can interact with the human TLR adapter proteins MAL and MYD88. We demonstrate that the coral pathogen Vibrio coralliilyticus causes a rapidly lethal disease in N. vectensis and that heat-inactivated V. coralliilyticus and bacterial flagellin can activate a reconstituted Nv-TLR–to–NF-κB pathway in human cells. By immunostaining of anemones, we show that Nv-TLR is expressed in a subset of cnidocytes and that many of these Nv-TLR–expressing cells also express Nv-NF-κB. Additionally, the nematosome, which is a Nematostella-specific multicellular structure, expresses Nv-TLR and many innate immune pathway homologs and can engulf V. coralliilyticus. Morpholino knockdown indicates that Nv-TLR also has an essential role during early embryonic development. Our characterization of this primitive TLR and identification of a bacterial pathogen for N. vectensis reveal ancient TLR functions and provide a model for studying the molecular basis of cnidarian disease and immunity. PMID:29109290

  14. A comprehensive map of the influenza A virus replication cycle

    PubMed Central

    2013-01-01

    Background Influenza is a common infectious disease caused by influenza viruses. Annual epidemics cause severe illnesses, deaths, and economic loss around the world. To better defend against influenza viral infection, it is essential to understand its mechanisms and associated host responses. Many studies have been conducted to elucidate these mechanisms, however, the overall picture remains incompletely understood. A systematic understanding of influenza viral infection in host cells is needed to facilitate the identification of influential host response mechanisms and potential drug targets. Description We constructed a comprehensive map of the influenza A virus (‘IAV’) life cycle (‘FluMap’) by undertaking a literature-based, manual curation approach. Based on information obtained from publicly available pathway databases, updated with literature-based information and input from expert virologists and immunologists, FluMap is currently composed of 960 factors (i.e., proteins, mRNAs etc.) and 456 reactions, and is annotated with ~500 papers and curation comments. In addition to detailing the type of molecular interactions, isolate/strain specific data are also available. The FluMap was built with the pathway editor CellDesigner in standard SBML (Systems Biology Markup Language) format and visualized as an SBGN (Systems Biology Graphical Notation) diagram. It is also available as a web service (online map) based on the iPathways+ system to enable community discussion by influenza researchers. We also demonstrate computational network analyses to identify targets using the FluMap. Conclusion The FluMap is a comprehensive pathway map that can serve as a graphically presented knowledge-base and as a platform to analyze functional interactions between IAV and host factors. Publicly available webtools will allow continuous updating to ensure the most reliable representation of the host-virus interaction network. The FluMap is available at http://www.influenza-x.org/flumap/. PMID:24088197

  15. Analysis of a FANCE Splice Isoform in Regard to DNA Repair.

    PubMed

    Bouffard, Frédérick; Plourde, Karine; Bélanger, Simon; Ouellette, Geneviève; Labrie, Yvan; Durocher, Francine

    2015-09-25

    The FANC-BRCA DNA repair pathway is activated in response to interstrand crosslinks formed in DNA. A homozygous mutation in 1 of the 17 Fanconi anemia (FA) genes results in malfunctions of this pathway and development of FA syndrome. The integrity of this protein network is essential for good maintenance of DNA repair process and genome stability. Following the identification of an alternatively splice isoform of FANCE (Fanconi anemia complementation group E) significantly expressed in breast cancer individuals from high-risk non-BRCA1/2 families, we studied the impact of this FANCE splice isoform (FANCEΔ4) on DNA repair processes. We have demonstrated that FANCEΔ4 mRNA was efficiently translated into a functional protein and expressed in normal and breast cancer cell lines. Following treatment with the crosslinking agent mitomycin C, EUFA130 (FANCE-deficient) cells infected with FANCEΔ4 were blocked into G2/M phase, while cell survival was significantly reduced compared with FANCE-infected EUFA130 cells. In addition, FANCEΔ4 did not allow FANCD2 and FANCI monoubiquitination, which represents a crucial step of the FANC-BRCA functional pathway. As observed for FANCE wild-type protein, localization of FANCEΔ4 protein was confined to the nucleus following mitomycin C treatment. Although FANCEΔ4 protein showed interaction with FANCE, FANCEΔ4 did not support normal function of FANCE protein in this pathway and could have deleterious effects on FANCE protein activity. We have demonstrated that FANCEΔ4 seems to act as a regulator of FANCD2 protein expression level by promoting its degradation. This study highlights the importance of an efficient regulation of alternative splicing expression of FA genes for proper DNA repair. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Metabolic plasticity for isoprenoid biosynthesis in bacteria.

    PubMed

    Pérez-Gil, Jordi; Rodríguez-Concepción, Manuel

    2013-05-15

    Isoprenoids are a large family of compounds synthesized by all free-living organisms. In most bacteria, the common precursors of all isoprenoids are produced by the MEP (methylerythritol 4-phosphate) pathway. The MEP pathway is absent from archaea, fungi and animals (including humans), which synthesize their isoprenoid precursors using the completely unrelated MVA (mevalonate) pathway. Because the MEP pathway is essential in most bacterial pathogens (as well as in the malaria parasites), it has been proposed as a promising new target for the development of novel anti-infective agents. However, bacteria show a remarkable plasticity for isoprenoid biosynthesis that should be taken into account when targeting this metabolic pathway for the development of new antibiotics. For example, a few bacteria use the MVA pathway instead of the MEP pathway, whereas others possess the two full pathways, and some parasitic strains lack both the MVA and the MEP pathways (probably because they obtain their isoprenoids from host cells). Moreover, alternative enzymes and metabolic intermediates to those of the canonical MVA or MEP pathways exist in some organisms. Recent work has also shown that resistance to a block of the first steps of the MEP pathway can easily be developed because several enzymes unrelated to isoprenoid biosynthesis can produce pathway intermediates upon spontaneous mutations. In the present review, we discuss the major advances in our knowledge of the biochemical toolbox exploited by bacteria to synthesize the universal precursors for their essential isoprenoids.

  17. Target identification in Fusobacterium nucleatum by subtractive genomics approach and enrichment analysis of host-pathogen protein-protein interactions.

    PubMed

    Kumar, Amit; Thotakura, Pragna Lakshmi; Tiwary, Basant Kumar; Krishna, Ramadas

    2016-05-12

    Fusobacterium nucleatum, a well studied bacterium in periodontal diseases, appendicitis, gingivitis, osteomyelitis and pregnancy complications has recently gained attention due to its association with colorectal cancer (CRC) progression. Treatment with berberine was shown to reverse F. nucleatum-induced CRC progression in mice by balancing the growth of opportunistic pathogens in tumor microenvironment. Intestinal microbiota imbalance and the infections caused by F. nucleatum might be regulated by therapeutic intervention. Hence, we aimed to predict drug target proteins in F. nucleatum, through subtractive genomics approach and host-pathogen protein-protein interactions (HP-PPIs). We also carried out enrichment analysis of host interacting partners to hypothesize the possible mechanisms involved in CRC progression due to F. nucleatum. In subtractive genomics approach, the essential, virulence and resistance related proteins were retrieved from RefSeq proteome of F. nucleatum by searching against Database of Essential Genes (DEG), Virulence Factor Database (VFDB) and Antibiotic Resistance Gene-ANNOTation (ARG-ANNOT) tool respectively. A subsequent hierarchical screening to identify non-human homologous, metabolic pathway-independent/pathway-specific and druggable proteins resulted in eight pathway-independent and 27 pathway-specific druggable targets. Co-aggregation of F. nucleatum with host induces proinflammatory gene expression thereby potentiates tumorigenesis. Hence, proteins from IBDsite, a database for inflammatory bowel disease (IBD) research and those involved in colorectal adenocarcinoma as interpreted from The Cancer Genome Atlas (TCGA) were retrieved to predict drug targets based on HP-PPIs with F. nucleatum proteome. Prediction of HP-PPIs exhibited 186 interactions contributed by 103 host and 76 bacterial proteins. Bacterial interacting partners were accounted as putative targets. And enrichment analysis of host interacting partners showed statistically enriched terms that were in positive correlation with CRC, atherosclerosis, cardiovascular, osteoporosis, Alzheimer's and other diseases. Subtractive genomics analysis provided a set of target proteins suggested to be indispensable for survival and pathogenicity of F. nucleatum. These target proteins might be considered for designing potent inhibitors to abrogate F. nucleatum infections. From enrichment analysis, it was hypothesized that F. nucleatum infection might enhance CRC progression by simultaneously regulating multiple signaling cascades which could lead to up-regulation of proinflammatory responses, oncogenes, modulation of host immune defense mechanism and suppression of DNA repair system.

  18. Identification and verification of hybridoma-derived monoclonal antibody variable region sequences using recombinant DNA technology and mass spectrometry

    USDA-ARS?s Scientific Manuscript database

    Antibody engineering requires the identification of antigen binding domains or variable regions (VR) unique to each antibody. It is the VR that define the unique antigen binding properties and proper sequence identification is essential for functional evaluation and performance of recombinant antibo...

  19. A Network-Based Kernel Machine Test for the Identification of Risk Pathways in Genome-Wide Association Studies

    PubMed Central

    Freytag, Saskia; Manitz, Juliane; Schlather, Martin; Kneib, Thomas; Amos, Christopher I.; Risch, Angela; Chang-Claude, Jenny; Heinrich, Joachim; Bickeböller, Heike

    2014-01-01

    Biological pathways provide rich information and biological context on the genetic causes of complex diseases. The logistic kernel machine test integrates prior knowledge on pathways in order to analyze data from genome-wide association studies (GWAS). Here, the kernel converts genomic information of two individuals to a quantitative value reflecting their genetic similarity. With the selection of the kernel one implicitly chooses a genetic effect model. Like many other pathway methods, none of the available kernels accounts for topological structure of the pathway or gene-gene interaction types. However, evidence indicates that connectivity and neighborhood of genes are crucial in the context of GWAS, because genes associated with a disease often interact. Thus, we propose a novel kernel that incorporates the topology of pathways and information on interactions. Using simulation studies, we demonstrate that the proposed method maintains the type I error correctly and can be more effective in the identification of pathways associated with a disease than non-network-based methods. We apply our approach to genome-wide association case control data on lung cancer and rheumatoid arthritis. We identify some promising new pathways associated with these diseases, which may improve our current understanding of the genetic mechanisms. PMID:24434848

  20. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    PubMed

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.

  1. DYRK1B as therapeutic target in Hedgehog/GLI-dependent cancer cells with Smoothened inhibitor resistance

    PubMed Central

    Gruber, Wolfgang; Hutzinger, Martin; Elmer, Dominik Patrick; Parigger, Thomas; Sternberg, Christina; Cegielkowski, Lukasz; Zaja, Mirko; Leban, Johann; Michel, Susanne; Hamm, Svetlana; Vitt, Daniel; Aberger, Fritz

    2016-01-01

    A wide range of human malignancies displays aberrant activation of Hedgehog (HH)/GLI signaling, including cancers of the skin, brain, gastrointestinal tract and hematopoietic system. Targeting oncogenic HH/GLI signaling with small molecule inhibitors of the essential pathway effector Smoothened (SMO) has shown remarkable therapeutic effects in patients with advanced and metastatic basal cell carcinoma. However, acquired and de novo resistance to SMO inhibitors poses severe limitations to the use of SMO antagonists and urgently calls for the identification of novel targets and compounds. Here we report on the identification of the Dual-Specificity-Tyrosine-Phosphorylation-Regulated Kinase 1B (DYRK1B) as critical positive regulator of HH/GLI signaling downstream of SMO. Genetic and chemical inhibition of DYRK1B in human and mouse cancer cells resulted in marked repression of HH signaling and GLI1 expression, respectively. Importantly, DYRK1B inhibition profoundly impaired GLI1 expression in both SMO-inhibitor sensitive and resistant settings. We further introduce a novel small molecule DYRK1B inhibitor, DYRKi, with suitable pharmacologic properties to impair SMO-dependent and SMO-independent oncogenic GLI activity. The results support the use of DYRK1B antagonists for the treatment of HH/GLI-associated cancers where SMO inhibitors fail to demonstrate therapeutic efficacy. PMID:26784250

  2. Identification of Differentially Abundant Proteins of Edwardsiella ictaluri during Iron Restriction

    PubMed Central

    Dumpala, Pradeep R.; Peterson, Brian C.; Lawrence, Mark L.; Karsi, Attila

    2015-01-01

    Edwardsiella ictaluri is a Gram-negative facultative anaerobe intracellular bacterium that causes enteric septicemia in channel catfish. Iron is an essential inorganic nutrient of bacteria and is crucial for bacterial invasion. Reduced availability of iron by the host may cause significant stress for bacterial pathogens and is considered a signal that leads to significant alteration in virulence gene expression. However, the precise effect of iron-restriction on E. ictaluri protein abundance is unknown. The purpose of this study was to identify differentially abundant proteins of E. ictaluri during in vitro iron-restricted conditions. We applied two-dimensional difference in gel electrophoresis (2D-DIGE) for determining differentially abundant proteins and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF/TOF MS) for protein identification. Gene ontology and pathway-based functional modeling of differentially abundant proteins was also conducted. A total of 50 unique differentially abundant proteins at a minimum of 2-fold (p ≤ 0.05) difference in abundance due to iron-restriction were detected. The numbers of up- and down-regulated proteins were 37 and 13, respectively. We noted several proteins, including EsrB, LamB, MalM, MalE, FdaA, and TonB-dependent heme/hemoglobin receptor family proteins responded to iron restriction in E. ictaluri. PMID:26168192

  3. Key Enzymes of the Semiphosphorylative Entner-Doudoroff Pathway in the Haloarchaeon Haloferax volcanii: Characterization of Glucose Dehydrogenase, Gluconate Dehydratase, and 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase.

    PubMed

    Sutter, Jan-Moritz; Tästensen, Julia-Beate; Johnsen, Ulrike; Soppa, Jörg; Schönheit, Peter

    2016-08-15

    The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. So far, the key enzymes of this pathway, glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (KDPGA), have not been characterized, and their functional involvement in glucose degradation has not been demonstrated. Here we report that the genes HVO_1083 and HVO_0950 encode GDH and KDPGA, respectively. The recombinant enzymes show high specificity for glucose and KDPG and did not convert the corresponding C4 epimers galactose and 2-keto-3-deoxy-6-phosphogalactonate at significant rates. Growth studies of knockout mutants indicate the functional involvement of both GDH and KDPGA in glucose degradation. GAD was purified from H. volcanii, and the encoding gene, gad, was identified as HVO_1488. GAD catalyzed the specific dehydration of gluconate and did not utilize galactonate at significant rates. A knockout mutant of GAD lost the ability to grow on glucose, indicating the essential involvement of GAD in glucose degradation. However, following a prolonged incubation period, growth of the Δgad mutant on glucose was recovered. Evidence is presented that under these conditions, GAD was functionally replaced by xylonate dehydratase (XAD), which uses both xylonate and gluconate as substrates. Together, the characterization of key enzymes and analyses of the respective knockout mutants present conclusive evidence for the in vivo operation of the spED pathway for glucose degradation in H. volcanii The work presented here describes the identification and characterization of the key enzymes glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase and their encoding genes of the proposed semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii The functional involvement of the three enzymes was proven by analyses of the corresponding knockout mutants. These results provide evidence for the in vivo operation of the semiphosphorylative Entner-Doudoroff pathway in haloarchaea and thus expand our understanding of the unusual sugar degradation pathways in the domain Archaea. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. A detailed pathway analysis of the chemical reaction system generating the Martian vertical ozone profile

    NASA Astrophysics Data System (ADS)

    Stock, Joachim W.; Blaszczak-Boxe, Christopher S.; Lehmann, Ralph; Grenfell, J. Lee; Patzer, A. Beate C.; Rauer, Heike; Yung, Yuk L.

    2017-07-01

    Atmospheric chemical composition is crucial in determining a planet's atmospheric structure, stability, and evolution. Attaining a quantitative understanding of the essential chemical mechanisms governing atmospheric composition is nontrivial due to complex interactions between chemical species. Trace species, for example, can participate in catalytic cycles - affecting the abundance of major and other trace gas species. Specifically, for Mars, such cycles dictate the abundance of its primary atmospheric constituent, carbon dioxide (CO2), but also for one of its trace gases, ozone (O3). The identification of chemical pathways/cycles by hand is extremely demanding; hence, the application of numerical methods, such as the Pathway Analysis Program (PAP), is crucial to analyze and quantitatively exemplify chemical reaction networks. Here, we carry out the first automated quantitative chemical pathway analysis of Mars' atmosphere with respect to O3. PAP was applied to JPL/Caltech's 1-D updated photochemical Mars model's output data. We determine all significant chemical pathways and their contribution to O3 production and consumption (up to 80 km) in order to investigate the mechanisms causing the characteristic shape of the O3 volume mixing ratio profile, i.e. a ground layer maximum and an ozone layer at ∼50 km. These pathways explain why an O3 layer is present, why it is located at that particular altitude and what the different processes forming the near-surface and middle atmosphere O3 maxima are. Furthermore, we show that the Martian atmosphere can be divided into two chemically distinct regions according to the O(3P):O3 ratio. In the lower region (below approximately 24 km altitude) O3 is the most abundant Ox (= O3 + O(3P)) species. In the upper region (above approximately 24 km altitude), where the O3 layer is located, O(3P) is the most abundant Ox species. Earlier results concerning the formation of O3 on Mars can now be explained with the help of chemical pathways leading to a better understanding of the vertical O3 profile.

  5. Methods for identifying an essential gene in a prokaryotic microorganism

    DOEpatents

    Shizuya, Hiroaki

    2006-01-31

    Methods are provided for the rapid identification of essential or conditionally essential DNA segments in any species of haploid cell (one copy chromosome per cell) that is capable of being transformed by artificial means and is capable of undergoing DNA recombination. This system offers an enhanced means of identifying essential function genes in diploid pathogens, such as gram-negative and gram-positive bacteria.

  6. Weight of evidence evaluation of a network of adverse ...

    EPA Pesticide Factsheets

    Ongoing honey bee colony losses are of significant international concern because of the essential role these insects play in pollinating many high nutrient crops, such as fruits, vegetables, and nuts. Both chemical and non-chemical stressors have been implicated as possible contributors to colony failure, however, the potential role(s) of commonly-used neonicotinoid insecticides has emerged as particularly concerning. Neonicotinoids act on the nicotinic acetylcholine receptors (nAChRs) in the central nervous system to eliminate target pest insects. However, mounting evidence indicates that these neonicotinoids also may adversely affect beneficial pollinators, such as the honey bee, via impairments on learning and memory, and ultimately foraging success. The specific mechanisms linking activation of the nAChR to adverse effects on learning and memory are uncertain. Additionally, clear connections between observed impacts on individual bees and colony level effects are lacking. The objective of this review was to develop adverse outcome pathways (AOPs) as a means to evaluate the biological plausibility and empirical evidence supporting (or refuting) the linkage between activation of the physiological target site, the nAChR, and colony level consequences. Development of AOPs has led to the identification of research gaps which, for example, may be of high priority in understanding how perturbation of pathways involved in neurotransmission can adversely affect norm

  7. A side-effect free method for identifying cancer drug targets.

    PubMed

    Ashraf, Md Izhar; Ong, Seng-Kai; Mujawar, Shama; Pawar, Shrikant; More, Pallavi; Paul, Somnath; Lahiri, Chandrajit

    2018-04-27

    Identifying effective drug targets, with little or no side effects, remains an ever challenging task. A potential pitfall of failing to uncover the correct drug targets, due to side effect of pleiotropic genes, might lead the potential drugs to be illicit and withdrawn. Simplifying disease complexity, for the investigation of the mechanistic aspects and identification of effective drug targets, have been done through several approaches of protein interactome analysis. Of these, centrality measures have always gained importance in identifying candidate drug targets. Here, we put forward an integrated method of analysing a complex network of cancer and depict the importance of k-core, functional connectivity and centrality (KFC) for identifying effective drug targets. Essentially, we have extracted the proteins involved in the pathways leading to cancer from the pathway databases which enlist real experimental datasets. The interactions between these proteins were mapped to build an interactome. Integrative analyses of the interactome enabled us to unearth plausible reasons for drugs being rendered withdrawn, thereby giving future scope to pharmaceutical industries to potentially avoid them (e.g. ESR1, HDAC2, F2, PLG, PPARA, RXRA, etc). Based upon our KFC criteria, we have shortlisted ten proteins (GRB2, FYN, PIK3R1, CBL, JAK2, LCK, LYN, SYK, JAK1 and SOCS3) as effective candidates for drug development.

  8. Weight-of-evidence evaluation of an adverse outcome ...

    EPA Pesticide Factsheets

    Ongoing honey bee colony losses are of significant international concern because of the essential role these insects play in pollinating staple food crops. Chemical and non-chemical stressors both have been implicated as possible contributors to colony failure, however, the potential role of commonly-used neonicotinoid insecticides has emerged as particularly concerning. Neonicotinoids act on the nicotinic acetylcholine receptor (nAChR) to eliminate target pest insects, however, mounting evidence indicates that these chemicals may adversely affect beneficial pollinators, such as the honey bee, via impacts on learning and memory thereby affecting foraging success. However, the mechanisms linking activation of the nAChR to adverse effects on learning and memory are uncertain. Additionally, clear connections between observed impacts on individual bees and colony level effects are lacking. Therefore, the objective of this work was to develop adverse outcome pathways (AOPs) as a means to evaluate the biological plausibility and empirical evidence supporting (or refuting) the linkage between the nAChR and colony level impacts. Development of these AOPs has led to the identification of research gaps which, for example, may be of high priority in understanding how perturbation of pathways involved in neurotransmission can adversely affect honey bee health, causing colony instability and further failure. From this effort, an AOP network also was developed, laying the f

  9. The RanGTP Pathway: From Nucleo-Cytoplasmic Transport to Spindle Assembly and Beyond

    PubMed Central

    Cavazza, Tommaso; Vernos, Isabelle

    2016-01-01

    The small GTPase Ran regulates the interaction of transport receptors with a number of cellular cargo proteins. The high affinity binding of the GTP-bound form of Ran to import receptors promotes cargo release, whereas its binding to export receptors stabilizes their interaction with the cargo. This basic mechanism linked to the asymmetric distribution of the two nucleotide-bound forms of Ran between the nucleus and the cytoplasm generates a switch like mechanism controlling nucleo-cytoplasmic transport. Since 1999, we have known that after nuclear envelope breakdown (NEBD) Ran and the above transport receptors also provide a local control over the activity of factors driving spindle assembly and regulating other aspects of cell division. The identification and functional characterization of RanGTP mitotic targets is providing novel insights into mechanisms essential for cell division. Here we review our current knowledge on the RanGTP system and its regulation and we focus on the recent advances made through the characterization of its mitotic targets. We then briefly review the novel functions of the pathway that were recently described. Altogether, the RanGTP system has moonlighting functions exerting a spatial control over protein interactions that drive specific functions depending on the cellular context. PMID:26793706

  10. Critical Role of Nitric Oxide-cGMP Cascade in the Formation of cAMP-Dependent Long-Term Memory

    ERIC Educational Resources Information Center

    Aonuma, Hitoshi; Mizunami, Makoto; Matsumoto, Yukihisa; Unoki, Sae

    2006-01-01

    Cyclic AMP pathway plays an essential role in formation of long-term memory (LTM). In some species, the nitric oxide (NO)-cyclic GMP pathway has been found to act in parallel and complementary to the cAMP pathway for LTM formation. Here we describe a new role of the NO-cGMP pathway, namely, stimulation of the cAMP pathway to induce LTM. We have…

  11. 40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...

  12. 40 CFR 98.448 - Geologic sequestration monitoring, reporting, and verification (MRV) plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... than 1 year. (2) Identification of potential surface leakage pathways for CO2 in the maximum monitoring area and the likelihood, magnitude, and timing, of surface leakage of CO2 through these pathways. (3) A...

  13. A Noise Trimming and Positional Significance of Transposon Insertion System to Identify Essential Genes in Yersinia pestis

    NASA Astrophysics Data System (ADS)

    Yang, Zheng Rong; Bullifent, Helen L.; Moore, Karen; Paszkiewicz, Konrad; Saint, Richard J.; Southern, Stephanie J.; Champion, Olivia L.; Senior, Nicola J.; Sarkar-Tyson, Mitali; Oyston, Petra C. F.; Atkins, Timothy P.; Titball, Richard W.

    2017-02-01

    Massively parallel sequencing technology coupled with saturation mutagenesis has provided new and global insights into gene functions and roles. At a simplistic level, the frequency of mutations within genes can indicate the degree of essentiality. However, this approach neglects to take account of the positional significance of mutations - the function of a gene is less likely to be disrupted by a mutation close to the distal ends. Therefore, a systematic bioinformatics approach to improve the reliability of essential gene identification is desirable. We report here a parametric model which introduces a novel mutation feature together with a noise trimming approach to predict the biological significance of Tn5 mutations. We show improved performance of essential gene prediction in the bacterium Yersinia pestis, the causative agent of plague. This method would have broad applicability to other organisms and to the identification of genes which are essential for competitiveness or survival under a broad range of stresses.

  14. A Noise Trimming and Positional Significance of Transposon Insertion System to Identify Essential Genes in Yersinia pestis

    PubMed Central

    Yang, Zheng Rong; Bullifent, Helen L.; Moore, Karen; Paszkiewicz, Konrad; Saint, Richard J.; Southern, Stephanie J.; Champion, Olivia L.; Senior, Nicola J.; Sarkar-Tyson, Mitali; Oyston, Petra C. F.; Atkins, Timothy P.; Titball, Richard W.

    2017-01-01

    Massively parallel sequencing technology coupled with saturation mutagenesis has provided new and global insights into gene functions and roles. At a simplistic level, the frequency of mutations within genes can indicate the degree of essentiality. However, this approach neglects to take account of the positional significance of mutations - the function of a gene is less likely to be disrupted by a mutation close to the distal ends. Therefore, a systematic bioinformatics approach to improve the reliability of essential gene identification is desirable. We report here a parametric model which introduces a novel mutation feature together with a noise trimming approach to predict the biological significance of Tn5 mutations. We show improved performance of essential gene prediction in the bacterium Yersinia pestis, the causative agent of plague. This method would have broad applicability to other organisms and to the identification of genes which are essential for competitiveness or survival under a broad range of stresses. PMID:28165493

  15. Source identification of nitrous oxide emission pathways from a single-stage nitritation-anammox granular reactor.

    PubMed

    Ali, Muhammad; Rathnayake, Rathnayake M L D; Zhang, Lei; Ishii, Satoshi; Kindaichi, Tomonori; Satoh, Hisashi; Toyoda, Sakae; Yoshida, Naohiro; Okabe, Satoshi

    2016-10-01

    Nitrous oxide (N2O) production pathway in a signal-stage nitritation-anammox sequencing batch reactor (SBR) was investigated based on a multilateral approach including real-time N2O monitoring, N2O isotopic composition analysis, and in-situ analyses of spatial distribution of N2O production rate and microbial populations in granular biomass. N2O emission rate was high in the initial phase of the operation cycle and gradually decreased with decreasing NH4(+) concentration. The average emission of N2O was 0.98 ± 0.42% and 1.35 ± 0.72% of the incoming nitrogen load and removed nitrogen, respectively. The N2O isotopic composition analysis revealed that N2O was produced via NH2OH oxidation and NO2(-) reduction pathways equally, although there is an unknown influence from N2O reduction and/or anammox N2O production. However, the N2O isotopomer analysis could not discriminate the relative contribution of nitrifier denitrification and heterotrophic denitrification in the NO2(-) reduction pathway. Various in-situ techniques (e.g. microsensor measurements and FISH (fluorescent in-situ hybridization) analysis) were therefore applied to further identify N2O producers. Microsensor measurements revealed that approximately 70% of N2O was produced in the oxic surface zone, where nitrifiers were predominantly localized. Thus, NH2OH oxidation and NO2 reduction by nitrifiers (nitrifier-denitrification) could be responsible for the N2O production in the oxic zone. The rest of N2O (ca. 30%) was produced in the anammox bacteria-dominated anoxic zone, probably suggesting that NO2(-) reduction by coexisting putative heterotrophic denitrifiers and some other unknown pathway(s) including the possibility of anammox process account for the anaerobic N2O production. Further study is required to identify the anaerobic N2O production pathways. Our multilateral approach can be useful to quantitatively examine the relative contributions of N2O production pathways. Good understanding of the key N2O production pathways is essential to establish a strategy to mitigate N2O emission from biological nitrogen removal processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Development of JSDF Cyber Warfare Defense Critical Capability

    DTIC Science & Technology

    2010-03-01

    attack identification capability is essential for a nation to defend her vital infrastructures against offensive cyber warfare . Although the necessity of...cyber-attack identification capability is quite clear, the Japans preparation against cyber warfare is quite limited.

  17. Identification of compounds that modulate retinol signaling using a cell-based qHTS assay

    PubMed Central

    Chen, Yanling; Sakamuru, Srilatha; Huang, Ruili; Reese, David H.; Xia, Menghang

    2016-01-01

    In vertebrates, the retinol (vitamin A) signaling pathway (RSP) controls the biosynthesis and catabolism of all-trans retinoic acid (atRA), which regulates transcription of genes essential for embryonic development. Chemicals that interfere with the RSP to cause abnormal intracellular levels of atRA are potential developmental toxicants. To assess chemicals for the ability to interfere with retinol signaling, we have developed a cell-based RARE (Retinoic Acid Response Element) reporter gene assay to identify RSP disruptors. To validate this assay in a quantitative high-throughput screening (qHTS) platform, we screened the Library of Pharmacologically Active Compounds (LOPAC) in both agonist and antagonist modes. The screens detected known RSP agonists, demonstrating assay reliability, and also identified novel RSP agonists including kenpaullone, niclosamide, PD98059 and SU4312, and RSP antagonists including Bay 11-7085, LY294002, 3,4-Methylenedioxy-β-nitrostyrene, and topoisomerase inhibitors (camptothecin, topotecan, amsacrine hydrochloride, and idarubicin). When evaluated in the P19 pluripotent cell, these compounds were found to affect the expression of the Hoxa1 gene that is essential for embryo body patterning. These results show that the RARE assay is an effective qHTS approach for screening large compound libraries to identify chemicals that have the potential to adversely affect embryonic development through interference with retinol signaling. PMID:26820057

  18. Identification of shikimate kinase inhibitors among anti-Mycobacterium tuberculosis compounds by LC-MS.

    PubMed

    Simithy, Johayra; Reeve, Nathaniel; Hobrath, Judith V; Reynolds, Robert C; Calderón, Angela I

    2014-03-01

    Increasing drug resistance has challenged the control and treatment of tuberculosis, sparking recent interest in finding new antitubercular agents with different chemical scaffolds and mechanisms of action. Mycobacterium tuberculosis shikimate kinase (MtSK), an enzyme present in the shikimate pathway in bacteria, is essential for the survival of the tubercle bacillus, representing an ideal target for therapeutic intervention given its absence in mammals. In this study, a small library of 404 synthetic antimycobacterial compounds identified and supplied through the NIH Tuberculosis Antimicrobial Acquisition and Coordinating Facility (TAACF) high throughput screening program against whole cell M. tuberculosis H37Rv was further screened using a mass spectrometry-based functional assay in order to identify a potential enzymatic target. Fourteen compounds containing an oxadiazole-amide or a 2-aminobenzothiazole core scaffold showed MtSK inhibitory activity at 50 μM, with the lowest giving an IC50 of 1.94 μM. Induced fit docking studies suggested that the scaffolds shared by these compounds fit well in the shikimate binding pocket of MtSK. In summary, we report new early discovery stage lead scaffolds targeting the essential protein MtSK that can be further pursued in a rational drug design program for the discovery of more selective antitubercular drugs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Trypanocidal, trichomonacidal and cytotoxic components of cultivated Artemisia absinthium Linnaeus (Asteraceae) essential oil

    PubMed Central

    Martínez-Díaz, Rafael Alberto; Ibáñez-Escribano, Alexandra; Burillo, Jesús; Heras, Lorena de las; del Prado, Gema; Agulló-Ortuño, M Teresa; Julio, Luis F; González-Coloma, Azucena

    2015-01-01

    Artemisia absinthium is an aromatic and medicinal plant of ethnopharmacological interest and it has been widely studied. The use ofA. absinthium based on the collection of wild populations can result in variable compositions of the extracts and essential oils (EOs). The aim of this paper is the identification of the active components of the vapour pressure (VP) EO from a selected and cultivated A. absinthiumSpanish population (T2-11) against two parasitic protozoa with different metabolic pathways: Trypanosoma cruzi andTrichomonas vaginalis. VP showed activity on both parasites at the highest concentrations. The chromatographic fractionation of the VP T2-11 resulted in nine fractions (VLC1-9). The chemical composition of the fractions and the antiparasitic effects of fractions and their main compounds suggest that the activity of the VP is related with the presence oftrans-caryophyllene and dihydrochamazulene (main components of fractions VLC1 and VLC2 respectively). Additionally, the cytotoxicity of VP and fractions has been tested on several tumour and no tumour human cell lines. Fractions VLC1 and VLC2 were not cytotoxic against the nontumoural cell line HS5, suggesting selective antiparasitic activity for these two fractions. The VP and fractions inhibited the growth of human tumour cell lines in a dose-dependent manner. PMID:26107187

  20. Transcriptional regulation of fatty acid biosynthesis in mycobacteria

    PubMed Central

    Mondino, S.; Gago, G.; Gramajo, H.

    2013-01-01

    SUMMARY The main purpose of our study is to understand how mycobacteria exert control over the biosynthesis of their membrane lipids and find out the key components of the regulatory network that control fatty acid biosynthesis at the transcriptional level. In this paper we describe the identification and purification of FasR, a transcriptional regulator from Mycobacterium sp. that controls the expression of the fatty acid synthase (fas) and the 4-phosphopantetheinyl transferase (acpS) encoding genes, whose products are involved in the fatty acid and mycolic acid biosynthesis pathways. In vitro studies demonstrated that fas and acpS genes are part of the same transcriptional unit and that FasR specifically binds to three conserved operator sequences present in the fas-acpS promoter region (Pfas). The construction and further characterization of a fasR conditional mutant confirmed that FasR is a transcriptional activator of the fas-acpS operon and that this protein is essential for mycobacteria viability. Furthermore, the combined used of Pfas-lacZ fusions in different fasR backgrounds and electrophoretic mobility shift assays experiments, strongly suggested that long-chain acyl-CoAs are the effector molecules that modulate the affinity of FasR for its DNA binding sequences and therefore the expression of the essential fas-acpS operon. PMID:23721164

  1. Emerging strategies in the management of essential tremor

    PubMed Central

    Hedera, Peter

    2016-01-01

    Currently available therapies for essential tremor (ET) provide sufficient control only for less than a half of patients and many unmet needs exist. This is in part due to the empiric nature of existing treatment options and persisting uncertainties about the pathogenesis of ET. The emerging concept of ET as a possible neurodegenerative disorder, better understanding of associated biochemical changes, including alterations in the γ-aminobutyric acid (GABA)-ergic system and gap junctions, and the identification of the role of the leucine-rich repeat and immunoglobulin-like domain-containing 1 (LINGO-1) gene in ET pathogenesis suggest new avenues for more targeted therapies. Here we review the most promising new approaches to treating ET, including allosteric modulation of GABA receptors and modifications of the LINGO-1 pathway. Medically refractory tremor can be successfully treated by high-frequency deep brain stimulation (DBS) of the ventral intermediate nucleus, but surgical therapies are also fraught with limitations due to adverse effects of stimulation and the loss of therapeutic response. The selection of additional thalamic and extrathalamic targets for electrode placements and the development of a closed-loop DBS system enabling automatic adjustment of stimulation parameters in response to changes in electrophysiologic brain activity are also reviewed. Tremor cancellation methods using exoskeleton and external hand-held devices are also briefly discussed. PMID:28382111

  2. Pathway Inspector: a pathway based web application for RNAseq analysis of model and non-model organisms.

    PubMed

    Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano; Fontana, Paolo

    2017-02-01

    Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact:paolo.fontana@fmach.it

  3. Conservation of the coding regions of the glycine N-acyltransferase gene further suggests that glycine conjugation is an essential detoxification pathway.

    PubMed

    van der Sluis, Rencia; Badenhorst, Christoffel P S; Erasmus, Elardus; van Dyk, Etresia; van der Westhuizen, Francois H; van Dijk, Alberdina A

    2015-10-15

    Thorough investigation of the glycine conjugation pathway has been neglected. No defect of the glycine conjugation pathway has been reported and this could reflect the essential role of glycine conjugation in hepatic metabolism. Therefore, we hypothesised that genetic variation in the open reading frame (ORF) of the GLYAT gene should be low and that deleterious alleles would be found at low frequencies. This hypothesis was investigated by analysing the genetic variation of the human GLYAT ORF using data available in public databases. We also sequenced the GLYAT ORF of a small cohort of South African Afrikaner Caucasian individuals. In total, data from 1537 individuals was analysed. The two most prominent GLYAT haplotypes in all populations analysed, were S156 (70%) and T17S156 (20%). The S156C199 and S156H131 haplotypes, which have a negative effect on the enzyme activity of a recombinant human GLYAT, were detected at very low frequencies. In the Afrikaner Caucasian cohort a novel Q61L SNP occurring at a high frequency (12%) was detected. The results of this study indicated that the GLYAT ORF is highly conserved and supported the hypothesis that the glycine conjugation pathway is an essential detoxification pathway. These findings emphasise the importance of future investigations to determine the in vivo capacity of the glycine conjugation pathway for the detoxification of benzoate and other xenobiotics. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nucleation and phase transformation pathways in electrolyte solutions investigated by in situ microscopy techniques

    DOE PAGES

    Tao, Jinhui; Nielsen, Michael H.; De Yoreo, James J.

    2018-04-27

    Identification of crystal nucleation and growth pathways is of fundamental importance for synthesis of functional materials, which requires control over size, orientation, polymorph, and hierarchical structure, often in the presence of additives used to tune the energy landscape defining these pathways. Furthermore we summarize the recent progress in application of in situ TEM and AFM techniques to monitor or even tune the pathway of crystal nucleation and growth.

  5. Nucleation and phase transformation pathways in electrolyte solutions investigated by in situ microscopy techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jinhui; Nielsen, Michael H.; De Yoreo, James J.

    Identification of crystal nucleation and growth pathways is of fundamental importance for synthesis of functional materials, which requires control over size, orientation, polymorph, and hierarchical structure, often in the presence of additives used to tune the energy landscape defining these pathways. Furthermore we summarize the recent progress in application of in situ TEM and AFM techniques to monitor or even tune the pathway of crystal nucleation and growth.

  6. Nitric oxide balances osteoblast and adipocyte lineage differentiation via the JNK/MAPK signaling pathway in periodontal ligament stem cells.

    PubMed

    Yang, Shan; Guo, Lijia; Su, Yingying; Wen, Jing; Du, Juan; Li, Xiaoyan; Liu, Yitong; Feng, Jie; Xie, Yongmei; Bai, Yuxing; Wang, Hao; Liu, Yi

    2018-05-02

    Critical tissues that undergo regeneration in periodontal tissue are of mesenchymal origin; thus, investigating the regulatory mechanisms underlying the fate of periodontal ligament stem cells could be beneficial for application in periodontal tissue regeneration. Nitric oxide (NO) regulates many biological processes in developing embryos and adult stem cells. The present study was designed to investigate the effects of NO on the function of human periodontal ligament stem cells (PDLSCs) as well as to elucidate the underlying molecular mechanisms. Immunofluorescent staining and flow cytometry were used for stem cell identification. Western blot, reverse transcription polymerase chain reaction (RT-PCR), immunofluorescent staining, and flow cytometry were used to examine the expression of NO-synthesizing enzymes. The proliferative capacity of PDLSCs was determined by EdU assays. The osteogenic potential of PDLSCs was tested using alkaline phosphatase (ALP) staining, Alizarin Red staining, and calcium concentration detection. Oil Red O staining was used to analyze the adipogenic ability. Western blot, RT-PCR, and staining were used to examine the signaling pathway. Human PDLSCs expressed both inducible NO synthase (iNOS) and endothelial NO synthase (eNOS) and produced NO. Blocking the generation of NO with the NOS inhibitor L-N G -monomethyl arginine (L-NMMA) had no influence on PDLSC proliferation and apoptosis but significantly attenuated the osteogenic differentiation capacity and stimulated the adipogenic differentiation capacity of PDLSCs. Increasing the physiological level of NO with NO donor sodium nitroprusside (SNP) significantly promoted the osteogenic differentiation capacity but reduced the adipogenic differentiation capacity of PDLSCs. NO balances the osteoblast and adipocyte lineage differentiation in periodontal ligament stem cells via the c-Jun N-terminal kinase (JNK)/mitogen-activated protein kinase (MAPK) signaling pathway. NO is essential for maintaining the balance between osteoblasts and adipocytes in PDLSCs via the JNK/MAPK signaling pathway. NO balances osteoblast and adipocyte lineage differentiation via JNK/MAPK signaling pathway.

  7. Identification of glia phenotype modulators based on select glial function regulatory signaling pathways.

    PubMed

    Lee, Sun-Hwa; Suk, Kyoungho

    2018-04-20

    Despite the considerable social and economic burden on the healthcare system worldwide due to neurodegenerative diseases, there are currently few disease-altering treatment options for many of these conditions. Therefore, new approaches for both prevention and intervention for neurodegenerative diseases are urgently required. Microglia-mediated neurotoxicity is one of the pathologic hallmarks common to Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Current therapeutic approaches to target microglia-mediated neurotoxicity are focused on the identification of glia phenotype modulators (GPMs), which can inhibit the 'classical' pro-inflammatory and neurotoxic phenotypes of microglia. Areas covered: This article reviews selected microglial molecular targets and pathways involved in either neurotoxicity or neuroprotection and how their identification. Expert opinion: Microglial activation and their signaling pathways have important implications in the neurotoxicity and brain disorders. Pharmacological modulation of microglial activation may serve as a potential therapeutic approach for targeting microglia-mediated neurotoxicity. However, given that microglia change their activation states depending on the timing, stage, and severity of disease, and even aging, the appropriate window should be considered for this approach to be clinically effective. In the future, the identification of unknown extracellular signals and intracellular molecular switches that control phenotypic shifts may facilitate the development of novel therapeutics targeting microglia-mediated neurotoxicity.

  8. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia.

    PubMed

    Muñoz-Bertomeu, Jesús; Sales, Ester; Ros, Roc; Arrillaga, Isabel; Segura, Juan

    2007-11-01

    Spike lavender (Lavandula latifolia) essential oil is widely used in the perfume, cosmetic, flavouring and pharmaceutical industries. Thus, modifications of yield and composition of this essential oil by genetic engineering should have important scientific and commercial applications. We generated transgenic spike lavender plants expressing the Arabidopsis thaliana HMG1 cDNA, encoding the catalytic domain of 3-hydroxy-3-methylglutaryl CoA reductase (HMGR1S), a key enzyme of the mevalonic acid (MVA) pathway. Transgenic T0 plants accumulated significantly more essential oil constituents as compared to controls (up to 2.1- and 1.8-fold in leaves and flowers, respectively). Enhanced expression of HMGR1S also increased the amount of the end-product sterols, beta-sitosterol and stigmasterol (average differences of 1.8- and 1.9-fold, respectively), but did not affect the accumulation of carotenoids or chlorophylls. We also analysed T1 plants derived from self-pollinated seeds of T0 lines that flowered after growing for 2 years in the greenhouse. The increased levels of essential oil and sterols observed in the transgenic T0 plants were maintained in the progeny that inherited the HMG1 transgene. Our results demonstrate that genetic manipulation of the MVA pathway increases essential oil yield in spike lavender, suggesting a contribution for this cytosolic pathway to monoterpene and sesquiterpene biosynthesis in leaves and flowers of the species.

  9. Investigation of the Anti-Melanogenic and Antioxidant Characteristics of Eucalyptus camaldulensis Flower Essential Oil and Determination of Its Chemical Composition.

    PubMed

    Huang, Huey-Chun; Ho, Ya-Chi; Lim, Jia-Min; Chang, Tzu-Yun; Ho, Chen-Lung; Chang, Tsong-Min

    2015-05-07

    The effects of essential oil from Eucalyptus camaldulensis flowers oil on melanogenesis and the oil's antioxidant characteristics were investigated. Assays of mushroom and cellular tyrosinase activities and melanin content of mouse melanoma cells were performed spectrophotometrically, and the expression of melanogenesis-related proteins was determined by Western blotting. The possible signaling pathways involved in essential oil-mediated depigmentation were also investigated using specific protein kinase inhibitors. The results revealed that E. camaldulensis flower essential oil effectively suppresses intracellular tyrosinase activity and decreases melanin amount in B16F10 mouse melanoma cells. The essential oil also exhibits antioxidant properties and effectively decreases intracellular reactive oxygen species (ROS) levels. The volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The chemical constituents in the essential oil are predominately oxygenated monoterpenes (34.9%), followed by oxygenated sesquiterpenes (31.8%), monoterpene hydrocarbons (29.0%) and sesquiterpene hydrocarbons (4.3%). Our results indicated that E. camaldulensis flower essential oil inhibits melanogenesis through its antioxidant properties and by down-regulating both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways. The present study indicates that the essential oil has the potential to be developed into a skin care product.

  10. Investigation of the Anti-Melanogenic and Antioxidant Characteristics of Eucalyptus camaldulensis Flower Essential Oil and Determination of Its Chemical Composition

    PubMed Central

    Huang, Huey-Chun; Ho, Ya-Chi; Lim, Jia-Min; Chang, Tzu-Yun; Ho, Chen-Lung; Chang, Tsong-Min

    2015-01-01

    The effects of essential oil from Eucalyptus camaldulensis flowers oil on melanogenesis and the oil’s antioxidant characteristics were investigated. Assays of mushroom and cellular tyrosinase activities and melanin content of mouse melanoma cells were performed spectrophotometrically, and the expression of melanogenesis-related proteins was determined by Western blotting. The possible signaling pathways involved in essential oil-mediated depigmentation were also investigated using specific protein kinase inhibitors. The results revealed that E. camaldulensis flower essential oil effectively suppresses intracellular tyrosinase activity and decreases melanin amount in B16F10 mouse melanoma cells. The essential oil also exhibits antioxidant properties and effectively decreases intracellular reactive oxygen species (ROS) levels. The volatile chemical composition of the essential oil was analyzed with gas chromatography–mass spectrometry (GC/MS). The chemical constituents in the essential oil are predominately oxygenated monoterpenes (34.9%), followed by oxygenated sesquiterpenes (31.8%), monoterpene hydrocarbons (29.0%) and sesquiterpene hydrocarbons (4.3%). Our results indicated that E. camaldulensis flower essential oil inhibits melanogenesis through its antioxidant properties and by down-regulating both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways. The present study indicates that the essential oil has the potential to be developed into a skin care product. PMID:25961954

  11. Characterization of the rainbow trout spleen transcriptome and identification of immune-related genes

    USDA-ARS?s Scientific Manuscript database

    Disease susceptibility affects production efficiency and profitability in rainbow trout aquaculture. There is limited information available regarding the functions and mechanisms of teleost immune pathways. Immunogenomics provides powerful approaches to identify disease resistance genes/gene pathway...

  12. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    PubMed Central

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K; Ejsing, Christer S; Carvalho, Pedro

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: http://dx.doi.org/10.7554/eLife.00953.001 PMID:23898401

  13. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations

    PubMed Central

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan

    2017-01-01

    Abstract Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. PMID:28961727

  14. INDIRECT COMPUTED TOMOGRAPHIC LYMPHOGRAPHY FOR ILIOSACRAL LYMPHATIC MAPPING IN A COHORT OF DOGS WITH ANAL SAC GLAND ADENOCARCINOMA: TECHNIQUE DESCRIPTION.

    PubMed

    Majeski, Stephanie A; Steffey, Michele A; Fuller, Mark; Hunt, Geraldine B; Mayhew, Philipp D; Pollard, Rachel E

    2017-05-01

    Sentinel lymph node mapping can help to direct surgical oncologic staging and metastatic disease detection in patients with complex lymphatic pathways. We hypothesized that indirect computed tomographic lymphography (ICTL) with a water-soluble iodinated contrast agent would successfully map lymphatic pathways of the iliosacral lymphatic center in dogs with anal sac gland carcinoma, providing a potential preoperative method for iliosacral sentinel lymph node identification in dogs. Thirteen adult dogs diagnosed with anal sac gland carcinoma were enrolled in this prospective, pilot study, and ICTL was performed via peritumoral contrast injection with serial caudal abdominal computed tomography scans for iliosacral sentinel lymph node identification. Technical and descriptive details for ICTL were recorded, including patient positioning, total contrast injection volume, timing of contrast visualization, and sentinel lymph nodes and lymphatic pathways identified. Indirect CT lymphography identified lymphatic pathways and sentinel lymph nodes in 12/13 cases (92%). Identified sentinel lymph nodes were ipsilateral to the anal sac gland carcinoma in 8/12 and contralateral to the anal sac gland carcinoma in 4/12 cases. Sacral, internal iliac, and medial iliac lymph nodes were identified as sentinel lymph nodes, and patterns were widely variable. Patient positioning and timing of imaging may impact successful sentinel lymph node identification. Positioning in supported sternal recumbency is recommended. Results indicate that ICTL may be a feasible technique for sentinel lymph node identification in dogs with anal sac gland carcinoma and offer preliminary data to drive further investigation of iliosacral lymphatic metastatic patterns using ICTL and sentinel lymph node biopsy. © 2017 American College of Veterinary Radiology.

  15. Systematic bacterialization of yeast genes identifies a near-universally swappable pathway

    PubMed Central

    Kachroo, Aashiq H; Laurent, Jon M; Akhmetov, Azat; Szilagyi-Jones, Madelyn; McWhite, Claire D; Zhao, Alice; Marcotte, Edward M

    2017-01-01

    Eukaryotes and prokaryotes last shared a common ancestor ~2 billion years ago, and while many present-day genes in these lineages predate this divergence, the extent to which these genes still perform their ancestral functions is largely unknown. To test principles governing retention of ancient function, we asked if prokaryotic genes could replace their essential eukaryotic orthologs. We systematically replaced essential genes in yeast by their 1:1 orthologs from Escherichia coli. After accounting for mitochondrial localization and alternative start codons, 31 out of 51 bacterial genes tested (61%) could complement a lethal growth defect and replace their yeast orthologs with minimal effects on growth rate. Replaceability was determined on a pathway-by-pathway basis; codon usage, abundance, and sequence similarity contributed predictive power. The heme biosynthesis pathway was particularly amenable to inter-kingdom exchange, with each yeast enzyme replaceable by its bacterial, human, or plant ortholog, suggesting it as a near-universally swappable pathway. DOI: http://dx.doi.org/10.7554/eLife.25093.001 PMID:28661399

  16. Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks

    PubMed Central

    Ulitsky, Igor; Shamir, Ron

    2007-01-01

    The biological interpretation of genetic interactions is a major challenge. Recently, Kelley and Ideker proposed a method to analyze together genetic and physical networks, which explains many of the known genetic interactions as linking different pathways in the physical network. Here, we extend this method and devise novel analytic tools for interpreting genetic interactions in a physical context. Applying these tools on a large-scale Saccharomyces cerevisiae data set, our analysis reveals 140 between-pathway models that explain 3765 genetic interactions, roughly doubling those that were previously explained. Model genes tend to have short mRNA half-lives and many phosphorylation sites, suggesting that their stringent regulation is linked to pathway redundancy. We also identify ‘pivot' proteins that have many physical interactions with both pathways in our models, and show that pivots tend to be essential and highly conserved. Our analysis of models and pivots sheds light on the organization of the cellular machinery as well as on the roles of individual proteins. PMID:17437029

  17. Genetics Home Reference: hidradenitis suppurativa

    MedlinePlus

    ... proteins, which is an important step in several chemical signaling pathways. One of these pathways, known as Notch signaling, is essential for the normal maturation and division of hair follicle cells and other types of skin cells. ...

  18. Genomewide Identification of Essential Genes and Fitness Determinants of Streptococcus mutans UA159

    PubMed Central

    Zeng, Lin; Culp, David J.

    2018-01-01

    ABSTRACT Transposon mutagenesis coupled with next-generation DNA sequencing (Tn-seq) is a powerful tool for discovering regions of the genome that are required for the survival of bacteria in different environments. We adapted this technique to the dental caries pathogen Streptococcus mutans UA159 and identified 11% of the genome as essential, with many genes encoding products required for replication, translation, lipid metabolism, and cell wall biogenesis. Comparison of the essential genome of S. mutans UA159 with those of selected other streptococci for which such information is available revealed several metabolic pathways and genes that are required in S. mutans, but not in some Streptococcus spp. We further identified genes that are essential for sustained growth in rich or defined medium, as well as for persistence in vivo in a rodent model of oral infection. Collectively, our results provide a novel and comprehensive view of the genes required for essential processes of S. mutans, many of which could represent potential targets for therapeutics. IMPORTANCE Tooth decay (dental caries) is a common cause of pain, impaired quality of life, and tooth loss in children and adults. It begins because of a compositional change in the microorganisms that colonize the tooth surface driven by repeated and sustained carbohydrate intake. Although several bacterial species are associated with tooth decay, Streptococcus mutans is the most common cause. Therefore, it is important to identify biological processes that contribute to the survival of S. mutans in the human mouth, with the aim of disrupting the processes with antimicrobial agents. We successfully applied Tn-seq to S. mutans, discovering genes that are required for survival, growth, and persistence, both in laboratory environments and in a mouse model of tooth decay. This work highlights new avenues for the control of an important human pathogen. PMID:29435491

  19. Regulation of Tissue Growth by the Mammalian Hippo Signaling Pathway

    PubMed Central

    Watt, Kevin I.; Harvey, Kieran F.; Gregorevic, Paul

    2017-01-01

    The integrative control of diverse biological processes such as proliferation, differentiation, apoptosis and metabolism is essential to maintain cellular and tissue homeostasis. Disruption of these underlie the development of many disease states including cancer and diabetes, as well as many of the complications that arise as a consequence of aging. These biological outputs are governed by many cellular signaling networks that function independently, and in concert, to convert changes in hormonal, mechanical and metabolic stimuli into alterations in gene expression. First identified in Drosophila melanogaster as a powerful mediator of cell division and apoptosis, the Hippo signaling pathway is a highly conserved regulator of mammalian organ size and functional capacity in both healthy and diseased tissues. Recent studies have implicated the pathway as an effector of diverse physiological cues demonstrating an essential role for the Hippo pathway as an integrative component of cellular homeostasis. In this review, we will: (a) outline the critical signaling elements that constitute the mammalian Hippo pathway, and how they function to regulate Hippo pathway-dependent gene expression and tissue growth, (b) discuss evidence that shows this pathway functions as an effector of diverse physiological stimuli and (c) highlight key questions in this developing field. PMID:29225579

  20. Evidence for the importance of personalized molecular profiling in pancreatic cancer.

    PubMed

    Lili, Loukia N; Matyunina, Lilya V; Walker, L DeEtte; Daneker, George W; McDonald, John F

    2014-03-01

    There is a growing body of evidence that targeted gene therapy holds great promise for the future treatment of cancer. A crucial step in this therapy is the accurate identification of appropriate candidate genes/pathways for targeted treatment. One approach is to identify variant genes/pathways that are significantly enriched in groups of afflicted individuals relative to control subjects. However, if there are multiple molecular pathways to the same cancer, the molecular determinants of the disease may be heterogeneous among individuals and possibly go undetected by group analyses. In an effort to explore this question in pancreatic cancer, we compared the most significantly differentially expressed genes/pathways between cancer and control patient samples as determined by group versus personalized analyses. We found little to no overlap between genes/pathways identified by gene expression profiling using group analyses relative to those identified by personalized analyses. Our results indicate that personalized and not group molecular profiling is the most appropriate approach for the identification of putative candidates for targeted gene therapy of pancreatic and perhaps other cancers with heterogeneous molecular etiology.

  1. A genomics resource for investigating regulation of essential oil production in Lavandula angustifolia.

    PubMed

    Lane, Alexander; Boecklemann, Astrid; Woronuk, Grant N; Sarker, Lukman; Mahmoud, Soheil S

    2010-03-01

    We are developing Lavandula angustifolia (lavender) as a model system for investigating molecular regulation of essential oil (a mixture of mono- and sesquiterpenes) production in plants. As an initial step toward building the necessary 'genomics toolbox' for this species, we constructed two cDNA libraries from lavender leaves and flowers, and obtained sequence information for 14,213 high-quality expressed sequence tags (ESTs). Based on homology to sequences present in GenBank, our EST collection contains orthologs for genes involved in the 1-deoxy-D: -xylulose-5-phosphate (DXP) and the mevalonic acid (MVA) pathways of terpenoid biosynthesis, and for known terpene synthases and prenyl transferases. To gain insight into the regulation of terpene metabolism in lavender flowers, we evaluated the transcriptional activity of the genes encoding for 1-deoxy-D: -xylulose-5-phosphate synthase (DXS) and HMG-CoA reductase (HMGR), which represent regulatory steps of the DXP and MVA pathways, respectively, in glandular trichomes (oil glands) by real-time PCR. While HMGR transcripts were barely detectable, DXS was heavily expressed in this tissue, indicating that essential oil constituents are predominantly produced through the DXP pathway in lavender glandular trichomes. As anticipated, the linalool synthase (LinS)-the gene responsible for the production of linalool, a major constituent of lavender essential oil-was also strongly expressed in glands. Surprisingly, the most abundant transcript in floral glandular trichomes corresponded to a sesquiterpene synthase (cadinene synthase, CadS), although sesquiterpenes are minor constituents of lavender essential oils. This result, coupled to the weak activity of the MVA pathway (the main route for sesquiterpene production) in trichomes, indicates that precursor supply may represent a bottleneck in the biosynthesis of sesquiterpenes in lavender flowers.

  2. Chemical Composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, Levisticum officinale, against UMSCC1 head and neck squamous carcinoma cells.

    PubMed

    Sertel, Serkan; Eichhorn, Tolga; Plinkert, Peter K; Efferth, Thomas

    2011-01-01

    Oral squamous cell carcinoma (OSCC) is a challenging disease with a high mortality rate. Natural products represent a valuable source for the development of novel anticancer drugs. We investigated the cytotoxic potential of essential oil from the leaves of a medicinal plant, Levisticum officinale (lovage) on head and neck squamous carcinoma cells (HNSCC). Cytotoxicity of lovage essential oil was investigated on the HNSCC cell line, UMSCC1. Additionally, we performed pharmacogenomics analyses. Lovage essential oil extract had an IC₅₀ value of 292.6 μg/ml. Genes involved in apoptosis, cancer, cellular growth and cell cycle regulation were the most prominently affected in microarray analyses. The three pathways to be most significantly regulated were extracellular signal-regulated kinase 5 (ERK5) signaling, integrin-linked kinase (ILK) signaling, virus entry via endocytic pathways and p53 signaling. Levisticum officinale essential oil inhibits human HNSCC cell growth.

  3. Uridine monophosphate kinase as potential target for tuberculosis: from target to lead identification.

    PubMed

    Arvind, Akanksha; Jain, Vaibhav; Saravanan, Parameswaran; Mohan, C Gopi

    2013-12-01

    Mycobacterium tuberculosis (Mtb) is a causative agent of tuberculosis (TB) disease, which has affected approximately 2 billion people worldwide. Due to the emergence of resistance towards the existing drugs, discovery of new anti-TB drugs is an important global healthcare challenge. To address this problem, there is an urgent need to identify new drug targets in Mtb. In the present study, the subtractive genomics approach has been employed for the identification of new drug targets against TB. Screening the Mtb proteome using the Database of Essential Genes (DEG) and human proteome resulted in the identification of 60 key proteins which have no eukaryotic counterparts. Critical analysis of these proteins using Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways database revealed uridine monophosphate kinase (UMPK) enzyme as a potential drug target for developing novel anti-TB drugs. Homology model of Mtb-UMPK was constructed for the first time on the basis of the crystal structure of E. coli-UMPK, in order to understand its structure-function relationships, and which would in turn facilitate to perform structure-based inhibitor design. Furthermore, the structural similarity search was carried out using physiological inhibitor UTP of Mtb-UMPK to virtually screen ZINC database. Retrieved hits were further screened by implementing several filters like ADME and toxicity followed by molecular docking. Finally, on the basis of the Glide docking score and the mode of binding, 6 putative leads were identified as inhibitors of this enzyme which can potentially emerge as future drugs for the treatment of TB.

  4. Prediction of Pathway Activation by Xenobiotic-Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobioticresponsive transcription factors (TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  5. Use of Putative Adverse Outcome Pathways for Chemical Hazard Identification

    EPA Science Inventory

    The Adverse Outcome Pathway (AOP) framework provides a knowledge infrastructure for evaluating health effects of environmental chemicals. In this work we are examining proof-of-concept issues in the development and prospective application of AOPs in chemical safety. Key outputs i...

  6. Speech Perception Engages a General Timer: Evidence from a Divided Attention Word Identification Task

    ERIC Educational Resources Information Center

    Casini, Laurence; Burle, Boris; Nguyen, Noel

    2009-01-01

    Time is essential to speech. The duration of speech segments plays a critical role in the perceptual identification of these segments, and therefore in that of spoken words. Here, using a French word identification task, we show that vowels are perceived as shorter when attention is divided between two tasks, as compared to a single task control…

  7. Eliminating the dichotomy between theory and practice in talent identification and development: considering the role of psychology.

    PubMed

    Abbott, Angela; Collins, Dave

    2004-05-01

    It is acknowledged that appropriate support and training are essential if talented individuals are to fulfil their potential. The early identification of talented athletes is an increasingly important consideration for researchers and practitioners alike. Once talented individuals have been detected, crucial but limited support resources can be optimally deployed to ensure that their needs are met and that their gifts are developed. However, there is considerable disagreement among experts on what talent is, and which factors can reliably be used within talent identification processes. This paper explores prerequisites to success in sport, and the comparative efficacy of employing these prerequisites within talent identification schemes. It is proposed that talent needs to be reconceptualized so that talent identification and talent development processes are perceived to be dynamic and interrelated. Additionally, the need to place greater emphasis on the capacity of a child to develop in sport and the psychological factors that underpin this process is highlighted. To this end, it is advocated that talent identification and development schemes, while emphasizing the multidimensional nature of talent, need to recognize the essential role of psychology in the ability of individuals to fulfil their sporting potential.

  8. Pathway Inspector: a pathway based web application for RNAseq analysis of model and non-model organisms

    PubMed Central

    Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano

    2017-01-01

    Abstract Summary: Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Availability and Implementation: Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact: paolo.fontana@fmach.it PMID:28158604

  9. RAS oncogene-mediated deregulation of the transcriptome: from molecular signature to function.

    PubMed

    Schäfer, Reinhold; Sers, Christine

    2011-01-01

    Transcriptome analysis of cancer cells has developed into a standard procedure to elucidate multiple features of the malignant process and to link gene expression to clinical properties. Gene expression profiling based on microarrays provides essentially correlative information and needs to be transferred to the functional level in order to understand the activity and contribution of individual genes or sets of genes as elements of the gene signature. To date, there exist significant gaps in the functional understanding of gene expression profiles. Moreover, the processes that drive the profound transcriptional alterations that characterize cancer cells remain mainly elusive. We have used pathway-restricted gene expression profiles derived from RAS oncogene-transformed cells and from RAS-expressing cancer cells to identify regulators downstream of the MAPK pathway.We describe the role of epigenetic regulation exemplified by the control of several immune genes in generic cell lines and colorectal cancer cells, particularly the functional interaction between signaling and DNA methylation. Moreover, we assess the role of the architectural transcription factor high mobility AT-hook 2 (HMGA2) as a regulator of the RAS-responsive transcriptome in ovarian epithelial cells. Finally, we describe an integrated approach combining pathway interference in colorectal cancer cells, gene expression profiling and computational analysis of regulatory elements of deregulated target genes. This strategy resulted in the identification of Y-box binding protein 1 (YBX1) as a regulator of MAPK-dependent proliferation and gene expression. The implications for a therapeutic application of HMGA2 gene silencing and the role of YBX1 as a prognostic factor are discussed.

  10. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence-Function Space and Genome Context to Discover Novel Functions.

    PubMed

    Gerlt, John A

    2017-08-22

    The exponentially increasing number of protein and nucleic acid sequences provides opportunities to discover novel enzymes, metabolic pathways, and metabolites/natural products, thereby adding to our knowledge of biochemistry and biology. The challenge has evolved from generating sequence information to mining the databases to integrating and leveraging the available information, i.e., the availability of "genomic enzymology" web tools. Web tools that allow identification of biosynthetic gene clusters are widely used by the natural products/synthetic biology community, thereby facilitating the discovery of novel natural products and the enzymes responsible for their biosynthesis. However, many novel enzymes with interesting mechanisms participate in uncharacterized small-molecule metabolic pathways; their discovery and functional characterization also can be accomplished by leveraging information in protein and nucleic acid databases. This Perspective focuses on two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence-function space in protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow the protein and genome sequence databases to be leveraged for novel insights into enzymological problems.

  11. Genomic Enzymology: Web Tools for Leveraging Protein Family Sequence–Function Space and Genome Context to Discover Novel Functions

    PubMed Central

    2017-01-01

    The exponentially increasing number of protein and nucleic acid sequences provides opportunities to discover novel enzymes, metabolic pathways, and metabolites/natural products, thereby adding to our knowledge of biochemistry and biology. The challenge has evolved from generating sequence information to mining the databases to integrating and leveraging the available information, i.e., the availability of “genomic enzymology” web tools. Web tools that allow identification of biosynthetic gene clusters are widely used by the natural products/synthetic biology community, thereby facilitating the discovery of novel natural products and the enzymes responsible for their biosynthesis. However, many novel enzymes with interesting mechanisms participate in uncharacterized small-molecule metabolic pathways; their discovery and functional characterization also can be accomplished by leveraging information in protein and nucleic acid databases. This Perspective focuses on two genomic enzymology web tools that assist the discovery novel metabolic pathways: (1) Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST) for generating sequence similarity networks to visualize and analyze sequence–function space in protein families and (2) Enzyme Function Initiative-Genome Neighborhood Tool (EFI-GNT) for generating genome neighborhood networks to visualize and analyze the genome context in microbial and fungal genomes. Both tools have been adapted to other applications to facilitate target selection for enzyme discovery and functional characterization. As the natural products community has demonstrated, the enzymology community needs to embrace the essential role of web tools that allow the protein and genome sequence databases to be leveraged for novel insights into enzymological problems. PMID:28826221

  12. Biochemical-Pathway Diversity in Archabacteria

    DTIC Science & Technology

    1988-06-28

    8a NAME OF_ FUNDINGISFF0N Gr ... FFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATION (If applicable) Office of Naval Researh ONR... BIOLOGY AND EVOLUTION OF MICROORGANISMS (July 24-28. 1989) in a talk entitled "Evolution of Metabolic Pathways". TRAINING ACTIVITIES: Dr. Raj Bhatnagar, a

  13. Targeting the Nonmevalonate Pathway in Burkholderia cenocepacia Increases Susceptibility to Certain β-Lactam Antibiotics.

    PubMed

    Sass, Andrea; Everaert, Annelien; Van Acker, Heleen; Van den Driessche, Freija; Coenye, Tom

    2018-05-01

    The nonmevalonate pathway is the sole pathway for isoprenoid biosynthesis in Burkholderia cenocepacia and is possibly a novel target for the development of antibacterial chemotherapy. The goals of the present study were to evaluate the essentiality of dxr , the second gene of the nonmevalonate pathway, in B. cenocepacia and to determine whether interfering with the nonmevalonate pathway increases susceptibility toward antibiotics. To this end, a rhamnose-inducible conditional dxr knockdown mutant of B. cenocepacia strain K56-2 ( B. cenocepacia K56-2 dxr ) was constructed, using a plasmid which enables the delivery of a rhamnose-inducible promoter in the chromosome. Expression of dxr is essential for bacterial growth; the growth defect observed in the dxr mutant could be complemented by expressing dxr in trans under the control of a constitutive promoter, but not by providing 2- C -methyl-d-erythritol-4-phosphate, the reaction product of DXR (1-deoxy-d-xylulose 5-phosphate reductoisomerase). B. cenocepacia K56-2 dxr showed markedly increased susceptibility to the β-lactam antibiotics aztreonam, ceftazidime, and cefotaxime, while susceptibility to other antibiotics was not (or was much less) affected; this increased susceptibility could also be complemented by in trans expression of dxr A similarly increased susceptibility was observed when antibiotics were combined with FR900098, a known DXR inhibitor. Our data confirm that the nonmevalonate pathway is essential in B. cenocepacia and suggest that combining potent DXR inhibitors with selected β-lactam antibiotics is a useful strategy to combat B. cenocepacia infections. Copyright © 2018 American Society for Microbiology.

  14. Morphology delimits more species than molecular genetic clusters of invasive Pilosella

    USDA-ARS?s Scientific Manuscript database

    Premise of the study: Reliable identifications of invasive species are essential for effective management. Several species of Pilosella (syn. Hieracium, Asteraceae) hawkweeds invade North America, where unreliable identification hinders their control. Here we ask (i) do morphological traits dependab...

  15. Nck-2, a Novel Src Homology2/3-containing Adaptor Protein That Interacts with the LIM-only Protein PINCH and Components of Growth Factor Receptor Kinase-signaling Pathways

    PubMed Central

    Tu, Yizeng; Li, Fugang; Wu, Chuanyue

    1998-01-01

    Many of the protein–protein interactions that are essential for eukaryotic intracellular signal transduction are mediated by protein binding modules including SH2, SH3, and LIM domains. Nck is a SH3- and SH2-containing adaptor protein implicated in coordinating various signaling pathways, including those of growth factor receptors and cell adhesion receptors. We report here the identification, cloning, and characterization of a widely expressed, Nck-related adaptor protein termed Nck-2. Nck-2 comprises primarily three N-terminal SH3 domains and one C-terminal SH2 domain. We show that Nck-2 interacts with PINCH, a LIM-only protein implicated in integrin-linked kinase signaling. The PINCH-Nck-2 interaction is mediated by the fourth LIM domain of PINCH and the third SH3 domain of Nck-2. Furthermore, we show that Nck-2 is capable of recognizing several key components of growth factor receptor kinase-signaling pathways including EGF receptors, PDGF receptor-β, and IRS-1. The association of Nck-2 with EGF receptors was regulated by EGF stimulation and involved largely the SH2 domain of Nck-2, although the SH3 domains of Nck-2 also contributed to the complex formation. The association of Nck-2 with PDGF receptor-β was dependent on PDGF activation and was mediated solely by the SH2 domain of Nck-2. Additionally, we have detected a stable association between Nck-2 and IRS-1 that was mediated primarily via the second and third SH3 domain of Nck-2. Thus, Nck-2 associates with PINCH and components of different growth factor receptor-signaling pathways via distinct mechanisms. Finally, we provide evidence indicating that a fraction of the Nck-2 and/or Nck-1 proteins are associated with the cytoskeleton. These results identify a novel Nck-related SH2- and SH3-domain–containing protein and suggest that it may function as an adaptor protein connecting the growth factor receptor-signaling pathways with the integrin-signaling pathways. PMID:9843575

  16. Application of Raman spectroscopy for direct analysis of Carlina acanthifolia subsp. utzka root essential oil.

    PubMed

    Strzemski, Maciej; Wójciak-Kosior, Magdalena; Sowa, Ireneusz; Agacka-Mołdoch, Monika; Drączkowski, Piotr; Matosiuk, Dariusz; Kurach, Łukasz; Kocjan, Ryszard; Dresler, Sławomir

    2017-11-01

    Carlina genus plants e.g. Carlina acanthifolia subsp. utzka have been still used in folk medicine of many European countries and its biological activity is mostly associated with root essential oils. In the present paper, Raman spectroscopy (RS) was applied for the first time for evaluation of essential oil distribution in root of C. acnthifolia subsp. utzka and identification of root structures containing the essential oil. Furthermore, RS technique was applied to assess chemical stability of oil during drying of plant material or distillation process. Gas chromatography-mass spectrometry was used for qualitative and quantitative analysis of the essential oil. The identity of compounds was confirmed using Raman, ATR-IR and NMR spectroscopy. Carlina oxide was found to be the main component of the oil (98.96% ± 0.15). The spectroscopic study showed the high stability of essential oil and Raman distribution analysis indicated that the oil reservoirs were localized mostly in the structures of outer layer of the root while the inner part showed nearly no signal assigned to the oil. Raman spectroscopy technique enabled rapid, non-destructive direct analysis of plant material with minimal sample preparation and allowed straightforward, unambiguous identification of the essential oil in the sample. Copyright © 2017. Published by Elsevier B.V.

  17. National Plant Diagnostic Network, Taxonomic training videos: Introduction to Aphids - Part 2

    USDA-ARS?s Scientific Manuscript database

    Training is a critical part of aphid (Hemiptera: Aphididae) identification. This video provides visual instruction on important subject areas for aphid regulatory issues. Here the subject of aphids as they relate to disease transmission, biology, identification, and pathways is addressed. Aphid topi...

  18. Dynamics of essential collective motions in proteins: Theory

    NASA Astrophysics Data System (ADS)

    Stepanova, Maria

    2007-11-01

    A general theoretical background is introduced for characterization of conformational motions in protein molecules, and for building reduced coarse-grained models of proteins, based on the statistical analysis of their phase trajectories. Using the projection operator technique, a system of coupled generalized Langevin equations is derived for essential collective coordinates, which are generated by principal component analysis of molecular dynamic trajectories. The number of essential degrees of freedom is not limited in the theory. An explicit analytic relation is established between the generalized Langevin equation for essential collective coordinates and that for the all-atom phase trajectory projected onto the subspace of essential collective degrees of freedom. The theory introduced is applied to identify correlated dynamic domains in a macromolecule and to construct coarse-grained models representing the conformational motions in a protein through a few interacting domains embedded in a dissipative medium. A rigorous theoretical background is provided for identification of dynamic correlated domains in a macromolecule. Examples of domain identification in protein G are given and employed to interpret NMR experiments. Challenges and potential outcomes of the theory are discussed.

  19. Large-scale integrative network-based analysis identifies common pathways disrupted by copy number alterations across cancers

    PubMed Central

    2013-01-01

    Background Many large-scale studies analyzed high-throughput genomic data to identify altered pathways essential to the development and progression of specific types of cancer. However, no previous study has been extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data with human protein-protein interaction networks and pathway databases to identify pathways that are commonly disrupted in many different types of cancer. Results We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers for different human cancers. Analysis with independent microarray gene expression datasets confirms that the commonly disrupted pathways can be used to identify patient subgroups with significantly different survival outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect pathways that regulate cell growth, cycle, and differentiation for tumorigenesis. Conclusions In this work, we demonstrated that the network-based integrative analysis can help to identify pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and source code are available at http://compbio.cs.umn.edu/NetPathID/. PMID:23822816

  20. EDRN-WHI Pre-Clinical Colon Ca Specimens — EDRN Public Portal

    Cancer.gov

    Specifically, it is proposed to assess plasma proteins from postmenopausal women diagnosed with colon cancer within a span of 18 months after year-3 OS blood draw and from appropriate matched controls enrolled in the WHI OS study. The range of case-control differences sought in plasma include: 1 Detection and identification of proteins that may be derived from tumor cells through the classical secreted protein pathway and through non-classical pathways (eg protein cleavage and release) or through cell turnover. 2 Detection and identification of protein changes associated with the host response that occur during tumor development and that may be related to inflammation, angiogenesis, infiltration of tumor with host cells and other processes. 3 Identification of tumor derived proteins that induce a humoral immune response in the form of autoantibodies that are detectable at the preclinical stage.

  1. Improving Teaching Effectiveness: Florida Essential Competency Studies.

    ERIC Educational Resources Information Center

    Wilson, Garfield

    The Florida Council on Teacher Education (COTE) planned and conducted statewide involvement studies to determine competencies that are essential and acceptable to the profession. This included systematic involvement procedures for gaining professional agreement on identification, assessment, implementation, and other development and research on…

  2. Characterization of rainbow trout (Oncorhynchus mykiss) spleen transcriptome and identification of immune-related genes

    USDA-ARS?s Scientific Manuscript database

    Resistance against specific diseases is affecting profitability in fish production systems including rainbow trout. Limited information is known about functions and mechanisms of the immune gene pathways in teleosts. Immunogenomics are powerful tools to determine immune-related genes/gene pathways a...

  3. Identification of a Pathway for Perfluorocompounds to Human Diet from Application of Biosolids to Agricultural Fields

    EPA Science Inventory

    Perfluoro compounds are ubiquitous contaminants in human blood. The pathways which result in near universal exposure to humans in modern societies are not clearly understood. Sources to environmental compartments and transport between compartments are only poorly studies, and thi...

  4. A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes

    PubMed Central

    Meng, Jia; Kanzaki, Gregory; Meas, Diane; Lam, Christopher K.; Crummer, Heather; Tain, Justina; Xu, H. Howard

    2013-01-01

    Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250,000 library transformants for conditional growth-inhibitory recombinant clones from two shot-gun genomic libraries of E. coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer-sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes while 18 originated from non-essential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12 fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E. coli using regulated asRNA expression. PMID:22268863

  5. Network-Based Identification of Adaptive Pathways in Evolved Ethanol-Tolerant Bacterial Populations.

    PubMed

    Swings, Toon; Weytjens, Bram; Schalck, Thomas; Bonte, Camille; Verstraeten, Natalie; Michiels, Jan; Marchal, Kathleen

    2017-11-01

    Efficient production of ethanol for use as a renewable fuel requires organisms with a high level of ethanol tolerance. However, this trait is complex and increased tolerance therefore requires mutations in multiple genes and pathways. Here, we use experimental evolution for a system-level analysis of adaptation of Escherichia coli to high ethanol stress. As adaptation to extreme stress often results in complex mutational data sets consisting of both causal and noncausal passenger mutations, identifying the true adaptive mutations in these settings is not trivial. Therefore, we developed a novel method named IAMBEE (Identification of Adaptive Mutations in Bacterial Evolution Experiments). IAMBEE exploits the temporal profile of the acquisition of mutations during evolution in combination with the functional implications of each mutation at the protein level. These data are mapped to a genome-wide interaction network to search for adaptive mutations at the level of pathways. The 16 evolved populations in our data set together harbored 2,286 mutated genes with 4,470 unique mutations. Analysis by IAMBEE significantly reduced this number and resulted in identification of 90 mutated genes and 345 unique mutations that are most likely to be adaptive. Moreover, IAMBEE not only enabled the identification of previously known pathways involved in ethanol tolerance, but also identified novel systems such as the AcrAB-TolC efflux pump and fatty acids biosynthesis and even allowed to gain insight into the temporal profile of adaptation to ethanol stress. Furthermore, this method offers a solid framework for identifying the molecular underpinnings of other complex traits as well. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  6. A first-in-man study of 68Ga-nanocolloid PET-CT sentinel lymph node imaging in prostate cancer demonstrates aberrant lymphatic drainage pathways.

    PubMed

    Doughton, Jacki A; Hofman, Michael S; Eu, Peter; Hicks, Rodney J; Williams, Scott G

    2018-05-04

    Purpose: To assess feasibility, safety and utility of a novel 68 Ga-nanocolloid radio-tracer with PET-CT lymphoscintigraphy for identification of sentinel lymph nodes (SLN). Methods: Pilot study of patients from a tertiary cancer hospital who required insertion of gold fiducials for prostate cancer radiation therapy. Participation did not affect cancer management. Ultrasound-guided transperineal intra-prostatic injection of PET tracer (iron oxide nanocolloid labelled with gallium-68) after placement of fiducials. PET-CT lymphoscintigraphy imaging at approximately 45 and 100 minutes after in-jection of tracer. The study was monitored using Bayesian trial design with the as-sumption that at least one sentinel lymph node (SLN) could be identified in at least two-thirds of cases with >80% confidence. Results: SLN identification was successful in all 5 participants, allowing completion of the pilot study as per protocol. No adverse effects were observed. Unexpected po-tential pathways for transit of malignant cells as well as expected regional drainage pathways were discovered. Rapid tracer drainage to pelvic bone, perivesical, mesorec-tal, inguinal and Virchow's nodes was identified. Conclusion: SLN identification using 68 Ga-nanocolloid PET-CT can be successfully performed. Non-traditional pathways of disease spread were identified including drainage to pelvic bone as well as perivesical, mesorectal, inguinal and Virchow's nodes. Prevalence of both aberrant and non-lymphatic pathways of spread should be further investigated with this technique. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  7. Definition of RNA polymerase II CoTC terminator elements in the human genome.

    PubMed

    Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J; Dye, Michael J

    2013-04-25

    Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Myosin1D is an evolutionarily conserved regulator of animal left-right asymmetry.

    PubMed

    Juan, Thomas; Géminard, Charles; Coutelis, Jean-Baptiste; Cerezo, Delphine; Polès, Sophie; Noselli, Stéphane; Fürthauer, Maximilian

    2018-05-16

    The establishment of left-right (LR) asymmetry is fundamental to animal development, but the identification of a unifying mechanism establishing laterality across different phyla has remained elusive. A cilia-driven, directional fluid flow is important for symmetry breaking in numerous vertebrates, including zebrafish. Alternatively, LR asymmetry can be established independently of cilia, notably through the intrinsic chirality of the acto-myosin cytoskeleton. Here, we show that Myosin1D (Myo1D), a previously identified regulator of Drosophila LR asymmetry, is essential for the formation and function of the zebrafish LR organizer (LRO), Kupffer's vesicle (KV). Myo1D controls the orientation of LRO cilia and interacts functionally with the planar cell polarity (PCP) pathway component VanGogh-like2 (Vangl2), to shape a productive LRO flow. Our findings identify Myo1D as an evolutionarily conserved regulator of animal LR asymmetry, and show that functional interactions between Myo1D and PCP are central to the establishment of animal LR asymmetry.

  9. The Journey of the Autophagosome through Mammalian Cell Organelles and Membranes.

    PubMed

    Molino, Diana; Zemirli, Naïma; Codogno, Patrice; Morel, Etienne

    2017-02-17

    Autophagy is an intracellular degradation process carried out by a double-membrane organelle, termed the autophagosome, which sequesters cytoplasmic material destined for lysosomal degradation and recycling. Autophagy and autophagosome biogenesis are highly conserved processes in eukaryotes and are essential for cell survival, stress responses, and homeostasis. Autophagosomes are dynamic and complex organelles that can originate from several different membrane compartments. Autophagosomes traffic through the cell to fuse with lysosomes or other compartments. Despite identification of key proteins necessary for autophagosome assembly and transport, such as those encoded by the autophagy-related genes, the relationship and interdependence of the autophagosome with other intracellular endo-membranes, including those of organelles involved in exocytosis and endocytic trafficking pathways, are still poorly understood. Here we discuss formation of autophagosomes, the journey of these organelles through the cell, and their close interplay with other mammalian organelles from points of view of signalization platforms and membrane dynamics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Reliable Determinations of Protein-Ligand Interactions by Direct ESI-MS Measurements. Are We There Yet?

    NASA Astrophysics Data System (ADS)

    Kitova, Elena N.; El-Hawiet, Amr; Schnier, Paul D.; Klassen, John S.

    2012-03-01

    The association-dissociation of noncovalent interactions between protein and ligands, such as other proteins, carbohydrates, lipids, DNA, or small molecules, are critical events in many biological processes. The discovery and characterization of these interactions is essential to a complete understanding of biochemical reactions and pathways and to the design of novel therapeutic agents that may be used to treat a variety of diseases and infections. Over the last 20 y, electrospray ionization mass spectrometry (ESI-MS) has emerged as a versatile tool for the identification and quantification of protein-ligand interactions in vitro. Here, we describe the implementation of the direct ESI-MS assay for the determination of protein-ligand binding stoichiometry and affinity. Additionally, we outline common sources of error encountered with these measurements and various strategies to overcome them. Finally, we comment on some of the outstanding challenges associated with the implementation of the assay and highlight new areas where direct ESI-MS measurements are expected to make significant contributions in the future.

  11. Littoral transport rates in the Santa Barbara Littoral Cell: a process-based model analysis

    USGS Publications Warehouse

    Elias, E. P. L.; Barnard, Patrick L.; Brocatus, John

    2009-01-01

    Identification of the sediment transport patterns and pathways is essential for sustainable coastal zone management of the heavily modified coastline of Santa Barbara and Ventura County (California, USA). A process-based model application, based on Delft3D Online Morphology, is used to investigate the littoral transport potential along the Santa Barbara Littoral Cell (between Point Conception and Mugu Canyon). An advanced optimalization procedure is applied to enable annual sediment transport computations by reducing the ocean wave climate in 10 wave height - direction classes. Modeled littoral transport rates compare well with observed dredging volumes, and erosion or sedimentation hotspots coincide with the modeled divergence and convergence of the transport gradients. Sediment transport rates are strongly dependent on the alongshore variation in wave height due to wave sheltering, diffraction and focusing by the Northern Channel Islands, and the local orientation of the geologically-controlled coastline. Local transport gradients exceed the net eastward littoral transport, and are considered a primary driver for hot-spot erosion.

  12. Identification of Bombyx mori Akt and its phosphorylation by bombyxin stimulation.

    PubMed

    Nagata, Shinji; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Nagasawa, Hiromichi

    2008-11-01

    Akt, a Ser/Thr protein kinase involved in insulin signaling, was identified from the silkworm, Bombyx mori. Bombyx Akt (BomAkt) is composed of 493 amino acid residues including regions conserved in other Akts: the Pleckstrin homology and kinase domains, and a dual phosphorylation site essential for kinase activation. Commercially available antibodies against mammalian Akt and phosphoAkt were able to recognize BomAkt and phosphorylated BomAkt in HEK293 cells expressing BomAkt. Additionally, phosphorylation of BomAkt was detectable in insulin-like growth factor (IGF)-I stimulated-HEK293 cells expressing BomAkt. RT-PCR and immunoblotting analyses revealed that BomAkt is expressed ubiquitously in Bombyx larvae. Phosphorylation of BomAkt was observed both in the isolated fat body after exposure to bombyxin, an endogenous insulin-like peptide, and in the larval fat body by refeeding a diet after starvation. These results suggest that dietary intake may activate the insulin signaling pathway, including Akt, through bombyxin action in B. mori.

  13. Systematic discovery of Xist RNA binding proteins

    PubMed Central

    Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A.; Bharadwaj, Maheetha; Calabrese, J. Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y.

    2015-01-01

    Summary Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA- protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3′ RNA processing machinery. Xist, an essential lncRNA for X-chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK that participates in Xist-mediated gene silencing and histone modifications, but not Xist localization and Drosophila Split ends homolog Spen that interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628

  14. Identification of the Interactome of a Palmitoylated Membrane Protein, Phosphatidylinositol 4-Kinase Type II Alpha.

    PubMed

    Gokhale, Avanti; Ryder, Pearl V; Zlatic, Stephanie A; Faundez, Victor

    2016-01-01

    Phosphatidylinositol 4-kinases (PI4K) are enzymes responsible for the production of phosphatidylinositol 4-phosphates, important intermediates in several cell signaling pathways. PI4KIIα is the most abundant membrane-associated kinase in mammalian cells and is involved in a variety of essential cellular functions. However, the precise role(s) of PI4KIIα in the cell is not yet completely deciphered. Here we present an experimental protocol that uses a chemical cross-linker, DSP, combined with immunoprecipitation and immunoaffinity purification to identify novel PI4KIIα interactors. As predicted, PI4KIIα participates in transient, low-affinity interactions that are stabilized by the use of DSP. Using this optimized protocol we have successfully identified actin cytoskeleton regulators-the WASH complex and RhoGEF1, as major novel interactors of PI4KIIα. While this chapter focuses on the PI4KIIα interactome, this protocol can and has been used to generate other membrane interactome networks.

  15. Bioinformatics in protein kinases regulatory network and drug discovery.

    PubMed

    Chen, Qingfeng; Luo, Haiqiong; Zhang, Chengqi; Chen, Yi-Ping Phoebe

    2015-04-01

    Protein kinases have been implicated in a number of diseases, where kinases participate many aspects that control cell growth, movement and death. The deregulated kinase activities and the knowledge of these disorders are of great clinical interest of drug discovery. The most critical issue is the development of safe and efficient disease diagnosis and treatment for less cost and in less time. It is critical to develop innovative approaches that aim at the root cause of a disease, not just its symptoms. Bioinformatics including genetic, genomic, mathematics and computational technologies, has become the most promising option for effective drug discovery, and has showed its potential in early stage of drug-target identification and target validation. It is essential that these aspects are understood and integrated into new methods used in drug discovery for diseases arisen from deregulated kinase activity. This article reviews bioinformatics techniques for protein kinase data management and analysis, kinase pathways and drug targets and describes their potential application in pharma ceutical industry. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Identification of a pre-active conformation of a pentameric channel receptor

    PubMed Central

    Menny, Anaïs; Lefebvre, Solène N; Schmidpeter, Philipp AM; Drège, Emmanuelle; Fourati, Zaineb; Delarue, Marc; Edelstein, Stuart J; Nimigean, Crina M; Joseph, Delphine; Corringer, Pierre-Jean

    2017-01-01

    Pentameric ligand-gated ion channels (pLGICs) mediate fast chemical signaling through global allosteric transitions. Despite the existence of several high-resolution structures of pLGICs, their dynamical properties remain elusive. Using the proton-gated channel GLIC, we engineered multiple fluorescent reporters, each incorporating a bimane and a tryptophan/tyrosine, whose close distance causes fluorescence quenching. We show that proton application causes a global compaction of the extracellular subunit interface, coupled to an outward motion of the M2-M3 loop near the channel gate. These movements are highly similar in lipid vesicles and detergent micelles. These reorganizations are essentially completed within 2 ms and occur without channel opening at low proton concentration, indicating that they report a pre-active intermediate state in the transition pathway toward activation. This provides a template to investigate the gating of eukaryotic neurotransmitter receptors, for which intermediate states also participate in activation. DOI: http://dx.doi.org/10.7554/eLife.23955.001 PMID:28294942

  17. Early identification and treatment of communication and swallowing deficits in Parkinson disease.

    PubMed

    Ciucci, Michelle R; Grant, Laura M; Rajamanickam, Eunice S Paul; Hilby, Breanna L; Blue, Katherine V; Jones, Corinne A; Kelm-Nelson, Cynthia A

    2013-08-01

    Parkinson disease (PD) is a complex, progressive, neurodegenerative disorder that leads to a wide range of deficits including fine and gross sensorimotor impairment, autonomic dysfunction, mood disorders, and cognitive decline. Traditionally, the focus for diagnosis and treatment has been on sensorimotor impairment related to dopamine depletion. It is now widely recognized, however, that PD-related pathology affects multiple central nervous system neurotransmitters and pathways. Communication and swallowing functions can be impaired even in the early stages, significantly affecting health and quality of life. The purpose of this article is to review the literature on early intervention for communication and swallowing impairment in PD. Overarching themes were that (1) studies and interpretation of data from studies in early PD are limited; (2) best therapy practices have not been established, in part due to the heterogeneous nature of PD; and (3) as communication and swallowing problems are pervasive in PD, further treatment research is essential. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  18. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7

    PubMed Central

    Ismail, Hanafy M.; Barton, Victoria; Phanchana, Matthew; Charoensutthivarakul, Sitthivut; Wong, Michael H. L.; Hemingway, Janet; Biagini, Giancarlo A.; O’Neill, Paul M.; Ward, Stephen A.

    2016-01-01

    The artemisinin (ART)-based antimalarials have contributed significantly to reducing global malaria deaths over the past decade, but we still do not know how they kill parasites. To gain greater insight into the potential mechanisms of ART drug action, we developed a suite of ART activity-based protein profiling probes to identify parasite protein drug targets in situ. Probes were designed to retain biological activity and alkylate the molecular target(s) of Plasmodium falciparum 3D7 parasites in situ. Proteins tagged with the ART probe can then be isolated using click chemistry before identification by liquid chromatography–MS/MS. Using these probes, we define an ART proteome that shows alkylated targets in the glycolytic, hemoglobin degradation, antioxidant defense, and protein synthesis pathways, processes essential for parasite survival. This work reveals the pleiotropic nature of the biological functions targeted by this important class of antimalarial drugs. PMID:26858419

  19. Nontranscriptional regulation of SYK by the coactivator OCA-B is required at multiple stages of B cell development.

    PubMed

    Siegel, Rachael; Kim, Unkyu; Patke, Alina; Yu, Xin; Ren, Xiaodi; Tarakhovsky, Alexander; Roeder, Robert G

    2006-05-19

    OCA-B was originally identified as a nuclear transcriptional coactivator that is essential for antigen-driven immune responses. The later identification of a membrane bound, myristoylated form of OCA-B suggested additional, unique functions in B cell signaling pathways. This study has shown that OCA-B also functions in the pre-B1-to-pre-B2 cell transition and, most surprisingly, that it directly interacts with SYK, a tyrosine kinase critical for pre-BCR and BCR signaling. This unprecedented type of interaction-a transcriptional coactivator with a signaling kinase-occurs in the cytoplasm and directly regulates SYK stability. This study indicates that OCA-B is required for pre-BCR and BCR signaling at multiple stages of B cell development through its nontranscriptional regulation of SYK. Combined with the deregulation of OCA-B target genes, this may help explain the multitude of defects observed in B cell development and immune responses of Oca-b-/- mice.

  20. Sequencing of the Cheese Microbiome and Its Relevance to Industry.

    PubMed

    Yeluri Jonnala, Bhagya R; McSweeney, Paul L H; Sheehan, Jeremiah J; Cotter, Paul D

    2018-01-01

    The microbiota of cheese plays a key role in determining its organoleptic and other physico-chemical properties. It is essential to understand the various contributions, positive or negative, of these microbial components in order to promote the growth of desirable taxa and, thus, characteristics. The recent application of high throughput DNA sequencing (HTS) facilitates an even more accurate identification of these microbes, and their functional properties, and has the potential to reveal those microbes, and associated pathways, responsible for favorable or unfavorable characteristics. This technology also facilitates a detailed analysis of the composition and functional potential of the microbiota of milk, curd, whey, mixed starters, processing environments, and how these contribute to the final cheese microbiota, and associated characteristics. Ultimately, this information can be harnessed by producers to optimize the quality, safety, and commercial value of their products. In this review we highlight a number of key studies in which HTS was employed to study the cheese microbiota, and pay particular attention to those of greatest relevance to industry.

  1. Identification of a Golgi apparatus protein complex important for the asexual erythrocytic cycle of the malaria parasite Plasmodium falciparum.

    PubMed

    Hallée, Stéphanie; Thériault, Catherine; Gagnon, Dominic; Kehrer, Jessica; Frischknecht, Friedrich; Mair, Gunnar R; Richard, Dave

    2018-03-26

    Compared with other eukaryotic cell types, malaria parasites appear to possess a more rudimentary Golgi apparatus being composed of dispersed, unstacked cis and trans-cisternae. Despite playing a central role in the secretory pathway of the parasite, few Plasmodium Golgi resident proteins have been characterised. We had previously identified a new Golgi resident protein of unknown function, which we had named Golgi Protein 1, and now show that it forms a complex with a previously uncharacterised transmembrane protein (Golgi Protein 2, GP2). The Golgi Protein complex localises to the cis-Golgi throughout the erythrocytic cycle and potentially also during the mosquito stages. Analysis of parasite strains where GP1 expression is conditionally repressed and/or the GP2 gene is inactivated reveals that though the Golgi protein complex is not essential at any stage of the parasite life cycle, it is important for optimal asexual development in the blood stages. © 2018 John Wiley & Sons Ltd.

  2. Identification of a small molecule inhibitor of Ebola virus genome replication and transcription using in silico screening.

    PubMed

    Easton, Victoria; McPhillie, Martin; Garcia-Dorival, Isabel; Barr, John N; Edwards, Thomas A; Foster, Richard; Fishwick, Colin; Harris, Mark

    2018-06-02

    Ebola virus (EBOV) causes a severe haemorrhagic fever in humans and has a mortality rate over 50%. With no licensed drug treatments available, EBOV poses a significant threat. Investigations into possible therapeutics have been severely hampered by the classification of EBOV as a BSL4 pathogen. Here, we describe a drug discovery pathway combining in silico screening of compounds predicted to bind to a hydrophobic pocket on the nucleoprotein (NP); with a robust and rapid EBOV minigenome assay for inhibitor validation at BSL2. One compound (MCCB4) was efficacious (EC 50 4.8 μM), exhibited low cytotoxicity (CC 50  > 100 μM) and was specific, with no effect on either a T7 RNA polymerase driven firefly luciferase or a Bunyamwera virus minigenome. Further investigations revealed that this small molecule inhibitor was able to outcompete established replication complexes, an essential aspect for a potential EBOV treatment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Long non-coding RNAs as regulators of the endocrine system

    PubMed Central

    Knoll, Marko; Lodish, Harvey F.; Sun, Lei

    2015-01-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers. PMID:25560704

  4. Long non-coding RNAs as regulators of the endocrine system.

    PubMed

    Knoll, Marko; Lodish, Harvey F; Sun, Lei

    2015-03-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers.

  5. [Immune checkpoints inhibitors: Recent data from ASCO's meeting 2017 and perspectives].

    PubMed

    Kfoury, Maria; Disdero, Valentine; Vicier, Cécilé; Le Saux, Olivia; Gougis, Paul; Sajous, Christophe; Vignot, Stéphane

    2018-06-19

    Immune checkpoint inhibitors anti-PD-1, anti-PD-L1 and anti-CTLA-4 have been in development in several indications and have changed the face of cancer patients' management. Cancer immunotherapy was central in ASCO's meeting 2017. The identification of patients who could benefit most from immune checkpoint inhibitors is essential. The predictive value of PD-L1 status remains insufficient to select patients who could respond to immunotherapy. An extended search for new biomarkers predictive of response (INF-γ, mutational load) is ongoing, in order to better select responders. Immune checkpoint inhibitors have mainly been developed as monotherapy. However, the low response rate, between 10 and 30%, and the occurrence of resistance, contributes to the increment of new therapeutic strategies. This review summarizes the results of combination trials of two immune checkpoint inhibitors, combination of immunotherapy with conventional chemotherapy, radiotherapy or targeted therapies active on the oncogenic addiction pathway. Copyright © 2018 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  6. An integrative somatic mutation analysis to identify pathways linked with survival outcomes across 19 cancer types

    PubMed Central

    Park, Sunho; Kim, Seung-Jun; Yu, Donghyeon; Peña-Llopis, Samuel; Gao, Jianjiong; Park, Jin Suk; Chen, Beibei; Norris, Jessie; Wang, Xinlei; Chen, Min; Kim, Minsoo; Yong, Jeongsik; Wardak, Zabi; Choe, Kevin; Story, Michael; Starr, Timothy; Cheong, Jae-Ho; Hwang, Tae Hyun

    2016-01-01

    Motivation: Identification of altered pathways that are clinically relevant across human cancers is a key challenge in cancer genomics. Precise identification and understanding of these altered pathways may provide novel insights into patient stratification, therapeutic strategies and the development of new drugs. However, a challenge remains in accurately identifying pathways altered by somatic mutations across human cancers, due to the diverse mutation spectrum. We developed an innovative approach to integrate somatic mutation data with gene networks and pathways, in order to identify pathways altered by somatic mutations across cancers. Results: We applied our approach to The Cancer Genome Atlas (TCGA) dataset of somatic mutations in 4790 cancer patients with 19 different types of tumors. Our analysis identified cancer-type-specific altered pathways enriched with known cancer-relevant genes and targets of currently available drugs. To investigate the clinical significance of these altered pathways, we performed consensus clustering for patient stratification using member genes in the altered pathways coupled with gene expression datasets from 4870 patients from TCGA, and multiple independent cohorts confirmed that the altered pathways could be used to stratify patients into subgroups with significantly different clinical outcomes. Of particular significance, certain patient subpopulations with poor prognosis were identified because they had specific altered pathways for which there are available targeted therapies. These findings could be used to tailor and intensify therapy in these patients, for whom current therapy is suboptimal. Availability and implementation: The code is available at: http://www.taehyunlab.org. Contact: jhcheong@yuhs.ac or taehyun.hwang@utsouthwestern.edu or taehyun.cs@gmail.com Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26635139

  7. Identification of Intermediate in Hepatitis B Virus CCC DNA Formation and Sensitive and Selective CCC DNA Detection.

    PubMed

    Luo, Jun; Cui, Xiuji; Gao, Lu; Hu, Jianming

    2017-06-21

    The hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC to CCC DNA conversion, two 3' exonucleases Exo I and Exo III, in combination were used to degrade all DNA strands with a free 3' end, which would nevertheless preserve closed circular DNA, either single-stranded (SS) or double-stranded (DS). Indeed, a RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA or cM-RC DNA) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5' end of the plus strand in RC DNA, suggesting that minus strand closing can occur before plus strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA is the molecular basis of viral persistence, by serving as the viral transcriptional template. CCC DNA is converted, in a multi-step and ill-understood process, from a relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. Copyright © 2017 American Society for Microbiology.

  8. Identification of an Intermediate in Hepatitis B Virus Covalently Closed Circular (CCC) DNA Formation and Sensitive and Selective CCC DNA Detection

    PubMed Central

    Luo, Jun; Cui, Xiuji; Gao, Lu

    2017-01-01

    ABSTRACT Hepatitis B virus (HBV) covalently closed circular (CCC) DNA functions as the only viral template capable of coding for all the viral RNA species and is thus essential to initiate and sustain viral replication. CCC DNA is converted, in a multistep and ill-understood process, from a relaxed circular (RC) DNA, in which neither of the two DNA strands is covalently closed. To detect putative intermediates during RC DNA to CCC DNA conversion, two 3′ exonucleases, exonuclease I (Exo I) and Exo III, were used in combination to degrade all DNA strands with a free 3′ end, which would nevertheless preserve closed circular DNA in either single-stranded (SS) or double-stranded (DS) form. Indeed, an RC DNA species with a covalently closed minus strand but an open plus strand (closed minus-strand RC DNA [cM-RC DNA]) was detected by this approach. Further analyses indicated that at least some of the plus strands in such a putative intermediate likely still retained the RNA primer that is attached to the 5′ end of the plus strand in RC DNA, suggesting that minus-strand closing can occur before plus-strand processing. Furthermore, the same nuclease treatment proved to be useful for sensitive and specific detection of CCC DNA by removing all DNA species other than closed circular DNA. Application of these and similar approaches may allow the identification of additional intermediates during CCC DNA formation and facilitate specific and sensitive detection of CCC DNA, which should help elucidate the pathways of CCC DNA formation and the factors involved. IMPORTANCE The hepatitis B virus (HBV) covalently closed circular (CCC) DNA, by serving as the viral transcriptional template, is the molecular basis of viral persistence. CCC DNA is converted, in a multistep and ill-understood process, from relaxed circular (RC) DNA. Little is currently understood about the pathways or factors involved in CCC DNA formation. We have now detected a likely intermediate during the conversion of RC DNA to CCC DNA, thus providing important clues to the pathways of CCC DNA formation. Furthermore, the same experimental approach that led to the detection of the intermediate could also facilitate specific and sensitive detection of CCC DNA, which has remained challenging. This and similar approaches will help identify additional intermediates during CCC DNA formation and elucidate the pathways and factors involved. PMID:28637752

  9. Applying high resolution mass spectrometry and network analysis to assess exposure to a novel androgen, spironolactone, on metabolic pathways in fish

    EPA Science Inventory

    Although metabolomics can successfully detect effects from overall contaminant exposure, its ability to elucidate specific metabolic pathways impacted by those exposures can be hindered by bottlenecks in metabolite identification. However, improved analytical approaches that com...

  10. Identification of an Mg2+-independent soluble phosphatidate phosphatase in cottonseed (Gossypium hirsutum L.)

    USDA-ARS?s Scientific Manuscript database

    Cotton (Gossypium hirsutum L.) provides a major source of oil for food and feed industries, but little was known about the oil biosynthesis pathway in cottonseed. Towards understanding the biochemical pathway of oil accumulation in cottonseed, this study focused on phosphatidic acid phosphatase (PAP...

  11. Ecdysteroid biosynthesis in varroa mites: identification of halloween genes from the biosynthetic pathway and their regulation during reproduction

    USDA-ARS?s Scientific Manuscript database

    Biosynthesis of ecdysteroids involves sequential enzymatic hydroxylations by microsomal enzymes and mitochondrial cytochrome P450’s. Enzymes of the pathway are collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), w...

  12. A Global Genomic and Genetic Strategy to Predict Pathway Activation of Xenobiotic Responsive Transcription Factors in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobiotic-responsive transcription factors(TF). Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening. Starting with a large compendium of Affymet...

  13. Identification of early fumonisin biosynthetic intermediates by inactivation of the FUM6 gene in Fusarium verticillioides

    USDA-ARS?s Scientific Manuscript database

    Fumonisins are polyketide mycotoxins produced by the maize pathogen Fusarium verticillioides and are associated with multiple human and animal diseases. A fumonisin biosynthetic pathway has been proposed, but structures of early pathway intermediates have not been demonstrated. The F. verticillioide...

  14. Targeting the Endoplasmic Reticulum Unfolded Protein Response to Counteract the Oxidative Stress-Induced Endothelial Dysfunction

    PubMed Central

    Moltedo, Ornella; Faraonio, Raffaella

    2018-01-01

    In endothelial cells, the tight control of the redox environment is essential for the maintenance of vascular homeostasis. The imbalance between ROS production and antioxidant response can induce endothelial dysfunction, the initial event of many cardiovascular diseases. Recent studies have revealed that the endoplasmic reticulum could be a new player in the promotion of the pro- or antioxidative pathways and that in such a modulation, the unfolded protein response (UPR) pathways play an essential role. The UPR consists of a set of conserved signalling pathways evolved to restore the proteostasis during protein misfolding within the endoplasmic reticulum. Although the first outcome of the UPR pathways is the promotion of an adaptive response, the persistent activation of UPR leads to increased oxidative stress and cell death. This molecular switch has been correlated to the onset or to the exacerbation of the endothelial dysfunction in cardiovascular diseases. In this review, we highlight the multiple chances of the UPR to induce or ameliorate oxidative disturbances and propose the UPR pathways as a new therapeutic target for the clinical management of endothelial dysfunction. PMID:29725497

  15. Exploring the Process of Energy Generation in Pathophysiology by Targeted Metabolomics: Performance of a Simple and Quantitative Method.

    PubMed

    Riera-Borrull, Marta; Rodríguez-Gallego, Esther; Hernández-Aguilera, Anna; Luciano, Fedra; Ras, Rosa; Cuyàs, Elisabet; Camps, Jordi; Segura-Carretero, Antonio; Menendez, Javier A; Joven, Jorge; Fernández-Arroyo, Salvador

    2016-01-01

    Abnormalities in mitochondrial metabolism and regulation of energy balance contribute to human diseases. The consequences of high fat and other nutrient intake, and the resulting acquired mitochondrial dysfunction, are essential to fully understand common disorders, including obesity, cancer, and atherosclerosis. To simultaneously and noninvasively measure and quantify indirect markers of mitochondrial function, we have developed a method based on gas chromatography coupled to quadrupole-time of flight mass spectrometry and an electron ionization interface, and validated the system using plasma from patients with peripheral artery disease, human cancer cells, and mouse tissues. This approach was used to increase sensibility in the measurement of a wide dynamic range and chemical diversity of multiple intermediate metabolites used in energy metabolism. We demonstrate that our targeted metabolomics method allows for quick and accurate identification and quantification of molecules, including the measurement of small yet significant biological changes in experimental samples. The apparently low process variability required for its performance in plasma, cell lysates, and tissues allowed a rapid identification of correlations between interconnected pathways. Our results suggest that delineating the process of energy generation by targeted metabolomics can be a valid surrogate for predicting mitochondrial dysfunction in biological samples. Importantly, when used in plasma, targeted metabolomics should be viewed as a robust and noninvasive source of biomarkers in specific pathophysiological scenarios.

  16. Exploring the Process of Energy Generation in Pathophysiology by Targeted Metabolomics: Performance of a Simple and Quantitative Method

    NASA Astrophysics Data System (ADS)

    Riera-Borrull, Marta; Rodríguez-Gallego, Esther; Hernández-Aguilera, Anna; Luciano, Fedra; Ras, Rosa; Cuyàs, Elisabet; Camps, Jordi; Segura-Carretero, Antonio; Menendez, Javier A.; Joven, Jorge; Fernández-Arroyo, Salvador

    2016-01-01

    Abnormalities in mitochondrial metabolism and regulation of energy balance contribute to human diseases. The consequences of high fat and other nutrient intake, and the resulting acquired mitochondrial dysfunction, are essential to fully understand common disorders, including obesity, cancer, and atherosclerosis. To simultaneously and noninvasively measure and quantify indirect markers of mitochondrial function, we have developed a method based on gas chromatography coupled to quadrupole-time of flight mass spectrometry and an electron ionization interface, and validated the system using plasma from patients with peripheral artery disease, human cancer cells, and mouse tissues. This approach was used to increase sensibility in the measurement of a wide dynamic range and chemical diversity of multiple intermediate metabolites used in energy metabolism. We demonstrate that our targeted metabolomics method allows for quick and accurate identification and quantification of molecules, including the measurement of small yet significant biological changes in experimental samples. The apparently low process variability required for its performance in plasma, cell lysates, and tissues allowed a rapid identification of correlations between interconnected pathways. Our results suggest that delineating the process of energy generation by targeted metabolomics can be a valid surrogate for predicting mitochondrial dysfunction in biological samples. Importantly, when used in plasma, targeted metabolomics should be viewed as a robust and noninvasive source of biomarkers in specific pathophysiological scenarios.

  17. Developing Single Nucleotide Polymorphism markers for the identification of Coffee germplasm

    USDA-ARS?s Scientific Manuscript database

    Coffee is one of the most widely consumed beverages that represent a multibillion dollar global industry. Accurate identification of coffee cultivars is essential for efficient management, exchange and use of coffee genetic resources. So far a universal platform that can allow data comparison across...

  18. 50 CFR 660.412 - EFH identifications and descriptions for Pacific salmon.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Pacific salmon. 660.412 Section 660.412 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT... COAST STATES West Coast Salmon Fisheries § 660.412 EFH identifications and descriptions for Pacific salmon. Pacific salmon essential fish habitat (EFH) includes all those water bodies occupied or...

  19. Genome‑wide identification of long noncoding RNAs in CCl4‑induced liver fibrosis via RNA sequencing.

    PubMed

    Gong, Zhenghua; Tang, Jialin; Xiang, Tianxin; Lin, Jiayu; Deng, Chaowen; Peng, Yanzhong; Zheng, Jie; Hu, Guoxin

    2018-05-07

    Liver fibrosis occurs as a result of chronic liver lesions, which may subsequently develop into liver cirrhosis and hepatocellular carcinoma. The involvement of long noncoding RNAs (lncRNAs) in liver fibrosis is being increasingly recognized. However, the exact mechanisms and functions of the majority of lncRNAs are poorly characterized. In the present study, the hepatotoxic substance carbon tetrachloride (CCl4) was employed to induce liver fibrosis in an animal model and agenome‑wide identification of lncRNAs in fibrotic liver tissues compared with CCl4 untreated liver tissues was performed using RNA sequencing. Sprague‑Dawley rats were treated with CCl4 for 8 weeks. Histopathogical alterations were observed in liver tissues, and serum levels of alanine aminotransferase, aspartate aminotransferase, transforming growth factor‑β1 and tumor necrosis factor‑α were significantly higher, in the CCl4‑treated group compared with the CCl4 untreated group. RNA sequencing of liver tissues demonstrated that 231 lncRNAs and 1,036 mRNAs were differentially expressed between the two groups. Furthermore, bioinformatics analysis demonstrated that the differentially expressed mRNAs were predominantly enriched in 'ECM‑receptor interaction', 'PI3K‑Akt signaling pathway' and 'focal adhesion' pathways, all of which are essential for liver fibrosis development. Validation of 12 significantly aberrant lncRNAs by reverse transcription‑quantitative polymerase chain reaction indicated that the expression patterns of 11 lncRNAs were consistent with the sequencing data. Furthermore, overexpression of lncRNA NR_002155.1, which was markedly downregulated in CCl4‑treated liver tissues, was demonstrated to inhibit HSC‑T6 cell proliferation in vitro. In conclusion, the present study determined the expression patterns of mRNAs and lncRNAs in fibrotic liver tissue induced by CCl4. The identified differentially expressed lncRNAs may serve as novel diagnostic biomarkers and therapeutic targets for liver fibrosis.

  20. Lymphatic mapping and sentinel node identification in squamous cell carcinoma and melanoma of the head and neck.

    PubMed

    Tartaglione, G; Potenza, C; Caggiati, A; Maggiore, M; Gabrielli, F; Migliano, E; Pagan, M; Concolino, F; Ruatti, P

    2002-01-01

    The aim of our study was to evaluate the role of scintigraphy in lymphatic mapping and in the identification of the sentinel lymph node (SLN) in patients with head and neck cancer. Between September 1999 and February 2001 we enrolled 22 consecutive patients with cancer in the head and neck region: five squamous cell carcinomas, one Merkel cell tumor of the cheek, and 16 malignant melanomas. Lymphoscintigraphy was performed three hours before surgery after injection of 30-50 MBq of 99mTc -Nanocoll in 0.3 mL; the dose was fractionated by injecting the radiotracer at two points around the lesion. Static acquisition (anterior and/or lateral views, 512 x 512 matrix, 5 mins pre-set time) was started immediately after the injections so as to visualize the pathways of lymphatic drainage. The skin projection of the SLN was marked with ink. Intraoperative SLN detection was performed with perilesional injection of patent blue. SLNs were found with lymphoscintigraphy in all patients. Thirty-three SLNs were identified: one occipital node, three nodes at the base of the tongue, 10 superficial lateral nodes (external jugular), five submandibular nodes, five submental nodes, three mastoid nodes and six supraclavicular nodes. Biopsy was performed in 21/22 patients. In 20/22 patients the first lymph nodes were visualized in the proximal cranial regions (retroauricular, jugular and submandibular) at five minutes post injection. The SLN positivity rate was 13.6% (three patients). All patients with tumor-positive SLNs were submitted to radical dissection. Poor concordance in the detection of sentinel nodes was observed with patent blue. The flow of nanocolloid in the lymph vessels of the head is rapid. In our experience immediate scintigraphic imaging was essential to visualize the pathways of lymphatic drainage and the first SLN. Radioguided SLN biopsy is therefore recommended within three hours. Injection of patent blue is inadvisable because of the poor concordance with lymphoscintigraphy and the risk of permanent tattooing of the face.

  1. Towards an ontogenetic understanding of inflorescence diversity

    PubMed Central

    Claßen-Bockhoff, Regine; Bull-Hereñu, Kester

    2013-01-01

    Backgrounds and Aims Conceptual and terminological conflicts in inflorescence morphology indicate a lack of understanding of the phenotypic diversity of inflorescences. In this study, an ontogeny-based inflorescence concept is presented considering different meristem types and developmental pathways. By going back to the ontogenetic origin, diversity is reduced to a limited number of types and terms. Methods Species from 105 genera in 52 angiosperm families are investigated to identify their specific reproductive meristems and developmental pathways. Based on these studies, long-term experience with inflorescences and literature research, a conceptual framework for the understanding of inflorescences is presented. Key Results Ontogeny reveals that reproductive systems traditionally called inflorescences fall into three groups, i.e. ‘flowering shoot systems’ (FSS), ‘inflorescences’ sensu stricto and ‘floral units’ (FUs). Our concept is, first, based on the identification of reproductive meristem position and developmental potential. The FSS, defined as a seasonal growth unit, is used as a reference framework. As the FSS is a leafy shoot system bearing reproductive units, foliage and flowering sequence play an important role. Second, the identification of two different flower-producing meristems is essential. While ‘inflorescence meristems’ (IMs) share acropetal primordia production with vegetative meristems, ‘floral unit meristems’ (FUMs) resemble flower meristems in being indeterminate. IMs produce the basic inflorescence types, i.e. compound and simple racemes, panicles and botryoids. FUMs give rise to dense, often flower-like units (e.g. heads). They occur solitarily at the FSS or occupy flower positions in inflorescences, rendering the latter thyrses in the case of cymose branching. Conclusions The ontogenetic concept differs from all existing inflorescence concepts in being based on meristems and developmental processes. It includes clear terms and allows homology statements. Transitional forms are an explicit part of the concept, illustrating the ontogenetic potential for character transformation in evolution. PMID:23445936

  2. Mapping N-linked Glycosylation Sites in the Secretome and Whole Cells of Aspergillus niger Using Hydrazide Chemistry and Mass Spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lu; Aryal, Uma K.; Dai, Ziyu

    2012-01-01

    Protein glycosylation is known to play an essential role in both cellular functions and the secretory pathways; however, little information is available on the dynamics of glycosylated N-linked glycosites of fungi. Herein we present the first extensive mapping of glycosylated N-linked glycosites in industrial strain Aspergillus niger by applying an optimized solid phase enrichment of glycopeptide protocol using hydrazide modified magnetic beads. The enrichment protocol was initially optimized using mouse plasma and A. niger secretome samples, which was then applied to profile N-linked glycosites from both the secretome and whole cell lysates of A. niger. A total of 847 uniquemore » N-linked glycosites and 330 N-linked glycoproteins were confidently identified by LC-MS/MS. Based on gene ontology analysis, the identified N-linked glycoproteins in the whole cell lysate were primarily localized in the plasma membrane, endoplasmic reticulum, golgi apparatus, lysosome, and storage vacuoles. The identified N-linked glycoproteins are involved in a wide range of biological processes including gene regulation and signal transduction, protein folding and assembly, protein modification and carbohydrate metabolism. The extensive coverage of glycosylated N-linked glycosites along with identification of partial N-linked glycosylation in those enzymes involving in different biochemical pathways provide useful information for functional studies of N-linked glycosylation and their biotechnological applications in A. niger.« less

  3. Adaptation of Enterococcus faecalis to daptomycin reveals an ordered progression to resistance.

    PubMed

    Miller, Corwin; Kong, Jiayi; Tran, Truc T; Arias, Cesar A; Saxer, Gerda; Shamoo, Yousif

    2013-11-01

    With increasing numbers of hospital-acquired antibiotic resistant infections each year and staggering health care costs, there is a clear need for new antimicrobial agents, as well as novel strategies to extend their clinical efficacy. While genomic studies have provided a wealth of information about the alleles associated with adaptation to antibiotics, they do not provide essential information about the relative importance of genomic changes, their order of appearance, or potential epistatic relationships between adaptive changes. Here we used quantitative experimental evolution of a single polymorphic population in continuous culture with whole-genome sequencing and allelic frequency measurements to study daptomycin (DAP) resistance in the vancomycin-resistant clinical pathogen Enterococcus faecalis S613. Importantly, we sustained both planktonic and nonplanktonic (i.e., biofilm) populations in coculture as the concentration of antibiotic was raised, facilitating the development of more ecological complexity than is typically observed in laboratory evolution. Quantitative experimental evolution revealed a clear order and hierarchy of genetic changes leading to resistance, the signaling and metabolic pathways responsible, and the relative importance of these mutations to the evolution of DAP resistance. Despite the relative simplicity of this ex vivo approach compared to the ecological complexity of the human body, we showed that experimental evolution allows for rapid identification of clinically relevant adaptive molecular pathways and new targets for drug design in pathogens.

  4. Identification of LmUAP1 as a 20-hydroxyecdysone response gene in the chitin biosynthesis pathway from the migratory locust, Locusta migratoria.

    PubMed

    Liu, Xiao-Jian; Sun, Ya-Wen; Li, Da-Qi; Li, Sheng; Ma, En-Bo; Zhang, Jian-Zhen

    2018-04-01

    In Locusta migratoria, we found that two chitin biosynthesis genes, UDP N-acetylglucosamine pyrophosphorylase gene LmUAP1 and chitin synthase gene LmCHS1, are expressed mainly in the integument and are responsible for cuticle formation. However, whether these genes are regulated by 20-hydroxyecdysone (20E) is still largely unclear. Here, we showed the developmental expression pattern of LmUAP1, LmCHS1 and the corresponding 20E titer during the last instar nymph stage of locust. RNA interference (RNAi) directed toward a common region of the two isoforms of LmEcR (LmEcRcom) reduced the expression level of LmUAP1, while there was no difference in the expression of LmCHS1. Meantime, injection of 20E in vivo induced the expression of LmUAP1 but not LmCHS1. Further, we found injection-based RNAi of LmEcRcom resulted in 100% mortality. The locusts failed to molt with no apolysis, and maintained in the nymph stage until death. In conclusion, our preliminary results indicated that LmUAP1 in the chitin biosynthesis pathway is a 20E late-response gene and LmEcR plays an essential role in locust growth and development, which could be a good potential target for RNAi-based pest control. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  5. Orai, STIM1 and iPLA2β: a view from a different perspective

    PubMed Central

    Bolotina, Victoria M

    2008-01-01

    The mechanism of store-operated Ca2+ entry (SOCE) remains one of the intriguing mysteries in the field of Ca2+ signalling. Recent discoveries have resulted in the molecular identification of STIM1 as a Ca2+ sensor in endoplasmic reticulum, Orai1 (CRACM1) as a plasma membrane channel that is activated by the store-operated pathway, and iPLA2β as an essential component of signal transduction from the stores to the plasma membrane channels. Numerous studies have confirmed that molecular knock-down of any one of these three molecules impair SOCE in a wide variety of cell types, but their mutual relations are far from being understood. This report will focus on the functional roles of Orai1, STIM1 and iPLA2β, and will address some specific questions about Orai1 and TRPC1, and their relation to SOC channels in excitable and non-excitable cells. Also, it will analyse the novel role of STIM1 as a trigger for CIF production, and the complex relationship between STIM1 and Orai1 expression, puncta formation and SOCE activation. It will highlight some of the most recent findings that may challenge simple conformational coupling models of SOCE, and will offer some new perspectives on the complex relationships between Orai1, STIM1 and iPLA2β in the SOCE pathway. PMID:18499724

  6. Global phosphoproteomic profiling reveals perturbed signaling in a mouse model of dilated cardiomyopathy

    PubMed Central

    Kuzmanov, Uros; Guo, Hongbo; Buchsbaum, Diana; Cosme, Jake; Abbasi, Cynthia; Isserlin, Ruth; Sharma, Parveen; Gramolini, Anthony O.; Emili, Andrew

    2016-01-01

    Phospholamban (PLN) plays a central role in Ca2+ homeostasis in cardiac myocytes through regulation of the sarco(endo)plasmic reticulum Ca2+-ATPase 2A (SERCA2A) Ca2+ pump. An inherited mutation converting arginine residue 9 in PLN to cysteine (R9C) results in dilated cardiomyopathy (DCM) in humans and transgenic mice, but the downstream signaling defects leading to decompensation and heart failure are poorly understood. Here we used precision mass spectrometry to study the global phosphorylation dynamics of 1,887 cardiac phosphoproteins in early affected heart tissue in a transgenic R9C mouse model of DCM compared with wild-type littermates. Dysregulated phosphorylation sites were quantified after affinity capture and identification of 3,908 phosphopeptides from fractionated whole-heart homogenates. Global statistical enrichment analysis of the differential phosphoprotein patterns revealed selective perturbation of signaling pathways regulating cardiovascular activity in early stages of DCM. Strikingly, dysregulated signaling through the Notch-1 receptor, recently linked to cardiomyogenesis and embryonic cardiac stem cell development and differentiation but never directly implicated in DCM before, was a prominently perturbed pathway. We verified alterations in Notch-1 downstream components in early symptomatic R9C transgenic mouse cardiomyocytes compared with wild type by immunoblot analysis and confocal immunofluorescence microscopy. These data reveal unexpected connections between stress-regulated cell signaling networks, specific protein kinases, and downstream effectors essential for proper cardiac function. PMID:27742792

  7. Regulation of mitogen-activated protein kinase 3/1 activity during meiosis resumption in mammals.

    PubMed

    Prochazka, Radek; Blaha, Milan

    2015-01-01

    In vivo, resumption of oocyte meiosis occurs in large ovarian follicles after the preovulatory surge of luteinizing hormone (LH). The LH surge leads to the activation of a broad signaling network in mural granulosa cells equipped with LH receptors. The signals generated in the mural granulosa cells are further augmented by locally produced peptides or steroids and transferred to the cumulus cell compartment and the oocyte itself. Over the last decade, essential progress has been made in the identification of molecular events associated with the final maturation and ovulation of mammalian oocytes. All new evidence argues for a multiple roles of mitogen-activated protein kinase 3/1 (MAPK3/1) in the gonadotropin-induced ovulation processes. However, the knowledge of gonadotropin-induced signaling pathways leading to MAPK3/1 activation in follicular cells seems limited. To date, only the LH-induced transactivation of the epidermal growth factor receptor/MAPK3/1 pathway has been described in granulosa/cumulus cells even though other mechanisms of MAPK3/1 activation have been detected in other types of cells. In this review, we aimed to summarize recent advances in the elucidation of gonadotropin-induced mechanisms leading to the activation of MAPK3/1 in preovulatory follicles and cultured cumulus-oocyte complexes and to point out a specific role of this kinase in the processes accompanying final maturation of the mammalian oocyte.

  8. Nuclear export of cutaneous HPV8 E7 oncoprotein is mediated by a leucine-rich nuclear export signal via a CRM1 pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onder, Zeynep; Chang, Vivian; Moroianu, Junona, E-mail: moroianu@bc.edu

    2015-01-01

    We recently determined that the nuclear import of cutaneous beta genus HPV8 E7 oncoprotein it is mediated by its zinc-binding domain via direct hydrophobic interactions with the FG nucleoporins Nup62 and Nup153 (Onder and Moroianu, 2014). Here we investigated the nuclear export of HPV8 E7 oncoprotein using confocal microscopy after transfections of HeLa cells with EGFP–8cE7 and mutant plasmids and treatment with Ratjadone A nuclear export inhibitor. We determined that HPV8 E7 contains a leucine-rich nuclear export signal (NES), {sub 76}IRTFQELLF{sub 84}, within its zinc-binding domain that mediates its nuclear export via a CRM1 pathway. We found that HPV8 E7more » interacts with CRM1 and that the hydrophobic amino acid residues I76, F79 and L82 of the NES are essential for this interaction and for nuclear export of HPV8 E7 oncoprotein. - Highlights: • HPV8 E7 has a leucine-rich NES within its zinc-binding domain that mediates its nuclear export. • CRM1 nuclear export receptor interacts with HPV8 E7 and mediates its export. • Identification of the critical hydrophobic amino acids of the NES of HPV8 E7.« less

  9. Analysis of essential gene dynamics under antibiotic stress in Streptococcus sanguinis

    PubMed Central

    El-Rami, Fadi; Kong, Xiangzhen; Parikh, Hardik; Zhu, Bin; Stone, Victoria; Kitten, Todd; Xu, Ping

    2018-01-01

    The paradoxical response of Streptococcus sanguinis to drugs prescribed for dental and clinical practices has complicated treatment guidelines and raised the need for further investigation. We conducted a high throughput study on concomitant transcriptome and proteome dynamics in a time course to assess S. sanguinis behaviour under a sub-inhibitory concentration of ampicillin. Temporal changes at the transcriptome and proteome level were monitored to cover essential genes and proteins over a physiological map of intricate pathways. Our findings revealed that translation was the functional category in S. sanguinis that was most enriched in essential proteins. Moreover, essential proteins in this category demonstrated the greatest conservation across 2774 bacterial proteomes, in comparison to other essential functional categories like cell wall biosynthesis and energy production. In comparison to non-essential proteins, essential proteins were less likely to contain ‘degradation-prone’ amino acids at their N-terminal position, suggesting a longer half-life. Despite the ampicillin-induced stress, the transcriptional up-regulation of amino acid-tRNA synthetases and proteomic elevation of amino acid biosynthesis enzymes favoured the enriched components of essential proteins revealing ‘proteomic signatures’ that can be used to bridge the genotype–phenotype gap of S. sanguinis under ampicillin stress. Furthermore, we identified a significant correlation between the levels of mRNA and protein for essential genes and detected essential protein-enriched pathways differentially regulated through a persistent stress response pattern at late time points. We propose that the current findings will help characterize a bacterial model to study the dynamics of essential genes and proteins under clinically relevant stress conditions. PMID:29393020

  10. LpxK Is Essential for Growth of Acinetobacter baumannii ATCC 19606: Relationship to Toxic Accumulation of Lipid A Pathway Intermediates

    PubMed Central

    Wei, Jun-Rong; Richie, Daryl L.; Mostafavi, Mina; Metzger, Louis E.; Rath, Christopher M.; Sawyer, William S.; Takeoka, Kenneth T.

    2017-01-01

    ABSTRACT Acinetobacter baumannii ATCC 19606 can grow without lipid A, the major component of lipooligosaccharide. However, we previously reported that depletion of LpxH (the fourth enzyme in the lipid A biosynthetic pathway) prevented growth of this strain due to toxic accumulation of lipid A pathway intermediates. Here, we explored whether a similar phenomenon occurred with depletion of LpxK, a kinase that phosphorylates disaccharide 1-monophosphate (DSMP) at the 4′ position to yield lipid IVA. An A. baumannii ATCC 19606 derivative with LpxK expression under the control of an isopropyl β-d-1-thiogalactopyranoside (IPTG)-regulated expression system failed to grow without induction, indicating that LpxK is essential for growth. Light and electron microscopy of LpxK-depleted cells revealed morphological changes relating to the cell envelope, consistent with toxic accumulation of lipid A pathway intermediates disrupting cell membranes. Using liquid chromatography-mass spectrometry (LCMS), cellular accumulation of the detergent-like pathway intermediates DSMP and lipid X was shown. Toxic accumulation was further supported by restoration of growth upon chemical inhibition of LpxC (upstream of LpxK and the first committed step of lipid A biosynthesis) using CHIR-090. Inhibitors of fatty acid synthesis also abrogated the requirement for LpxK expression. Growth rescue with these inhibitors was possible on Mueller-Hinton agar but not on MacConkey agar. The latter contains outer membrane-impermeable bile salts, suggesting that despite growth restoration, the cell membrane permeability barrier was not restored. Therefore, LpxK is essential for growth of A. baumannii, since loss of LpxK causes accumulation of detergent-like pathway intermediates that inhibit cell growth. IMPORTANCE Acinetobacter baumannii is a Gram-negative pathogen for which new therapies are needed. The lipid A biosynthetic pathway has several potential enzyme targets for the development of anti-Gram-negative agents (e.g., LpxC). However, A. baumannii ATCC 19606 can grow in the absence of LpxC and, correspondingly, of lipid A. In contrast, we show that cellular depletion of LpxK, a kinase occurring later in the pathway, inhibits growth. Growth inhibition results from toxic accumulation of lipid A pathway intermediates, since chemical inhibition of LpxC or fatty acid biosynthesis rescues cell growth upon loss of LpxK. Overall, this suggests that targets such as LpxK can be essential for growth even in those Gram-negative bacteria that do not require lipid A biosynthesis per se. This strain provides an elegant tool to derive a better understanding of the steps in a pathway that is the focus of intense interest for the development of novel antibacterials. PMID:28815210

  11. The BOS1 gene encodes an essential 27-kD putative membrane protein that is required for vesicular transport from the ER to the Golgi complex in yeast

    PubMed Central

    1991-01-01

    We recently described the identification of BOS1 (Newman, A., J. Shim, and S. Ferro-Novick. 1990. Mol. Cell. Biol. 10:3405-3414.). BOS1 is a gene that in multiple copy suppresses the growth and secretion defect of bet1 and sec22, two mutants that disrupt transport from the ER to the Golgi complex in yeast. The ability of BOS1 to specifically suppress mutants blocked at a particular stage of the secretory pathway suggested that this gene encodes a protein that functions in this process. The experiments presented in this study support this hypothesis. Specifically, the BOS1 gene was found to be essential for cellular growth. Furthermore, cells depleted of the Bos1 protein fail to transport pro-alpha-factor and carboxypeptidase Y (CPY) to the Golgi apparatus. This defect in export leads to the accumulation of an extensive network of ER and small vesicles. DNA sequence analysis predicts that Bos1 is a 27-kD protein containing a putative membrane- spanning domain. This prediction is supported by differential centrifugation experiments. Thus, Bos1 appears to be a membrane protein that functions in conjunction with Bet1 and Sec22 to facilitate the transport of proteins at a step subsequent to translocation into the ER but before entry into the Golgi apparatus. PMID:2007627

  12. Identification of a Gene Cluster for Biosynthesis of Mannosylerythritol Lipids in the Basidiomycetous Fungus Ustilago maydis

    PubMed Central

    Hewald, Sandra; Linne, Uwe; Scherer, Mario; Marahiel, Mohamed A.; Kämper, Jörg; Bölker, Michael

    2006-01-01

    Many microorganisms produce surface-active substances that enhance the availability of water-insoluble substrates. Although many of these biosurfactants have interesting potential applications, very little is known about their biosynthesis. The basidiomycetous fungus Ustilago maydis secretes large amounts of mannosylerythritol lipids (MELs) under conditions of nitrogen starvation. We recently described a putative glycosyltransferase, Emt1, which is essential for MEL biosynthesis and whose expression is strongly induced by nitrogen limitation. We used DNA microarray analysis to identify additional genes involved in MEL biosynthesis. Here we show that emt1 is part of a gene cluster which comprises five open reading frames. Three of the newly identified proteins, Mac1, Mac2, and Mat1, contain short sequence motifs characteristic for acyl- and acetyltransferases. Mutational analysis revealed that Mac1 and Mac2 are essential for MEL production, which suggests that they are involved in the acylation of mannosylerythritol. Deletion of mat1 resulted in the secretion of completely deacetylated MELs, as determined by mass spectrometry. We overexpressed Mat1 in Escherichia coli and demonstrated that this enzyme acts as an acetyl coenzyme A-dependent acetyltransferase. Remarkably, Mat1 displays relaxed regioselectivity and is able to acetylate mannosylerythritol at both the C-4 and C-6 hydroxyl groups. Based on these results, we propose a biosynthesis pathway for the generation of mannosylerythritol lipids in U. maydis. PMID:16885300

  13. Anther-preferential expressing gene PMR is essential for the mitosis of pollen development in rice.

    PubMed

    Liu, Yaqin; Xu, Ya; Ling, Sheng; Liu, Shasha; Yao, Jialing

    2017-06-01

    Phenotype identification, expression examination, and function prediction declared that the anther-preferential expressing gene PMR may participate in regulation of male gametophyte development in rice. Male germline development in flowering plants produces the pair of sperm cells for double fertilization and the pollen mitosis is a key process of it. Although the structural features of male gametophyte have been defined, the molecular mechanisms regulating the mitotic cell cycle are not well elucidated in rice. Here, we reported an anther-preferential expressing gene in rice, PMR (Pollen Mitosis Relative), playing an essential role in male gametogenesis. When PMR gene was suppressed via RNAi, the mitosis of microspore was severely damaged, and the plants formed unmatured pollens containing only one or two nucleuses at the anthesis, ultimately leading to serious reduction of pollen fertility and seed-setting. The CRISPR mutants, pmr-1 and pmr-2, both showed the similar defects as the PMR-RNAi lines. Further analysis revealed that PMR together with its co-expressing genes were liable to participate in the regulation of DNA metabolism in the nucleus, and affected the activities of some enzymes related to the cell cycle. We finally discussed that unknown protein PMR contained the PHD, SWIB and Plus-3 domains and they might have coordinating functions in regulation pathway of the pollen mitosis in rice.

  14. Identification of Two Conserved Residues Involved in Copper Release from Chloroplast PIB-1-ATPases*

    PubMed Central

    Sautron, Emeline; Giustini, Cécile; Dang, ThuyVan; Moyet, Lucas; Salvi, Daniel; Crouzy, Serge; Rolland, Norbert; Catty, Patrice; Seigneurin-Berny, Daphné

    2016-01-01

    Copper is an essential transition metal for living organisms. In the plant model Arabidopsis thaliana, half of the copper content is localized in the chloroplast, and as a cofactor of plastocyanin, copper is essential for photosynthesis. Within the chloroplast, copper delivery to plastocyanin involves two transporters of the PIB-1-ATPases subfamily: HMA6 at the chloroplast envelope and HMA8 in the thylakoid membranes. Both proteins are high affinity copper transporters but share distinct enzymatic properties. In the present work, the comparison of 140 sequences of PIB-1-ATPases revealed a conserved region unusually rich in histidine and cysteine residues in the TMA-L1 region of eukaryotic chloroplast copper ATPases. To evaluate the role of these residues, we mutated them in HMA6 and HMA8. Mutants of interest were selected from phenotypic tests in yeast and produced in Lactococcus lactis for further biochemical characterizations using phosphorylation assays from ATP and Pi. Combining functional and structural data, we highlight the importance of the cysteine and the first histidine of the CX3HX2H motif in the process of copper release from HMA6 and HMA8 and propose a copper pathway through the membrane domain of these transporters. Finally, our work suggests a more general role of the histidine residue in the transport of copper by PIB-1-ATPases. PMID:27493208

  15. Identification of TLR2/TLR6 signalling lactic acid bacteria for supporting immune regulation.

    PubMed

    Ren, Chengcheng; Zhang, Qiuxiang; de Haan, Bart J; Zhang, Hao; Faas, Marijke M; de Vos, Paul

    2016-10-06

    Although many lactic acid bacteria (LAB) influence the consumer's immune status it is not completely understood how this is established. Bacteria-host interactions between bacterial cell-wall components and toll-like receptors (TLRs) have been suggested to play an essential role. Here we investigated the interaction between LABs with reported health effects and TLRs. By using cell-lines expressing single or combination of TLRs, we show that LABs can signal via TLR-dependent and independent pathways. The strains only stimulated and did not inhibit TLRs. We found that several strains such as L. plantarum CCFM634, L. plantarum CCFM734, L. fermentum CCFM381, L. acidophilus CCFM137, and S. thermophilus CCFM218 stimulated TLR2/TLR6. TLR2/TLR6 is essential in immune regulatory processes and of interest for prevention of diseases. Specificity of the TLR2/TLR6 stimulation was confirmed with blocking antibodies. Immunomodulatory properties of LABs were also studied by assessing IL-10 and IL-6 secretion patterns in bacteria-stimulated THP1-derived macrophages, which confirmed species and strain specific effects of the LABs. With this study we provide novel insight in LAB specific host-microbe interactions. Our data demonstrates that interactions between pattern recognition receptors such as TLRs is species and strain specific and underpins the importance of selecting specific strains for promoting specific health effects.

  16. A Rice Phenolic Efflux Transporter Is Essential for Solubilizing Precipitated Apoplasmic Iron in the Plant Stele*

    PubMed Central

    Ishimaru, Yasuhiro; Kakei, Yusuke; Shimo, Hugo; Bashir, Khurram; Sato, Yutaka; Sato, Yuki; Uozumi, Nobuyuki; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2011-01-01

    Iron deficiency is one of the major agricultural problems, as 30% of the arable land of the world is too alkaline for optimal crop production, rendering plants short of available iron despite its abundance. To take up apoplasmic precipitated iron, plants secrete phenolics such as protocatechuic acid (PCA) and caffeic acid. The molecular pathways and genes of iron uptake strategies are already characterized, whereas the molecular mechanisms of phenolics synthesis and secretion have not been clarified, and no phenolics efflux transporters have been identified in plants yet. Here we describe the identification of a phenolics efflux transporter in rice. We identified a cadmium-accumulating rice mutant in which the amount of PCA and caffeic acid in the xylem sap was dramatically reduced and hence named it phenolics efflux zero 1 (pez1). PEZ1 localized to the plasma membrane and transported PCA when expressed in Xenopus laevis oocytes. PEZ1 localized mainly in the stele of roots. In the roots of pez1, precipitated apoplasmic iron increased. The growth of PEZ1 overexpression lines was severely restricted, and these lines accumulated more iron as a result of the high solubilization of precipitated apoplasmic iron in the stele. We show that PEZ1 is responsible for an increase of PCA concentration in the xylem sap and is essential for the utilization of apoplasmic precipitated iron in the stele. PMID:21602276

  17. Genome-wide identification and expression profiling of the SnRK2 gene family in Malus prunifolia.

    PubMed

    Shao, Yun; Qin, Yuan; Zou, Yangjun; Ma, Fengwang

    2014-11-15

    Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) constitutes a small plant-specific serine/threonine kinase family with essential roles in the abscisic acid (ABA) signal pathway and in responses to osmotic stress. Although a genome-wide analysis of this family has been conducted in some species, little is known about SnRK2 genes in apple (Malus domestica). We identified 14 putative sequences encoding 12 deduced SnRK2 proteins within the apple genome. Gene chromosomal location and synteny analysis of the apple SnRK2 genes indicated that tandem and segmental duplications have likely contributed to the expansion and evolution of these genes. All 12 full-length coding sequences were confirmed by cloning from Malus prunifolia. The gene structure and motif compositions of the apple SnRK2 genes were analyzed. Phylogenetic analysis showed that MpSnRK2s could be classified into four groups. Profiling of these genes presented differential patterns of expression in various tissues. Under stress conditions, transcript levels for some family members were up-regulated in the leaves in response to drought, salinity, or ABA treatments. This suggested their possible roles in plant response to abiotic stress. Our findings provide essential information about SnRK2 genes in apple and will contribute to further functional dissection of this gene family. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. PathNet: A Tool for Pathway Analysis Using Topological Information

    DTIC Science & Technology

    2012-09-24

    pathways through gene expression data facilitated the identification of a biological association between the AD pathway and ubiquitin- meditated proteolysis...expression data, as the genes connected by thick edges are modestly differentially expressed (thick connections to small circles). (C) Non-overlapping...HW, LaFerla FM: Alzheimer’s disease. N Engl J Med 2010, 362(4):329–344. 32. Malenka RC, Malinow R: Alzheimer’s disease: recollection of lost memories

  19. 76 FR 54737 - Proposed Information Collection; Comment Request; Southeast Region Gear Identification Requirements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... Collection; Comment Request; Southeast Region Gear Identification Requirements AGENCY: National Oceanic and... gear be marked are essential to facilitate enforcement. The ability to link fishing gear to the vessel... fishing gear is also valuable in actions concerning damage, loss, and civil proceedings. The requirements...

  20. Developing Single Nucleotide Polymorphism (SNP) markers from transcriptome sequences for the identification of longan (Dimocarpus longan) germplasm

    USDA-ARS?s Scientific Manuscript database

    Longan (Dimocarpus longan Lour.) is an important tropical fruit tree crop. Accurate varietal identification is essential for germplasm management and breeding. Using longan transcriptome sequences from public databases, we developed single nucleotide polymorphism (SNP) markers; validated 60 SNPs in...

  1. Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future

    PubMed Central

    Barnes, Stephen; Benton, H. Paul; Casazza, Krista; Cooper, Sara; Cui, Xiangqin; Du, Xiuxia; Engler, Jeffrey; Kabarowski, Janusz H.; Li, Shuzhao; Pathmasiri, Wimal; Prasain, Jeevan K.; Renfrow, Matthew B.; Tiwari, Hemant K.

    2017-01-01

    Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites, and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. This second part of a comprehensive description of the methods of metabolomics focuses on data analysis, emerging methods in metabolomics and the future of this discipline. PMID:28239968

  2. Constructing Adverse Outcome Pathways: a Demonstration of an Ontology-based Semantics Mapping Approach

    EPA Science Inventory

    Adverse outcome pathway (AOP) provides a conceptual framework to evaluate and integrate chemical toxicity and its effects across the levels of biological organization. As such, it is essential to develop a resource-efficient and effective approach to extend molecular initiating ...

  3. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease.

    PubMed

    Payne, Felicity; Lim, Koini; Girousse, Amandine; Brown, Rebecca J; Kory, Nora; Robbins, Ann; Xue, Yali; Sleigh, Alison; Cochran, Elaine; Adams, Claire; Dev Borman, Arundhati; Russel-Jones, David; Gorden, Phillip; Semple, Robert K; Saudek, Vladimir; O'Rahilly, Stephen; Walther, Tobias C; Barroso, Inês; Savage, David B

    2014-06-17

    Phosphatidylcholine (PC) is the major glycerophospholipid in eukaryotic cells and is an essential component in all cellular membranes. The biochemistry of de novo PC synthesis by the Kennedy pathway is well established, but less is known about the physiological functions of PC. We identified two unrelated patients with defects in the Kennedy pathway due to biallellic loss-of-function mutations in phosphate cytidylyltransferase 1 alpha (PCYT1A), the rate-limiting enzyme in this pathway. The mutations lead to a marked reduction in PCYT1A expression and PC synthesis. The phenotypic consequences include some features, such as severe fatty liver and low HDL cholesterol levels, that are predicted by the results of previously reported liver-specific deletion of murine Pcyt1a. Both patients also had lipodystrophy, severe insulin resistance, and diabetes, providing evidence for an additional and essential role for PCYT1A-generated PC in the normal function of white adipose tissue and insulin action.

  4. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease

    PubMed Central

    Payne, Felicity; Lim, Koini; Girousse, Amandine; Brown, Rebecca J.; Kory, Nora; Robbins, Ann; Xue, Yali; Sleigh, Alison; Cochran, Elaine; Adams, Claire; Dev Borman, Arundhati; Russel-Jones, David; Gorden, Phillip; Semple, Robert K.; Saudek, Vladimir; O’Rahilly, Stephen; Walther, Tobias C.; Barroso, Inês; Savage, David B.

    2014-01-01

    Phosphatidylcholine (PC) is the major glycerophospholipid in eukaryotic cells and is an essential component in all cellular membranes. The biochemistry of de novo PC synthesis by the Kennedy pathway is well established, but less is known about the physiological functions of PC. We identified two unrelated patients with defects in the Kennedy pathway due to biallellic loss-of-function mutations in phosphate cytidylyltransferase 1 alpha (PCYT1A), the rate-limiting enzyme in this pathway. The mutations lead to a marked reduction in PCYT1A expression and PC synthesis. The phenotypic consequences include some features, such as severe fatty liver and low HDL cholesterol levels, that are predicted by the results of previously reported liver-specific deletion of murine Pcyt1a. Both patients also had lipodystrophy, severe insulin resistance, and diabetes, providing evidence for an additional and essential role for PCYT1A-generated PC in the normal function of white adipose tissue and insulin action. PMID:24889630

  5. Switching of metabolic programs in response to light availability is an essential function of the cyanobacterial circadian output pathway

    PubMed Central

    Puszynska, Anna M; O'Shea, Erin K

    2017-01-01

    The transcription factor RpaA is the master regulator of circadian transcription in cyanobacteria, driving genome-wide oscillations in mRNA abundance. Deletion of rpaA has no effect on viability in constant light conditions, but renders cells inviable in cycling conditions when light and dark periods alternate. We investigated the mechanisms underlying this viability defect, and demonstrate that the rpaA- strain cannot maintain appropriate energy status at night, does not accumulate carbon reserves during the day, and is defective in transcription of genes crucial for utilization of carbohydrate stores at night. Reconstruction of carbon utilization pathways combined with provision of an external carbon source restores energy charge and viability of the rpaA- strain in light/dark cycling conditions. Our observations highlight how a circadian output pathway controls and temporally coordinates essential pathways in carbon metabolism to maximize fitness of cells facing periodic energy limitations. DOI: http://dx.doi.org/10.7554/eLife.23210.001 PMID:28430105

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Juan; Zhou, Yufan; Sui, Xiao

    The identification of a number of mass peaks in the switchable ionic liquid (SWIL) observed in ToF-SIMS is updated based on the most likely chemical formation pathways. The revised identification better reflects the chemical interactions in the SWIL consisting of DBU, 1-hexanol and CO2. A companion paper illustrates the formation mechanism of these updated species is currently under review.

  7. Temporal Regulation of the Bacillus subtilis Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth

    PubMed Central

    Carabetta, Valerie J.; Greco, Todd M.; Tanner, Andrew W.

    2016-01-01

    ABSTRACT Nε-Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. IMPORTANCE The past decade highlighted Nε-lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis. To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell shape-determining protein. Our findings led us to propose a role for MreB acetylation in controlling cell width by restricting cell wall growth. PMID:27376153

  8. Temporal Regulation of the Bacillus subtilis Acetylome and Evidence for a Role of MreB Acetylation in Cell Wall Growth.

    PubMed

    Carabetta, Valerie J; Greco, Todd M; Tanner, Andrew W; Cristea, Ileana M; Dubnau, David

    2016-05-01

    N ε -Lysine acetylation has been recognized as a ubiquitous regulatory posttranslational modification that influences a variety of important biological processes in eukaryotic cells. Recently, it has been realized that acetylation is also prevalent in bacteria. Bacteria contain hundreds of acetylated proteins, with functions affecting diverse cellular pathways. Still, little is known about the regulation or biological relevance of nearly all of these modifications. Here we characterize the cellular growth-associated regulation of the Bacillus subtilis acetylome. Using acetylation enrichment and quantitative mass spectrometry, we investigate the logarithmic and stationary growth phases, identifying over 2,300 unique acetylation sites on proteins that function in essential cellular pathways. We determine an acetylation motif, EK(ac)(D/Y/E), which resembles the eukaryotic mitochondrial acetylation signature, and a distinct stationary-phase-enriched motif. By comparing the changes in acetylation with protein abundances, we discover a subset of critical acetylation events that are temporally regulated during cell growth. We functionally characterize the stationary-phase-enriched acetylation on the essential shape-determining protein MreB. Using bioinformatics, mutational analysis, and fluorescence microscopy, we define a potential role for the temporal acetylation of MreB in restricting cell wall growth and cell diameter. The past decade highlighted N ε -lysine acetylation as a prevalent posttranslational modification in bacteria. However, knowledge regarding the physiological importance and temporal regulation of acetylation has remained limited. To uncover potential regulatory roles for acetylation, we analyzed how acetylation patterns and abundances change between growth phases in B. subtilis . To demonstrate that the identification of cell growth-dependent modifications can point to critical regulatory acetylation events, we further characterized MreB, the cell shape-determining protein. Our findings led us to propose a role for MreB acetylation in controlling cell width by restricting cell wall growth.

  9. Rap1b Is an Effector of Axin2 Regulating Crosstalk of Signaling Pathways During Skeletal Development.

    PubMed

    Maruyama, Takamitsu; Jiang, Ming; Abbott, Alycia; Yu, H-M Ivy; Huang, Qirong; Chrzanowska-Wodnicka, Magdalena; Chen, Emily I; Hsu, Wei

    2017-09-01

    Recent identification and isolation of suture stem cells capable of long-term self-renewal, clonal expanding, and differentiating demonstrate their essential role in calvarial bone development, homeostasis, and injury repair. These bona fide stem cells express a high level of Axin2 and are able to mediate bone regeneration and repair in a cell autonomous fashion. The importance of Axin2 is further demonstrated by its genetic inactivation in mice causing skeletal deformities resembling craniosynostosis in humans. The fate determination and subsequent differentiation of Axin2+ stem cells are highly orchestrated by a variety of evolutionary conserved signaling pathways including Wnt, FGF, and BMP. These signals are often antagonistic of each other and possess differential effects on osteogenic and chondrogenic cell types. However, the mechanisms underlying the interplay of these signaling transductions remain largely elusive. Here we identify Rap1b acting downstream of Axin2 as a signaling interrogator for FGF and BMP. Genetic analysis reveals that Rap1b is essential for development of craniofacial and body skeletons. Axin2 regulates Rap1b through modulation of canonical BMP signaling. The BMP-mediated activation of Rap1b promotes chondrogenic fate and chondrogenesis. Furthermore, by inhibiting MAPK signaling, Rap1b mediates the antagonizing effect of BMP on FGF to repress osteoblast differentiation. Disruption of Rap1b in mice not only enhances osteoblast differentiation but also impairs chondrocyte differentiation during intramembranous and endochondral ossifications, respectively, leading to severe defects in craniofacial and body skeletons. Our findings reveal a dual role of Rap1b in development of the skeletogenic cell types. Rap1b is critical for balancing the signaling effects of BMP and FGF during skeletal development and disease. © 2017 American Society for Bone and Mineral Research. © 2017 American Society for Bone and Mineral Research.

  10. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    PubMed

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (<5 mm) have been documented in environmental samples on a global scale. While these pollutants may enter aquatic environments via wastewater treatment facilities, the abundance of microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.

  11. Insecticidal Activity of Melaleuca alternifolia Essential Oil and RNA-Seq Analysis of Sitophilus zeamais Transcriptome in Response to Oil Fumigation

    PubMed Central

    Liao, Min; Xiao, Jin-Jing; Zhou, Li-Jun; Liu, Yang; Wu, Xiang-Wei; Hua, Ri-Mao; Wang, Gui-Rong; Cao, Hai-Qun

    2016-01-01

    Background The cereal weevil, Sitophilus zeamais is one of the most destructive pests of stored cereals worldwide. Frequent use of fumigants for managing stored-product insects has led to the development of resistance in insects. Essential oils from aromatic plants including the tea oil plant, Melaleuca alternifolia may provide environmentally friendly alternatives to currently used pest control agents. However, little is known about molecular events involved in stored-product insects in response to plant essential oil fumigation. Results M. alternifolia essential oil was shown to possess the fumigant toxicity against S. zeamais. The constituent, terpinen-4-ol was the most effective compound for fumigant toxicity. M. alternifolia essential oil significantly inhibited the activity of three enzymes in S. zeamais, including two detoxifying enzymes, glutathione S-transferase (GST), and carboxylesterase (CarE), as well as a nerve conduction enzyme, acetylcholinesterase (AChE). Comparative transcriptome analysis of S. zeamais through RNA-Seq identified a total of 3,562 differentially expressed genes (DEGs), of which 2,836 and 726 were up-regulated and down-regulated in response to M. alternifolia essential oil fumigation, respectively. Based on gene ontology (GO) analysis, the majority of DEGs were involved in insecticide detoxification and mitochondrial function. Furthermore, an abundance of DEGs mapped into the metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database were associated with respiration and metabolism of xenobiotics, including cytochrome P450s, CarEs, GSTs, and ATP-binding cassette transporters (ABC transporters). Some DEGs mapped into the proteasome and phagosome pathway were found to be significantly enriched. These results led us to propose a model of insecticide action that M. alternifolia essential oil likely directly affects the hydrogen carrier to block the electron flow and interfere energy synthesis in mitochondrial respiratory chain. Conclusion This is the first study to perform a comparative transcriptome analysis of S. zeamais in response to M. alternifolia essential oil fumigation. Our results provide new insights into the insecticidal mechanism of M. alternifolia essential oil fumigation against S. zeamais and eventually contribute to the management of this important agricultural pest. PMID:27936192

  12. Insecticidal Activity of Melaleuca alternifolia Essential Oil and RNA-Seq Analysis of Sitophilus zeamais Transcriptome in Response to Oil Fumigation.

    PubMed

    Liao, Min; Xiao, Jin-Jing; Zhou, Li-Jun; Liu, Yang; Wu, Xiang-Wei; Hua, Ri-Mao; Wang, Gui-Rong; Cao, Hai-Qun

    2016-01-01

    The cereal weevil, Sitophilus zeamais is one of the most destructive pests of stored cereals worldwide. Frequent use of fumigants for managing stored-product insects has led to the development of resistance in insects. Essential oils from aromatic plants including the tea oil plant, Melaleuca alternifolia may provide environmentally friendly alternatives to currently used pest control agents. However, little is known about molecular events involved in stored-product insects in response to plant essential oil fumigation. M. alternifolia essential oil was shown to possess the fumigant toxicity against S. zeamais. The constituent, terpinen-4-ol was the most effective compound for fumigant toxicity. M. alternifolia essential oil significantly inhibited the activity of three enzymes in S. zeamais, including two detoxifying enzymes, glutathione S-transferase (GST), and carboxylesterase (CarE), as well as a nerve conduction enzyme, acetylcholinesterase (AChE). Comparative transcriptome analysis of S. zeamais through RNA-Seq identified a total of 3,562 differentially expressed genes (DEGs), of which 2,836 and 726 were up-regulated and down-regulated in response to M. alternifolia essential oil fumigation, respectively. Based on gene ontology (GO) analysis, the majority of DEGs were involved in insecticide detoxification and mitochondrial function. Furthermore, an abundance of DEGs mapped into the metabolism pathway in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database were associated with respiration and metabolism of xenobiotics, including cytochrome P450s, CarEs, GSTs, and ATP-binding cassette transporters (ABC transporters). Some DEGs mapped into the proteasome and phagosome pathway were found to be significantly enriched. These results led us to propose a model of insecticide action that M. alternifolia essential oil likely directly affects the hydrogen carrier to block the electron flow and interfere energy synthesis in mitochondrial respiratory chain. This is the first study to perform a comparative transcriptome analysis of S. zeamais in response to M. alternifolia essential oil fumigation. Our results provide new insights into the insecticidal mechanism of M. alternifolia essential oil fumigation against S. zeamais and eventually contribute to the management of this important agricultural pest.

  13. 50 CFR 424.12 - Criteria for designating critical habitat.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sufficiently well known to permit identification of an area as critical habitat. (b) In determining what areas... essential to the conservation of a given species and that may require special management considerations or... elements within the defined area that are essential to the conservation of the species. Known primary...

  14. 76 FR 36902 - Pacific Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-23

    ... continue the periodic review of essential fish habitat (EFH) identification and descriptions for species... Pacific Fishery Management Council (Pacific Council) will hold a meeting of its Groundfish Essential Fish Habitat Review Committee (EFHRC). The meeting is open to the public. DATES: The CPSMT meeting will be held...

  15. Foveational Complexity in Single Word Identification: Contralateral Visual Pathways Are Advantaged over Ipsilateral Pathways

    ERIC Educational Resources Information Center

    Obregon, Mateo; Shillcock, Richard

    2012-01-01

    Recognition of a single word is an elemental task in innumerable cognitive psychology experiments, but involves unexpected complexity. We test a controversial claim that the human fovea is vertically divided, with each half projecting to either the contralateral or ipsilateral hemisphere, thereby influencing foveal word recognition. We report a…

  16. Identifying Pathways of Teachers' PCK Development

    ERIC Educational Resources Information Center

    Wongsopawiro, Dirk S.; Zwart, Rosanne C.; van Driel, Jan H.

    2017-01-01

    This paper describes a method of analysing teacher growth in the context of science education. It focuses on the identification of pathways in the development of secondary school teachers' pedagogical content knowledge (PCK) by the use of the interconnected model of teachers' professional growth (IMTPG).The teachers (n = 12) participated in a…

  17. The identification of key genes and pathways in hepatocellular carcinoma by bioinformatics analysis of high-throughput data.

    PubMed

    Zhang, Chaoyang; Peng, Li; Zhang, Yaqin; Liu, Zhaoyang; Li, Wenling; Chen, Shilian; Li, Guancheng

    2017-06-01

    Liver cancer is a serious threat to public health and has fairly complicated pathogenesis. Therefore, the identification of key genes and pathways is of much importance for clarifying molecular mechanism of hepatocellular carcinoma (HCC) initiation and progression. HCC-associated gene expression dataset was downloaded from Gene Expression Omnibus database. Statistical software R was used for significance analysis of differentially expressed genes (DEGs) between liver cancer samples and normal samples. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, based on R software, were applied for the identification of pathways in which DEGs significantly enriched. Cytoscape software was for the construction of protein-protein interaction (PPI) network and module analysis to find the hub genes and key pathways. Finally, weighted correlation network analysis (WGCNA) was conducted to further screen critical gene modules with similar expression pattern and explore their biological significance. Significance analysis identified 1230 DEGs with fold change >2, including 632 significantly down-regulated DEGs and 598 significantly up-regulated DEGs. GO term enrichment analysis suggested that up-regulated DEG significantly enriched in immune response, cell adhesion, cell migration, type I interferon signaling pathway, and cell proliferation, and the down-regulated DEG mainly enriched in response to endoplasmic reticulum stress and endoplasmic reticulum unfolded protein response. KEGG pathway analysis found DEGs significantly enriched in five pathways including complement and coagulation cascades, focal adhesion, ECM-receptor interaction, antigen processing and presentation, and protein processing in endoplasmic reticulum. The top 10 hub genes in HCC were separately GMPS, ACACA, ALB, TGFB1, KRAS, ERBB2, BCL2, EGFR, STAT3, and CD8A, which resulted from PPI network. The top 3 gene interaction modules in PPI network enriched in immune response, organ development, and response to other organism, respectively. WGCNA revealed that the confirmed eight gene modules significantly enriched in monooxygenase and oxidoreductase activity, response to endoplasmic reticulum stress, type I interferon signaling pathway, processing, presentation and binding of peptide antigen, cellular response to cadmium and zinc ion, cell locomotion and differentiation, ribonucleoprotein complex and RNA processing, and immune system process, respectively. In conclusion, we identified some key genes and pathways closely related with HCC initiation and progression by a series of bioinformatics analysis on DEGs. These screened genes and pathways provided for a more detailed molecular mechanism underlying HCC occurrence and progression, holding promise for acting as biomarkers and potential therapeutic targets.

  18. Gender identification and sex reassignment surgery in the trans population: a survey study in France.

    PubMed

    Giami, Alain; Beaubatie, Emmanuelle

    2014-11-01

    Drawing from controversies between medical, legal, and associative actors about the obligation of sex reassignment surgeries (SRS) for people who intend to change their civil status, this article discusses the role that medical procedures, and particularly SRS, play in contemporary gender identifications and transition pathways in France. In 2010, the French National Institute of Health and Medical Research conducted a national survey in order to study the sociodemographic characteristics, access to medical, and psychological care, and state of health among trans individuals. After a long period of ethnographic work during which a partnership was established with trans actors to map the social, medical, and political landscape of trans communities, a questionnaire was developed and distributed between July and October 2010 in collaboration with most of the trans organizations and public and private health professionals operating in France. Overall, 381 self-identified trans individuals returned the anonymous self-administered questionnaire. The results highlighted the heterogeneity of the trans population, whose definition cannot be reduced to a group of individuals undergoing standardized hormonal treatments and SRS. Two central indicators, sex assigned at birth and gender self-identification, enabled us to describe and analyze different medical and legal pathways with a particular focus on SRS, which is often compulsory for a change of civil status in France. Although SRS remains an important factor in an individual's subjective evaluation of the success of the transition pathway, its practice varies depending on one's sex assigned at birth and gender identification.

  19. A Subspace Approach to the Structural Decomposition and Identification of Ankle Joint Dynamic Stiffness.

    PubMed

    Jalaleddini, Kian; Tehrani, Ehsan Sobhani; Kearney, Robert E

    2017-06-01

    The purpose of this paper is to present a structural decomposition subspace (SDSS) method for decomposition of the joint torque to intrinsic, reflexive, and voluntary torques and identification of joint dynamic stiffness. First, it formulates a novel state-space representation for the joint dynamic stiffness modeled by a parallel-cascade structure with a concise parameter set that provides a direct link between the state-space representation matrices and the parallel-cascade parameters. Second, it presents a subspace method for the identification of the new state-space model that involves two steps: 1) the decomposition of the intrinsic and reflex pathways and 2) the identification of an impulse response model of the intrinsic pathway and a Hammerstein model of the reflex pathway. Extensive simulation studies demonstrate that SDSS has significant performance advantages over some other methods. Thus, SDSS was more robust under high noise conditions, converging where others failed; it was more accurate, giving estimates with lower bias and random errors. The method also worked well in practice and yielded high-quality estimates of intrinsic and reflex stiffnesses when applied to experimental data at three muscle activation levels. The simulation and experimental results demonstrate that SDSS accurately decomposes the intrinsic and reflex torques and provides accurate estimates of physiologically meaningful parameters. SDSS will be a valuable tool for studying joint stiffness under functionally important conditions. It has important clinical implications for the diagnosis, assessment, objective quantification, and monitoring of neuromuscular diseases that change the muscle tone.

  20. A Patatin-Like Protein Associated with the Polyhydroxyalkanoate (PHA) Granules of Haloferax mediterranei Acts as an Efficient Depolymerase in the Degradation of Native PHA

    PubMed Central

    Liu, Guiming; Hou, Jing; Cai, Shuangfeng; Zhao, Dahe; Cai, Lei; Han, Jing; Zhou, Jian

    2015-01-01

    The key enzymes and pathways involved in polyhydroxyalkanoate (PHA) biosynthesis in haloarchaea have been identified in recent years, but the haloarchaeal enzymes for PHA degradation remain unknown. In this study, a patatin-like PHA depolymerase, PhaZh1, was determined to be located on the PHA granules in the haloarchaeon Haloferax mediterranei. PhaZh1 hydrolyzed the native PHA (nPHA) [including native polyhydroxybutyrate (nPHB) and native poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (nPHBV) in this study] granules in vitro with 3-hydroxybutyrate (3HB) monomer as the primary product. The site-directed mutagenesis of PhaZh1 indicated that Gly16, Ser47 (in a classical lipase box, G-X-S47-X-G), and Asp195 of this depolymerase were essential for its activity in nPHA granule hydrolysis. Notably, phaZh1 and bdhA (encoding putative 3HB dehydrogenase) form a gene cluster (HFX_6463 to _6464) in H. mediterranei. The 3HB monomer generated from nPHA degradation by PhaZh1 could be further converted into acetoacetate by BdhA, indicating that PhaZh1-BdhA may constitute the first part of a PHA degradation pathway in vivo. Interestingly, although PhaZh1 showed efficient activity and was most likely the key enzyme in nPHA granule hydrolysis in vitro, the knockout of phaZh1 had no significant effect on the intracellular PHA mobilization, implying the existence of an alternative PHA mobilization pathway(s) that functions effectively within the cells of H. mediterranei. Therefore, identification of this patatin-like depolymerase of haloarchaea may provide a new strategy for producing the high-value-added chiral compound (R)-3HB and may also shed light on the PHA mobilization in haloarchaea. PMID:25710370

  1. PPARα siRNA–Treated Expression Profiles Uncover the Causal Sufficiency Network for Compound-Induced Liver Hypertrophy

    PubMed Central

    Dai, Xudong; Souza, Angus T. De; Dai, Hongyue; Lewis, David L; Lee, Chang-kyu; Spencer, Andy G; Herweijer, Hans; Hagstrom, Jim E; Linsley, Peter S; Bassett, Douglas E; Ulrich, Roger G; He, Yudong D

    2007-01-01

    Uncovering pathways underlying drug-induced toxicity is a fundamental objective in the field of toxicogenomics. Developing mechanism-based toxicity biomarkers requires the identification of such novel pathways and the order of their sufficiency in causing a phenotypic response. Genome-wide RNA interference (RNAi) phenotypic screening has emerged as an effective tool in unveiling the genes essential for specific cellular functions and biological activities. However, eliciting the relative contribution of and sufficiency relationships among the genes identified remains challenging. In the rodent, the most widely used animal model in preclinical studies, it is unrealistic to exhaustively examine all potential interactions by RNAi screening. Application of existing computational approaches to infer regulatory networks with biological outcomes in the rodent is limited by the requirements for a large number of targeted permutations. Therefore, we developed a two-step relay method that requires only one targeted perturbation for genome-wide de novo pathway discovery. Using expression profiles in response to small interfering RNAs (siRNAs) against the gene for peroxisome proliferator-activated receptor α (Ppara), our method unveiled the potential causal sufficiency order network for liver hypertrophy in the rodent. The validity of the inferred 16 causal transcripts or 15 known genes for PPARα-induced liver hypertrophy is supported by their ability to predict non-PPARα–induced liver hypertrophy with 84% sensitivity and 76% specificity. Simulation shows that the probability of achieving such predictive accuracy without the inferred causal relationship is exceedingly small (p < 0.005). Five of the most sufficient causal genes have been previously disrupted in mouse models; the resulting phenotypic changes in the liver support the inferred causal roles in liver hypertrophy. Our results demonstrate the feasibility of defining pathways mediating drug-induced toxicity from siRNA-treated expression profiles. When combined with phenotypic evaluation, our approach should help to unleash the full potential of siRNAs in systematically unveiling the molecular mechanism of biological events. PMID:17335344

  2. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    NASA Technical Reports Server (NTRS)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  3. Subtype and pathway specific responses to anticancer compounds in breast cancer.

    PubMed

    Heiser, Laura M; Sadanandam, Anguraj; Kuo, Wen-Lin; Benz, Stephen C; Goldstein, Theodore C; Ng, Sam; Gibb, William J; Wang, Nicholas J; Ziyad, Safiyyah; Tong, Frances; Bayani, Nora; Hu, Zhi; Billig, Jessica I; Dueregger, Andrea; Lewis, Sophia; Jakkula, Lakshmi; Korkola, James E; Durinck, Steffen; Pepin, François; Guan, Yinghui; Purdom, Elizabeth; Neuvial, Pierre; Bengtsson, Henrik; Wood, Kenneth W; Smith, Peter G; Vassilev, Lyubomir T; Hennessy, Bryan T; Greshock, Joel; Bachman, Kurtis E; Hardwicke, Mary Ann; Park, John W; Marton, Laurence J; Wolf, Denise M; Collisson, Eric A; Neve, Richard M; Mills, Gordon B; Speed, Terence P; Feiler, Heidi S; Wooster, Richard F; Haussler, David; Stuart, Joshua M; Gray, Joe W; Spellman, Paul T

    2012-02-21

    Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.

  4. Identification of GIG1, a GlcNAc-Induced Gene in Candida albicans Needed for Normal Sensitivity to the Chitin Synthase Inhibitor Nikkomycin Z▿§

    PubMed Central

    Gunasekera, Angelo; Alvarez, Francisco J.; Douglas, Lois M.; Wang, Hong X.; Rosebrock, Adam P.; Konopka, James B.

    2010-01-01

    The amino sugar N-acetylglucosamine (GlcNAc) is known to be an important structural component of cells from bacteria to humans, but its roles in cell signaling are less well understood. GlcNAc induces two pathways in the human fungal pathogen Candida albicans. One activates cyclic AMP (cAMP) signaling, which stimulates the formation of hyphal cells and the expression of virulence genes, and the other pathway induces genes needed to catabolize GlcNAc. Microarray analysis of gene expression was carried out under four different conditions in order to characterize the transcriptional changes induced by GlcNAc. The most highly induced genes include those that encode a GlcNAc transporter (NGT1) and the GlcNAc catabolic enzymes (HXK1, DAC1, and NAG1). GlcNAc also activated most of the genes whose expression is increased when cells are triggered with other stimuli to form hyphae. Surprisingly, GlcNAc also induced a subset of genes that are regulated by galactose (GAL1, GAL7, and GAL10), which may be due to cross talk between signaling pathways. A novel GlcNAc-induced gene, GIG1, which is not essential for GlcNAc catabolism or the induction of hyphae, was identified. However, a Gig1-green fluorescent protein (GFP) fusion protein was specifically induced by GlcNAc, and not by other sugars. Gig1-GFP localized to the cytoplasm, where GlcNAc metabolism occurs. Significantly, a gig1Δ mutant displayed increased resistance to nikkomycin Z, which inhibits chitin synthase from converting UDP-GlcNAc into cell wall chitin. Gig1 is highly conserved in fungi, especially those that contain GlcNAc catabolic genes. These results implicate Gig1 in GlcNAc metabolism. PMID:20675577

  5. Gene expression in the scleractinian Acropora microphthalma exposed to high solar irradiance reveals elements of photoprotection and coral bleaching.

    PubMed

    Starcevic, Antonio; Dunlap, Walter C; Cullum, John; Shick, J Malcolm; Hranueli, Daslav; Long, Paul F

    2010-11-12

    The success of tropical reef-building corals depends on the metabolic co-operation between the animal host and the photosynthetic performance of endosymbiotic algae residing within its cells. To examine the molecular response of the coral Acropora microphthalma to high levels of solar irradiance, a cDNA library was constructed by PCR-based suppression subtractive hybridisation (PCR-SSH) from mRNA obtained by transplantation of a colony from a depth of 12.7 m to near-surface solar irradiance, during which the coral became noticeably paler from loss of endosymbionts in sun-exposed tissues. A novel approach to sequence annotation of the cDNA library gave genetic evidence for a hypothetical biosynthetic pathway branching from the shikimic acid pathway that leads to the formation of 4-deoxygadusol. This metabolite is a potent antioxidant and expected precursor of the UV-protective mycosporine-like amino acids (MAAs), which serve as sunscreens in coral phototrophic symbiosis. Empirical PCR based evidence further upholds the contention that the biosynthesis of these MAA sunscreens is a 'shared metabolic adaptation' between the symbiotic partners. Additionally, gene expression induced by enhanced solar irradiance reveals a cellular mechanism of light-induced coral bleaching that invokes a Ca(2+)-binding synaptotagmin-like regulator of SNARE protein assembly of phagosomal exocytosis, whereby algal partners are lost from the symbiosis. Bioinformatics analyses of DNA sequences obtained by differential gene expression of a coral exposed to high solar irradiance has revealed the identification of putative genes encoding key steps of the MAA biosynthetic pathway. Revealed also by this treatment are genes that implicate exocytosis as a cellular process contributing to a breakdown in the metabolically essential partnership between the coral host and endosymbiotic algae, which manifests as coral bleaching.

  6. Identification of the Dimer Exchange Interface of the Bacterial DNA Damage Response Protein UmuD.

    PubMed

    Murison, David A; Timson, Rebecca C; Koleva, Bilyana N; Ordazzo, Michael; Beuning, Penny J

    2017-09-12

    The Escherichia coli SOS response, an induced DNA damage response pathway, confers survival on bacterial cells by providing accurate repair mechanisms as well as the potentially mutagenic pathway translesion synthesis (TLS). The umuD gene products are upregulated after DNA damage and play roles in both nonmutagenic and mutagenic aspects of the SOS response. Full-length UmuD is expressed as a homodimer of 139-amino-acid subunits, which eventually cleaves its N-terminal 24 amino acids to form UmuD'. The cleavage product UmuD' and UmuC form the Y-family polymerase DNA Pol V (UmuD' 2 C) capable of performing TLS. UmuD and UmuD' exist as homodimers, but their subunits can readily exchange to form UmuDD' heterodimers preferentially. Heterodimer formation is an essential step in the degradation pathway of UmuD'. The recognition sequence for ClpXP protease is located within the first 24 amino acids of full-length UmuD, and the partner of full-length UmuD, whether UmuD or UmuD', is degraded by ClpXP. To better understand the mechanism by which UmuD subunits exchange, we measured the kinetics of exchange of a number of fluorescently labeled single-cysteine UmuD variants as detected by Förster resonance energy transfer. Labeling sites near the dimer interface correlate with increased rates of exchange, indicating that weakening the dimer interface facilitates exchange, whereas labeling sites on the exterior decrease the rate of exchange. In most but not all cases, homodimer and heterodimer exchange exhibit similar rates, indicating that somewhat different molecular surfaces mediate homodimer exchange and heterodimer formation.

  7. Career Technical Education Pathways Initiative

    ERIC Educational Resources Information Center

    California Community Colleges, Chancellor's Office, 2013

    2013-01-01

    California's education system--the largest in the United States--is an essential resource for ensuring strong economic growth in the state. The Career Technical Education Pathways Initiative (referred to as the Initiative in this report), which became law in 2005, brings together community colleges, K-12 school districts, employers, organized…

  8. Estimating pathway-specific contributions to biodegradation in aquifers based on dual isotope analysis: theoretical analysis and reactive transport simulations.

    PubMed

    Centler, Florian; Heße, Falk; Thullner, Martin

    2013-09-01

    At field sites with varying redox conditions, different redox-specific microbial degradation pathways contribute to total contaminant degradation. The identification of pathway-specific contributions to total contaminant removal is of high practical relevance, yet difficult to achieve with current methods. Current stable-isotope-fractionation-based techniques focus on the identification of dominant biodegradation pathways under constant environmental conditions. We present an approach based on dual stable isotope data to estimate the individual contributions of two redox-specific pathways. We apply this approach to carbon and hydrogen isotope data obtained from reactive transport simulations of an organic contaminant plume in a two-dimensional aquifer cross section to test the applicability of the method. To take aspects typically encountered at field sites into account, additional simulations addressed the effects of transverse mixing, diffusion-induced stable-isotope fractionation, heterogeneities in the flow field, and mixing in sampling wells on isotope-based estimates for aerobic and anaerobic pathway contributions to total contaminant biodegradation. Results confirm the general applicability of the presented estimation method which is most accurate along the plume core and less accurate towards the fringe where flow paths receive contaminant mass and associated isotope signatures from the core by transverse dispersion. The presented method complements the stable-isotope-fractionation-based analysis toolbox. At field sites with varying redox conditions, it provides a means to identify the relative importance of individual, redox-specific degradation pathways. © 2013.

  9. Synthesis, Delivery and Regulation of Eukaryotic Heme and Fe-S Cluster Cofactors

    PubMed Central

    Barupala, Dulmini P.; Dzul, Stephen P.; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L.

    2016-01-01

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. PMID:26785297

  10. Identification of Host-Targeted Small Molecules That Restrict Intracellular Mycobacterium tuberculosis Growth

    PubMed Central

    Silvis, Melanie R.; Luo, Samantha S.; Sogi, Kimberly; Vokes, Martha; Bray, Mark-Anthony; Carpenter, Anne E.; Moore, Christopher B.; Siddiqi, Noman; Rubin, Eric J.; Hung, Deborah T.

    2014-01-01

    Mycobacterium tuberculosis remains a significant threat to global health. Macrophages are the host cell for M. tuberculosis infection, and although bacteria are able to replicate intracellularly under certain conditions, it is also clear that macrophages are capable of killing M. tuberculosis if appropriately activated. The outcome of infection is determined at least in part by the host-pathogen interaction within the macrophage; however, we lack a complete understanding of which host pathways are critical for bacterial survival and replication. To add to our understanding of the molecular processes involved in intracellular infection, we performed a chemical screen using a high-content microscopic assay to identify small molecules that restrict mycobacterial growth in macrophages by targeting host functions and pathways. The identified host-targeted inhibitors restrict bacterial growth exclusively in the context of macrophage infection and predominantly fall into five categories: G-protein coupled receptor modulators, ion channel inhibitors, membrane transport proteins, anti-inflammatories, and kinase modulators. We found that fluoxetine, a selective serotonin reuptake inhibitor, enhances secretion of pro-inflammatory cytokine TNF-α and induces autophagy in infected macrophages, and gefitinib, an inhibitor of the Epidermal Growth Factor Receptor (EGFR), also activates autophagy and restricts growth. We demonstrate that during infection signaling through EGFR activates a p38 MAPK signaling pathway that prevents macrophages from effectively responding to infection. Inhibition of this pathway using gefitinib during in vivo infection reduces growth of M. tuberculosis in the lungs of infected mice. Our results support the concept that screening for inhibitors using intracellular models results in the identification of tool compounds for probing pathways during in vivo infection and may also result in the identification of new anti-tuberculosis agents that work by modulating host pathways. Given the existing experience with some of our identified compounds for other therapeutic indications, further clinically-directed study of these compounds is merited. PMID:24586159

  11. Activation of the JNK pathway is essential for transformation by the Met oncogene.

    PubMed

    Rodrigues, G A; Park, M; Schlessinger, J

    1997-05-15

    The Met/Hepatocyte Growth Factor (HGF) receptor tyrosine kinase is oncogenically activated through a rearrangement that creates a hybrid gene Tpr-Met. The resultant chimeric p65(Tpr-Met) protein is constitutively phosphorylated on tyrosine residues in vivo and associates with a number of SH2-containing signaling molecules including the p85 subunit of PI-3 kinase and the Grb2 adaptor protein, which couples receptor tyrosine kinases to the Ras signaling pathway. Mutation of the binding site for Grb2 impairs the ability of Tpr-Met oncoprotein to transform fibroblasts, suggesting that the activation of the Ras/MAP kinase signaling pathway through Grb2 may be essential for cellular transformation. To test this hypothesis dominant-negative mutants of Grb2 with deletions of the SH3 domains were introduced into Tpr-Met transformed fibroblasts. Cells overexpressing the mutants were found to be morphologically reverted and exhibited reduced growth in soft agar. Surprisingly, the Grb2 mutants blocked activation of the JNK/SAPK but not MAP kinase activity induced by the Tpr-Met oncoprotein. Additionally, cells expressing dominant-negative Grb2 mutants had reduced PI-3-kinase activity and dominant-negative mutants of Rac1 blocked both Tpr-Met-induced transformation and activation of JNK. These experiments reveal a novel link between Met and the JNK pathway, which is essential for transformation by this oncogene.

  12. The Knowns Unknowns: Exploring the Homologous Recombination Repair Pathway in Toxoplasma gondii

    PubMed Central

    Fenoy, Ignacio M.; Bogado, Silvina S.; Contreras, Susana M.; Gottifredi, Vanesa; Angel, Sergio O.

    2016-01-01

    Toxoplasma gondii is an apicomplexan parasite of medical and veterinary importance which causes toxoplasmosis in humans. Great effort is currently being devoted toward the identification of novel drugs capable of targeting such illness. In this context, we believe that the thorough understanding of the life cycle of this model parasite will facilitate the identification of new druggable targets in T. gondii. It is important to exploit the available knowledge of pathways which could modulate the sensitivity of the parasite to DNA damaging agents. The homologous recombination repair (HRR) pathway may be of particular interest in this regard as its inactivation sensitizes other cellular models such as human cancer to targeted therapy. Herein we discuss the information available on T. gondii's HRR pathway from the perspective of its conservation with respect to yeast and humans. Special attention was devoted to BRCT domain-containing and end-resection associated proteins in T. gondii as in other experimental models such proteins have crucial roles in early/late steps or HRR and in the pathway choice for double strand break resolution. We conclude that T. gondii HRR pathway is a source of several lines of investigation that allow to to comprehend the extent of diversification of HRR in T. gondii. Such an effort will serve to determine if HRR could represent a potential targer for the treatment of toxoplasmosis. PMID:27199954

  13. Integrated Transcriptomic and Epigenomic Analysis of Primary Human Lung Epithelial Cell Differentiation

    PubMed Central

    Marconett, Crystal N.; Zhou, Beiyun; Rieger, Megan E.; Selamat, Suhaida A.; Dubourd, Mickael; Fang, Xiaohui; Lynch, Sean K.; Stueve, Theresa Ryan; Siegmund, Kimberly D.; Berman, Benjamin P.

    2013-01-01

    Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. PMID:23818859

  14. NAMPT is essential for the G-CSF-induced myeloid differentiation via a NAD+-sirtuin-1-dependent pathway

    USDA-ARS?s Scientific Manuscript database

    We identified nicotinamide phosphoribosyltransferase (NAMPT), also known as pre-B cell colony enhancing factor (PBEF), as an essential enzyme mediating granulocyte colony-stimulating factor (G-CSF)-triggered granulopoiesis in healthy individuals and in individuals with severe congenital neutropenia....

  15. Identification of a Δ5-like fatty acyl desaturase from the cephalopod Octopus vulgaris (Cuvier 1797) involved in the biosynthesis of essential fatty acids.

    PubMed

    Monroig, Oscar; Navarro, Juan C; Dick, James R; Alemany, Frederic; Tocher, Douglas R

    2012-08-01

    Long-chain polyunsaturated fatty acids (LC-PUFA) have been identified as essential compounds for common octopus (Octopus vulgaris), but precise dietary requirements have not been determined due, in part, to the inherent difficulties of performing feeding trials on paralarvae. Our objective is to establish the essential fatty acid (EFA) requirements for paralarval stages of the common octopus through characterisation of the enzymes of endogenous LC-PUFA biosynthetic pathways. In this study, we isolated a cDNA with high homology to fatty acyl desaturases (Fad). Functional characterisation in recombinant yeast showed that the octopus Fad exhibited Δ5-desaturation activity towards saturated and polyunsaturated fatty acyl substrates. Thus, it efficiently converted the yeast's endogenous 16:0 and 18:0 to 16:1n-11 and 18:1n-13, respectively, and desaturated exogenously added PUFA substrates 20:4n-3 and 20:3n-6 to 20:5n-3 (EPA) and 20:4n-6 (ARA), respectively. Although the Δ5 Fad enables common octopus to produce EPA and ARA, the low availability of its adequate substrates 20:4n-3 and 20:3n-6, either in the diet or by limited endogenous synthesis from C(18) PUFA, might indicate that EPA and ARA are indeed EFA for this species. Interestingly, the octopus Δ5 Fad can also participate in the biosynthesis of non-methylene-interrupted FA, PUFA that are generally uncommon in vertebrates but have been found previously in marine invertebrates, including molluscs, and now also confirmed to be present in specific tissues of common octopus.

  16. Identifying and quantifying secondhand smoke in multiunit homes with tobacco smoke odor complaints

    NASA Astrophysics Data System (ADS)

    Dacunto, Philip J.; Cheng, Kai-Chung; Acevedo-Bolton, Viviana; Klepeis, Neil E.; Repace, James L.; Ott, Wayne R.; Hildemann, Lynn M.

    2013-06-01

    Accurate identification and quantification of the secondhand tobacco smoke (SHS) that drifts between multiunit homes (MUHs) is essential for assessing resident exposure and health risk. We collected 24 gaseous and particle measurements over 6-9 day monitoring periods in five nonsmoking MUHs with reported SHS intrusion problems. Nicotine tracer sampling showed evidence of SHS intrusion in all five homes during the monitoring period; logistic regression and chemical mass balance (CMB) analysis enabled identification and quantification of some of the precise periods of SHS entry. Logistic regression models identified SHS in eight periods when residents complained of SHS odor, and CMB provided estimates of SHS magnitude in six of these eight periods. Both approaches properly identified or apportioned all six cooking periods used as no-SHS controls. Finally, both approaches enabled identification and/or apportionment of suspected SHS in five additional periods when residents did not report smelling smoke. The time resolution of this methodology goes beyond sampling methods involving single tracers (such as nicotine), enabling the precise identification of the magnitude and duration of SHS intrusion, which is essential for accurate assessment of human exposure.

  17. A forward genetic screen reveals essential and non-essential RNAi factors in Paramecium tetraurelia

    PubMed Central

    Marker, Simone; Carradec, Quentin; Tanty, Véronique; Arnaiz, Olivier; Meyer, Eric

    2014-01-01

    In most eukaryotes, small RNA-mediated gene silencing pathways form complex interacting networks. In the ciliate Paramecium tetraurelia, at least two RNA interference (RNAi) mechanisms coexist, involving distinct but overlapping sets of protein factors and producing different types of short interfering RNAs (siRNAs). One is specifically triggered by high-copy transgenes, and the other by feeding cells with double-stranded RNA (dsRNA)-producing bacteria. In this study, we designed a forward genetic screen for mutants deficient in dsRNA-induced silencing, and a powerful method to identify the relevant mutations by whole-genome sequencing. We present a set of 47 mutant alleles for five genes, revealing two previously unknown RNAi factors: a novel Paramecium-specific protein (Pds1) and a Cid1-like nucleotidyl transferase. Analyses of allelic diversity distinguish non-essential and essential genes and suggest that the screen is saturated for non-essential, single-copy genes. We show that non-essential genes are specifically involved in dsRNA-induced RNAi while essential ones are also involved in transgene-induced RNAi. One of the latter, the RNA-dependent RNA polymerase RDR2, is further shown to be required for all known types of siRNAs, as well as for sexual reproduction. These results open the way for the dissection of the genetic complexity, interconnection, mechanisms and natural functions of RNAi pathways in P. tetraurelia. PMID:24860163

  18. Reaction pathways of biomass-derived oxygenates on noble metal surfaces

    NASA Astrophysics Data System (ADS)

    McManus, Jesse R.

    As the global demand for energy continues to rise, the environmental concerns associated with increased fossil fuel consumption have motivated the use of biomass as an alternative, carbon-renewable energy feedstock. Controlling reactive chemistry of the sugars that comprise biomass through the use of catalysis becomes essential in effectively producing green fuels and value-added chemicals. Recent work on biomass conversion catalysts have demonstrated the efficacy of noble metal catalyst systems for the reforming of biomass to hydrogen fuel, and the hydrodeoxygenation of biomass-derived compounds to value-added chemicals. In particular, Pt and Pd surfaces have shown considerable promise as reforming catalysts in preliminary aqueous phase reforming studies. It becomes important to understand the mechanisms by which these molecules react on the catalyst surfaces in order to determine structure-activity relationships and bond scission energetics as to provide a framework for engineering more active and selective catalysts. Fundamental surface science techniques provide the tools to do this; however, work in this field has been so far limited to simple model molecules like ethanol and ethylene glycol. Herein, temperature programmed desorption and high resolution electron energy loss spectroscopy are utilized in an ultra-high vacuum surface science study of the biomass-derived sugar glucose on Pt and Pd single crystal catalysts. Overall, it was determined that the aldehyde function of a ring-open glucose molecule plays an integral part in the initial bonding and reforming reaction pathway, pointing to the use of aldoses glycolaldehyde and glyceraldehyde as the most appropriate model compounds for future studies. Furthermore, the addition of adatom Zn to a Pt(111) surface was found to significantly decrease the C-H and C-C bond scission activity in aldehyde containing compounds, resulting in a preferred deoxygenation pathway in opposition to the decarbonylation pathway common on clean Pt(111). This has implications in the hydrodeoxygenation of biomass-derived compounds for the production of value-added chemicals like 2-methylfuran from furfural, or the catalytic upgrading of sugars. Ultimately, identification of the reactive mechanisms of biomass-derived molecules on different unique surfaces has lead to a greater understanding for what makes a more selective catalyst for specific chemical pathways.

  19. A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses.

    PubMed

    He, Peng; Zhang, Yun-Fei; Hong, Duan-Yang; Wang, Jun; Wang, Xing-Liang; Zuo, Ling-Hua; Tang, Xian-Fu; Xu, Wei-Ming; He, Ming

    2017-03-01

    Female moths synthesize species-specific sex pheromone components and release them to attract male moths, which depend on precise sex pheromone chemosensory system to locate females. Two types of genes involved in the sex pheromone biosynthesis and degradation pathways play essential roles in this important moth behavior. To understand the function of genes in the sex pheromone pathway, this study investigated the genome-wide and digital gene expression of sex pheromone biosynthesis and degradation genes in various adult tissues in the diamondback moth (DBM), Plutella xylostella, which is a notorious vegetable pest worldwide. A massive transcriptome data (at least 39.04 Gb) was generated by sequencing 6 adult tissues including male antennae, female antennae, heads, legs, abdomen and female pheromone glands from DBM by using Illumina 4000 next-generation sequencing and mapping to a published DBM genome. Bioinformatics analysis yielded a total of 89,332 unigenes among which 87 transcripts were putatively related to seven gene families in the sex pheromone biosynthesis pathway. Among these, seven [two desaturases (DES), three fatty acyl-CoA reductases (FAR) one acetyltransferase (ACT) and one alcohol dehydrogenase (AD)] were mainly expressed in the pheromone glands with likely function in the three essential sex pheromone biosynthesis steps: desaturation, reduction, and esterification. We also identified 210 odorant-degradation related genes (including sex pheromone-degradation related genes) from seven major enzyme groups. Among these genes, 100 genes are new identified and two aldehyde oxidases (AOXs), one aldehyde dehydrogenase (ALDH), five carboxyl/cholinesterases (CCEs), five UDP-glycosyltransferases (UGTs), eight cytochrome P450 (CYP) and three glutathione S-transferases (GSTs) displayed more robust expression in the antennae, and thus are proposed to participate in the degradation of sex pheromone components and plant volatiles. To date, this is the most comprehensive gene data set of sex pheromone biosynthesis and degradation enzyme related genes in DBM created by genome- and transcriptome-wide identification, characterization and expression profiling. Our findings provide a basis to better understand the function of genes with tissue enriched expression. The results also provide information on the genes involved in sex pheromone biosynthesis and degradation, and may be useful to identify potential gene targets for pest control strategies by disrupting the insect-insect communication using pheromone-based behavioral antagonists.

  20. [Care pathway of children managed by the Bouches-du-Rhone Child Welfare Services].

    PubMed

    Martin, Anaïs; Jego-Sablier, Maeva; Prudhomme, Johanne; Champsaur, Laurence

    2017-12-05

    To describe the care pathway of children managed by the Bouches-du-Rhône Child Welfare Services and to propose ways to improve this care pathway. ESSPER-ASE 13 survey is a descriptive and cross-sectional survey carried out between April 2013 and April 2014, which included 1,092 children under the age of 18 years placed in a Bouches-du-Rhône Child Welfare Services children's home or foster care. This survey studied the physical and mental health and the medical follow-up characteristics of these children. This article focuses on care pathway data. 82% of children were followed by general practitioners, while 15% of children, essentially children under the age of 6 years in child care, were followed by Maternal and Infant Protection (Protection Maternelle et Infantile). The care pathway of these children involved multiple actors and was dominated by psychological follow-up. On average, the children were followed by 2 professionals (specialist or paramedical professional) in addition to the medical examiner. In terms of prevention, children's immunization coverage rates were better than national rates. Coordination of the numerous actors is essential, including the creation of a referring physician.

  1. Squeezing at Entrance of Proton Transport Pathway in Proton-translocating Pyrophosphatase upon Substrate Binding*

    PubMed Central

    Huang, Yun-Tzu; Liu, Tseng-Huang; Lin, Shih-Ming; Chen, Yen-Wei; Pan, Yih-Jiuan; Lee, Ching-Hung; Sun, Yuh-Ju; Tseng, Fan-Gang; Pan, Rong-Long

    2013-01-01

    Homodimeric proton-translocating pyrophosphatase (H+-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H+-PPase consists of 14–16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H+-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H+-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H+-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H+-PPase upon substrate binding. PMID:23720778

  2. A Global Genomic and Genetic Strategy to Identify, Validate and Use Gene Signatures of Xenobiotic-Responsive Transcription Factors in Prediction of Pathway Activation in the Mouse Liver

    EPA Science Inventory

    Many drugs and environmentally-relevant chemicals activate xenobiotic-responsive transcription factors. Identification of target genes of these factors would be useful in predicting pathway activation in in vitro chemical screening as well as their involvement in disease states. ...

  3. Seychelles Fisheries Connectivity and Transport Pathways

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Seychelles Fisheries Connectivity and Transport Pathways...Plateau. • Identification of physical oceanographic controls on mass and momentum transport on scales that are relevant to local ecology and fisheries and...Development of basic regional modeling capacity that Seychelles managers and fisheries can use to guide decisions and improve community outreach and

  4. Identification of the Pr1 gene product completes the anthocyanin biosynthesis pathway of maize

    USDA-ARS?s Scientific Manuscript database

    In maize, mutations in the pr1 locus lead to the accumulation of pelargonidin (red) rather than cyanidin (purple) pigments in aleurone cells where the anthocyanin biosynthetic pathway is active. We characterized pr1 mutation and isolated a putative F3'H encoding gene (Zmf3'h1), and showed by segrega...

  5. An Institutional Three-Stage Framework: Elevating Academic Writing and Integrity Standards of International Pathway Students

    ERIC Educational Resources Information Center

    Velliaris, Donna M.; Breen, Paul

    2016-01-01

    In this paper, the authors explore a holistic three-stage framework currently used by the Eynesbury Institute of Business and Technology (EIBT), focused on academic staff identification and remediation processes for the prevention of (un)intentional student plagiarism. As a pre-university pathway provider--whose student body is 98%…

  6. [Essential guidelines for Quality Management System].

    PubMed

    Daunizeau, A

    2013-06-01

    The guidelines describe the essential parts of the quality management system to fulfil the requirements of the standard EN ISO 15 189. It includes mainly the organisation, the definition of responsibilities, training of personnel, the document control, the quality control, identification and control of nonconformities, corrective actions, preventive actions and evaluation, as audits and the management review.

  7. Identification of Essential Food Skills for Skill-Based Healthful Eating Programs in Secondary Schools

    ERIC Educational Resources Information Center

    Fordyce-Voorham, Sandra

    2011-01-01

    Objective: To identify the food skills deemed essential to include in skill-based healthful eating programs in secondary schools. Methods: Fifty-one food experts including home economics educators, chefs, nutritionists and dietitians, community educators, homemakers, and young people were recruited by invitation, mail, and advertising. Data were…

  8. The ciliopathy gene Rpgrip1l is essential for hair follicle development.

    PubMed

    Chen, Jiang; Laclef, Christine; Moncayo, Alejandra; Snedecor, Elizabeth R; Yang, Ning; Li, Li; Takemaru, Ken-Ichi; Paus, Ralf; Schneider-Maunoury, Sylvie; Clark, Richard A

    2015-03-01

    The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgrip1l gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.

  9. [Isolation and identification methods of enterobacteria group and its technological advancement].

    PubMed

    Furuta, Itaru

    2007-08-01

    In the last half-century, isolation and identification methods of enterobacteria groups have markedly improved by technological advancement. Clinical microbiology tests have changed overtime from tube methods to commercial identification kits and automated identification. Tube methods are the original method for the identification of enterobacteria groups, that is, a basically essential method to recognize bacterial fermentation and biochemical principles. In this paper, traditional tube tests are discussed, such as the utilization of carbohydrates, indole, methyl red, and citrate and urease tests. Commercial identification kits and automated instruments by computer based analysis as current methods are also discussed, and those methods provide rapidity and accuracy. Nonculture techniques of nucleic acid typing methods using PCR analysis, and immunochemical methods using monoclonal antibodies can be further developed.

  10. Role of care pathways in interprofessional teamwork.

    PubMed

    Scaria, Minimol Kulakkottu

    2016-08-24

    Cohesive interprofessional teamwork is essential to successful healthcare services. Interprofessional teamwork is the means by which different healthcare professionals - with diverse knowledge, skills and talents - collaborate to achieve a common goal. Several interventions are available to improve teamwork in the healthcare setting. This article explores the role of care pathways in improving interprofessional teamwork. Care pathways enhance teamwork by promoting coordination, collaboration, communication and decision making to achieve optimal healthcare outcomes. They result in improved staff knowledge, communication, documentation and interprofessional relations. Care pathways also contribute to patient-centred care and increase patient satisfaction.

  11. Structure-activity modelling of essential oils, their components, and key molecular parameters and descriptors.

    PubMed

    Owen, Lucy; Laird, Katie; Wilson, Philippe B

    2018-04-01

    Many essential oil components are known to possess broad spectrum antimicrobial activity, including against antibiotic resistant bacteria. These compounds may be a useful source of new and novel antimicrobials. However, there is limited research on the structure-activity relationship (SAR) of essential oil compounds, which is important for target identification and lead optimization. This study aimed to elucidate SARs of essential oil components from experimental and literature sources. Minimum Inhibitory Concentrations (MICs) of essential oil components were determined against Escherichia coli and Staphylococcus aureus using a microdilution method and then compared to those in published in literature. Of 12 essential oil components tested, carvacrol and cuminaldehyde were most potent with MICs of 1.98 and 2.10 mM, respectively. The activity of 21 compounds obtained from the literature, MICs ranged from 0.004 mM for limonene to 36.18 mM for α-terpineol. A 3D qualitative SAR model was generated from MICs using FORGE software by consideration of electrostatic and steric parameters. An r 2 value of 0.807 for training and cross-validation sets was achieved with the model developed. Ligand efficiency was found to correlate well to the observed activity (r 2  = 0.792), while strongly negative electrostatic regions were present in potent molecules. These descriptors may be useful for target identification of essential oils or their major components in antimicrobial/drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. A genome-wide inducible phenotypic screen identifies antisense RNA constructs silencing Escherichia coli essential genes.

    PubMed

    Meng, Jia; Kanzaki, Gregory; Meas, Diane; Lam, Christopher K; Crummer, Heather; Tain, Justina; Xu, H Howard

    2012-04-01

    Regulated antisense RNA (asRNA) expression has been employed successfully in Gram-positive bacteria for genome-wide essential gene identification and drug target determination. However, there have been no published reports describing the application of asRNA gene silencing for comprehensive analyses of essential genes in Gram-negative bacteria. In this study, we report the first genome-wide identification of asRNA constructs for essential genes in Escherichia coli. We screened 250 000 library transformants for conditional growth inhibitory recombinant clones from two shotgun genomic libraries of E. coli using a paired-termini expression vector (pHN678). After sequencing plasmid inserts of 675 confirmed inducer sensitive cell clones, we identified 152 separate asRNA constructs of which 134 inserts came from essential genes, while 18 originated from nonessential genes (but share operons with essential genes). Among the 79 individual essential genes silenced by these asRNA constructs, 61 genes (77%) engage in processes related to protein synthesis. The cell-based assays of an asRNA clone targeting fusA (encoding elongation factor G) showed that the induced cells were sensitized 12-fold to fusidic acid, a known specific inhibitor. Our results demonstrate the utility of the paired-termini expression vector and feasibility of large-scale gene silencing in E. coli using regulated asRNA expression. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Methods and application of system identification in shock and vibration.

    NASA Technical Reports Server (NTRS)

    Collins, J. D.; Young, J. P.; Kiefling, L.

    1972-01-01

    A logical picture is presented of current useful system identification techniques in the shock and vibration field. A technology tree diagram is developed for the purpose of organizing and categorizing the widely varying approaches according to the fundamental nature of each. Specific examples of accomplished activity for each identification category are noted and discussed. To provide greater insight into the most current trends in the system identification field, a somewhat detailed description is presented of the essential features of a recently developed technique that is based on making the maximum use of all statistically known information about a system.

  14. Expansion of Protein Farnesyltransferase Specificity Using “Tunable” Active Site Interactions

    PubMed Central

    Hougland, James L.; Gangopadhyay, Soumyashree A.; Fierke, Carol A.

    2012-01-01

    Post-translational modifications play essential roles in regulating protein structure and function. Protein farnesyltransferase (FTase) catalyzes the biologically relevant lipidation of up to several hundred cellular proteins. Site-directed mutagenesis of FTase coupled with peptide selectivity measurements demonstrates that molecular recognition is determined by a combination of multiple interactions. Targeted randomization of these interactions yields FTase variants with altered and, in some cases, bio-orthogonal selectivity. We demonstrate that FTase specificity can be “tuned” using a small number of active site contacts that play essential roles in discriminating against non-substrates in the wild-type enzyme. This tunable selectivity extends in vivo, with FTase variants enabling the creation of bioengineered parallel prenylation pathways with altered substrate selectivity within a cell. Engineered FTase variants provide a novel avenue for probing both the selectivity of prenylation pathway enzymes and the effects of prenylation pathway modifications on the cellular function of a protein. PMID:22992747

  15. Synthesis, delivery and regulation of eukaryotic heme and Fe-S cluster cofactors.

    PubMed

    Barupala, Dulmini P; Dzul, Stephen P; Riggs-Gelasco, Pamela Jo; Stemmler, Timothy L

    2016-02-15

    In humans, the bulk of iron in the body (over 75%) is directed towards heme- or Fe-S cluster cofactor synthesis, and the complex, highly regulated pathways in place to accomplish biosynthesis have evolved to safely assemble and load these cofactors into apoprotein partners. In eukaryotes, heme biosynthesis is both initiated and finalized within the mitochondria, while cellular Fe-S cluster assembly is controlled by correlated pathways both within the mitochondria and within the cytosol. Iron plays a vital role in a wide array of metabolic processes and defects in iron cofactor assembly leads to human diseases. This review describes progress towards our molecular-level understanding of cellular heme and Fe-S cluster biosynthesis, focusing on the regulation and mechanistic details that are essential for understanding human disorders related to the breakdown in these essential pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Vasorelaxant and cardiovascular properties of the essential oil of Pogostemon elsholtzioides.

    PubMed

    Shiva Kumar, Arumugasamy; Jeyaprakash, Karnan; Chellappan, David Raj; Murugan, Ramar

    2017-03-06

    Pogostemon elsholtzioides Benth. (Lamiaceae) is an aromatic shrub, endemic to eastern Himalaya region. The leaves are used for treating goiter and high blood pressure (BP) by indigenous people in Arunachal Pradesh, India. Young leaves are used as vegetable and leaf decoction is also used for cough, cold and headache by some indigenous communities in Northeast India. This species is used for treating hypertension and the genus Pogostemon is rich in essential oil. Therefore, the present study was aimed at investigation of the chemical constituents, vasorelaxant and cardiovascular effects of the essential oil of P. elsholtzioides. P. elsholtzioides was collected from Pasighat, Arunachal Pradesh, India and essential oil was extracted from shade dried leaves. Essential oil was analyzed by GC-FID and GC-MS and the volatile constituents were identified. Vasorelaxant and cardiovascular properties of the essential oil were studied against phenylephrine induced contraction in isolated endothelium intact aortic preparations and by measuring systolic and diastolic BP, mean arterial pressure (MAP) and heart rate (HR) after carotid artery cannulation in Wistar rats. The essential oil was rich in sesquiterpenes and curzerene, benzophenone, α-cadinol and germacrone were major constituents. The essential oil exhibited significant vasodilation effect in phenylephrine induced contracted aortic rings. Vasorelaxant effect of the essential oil was also observed both in the presence and absence of Nitro-L-arginine methyl ester against phenylephrine-contracted aortic rings. It also induced reduction of systolic and diastolic BP, MAP and HR. Essential oil of P. elsholtzioides exhibited significant vasorelaxant effect against endothelium intact aortic preparation mediated through nitric oxide dependent pathway and also reduced BP. However, further study is needed to screen the role of calcium ions in both intracellular and extracellular pathway. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  17. Identification and Intervention Strategies for Preschool, Kindergarten, First and Second Grade Children at Risk for Reading Difficulties.

    ERIC Educational Resources Information Center

    Gray, Elizabeth

    Studies are reviewed on early identification and remediation of "at risk" preschool, 1st-, and 2nd-grade children to prevent possible future reading failure. The research review identifies essential characteristics of reading and reading acquisition, explains difficulties in learning how to read, explores variables within the individual…

  18. The Relationship of the Jenkins Activity Survey to Type A Behavior among Business Executives.

    ERIC Educational Resources Information Center

    Begley, Thomas M.; Boyd, David P.

    1985-01-01

    Examined the internal structure of the Jenkins Activity Survey. Results include identification of five factors, three of which are similar to factors identified in earlier studies, identification of a subset of items that show consistency across studies, and discovery that two scales are essentially the same in their defining items. (Author/BL)

  19. Ras-related C3 Botulinum Toxin Substrate (Rac) and Src Family Kinases (SFK) Are Proximal and Essential for Phosphatidylinositol 3-Kinase (PI3K) Activation in Natural Killer (NK) Cell-mediated Direct Cytotoxicity against Cryptococcus neoformans*

    PubMed Central

    Xiang, Richard F.; Stack, Danuta; Huston, Shaunna M.; Li, Shu Shun; Ogbomo, Henry; Kyei, Stephen K.; Mody, Christopher H.

    2016-01-01

    The activity of Rac in leukocytes is essential for immunity. However, its role in NK cell-mediated anti-microbial signaling remains unclear. In this study, we investigated the role of Rac in NK cell mediated anti-cryptococcal killing. We found that Cryptococcus neoformans independently activates both Rac and SFK pathways in NK cells, and unlike in tumor killing, Cryptococcus initiated a novel Rac → PI3K → Erk cytotoxicity cascade. Remarkably, Rac was not required for conjugate formation, despite its essential role in NK cytotoxicity against C. neoformans. Taken together, our data show that, unlike observations with tumor cells, NK cells use a novel Rac cytotoxicity pathway in conjunction with SFK, to kill C. neoformans. PMID:26867574

  20. Commissioning Cornell OSTs for SRF cavity testing at Jlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremeev, Grigory

    2011-07-01

    Understanding the current quench limitations in SRF cavities is a topic essential for any SRF accelerator that requires high fields. This understanding crucially depends on correct and precise quench identification. Second sound quench detection in superfluid liquid helium with oscillating superleak transducers is a technique recently applied at Cornell University as a fast and versatile method for quench identification in SRF cavities. Having adopted Cornell design, we report in this contribution on our experience with OST for quench identification in different cavities at JLab.

  1. Identification of Terrestrial Reflectance From Remote Sensing

    NASA Technical Reports Server (NTRS)

    Alter-Gartenberg, Rachel; Nolf, Scott R.; Stacy, Kathryn (Technical Monitor)

    2000-01-01

    Correcting for atmospheric effects is an essential part of surface-reflectance recovery from radiance measurements. Model-based atmospheric correction techniques enable an accurate identification and classification of terrestrial reflectances from multi-spectral imagery. Successful and efficient removal of atmospheric effects from remote-sensing data is a key factor in the success of Earth observation missions. This report assesses the performance, robustness and sensitivity of two atmospheric-correction and reflectance-recovery techniques as part of an end-to-end simulation of hyper-spectral acquisition, identification and classification.

  2. Isotopic Determination of Region of Origin in Modern Peoples: Applications for Identification of U.S. War-Dead From the Vietnam Conflict

    DTIC Science & Technology

    2006-08-01

    corn increased, but corn -based snacks such as popcorn, chips, and sodas/colas sweetened with high - fructose corn syrup are essentially a staple of...Identification Laboratory (JPAC-CIL). The identification of unknown remains believed to be missing U.S. service personnel is frequently hampered by high ...the collagen in dentin, because of its high nitrogen content, primarily mirrors the protein content of the diet (van der Merwe 1982, Harrison and

  3. RCRA, superfund and EPCRA hotline training module. Introduction to: Hazardous waste identification (40 cfr part 261) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The module introduces a specific hazardous waste identification process, which involves asking and analyzing a series of questions about any waste being evaluated. It analyzes in detail the Resource Conservation and Recovery Act (RCRA) definition of `hazardous waste.` It explains concepts that are essential to identifying a RCRA hazardous waste: hazardous waste listing, hazardous waste characteristics, the `mixture` and `derived-from` rules, the `contained-in` policy, and the hazardous waste identification rules (HWIR).

  4. d-Xylose Degradation Pathway in the Halophilic Archaeon Haloferax volcanii

    PubMed Central

    Johnsen, Ulrike; Dambeck, Michael; Zaiss, Henning; Fuhrer, Tobias; Soppa, Jörg; Sauer, Uwe; Schönheit, Peter

    2009-01-01

    The pathway of d-xylose degradation in archaea is unknown. In a previous study we identified in Haloarcula marismortui the first enzyme of xylose degradation, an inducible xylose dehydrogenase (Johnsen, U., and Schönheit, P. (2004) J. Bacteriol. 186, 6198–6207). Here we report a comprehensive study of the complete d-xylose degradation pathway in the halophilic archaeon Haloferax volcanii. The analyses include the following: (i) identification of the degradation pathway in vivo following 13C-labeling patterns of proteinogenic amino acids after growth on [13C]xylose; (ii) identification of xylose-induced genes by DNA microarray experiments; (iii) characterization of enzymes; and (iv) construction of in-frame deletion mutants and their functional analyses in growth experiments. Together, the data indicate that d-xylose is oxidized exclusively to the tricarboxylic acid cycle intermediate α-ketoglutarate, involving d-xylose dehydrogenase (HVO_B0028), a novel xylonate dehydratase (HVO_B0038A), 2-keto-3-deoxyxylonate dehydratase (HVO_B0027), and α-ketoglutarate semialdehyde dehydrogenase (HVO_B0039). The functional involvement of these enzymes in xylose degradation was proven by growth studies of the corresponding in-frame deletion mutants, which all lost the ability to grow on d-xylose, but growth on glucose was not significantly affected. This is the first report of an archaeal d-xylose degradation pathway that differs from the classical d-xylose pathway in most bacteria involving the formation of xylulose 5-phosphate as an intermediate. However, the pathway shows similarities to proposed oxidative pentose degradation pathways to α-ketoglutarate in few bacteria, e.g. Azospirillum brasilense and Caulobacter crescentus, and in the archaeon Sulfolobus solfataricus. PMID:19584053

  5. Career Technical Education Pathways Initiative Annual Report

    ERIC Educational Resources Information Center

    California Community Colleges, Chancellor's Office, 2014

    2014-01-01

    California's education system--the largest in the United States--is an essential resource for ensuring strong economic growth in the state. The Career Technical Education Pathways Initiative (the Initiative) became law in 2005 with Senate Bills 70 and 1133 and provided more than $380 million over eight years to improve career technical education…

  6. Control of the mitotic exit network during meiosis

    PubMed Central

    Attner, Michelle A.; Amon, Angelika

    2012-01-01

    The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division. PMID:22718910

  7. Sulfur mobilization for Fe-S cluster assembly by the essential SUF pathway in the Plasmodium falciparum apicoplast and its inhibition.

    PubMed

    Charan, Manish; Singh, Nidhi; Kumar, Bijay; Srivastava, Kumkum; Siddiqi, Mohammad Imran; Habib, Saman

    2014-06-01

    The plastid of the malaria parasite, the apicoplast, is essential for parasite survival. It houses several pathways of bacterial origin that are considered attractive sites for drug intervention. Among these is the sulfur mobilization (SUF) pathway of Fe-S cluster biogenesis. Although the SUF pathway is essential for apicoplast maintenance and parasite survival, there has been limited biochemical investigation of its components and inhibitors of Plasmodium SUFs have not been identified. We report the characterization of two proteins, Plasmodium falciparum SufS (PfSufS) and PfSufE, that mobilize sulfur in the first step of Fe-S cluster assembly and confirm their exclusive localization to the apicoplast. The cysteine desulfurase activity of PfSufS is greatly enhanced by PfSufE, and the PfSufS-PfSufE complex is detected in vivo. Structural modeling of the complex reveals proximal positioning of conserved cysteine residues of the two proteins that would allow sulfide transfer from the PLP (pyridoxal phosphate) cofactor-bound active site of PfSufS. Sulfide release from the l-cysteine substrate catalyzed by PfSufS is inhibited by the PLP inhibitor d-cycloserine, which forms an adduct with PfSufS-bound PLP. d-Cycloserine is also inimical to parasite growth, with a 50% inhibitory concentration close to that reported for Mycobacterium tuberculosis, against which the drug is in clinical use. Our results establish the function of two proteins that mediate sulfur mobilization, the first step in the apicoplast SUF pathway, and provide a rationale for drug design based on inactivation of the PLP cofactor of PfSufS. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  8. Intracellular signal modulation by nanomaterials.

    PubMed

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  9. Intracellular Signal Modulation by Nanomaterials

    PubMed Central

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2016-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive Oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can crucially affect the cytotoxicity of nanomaterials and membrane-dependent signaling pathways can be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future. PMID:24683030

  10. Training in metabolomics research. II. Processing and statistical analysis of metabolomics data, metabolite identification, pathway analysis, applications of metabolomics and its future.

    PubMed

    Barnes, Stephen; Benton, H Paul; Casazza, Krista; Cooper, Sara J; Cui, Xiangqin; Du, Xiuxia; Engler, Jeffrey; Kabarowski, Janusz H; Li, Shuzhao; Pathmasiri, Wimal; Prasain, Jeevan K; Renfrow, Matthew B; Tiwari, Hemant K

    2016-08-01

    Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. This second part of a comprehensive description of the methods of metabolomics focuses on data analysis, emerging methods in metabolomics and the future of this discipline. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Identification of Iridoid Glucoside Transporters in Catharanthus roseus

    PubMed Central

    Larsen, Bo; Fuller, Victoria L.; Pollier, Jacob; Van Moerkercke, Alex; Schweizer, Fabian; Payne, Richard; Colinas, Maite; O’Connor, Sarah E.; Goossens, Alain; Halkier, Barbara A.

    2017-01-01

    Abstract Monoterpenoid indole alkaloids (MIAs) are plant defense compounds and high-value pharmaceuticals. Biosynthesis of the universal MIA precursor, secologanin, is organized between internal phloem-associated parenchyma (IPAP) and epidermis cells. Transporters for intercellular transport of proposed mobile pathway intermediates have remained elusive. Screening of an Arabidopsis thaliana transporter library expressed in Xenopus oocytes identified AtNPF2.9 as a putative iridoid glucoside importer. Eight orthologs were identified in Catharanthus roseus, of which three, CrNPF2.4, CrNPF2.5 and CrNPF2.6, were capable of transporting the iridoid glucosides 7-deoxyloganic acid, loganic acid, loganin and secologanin into oocytes. Based on enzyme expression data and transporter specificity, we propose that several enzymes of the biosynthetic pathway are present in both IPAP and epidermis cells, and that the three transporters are responsible for transporting not only loganic acid, as previously proposed, but multiple intermediates. Identification of the iridoid glucoside-transporting CrNPFs is an important step toward understanding the complex orchestration of the seco-iridioid pathway. PMID:28922750

  12. Identification of genes involved in the biology of atypical teratoid/rhabdoid tumours using Drosophila melanogaster

    NASA Astrophysics Data System (ADS)

    Jeibmann, Astrid; Eikmeier, Kristin; Linge, Anna; Kool, Marcel; Koos, Björn; Schulz, Jacqueline; Albrecht, Stefanie; Bartelheim, Kerstin; Frühwald, Michael C.; Pfister, Stefan M.; Paulus, Werner; Hasselblatt, Martin

    2014-06-01

    Atypical teratoid/rhabdoid tumours (AT/RT) are malignant brain tumours. Unlike most other human brain tumours, AT/RT are characterized by inactivation of one single gene, SMARCB1. SMARCB1 is a member of the evolutionarily conserved SWI/SNF chromatin remodelling complex, which has an important role in the control of cell differentiation and proliferation. Little is known, however, about the pathways involved in the oncogenic effects of SMARCB1 inactivation, which might also represent targets for treatment. Here we report a comprehensive genetic screen in the fruit fly that revealed several genes not yet associated with loss of snr1, the Drosophila homologue of SMARCB1. We confirm the functional role of identified genes (including merlin, kibra and expanded, known to regulate hippo signalling pathway activity) in human rhabdoid tumour cell lines and AT/RT tumour samples. These results demonstrate that fly models can be employed for the identification of clinically relevant pathways in human cancer.

  13. Genetic and environmental pathways to complex diseases.

    PubMed

    Gohlke, Julia M; Thomas, Reuben; Zhang, Yonqing; Rosenstein, Michael C; Davis, Allan P; Murphy, Cynthia; Becker, Kevin G; Mattingly, Carolyn J; Portier, Christopher J

    2009-05-05

    Pathogenesis of complex diseases involves the integration of genetic and environmental factors over time, making it particularly difficult to tease apart relationships between phenotype, genotype, and environmental factors using traditional experimental approaches. Using gene-centered databases, we have developed a network of complex diseases and environmental factors through the identification of key molecular pathways associated with both genetic and environmental contributions. Comparison with known chemical disease relationships and analysis of transcriptional regulation from gene expression datasets for several environmental factors and phenotypes clustered in a metabolic syndrome and neuropsychiatric subnetwork supports our network hypotheses. This analysis identifies natural and synthetic retinoids, antipsychotic medications, Omega 3 fatty acids, and pyrethroid pesticides as potential environmental modulators of metabolic syndrome phenotypes through PPAR and adipocytokine signaling and organophosphate pesticides as potential environmental modulators of neuropsychiatric phenotypes. Identification of key regulatory pathways that integrate genetic and environmental modulators define disease associated targets that will allow for efficient screening of large numbers of environmental factors, screening that could set priorities for further research and guide public health decisions.

  14. Mining disease fingerprints from within genetic pathways.

    PubMed

    Nabhan, Ahmed Ragab; Sarkar, Indra Neil

    2012-01-01

    Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components ('fingerprints') of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ~77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways.

  15. Mining Disease Fingerprints From Within Genetic Pathways

    PubMed Central

    Nabhan, Ahmed Ragab; Sarkar, Indra Neil

    2012-01-01

    Mining biological networks can be an effective means to uncover system level knowledge out of micro level associations, such as encapsulated in genetic pathways. Analysis of human disease genetic pathways can lead to the identification of major mechanisms that may underlie disorders at an abstract functional level. The focus of this study was to develop an approach for structural pattern analysis and classification of genetic pathways of diseases. A probabilistic model was developed to capture characteristic components (‘fingerprints’) of functionally annotated pathways. A probability estimation procedure of this model searched for fingerprints in each disease pathway while improving probability estimates of model parameters. The approach was evaluated on data from the Kyoto Encyclopedia of Genes and Genomes (consisting of 56 pathways across seven disease categories). Based on the achieved average classification accuracy of up to ∼77%, the findings suggest that these fingerprints may be used for classification and discovery of genetic pathways. PMID:23304411

  16. Mapping the pathways of resistance to targeted therapies

    PubMed Central

    Wood, Kris C.

    2015-01-01

    Resistance substantially limits the depth and duration of clinical responses to targeted anticancer therapies. Through the use of complementary experimental approaches, investigators have revealed that cancer cells can achieve resistance through adaptation or selection driven by specific genetic, epigenetic, or microenvironmental alterations. Ultimately, these diverse alterations often lead to the activation of signaling pathways that, when co-opted, enable cancer cells to survive drug treatments. Recently developed methods enable the direct and scalable identification of the signaling pathways capable of driving resistance in specific contexts. Using these methods, novel pathways of resistance to clinically approved drugs have been identified and validated. By combining systematic resistance pathway mapping methods with studies revealing biomarkers of specific resistance pathways and pharmacological approaches to block these pathways, it may be possible to rationally construct drug combinations that yield more penetrant and lasting responses in patients. PMID:26392071

  17. Microsynthesis and electron ionization mass spectral studies of O(S)-alkyl N,N-dimethyl alkylphosphono(thiolo)thionoamidates for Chemical Weapons Convention verification.

    PubMed

    Saeidian, Hamdollah; Babri, Mehran; Abdoli, Morteza; Sarabadani, Mansour; Ashrafi, Davood; Naseri, Mohammad Taghi

    2012-12-15

    The availability of mass spectra and interpretation skills are essential for unambiguous identification of the Chemical Weapons Convention (CWC)-related chemicals. The O(S)-alkyl N,N-dimethyl alkylphosphono(thiolo)thionoamidates are included in the list of scheduled CWC-related compounds, but there are very few spectra from these compounds in the literature. This paper examines these spectra and their mass spectral fragmentation routes. The title chemicals were prepared through microsynthetic protocols and were analyzed using electron ionization mass spectrometry with gas chromatography as a MS-inlet system. Structures of fragments were confirmed using analysis of fragment ions of deuterated analogs, tandem mass spectrometry and density functional theory (DFT) calculations. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as alkene and amine elimination and McLafferty-type rearrangements. The most important fragmentation route of the chemicals is the thiono-thiolo rearrangement. DFT calculations are used to support MS results and to reveal relative preference formation of fragment ions. The retention indices (RIs) of all the studied compounds are also reported. Mass spectra of the synthesized compounds were investigated with the aim to enrich the Organization for the Prohibition of Chemical Weapons (OPCW) Central Analytical Database (OCAD) which may be used for detection and identification of CWC-related chemicals during on-site inspection and/or off-site analysis such as OPCW proficiency tests. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach.

    PubMed

    Mitsakakis, Konstantinos; Hin, Sebastian; Müller, Pie; Wipf, Nadja; Thomsen, Edward; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-02-03

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium , is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach.

  19. Converging Human and Malaria Vector Diagnostics with Data Management towards an Integrated Holistic One Health Approach

    PubMed Central

    Mitsakakis, Konstantinos; Hin, Sebastian; Wipf, Nadja; Coleman, Michael; Zengerle, Roland; Vontas, John; Mavridis, Konstantinos

    2018-01-01

    Monitoring malaria prevalence in humans, as well as vector populations, for the presence of Plasmodium, is an integral component of effective malaria control, and eventually, elimination. In the field of human diagnostics, a major challenge is the ability to define, precisely, the causative agent of fever, thereby differentiating among several candidate (also non-malaria) febrile diseases. This requires genetic-based pathogen identification and multiplexed analysis, which, in combination, are hardly provided by the current gold standard diagnostic tools. In the field of vectors, an essential component of control programs is the detection of Plasmodium species within its mosquito vectors, particularly in the salivary glands, where the infective sporozoites reside. In addition, the identification of species composition and insecticide resistance alleles within vector populations is a primary task in routine monitoring activities, aiming to support control efforts. In this context, the use of converging diagnostics is highly desirable for providing comprehensive information, including differential fever diagnosis in humans, and mosquito species composition, infection status, and resistance to insecticides of vectors. Nevertheless, the two fields of human diagnostics and vector control are rarely combined, both at the diagnostic and at the data management end, resulting in fragmented data and mis- or non-communication between various stakeholders. To this direction, molecular technologies, their integration in automated platforms, and the co-assessment of data from multiple diagnostic sources through information and communication technologies are possible pathways towards a unified human vector approach. PMID:29401670

  20. On Functional Module Detection in Metabolic Networks

    PubMed Central

    Koch, Ina; Ackermann, Jörg

    2013-01-01

    Functional modules of metabolic networks are essential for understanding the metabolism of an organism as a whole. With the vast amount of experimental data and the construction of complex and large-scale, often genome-wide, models, the computer-aided identification of functional modules becomes more and more important. Since steady states play a key role in biology, many methods have been developed in that context, for example, elementary flux modes, extreme pathways, transition invariants and place invariants. Metabolic networks can be studied also from the point of view of graph theory, and algorithms for graph decomposition have been applied for the identification of functional modules. A prominent and currently intensively discussed field of methods in graph theory addresses the Q-modularity. In this paper, we recall known concepts of module detection based on the steady-state assumption, focusing on transition-invariants (elementary modes) and their computation as minimal solutions of systems of Diophantine equations. We present the Fourier-Motzkin algorithm in detail. Afterwards, we introduce the Q-modularity as an example for a useful non-steady-state method and its application to metabolic networks. To illustrate and discuss the concepts of invariants and Q-modularity, we apply a part of the central carbon metabolism in potato tubers (Solanum tuberosum) as running example. The intention of the paper is to give a compact presentation of known steady-state concepts from a graph-theoretical viewpoint in the context of network decomposition and reduction and to introduce the application of Q-modularity to metabolic Petri net models. PMID:24958145

  1. Future Directions in Childhood Adversity and Youth Psychopathology.

    PubMed

    McLaughlin, Katie A

    2016-01-01

    Despite long-standing interest in the influence of adverse early experiences on mental health, systematic scientific inquiry into childhood adversity and developmental outcomes has emerged only recently. Existing research has amply demonstrated that exposure to childhood adversity is associated with elevated risk for multiple forms of youth psychopathology. In contrast, knowledge of developmental mechanisms linking childhood adversity to the onset of psychopathology-and whether those mechanisms are general or specific to particular kinds of adversity-remains cursory. Greater understanding of these pathways and identification of protective factors that buffer children from developmental disruptions following exposure to adversity is essential to guide the development of interventions to prevent the onset of psychopathology following adverse childhood experiences. This article provides recommendations for future research in this area. In particular, use of a consistent definition of childhood adversity, integration of studies of typical development with those focused on childhood adversity, and identification of distinct dimensions of environmental experience that differentially influence development are required to uncover mechanisms that explain how childhood adversity is associated with numerous psychopathology outcomes (i.e., multifinality) and identify moderators that shape divergent trajectories following adverse childhood experiences. A transdiagnostic model that highlights disruptions in emotional processing and poor executive functioning as key mechanisms linking childhood adversity with multiple forms of psychopathology is presented as a starting point in this endeavour. Distinguishing between general and specific mechanisms linking childhood adversity with psychopathology is needed to generate empirically informed interventions to prevent the long-term consequences of adverse early environments on children's development.

  2. Identification of mutated driver pathways in cancer using a multi-objective optimization model.

    PubMed

    Zheng, Chun-Hou; Yang, Wu; Chong, Yan-Wen; Xia, Jun-Feng

    2016-05-01

    New-generation high-throughput technologies, including next-generation sequencing technology, have been extensively applied to solve biological problems. As a result, large cancer genomics projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium are producing large amount of rich and diverse data in multiple cancer types. The identification of mutated driver genes and driver pathways from these data is a significant challenge. Genome aberrations in cancer cells can be divided into two types: random 'passenger mutation' and functional 'driver mutation'. In this paper, we introduced a Multi-objective Optimization model based on a Genetic Algorithm (MOGA) to solve the maximum weight submatrix problem, which can be employed to identify driver genes and driver pathways promoting cancer proliferation. The maximum weight submatrix problem defined to find mutated driver pathways is based on two specific properties, i.e., high coverage and high exclusivity. The multi-objective optimization model can adjust the trade-off between high coverage and high exclusivity. We proposed an integrative model by combining gene expression data and mutation data to improve the performance of the MOGA algorithm in a biological context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Identification of Genes in the Phenylalanine Metabolic Pathway by Ectopic Expression of a MYB Transcription Factor in Tomato Fruit[W

    PubMed Central

    Dal Cin, Valeriano; Tieman, Denise M.; Tohge, Takayuki; McQuinn, Ryan; de Vos, Ric C.H.; Osorio, Sonia; Schmelz, Eric A.; Taylor, Mark G.; Smits-Kroon, Miriam T.; Schuurink, Robert C.; Haring, Michel A.; Giovannoni, James; Fernie, Alisdair R.; Klee, Harry J.

    2011-01-01

    Altering expression of transcription factors can be an effective means to coordinately modulate entire metabolic pathways in plants. It can also provide useful information concerning the identities of genes that constitute metabolic networks. Here, we used ectopic expression of a MYB transcription factor, Petunia hybrida ODORANT1, to alter Phe and phenylpropanoid metabolism in tomato (Solanum lycopersicum) fruits. Despite the importance of Phe and phenylpropanoids to plant and human health, the pathway for Phe synthesis has not been unambiguously determined. Microarray analysis of ripening fruits from transgenic and control plants permitted identification of a suite of coregulated genes involved in synthesis and further metabolism of Phe. The pattern of coregulated gene expression facilitated discovery of the tomato gene encoding prephenate aminotransferase, which converts prephenate to arogenate. The expression and biochemical data establish an arogenate pathway for Phe synthesis in tomato fruits. Metabolic profiling and 13C flux analysis of ripe fruits further revealed large increases in the levels of a specific subset of phenylpropanoid compounds. However, while increased levels of these human nutrition-related phenylpropanoids may be desirable, there were no increases in levels of Phe-derived flavor volatiles. PMID:21750236

  4. Comparative investigation of Umbellularia californica and Laurus nobilis Leaf essential oils and identification of constituents active against Aedes aegypti

    USDA-ARS?s Scientific Manuscript database

    Umbellularia californica (California Bay Laurel) is a native species from California and its leaves are commonly used as spice and insect repellent. The leaves of U. californica may be mistaken or used as a substitute for Mediterranean bay laurel (Laurus nobilis) on the market. The essential oils fr...

  5. An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana

    DOE PAGES

    Doyle, Siamsa M.; Haeger, Ash; Vain, Thomas; ...

    2015-02-02

    Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering themore » polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF–defective mutants gnom-like 1 ( gnl1-1) and gnom ( van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. In conclusion, our data confirm a role for GNOM in endoplasmic reticulum (ER)–Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development.« less

  6. A statistical framework for biomedical literature mining.

    PubMed

    Chung, Dongjun; Lawson, Andrew; Zheng, W Jim

    2017-09-30

    In systems biology, it is of great interest to identify new genes that were not previously reported to be associated with biological pathways related to various functions and diseases. Identification of these new pathway-modulating genes does not only promote understanding of pathway regulation mechanisms but also allow identification of novel targets for therapeutics. Recently, biomedical literature has been considered as a valuable resource to investigate pathway-modulating genes. While the majority of currently available approaches are based on the co-occurrence of genes within an abstract, it has been reported that these approaches show only sub-optimal performances because 70% of abstracts contain information only for a single gene. To overcome such limitation, we propose a novel statistical framework based on the concept of ontology fingerprint that uses gene ontology to extract information from large biomedical literature data. The proposed framework simultaneously identifies pathway-modulating genes and facilitates interpreting functions of these new genes. We also propose a computationally efficient posterior inference procedure based on Metropolis-Hastings within Gibbs sampler for parameter updates and the poor man's reversible jump Markov chain Monte Carlo approach for model selection. We evaluate the proposed statistical framework with simulation studies, experimental validation, and an application to studies of pathway-modulating genes in yeast. The R implementation of the proposed model is currently available at https://dongjunchung.github.io/bayesGO/. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  7. Identification of the active compounds and significant pathways of yinchenhao decoction based on network pharmacology

    PubMed Central

    Huang, Jihan; Cheung, Fan; Tan, Hor-Yue; Hong, Ming; Wang, Ning; Yang, Juan; Feng, Yibin; Zheng, Qingshan

    2017-01-01

    Yinchenhao decoction (YCHD) is a traditional Chinese medicine formulation, which has been widely used for the treatment of jaundice for 2,000 years. Currently, YCHD is used to treat various liver disorders and metabolic diseases, however its chemical/pharmacologic profiles remain to be elucidated. The present study identified the active compounds and significant pathways of YCHD based on network pharmacology. All of the chemical ingredients of YCHD were retrieved from the Traditional Chinese Medicine Systems Pharmacology database. Absorption, distribution, metabolism and excretion screening with oral bioavailability (OB) screening, drug-likeness (DL) and intestinal epithelial permeability (Caco-2) evaluation were applied to discover the bioactive compounds in YCHD. Following this, target prediction, pathway identification and network construction were employed to clarify the mechanism of action of YCHD. Following OB screening, and evaluation of DL and Caco-2, 34 compounds in YCHD were identified as potential active ingredients, of which 30 compounds were associated with 217 protein targets. A total of 31 significant pathways were obtained by performing enrichment analyses of 217 proteins using the JEPETTO 3.x plugin, and 16 classes of gene-associated diseases were revealed by performing enrichment analyses using Database for Annotation, Visualization and Integrated Discovery v6.7. The present study identified potential active compounds and significant pathways in YCHD. In addition, the mechanism of action of YCHD in the treatment of various diseases through multiple pathways was clarified. PMID:28791364

  8. Functional Analysis of OMICs Data and Small Molecule Compounds in an Integrated "Knowledge-Based" Platform.

    PubMed

    Dubovenko, Alexey; Nikolsky, Yuri; Rakhmatulin, Eugene; Nikolskaya, Tatiana

    2017-01-01

    Analysis of NGS and other sequencing data, gene variants, gene expression, proteomics, and other high-throughput (OMICs) data is challenging because of its biological complexity and high level of technical and biological noise. One way to deal with both problems is to perform analysis with a high fidelity annotated knowledgebase of protein interactions, pathways, and functional ontologies. This knowledgebase has to be structured in a computer-readable format and must include software tools for managing experimental data, analysis, and reporting. Here, we present MetaCore™ and Key Pathway Advisor (KPA), an integrated platform for functional data analysis. On the content side, MetaCore and KPA encompass a comprehensive database of molecular interactions of different types, pathways, network models, and ten functional ontologies covering human, mouse, and rat genes. The analytical toolkit includes tools for gene/protein list enrichment analysis, statistical "interactome" tool for the identification of over- and under-connected proteins in the dataset, and a biological network analysis module made up of network generation algorithms and filters. The suite also features Advanced Search, an application for combinatorial search of the database content, as well as a Java-based tool called Pathway Map Creator for drawing and editing custom pathway maps. Applications of MetaCore and KPA include molecular mode of action of disease research, identification of potential biomarkers and drug targets, pathway hypothesis generation, analysis of biological effects for novel small molecule compounds and clinical applications (analysis of large cohorts of patients, and translational and personalized medicine).

  9. Identification of novel loci for the generation of reporter mice

    PubMed Central

    Rebecchi, Monica; Levandis, Giovanna

    2017-01-01

    Abstract Deciphering the etiology of complex pathologies at molecular level requires longitudinal studies encompassing multiple biochemical pathways (apoptosis, proliferation, inflammation, oxidative stress). In vivo imaging of current reporter animals enabled the spatio-temporal analysis of specific molecular events, however, the lack of a multiplicity of loci for the generalized and regulated expression of the integrated transgenes hampers the creation of systems for the simultaneous analysis of more than a biochemical pathways at the time. We here developed and tested an in vivo-based methodology for the identification of multiple insertional loci suitable for the generation of reliable reporter mice. The validity of the methodology was tested with the generation of novel mice useful to report on inflammation and oxidative stress. PMID:27899606

  10. Exploring hypertension genome-wide association studies findings and impact on pathophysiology, pathways, and pharmacogenetics.

    PubMed

    Cabrera, Claudia P; Ng, Fu Liang; Warren, Helen R; Barnes, Michael R; Munroe, Patricia B; Caulfield, Mark J

    2015-01-01

    Hypertension is a major risk factor for global mortality. Recent genome-wide association studies (GWAS) have led to successful identification of many genetic loci influencing blood pressure, although these studies account for less than 5% of heritability. While genetic discovery efforts continue, it is timely to pause and reflect on what information has been gained to date from reported loci. Knowledge from GWAS findings inform our understanding of the pathways and pleiotropy underpinning hypertension and aid in the identification of potential druggable targets. By reviewing blood pressure loci we aim to determine how much potential the current observations have for future clinical utility. The authors have declared no conflicts of interest for this article. © 2015 Wiley Periodicals, Inc.

  11. BMP7 and SHH regulate Pax2 in mouse retinal astrocytes by relieving TLX repression.

    PubMed

    Sehgal, Rachna; Sheibani, Nader; Rhodes, Simon J; Belecky Adams, Teri L

    2009-08-15

    Pax2 is essential for development of the neural tube, urogenital system, optic vesicle, optic cup and optic tract. In the eye, Pax2 deficiency is associated with coloboma, a loss of astrocytes in the optic nerve and retina, and abnormal axonal pathfinding of the ganglion cell axons at the optic chiasm. Thus, appropriate expression of Pax2 is essential for astrocyte determination and differentiation. Although BMP7 and SHH have been shown to regulate Pax2 expression, the molecular mechanism by which this regulation occurs is not well understood. In this study, we determined that BMP7 and SHH activate Pax2 expression in mouse retinal astrocyte precursors in vitro. SHH appeared to play a dual role in Pax2 regulation; 1) SHH may regulate BMP7 expression, and 2) the SHH pathway cooperates with the BMP pathway to regulate Pax2 expression. BMP and SHH pathway members can interact separately or together with TLX, a repressor protein in the tailless transcription factor family. Here we show that the interaction of both pathways with TLX relieves the repression of Pax2 expression in mouse retinal astrocytes. Together these data reveal a new mechanism for the cooperative actions of signaling pathways in astrocyte determination and differentiation and suggest interactions of regulatory pathways that are applicable to other developmental programs.

  12. Coordinate regulation of the Suf and Isc Fe-S cluster biogenesis pathways by IscR is essential for viability of Escherichia coli.

    PubMed

    Mettert, Erin L; Kiley, Patricia J

    2014-12-01

    Fe-S cluster biogenesis is essential for the viability of most organisms. In Escherichia coli, this process requires either the housekeeping Isc or the stress-induced Suf pathway. The global regulator IscR coordinates cluster synthesis by repressing transcription of the isc operon by [2Fe-2S]-IscR and activating expression of the suf operon. We show that either [2Fe-2S]-IscR or apo-IscR can activate suf, making expression sensitive to mainly IscR levels and not the cluster state, unlike isc expression. We also demonstrate that in the absence of isc, IscR-dependent suf activation is essential since strains lacking both the Isc pathway and IscR were not viable unless Suf was expressed ectopically. Similarly, removal of the IscR binding site in the sufA promoter also led to a requirement for isc. Furthermore, suf expression was increased in a Δisc mutant, presumably due to increased IscR levels in this mutant. This was surprising because the iron-dependent repressor Fur, whose higher-affinity binding at the sufA promoter should occlude IscR binding, showed only partial repression. In addition, Fur derepression was not sufficient for viability in the absence of IscR and the Isc pathway, highlighting the importance of direct IscR activation. Finally, a mutant lacking Fur and the Isc pathway increased suf expression to the highest observed levels and nearly restored [2Fe-2S]-IscR activity, providing a mechanism for regulating IscR activity under stress conditions. Together, these findings have enhanced our understanding of the homeostatic mechanism by which cells use one regulator, IscR, to differentially control Fe-S cluster biogenesis pathways to ensure viability. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  13. Molecular mechanisms underlying variations in lung function: a systems genetics analysis

    PubMed Central

    Obeidat, Ma’en; Hao, Ke; Bossé, Yohan; Nickle, David C; Nie, Yunlong; Postma, Dirkje S; Laviolette, Michel; Sandford, Andrew J; Daley, Denise D; Hogg, James C; Elliott, W Mark; Fishbane, Nick; Timens, Wim; Hysi, Pirro G; Kaprio, Jaakko; Wilson, James F; Hui, Jennie; Rawal, Rajesh; Schulz, Holger; Stubbe, Beate; Hayward, Caroline; Polasek, Ozren; Järvelin, Marjo-Riitta; Zhao, Jing Hua; Jarvis, Deborah; Kähönen, Mika; Franceschini, Nora; North, Kari E; Loth, Daan W; Brusselle, Guy G; Smith, Albert Vernon; Gudnason, Vilmundur; Bartz, Traci M; Wilk, Jemma B; O’Connor, George T; Cassano, Patricia A; Tang, Wenbo; Wain, Louise V; Artigas, María Soler; Gharib, Sina A; Strachan, David P; Sin, Don D; Tobin, Martin D; London, Stephanie J; Hall, Ian P; Paré, Peter D

    2016-01-01

    Summary Background Lung function measures reflect the physiological state of the lung, and are essential to the diagnosis of chronic obstructive pulmonary disease (COPD). The SpiroMeta-CHARGE consortium undertook the largest genome-wide association study (GWAS) so far (n=48 201) for forced expiratory volume in 1 s (FEV1) and the ratio of FEV1 to forced vital capacity (FEV1/FVC) in the general population. The lung expression quantitative trait loci (eQTLs) study mapped the genetic architecture of gene expression in lung tissue from 1111 individuals. We used a systems genetics approach to identify single nucleotide polymorphisms (SNPs) associated with lung function that act as eQTLs and change the level of expression of their target genes in lung tissue; termed eSNPs. Methods The SpiroMeta-CHARGE GWAS results were integrated with lung eQTLs to map eSNPs and the genes and pathways underlying the associations in lung tissue. For comparison, a similar analysis was done in peripheral blood. The lung mRNA expression levels of the eSNP-regulated genes were tested for associations with lung function measures in 727 individuals. Additional analyses identified the pleiotropic effects of eSNPs from the published GWAS catalogue, and mapped enrichment in regulatory regions from the ENCODE project. Finally, the Connectivity Map database was used to identify potential therapeutics in silico that could reverse the COPD lung tissue gene signature. Findings SNPs associated with lung function measures were more likely to be eQTLs and vice versa. The integration mapped the specific genes underlying the GWAS signals in lung tissue. The eSNP-regulated genes were enriched for developmental and inflammatory pathways; by comparison, SNPs associated with lung function that were eQTLs in blood, but not in lung, were only involved in inflammatory pathways. Lung function eSNPs were enriched for regulatory elements and were over-represented among genes showing differential expression during fetal lung development. An mRNA gene expression signature for COPD was identified in lung tissue and compared with the Connectivity Map. This in-silico drug repurposing approach suggested several compounds that reverse the COPD gene expression signature, including a nicotine receptor antagonist. These findings represent novel therapeutic pathways for COPD. Interpretation The system genetics approach identified lung tissue genes driving the variation in lung function and susceptibility to COPD. The identification of these genes and the pathways in which they are enriched is essential to understand the pathophysiology of airway obstruction and to identify novel therapeutic targets and biomarkers for COPD, including drugs that reverse the COPD gene signature in silico. Funding The research reported in this article was not specifically funded by any agency. See Acknowledgments for a full list of funders of the lung eQTL study and the Spiro-Meta CHARGE GWAS. PMID:26404118

  14. Human factors engineering approaches to patient identification armband design.

    PubMed

    Probst, C Adam; Wolf, Laurie; Bollini, Mara; Xiao, Yan

    2016-01-01

    The task of patient identification is performed many times each day by nurses and other members of the care team. Armbands are used for both direct verification and barcode scanning during patient identification. Armbands and information layout are critical to reducing patient identification errors and dangerous workarounds. We report the effort at two large, integrated healthcare systems that employed human factors engineering approaches to the information layout design of new patient identification armbands. The different methods used illustrate potential pathways to obtain standardized armbands across healthcare systems that incorporate human factors principles. By extension, how the designs have been adopted provides examples of how to incorporate human factors engineering into key clinical processes. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  15. PathFinder: reconstruction and dynamic visualization of metabolic pathways.

    PubMed

    Goesmann, Alexander; Haubrock, Martin; Meyer, Folker; Kalinowski, Jörn; Giegerich, Robert

    2002-01-01

    Beyond methods for a gene-wise annotation and analysis of sequenced genomes new automated methods for functional analysis on a higher level are needed. The identification of realized metabolic pathways provides valuable information on gene expression and regulation. Detection of incomplete pathways helps to improve a constantly evolving genome annotation or discover alternative biochemical pathways. To utilize automated genome analysis on the level of metabolic pathways new methods for the dynamic representation and visualization of pathways are needed. PathFinder is a tool for the dynamic visualization of metabolic pathways based on annotation data. Pathways are represented as directed acyclic graphs, graph layout algorithms accomplish the dynamic drawing and visualization of the metabolic maps. A more detailed analysis of the input data on the level of biochemical pathways helps to identify genes and detect improper parts of annotations. As an Relational Database Management System (RDBMS) based internet application PathFinder reads a list of EC-numbers or a given annotation in EMBL- or Genbank-format and dynamically generates pathway graphs.

  16. Unique players in the BMP pathway: Small C-terminal domain phosphatases dephosphorylate Smad1 to attenuate BMP signaling

    PubMed Central

    Knockaert, Marie; Sapkota, Gopal; Alarcón, Claudio; Massagué, Joan; Brivanlou, Ali H.

    2006-01-01

    Smad transcription factors are key signal transducers for the TGF-β/bone morphogenetic protein (BMP) family of cytokines and morphogens. C-terminal serine phosphorylation by TGF-β and BMP membrane receptors drives Smads into the nucleus as transcriptional regulators. Dephosphorylation and recycling of activated Smads is an integral part of this process, which is critical for agonist sensing by the cell. However, the nuclear phosphatases involved have remained unknown. Here we provide functional, biochemical, and embryological evidence identifying the SCP (small C-terminal domain phosphatase) family of nuclear phosphatases as mediators of Smad1 dephosphorylation in the BMP signaling pathway in vertebrates. Xenopus SCP2/Os4 inhibits BMP activity in the presumptive ectoderm and leads to neuralization. In Xenopus embryos, SCP2/Os4 and human SCP1, 2, and 3 cause selective dephosphorylation of Smad1 compared with Smad2, inhibiting BMP- and Smad1-dependent transcription and leading to the induction of the secondary dorsal axis. In human cells, RNAi-mediated depletion of SCP1 and SCP2 increases the extent and duration of Smad1 phosphorylation in response to BMP, the transcriptional action of Smad1, and the strength of endogenous BMP gene responses. The present identification of the SCP family as Smad C-terminal phosphatases sheds light on the events that attenuate Smad signaling and reveals unexpected links to the essential phosphatases that control RNA polymerase II in eukaryotes. PMID:16882717

  17. Basement Membrane Defects in Genetic Kidney Diseases

    PubMed Central

    Chew, Christine; Lennon, Rachel

    2018-01-01

    The glomerular basement membrane (GBM) is a specialized structure with a significant role in maintaining the glomerular filtration barrier. This GBM is formed from the fusion of two basement membranes during development and its function in the filtration barrier is achieved by key extracellular matrix components including type IV collagen, laminins, nidogens, and heparan sulfate proteoglycans. The characteristics of specific matrix isoforms such as laminin-521 (α5β2γ1) and the α3α4α5 chain of type IV collagen are essential for the formation of a mature GBM and the restricted tissue distribution of these isoforms makes the GBM a unique structure. Detailed investigation of the GBM has been driven by the identification of inherited abnormalities in matrix proteins and the need to understand pathogenic mechanisms causing severe glomerular disease. A well-described hereditary GBM disease is Alport syndrome, associated with a progressive glomerular disease, hearing loss, and lens defects due to mutations in the genes COL4A3, COL4A4, or COL4A5. Other proteins associated with inherited diseases of the GBM include laminin β2 in Pierson syndrome and LMX1B in nail patella syndrome. The knowledge of these genetic mutations associated with GBM defects has enhanced our understanding of cell–matrix signaling pathways affected in glomerular disease. This review will address current knowledge of GBM-associated abnormalities and related signaling pathways, as well as discussing the advances toward disease-targeted therapies for patients with glomerular disease. PMID:29435440

  18. Identification of differentially expressed microRNAs between Bacillus thuringiensis Cry1Ab-resistant and -susceptible strains of Ostrinia furnacalis

    PubMed Central

    Xu, Li-Na; Ling, Ying-Hui; Wang, Yue-Qin; Wang, Zhen-Ying; Hu, Ben-Jin; Zhou, Zi-Yan; Hu, Fei; He, Kang-Lai

    2015-01-01

    The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), can develop strong resistance to Cry1Ab, the most widely commercialized Cry toxin for Bt maize worldwide. It is essential to understand the mechanism of resistance for management of this species, but information on the post-transcriptional regulation of Bt resistance in this target insect is limited. In the present study, RNA was extracted from the ACB in various larval stages (1–5 instar) from Cry1Ab-sensitive (ACB-BtS) and -resistant (ACB-AbR) strains, each of which included two biological replicates. Using Illumina sequencing, a total of 23,809,890 high-quality reads were collected from the four ACB libraries. The numbers of known microRNAs (miRNAs) were 302 and 395 for ACB-BtS and 268 and 287 for ACB-AbR. Using Mireap software, we identified 32 and 16 potential novel miRNAs for ACB-BtS and 18 and 22 for ACB-AbR. Among them, 21 known and 1 novel miRNAs had significantly different expression between ACB-BtS and ACB-AbR. Several miRNAs were observed to target potential Bt receptor genes, such as aminopeptidase N and cadherin-like protein. The glycosylphosphatidylinositol-anchor biosynthetic process and ABC transporters pathway were identified through Gene Ontology and KEGG pathway analysis of target genes of the differentially expressed miRNAs. PMID:26486179

  19. Iron-sulfur cluster biogenesis in mammalian cells: new insights into the molecular mechanisms of cluster delivery

    PubMed Central

    Maio, Nunziata; Rouault, Tracey. A.

    2014-01-01

    Iron-sulfur (Fe-S) clusters are ancient, ubiquitous cofactors composed of iron and inorganic sulfur. The combination of the chemical reactivity of iron and sulfur, together with many variations of cluster composition, oxidation states and protein environments, enables Fe-S clusters to participate in numerous biological processes. Fe-S clusters are essential to redox catalysis in nitrogen fixation, mitochondrial respiration and photosynthesis, to regulatory sensing in key metabolic pathways (i. e. cellular iron homeostasis and oxidative stress response), and to the replication and maintenance of the nuclear genome. Fe-S cluster biogenesis is a multistep process that involves a complex sequence of catalyzed protein- protein interactions and coupled conformational changes between the components of several dedicated multimeric complexes. Intensive studies of the assembly process have clarified key points in the biogenesis of Fe-S proteins. However several critical questions still remain, such as: what is the role of frataxin? Why do some defects of Fe-S cluster biogenesis cause mitochondrial iron overload? How are specific Fe-S recipient proteins recognized in the process of Fe-S transfer? This review focuses on the basic steps of Fe-S cluster biogenesis, drawing attention to recent advances achieved on the identification of molecular features that guide selection of specific subsets of nascent Fe-S recipients by the cochaperone HSC20. Additionally, it outlines the distinctive phenotypes of human diseases due to mutations in the components of the basic pathway. PMID:25245479

  20. Osteoarthritis year in review 2015: biology.

    PubMed

    Malfait, A M

    2016-01-01

    This review highlights a selection of recently published literature in the area of osteoarthritis biology. Major themes transpiring from a PubMed search covering the year between the 2014 and the 2015 Osteoarthritis Research Society International (OARSI) World Congress are explored. Inflammation emerged as a significant theme, revealing complex pathways that drive dramatic changes in cartilage homeostasis and in the synovium. Highlights include a homeostatic role for CXC chemokines in cartilage, identification of the zinc-ZIP8-MTF1 axis as an essential regulator of cartilage catabolism, and the discovery that a small aggrecan fragment can have catabolic and pro-inflammatory effects through Toll-like receptor 2. Synovitis can promote joint damage, partly through alarmins such as S100A8. Synovitis and synovial expression of the pro-algesic neurotrophin, Nerve Growth Factor, are associated with pain. Increasingly, researchers are considering specific pathogenic pathways that may operate in distinct subsets of osteoarthritis associated with distinct risk factors, including obesity, age, and joint injury. In obesity, the contribution of metabolic factors and diet is under intense investigation. The role of autophagy and oxidative stress in age-related osteoarthritis has been further explored. This approach may open avenues for targeted treatment of distinct phenotypes of osteoarthritis. Finally, a small selection of novel analgesic targets in the periphery is briefly discussed, including calcitonin gene-related peptide and the neuronal sodium voltage-gated channels, Nav1.7 and Nav1.8. Copyright © 2015 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  1. Genome-wide identification, classification, and functional analysis of the basic helix-loop-helix transcription factors in the cattle, Bos Taurus.

    PubMed

    Li, Fengmei; Liu, Wuyi

    2017-06-01

    The basic helix-loop-helix (bHLH) transcription factors (TFs) form a huge superfamily and play crucial roles in many essential developmental, genetic, and physiological-biochemical processes of eukaryotes. In total, 109 putative bHLH TFs were identified and categorized successfully in the genomic databases of cattle, Bos Taurus, after removing redundant sequences and merging genetic isoforms. Through phylogenetic analyses, 105 proteins among these bHLH TFs were classified into 44 families with 46, 25, 14, 3, 13, and 4 members in the high-order groups A, B, C, D, E, and F, respectively. The remaining 4 bHLH proteins were sorted out as 'orphans.' Next, these 109 putative bHLH proteins identified were further characterized as significantly enriched in 524 significant Gene Ontology (GO) annotations (corrected P value ≤ 0.05) and 21 significantly enriched pathways (corrected P value ≤ 0.05) that had been mapped by the web server KOBAS 2.0. Furthermore, 95 bHLH proteins were further screened and analyzed together with two uncharacterized proteins in the STRING online database to reconstruct the protein-protein interaction network of cattle bHLH TFs. Ultimately, 89 bHLH proteins were fully mapped in a network with 67 biological process, 13 molecular functions, 5 KEGG pathways, 12 PFAM protein domains, and 25 INTERPRO classified protein domains and features. These results provide much useful information and a good reference for further functional investigations and updated researches on cattle bHLH TFs.

  2. Global Transcriptome and Deletome Profiles of Yeast Exposed to Transition Metals

    PubMed Central

    Jin, Yong Hwan; Dunlap, Paul E.; McBride, Sandra J.; Al-Refai, Hanan; Bushel, Pierre R.; Freedman, Jonathan H.

    2008-01-01

    A variety of pathologies are associated with exposure to supraphysiological concentrations of essential metals and to non-essential metals and metalloids. The molecular mechanisms linking metal exposure to human pathologies have not been clearly defined. To address these gaps in our understanding of the molecular biology of transition metals, the genomic effects of exposure to Group IB (copper, silver), IIB (zinc, cadmium, mercury), VIA (chromium), and VB (arsenic) elements on the yeast Saccharomyces cerevisiae were examined. Two comprehensive sets of metal-responsive genomic profiles were generated following exposure to equi-toxic concentrations of metal: one that provides information on the transcriptional changes associated with metal exposure (transcriptome), and a second that provides information on the relationship between the expression of ∼4,700 non-essential genes and sensitivity to metal exposure (deletome). Approximately 22% of the genome was affected by exposure to at least one metal. Principal component and cluster analyses suggest that the chemical properties of the metal are major determinants in defining the expression profile. Furthermore, cells may have developed common or convergent regulatory mechanisms to accommodate metal exposure. The transcriptome and deletome had 22 genes in common, however, comparison between Gene Ontology biological processes for the two gene sets revealed that metal stress adaptation and detoxification categories were commonly enriched. Analysis of the transcriptome and deletome identified several evolutionarily conserved, signal transduction pathways that may be involved in regulating the responses to metal exposure. In this study, we identified genes and cognate signaling pathways that respond to exposure to essential and non-essential metals. In addition, genes that are essential for survival in the presence of these metals were identified. This information will contribute to our understanding of the molecular mechanism by which organisms respond to metal stress, and could lead to an understanding of the connection between environmental stress and signal transduction pathways. PMID:18437200

  3. Models of human adamantinomatous craniopharyngioma tissue: Steps toward an effective adjuvant treatment.

    PubMed

    Hölsken, Annett; Buslei, Rolf

    2017-05-01

    Even though ACP is a benign tumor, treatment is challenging because of the tumor's eloquent location. Today, with the exception of surgical intervention and irradiation, further treatment options are limited. However, ongoing molecular research in this field provides insights into the pathways involved in ACP pathogenesis and reveal a plethora of druggable targets. In the next step, appropriate models are essential to identify the most suitable and effective substances for clinical practice. Primary cell cultures in low passages provide a proper and rapid tool for initial drug potency testing. The patient-derived xenograft (PDX) model accommodates ACP complexity in that it shows respect to the preserved architecture and similar histological appearance to human tumors and therefore provides the most appropriate means for analyzing pharmacological efficacy. Nevertheless, further research is needed to understand in more detail the biological background of ACP pathogenesis, which provides the identification of the best targets in the hierarchy of signaling cascades. ACP models are also important for the continuous testing of new targeting drugs, to establish precision medicine. © 2017 International Society of Neuropathology.

  4. Characterization of the Proteome of Cytoplasmic Lipid Droplets in Mouse Enterocytes after a Dietary Fat Challenge

    PubMed Central

    D’Aquila, Theresa; Sirohi, Devika; Grabowski, Jeffrey M.; Hedrick, Victoria E.; Paul, Lake N.; Greenberg, Andrew S.; Kuhn, Richard J.; Buhman, Kimberly K.

    2015-01-01

    Dietary fat absorption by the small intestine is a multistep process that regulates the uptake and delivery of essential nutrients and energy. One step of this process is the temporary storage of dietary fat in cytoplasmic lipid droplets (CLDs). The storage and mobilization of dietary fat is thought to be regulated by proteins that associate with the CLD; however, mechanistic details of this process are currently unknown. In this study we analyzed the proteome of CLDs isolated from enterocytes harvested from the small intestine of mice following a dietary fat challenge. In this analysis we identified 181 proteins associated with the CLD fraction, of which 37 are associated with known lipid related metabolic pathways. We confirmed the localization of several of these proteins on or around the CLD through confocal and electron microscopy, including perilipin 3, apolipoprotein A-IV, and acyl-CoA synthetase long-chain family member 5. The identification of the enterocyte CLD proteome provides new insight into potential regulators of CLD metabolism and the process of dietary fat absorption. PMID:25992653

  5. Saponins from Tribulus terrestris L. protect human keratinocytes from UVB-induced damage.

    PubMed

    Sisto, Margherita; Lisi, Sabrina; D'Amore, Massimo; De Lucro, Raffaella; Carati, Davide; Castellana, Donatello; La Pesa, Velia; Zuccarello, Vincenzo; Lofrumento, Dario D

    2012-12-05

    Chronic exposure to solar UVB radiation damages skin, increasing the risk to develop cancer. Hence the identification of compounds with a photoprotective efficacy is essential. This study examined the role of saponins derived from Tribulus terrestris L. (TT) on the modulation of apoptosis in normal human keratinocytes (NHEK) exposed to physiological doses of UVB and to evaluate their antitumoral properties. In NHEK, TT saponins attenuate UVB-induced programmed cell death through inhibition of intrinsic apoptotic pathway. In squamous cell carcinomas (SCC) TT saponins do not make the malignant keratinocytes more resistant to UVB and determine an enhanced apoptotic response. The photoprotective effect of TT saponins is tightly correlated to the enhancement of NER genes expression and the block of UVB-mediated NF-κB activation. Collectively, our study shows experimental evidence that TT has a preventive efficacy against UVB-induced carcinogenesis and the molecular knowledge on the mechanisms through which TT saponins regulate cell death suggests great potential for TT to be developed into a new medicine for cancer patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Identification of the Mitochondrial Heme Metabolism Complex

    PubMed Central

    Medlock, Amy E.; Shiferaw, Mesafint T.; Marcero, Jason R.; Vashisht, Ajay A.; Wohlschlegel, James A.; Phillips, John D.; Dailey, Harry A.

    2015-01-01

    Heme is an essential cofactor for most organisms and all metazoans. While the individual enzymes involved in synthesis and utilization of heme are fairly well known, less is known about the intracellular trafficking of porphyrins and heme, or regulation of heme biosynthesis via protein complexes. To better understand this process we have undertaken a study of macromolecular assemblies associated with heme synthesis. Herein we have utilized mass spectrometry with coimmunoprecipitation of tagged enzymes of the heme biosynthetic pathway in a developing erythroid cell culture model to identify putative protein partners. The validity of these data obtained in the tagged protein system is confirmed by normal porphyrin/heme production by the engineered cells. Data obtained are consistent with the presence of a mitochondrial heme metabolism complex which minimally consists of ferrochelatase, protoporphyrinogen oxidase and aminolevulinic acid synthase-2. Additional proteins involved in iron and intermediary metabolism as well as mitochondrial transporters were identified as potential partners in this complex. The data are consistent with the known location of protein components and support a model of transient protein-protein interactions within a dynamic protein complex. PMID:26287972

  7. The identification of a sequence related to apicomplexan enolase from Sarcocystis neurona.

    PubMed

    Wilson, A P; Thelen, J J; Lakritz, J; Brown, C R; Marsh, A E

    2004-11-01

    Equine protozoal myeloencephalitis (EPM) is a neurological disease caused by Sarcocystis neurona, an apicomplexan parasite. S. neurona is also associated with EPM-like diseases in marine and small mammals. The mechanisms of transmission and ability to infect a wide host range remain obscure; therefore, characterization of essential proteins may provide evolutionary information allowing the development of novel chemotherapeutics that target non-mammalian biochemical pathways. In the current study, two-dimensional electrophoresis and matrix-assisted laser desorption ionization-time of flight (MALDI-ToF) mass spectrometry were combined to characterize and identify an enolase protein from S. neurona based on peptide homology to the Toxoplasma gondii protein. Enolase is thought to be a vestigial, non-photosynthetic protein resulting from an evolutionary endosymbiosis event of an apicomplexan ancestor with green algae. Enolase has also been suggested to play a role in parasite stage conversion for T. gondii. Characterization of this protein in S. neurona and comparison to other protozoans indicate a biochemical similarity of S. neurona enolase to other tissue-cyst forming coccidians that cause encephalitis.

  8. Construction and Analysis of Two Genome-Scale Deletion Libraries for Bacillus subtilis.

    PubMed

    Koo, Byoung-Mo; Kritikos, George; Farelli, Jeremiah D; Todor, Horia; Tong, Kenneth; Kimsey, Harvey; Wapinski, Ilan; Galardini, Marco; Cabal, Angelo; Peters, Jason M; Hachmann, Anna-Barbara; Rudner, David Z; Allen, Karen N; Typas, Athanasios; Gross, Carol A

    2017-03-22

    A systems-level understanding of Gram-positive bacteria is important from both an environmental and health perspective and is most easily obtained when high-quality, validated genomic resources are available. To this end, we constructed two ordered, barcoded, erythromycin-resistance- and kanamycin-resistance-marked single-gene deletion libraries of the Gram-positive model organism, Bacillus subtilis. The libraries comprise 3,968 and 3,970 genes, respectively, and overlap in all but four genes. Using these libraries, we update the set of essential genes known for this organism, provide a comprehensive compendium of B. subtilis auxotrophic genes, and identify genes required for utilizing specific carbon and nitrogen sources, as well as those required for growth at low temperature. We report the identification of enzymes catalyzing several missing steps in amino acid biosynthesis. Finally, we describe a suite of high-throughput phenotyping methodologies and apply them to provide a genome-wide analysis of competence and sporulation. Altogether, we provide versatile resources for studying gene function and pathway and network architecture in Gram-positive bacteria. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Identification of karyopherins involved in the nuclear import of RNA exosome subunit Rrp6 in Saccharomyces cerevisiae.

    PubMed

    Gonzales-Zubiate, Fernando A; Okuda, Ellen K; Da Cunha, Julia P C; Oliveira, Carla Columbano

    2017-07-21

    The exosome is a conserved multiprotein complex essential for RNA processing and degradation. The nuclear exosome is a key factor for pre-rRNA processing through the activity of its catalytic subunits, Rrp6 and Rrp44. In Saccharomyces cerevisiae , Rrp6 is exclusively nuclear and has been shown to interact with exosome cofactors. With the aim of analyzing proteins associated with the nuclear exosome, in this work, we purified the complex with Rrp6-TAP, identified the co-purified proteins by mass spectrometry, and found karyopherins to be one of the major groups of proteins enriched in the samples. By investigating the biological importance of these protein interactions, we identified Srp1, Kap95, and Sxm1 as the most important karyopherins for Rrp6 nuclear import and the nuclear localization signals recognized by them. Based on the results shown here, we propose a model of multiple pathways for the transport of Rrp6 to the nucleus. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keereetaweep, Jantana; Chapman, Kent D.

    The endocannabinoidsN-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups ofN-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example,N-palmitoylethanolamine (PEA),N-stearoylethanolamine (SEA), andN-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further,more » the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. Lastly, the recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.« less

  11. Formation of Methylamine and Ethylamine in Extraterrestrial Ices and Their Role as Fundamental Building Blocks of Proteinogenic α -amino Acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Förstel, Marko; Bergantini, Alexandre; Maksyutenko, Pavlo

    The –CH–NH{sub 2} moiety represents the fundamental building block of all proteinogenic amino acids, with the cyclic amino acid proline being a special case (–CH–NH– in proline). Exploiting a chemical retrosynthesis, we reveal that methylamine (CH{sub 3}NH{sub 2}) and/or ethylamine (CH{sub 3}CH{sub 2}NH{sub 2}) are essential precursors in the formation of each proteinogenic amino acid. In the present study we elucidate the abiotic formation of methylamine and ethylamine from ammonia (NH{sub 3}) and methane (CH{sub 4}) ices exposed to secondary electrons generated by energetic cosmic radiation in cometary and interstellar model ices. Our experiments show that methylamine and ethylamine aremore » crucial reaction products in irradiated ices composed of ammonia and methane. Using isotopic substitution studies we further obtain valuable information on the specific reaction pathways toward methylamine. The very recent identification of methylamine and ethylamine together with glycine in the coma of 67P/Churyumov–Gerasimenko underlines their potential to the extraterrestrial formation of amino acids.« less

  12. Characterization of the cellular and antitumor effects of MPI-0479605, a small-molecule inhibitor of the mitotic kinase Mps1.

    PubMed

    Tardif, Keith D; Rogers, Aaron; Cassiano, Jared; Roth, Bruce L; Cimbora, Daniel M; McKinnon, Rena; Peterson, Ashley; Douce, Thomas B; Robinson, Rosann; Dorweiler, Irene; Davis, Thaylon; Hess, Mark A; Ostanin, Kirill; Papac, Damon I; Baichwal, Vijay; McAlexander, Ian; Willardsen, J Adam; Saunders, Michael; Christophe, Hoarau; Kumar, D Vijay; Wettstein, Daniel A; Carlson, Robert O; Williams, Brandi L

    2011-12-01

    Mps1 is a dual specificity protein kinase that is essential for the bipolar attachment of chromosomes to the mitotic spindle and for maintaining the spindle assembly checkpoint until all chromosomes are properly attached. Mps1 is expressed at high levels during mitosis and is abundantly expressed in cancer cells. Disruption of Mps1 function induces aneuploidy and cell death. We report the identification of MPI-0479605, a potent and selective ATP competitive inhibitor of Mps1. Cells treated with MPI-0479605 undergo aberrant mitosis, resulting in aneuploidy and formation of micronuclei. In cells with wild-type p53, this promotes the induction of a postmitotic checkpoint characterized by the ATM- and RAD3-related-dependent activation of the p53-p21 pathway. In both wild-type and p53 mutant cells lines, there is a growth arrest and inhibition of DNA synthesis. Subsequently, cells undergo mitotic catastrophe and/or an apoptotic response. In xenograft models, MPI-0479605 inhibits tumor growth, suggesting that drugs targeting Mps1 may have utility as novel cancer therapeutics.

  13. Cholesterol-lowering drugs: science and marketing.

    PubMed

    Garattini, Livio; Padula, Anna

    2017-02-01

    Long-term use of statin therapy is essential to obtain clinical benefits, but adherence is often suboptimal and some patients are also reported to fail because of 'statin resistance'. The identification of PCSK9 as a key factor in the LDL clearance pathway has led to the development of new monoclonal antibodies. Here we critically review the economic evaluations published in Europe and focused on statins. We searched the PubMed database to select the studies published from July 2006 to June 2016 and finally selected 19 articles. Overall, the majority of studies were conducted from a third-party payer's viewpoint and recurred to modelling. Most studies were sponsored by industry and funding seemed to play a pivotal role in the study design. Patients resistant to LDL-C level reduction were considered only in a few studies. The place in therapy of the new class of biologic should be considered a kind of 'third line' for cholesterol-lowering, after patients have failed with restricted dietary regimens and then with current drug therapies. Otherwise they could result in hardly sustainable expenses even for developed countries.

  14. Clustering approaches to identifying gene expression patterns from DNA microarray data.

    PubMed

    Do, Jin Hwan; Choi, Dong-Kug

    2008-04-30

    The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

  15. Lipidomic Analysis of Endocannabinoid Signaling: Targeted Metabolite Identification and Quantification

    DOE PAGES

    Keereetaweep, Jantana; Chapman, Kent D.

    2016-01-01

    The endocannabinoidsN-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups ofN-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example,N-palmitoylethanolamine (PEA),N-stearoylethanolamine (SEA), andN-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further,more » the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. Lastly, the recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.« less

  16. Stress-Related Alterations of Visceral Sensation: Animal Models for Irritable Bowel Syndrome Study

    PubMed Central

    Mulak, Agata; Taché, Yvette

    2011-01-01

    Stressors of different psychological, physical or immune origin play a critical role in the pathophysiology of irritable bowel syndrome participating in symptoms onset, clinical presentation as well as treatment outcome. Experimental stress models applying a variety of acute and chronic exteroceptive or interoceptive stressors have been developed to target different periods throughout the lifespan of animals to assess the vulnerability, the trigger and perpetuating factors determining stress influence on visceral sensitivity and interactions within the brain-gut axis. Recent evidence points towards adequate construct and face validity of experimental models developed with respect to animals' age, sex, strain differences and specific methodological aspects such as non-invasive monitoring of visceromotor response to colorectal distension as being essential in successful identification and evaluation of novel therapeutic targets aimed at reducing stress-related alterations in visceral sensitivity. Underlying mechanisms of stress-induced modulation of visceral pain involve a combination of peripheral, spinal and supraspinal sensitization based on the nature of the stressors and dysregulation of descending pathways that modulate nociceptive transmission or stress-related analgesic response. PMID:21860814

  17. Dronabinol and chronic pain: importance of mechanistic considerations.

    PubMed

    de Vries, Marjan; van Rijckevorsel, Dagmar C M; Wilder-Smith, Oliver H G; van Goor, Harry

    2014-08-01

    Although medicinal cannabis has been used for many centuries, the therapeutic potential of delta-9-tetrahydrocannabinol (Δ9-THC; international non-proprietary name = dronabinol) in current pain management remains unclear. Several pharmaceutical products with defined natural or synthesized Δ9-THC content have been developed, resulting in increasing numbers of clinical trials investigating the analgesic efficacy of dronabinol in various pain conditions. Different underlying pain mechanisms, including sensitization of nociceptive sensory pathways and alterations in cognitive and autonomic processing, might explain the varying analgesic effects of dronabinol in chronic pain states. The pharmacokinetics, pharmacodynamics and mechanisms of action of products with a defined dronabinol content are summarized. Additionally, randomized clinical trials investigating the analgesic efficacy of pharmaceutical cannabis based products are reviewed for the treatment of chronic nonmalignant pain. We suggest a mechanism-based approach beyond measurement of subjective pain relief to evaluate the therapeutic potential of dronabinol in chronic pain management. Development of objective mechanistic diagnostic biomarkers reflecting altered sensory and cognitive processing in the brain is essential to evaluate dronabinol induced analgesia, and to permit identification of responders and/or non-responders to dronabinol treatment.

  18. Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity.

    PubMed

    Sojka, Stephen; Amin, Nirav M; Gibbs, Devin; Christine, Kathleen S; Charpentier, Marta S; Conlon, Frank L

    2014-08-01

    The identification and characterization of the cellular and molecular pathways involved in the differentiation and morphogenesis of specific cell types of the developing heart are crucial to understanding the process of cardiac development and the pathology associated with human congenital heart disease. Here, we show that the cardiac transcription factor CASTOR (CASZ1) directly interacts with congenital heart disease 5 protein (CHD5), which is also known as tryptophan-rich basic protein (WRB), a gene located on chromosome 21 in the proposed region responsible for congenital heart disease in individuals with Down's syndrome. We demonstrate that loss of CHD5 in Xenopus leads to compromised myocardial integrity, improper deposition of basement membrane, and a resultant failure of hearts to undergo cell movements associated with cardiac formation. We further report that CHD5 is essential for CASZ1 function and that the CHD5-CASZ1 interaction is necessary for cardiac morphogenesis. Collectively, these results establish a role for CHD5 and CASZ1 in the early stages of vertebrate cardiac development. © 2014. Published by The Company of Biologists Ltd.

  19. Plant responses to environmental stresses-from gene to biotechnology.

    PubMed

    Ahanger, Mohammad Abass; Akram, Nudrat Aisha; Ashraf, Muhammad; Alyemeni, Mohammed Nasser; Wijaya, Leonard; Ahmad, Parvaiz

    2017-07-01

    Increasing global population, urbanization and industrialization are increasing the rate of conversion of arable land into wasteland. Supplying food to an ever-increasing population is one of the biggest challenges that agriculturalists and plant scientists are currently confronting. Environmental stresses make this situation even graver. Despite the induction of several tolerance mechanisms, sensitive plants often fail to survive under environmental extremes. New technological approaches are imperative. Conventional breeding methods have a limited potential to improve plant genomes against environmental stress. Recently, genetic engineering has contributed enormously to the development of genetically modified varieties of different crops such as cotton, maize, rice, canola and soybean. The identification of stress-responsive genes and their subsequent introgression or overexpression within sensitive crop species are now being widely carried out by plant scientists. Engineering of important tolerance pathways, like antioxidant enzymes, osmolyte accumulation, membrane-localized transporters for efficient compartmentation of deleterious ions and accumulation of essential elements and resistance against pests or pathogens is also an area that has been intensively researched. In this review, the role of biotechnology and its successes, prospects and challenges in developing stress-tolerant crop cultivars are discussed.

  20. Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames.

    PubMed Central

    Stallmeyer, B; Drugeon, G; Reiss, J; Haenni, A L; Mendel, R R

    1999-01-01

    A universal molybdenum-containing cofactor (MoCo) is essential for the activity of all human molybdoenzymes, including sulphite oxidase. The free cofactor is highly unstable, and all organisms share a similar biosynthetic pathway. The involved enzymes exhibit homologies, even between bacteria and humans. We have exploited these homologies to isolate a cDNA for the heterodimeric molybdopterin (MPT)-synthase. This enzyme is necessary for the conversion of an unstable precursor into molybdopterin, the organic moiety of MoCo. The corresponding transcript shows a bicistronic structure, encoding the small and large subunits of the MPT-synthase in two different open reading frames (ORFs) that overlap by 77 nucleotides. In various human tissues, only one size of mRNA coinciding with the bicistronic transcript was detected. In vitro translation and mutagenesis experiments demonstrated that each ORF is translated independently, leading to the synthesis of a 10-kDa protein and a 21-kDa protein for the small and large subunits, respectively, and indicated that the 3'-proximal ORF of the bicistronic transcript is translated by leaky scanning. PMID:10053003

Top