Physical and mechanical testing of essential oil-embedded cellulose ester films
USDA-ARS?s Scientific Manuscript database
Polymer films made from cellulose esters are useful for embedding plant essential oils, either for food packaging or air freshener applications. Studies and testing were done on the physical and mechanical properties of cellulose ester-based films incorporating essential oils (EO) from lemongrass (C...
Soda-Lime-Silicate Float Glass: A Property Comparison
2017-10-01
transparent armor systems. Thus, it is necessary to measure and compare the chemical composition as well as the physical and mechanical properties of...this study show that all 3 SLS glasses have essentially the same chemical composition and the same physical and mechanical properties, indicating they
1988-01-01
essential for the nutrition of certain laboratory animals, this essentiality has not been substantiated for humans. 40 Considerable information...ingestion of canned fruit juice . Therefore, 1 g/d of lead consumed per day over a period of 35 days can be considered an adequate estimation of a lethal dose...Chemical Species and Physical Properties and Their Estimated MLC Values in Field Water Our review of the water-quality monitoring data revealed 40 common
Physical properties of gluten free sugar cookies containing teff and functional oat products
USDA-ARS?s Scientific Manuscript database
Teff-oat composites were developed using gluten free teff flour containing essential 15 amino acids with oat products containing ß-glucan, known for lowering blood cholesterol and improving texture. The teff-oat composites were used in sugar cookies for improving nutritional and physical properties....
Alarcón-Moyano, Jessica K; Bustos, Rubén O; Herrera, María Lidia; Matiacevich, Silvia B
2017-08-01
Active edible films have been proposed as an alternative to extend shelf life of fresh foods. Most essential oils have antimicrobial properties; however, storage conditions could reduce their activity. To avoid this effect the essential oil (EO) can be microencapsulated prior to film casting. The aim of this study was to determine the effects of the type of encapsulating agent (EA), type of EO and storage time on physical properties and antimicrobial activity of alginate-based films against Escherichia coli ATCC 25922. Trehalose (TH), Capsul ® (CAP) and Tween 20 (Tw20) were used as EA. Lemongrass essential oil (LMO) and citral were used as active agents. The results showed that the type of EA affected the stability of the film forming-emulsions as well as the changes in opacity and colour of the films during storage but not the antimicrobial activity of them. Both microencapsulated EOs showed a prolonged release from the alginate films during the 28 days of storage. Trehalose was selected to encapsulate both active compounds because the films made with this microencapsulated EA showed the greatest physical stability and the lowest color variation among all the films studied.
2006-11-01
PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS The sprayed -on material is formed by gradual deposition of separate discretely solidifying with great... deposition processes and their ecological purity. Essentially, the method of ion-plasma spraying is evaporation of a metal (or alloy ) atoms from the...29 5.1 PHYSICAL PROPERTIES OF THE PLASMA SPRAYING PROCESS ...................34 6. CATALYST SUPPORTERS FOR THE 1ST STAGE OF
NASA Astrophysics Data System (ADS)
Hou, Zhengyu; Chen, Zhong; Wang, Jingqiang; Zheng, Xufeng; Yan, Wen; Tian, Yuhang; Luo, Yun
2018-04-01
Geoacoustic parameters are essential inputs to sediment wave propagation theories and are vital to underwater acoustic environment and explorations of the sea bottom. In this study, 21 seafloor sediment samples were collected off the coast of southeastern Hainan in the South China Sea. The sound speed was measured using a portable WSD-3 digital sonic instrument and the coaxial differential distance measurement method. Based on the measured sound speed and physical properties, the acoustic impedance and the pore-water-independent index of impedance (IOI) were calculated in this study. Similar to the sound speed, the IOI values are closely related to the sediment physical properties and change gradually from the northwest to the southeast. The relations between IOI and physical properties were studied and compared to the relations between the sound speed and physical properties. IOI is better correlated to physical properties than sound speed. This study also uses an error norm method to analyze the sensitivity of IOI to the physical parameters in the double-parameter equations and finds that the most influential physical parameters are as follows: wet bulk density > porosity > clay content > mean particle size.
Espitia, Paula J P; Avena-Bustillos, Roberto J; Du, Wen-Xian; Chiou, Bor-Sen; Williams, Tina G; Wood, Delilah; McHugh, Tara H; Soares, Nilda F F
2014-05-01
Thyme essential oil (TEO) and apple skin polyphenols (ASP) are natural compounds considered as generally recognized as safe by FDA, with biological effects against bacteria and fungi. This work aimed to evaluate physical and antimicrobial properties of açaí edible films formulated with TEO and ASP at 3% and 6% (w/w) individually or combined at 3% (w/w) each. Physical properties studied include mechanical resistance, water vapor permeability (WVP), color, and thermal resistance. Antimicrobial activity against Listeria monocytogenes was determined using the overlay diffusion test. Addition of ASP resulted in improved mechanical properties. TEO at 6% (w/w) resulted in increased elongation. ASP films had significant higher WVP than control film. ASP films were lighter and had more red color than other films. Incorporation of ASP resulted in improved film thermal stability, whereas TEO caused rapid thermal decomposition. Presence of clusters was observed on the surface of films. Addition of ASP resulted in a smoother surface, whereas addition of TEO led to the formation of crater-like pits on the film surface. Açaí edible film incorporated with 6% (w/w) TEO presented the highest antimicrobial activity. However, both antimicrobials are necessary in the açaí films in order to obtain edible films with suitable physical-mechanical properties. The results of the present study showed that TEO and ASP can be used to prepare açaí edible films with adequate physical-mechanical properties and antimicrobial activity for food applications by direct contact. Developed açaí edible films presented antimicrobial activity against L. monocytogenes and good physical-mechanical properties, showing the potential use of açaí edible films in food preservation. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Jamróz, Ewelina; Juszczak, Lesław; Kucharek, Mateusz
2018-07-15
Lavender essential oil (OEL) was added to starch, furcellaran and gelatin (S/F/G) films in concentrations of 2%, 4% and 6%. The films were examined in terms of physical properties (thickness, density, water solubility, water absorption and degree of swelling) and mechanical properties (tensile strength, elongation at break). The test results show that the film thickness increased upon addition of OEL. The solubility, water absorption and degree of swelling of the film decreased with increasing concentration of oils. Tensile strength (TS) decreased considerably with increasing concentration of oil, which resulted in lower mechanical strength. Parameters of elongation at break (EAB) were not changed. The thermal behaviour of the film was affected by OEL. Possible interaction between film matrix and lavender oil was confirmed using FTIR. Antioxidant properties proved to be significantly enhanced with increasing OEL concentration. The microbiological analysis confirmed antimicrobial properties of S/F/G with OEL. S/F/G films with OEL can provide new formulation of active packaging with potential food-technology applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Physical properties of gluten-free sugar cookies made from amaranth-oat composites
USDA-ARS?s Scientific Manuscript database
Amaranth flour containing the essential amino acid, lysine, was blended with oat products that contain ß-glucan known for lowering blood cholesterol and preventing heart disease. These composites improved nutritional value, water holding capacity and the pasting properties along with their gluten fr...
USDA-ARS?s Scientific Manuscript database
Physical properties as well as antimicrobial activities against Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes of allspice, garlic and oregano essential oils (EOs) in tomato puree film forming solutions (TPFFS) formulated into edible films at 0.5-3.0% (w/w) concentrations w...
NASA Astrophysics Data System (ADS)
Muñoz, G. A. López; González, R. F. López; López, J. A. Balderas; Martínez-Pérez, L.
2011-05-01
Photoacoustic methodology in the transmission configuration (PMTC) was used to study the thermophysical properties and their relation with the composition in Mexican citrus essential oils providing the viability of using photothermal techniques for quality control and for authentication of oils and their adulteration. Linear relations for the amplitude (on a semi-log scale) and phase, as functions of the sample's thickness, for the PMTC was obtained through a theoretical model fit to the experimental data for thermal-diffusivity measurements in Mexican orange, pink grapefruit, mandarin, lime type A, centrifuged essential oils, and Mexican distilled lime essential oil. Gas chromatography for distilled lime essential oil and centrifuged lime essential oil type A is reported to complement the study. Experimental results showed close thermal-diffusivity values between Mexican citrus essential oils obtained by centrifugation, but a significant difference of this physical property for distilled lime oil and the corresponding value obtained by centrifugation, which is due to their different chemical compositions involved with the extraction processes.
How Do We Present the Concept of Energy in Physics?
ERIC Educational Resources Information Center
Pujol, O.; Perez, J. P.
2007-01-01
Scientific and pedagogical comments about the fundamental physical concept of energy are made. In particular, we argue for an historical presentation of this concept because its essential justification is the research, conscious or not, of a characteristic quantity of a system whose fundamental property is to be conservative. Some delicate issues…
Physical properties of PNe: what IFU spectrographs can do?
NASA Astrophysics Data System (ADS)
Costa, R.; Lago, P. J. A.; Faes, D., M.
2014-04-01
Structure, kinematics and physical parameters of planetary nebulae are related to their progenitor stars. A better understanding of these properties is essential to improve the knowledge of the late stages of evolution of intermediate-mass stars, as well as to better understand the chemical enrichment mechanisms that feed the interstellar medium with the nucleosynthesis yields from such stars. Integral Field Unit (IFU) spectrographs can provide valuable information from these objects, mapping such properties point-to-point over the projected nebulae. In this communication we present the results of a survey of physical properties for southern PNe. We have used IFU spectroscopy in order to derive the angular distribution of electron densities and ionic abundances, and also to map the ionization profiles. The aim is to characterize their physical properties and structures, and results can be used in morpho-kinematical models (such as SHAPE) or in photoionization models (such as CLOUDY) to describe in detail the 3D structure and evolution of these objects.
Comparative studies of physical properties of kinesiotapes.
Gołąb, Agnieszka; Kulesa-Mrowiecka, Małgorzata; Gołąb, Marek
2017-01-01
Nowadays we observe growing popularity of kinesiotaping as a supportive method in physiotherapy. In documents available on kinesiotaping we can find that mechanical properties of tapes are similar to the ones of a human skin, but usually there is hardly any numerical data characterizing these properties. Therefore, testing and comparing physical properties of commercially available kinesiotapes seems to be important. Physical properties of five commercially available kinesiotapes were examined. Strain vs. stress data was collected up to 15 N. Program Origin 9.0 was used for data analysis. The obtained results show that up to about 2 N the strain vs. stress characteristics of the tested tapes are similar while for greater stress they differ essentially. An alternative, to commonly used, way of defining relative strain is proposed. This definition could be more suitable in those cases when desired tape tensions are higher than 50% i.e. in ligament and tendon techniques.
NASA Technical Reports Server (NTRS)
Collings, E. W.
1984-01-01
The properties of clustering alloy systems and the manner in which they are influenced by rapid quenching from a containerless undercooled melt are discussed. It was postulated that rapid quenching under such conditions would result in highly disordered metastable alloys, and furthermore, that alloys in such conditions would possess physical properties characteristically different from those of alloys in the annealed equilibrium state. The scope of the program is essentially to gauge the influence of containerless undercooling on the submicrostructure of clustering-type alloys, using certain physical properties as diagnostic tools. Microstructures and macrostructures were to be examined using optical- and scanning-electron microscopy.
Anju Gupta; William Simmons; Gregory T. Schueneman; Donald Hylton; Eric A. Mintz
2017-01-01
Improving the processability and physical properties of sustainable biobased polymers and biobased fillers is essential to preserve its biodegradability and make them suitable for different end user applications. Herein, we report the use of spray-dried lignin-coated cellulose nanocrystals (L-CNCs), a biobased filler, to modify the rheological and thermos-mechanical...
Bonferoni, Maria Cristina; Sandri, Giuseppina; Rossi, Silvia; Usai, Donatella; Liakos, Ioannis; Garzoni, Alice; Fiamma, Maura; Zanetti, Stefania; Athanassiou, Athanassia; Caramella, Carla; Ferrari, Franca
2017-04-01
Amphiphilic chitosans have been recently proposed to improve delivery of poorly soluble drugs. In the present paper a derivative obtained by ionic interaction between chitosan and oleic acid was for the first time studied to physically stabilize o/w nanoemulsions of an antimicrobial essential oil, Cymbopogon citratus (Lemongrass), in a low energy and mild conditions emulsification process. The novel combination of spontaneous emulsification process with chitosan oleate amphiphilic properties resulted in a stable dispersion of a few hundred nanometer droplets. Positive zeta potential confirmed the presence of a chitosan shell around the oil droplets, which is responsible for the nanoemulsion physical stabilization and for the maintenance of chitosan bioactive properties, such as mucoadhesion. Cytotoxicity test was performed on four different cell lines (HEp-2, Caco-2, WKD and McCoy cells) showing biocompatibility of the system. The maintenance and in some cases even a clear improvement in the essential oil antimicrobial activity towards nine bacterial and ten fungal strains, all of clinical relevance was verified for Lemongrass nanoemulsion. Copyright © 2017. Published by Elsevier B.V.
Sosa-Moguel, Odri; Ruiz-Ruiz, Jorge; Martínez-Ayala, Alma; González, Rolando; Drago, Silvina; Betancur-Ancona, David; Chel-Guerrero, Luis
2009-01-01
The influence of lipoxygenase inactivation and extrusion cooking on the physical and nutritional properties of corn/cowpea (Vigna unguiculata) blends was studied. Corn was blended in an 80:15 proportion with cowpea flour treated to inactivate lipoxygenase (CI) or non-inactivated cowpea flour (CNI). Extrusion variables were temperature (150 degrees C, 165 degrees C and 180 degrees C) and moisture (15%, 17% and 19%). Based on their physical properties, the 165 degrees C/15% corn:CNI, and 165 degrees C/15% corn:CI, and 150 degrees C/15% corn:CI blends were chosen for nutritional quality analysis. Extrudate chemical composition indicated high crude protein levels compared with standard corn-based products. With the exception of lysine, essential amino acids content in the three treatments met FAO requirements. Extrusion and lipoxygenase inactivation are promising options for developing corn/cowpea extruded snack products with good physical properties and nutritional quality.
Plant diversity and root traits benefit physical properties key to soil function in grasslands.
Gould, Iain J; Quinton, John N; Weigelt, Alexandra; De Deyn, Gerlinde B; Bardgett, Richard D
2016-09-01
Plant diversity loss impairs ecosystem functioning, including important effects on soil. Most studies that have explored plant diversity effects belowground, however, have largely focused on biological processes. As such, our understanding of how plant diversity impacts the soil physical environment remains limited, despite the fundamental role soil physical structure plays in ensuring soil function and ecosystem service provision. Here, in both a glasshouse and a long-term field study, we show that high plant diversity in grassland systems increases soil aggregate stability, a vital structural property of soil, and that root traits play a major role in determining diversity effects. We also reveal that the presence of particular plant species within mixed communities affects an even wider range of soil physical processes, including hydrology and soil strength regimes. Our results indicate that alongside well-documented effects on ecosystem functioning, plant diversity and root traits also benefit essential soil physical properties. © 2016 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Sousa, Andreia F; Gandini, Alessandro; Caetano, Ana; Maria, Teresa M R; Freire, Carmen S R; Neto, Carlos Pascoal; Silvestre, Armando J D
2016-12-01
The main purpose of this study was to investigate the potential of suberin (a naturally occurring aromatic-aliphatic polyester ubiquitous to the vegetable realm) as a renewable source of chemicals and, in particular, to assess their physical properties. A comparison between cork and birch suberin fragments obtained by conventional depolymerisation processes (hydrolysis or methanolysis) is provided, focusing essentially on their thermal and crystallinity properties. It was found that suberin fragments obtained by the hydrolysis depolymerisation of birch had a high degree of crystallinity, as indicated by their thermal analysis and corroborated by the corresponding XRD diffractions, as opposed to hydrolysis-depolymerised cork suberin counterparts, which were essentially amorphous. Copyright © 2016 Elsevier B.V. All rights reserved.
Towards a physical classification of early-type galaxies. Profile of a key programme.
NASA Astrophysics Data System (ADS)
Bender, R.; Capaccioli, M.; Macchetto, F.; Nieto, J.-L.
1989-03-01
Hubble was the first who succeeded in classifying galaxies within a scheme of some physical meaning. Although it soon became clear that Hubble's tuning fork does not represent an evolutionary sequence, this essential diagram has proven to be a powerful tool especially for the understanding of late-type galaxies. On the other hand, the "early-type" sequence of elliptical (E) and SO galaxies is less satisfying, because it does not seem to reflect a unique sequence of physical properties. The SO class, although conceived to bridge the gap between disk- and disk-Iess galaxies, has often been abused to host ellipticals exhibiting peculiarities incompatible with their definition as structureless objects. For the elliptical galaxies themselves, "ellipticity" has been found to be essentially meaningless with regard to their angular momentum properties, and shows Iittle, if any, correlation with other global parameters. This fact became apparent after the first stellar kinematical measurements of luminous ellipticals (Bertola and Capaccioli 1975, IIlingworth 1977); E galaxies are not necessarily f1attened by rotation and may have anisotropie velocity dispersions (Binney 1978).
The AAPM/RSNA physics tutorial for residents. Basic physics of MR imaging: an introduction.
Hendrick, R E
1994-07-01
This article provides an introduction to the basic physical principles of magnetic resonance (MR) imaging. Essential basic concepts such as nuclear magnetism, tissue magnetization, precession, excitation, and tissue relaxation properties are presented. Hydrogen spin density and tissue relaxation times T1, T2, and T2* are explained. The basic elements of a planar MR pulse sequence are described: section selection during tissue excitation, phase encoding, and frequency encoding during signal measurement.
Topological properties and functionalities in oxide thin films and interfaces
NASA Astrophysics Data System (ADS)
Uchida, Masaki; Kawasaki, Masashi
2018-04-01
As symbolized by the Nobel Prize in Physics 2016, ‘topology’ has been recognized as an essential standpoint to understand and control the physics of condensed matter. This concept may be spreading even into application areas such as novel electronics. In this trend, there has been reported a number of studies for oxide films and heterostructures with topologically non-trivial electronic or magnetic states. In this review, we overview the trends of new topological properties and functionalities in oxide materials by sorting out a number of examples. The technological advances in oxide film growth achieved over the last few decades are now opening the door for harnessing novel topological properties.
High Performance Computing Modeling Advances Accelerator Science for High-Energy Physics
Amundson, James; Macridin, Alexandru; Spentzouris, Panagiotis
2014-07-28
The development and optimization of particle accelerators are essential for advancing our understanding of the properties of matter, energy, space, and time. Particle accelerators are complex devices whose behavior involves many physical effects on multiple scales. Therefore, advanced computational tools utilizing high-performance computing are essential for accurately modeling them. In the past decade, the US Department of Energy's SciDAC program has produced accelerator-modeling tools that have been employed to tackle some of the most difficult accelerator science problems. The authors discuss the Synergia framework and its applications to high-intensity particle accelerator physics. Synergia is an accelerator simulation package capable ofmore » handling the entire spectrum of beam dynamics simulations. Our authors present Synergia's design principles and its performance on HPC platforms.« less
NASA Astrophysics Data System (ADS)
Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.
2006-02-01
We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology
Escamilla-García, Monserrat; Calderón-Domínguez, Georgina; Chanona-Pérez, Jorge J; Mendoza-Madrigal, Angélica G; Di Pierro, Prospero; García-Almendárez, Blanca E; Amaro-Reyes, Aldo; Regalado-González, Carlos
2017-11-08
Edible films (EFs) have gained great interest due to their ability to keep foods safe, maintaining their physical and organoleptic properties for a longer time. The aim of this work was to develop EFs based on a chitosan-zein mixture with three different essential oils (EOs) added: anise, orange, and cinnamon, and to characterize them to establish the relationship between their structural and physical properties. The addition of an EO into an EF significantly affected ( p < 0.05) the a* (redness/greenness) and b* (yellowness/blueness) values of the film surface. The EFs presented a refractive index between 1.35 and 1.55, and thus are classified as transparent. The physical properties of EFs with an added EO were improved, and films that incorporated the anise EO showed significantly lower water vapor permeability (1.2 ± 0.1 g mm h -1 m -2 kPa -1 ) and high hardness (104.3 ± 3.22 MPa). EFs with an added EO were able to inhibit the growth of Penicillium sp. and Rhizopus sp. to a larger extent than without an EO. Films' structural changes were the result of chemical interactions among amino acid side chains from zein, glucosamine from chitosan, and cinnamaldehyde, anethole, or limonene from the EOs as detected by a Raman analysis. The incorporation of an EO in the EFs' formulation could represent an alternative use as coatings to enhance the shelf life of food products.
Escamilla-García, Monserrat; Calderón-Domínguez, Georgina; Chanona-Pérez, Jorge J.; Mendoza-Madrigal, Angélica G.; Di Pierro, Prospero; García-Almendárez, Blanca E.; Amaro-Reyes, Aldo
2017-01-01
Edible films (EFs) have gained great interest due to their ability to keep foods safe, maintaining their physical and organoleptic properties for a longer time. The aim of this work was to develop EFs based on a chitosan–zein mixture with three different essential oils (EOs) added: anise, orange, and cinnamon, and to characterize them to establish the relationship between their structural and physical properties. The addition of an EO into an EF significantly affected (p < 0.05) the a* (redness/greenness) and b* (yellowness/blueness) values of the film surface. The EFs presented a refractive index between 1.35 and 1.55, and thus are classified as transparent. The physical properties of EFs with an added EO were improved, and films that incorporated the anise EO showed significantly lower water vapor permeability (1.2 ± 0.1 g mm h−1 m−2 kPa−1) and high hardness (104.3 ± 3.22 MPa). EFs with an added EO were able to inhibit the growth of Penicillium sp. and Rhizopus sp. to a larger extent than without an EO. Films’ structural changes were the result of chemical interactions among amino acid side chains from zein, glucosamine from chitosan, and cinnamaldehyde, anethole, or limonene from the EOs as detected by a Raman analysis. The incorporation of an EO in the EFs’ formulation could represent an alternative use as coatings to enhance the shelf life of food products. PMID:29117148
Book review of biochar application: Essential soil microbiology
USDA-ARS?s Scientific Manuscript database
Biochar, charcoal produced following biomass pyrolysis, has the potential to positively impact soil physical and chemical properties, improving soil fertility and water holding capacity as well as adsorbing contaminants. In addition, a large proportion of biochar carbon is highly recalcitrant and s...
Development and characterization of biodegradable chitosan films containing two essential oils.
Shen, Zhu; Kamdem, Donatien Pascal
2015-03-01
Active biodegradable films from chitosan containing 10% to 30% w/w of citronella essential oil (CEO) and cedarwood oil (CWO) were developed by casting and solvent-evaporation method, and their physical, mechanical and thermal properties were investigated. Possible interactions between the chitosan chains and the essential oils were confirmed using Fourier-transform infrared spectroscopy (FTIR). Various amounts of CEO or CWO had significant effects on the films' mechanical properties, with the exception of 10% of CEO, which did not significantly affect the tensile strength of the films. The incorporation of the two tested oils provoked a remarkable reduction in the water-vapor permeability properties, with a decrease of about 63% when 30% CEO was added in chitosan films. Thermogravimetric analysis showed that degradation temperatures of the films containing CEO and CWO improved only slightly in comparison to control films without essential oils. FTIR spectra analysis provided some insights on the possible interactions between chitosan and the two essential oils used. This study suggests that active films can be developed by including CEO and CWO in a chitosan matrix. Such films can provide new formulation options for packaging industries in developing active packaging with potential food-technology applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Cubs in the Litter: Spectroscopy of New Andromodean Dwarfs from PAndAS
NASA Astrophysics Data System (ADS)
Lewis, Geraint; McConnachie, Alan; Irwin, Michael; Rich, R. Michael; Ibata, Rodrigo
2010-08-01
We will use Gemini/GMOS to obtain spectroscopy of Red Giant Branch (RGB) stars in four new dwarf galaxies identified within the Pan-Andromeda Archaeological Survey (PAndAS). With these data, we will measure the key physical properties of the dwarfs, namely their radial velocities, internal kinematics and spectroscopic metallicities. Such measurements are essential in determining the dwarfs' fundamental characteristics; namely their internal dynamics, dark matter content, and clues to star formation and evolutionary histories. PAndAS is revolutionizing our view of our nearest cosmic neighbour, the Andromeda Galaxy, revealing a wealth of previously undetected substructure and dwarf galaxies, and these new observations are indispensable in unraveling global properties of M31's population of satellites and their relation to the M31 galaxy and its extended stellar halo. Andromeda is one of the few targets available which can provide direct tests of predictions of the distribution of mass and light in galaxy haloes and satellite galaxies, but a detailed knowledge of the physical properties of such substructure is essential; the excellent capabilities of Gemini/GMOS makes it one of the few facilities which can obtain the required spectroscopic data.
The use of minimal spanning trees in particle physics
Rainbolt, J. Lovelace; Schmitt, M.
2017-02-14
Minimal spanning trees (MSTs) have been used in cosmology and astronomy to distinguish distributions of points in a multi-dimensional space. They are essentially unknown in particle physics, however. We briefly define MSTs and illustrate their properties through a series of examples. We show how they might be applied to study a typical event sample from a collider experiment and conclude that MSTs may prove useful in distinguishing different classes of events.
The use of minimal spanning trees in particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rainbolt, J. Lovelace; Schmitt, M.
Minimal spanning trees (MSTs) have been used in cosmology and astronomy to distinguish distributions of points in a multi-dimensional space. They are essentially unknown in particle physics, however. We briefly define MSTs and illustrate their properties through a series of examples. We show how they might be applied to study a typical event sample from a collider experiment and conclude that MSTs may prove useful in distinguishing different classes of events.
Antimicrobial Lemongrass Essential Oil-Copper Ferrite Cellulose Acetate Nanocapsules.
Liakos, Ioannis L; Abdellatif, Mohamed H; Innocenti, Claudia; Scarpellini, Alice; Carzino, Riccardo; Brunetti, Virgilio; Marras, Sergio; Brescia, Rosaria; Drago, Filippo; Pompa, Pier Paolo
2016-04-20
Cellulose acetate (CA) nanoparticles were combined with two antimicrobial agents, namely lemongrass (LG) essential oil and Cu-ferrite nanoparticles. The preparation method of CA nanocapsules (NCs), with the two antimicrobial agents, was based on the nanoprecipitation method using the solvent/anti-solvent technique. Several physical and chemical analyses were performed to characterize the resulting NCs and to study their formation mechanism. The size of the combined antimicrobial NCs was found to be ca. 220 nm. The presence of Cu-ferrites enhanced the attachment of LG essential oil into the CA matrix. The magnetic properties of the combined construct were weak, due to the shielding of Cu-ferrites from the polymeric matrix, making them available for drug delivery applications where spontaneous magnetization effects should be avoided. The antimicrobial properties of the NCs were significantly enhanced with respect to CA/LG only. This work opens novel routes for the development of organic/inorganic nanoparticles with exceptional antimicrobial activities.
The Mission Accessible Near-Earth Object Survey (MANOS) -- Science Highlights
NASA Astrophysics Data System (ADS)
Moskovitz, Nicholas; Thirouin, Audrey; Binzel, Richard; Burt, Brian; Christensen, Eric; DeMeo, Francesca; Endicott, Thomas; Hinkle, Mary; Mommert, Michael; Person, Michael; Polishook, David; Siu, Hosea; Thomas, Cristina; Trilling, David; Willman, Mark
2015-08-01
Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of other parts of the Solar System they provide insight to more distant populations. Their small sizes and complex dynamical histories make them ideal laboratories for studying ongoing processes of planetary evolution. Knowledge of their physical properties is essential to impact hazard assessment. And the proximity of NEOs to Earth make them favorable targets for a variety of planetary mission scenarios. However, in spite of their importance, only the largest NEOs are well studied and a representative sample of physical properties for sub-km NEOs does not exist.MANOS is a multi-year physical characterization survey, originally awarded survey status by NOAO. MANOS is targeting several hundred mission-accessible, sub-km NEOs across visible and near-infrared wavelengths to provide a comprehensive catalog of physical properties (astrometry, light curves, spectra). Accessing these targets is enabled through classical, queue, and target-of-opportunity observations carried out at 1- to 8-meter class facilities in the northern and southern hemispheres. Our observing strategy is designed to rapidly characterize newly discovered NEOs before they fade beyond observational limits.Early progress from MANOS includes: (1) the de-biased taxonomic distribution of spectral types for NEOs smaller than ~100 meters, (2) the distribution of rotational properties for approximately 100 previously unstudied NEOs, (3) detection of the fastest known rotation period of any minor planet in the Solar System, (4) an investigation of the influence of planetary encounters on the rotational properties of NEOs, (5) dynamical models for the evolution of the overall NEO population over the past 0.5 Myr, and (6) development of a new set of online tools at asteroid.lowell.edu that will enable near realtime public dissemination of our data products while providing a portal to facilitate observation planning and coordination within the small body observer community. We will present highlights of these early MANOS science results.
Magnetic resonance of porous media (MRPM): a perspective.
Song, Yi-Qiao
2013-04-01
Porous media are ubiquitous in our environment and their application is extremely broad. The common connection between these diverse materials is the importance of the microstructure (μm to mm scale) in determining the physical, chemical and biological functions and properties. Magnetic resonance and its imaging modality have been essential for noninvasive characterization of these materials, in the development of catalysts, understanding cement hydration, fluid transport in rocks and soil, geological prospecting, and characterization of tissue properties for medical diagnosis. The past two decades have witnessed significant development of MRPM that couples advances in physics, chemistry and engineering with a broad range of applications. This article will summarize key advances in basic physics and methodology, examine their limitations and envision future R&D directions. Copyright © 2012 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Amaranth-oat composites were developed using gluten free amaranth flour containing essential amino acids and minerals with oat products containing ß-glucan, known for lowering blood cholesterol. Amaranth flour and oat bran concentrate (OBC) composites (1:4) were processed using different technologie...
A realistic molecular model of cement hydrates.
Pellenq, Roland J-M; Kushima, Akihiro; Shahsavari, Rouzbeh; Van Vliet, Krystyn J; Buehler, Markus J; Yip, Sidney; Ulm, Franz-Josef
2009-09-22
Despite decades of studies of calcium-silicate-hydrate (C-S-H), the structurally complex binder phase of concrete, the interplay between chemical composition and density remains essentially unexplored. Together these characteristics of C-S-H define and modulate the physical and mechanical properties of this "liquid stone" gel phase. With the recent determination of the calcium/silicon (C/S = 1.7) ratio and the density of the C-S-H particle (2.6 g/cm(3)) by neutron scattering measurements, there is new urgency to the challenge of explaining these essential properties. Here we propose a molecular model of C-S-H based on a bottom-up atomistic simulation approach that considers only the chemical specificity of the system as the overriding constraint. By allowing for short silica chains distributed as monomers, dimers, and pentamers, this C-S-H archetype of a molecular description of interacting CaO, SiO2, and H2O units provides not only realistic values of the C/S ratio and the density computed by grand canonical Monte Carlo simulation of water adsorption at 300 K. The model, with a chemical composition of (CaO)(1.65)(SiO2)(H2O)(1.75), also predicts other essential structural features and fundamental physical properties amenable to experimental validation, which suggest that the C-S-H gel structure includes both glass-like short-range order and crystalline features of the mineral tobermorite. Additionally, we probe the mechanical stiffness, strength, and hydrolytic shear response of our molecular model, as compared to experimentally measured properties of C-S-H. The latter results illustrate the prospect of treating cement on equal footing with metals and ceramics in the current application of mechanism-based models and multiscale simulations to study inelastic deformation and cracking.
Mechanical design of DNA nanostructures
NASA Astrophysics Data System (ADS)
Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.; Zhou, Lifeng; Johnson, Joshua
2015-03-01
Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07153k
Sakurai Prize: The Future of Higgs Physics
NASA Astrophysics Data System (ADS)
Dawson, Sally
2017-01-01
The discovery of the Higgs boson relied critically on precision calculations. The quantum contributions from the Higgs boson to the W and top quark masses suggested long before the Higgs discovery that a Standard Model Higgs boson should have a mass in the 100-200 GeV range. The experimental extraction of Higgs properties requires normalization to the predicted Higgs production and decay rates, for which higher order corrections are also essential. As Higgs physics becomes a mature subject, more and more precise calculations will be required. If there is new physics at high scales, it will contribute to the predictions and precision Higgs physics will be a window to beyond the Standard Model physics.
Some physical properties of ginkgo nuts and kernels
NASA Astrophysics Data System (ADS)
Ch'ng, P. E.; Abdullah, M. H. R. O.; Mathai, E. J.; Yunus, N. A.
2013-12-01
Some data of the physical properties of ginkgo nuts at a moisture content of 45.53% (±2.07) (wet basis) and of their kernels at 60.13% (± 2.00) (wet basis) are presented in this paper. It consists of the estimation of the mean length, width, thickness, the geometric mean diameter, sphericity, aspect ratio, unit mass, surface area, volume, true density, bulk density, and porosity measures. The coefficient of static friction for nuts and kernels was determined by using plywood, glass, rubber, and galvanized steel sheet. The data are essential in the field of food engineering especially dealing with design and development of machines, and equipment for processing and handling agriculture products.
Use of recycled plastics in wood plastic composites - a review.
Kazemi Najafi, Saeed
2013-09-01
The use of recycled and waste thermoplastics has been recently considered for producing wood plastic composites (WPCs). They have great potential for WPCs manufacturing according to results of some limited researches. This paper presents a detailed review about some essential properties of waste and recycled plastics, important for WPCs production, and of research published on the effect of recycled plastics on the physical and mechanical properties of WPCs. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sustainable hemp-based composites for the building industry application
NASA Astrophysics Data System (ADS)
Schwarzova, Ivana; Stevulova, Nadezda; Junak, Jozef; Hospodarova, Viola
2017-07-01
Sustainability goals are essential driving principles for the development of innovative materials in the building industry. Natural plant (e.g. hemp) fibers represent an attractive alternative as reinforcing material due to its good properties and sustainability prerequisites. In this study, hemp-based composite materials, designed for building application as non-load bearing material, providing both thermal insulation and physico-mechanical properties, are presented. Composite materials were produced by bonding hemp hurds with a novel inorganic binder (MgO-based cement) and then were characterized in terms of physical properties (bulk density, water absorption), thermal properties (thermal conductivity) and mechanical properties (compressive and tensile strength). The composites exhibited promising physical, thermal and mechanical characteristics, generally comparable to commercially available products. In addition, the hemp-based composites have the advantage of a significantly low environmental impact (thanks to the nature of both the dispersed and the binding phase) and no negative effects on human health. All things considered, the composite materials seem like very promising materials for the building industry application.
Park, Geon Woo; Jeon, Sang Kwon; Yang, Jin Yong; Choi, Sung Dae; Kim, Geon Joong
2016-05-01
RGO/Resol carbon composites were prepared from a mixture of reduced GO and a low-molecular-weight phenolic resin (Resol) solution. The effects of the calcination temperature, amount of Resol added and KOH treatment on the electrochemical performance of the RGO/Resol composites were investigated. The physical and electrochemical properties of the composite materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET) surface areas measurements, and cyclic voltammetry (CV). The relationships between their physical properties and their electrochemical performance were examined for use as super-capacitors (SCs). The RGO/Resol composite calcined at 400 degrees C after the KOH loading showed dramatically improved electrochemical properties, showing a high BET surface and capacitance of 2190 m2/g and 220 F/g, respectively. The RGO/Resol composites calcined after the KOH treatment showed much better capacitor performance than those treated only thermally at the same temperature without KOH impregnation. The fabrication of high surface electrodes was essential for improving the SCs properties.
USDA-ARS?s Scientific Manuscript database
Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...
Hooke's Law and the Stiffness of a Plastic Spoon
ERIC Educational Resources Information Center
Pestka, Kenneth A., II; Warren, Cori
2012-01-01
The study of elastic properties of solids is essential to both physics and engineering. Finding simple, easy-to-visualize examples to demonstrate these concepts is often difficult. In a previous article written by one of us (KAPII), a simple method for determining Youngs modulus using marshmallows was given. In this article we will illustrate…
Mohsenabadi, Nafiseh; Rajaei, Ahmad; Tabatabaei, Meisam; Mohsenifar, Afshin
2018-06-01
This study was set to prepare a new active film by using a biodegradable bio-based source, i.e., corn starch. To achieve that, benzoic acid (BA) and chitosan (CS) were covalently bound and CS-BA nanogel was then obtained using self-assembly method. Subsequently, rosemary essential oil (REO) was encapsulated in CS-BA nanogel. Finally, REO in both free and encapsulated forms were incorporated in starch-carboxy methyl cellulose (CMC) films and their physical, mechanical and antimicrobial properties were studied. The films incorporating CS-BA nanogel had a higher water vapor permeability compared with the films containing REO. Moreover, film containing 0.2% CS-BA nanogel had the highest transparency and tensile strength. The REO and nanogel alone had inhibitory effects against Staphylococcus aureus (S. aureus) and by encapsulation, the inhibitory effect of REO was increased. By encapsulating REO in nanogel, both immediately (REO) and gradual (Nanogel) antimicrobial effect against S. aureus in the starch-CMC suspensions were obtained. Copyright © 2018 Elsevier B.V. All rights reserved.
Bennett, Erin R; Clausen, Jay; Linkov, Eugene; Linkov, Igor
2009-11-01
Reliable, up-front information on physical and biological properties of emerging materials is essential before making a decision and investment to formulate, synthesize, scale-up, test, and manufacture a new material for use in both military and civilian applications. Multiple quantitative structure-activity relationships (QSARs) software tools are available for predicting a material's physical/chemical properties and environmental effects. Even though information on emerging materials is often limited, QSAR software output is treated without sufficient uncertainty analysis. We hypothesize that uncertainty and variability in material properties and uncertainty in model prediction can be too large to provide meaningful results. To test this hypothesis, we predicted octanol water partitioning coefficients (logP) for multiple, similar compounds with limited physical-chemical properties using six different commercial logP calculators (KOWWIN, MarvinSketch, ACD/Labs, ALogP, CLogP, SPARC). Analysis was done for materials with largely uncertain properties that were similar, based on molecular formula, to military compounds (RDX, BTTN, TNT) and pharmaceuticals (Carbamazepine, Gemfibrizol). We have also compared QSAR modeling results for a well-studied pesticide and pesticide breakdown product (Atrazine, DDE). Our analysis shows variability due to structural variations of the emerging chemicals may be several orders of magnitude. The model uncertainty across six software packages was very high (10 orders of magnitude) for emerging materials while it was low for traditional chemicals (e.g. Atrazine). Thus the use of QSAR models for emerging materials screening requires extensive model validation and coupling QSAR output with available empirical data and other relevant information.
The effect of a combined low-pressure gas discharge on metal surfaces
NASA Astrophysics Data System (ADS)
Brzhozovskii, B.; Brovkova, M.; Gestrin, S.; Martynov, V.; Zinina, E.
2018-04-01
The properties and effects of a combined gas discharge, obtained by superimposing ultrahigh-frequency electromagnetic and electrostatic fields on the surface of metal products, have been studied. Estimates for the main physical properties characterizing the discharge have been obtained. The paper shows that the properties of a combined discharge essentially depend on the sign of the constant electric potential of the workpiece. In the case of a positive potential, there is a substantial hardening of the metal surface layer. Blanket coating formation, which is a nanocomposite two-phase structure, has been recorded.
A photometric survey of Near-Earth Objects in support of the NEOShield-2 project
NASA Astrophysics Data System (ADS)
Ieva, S.; Dotto, E.; Mazzotta Epifani, E.; Perna, D.; Barucci, M. A.; Di Paola, A.; Micheli, M.; Perozzi, E.; Speziali, R.; Lazzarin, M.; Bertini, I.; Giunta, A.; Lazzaro, D.; Arcoverde, P.
2017-09-01
More than 85% of the 16,000 NEOs discovered up to now lack a physical characterization. The study of their physical properties is essential to define a proper mitigation scenario. One of the main aims of the NEOShield-2 project (2015-2017), financed by the European Community in the framework of the Horizon 2020 program, is therefore to retrieve physical properties of a wide number of NEOs, in order to design impact mitigation missions and assess the consequences of an impact on Earth. We present the results obtained during a 2-year Long-Term Program at the Telescopio Nazionale Galileo (TNG, La Palma, Spain), where we carried out BVRI photometry of about 150 NEOs, and the analysis of the phase curves obtained at the Campo Imperatore telescope (L'Aquila, Italy) and the Observatório Astronômico do Sertão de Itaparica (Nova Itacuruba, Brazil).
Preparation and multi-properties determination of radium-containing rocklike material
NASA Astrophysics Data System (ADS)
Hong, Changshou; Li, Xiangyang; Zhao, Guoyan; Jiang, Fuliang; Li, Ming; Zhang, Shuai; Wang, Hong; Liu, Kaixuan
2018-02-01
The radium-containing rocklike material were fabricated using distilled water, ordinary Portland cement and additives mixed aggregates and admixtures according to certain proportion. The physico-mechanical properties as well as radioactive properties of the prepared rocklike material were measured. Moreover, the properties of typical granite sample were also investigated. It is found on one hand, similarities exist in physical and mechanical properties between the rocklike material and the granite sample, this confirms the validity of the proposed method; on the other hand, the rocklike material generally performs more remarkable radioactive properties compared with the granite sample, while radon diffusive properties in both materials are essentially matching. This study will provide a novel way to prepare reliable radium-containing samples for radon study of underground uranium mine.
Essential oil-loaded lipid nanoparticles for wound healing.
Saporito, Francesca; Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Boselli, Cinzia; Icaro Cornaglia, Antonia; Mannucci, Barbara; Grisoli, Pietro; Vigani, Barbara; Ferrari, Franca
2018-01-01
Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus , the other of Streptococcus pyogenes . Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.
Land Surface Modeling and Data Assimilation to Support Physical Precipitation Retrievals for GPM
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa D.; Tian. Yudong; Kumar, Sujay; Geiger, James; Choudhury, Bhaskar
2010-01-01
Objective: The objective of this proposal is to provide a routine land surface modeling and data assimilation capability for GPM in order to provide global land surface states that are necessary to support physical precipitation retrieval algorithms over land. It is well-known that surface emission, particularly over the range of frequencies to be included in GPM, is sensitive to land surface states, including soil properties, vegetation type and greenness, soil moisture, surface temperature, and snow cover, density, and grain size. Therefore, providing a robust capability to routinely provide these critical land states is essential to support GPM-era physical retrieval algorithms over land.
NASA Astrophysics Data System (ADS)
Indrarti, L.; Indriyati
2017-03-01
The use of edible films in food protection and preservation has recently gained more interest since they offer several advantages over synthetic packaging materials. Biocellulose (BC) offers great opportunity as edible film due to their unique physical and mechanical properties. In this study, biocellulose films were prepared by solution casting with addition of 30% carboxymethyl cellulose (CMC) and 30% glycerol as the homogenizer and plasticizer, respectively. Furthermore, various citrus essential oils (EOs) including lemon, lime, and sweet orange were added at 50% w/w of BC dried weight. The solutions were then cast on the tray and allowed to dry in the air convection oven at 40°C overnight. The films were characterized for water solubility, tensile strength (TS), elongation at break (EB), water vapour transmission rate (WVTR), and color. Those characteristics may influence consumer acceptability of the packaged products. Results revealed that addition of lemon and sweet orange EOs into BC-based edible film decreased water solubility and TS, but improved EB, as these oils acted as plasticizers in the film. However, different trend was observed for BC-based film incorporated with lime oil, which had higher solubility and TS, but lower EB and WVTR compared with that of control film. Addition of citrus EOs into BC-based films did not have much effect on color properties as stated in L*, a*, and b* values.
Development of Burdock Root Inulin/Chitosan Blend Films Containing Oregano and Thyme Essential Oils.
Cao, Thi Luyen; Yang, So-Young; Song, Kyung Bin
2018-01-03
In this study, inulin (INU) extracted from burdock root was utilized as a new film base material and combined with chitosan (CHI) to prepare composite films. Oregano and thyme essential oils (OT) were incorporated into the INU-CHI film to confer the films with bioactivities. The physical and optical properties as well as antioxidant and antimicrobial activities of the films were evaluated. INU film alone showed poor physical properties. In contrast, the compatibility of INU and CHI demonstrated by the changes in attenuated total reflectance-Fourier transformation infrared spectrum of the INU-CHI film increased tensile strength and elongation at break of the INU film by 8.2- and 3.9-fold, respectively. In addition, water vapor permeability, water solubility, and moisture content of the films decreased proportionally with increasing OT concentration in the INU-CHI film. Incorporation of OT also increased the opacity of a and b values and decreased the L value of the INU-CHI films. All INU-CHI films containing OT exhibited antioxidant and antimicrobial properties. Particularly, the INU-CHI film with 2.0% OT exhibited the highest 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and antimicrobial activities against four pathogens. Thus, the INU-CHI film containing OT developed in this study might be utilized as an active packaging material in the food industry.
Development of Burdock Root Inulin/Chitosan Blend Films Containing Oregano and Thyme Essential Oils
Cao, Thi Luyen; Yang, So-Young; Song, Kyung Bin
2018-01-01
In this study, inulin (INU) extracted from burdock root was utilized as a new film base material and combined with chitosan (CHI) to prepare composite films. Oregano and thyme essential oils (OT) were incorporated into the INU-CHI film to confer the films with bioactivities. The physical and optical properties as well as antioxidant and antimicrobial activities of the films were evaluated. INU film alone showed poor physical properties. In contrast, the compatibility of INU and CHI demonstrated by the changes in attenuated total reflectance-Fourier transformation infrared spectrum of the INU-CHI film increased tensile strength and elongation at break of the INU film by 8.2- and 3.9-fold, respectively. In addition, water vapor permeability, water solubility, and moisture content of the films decreased proportionally with increasing OT concentration in the INU-CHI film. Incorporation of OT also increased the opacity of a and b values and decreased the L value of the INU-CHI films. All INU-CHI films containing OT exhibited antioxidant and antimicrobial properties. Particularly, the INU-CHI film with 2.0% OT exhibited the highest 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), 2,2-diphenyl-1-picrylhydrazyl radical scavenging, and antimicrobial activities against four pathogens. Thus, the INU-CHI film containing OT developed in this study might be utilized as an active packaging material in the food industry. PMID:29301339
Martian physical properties experiments: The Viking Mars Lander
Shorthill, R.W.; Hutton, R.E.; Moore, H.J.; Scott, R.F.
1972-01-01
Current data indicate that Mars, like the Earth and Moon, will have a soil-like layer. An understanding of this soil-like layer is an essential ingredient in understanding the Martian ecology. The Viking Lander and its subsystems will be used in a manner similar to that used by Sue Surveyor program to define properties of the Martian "soil". Data for estimates of bearing strength, cohesion, angle of internal friction, porosity, grain size, adhesion, thermal inertia, dielectric constants, and homogeneity of the Martian surface materials will be collected. ?? 1972.
NASA Astrophysics Data System (ADS)
Rechenberg, H.
While the 20th century is approaching its conclusion, the historian may look back and assemble the essential scientific fruits of the this period. Nearly fifty years ago, Werner Heisenberg stated in a lecture that in quantum or wave mechanics ``a new, unified science of matter has arisen, where the separation between chemistry and physics essentially lost any meaning", because (Heisenberg 1953)``The chemical properties of atoms have at least in principle become accessible to calculation, and already in the first years after the rise of quantum mechanics the simplest chemical binding, namely that of the two hydrogen atoms in the hydrogen molecule was calculated with the help of the new methods and was found in closest agreement with chemical experience. Thus the chemical valency-forces were explained on a physical basis, and the application of the new knowledge in industrial practices became only a matter of time."
Effect of citronella essential oil fractions as oil phase on emulsion stability
NASA Astrophysics Data System (ADS)
Septiyanti, Melati; Meliana, Yenny; Agustian, Egi
2017-11-01
The emulsion system consists of water, oil and surfactant. In order to create stable emulsion system, the composition and formulation between water phase, surfactant and oil phase are very important. Essential oil such as citronella oil has been known as active ingredient which has ability as insect repellent. This research studied the effect of citronella oil and its fraction as oil phase on emulsion stability. The cycle stability test was conducted to check the emulsion stability and it was monitored by pH, density, viscosity, particle size, refractive index, zeta potential, physical appearance and FTIR for 4 weeks. Citronellal fraction has better stability compared to citronella oil and rhodinol fraction with slight change of physical and chemical properties before and after the cycle stability test. However, it is need further study to enhance the stability of the emulsion stability for this formulation.
Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao
2016-01-07
With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.
Carbohydrate terminology and classification.
Cummings, J H; Stephen, A M
2007-12-01
Dietary carbohydrates are a group of chemically defined substances with a range of physical and physiological properties and health benefits. As with other macronutrients, the primary classification of dietary carbohydrate is based on chemistry, that is character of individual monomers, degree of polymerization (DP) and type of linkage (alpha or beta), as agreed at the Food and Agriculture Organization/World Health Organization Expert Consultation in 1997. This divides carbohydrates into three main groups, sugars (DP 1-2), oligosaccharides (short-chain carbohydrates) (DP 3-9) and polysaccharides (DP> or =10). Within this classification, a number of terms are used such as mono- and disaccharides, polyols, oligosaccharides, starch, modified starch, non-starch polysaccharides, total carbohydrate, sugars, etc. While effects of carbohydrates are ultimately related to their primary chemistry, they are modified by their physical properties. These include water solubility, hydration, gel formation, crystalline state, association with other molecules such as protein, lipid and divalent cations and aggregation into complex structures in cell walls and other specialized plant tissues. A classification based on chemistry is essential for a system of measurement, predication of properties and estimation of intakes, but does not allow a simple translation into nutritional effects since each class of carbohydrate has overlapping physiological properties and effects on health. This dichotomy has led to the use of a number of terms to describe carbohydrate in foods, for example intrinsic and extrinsic sugars, prebiotic, resistant starch, dietary fibre, available and unavailable carbohydrate, complex carbohydrate, glycaemic and whole grain. This paper reviews these terms and suggests that some are more useful than others. A clearer understanding of what is meant by any particular word used to describe carbohydrate is essential to progress in translating the growing knowledge of the physiological properties of carbohydrate into public health messages.
Review of Session 6: Medical Physics
Fukuda, Shigekazu
2014-01-01
Medical physics is very important in carbon ion radiotherapy, as it is in conventional radiotherapy using X-rays and in estimation of exposed dose in the space environment. High-energy ion beams such as carbon beams have physical characteristics such as the Bragg curve, high LET, and nuclear reactions producing fragmentations. Therefore, understanding these properties well is essential for further development of carbon radiotherapy and manned space activity. We invited, therefore, the following six presentations relevant to issues ranging from the measurement of fragmentations, lineal energy distributions using the microdosimetric approach, and neutron dose with active beam delivery of carbon-ion therapy, to the depth–dose distribution of various ions inside a human head phantom.
Health: The No-Man's-Land Between Physics and Biology.
Mansfield, Peter J
2015-10-01
Health as a positive attribute is poorly understood because understanding requires concepts from physics, of which physicians and other life scientists have a very poor grasp. This paper reviews the physics that bears on biology, in particular complex quaternions and scalar fields, relates these to the morphogenetic fields proposed by biologists, and defines health as an attribute of living action within these fields. The distinction of quality, as juxtaposed with quantity, proves essential. Its basic properties are set out, but a science and mathematics of quality are awaited. The implications of this model are discussed, particularly as proper health enhancement could set a natural limit to demand for, and therefore the cost of, medical services.
USDA-ARS?s Scientific Manuscript database
Açaí is a tropical berry from Brazil. Açaí has attracted much attention due to its nutritional value and high content of anthocyanins, resulting in antioxidant and anti-inflammatory activities. Edible films made from fruits can be used as antimicrobial packaging, in which the mechanical and barrier ...
Hay, William T; Vaughn, Steven F; Byars, Jeffrey A; Selling, Gordon W; Holthaus, Derek M; Price, Neil P J
2017-10-04
A novel emulsifier, Frost grape polysaccharide (FGP), isolated from natural exudate of the species Vitis riparia Michx, was physically and rheologically characterized. The determination of the physical, structural, thermodynamic, emulsification, film, and rheological properties of FGP provide essential details for the commercial adoption of this novel plant polysaccharide. FGP is capable of producing exceptionally stable emulsions when compared with the industrially ubiquitous gum arabic (GA). The FGP isolate contained a negligible amount of nitrogen (0.03%), indicating that it does not contain an associated glycoprotein, unlike GA. Solutions of FGP have a high degree of thermostability, displaying no loss in viscosity with temperature cycling and no thermal degradation when held at 90 °C. FGP is an excellent film former, producing high tensile strength films which remain intact at temperatures up to 200 °C. This work identified a number of potential food and pharmaceutical applications where FGP is significantly superior to GA.
Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy
NASA Astrophysics Data System (ADS)
Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro
2017-07-01
Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.
Bershtein, Shimon; Serohijos, Adrian W.R.; Shakhnovich, Eugene I.
2016-01-01
Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology. PMID:27810574
Bershtein, Shimon; Serohijos, Adrian Wr; Shakhnovich, Eugene I
2017-02-01
Bridging the gap between the molecular properties of proteins and organismal/population fitness is essential for understanding evolutionary processes. This task requires the integration of the several physical scales of biological organization, each defined by a distinct set of mechanisms and constraints, into a single unifying model. The molecular scale is dominated by the constraints imposed by the physico-chemical properties of proteins and their substrates, which give rise to trade-offs and epistatic (non-additive) effects of mutations. At the systems scale, biological networks modulate protein expression and can either buffer or enhance the fitness effects of mutations. The population scale is influenced by the mutational input, selection regimes, and stochastic changes affecting the size and structure of populations, which eventually determine the evolutionary fate of mutations. Here, we summarize the recent advances in theory, computer simulations, and experiments that advance our understanding of the links between various physical scales in biology. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kharga, D.; Inotani, D.; Hanai, R.; Ohashi, Y.
2017-06-01
We theoretically investigate the normal state properties of a Bose-Fermi mixture with a strong attractive interaction between Fermi and Bose atoms. We extend the ordinary T-matrix approximation (TMA) with respect to Bose-Fermi pairing fluctuations, to include the Hugenholtz-Pines' relation for all Bose Green's functions appearing in TMA self-energy diagrams. This extension is shown to be essentially important to correctly describe the physical properties of the Bose-Fermi mixture, especially near the Bose-Einstein condensation instability. Using this improved TMA, we clarify how the formation of composite fermions affects Bose and Fermi single-particle excitation spectra, over the entire interaction strength.
NASA Astrophysics Data System (ADS)
Cobden, L. J.
2017-12-01
Mineral physics provides the essential link between seismic observations of the Earth's interior, and laboratory (or computer-simulated) measurements of rock properties. In this presentation I will outline the procedure for quantitative conversion from thermochemical structure to seismic structure (and vice versa) using the latest datasets from seismology and mineralogy. I will show examples of how this method can allow us to infer major chemical and dynamic properties of the deep mantle. I will also indicate where uncertainties and limitations in the data require us to exercise caution, in order not to "over-interpret" seismic observations. Understanding and modelling these uncertainties serves as a useful guide for mineralogists to ascertain which mineral parameters are most useful in seismic interpretation, and enables seismologists to optimise their data assembly and inversions for quantitative interpretations.
The Essential Properties of Yoga Questionnaire (EPYQ): Psychometric Properties.
Park, Crystal L; Elwy, A Rani; Maiya, Meghan; Sarkin, Andrew J; Riley, Kristen E; Eisen, Susan V; Gutierrez, Ian; Finkelstein-Fox, Lucy; Lee, Sharon Y; Casteel, Danielle; Braun, Tosca; Groessl, Erik J
2018-03-02
Yoga interventions are heterogeneous and vary along multiple dimensions. These dimensions may affect mental and physical health outcomes in different ways or through different mechanisms. However, most studies of the effects of yoga on health do not adequately describe or quantify the components of the interventions being implemented. This lack of detail prevents researchers from making comparisons across studies and limits our understanding of the relative effects of different aspects of yoga interventions. To address this problem, we developed the Essential Properties of Yoga Questionnaire (EPYQ), which allows researchers to objectively characterize their interventions. We present here the reliability and validity data from the final phases of this measure-development project. Analyses identified fourteen key dimensions of yoga interventions measured by the EPYQ: acceptance/compassion, bandhas, body awareness, breathwork, instructor mention of health benefits, individual attention, meditation and mindfulness, mental and emotional awareness, physicality, active postures, restorative postures, social aspects, spirituality, and yoga philosophy. The EPYQ demonstrated good reliability, as assessed by internal consistency and test-retest reliability analysis, and evidence suggests that the EPYQ is a valid measure of multiple dimensions of yoga. The measure is ready for use by clinicians and researchers. Results indicate that, currently, trained objective raters should score interventions to avoid reference frame errors and potential rating bias, but alternative approaches may be developed. The EPYQ will allow researchers to link specific yoga dimensions to identifiable health outcomes and optimize the design of yoga interventions for specific conditions.
Liu, Dong; Li, Hongli; Jiang, Lin; Chuan, Yongming; Yuan, Minglong; Chen, Haiyun
2016-05-27
Antimicromial and antioxidant bioactive films based on poly(lactic acid)/poly(trimenthylene carbonate) films incorporated with different concentrations of oregano essential oil (OEO) were prepared by solvent casting. The antimicrobial, antioxidant, physical, thermal, microstructural, and mechanical properties of the resulting films were examined. Scanning electron microscopy analysis revealed that the cross-section of films became rougher when OEO was incorporated into PLA/PTMC blends. Differential scanning calorimetry analysis indicated that crystallinity of PLA phase decreased by the addition of OEO, but this did not affect the thermal stability of the films. Water vapor permeability of films slightly increased with increasing concentration of OEO. However, active PLA/PTMC/OEO composite films showed adequate barrier properties for food packaging application. The antimicrobial and antioxidant capacities were significantly improved with the incorporation of OEO (p < 0.05). The results demonstrated that an optimal balance between the mechanical, barrier, thermal, antioxidant, and antimicrobial properties of the films was achieved by the incorporation of 9 wt % OEO into PLA/PTMC blends.
Shahbazi, Yasser
2017-06-01
The aim of this study was to improve different characteristics including antibacterial, antioxidant, physical and mechanical properties of chitosan (Ch) and gelatin (Ge) films by incorporating Ziziphora clinopodioides essential oil (ZEO; 0 and 1% v/w) and ethanolic grape seed extract (GSE; 0 and 1% v/w). The main compounds of the ZEO were carvacrol (65.22%) and thymol (19.51%). According to our findings, addition of aforementioned materials could improve total phenolic content, antibacterial and antioxidant activities, thickness and also water vapor barrier property. ZEO and GSE reduces swelling index, tensile strength, puncture force and puncture deformation of Ch and Ge films. Pure Ch and Ge films had slightly yellow and white appearances, respectively, while films incorporated with GSE in combination with ZEO had grey appearances. This study indicated the some benefits of addition of ZEO and GSE into Ch and Ge films and their potentials for application as biodegradable active packaging. Copyright © 2017 Elsevier B.V. All rights reserved.
The importance of ground truth data in remote sensing
NASA Technical Reports Server (NTRS)
Hoffer, R. M.
1972-01-01
Surface observation data is discussed as an essential part of remote sensing research. One of the most important aspects of ground truth is the collection of measurements and observations about the type, size, condition and other physical or chemical properties of importance concerning the materials on the earth's surface that are being sensed remotely. The use of a variety of sensor systems in combination at different altitudes is emphasized.
Comparative study of modified bitumen binder properties collected from mixing plant and quarry.
NASA Astrophysics Data System (ADS)
Mustafa Kamal, M.; Abu Bakar, R.; Hadithon, K. A.
2017-11-01
Quality control and assurance are essential in pavement construction. In general, the properties of bitumen change as it ages in bulk storage, transport, and storage on site. The minimization of bituminous hardening during storing, transportation and mixing depends on careful control of binder temperature. Hence therefore, bitumen should always be stored and handled at the lowest temperature possible, consistent with efficient use. The objective of the work is to monitor the quality of bitumen samples collected from mixing plant and quarry. Results showed that, samples modified bitumen which collected from quarry showed some adverse effects on rheological properties and physical properties after subjecting to high temperature storage within a period of time. The dynamic stiffness, elastic properties and other common binder properties were deteriorated too. The chemical changes that occurred during storage were analysed using Fourier transform infra-red spectroscopy (FTIR). Thus studies developed an understanding of bitumen ageing in storage.
NASA Astrophysics Data System (ADS)
Urakov, A. L.
2016-04-01
The paper states that assigning certain physical and chemical characteristics to pills and medical drugs solutions can substitute for the development of new drugs (which is essentially equivalent to the creation of new medicines). It is established that the purposeful change of physical and chemical characteristics of the standard ("old") materials (in other words, the known substances) is fundamental for the production of solid and liquid medicines, which allows us to get "new" structures and materials. The paper shows that assigning new physical and chemical properties to "old" materials and their further usage for the production of tablets and solutions from the "old" and well-known medicines can turn even very "old" medicine into very "novel" (moreover, even very fashionable) one with unprecedented (fantastic) pharmacological activity and new mechanisms of action.
Physical and antimicrobial properties of thyme oil emulsions stabilized by ovalbumin and gum arabic.
Niu, Fuge; Pan, Weichun; Su, Yujie; Yang, Yanjun
2016-12-01
Natural biopolymer stabilized oil-in-water emulsions were formulated using ovalbumin (OVA), gum arabic (GA) solutions and their complexes. The influence of interfacial structure of emulsion (OVA-GA bilayer and OVA/GA complexes emulsions) on the physical properties and antimicrobial activity of thyme oil (TO) emulsion against Escherichia coli (E. coli) was evaluated. The results revealed that the two types of emulsions with different oil phase compositions remained stable during a long storage period. The oil phase composition had an appreciable influence on the mean particle diameter and retention of the TO emulsions. The stable emulsion showed a higher minimum inhibitory concentration (MIC), and the TO emulsions showed an improved long-term antimicrobial activity compared to the pure thyme oil, especially complexes emulsion at pH 4.0. These results provided useful information for developing protection and delivery systems for essential oil using biopolymer. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xu, Jian-Guo; Liu, Ting; Hu, Qing-Ping; Cao, Xin-Ming
2016-09-08
The essential oil of clove has a wide range of pharmacological and biological activities and is widely used in the medicine, fragrance and flavoring industries. In this work, 22 components of the essential oil obtained from clove buds were identified. Eugenol was the major component (76.23%). The essential oil exhibited strong antibacterial activity against Staphylococcus aureus ATCC 25923 with a minimum inhibitory concentration (MIC) of 0.625 mg/mL, and the antibacterial effects depended on its concentration and action time. Kill-time assays also confirmed the essential oil had a significant effect on the growth rate of surviving S. aureus. We hypothesized that the essential oil may interact with the cell wall and membrane first. On the one hand it destroys cell wall and membranes, next causing the losses of vital intracellular materials, which finally result in the bacterial death. Besides, essential oil penetrates to the cytoplasmic membrane or enters inside the cell after destruction of cell structure, and then inhibits the normal synthesis of DNA and proteins that are required for bacterial growth. These results suggested that the effects of the clove essential oil on the growth inhibition of S. aureus may be at the molecular level rather than only physical damage.
Mechanical design of DNA nanostructures.
Castro, Carlos E; Su, Hai-Jun; Marras, Alexander E; Zhou, Lifeng; Johnson, Joshua
2015-04-14
Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.
Cano, Amalia; Cháfer, Maite; Chiralt, Amparo; González-Martínez, Chelo
2015-01-01
In this work, active films based on starch and PVA (S:PVA ratio of 2:1) were developed by incorporating neem (NO) and oregano essential oils (OEO). First, a screening of the antifungal effectiveness of different natural extracts (echinacea, horsetail extract, liquid smoke and neem seed oil) against two fungus (P. expansum and A. niger) was carried out. The effect of NO and OEO incorporation on the films’ physical and antimicrobial properties was analyzed. Only composite films containing OEO exhibited antibacterial and antifungal activity. Antibacterial activity occurred at low OEO concentration (6.7%), while antifungal effect required higher doses of OEO in the films. Incorporation of oils did not notably affect the water sorption capacity and water vapor barrier properties of S-PVA films, but reduced their transparency and gloss, especially at the highest concentrations. The mechanical response of the S-PVA films was also negatively affected by oil incorporation but this was only relevant at the highest oil ratio (22%). S-PVA films with 6.7% of OEO exhibited the best physical properties, without significant differences with respect to the S-PVA matrix, while exhibiting antibacterial activity. Thus, the use of OEO as a natural antimicrobial incorporated into starch-PVA films represents a good and novel alternative in food packaging applications. PMID:28231098
A review of recent measurements of optical and thermal properties of alpha-mercuric iodide
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S. H.; Silberman, E.; Nason, D.; Cheng, A. Y.
The knowledge of the physical properties of a crystal and their relation to the nature and content of defects are essential for both applications and fundamental reasons. Alpha-mercuric iodide (alpha-HgI2) is a material which was found important applications as room temperature x ray and gamma ray detectors. Some recent thermal and optical measurements of this material, using the samples of improved crystallinity which are now available, are reviewed below. Heretofore, these properties have received less attention than the mechanical and electrical properties, particularly at elevated temperatures. In the technology of alpha-HgI2 where there is a continuing motivation to obtain larger single crystals without compromising the material quality, a better knowledge of the thermal and optical properties may lead to improvements in the processes of material purification, crystal growth, and device fabrication.
Three tenets for secure cyber-physical system design and assessment
NASA Astrophysics Data System (ADS)
Hughes, Jeff; Cybenko, George
2014-06-01
This paper presents a threat-driven quantitative mathematical framework for secure cyber-physical system design and assessment. Called The Three Tenets, this originally empirical approach has been used by the US Air Force Research Laboratory (AFRL) for secure system research and development. The Tenets were first documented in 2005 as a teachable methodology. The Tenets are motivated by a system threat model that itself consists of three elements which must exist for successful attacks to occur: - system susceptibility; - threat accessibility and; - threat capability. The Three Tenets arise naturally by countering each threat element individually. Specifically, the tenets are: Tenet 1: Focus on What's Critical - systems should include only essential functions (to reduce susceptibility); Tenet 2: Move Key Assets Out-of-Band - make mission essential elements and security controls difficult for attackers to reach logically and physically (to reduce accessibility); Tenet 3: Detect, React, Adapt - confound the attacker by implementing sensing system elements with dynamic response technologies (to counteract the attackers' capabilities). As a design methodology, the Tenets mitigate reverse engineering and subsequent attacks on complex systems. Quantified by a Bayesian analysis and further justified by analytic properties of attack graph models, the Tenets suggest concrete cyber security metrics for system assessment.
Coarse-Grained Models for Protein-Cell Membrane Interactions
Bradley, Ryan; Radhakrishnan, Ravi
2015-01-01
The physiological properties of biological soft matter are the product of collective interactions, which span many time and length scales. Recent computational modeling efforts have helped illuminate experiments that characterize the ways in which proteins modulate membrane physics. Linking these models across time and length scales in a multiscale model explains how atomistic information propagates to larger scales. This paper reviews continuum modeling and coarse-grained molecular dynamics methods, which connect atomistic simulations and single-molecule experiments with the observed microscopic or mesoscale properties of soft-matter systems essential to our understanding of cells, particularly those involved in sculpting and remodeling cell membranes. PMID:26613047
Ahmed, Jasim; Hiremath, Nikhil; Jacob, Harsha
2016-02-01
Polylactide (PLA) is the most mature biobased and biodegradable polymer. Due to its inherent brittleness, the polymer cannot be used as a packaging material without plasticizer. An attempt was made to develop antimicrobial plasticized PLA film by incorporating polyethylene glycol (PEG) and 3 essential oils (EO), namely cinnamon, garlic, and clove by solvent casting method. Physical, thermal, and rheological properties of those films were evaluated for practical applications whereas the antimicrobial properties were tested against Staphylococcus aureus and Campylobacter jejuni-pathogens related to poultry industry. Both PEG and EOs led to the formation of flexible PLA/PEG/EO films with significant drop in the glass transition temperature (Tg ), and mechanical property. Time-temperature superposition (TTS) principle was employed to melt rheology of EO-based films at selected temperature, and rheological moduli superimposed well in an extended frequency range. Among EOs, cinnamon and clove oil-based films (PLA/PEG/CIN and PLA/PEG/CLO) exhibited a complete zone of inhibition against C. jejuni at the maximum concentration (1.6 mL per 2 g PLA/PEG blend) whereas the garlic oil-based film (PLA/PEG/GAR) had the lowest activity. © 2016 Institute of Food Technologists®
Temperature and composition profile during double-track laser cladding of H13 tool steel
NASA Astrophysics Data System (ADS)
He, X.; Yu, G.; Mazumder, J.
2010-01-01
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.
2017-03-30
Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCutchan, E. A.; Brown, D. A.; Sonzogni, A. A.
Databases of evaluated nuclear data form a cornerstone on which we build academic nuclear structure physics, reaction physics, astrophysics, and many applied nuclear technologies. In basic research, nuclear data are essential for selecting, designing and conducting experiments, and for the development and testing of theoretical models to understand the fundamental properties of atomic nuclei. Likewise, the applied fields of nuclear power, homeland security, stockpile stewardship and nuclear medicine, all have deep roots requiring evaluated nuclear data. Each of these fields requires rapid and easy access to up-to-date, comprehensive and reliable databases. The DOE-funded US Nuclear Data Program is a specificmore » and coordinated effort tasked to compile, evaluate and disseminate nuclear structure and reaction data such that it can be used by the world-wide nuclear physics community.« less
Feng, Xin; Vo, Anh; Patil, Hemlata; Tiwari, Roshan V.; Alshetaili, Abdullah S.; Pimparade, Manjeet B.; Repka, Michael A.
2017-01-01
Objective The aim of this study was to evaluate the effect of polymer carrier, hot melt extrusion (HME) and downstream processing parameters on the water uptake properties of amorphous solid dispersions. Methods Three polymers and a model drug were used to prepare amorphous solid dispersions utilizing HME technology. The sorption-desorption isotherms of solid dispersions and their physical mixtures were measured by the Dynamic Vapor Sorption system, and the effect of polymer hydrophobicity, hygroscopicity, molecular weight and the HME process were investigated. FTIR imaging was performed to understand the phase separation driven by the moisture. Key findings Solid dispersions with polymeric carriers with lower hydrophilicity, hygroscopicity, and higher molecular weight could sorb less moisture under the high RH conditions. The water uptake ability of polymer-drug solid dispersion systems were decreased compared to the physical mixture after HME, which might be due to the decreased surface area and porosity. The FTIR imaging indicated the homogeneity of the drug molecularly dispersed within the polymer matrix was changed after exposure to high RH. Conclusion Understanding the effect of formulation and processing on the moisture sorption properties of solid dispersions is essential for the development of drug products with desired physical and chemical stability. PMID:26589107
The Mission Accessible Near-Earth Object Survey (MANOS)
NASA Astrophysics Data System (ADS)
Moskovitz, N.; Manos Team
2014-07-01
Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System through their compositional links to meteorites. As tracers of various regions within the Solar System they can provide insight to more distant, less accessible populations. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes such as space weathering, planetary encounters, and non-gravitational dynamics. Knowledge of their physical properties is essential to impact hazard assessment. Finally, the proximity of NEOs to Earth make them favorable targets for robotic and human exploration. However, in spite of their scientific importance, only the largest (km-scale) NEOs have been well studied and a representative sample of physical characteristics for sub-km NEOs does not exist. To address these issues we are conducting the Mission Accessible Near-Earth Object Survey (MANOS), a fully allocated multi-year survey of sub-km NEOs that will provide a large, uniform catalog of physical properties including light curves, spectra, and astrometry. From this comprehensive catalog, we will derive global properties of the NEO population, as well as identify individual targets that are of potential interest for exploration. We will accomplish these goals for approximately 500 mission-accessible NEOs across the visible and near-infrared ranges using telescope assets in both the northern and southern hemispheres. MANOS has been awarded large survey status by NOAO to employ Gemini-N, Gemini-S, SOAR, the Kitt Peak 4 m, and the CTIO 1.3 m. Access to additional facilities at Lowell Observatory (DCT 4.3 m, Perkins 72'', Hall 42'', LONEOS), the University of Hawaii, and the Catalina Sky Survey provide essential complements to this suite of telescopes. Targets for MANOS are selected based on three primary criteria: mission accessibility (i.e. Δ v < 7 km/s), size (H > 20), and observability. Our telescope assets allow us to obtain rotational light curves for objects down to V˜22, visible spectra down to V˜21, and near-IR spectra down to V˜19. MANOS primarily focuses on targets that are recently discovered. We employ a regular cadence of remote and queue observations to enable follow-up characterization within days or weeks after a target of interest is discovered. We will present a MANOS status report with an emphasis on noteworthy observations and ongoing efforts to achieve fully transparency by making target lists and data products publicly available online.
The Mission Accessible Near-Earth Objects Survey (MANOS)
NASA Technical Reports Server (NTRS)
Abell, Paul; Moskovitz, Nicholas; DeMeo, Francesca; Endicott, Thomas; Busch, Michael; Roe, Henry; Trilling, David; Thomas, Cristina; Willman, Mark; Grundy, Will;
2013-01-01
Near-Earth objects (NEOs) are essential to understanding the origin of the Solar System. Their relatively small sizes and complex dynamical histories make them excellent laboratories for studying ongoing Solar System processes. The proximity of NEOs to Earth makes them favorable targets for space missions. In addition, knowledge of their physical properties is crucial for impact hazard assessment. However, in spite of their importance to science, exploration, and planetary defense, a representative sample of physical characteristics for sub-km NEOs does not exist. Here we present the Mission Accessible Near-Earth Objects Survey (MANOS), a multi-year survey of subkm NEOs that will provide a large, uniform catalog of physical properties (light curves + colors + spectra + astrometry), representing a 100-fold increase over the current level of NEO knowledge within this size range. This survey will ultimately characterize more than 300 mission-accessible NEOs across the visible and near-infrared ranges using telescopes in both the northern and southern hemispheres. MANOS has been awarded 24 nights per semester for the next three years on NOAO facilities including Gemini North and South, the Kitt Peak Mayall 4m, and the SOAR 4m. Additional telescopic assets available to our team include facilities at Lowell Observatory, the University of Hawaii 2.2m, NASA's IRTF, and the Magellan 6.5m telescopes. Our focus on sub-km sizes and mission accessibility (dv < 7 km/s) is a novel approach to physical characterization studies and is possible through a regular cadence of observations designed to access newly discovered NEOs within days or weeks of first detection before they fade beyond observational limits. The resulting comprehensive catalog will inform global properties of the NEO population, advance scientific understanding of NEOs, produce essential data for robotic and spacecraft exploration, and develop a critical knowledge base to address the risk of NEO impacts. We intend to conduct this survey with complete transparency, publicly sharing our target lists and survey progress. We invite collaborative uses for these data as a way to broaden the scientific impact of this survey.
Lee, Ho Nyung; Ambrose Seo, Sung S.; Choi, Woo Seok; Rouleau, Christopher M.
2016-01-01
In many transition metal oxides, oxygen stoichiometry is one of the most critical parameters that plays a key role in determining the structural, physical, optical, and electrochemical properties of the material. However, controlling the growth to obtain high quality single crystal films having the right oxygen stoichiometry, especially in a high vacuum environment, has been viewed as a challenge. In this work, we show that, through proper control of the plume kinetic energy, stoichiometric crystalline films can be synthesized without generating oxygen defects even in high vacuum. We use a model homoepitaxial system of SrTiO3 (STO) thin films on single crystal STO substrates. Physical property measurements indicate that oxygen vacancy generation in high vacuum is strongly influenced by the energetics of the laser plume, and it can be controlled by proper laser beam delivery. Therefore, our finding not only provides essential insight into oxygen stoichiometry control in high vacuum for understanding the fundamental properties of STO-based thin films and heterostructures, but expands the utility of pulsed laser epitaxy of other materials as well. PMID:26823119
The amazing graphene: an educational bridge connecting different physics concepts
NASA Astrophysics Data System (ADS)
Persano Adorno, Dominique; Bellomonte, Leonardo; Pizzolato, Nicola
2018-01-01
The purpose of this work is to present a learning workshop covering various physics concepts aimed at strengthening physics/engineering student understanding about the remarkable properties of two dimensional materials, graphene in particular. At the basis of this learning experience is the idea of blending and interconnecting separate pieces of knowledge already acquired by undergraduates in different courses and to help them visualize and link the concepts lying beyond separate chunks of information or equations. Graphene represents an appropriate unifying framework to achieve this task in view of its monatomic structure and various exotic processes peculiar to this and some other two dimensional crystals. We first discuss essential elements of group theory and their application to the symmetry properties of graphene with the aim of presenting to physics/electronic engineering undergraduates that in a system characterized by symmetry properties such as a crystal, the acquisition of the solutions of the Schrödinger equation is simpler and easier to visualize than when these properties are ignored. We have then selected and discussed some remarkable properties of graphene: the linear electron energy-momentum dispersion relation in proximity of some edge points of the Brillouin zone; the consequential massless Dirac behaviour of the electrons; their tunnelling behaviour and the related Klein paradox; the chiral behaviour of electrons and holes; the fractional quantum Hall effect in massless particles; and the quantum behaviour of correlated quasiparticles observable at macroscopic level. These arguments are presented in a context covering related pieces of knowledge about classical, quantum and relativistic mechanics. Finally, we mention current applications and possible future ones with the aim of providing students with an expertise that could be useful for further work experiences and scientific investigations regarding new materials, having far-reaching implications in various fields such as basic physics, materials science and engineering applications.
Skyrmions in magnetic multilayers
NASA Astrophysics Data System (ADS)
Jiang, Wanjun; Chen, Gong; Liu, Kai; Zang, Jiadong; te Velthuis, Suzanne G. E.; Hoffmann, Axel
2017-08-01
Symmetry breaking together with strong spin-orbit interaction gives rise to many exciting phenomena within condensed matter physics. A recent example is the existence of chiral spin textures, which are observed in magnetic systems lacking inversion symmetry. These chiral spin textures, including domain walls and magnetic skyrmions, are both fundamentally interesting and technologically promising. For example, they can be driven very efficiently by electrical currents, and exhibit many new physical properties determined by their real-space topological characteristics. Depending on the details of the competing interactions, these spin textures exist in different parameter spaces. However, the governing mechanism underlying their physical behaviors remains essentially the same. In this review article, the fundamental topological physics underlying these chiral spin textures, the key factors for materials optimization, and current developments and future challenges will be discussed. In the end, a few promising directions that will advance the development of skyrmion based spintronics will be highlighted.
The VLab repository of thermodynamics and thermoelastic properties of minerals
NASA Astrophysics Data System (ADS)
Da Silveira, P. R.; Sarkar, K.; Wentzcovitch, R. M.; Shukla, G.; Lindemann, W.; Wu, Z.
2015-12-01
Thermodynamics and thermoelastic properties of minerals at planetary interior conditions are essential as input for geodynamics simulations and for interpretation of seismic tomography models. Precise experimental determination of these properties at such extreme conditions is very challenging. Therefore, ab initio calculations play an essential role in this context, but at the cost of great computational effort and memory use. Setting up a widely accessible and versatile mineral physics database can relax unnecessary repetition of such computationally intensive calculations. Access to such data facilitates transactional interaction across fields and can advance more quickly insights about deep Earth processes. Hosted by the Minnesota Supercomputing Institute, the Virtual Laboratory for Earth and Planetary Materials (VLab) was designed to develop and promote the theory of planetary materials using distributed, high-throughput quantum calculations. VLab hosts an interactive database of thermodynamics and thermoelastic properties or minerals computed by ab initio. Such properties can be obtained according to user's preference. The database is accompanied by interactive visualization tools, allowing users to repeat and build upon previously published results. Using VLab2015, we have evaluated thermoelastic properties, such as elastic coefficients (Cij), Voigt, Reuss, and Voigt-Reuss-Hill aggregate averages for bulk (K) and shear modulus (G), shear wave velocity (VS), longitudinal wave velocity (Vp), and bulk sound velocity (V0) for several important minerals. Developed web services are general and can be used for crystals of any symmetry. Results can be tabulated, plotted, or downloaded from the VLab website according to user's preference.
The Research and Development of a Soluble Reactants and Products Secondary Battery System
NASA Technical Reports Server (NTRS)
Liu, C. C.
1975-01-01
A redox battery system which employs an aqueous dectrolyte is developed. Results are presented of the following experimental studies (1) measurement of the essential physical and chemical properties of the reactants and products; (2) evaluation of commerically available anion membranes as the cell separator, (3) determination of the composition and degradation mechanism of the anion membrane, and/or developing an anion membrane separator; and (4) evaluation of the performance of prototype secondary battery systems.
A solid-state control system for dynein-based ciliary/flagellar motility
2013-01-01
Ciliary and flagellar beating requires the coordinated action of multiple dyneins with different enzymatic and motor properties. In this issue, Yamamoto et al. (2013. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201211048) identify the MIA (modifier of inner arms) complex within the Chlamydomonas reinhardtii axoneme that physically links to a known regulatory structure and provides a signaling conduit from the radial spokes to an inner arm dynein essential for waveform determination. PMID:23569213
Biocatalytic production of D-tagatose: A potential rare sugar with versatile applications.
Jayamuthunagai, J; Gautam, P; Srisowmeya, G; Chakravarthy, M
2017-11-02
D-tagatose is a naturally existing rare monosaccharide having prebiotic properties. Minimal absorption, low metabolizing energy, and unique clinical properties are the characteristics of D-tagatose. D-tagatose gained international attention by matching the purpose of alternate sweeteners that is much needed for the control of diabetes among world population. Recent efforts in understanding tagatose bioconversion have generated essential information regarding its production and application. This article reviews the evolution of D-tagatose as an important rare sugar by appreciable improvements in production results and its significant applications resulted of its unique physical, chemical, biological, and clinical properties thus considering it an appropriate product for requisite improvements in technical viability. Based on current knowledge and technology projections, the commercialization of D-tagatose rare sugar as food additive is close to reality.
Amyloids and prions in plants: Facts and perspectives.
Antonets, K S; Nizhnikov, A A
2017-09-03
Amyloids represent protein fibrils that have highly ordered structure with unique physical and chemical properties. Amyloids have long been considered lethal pathogens that cause dozens of incurable diseases in humans and animals. Recent data show that amyloids may not only possess pathogenic properties but are also implicated in the essential biological processes in a variety of prokaryotes and eukaryotes. Functional amyloids have been identified in archaea, bacteria, fungi, and animals, including humans. Plants are one of the most poorly studied groups of organisms in the field of amyloid biology. Although amyloid properties have not been shown under native conditions for any plant protein, studies demonstrating amyloid properties for a set of plant proteins in vitro or in heterologous systems in vivo have been published in recent years. In this review, we systematize the data on the amyloidogenic proteins of plants and their functions and discuss the perspectives of identifying novel amyloids using bioinformatic and proteomic approaches.
Innovation of natural essential oil-loaded Orabase for local treatment of oral candidiasis
Labib, Gihan S; Aldawsari, Hibah
2015-01-01
Purpose Oral candidiasis may be manifested in the oral cavity as either mild or severe oral fungal infection. This infection results from the overgrowth of Candida species normally existing in the oral cavity in minute amounts based on many predisposing factors. Several aspects have spurred the search for new strategies in the treatment of oral candidiasis, among which are the limited numbers of new antifungal drugs developed in recent years. Previous studies have shown that thyme and clove oils have antimycotic activities and have suggested their incorporation into pharmaceutical preparations. This study aimed to investigate the possibility of the incorporation and characterization of essential oils or their extracted active ingredients in Orabase formulations. Methods Orabase loaded with clove oil, thyme oil, eugenol, and thymol were prepared and evaluated for their antifungal activities, pH, viscosity, erosion and water uptake characteristics, mechanical properties, in vitro release behavior, and ex vivo mucoadhesion properties. Results All prepared bases showed considerable antifungal activity and acceptable physical characteristics. The release pattern from loaded bases was considerably slow for all oils and active ingredients. All bases showed appreciable adhesion in the in vitro and ex vivo studies. Conclusion The incorporation of essential oils in Orabase could help in future drug delivery design, with promising outcomes on patients’ well-being. PMID:26170621
Innovation of natural essential oil-loaded Orabase for local treatment of oral candidiasis.
Labib, Gihan S; Aldawsari, Hibah
2015-01-01
Oral candidiasis may be manifested in the oral cavity as either mild or severe oral fungal infection. This infection results from the overgrowth of Candida species normally existing in the oral cavity in minute amounts based on many predisposing factors. Several aspects have spurred the search for new strategies in the treatment of oral candidiasis, among which are the limited numbers of new antifungal drugs developed in recent years. Previous studies have shown that thyme and clove oils have antimycotic activities and have suggested their incorporation into pharmaceutical preparations. This study aimed to investigate the possibility of the incorporation and characterization of essential oils or their extracted active ingredients in Orabase formulations. Orabase loaded with clove oil, thyme oil, eugenol, and thymol were prepared and evaluated for their antifungal activities, pH, viscosity, erosion and water uptake characteristics, mechanical properties, in vitro release behavior, and ex vivo mucoadhesion properties. All prepared bases showed considerable antifungal activity and acceptable physical characteristics. The release pattern from loaded bases was considerably slow for all oils and active ingredients. All bases showed appreciable adhesion in the in vitro and ex vivo studies. The incorporation of essential oils in Orabase could help in future drug delivery design, with promising outcomes on patients' well-being.
Method of forming biaxially textured alloy substrates and devices thereon
Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan
2000-01-01
Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.
NuSTEC1 White Paper: Status and challenges of neutrino-nucleus scattering
NASA Astrophysics Data System (ADS)
Alvarez-Ruso, L.; Sajjad Athar, M.; Barbaro, M. B.; Cherdack, D.; Christy, M. E.; Coloma, P.; Donnelly, T. W.; Dytman, S.; de Gouvêa, A.; Hill, R. J.; Huber, P.; Jachowicz, N.; Katori, T.; Kronfeld, A. S.; Mahn, K.; Martini, M.; Morfín, J. G.; Nieves, J.; Perdue, G. N.; Petti, R.; Richards, D. G.; Sánchez, F.; Sato, T.; Sobczyk, J. T.; Zeller, G. P.
2018-05-01
The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments require a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Paper we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process - from quasi-elastic to deep inelastic scattering - is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.
NuSTEC White Paper: Status and Challenges of Neutrino-Nucleus Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez-Ruso, L.; et al.
The precise measurement of neutrino properties is among the highest priorities in fundamental particle physics, involving many experiments worldwide. Since the experiments rely on the interactions of neutrinos with bound nucleons inside atomic nuclei, the planned advances in the scope and precision of these experiments requires a commensurate effort in the understanding and modeling of the hadronic and nuclear physics of these interactions, which is incorporated as a nuclear model in neutrino event generators. This model is essential to every phase of experimental analyses and its theoretical uncertainties play an important role in interpreting every result. In this White Papermore » we discuss in detail the impact of neutrino-nucleus interactions, especially the nuclear effects, on the measurement of neutrino properties using the determination of oscillation parameters as a central example. After an Executive Summary and a concise Overview of the issues, we explain how the neutrino event generators work, what can be learned from electron-nucleus interactions and how each underlying physics process - from quasi-elastic to deep inelastic scattering - is understood today. We then emphasize how our understanding must improve to meet the demands of future experiments. With every topic we find that the challenges can be met only with the active support and collaboration among specialists in strong interactions and electroweak physics that include theorists and experimentalists from both the nuclear and high energy physics communities.« less
Du, W-X; Olsen, C W; Avena-Bustillos, R J; McHugh, T H; Levin, C E; Friedman, Mendel
2009-09-01
Essential oils (EOs) derived from plants are rich sources of volatile terpenoids and phenolic compounds. Such compounds have the potential to inactivate pathogenic bacteria on contact and in the vapor phase. Edible films made from fruits or vegetables containing EOs can be used commercially to protect food against contamination by pathogenic bacteria. EOs from cinnamon, allspice, and clove bud plants are compatible with the sensory characteristics of apple-based edible films. These films could extend product shelf life and reduce risk of pathogen growth on food surfaces. This study evaluated physical properties (water vapor permeability, color, tensile properties) and antimicrobial activities against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes of allspice, cinnamon, and clove bud oils in apple puree film-forming solutions formulated into edible films at 0.5% to 3% (w/w) concentrations. Antimicrobial activities were determined by 2 independent methods: overlay of the film on top of the bacteria and vapor phase diffusion of the antimicrobial from the film to the bacteria. The antimicrobial activities against the 3 pathogens were in the following order: cinnamon oil > clove bud oil > allspice oil. The antimicrobial films were more effective against L. monocytogenes than against the S. enterica. The oils reduced the viscosity of the apple solutions and increased elongation and darkened the colors of the films. They did not affect water vapor permeability. The results show that apple-based films with allspice, cinnamon, or clove bud oils were active against 3 foodborne pathogens by both direct contact with the bacteria and indirectly by vapors emanating from the films.
Antimicrobial Activity of Essential Oils Against Staphylococcus aureus in Fresh Sheep Cheese.
Amatiste, Simonetta; Sagrafoli, Daniele; Giacinti, Giuseppina; Rosa, Giulia; Carfora, Virginia; Marri, Nicla; Tammaro, Andreana; Bovi, Emanuela; Rosati, Remo
2014-08-28
Essential oils (EOs) are aromatic oily liquids extracted from different parts of specific plants, well known especially for their aromatic and antibacterial properties. Nowadays, EOs are exploited in the food sector mainly for their aromatic properties. Thanks to their antimicrobial activity, however, they could also be used as additives to increase the safety and the shelf-life of food products. Aim of this study was to assess the antimicrobial activity of Thymus vulgaris L. oil and of Origanum vulgare L. oil against Staphylococcus aureus both in vitro and on fresh cheese, and to determine whether the use of EOs can modify the microbiological and/or chemical-physical properties of the products. The antimicrobial activity against S. aureus in vitro was assessed by preparation of the aromatogram (diffusion in agar test), minimum inhibitory concentration test and minimum bactericidal concentration assessment. Raw sheep milk was experimentally contaminated with a strain of S. aureus ATCC 25922 and was used to produce three types of fresh cheese: without EOs, with thyme and oregano EOs (both EOs at a concentration of 1:1000). The samples were analysed on the day of production, after three and seven days. The results obtained from the tests showed that the concentration of S. aureus and the counts of lactic flora remained unchanged for all types of cheese. Even the chemical-physical parameters were constant. The results of inhibition tests on the cheese disagree with those relating to the in vitro tests. Most likely this is due to the ability of EOs to disperse in the lipids the food: the higher the fat content is, the lower the oil fraction will be able to exert the antimicrobial activity.
NASA Astrophysics Data System (ADS)
Tomar, Ruchi; Wadehra, Neha; Budhiraja, Vaishali; Prakash, Bhanu; Chakraverty, S.
2018-01-01
To characterize the physical properties of thin films without ambiguity and design interface with new functionalities, it is essential to have detailed knowledge of physical properties and appropriate estimation of the band profile of perovskite oxide substrates. We have developed and demonstrated a chemical free unified framework to realize single terminated surface of KTaO3, (LaAlO3)0.3 (Sr2AlTaO6)0.7 and SrTiO3 (001) oriented single crystals. The electronic band line-up of these single crystal substrates, using a combination of optical spectroscopy and Kelvin Probe Force Microscopy, has been constructed. A polar-polar interface of KTaO3 and LaBO3 (B-Transition metal ion) before and after the possible surface/electronic reconstruction has also been schematically presented.
Colloquium : Emergent properties in plane view: Strong correlations at oxide interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakhalian, Jak; Freeland, John W.; Millis, Andrew J.
2014-10-01
Finding new collective electronic states in materials is one of the fundamental goals of condensed matter physics. Atomic-scale superlattices formed from transition metal oxides are a particularly appealing hunting ground for new physics. In bulk form, transition metal oxides exhibit a remarkable range of magnetic, superconducting, and multiferroic phases that are of great scientific interest and are potentially capable of providing innovative energy, security, electronics, and medical technology platforms. In superlattices new states may emerge at the interfaces where dissimilar materials meet. This Colloquium illustrates the essential features that make transition metal oxide-based heterostructures an appealing discovery platform for emergentmore » properties with a few selected examples, showing how charge redistributes, magnetism and orbital polarization arises, and ferroelectric order emerges from heterostructures comprised of oxide components with nominally contradictory behavior with the aim providing insight into the creation and control of novel behavior at oxide interfaces by suitable mechanical, electrical, or optical boundary conditions and excitations.« less
Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast
Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary R.; O’Toole, Eileen; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Glaser, Matthew A.; Betterton, Meredith D.
2017-01-01
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly—the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy. PMID:28116355
[Adhesive properties and related phenomena for powdered pharmaceuticals].
Otsuka, A
1998-04-01
This report deals with adhesive properties and related phenomena of powdered materials including pharmaceuticals. The adhesive force between a powder particle and substrate as well as the tensile strength of a powder bed and tablet was measured. Various factors were found to affect powder adhesion. Physical properties such as the size, shape and surface roughness were examined. The adhesive force between a particle and substrate decreased remarkably in the presence of ultrafine particles, which is of interest since the addition of adequate amount of "glidant" causes an increase in powder fluidity. From a pharmaceutical point of view, temperature and humidity were essential to particle adhesion. For several organic substances, the adhesive force increased significantly at homologous temperatures more than ca. 0.7, suggesting the sintering mechanism to be operative. The adhsive force between polymer films and glass beads varied according to polymer and relative humidity. A close correlation of water sorbed by the polymer film with adhesive force was noted. In connection with powder fluidity, compaction properties were studied by the centrifugal and tapping methods. Apparent adhesion defined as the ratio of the adhesive force between two contacting particles to the external force acting on a particle was noted to be the primary determinant of the void fraction or the porosity of the powder bed, indicating that the probability of particle displacement essentially depended on apparent adhesion.
Interlayer Coupling and Gate-Tunable Excitons in Transition Metal Dichalcogenide Heterostructures
Gao, Shiyuan; Yang, Li; Spataru, Catalin Dan
2017-11-22
Bilayer van der Waals (vdW) heterostructures such as MoS 2/WS 2 and MoSe 2/WSe 2 have attracted much attention recently, particularly because of their type II band alignments and the formation of interlayer exciton as the lowest-energy excitonic state. In this work, we calculate the electronic and optical properties of such heterostructures with the first-principles GW+Bethe–Salpeter Equation (BSE) method and reveal the important role of interlayer coupling in deciding the excited-state properties, including the band alignment and excitonic properties. Our calculation shows that due to the interlayer coupling, the low energy excitons can be widely tuned by a vertical gatemore » field. In particular, the dipole oscillator strength and radiative lifetime of the lowest energy exciton in these bilayer heterostructures is varied by over an order of magnitude within a practical external gate field. We also build a simple model that captures the essential physics behind this tunability and allows the extension of the ab initio results to a large range of electric fields. In conclusion, our work clarifies the physical picture of interlayer excitons in bilayer vdW heterostructures and predicts a wide range of gate-tunable excited-state properties of 2D optoelectronic devices.« less
Daneman, Richard; Prat, Alexandre
2015-01-01
Blood vessels are critical to deliver oxygen and nutrients to all of the tissues and organs throughout the body. The blood vessels that vascularize the central nervous system (CNS) possess unique properties, termed the blood–brain barrier, which allow these vessels to tightly regulate the movement of ions, molecules, and cells between the blood and the brain. This precise control of CNS homeostasis allows for proper neuronal function and also protects the neural tissue from toxins and pathogens, and alterations of these barrier properties are an important component of pathology and progression of different neurological diseases. The physiological barrier is coordinated by a series of physical, transport, and metabolic properties possessed by the endothelial cells (ECs) that form the walls of the blood vessels, and these properties are regulated by interactions with different vascular, immune, and neural cells. Understanding how these different cell populations interact to regulate the barrier properties is essential for understanding how the brain functions during health and disease. PMID:25561720
Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P
2015-01-01
The top-down approach is frequently used for drug nanocrystal production. A large number of review papers have referred to the top-down approach in terms of process parameters such as stabilizer selection. However, a very important factor, that is, the influence of drug properties, has been not addressed so far. This review will first discuss different nanocrystal technologies in brief. The focus will be on reviewing the different drug properties such as solid state and particle morphology on the efficiency of particle size reduction during top-down processes. Furthermore, the drug properties in the final nanosuspensions are critical for drug dissolution velocity. Therefore, another focus is the characterization of drugs in obtained nanosuspension. Drug physical properties play an important role in the production efficiency. The combinative technologies using modified drugs could significantly improve the performances of top-down processes. However, further understanding of the drug millability and homogenization will still be needed. In addition, a carefully established characterization system for nansuspension is essential.
Feng, Xin; Vo, Anh; Patil, Hemlata; Tiwari, Roshan V; Alshetaili, Abdullah S; Pimparade, Manjeet B; Repka, Michael A
2016-05-01
The aim of this study was to evaluate the effect of polymer carrier, hot melt extrusion and downstream processing parameters on the water uptake properties of amorphous solid dispersions. Three polymers and a model drug were used to prepare amorphous solid dispersions utilizing the hot melt extrusion technology. The sorption-desorption isotherms of solid dispersions and their physical mixtures were measured by the dynamic vapour sorption system, and the effects of polymer hydrophobicity, hygroscopicity, molecular weight and the hot melt extrusion process were investigated. Fourier transform infrared (FTIR) imaging was performed to understand the phase separation driven by the moisture. Solid dispersions with polymeric carriers with lower hydrophilicity, hygroscopicity and higher molecular weight could sorb less moisture under the high relative humidity (RH) conditions. The water uptake ability of polymer-drug solid dispersion systems were decreased compared with the physical mixture after hot melt extrusion, which might be due to the decreased surface area and porosity. The FTIR imaging indicated that the homogeneity of the drug molecularly dispersed within the polymer matrix was changed after exposure to high RH. Understanding the effect of formulation and processing on the moisture sorption properties of solid dispersions is essential for the development of drug products with desired physical and chemical stability. © 2015 Royal Pharmaceutical Society.
Structure of peat soils and implications for biogeochemical processes and hydrological flow
NASA Astrophysics Data System (ADS)
Rezanezhad, F.; McCarter, C. P. R.; Gharedaghloo, B.; Kleimeier, C.; Milojevic, T.; Liu, H.; Weber, T. K. D.; Price, J. S.; Quinton, W. L.; Lenartz, B.; Van Cappellen, P.
2017-12-01
Permafrost peatlands contain globally important amounts of soil organic carbon and play major roles in global water, nutrient and biogeochemical cycles. The structure of peatland soils (i.e., peat) are highly complex with unique physical and hydraulic properties; where significant, and only partially reversible, shrinkage occurs during dewatering (including water table fluctuations), compression and/or decomposition. These distinct physical and hydraulic properties controls water flow, which in turn affect reactive and non-reactive solute transport (such as, sorption or degradation) and biogeochemical functions. Additionally, peat further attenuates solute migration through molecular diffusion into the inactive pores of Sphagnum dominated peat. These slow, diffusion-limited solute exchanges between the pore regions may give rise to pore-scale chemical gradients and heterogeneous distributions of microbial habitats and activity in peat soils. Permafrost peat plateaus have the same essential subsurface characteristics as other widely organic soil-covered peatlands, where the hydraulic conductivity is related to the degree of decomposition and soil compression. Increasing levels of decomposition correspond with a reduction of effective pore diameter and consequently restrict water and solute flow (by several orders of magnitude in hydraulic conductivity between the ground surface and a depth of 50 cm). In this presentation, we present the current knowledge of key physical and hydraulic properties related to the structure of globally available peat soils and discuss their implications for water storage, flow and the migration of solutes.
NASA Astrophysics Data System (ADS)
Saiz, Leonor; Klein, Michael L.
2001-03-01
Polyunsaturated fatty acids are an essential component of biomembranes. The docosahexaenoic fatty acid (DHA), in particular, is found in high concentrations in retinal and neuronal tissue and in the olfactory bulb. Furthermore, it is well known the ability of DHA rich membranes to modulate membrane protein function, in some situations, by modifying the membrane physical properties. A particularly well studied situation is the DHA effect onthe activity of the visual receptor (protein) rhodopsin. Here, we study at a microscopic level this type of complex systems under physiological conditions. In this way, we can probe the molecular origin of the peculiarities that the system confers to membranes. To this purpose, the structure of a fully hydrated mixed (saturated/polyunsaturated) chain lipid bilayer in the biologically relevant liquid crystalline phase has been examined by performing molecular dynamics simulations. The model membrane, a 1-stearoyl- 2-docosahexaenoic- sn-glycero- 3-phosphatidylcholine (18:0/22:6 PC) lipid bilayer, was investigated at room temperature and ambient pressure and the results obtained in the nanosecond time scale were in good agreement with the available experimental data. Among the effects of the multiple unsaturations on the physical properties of these membranes, we focus on the enhanced permeability to water and small organic solvents, the decreased area compressibility modulus, and the domain formation and chain segregation.
Thermoelectricity in Heterogeneous Nanofluidic Channels.
Li, Long; Wang, Qinggong
2018-05-01
Ionic fluids are essential to energy conversion, water desalination, drug delivery, and lab-on-a-chip devices. Ionic transport in nanoscale confinements and complex physical fields still remain elusive. Here, a nanofluidic system is developed using nanochannels of heterogeneous surface properties to investigate transport properties of ions under different temperatures. Steady ionic currents are observed under symmetric temperature gradients, which is equivalent to generating electricity using waste heat (e.g., electronic chips and solar panels). The currents increase linearly with temperature gradient and nonlinearly with channel size. Contributions to ion motion from temperatures and channel properties are evaluated for this phenomenon. The findings provide insights into the study of confined ionic fluids in multiphysical fields, and suggest applications in thermal energy conversion, temperature sensors, and chip-level thermal management. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boersen, Nathan; Carvajal, M Teresa; Morris, Kenneth R; Peck, Garnet E; Pinal, Rodolfo
2015-01-01
While previous research has demonstrated roller compaction operating parameters strongly influence the properties of the final product, a greater emphasis might be placed on the raw material attributes of the formulation. There were two main objectives to this study. First, to assess the effects of different process variables on the properties of the obtained ribbons and downstream granules produced from the rolled compacted ribbons. Second, was to establish if models obtained with formulations of one active pharmaceutical ingredient (API) could predict the properties of similar formulations in terms of the excipients used, but with a different API. Tolmetin and acetaminophen, chosen for their different compaction properties, were roller compacted on Fitzpatrick roller compactor using the same formulation. Models created using tolmetin and tested using acetaminophen. The physical properties of the blends, ribbon, granule and tablet were characterized. Multivariate analysis using partial least squares was used to analyze all data. Multivariate models showed that the operating parameters and raw material attributes were essential in the prediction of ribbon porosity and post-milled particle size. The post compacted ribbon and granule attributes also significantly contributed to the prediction of the tablet tensile strength. Models derived using tolmetin could reasonably predict the ribbon porosity of a second API. After further processing, the post-milled ribbon and granules properties, rather than the physical attributes of the formulation were needed to predict downstream tablet properties. An understanding of the percolation threshold of the formulation significantly improved the predictive ability of the models.
Fixation and chemical analysis of single fog and rain droplets
NASA Astrophysics Data System (ADS)
Kasahara, M.; Akashi, S.; Ma, C.-J.; Tohno, S.
Last decade, the importance of global environmental problems has been recognized worldwide. Acid rain is one of the most important global environmental problems as well as the global warming. The grasp of physical and chemical properties of fog and rain droplets is essential to make clear the physical and chemical processes of acid rain and also their effects on forests, materials and ecosystems. We examined the physical and chemical properties of single fog and raindrops by applying fixation technique. The sampling method and treatment procedure to fix the liquid droplets as a solid particle were investigated. Small liquid particles like fog droplet could be easily fixed within few minutes by exposure to cyanoacrylate vapor. The large liquid particles like raindrops were also fixed successively, but some of them were not perfect. Freezing method was applied to fix the large raindrops. Frozen liquid particles existed stably by exposure to cyanoacrylate vapor after freezing. The particle size measurement and the elemental analysis of the fixed particle were performed in individual base using microscope, and SEX-EDX, particle-induced X-ray emission (PIXE) and micro-PIXE analyses, respectively. The concentration in raindrops was dependent upon the droplet size and the elapsed time from the beginning of rainfall.
Revealing the Physical Properties of GMC Complexes in the Spiral Arms of NGC 6946
NASA Astrophysics Data System (ADS)
Topal, Selçuk; Bayet, Estelle; Bureau, Martin; Walsh, Wilfred; Davis, Timothy A.
2013-03-01
In this study, we probe for the first time the molecular gas physical properties of several star forming regions located in the arms and inter-arms of the spiral galaxy NGC 6946. Combining our observations with additional data found in the literature, we provide in this study the most complete CO ladder ever obtained in these inter-arm and arm regions, i.e. the CO(1-0, 2-1, 3-2, 4-3, 6-5) and 13CO(1-0, 2-1) transitions. For each region studied, we use more precisely the large velocity gradient (LVG) assumption in order to derive the beam-averaged molecular gas physical properties. Namely, we obtained the gas kinetic temperature (i.e. 'best' T K), volume number gas density (i.e. 'best' n(H2)) and CO column density (i.e. 'best' N(CO)) which best reproduce the data for 8 regions investigated. Optical depths were also estimated for a large variety of CO lines in these regions. To identify the best values found, we used two complementary theoretical approaches when comparing the model predictions with the observations, i.e. the χ2 minimisation and the likelihood. Very different physical conditions for the molecular gas from a region to another have been obtained: T K ranges from 10 to 250 K, n(H2) ranges from 102.3 to 107.0 cm-3 and N(CO) ranges from 1015.0 to 1019.3 cm-2 among the arm and inter-arm regions. For each region probed, we also published for the first time the CO spectral line energy distribution (SLED) from CO(1-0) to CO(10-9) for this galaxy, mixing observations and model predictions which provide an essential insight for future follow-up observational programmes. Finally, in this work, we discuss the physical properties we obtained for each region in relation with the presence of young stellar population characteristics such as supernovae remnants (SNRs), Hi holes, Hii regions.
Abasi, Mohammad Hadi; Eslami, Ahmad Ali; Rakhshani, Fatemeh; Shiri, Mansoor
2016-01-01
Self-regulation is one of the current psychological concepts that have been known as a determinant of leisure time physical activity. Due to cultural and social diversity in different societies and age groups, application of specific questionnaires is essential to perform investigations about physical activities. The aim of this study is development and evaluation of psychometric properties of a self-regulation questionnaire about leisure time physical activity in Iranian male adolescents. This cross-sectional study was conducted in 2013, and data of 603 male students from 12 high schools in Isfahan were collected. A comprehensive literature review and similar questionnaire review were conducted and 25 items were selected or developed to measure self-regulation. Comprehensibility of items was evaluated in a pilot study and an expert panel evaluated face and content validity. Exploratory factors analysis (EFA) was used for evaluation of construct validity and extraction of sub-constructs of self-regulation. Leisure time physical activity was assessed using International Physical Activity Questionnaire (IPAQ). The mean age of the participants was 16.3 years (SD =1.0) and the range was 15-19 years. Cronbach's α coefficient of the questionnaire in the pilot and main study was 0.84 and 0.90, respectively. EFA resulted in four sub-constructs including "enlistment of social support", "goal setting", "self-construction", and "self-monitoring", which explained 63.6% of the variance of self-regulation. Results of this investigation provide some support to the validity and reliability of the 16-item questionnaire of self-regulation abut leisure time physical activity in the target group.
Lee, Ho Nyung; Ambrose Seo, Sung S.; Choi, Woo Seok; ...
2016-01-29
In many transition metal oxides, oxygen stoichiometry is one of the most critical parameters that plays a key role in determining the structural, physical, optical, and electrochemical properties of the material. However, controlling the growth to obtain high quality single crystal films having the right oxygen stoichiometry, especially in a high vacuum environment, has been viewed as a challenge. In this work, we show that, through proper control of the plume kinetic energy, stoichiometric crystalline films can be synthesized without generating oxygen defects even in high vacuum. We use a model homoepitaxial system of SrTiO 3 (STO) thin films onmore » single crystal STO substrates. Physical property measurements indicate that oxygen vacancy generation in high vacuum is strongly influenced by the energetics of the laser plume, and it can be controlled by proper laser beam delivery. Thus, our finding not only provides essential insight into oxygen stoichiometry control in high vacuum for understanding the fundamental properties of STO-based thin films and heterostructures, but it expands the utility of pulsed laser epitaxy of other materials as well.₃« less
Secomb, Timothy W.
2016-01-01
A review is presented of the physical principles governing the distribution of blood flow and blood pressure in the vascular system. The main factors involved are the pulsatile driving pressure generated by the heart, the flow characteristics of blood, and the geometric structure and mechanical properties of the vessels. The relationship between driving pressure and flow in a given vessel can be understood by considering the viscous and inertial forces acting on the blood. Depending on the vessel diameter and other physical parameters, a wide variety of flow phenomena can occur. In large arteries, the propagation of the pressure pulse depends on the elastic properties of the artery walls. In the microcirculation, the fact that blood is a suspension of cells strongly influences its flow properties and leads to a non-uniform distribution of hematocrit among microvessels. The forces acting on vessel walls include shear stress resulting from blood flow and circumferential stress resulting from blood pressure. Biological responses to these forces are important in the control of blood flow and the structural remodeling of vessels, and also play a role in major disease processes including hypertension and atherosclerosis. Consideration of hemodynamics is essential for a comprehensive understanding of the functioning of the circulatory system. PMID:27065172
Oxygen Plasma Effect on QCM Sensor Coated Polystyrene Film
NASA Astrophysics Data System (ADS)
Khusnah, N. F.; Sakti, S. P.; Santjojo, D. J. D. H.
2018-05-01
Hydrophobicity property of polystyrene (PS) thin film is one of the essential factors to be considered in the development of quartz crystal microbalance (QCM) biosensor using polystyrene as matrix layer. Many methods were developed to improve the immobilization rate of the biomolecule on the sensor surface without affecting the QCM essential works. Surface modification of the sensor surface aims to modify the physical and or chemical property of the surface. A straightforward method, the fast, environmentally-friendly, and low-cost solution to modify the sensor surface coated with polystyrene film is using oxygen plasma. In this experiment, the polystyrene film was spin-coated on both surface of QCM electrodes and then heated at 100 °C. The specimen is then placed for 5 min long in a chamber filled with oxygen plasma generated by 2 MHz RF-DC high-density plasma system. The relationship between DC-bias used and the changes in morphology properties of the coated film was characterized by Topography Measurement System (TMS) and Contact Angle Measurement. The electrical characteristic of QCM was also characterized using Impedance Analyzer. It was revealed that the contact angle of oxygen plasma treated film is changed and depicted the hydrophobic character. Also, there is an increasing resonance frequency of the sensor after oxygen plasma treatment indicates an etching mechanism occurs during plasma treatment.
Topological quantization of energy transport in micromechanical and nanomechanical lattices
NASA Astrophysics Data System (ADS)
Chien, Chih-Chun; Velizhanin, Kirill A.; Dubi, Yonatan; Ilic, B. Robert; Zwolak, Michael
2018-03-01
Topological effects typically discussed in the context of quantum physics are emerging as one of the central paradigms of physics. Here, we demonstrate the role of topology in energy transport through dimerized micro- and nanomechanical lattices in the classical regime, i.e., essentially "masses and springs." We show that the thermal conductance factorizes into topological and nontopological components. The former takes on three discrete values and arises due to the appearance of edge modes that prevent good contact between the heat reservoirs and the bulk, giving a length-independent reduction of the conductance. In essence, energy input at the boundary mostly stays there, an effect robust against disorder and nonlinearity. These results bridge two seemingly disconnected disciplines of physics, namely topology and thermal transport, and suggest ways to engineer thermal contacts, opening a direction to explore the ramifications of topological properties on nanoscale technology.
Properties and applications of quantum dot heterostructures grown by molecular beam epitaxy
2006-01-01
One of the main directions of contemporary semiconductor physics is the production and study of structures with a dimension less than two: quantum wires and quantum dots, in order to realize novel devices that make use of low-dimensional confinement effects. One of the promising fabrication methods is to use self-organized three-dimensional (3D) structures, such as 3D coherent islands, which are often formed during the initial stage of heteroepitaxial growth in lattice-mismatched systems. This article is intended to convey the flavour of the subject by focussing on the structural, optical and electronic properties and device applications of self-assembled quantum dots and to give an elementary introduction to some of the essential characteristics.
The surface science of nanocrystals
NASA Astrophysics Data System (ADS)
Boles, Michael A.; Ling, Daishun; Hyeon, Taeghwan; Talapin, Dmitri V.
2016-02-01
All nanomaterials share a common feature of large surface-to-volume ratio, making their surfaces the dominant player in many physical and chemical processes. Surface ligands -- molecules that bind to the surface -- are an essential component of nanomaterial synthesis, processing and application. Understanding the structure and properties of nanoscale interfaces requires an intricate mix of concepts and techniques borrowed from surface science and coordination chemistry. Our Review elaborates these connections and discusses the bonding, electronic structure and chemical transformations at nanomaterial surfaces. We specifically focus on the role of surface ligands in tuning and rationally designing properties of functional nanomaterials. Given their importance for biomedical (imaging, diagnostics and therapeutics) and optoelectronic (light-emitting devices, transistors, solar cells) applications, we end with an assessment of application-targeted surface engineering.
Heat and Moisture transport of socks
NASA Astrophysics Data System (ADS)
Komárková, P.; Glombíková, V.; Havelka, A.
2017-10-01
Investigating the liquid moisture transport and thermal properties is essential for understanding physiological comfort of clothes. This study reports on an experimental investigation of moisture management transport and thermal transport on the physiological comfort of commercially available socks. There are subjective evaluation and objective measurements. Subjective evaluation of the physiological comfort of socks is based on individual sensory perception of probands during and after physical exertion. Objective measurements were performed according to standardized methods using Moisture Management tester for measuring the humidity parameters and C-term TCi analyzer for thermal conductivity and thermal effusivity. The obtained values of liquid moisture transport and thermal properties were related to the material composition and structure of the tested socks. In summary, these results show that objective measurement corresponds with probands feelings.
Hooke's Law and the Stiffness of a Plastic Spoon
NASA Astrophysics Data System (ADS)
Pestka, Kenneth A.; Warren, Cori
2012-11-01
The study of elastic properties of solids is essential to both physics and engineering. Finding simple, easy-to-visualize examples to demonstrate these concepts is often difficult. In a previous article written by one of us (KAPII), a simple method for determining Youngs modulus using marshmallows was given. In this article we will illustrate another method to explore elastic properties of everyday materials. This experiment uses a common plastic spoon exposed to a transverse force in order to determine the stiffness constant, yield point, and rupture point of the plastic spoon. In addition, much like the "Youngs Modulus of a Marshmallow" activity, this experiment visually demonstrates Hooke's law, is fun and easy to perform, and leaves a lasting impression on the students.
Method of forming biaxially textured alloy substrates and devices thereon
Goyal, Amit; Specht, Eliot D.; Kroeger, Donald M.; Paranthaman, Mariappan
1999-01-01
Specific alloys, in particular Ni-based alloys, that can be biaxially textured, with a well-developed, single component texture are disclosed. These alloys have a significantly reduced Curie point, which is very desirable from the point of view of superconductivity applications. The biaxially textured alloy substrates also possess greatly enhanced mechanical properties (yield strength, ultimate tensile strength) which are essential for most applications, in particular, superconductors. A method is disclosed for producing complex multicomponent alloys which have the ideal physical properties for specific applications, such as lattice parameter, degree of magnetism and mechanical strength, and which cannot be fabricated in textured form. In addition, a method for making ultra thin biaxially textured substrates with complex compositions is disclosed.
Dawidowicz, Andrzej L; Olszowy, Małgorzata
2014-01-01
This study discusses the similarities and differences between the antioxidant activities of some essential oils: thyme (Thymus vulgaris), basil (Ocimum basilicum), peppermint (Mentha piperita), clove (Caryophyllus aromaticus), summer savory (Satureja hortensis), sage (Salvia hispanica) and lemon (Citrus limon (L.) Burm.) and of their main components (thymol or estragole or menthol or eugenol or carvacrol or camphor or limonene) estimated by using 2,2'-Diphenyl-1-picrylhydrazyl, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt and β-carotene bleaching assays. The obtained data show that the antioxidant properties of essential oil do not always depend on the antioxidant activity of its main component, and that they can be modulated by their other components. The conclusions concerning the interaction of essential oil components depend on the type of method applied for assessing the antioxidant activity. When comparing the antioxidant properties of essential oils and their main components, the concepts of synergism, antagonism and additivity are very relevant.
Quantum Dots for Molecular Diagnostics of Tumors
Zdobnova, T.A.; Lebedenko, E.N.; Deyev, S.М.
2011-01-01
Semiconductor quantum dots (QDs) are a new class of fluorophores with unique physical and chemical properties, which allow to appreciably expand the possibilities for the current methods of fluorescent imaging and optical diagnostics. Here we discuss the prospects of QD application for molecular diagnostics of tumors ranging from cancer-specific marker detection on microplates to non-invasive tumor imagingin vivo. We also point out the essential problems that require resolution in order to clinically promote QD, and we indicate innovative approaches to oncology which are implementable using QD. PMID:22649672
Principles of Protein Recognition and Properties of Protein-protein Interfaces
NASA Astrophysics Data System (ADS)
Keskin, Ozlem; Gursoy, Attila; Nussinov, Ruth
In this chapter we address two aspects - the static physical interactions which allow the information transfer for the function to be performed; and the dynamic, i.e. how the information is transmitted between the binding sites in the single protein molecule and in the network. We describe the single protein molecules and their complexes; and the analogy between protein folding and protein binding. Eventually, to fully understand the interactome and how it performs the essential cellular functions, we have to put all together - and hierarchically progress through the system.
High-level waste program progress report, January 1, 1980-March 31, 1980
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-05-01
FUETAP concretes cured at 100/sup 0/C and 0.1 or 0.6 MPa had essentially the same physical properties as those cured at higher temperatures and pressures. Standard specimens containing high concentrations of /sup 244/Cm showed little gasification after 1 month. The large (23-cm ID) spray calciner has been completed and is operating satisfactorily. Construction was completed on a sphere-forming system capable of producing 100-g batches of Synroc spheres by internal gelation, and several runs were made. Preparations for the compatibilty tests are underway. (DLC)
Theoretical interpretation of the Venus 1.05-micron CO2 band and the Venus 0.8189-micron H2O line.
NASA Technical Reports Server (NTRS)
Regas, J. L.; Giver, L. P.; Boese, R. W.; Miller, J. H.
1972-01-01
The synthetic-spectrum technique was used in the analysis. The synthetic spectra were constructed with a model which takes into account both isotropic scattering and the inhomogeneity in the Venus atmosphere. The Potter-Hansen correction factor was used to correct for anisotropic scattering. The synthetic spectra obtained are, therefore, the first which contain all the essential physics of line formation. The results confirm Potter's conclusion that the Venus cloud tops resemble terrestrial cirrus or stratus clouds in their scattering properties.
Zhang, Lin; Bai, Zhitong; Ban, Heng; Liu, Ling
2015-11-21
Recent experiments have discovered very different thermal conductivities between the spider silk and the silkworm silk. Decoding the molecular mechanisms underpinning the distinct thermal properties may guide the rational design of synthetic silk materials and other biomaterials for multifunctionality and tunable properties. However, such an understanding is lacking, mainly due to the complex structure and phonon physics associated with the silk materials. Here, using non-equilibrium molecular dynamics, we demonstrate that the amino acid sequence plays a key role in the thermal conduction process through β-sheets, essential building blocks of natural silks and a variety of other biomaterials. Three representative β-sheet types, i.e. poly-A, poly-(GA), and poly-G, are shown to have distinct structural features and phonon dynamics leading to different thermal conductivities. A fundamental understanding of the sequence effects may stimulate the design and engineering of polymers and biopolymers for desired thermal properties.
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
NASA Astrophysics Data System (ADS)
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-11-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; ...
2015-11-03
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofmann, F.; Mason, D. R.; Eliason, J. K.
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying withmore » transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants.« less
Non-Contact Measurement of Thermal Diffusivity in Ion-Implanted Nuclear Materials
Hofmann, F.; Mason, D. R.; Eliason, J. K.; Maznev, A. A.; Nelson, K. A.; Dudarev, S. L.
2015-01-01
Knowledge of mechanical and physical property evolution due to irradiation damage is essential for the development of future fission and fusion reactors. Ion-irradiation provides an excellent proxy for studying irradiation damage, allowing high damage doses without sample activation. Limited ion-penetration-depth means that only few-micron-thick damaged layers are produced. Substantial effort has been devoted to probing the mechanical properties of these thin implanted layers. Yet, whilst key to reactor design, their thermal transport properties remain largely unexplored due to a lack of suitable measurement techniques. Here we demonstrate non-contact thermal diffusivity measurements in ion-implanted tungsten for nuclear fusion armour. Alloying with transmutation elements and the interaction of retained gas with implantation-induced defects both lead to dramatic reductions in thermal diffusivity. These changes are well captured by our modelling approaches. Our observations have important implications for the design of future fusion power plants. PMID:26527099
Magnetoelectrical control of nonreciprocal microwave response in a multiferroic helimagnet
NASA Astrophysics Data System (ADS)
Iguchi, Yusuke; Nii, Yoichi; Onose, Yoshinori
Control of physical property in terms of external fields is essential for contemporary technologies. The conductance can be controlled by a gate electric field in a field effect transistor, which is a main component of the integrated circuit. Optical phenomena induced by an electric field such as electroluminescence and electrochromism are useful for display and other technologies. Control of microwave propagation seems also imperative for future wireless communication technology. Microwave properties in solids are dominated mostly by magnetic excitations, which cannot be easily controlled by an electric field. One of the solutions for this problem is utilizing magnetically induced ferroelectrics (multiferroics). Here we show that microwave nonreciprocity, which is difference between oppositely propagating microwaves, can be reversed by the external electric field in a multiferroic helimagnet Ba2Mg2Fe12O22. This result offers a new avenue for the electrical control of microwave properties.
Magnetoelectrical control of nonreciprocal microwave response in a multiferroic helimagnet
NASA Astrophysics Data System (ADS)
Iguchi, Y.; Nii, Y.; Onose, Y.
2017-05-01
The control of physical properties by external fields is essential in many contemporary technologies. For example, conductance can be controlled by a gate electric field in a field effect transistor, which is a main component of integrated circuits. Optical phenomena induced by an electric field such as electroluminescence and electrochromism are useful for display and other technologies. Control of microwave propagation is also important for future wireless communication technology. Microwave properties in solids are dominated mostly by magnetic excitations, which cannot be easily controlled by an electric field. One solution to this problem is to use magnetically induced ferroelectrics (multiferroics). Here we show that microwave nonreciprocity, that is, different refractive indices for microwaves propagating in opposite directions, could be reversed by an external electric field in a multiferroic helimagnet Ba2Mg2Fe12O22. This approach offers an avenue for the electrical control of microwave properties.
Ghasemlou, Mehran; Aliheidari, Nahal; Fahmi, Ronak; Shojaee-Aliabadi, Saeedeh; Keshavarz, Behnam; Cran, Marlene J; Khaksar, Ramin
2013-10-15
Corn starch-based films are inherently brittle and lack the necessary mechanical integrity for conventional packaging. However, the incorporation of additives can potentially improve the mechanical properties and processability of starch films. In this work two essential oils, Zataria multiflora Boiss (ZEO) or Mentha pulegium (MEO) at three levels (1%, 2% and 3% (v/v)), were incorporated into starch films using a solution casting method to improve the mechanical and water vapor permeability (WVP) properties and to impart antimicrobial activity. Increasing the content of ZEO or MEO from 2% to 3% (v/v) increased values for elongation at break from 94.38% to 162.45% and from 53.34% to 107.71% respectively, but did not significantly change tensile strength values of the films. The WVP properties of the films decreased from 7.79 to 3.37 or 3.19 g mm m(-2) d(-1) kPa(-1) after 3% (v/v) ZEO or MEO incorporation respectively. The oxygen barrier properties were unaffected at the 1% and 2% (v/v) oil concentration used but oxygen transmission increased with 3% (v/v) for both formulations. The films' color became slightly yellow as the levels of ZEO or MEO were increased although transparency was maintained. Both films demonstrated antimicrobial activity with films containing ZEO more effective against Escherichia coli and Staphylococcus aureus than those containing MEO. These results suggest that ZEO and MEO have the potential to be directly incorporated into corn starch to prepare antimicrobial biodegradable films for various food packaging applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Habdank-Wojewódzki, Tadeusz; Habdank, Josef; Cwik, Przemyslaw; Zimowski, Slawomir
2016-01-01
CuO and V2O5 graphene quantum tunneling composites (GQTC) presented in this article were produced and their sensory properties were analyzed. The composites were synthesised using two stage high-power milling process, which resulted in materials that have good temeprature and pressure sensory properties. Described production process defines internal structure of materials such that when used as sensor in the desired range, it exhibits a strong percolation effect. The experiment, with controlled changing physical conditions during electrotribological measurement, enabled analyzing of the composites’ conductivity as a function of the sensory properties: applied temperature, pressure, tangential force and wear. The sensory characteristic was successfully modelled by invertible generalized equations, and used to create sensor capable of estimating temperature or pressure in the real time. The developed materials have the potential to be applied in the areas where miniaturization is essential, due to the materials exhibiting good sensory properties in mini and micro scale. PMID:26742044
Habdank-Wojewódzki, Tadeusz; Habdank, Josef; Cwik, Przemyslaw; Zimowski, Slawomir
2016-01-05
CuO and V₂O₅ graphene quantum tunneling composites (GQTC) presented in this article were produced and their sensory properties were analyzed. The composites were synthesised using two stage high-power milling process, which resulted in materials that have good temeprature and pressure sensory properties. Described production process defines internal structure of materials such that when used as sensor in the desired range, it exhibits a strong percolation effect. The experiment, with controlled changing physical conditions during electrotribological measurement, enabled analyzing of the composites' conductivity as a function of the sensory properties: applied temperature, pressure, tangential force and wear. The sensory characteristic was successfully modelled by invertible generalized equations, and used to create sensor capable of estimating temperature or pressure in the real time. The developed materials have the potential to be applied in the areas where miniaturization is essential, due to the materials exhibiting good sensory properties in mini and micro scale.
NASA Astrophysics Data System (ADS)
Lucas, A.; Rodriguez, S.; Lemonnier, F.; Paillou, P.; Le Gall, A. A.; Narteau, C.
2015-12-01
Sand seas on Titan may reflect the present and past climatic conditions. Understanding the morphodynamics and physicochemical properties of Titan's dunes is therefore essential for a better comprehension of the climatic and geological history of the largest Saturn's moon. We derived quantitatively surface properties (texture, composition) from the modelling of microwave backscattered signal and Monte Carlo inversion of despeckled Cassini/SAR data over the equatorial sand seas. We show that dunes and inter-dunes have significantly different physical properties. Absorption is more efficient in the dunes compared to the inter-dunes. The inter-dunes are smoother with an higher dielectric constant than the dunes. Considering the composition, the inter-dunes are in between the dunes and the bright inselbergs, suggesting the presence of a shallow layer of sediment in between the dunes. Additionally potential secondary bedforms may have been detected. Implications for dune morphodynamics, sediment inventory and climatic conditions occurring on Titan will be discussed.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-31
... the physical and biological features essential to the conservation of Casey's June beetle, and what special management considerations or protections may be required to maintain or enhance the essential... with... [the Act], on which are found those physical or biological features (I) essential to the...
NASA Astrophysics Data System (ADS)
Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy
2017-06-01
Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.
NASA Technical Reports Server (NTRS)
Pohorille, Andrew
2005-01-01
Life is based on non-covalent interactions. They might be either specific (enzyme-substrate interactions, selective ion transport) or nonspecific (lipid-lipid and lipid-protein interactions needed for membrane integrity, fusion and division). Their strength needs to be properly tuned, and this is mediated by the solvent. If interactions are too weak, there might be undesired response to natural fluctuations of physical and chemical parameters. If they are too strong it could impede kinetics and energetics of cellular processes. Thus, the solvent must allow for balancing these interactions. Physical and chemical properties of solvent provide strong constraints for life. Water exhibits a remarkable trait that it promotes both solvophobic and solvophilic interactions. Solvophobic interactions; related to high dielectric constant of the solvent) are necessary for self-organization of matter whereas solvophilic interactions are needed to ensure solubility of polar species. Water offers a large temperature domain of stable liquid and the characteristics hydrophobic effects are a consequence of the temperature in sensitivity of essential properties of its liquid state. Water, however, is not the only liquid with these favorable properties. I will compare in detail properties of water and other pure liquids or their mixtures that have a high dielectric constant and simultaneously support self-organization. I will also discuss properties of water that are unfavorable to life (e.g. its chemical activity against polymerization reactions) and close with summarizing what are alternatives to water as a matrix of life in space.
NASA Astrophysics Data System (ADS)
Zöhrer, Siegfried; Anders, André; Franz, Robert
2018-05-01
Cathodic arcs have been utilized in various applications including the deposition of thin films and coatings, ion implantation, and high current switching. Despite substantial progress in recent decades, the physical mechanisms responsible for the observed plasma properties are still a matter of dispute, particularly for multi-element cathodes, which can play an essential role in applications. The analysis of plasma properties is complicated by the generally occurring neutral background of metal atoms, which perturbs initial ion properties. By using a time-resolved method in combination with pulsed arcs and a comprehensive Nb‑Al cathode model system, we investigate the influence of cathode composition on the plasma, while making the influence of neutrals visible for the observed time frame. The results visualize ion detections of 600 μs plasma pulses, extracted 0.27 m from the cathode, resolved in mass-per-charge, energy-per-charge and time. Ion properties are found to be strongly dependent on the cathode material in a way that cannot be deduced by simple linear extrapolation. Subsequently, current hypotheses in cathodic arc physics applying to multi-element cathodes, like the so-called ‘velocity rule’ or the ‘cohesive energy rule’, are tested for early and late stages of the pulse. Apart from their fundamental character, the findings could be useful in optimizing or designing plasma properties for applications, by actively utilizing effects on ion distributions caused by composite cathode materials and charge exchange with neutrals.
Okuda, Tomoyuki
2017-01-01
Functional nanoparticles, such as liposomes and polymeric micelles, are attractive drug delivery systems for solubilization, stabilization, sustained release, prolonged tissue retention, and tissue targeting of various encapsulated drugs. For their clinical application in therapy for pulmonary diseases, the development of dry powder inhalation (DPI) formulations is considered practical due to such advantages as: (1) it is noninvasive and can be directly delivered into the lungs; (2) there are few biocomponents in the lungs that interact with nanoparticles; and (3) it shows high storage stability in the solid state against aggregation or precipitation of nanoparticles in water. However, in order to produce effective nanoparticle-loaded dry powders for inhalation, it is essential to pursue an innovative and comprehensive formulation strategy in relation to composition and powderization which can achieve (1) the particle design of dry powders with physical properties suitable for pulmonary delivery through inhalation, and (2) the effective reconstitution of nanoparticles that will maintain their original physical properties and functions after dissolution of the powders. Spray-freeze drying (SFD) is a relatively new powderization technique combining atomization and lyophilization, which can easily produce highly porous dry powders from an aqueous sample solution. Previously, we advanced the optimization of components and process conditions for the production of SFD powders suitable to DPI application. This review describes our recent results in the development of novel DPI formulations effectively loaded with various nanoparticles (electrostatic nanocomplexes for gene therapy, liposomes, and self-assembled lipid nanoparticles), based on SFD.
Abasi, Mohammad Hadi; Eslami, Ahmad Ali; Rakhshani, Fatemeh; Shiri, Mansoor
2016-01-01
Background: Self-regulation is one of the current psychological concepts that have been known as a determinant of leisure time physical activity. Due to cultural and social diversity in different societies and age groups, application of specific questionnaires is essential to perform investigations about physical activities. The aim of this study is development and evaluation of psychometric properties of a self-regulation questionnaire about leisure time physical activity in Iranian male adolescents. Materials and Methods: This cross-sectional study was conducted in 2013, and data of 603 male students from 12 high schools in Isfahan were collected. A comprehensive literature review and similar questionnaire review were conducted and 25 items were selected or developed to measure self-regulation. Comprehensibility of items was evaluated in a pilot study and an expert panel evaluated face and content validity. Exploratory factors analysis (EFA) was used for evaluation of construct validity and extraction of sub-constructs of self-regulation. Leisure time physical activity was assessed using International Physical Activity Questionnaire (IPAQ). Results: The mean age of the participants was 16.3 years (SD =1.0) and the range was 15-19 years. Cronbach's α coefficient of the questionnaire in the pilot and main study was 0.84 and 0.90, respectively. EFA resulted in four sub-constructs including “enlistment of social support”, “goal setting”, “self-construction”, and “self-monitoring”, which explained 63.6% of the variance of self-regulation. Conclusions: Results of this investigation provide some support to the validity and reliability of the 16-item questionnaire of self-regulation abut leisure time physical activity in the target group. PMID:27095993
A review of the technological solutions for the treatment of oily sludges from petroleum refineries.
da Silva, Leonardo Jordão; Alves, Flávia Chaves; de França, Francisca Pessôa
2012-10-01
The activities of the oil industry have several impacts on the environment due to the large amounts of oily wastes that are generated. The oily sludges are a semi-solid material composed by a mixture of clay, silica and iron oxides contaminated with oil, produced water and the chemicals used in the production of oil. Nowadays both the treatment and management of these waste materials is essential to promote sustainable management of exploration and exploitation of natural resources. Biological, physical and chemical processes can be used to reduce environmental contamination by petroleum hydrocarbons to acceptable levels. The choice of treatment method depends on the physical and chemical properties of the waste as well as the availability of facilities to process these wastes. Literature provides some operations for treatment of oily sludges, such as landfilling, incineration, co-processing in clinkerization furnaces, microwave liquefaction, centrifugation, destructive distillation, thermal plasma, low-temperature conversion, incorporation in ceramic materials, development of impermeable materials, encapsulation and biodegradation in land farming, biopiles and bioreactors. The management of the technology to be applied for the treatment of oily wastes is essential to promote proper environmental management, and provide alternative methods to reduce, reuse and recycle the wastes.
An evidence based approach to undergraduate physical assessment practicum course development.
Anderson, Brenda; Nix, Elizabeth; Norman, Bilinda; McPike, H Dawn
2014-05-01
Physical assessment is an important component of professional nursing practice. New nurse graduates experience difficulty transitioning the traditional head to toe physical assessment into real world nursing practice. This study was conducted to provide current data concerning physical assessment competencies utilized consistently by registered nurses. This quantitative study used a 126 item survey mailed to 900 Registered Nurses. Participants used a Likert-type scale to report frequency of use for physical assessment competencies. Thirty seven competencies were determined to be essential components of the physical assessment, 18 were determined supplemental, and 71 were determined to be non-essential. Transition of the new graduate nurse into professional practice can be enhanced by focusing content in physical assessment practicum courses on the essential competencies of physical assessment. Faculty for the university has analyzed data from this study to support evidence based changes to the undergraduate nursing program physical assessment practicum course. Copyright © 2013 Elsevier Ltd. All rights reserved.
Flytzani-Stephanopoulos, Maria; Jothimurugesan, Kandaswami
1990-01-01
A simple and effective method for producing bulk single and mixed oxide absorbents and catalysts is disclosed. The method yields bulk single oxide and mixed oxide absorbent and catalyst materials which combine a high macroporosity with relatively high surface area and good mechanical strength. The materials are prepared in a pellet form using as starting compounds, calcined powders of the desired composition and physical properties these powders are crushed to broad particle size distribution, and, optionally may be combined with an inorganic clay binder. The necessary amount of water is added to form a paste which is extruded, dried and heat treated to yield and desired extrudate strength. The physical properties of the extruded materials (density, macroporosity and surface area) are substantially the same as the constituent powder is the temperature of the heat treatment of the extrudates is approximately the same as the calcination temperature of the powder. If the former is substantially higher than the latter, the surface area decreases, but the macroporosity of the extrusions remains essentially constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goriely, S.; Bauswein, A.; Janka, H.-T.
About half of the nuclei heavier than iron observed in nature are produced by the so-called rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved, for which essentially no experimental data exist. The present paper emphasizes some important future challenges faced by nuclear physics in this problem, particularlymore » in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Both the astrophysics and the nuclear physics difficulties are critically reviewed with special attention paid to the r-process taking place during the decompression of neutron star matter following the merging of two neutron stars.« less
Extreme Material Physical Properties and Measurements above 100 tesla
NASA Astrophysics Data System (ADS)
Mielke, Charles
2011-03-01
The National High Magnetic Field Laboratory (NHMFL) Pulsed Field Facility (PFF) at Los Alamos National Laboratory (LANL) offers extreme environments of ultra high magnetic fields above 100 tesla by use of the Single Turn method as well as fields approaching 100 tesla with more complex methods. The challenge of metrology in the extreme magnetic field generating devices is complicated by the millions of amperes of current and tens of thousands of volts that are required to deliver the pulsed power needed for field generation. Methods of detecting physical properties of materials are essential parts of the science that seeks to understand and eventually control the fundamental functionality of materials in extreme environments. De-coupling the signal of the sample from the electro-magnetic interference associated with the magnet system is required to make these state-of-the-art magnetic fields useful to scientists studying materials in high magnetic fields. The cutting edge methods that are being used as well as methods in development will be presented with recent results in Graphene and High-Tc superconductors along with the methods and challenges. National Science Foundation DMR-Award 0654118.
Early Childhood Physical Education. The Essential Elements.
ERIC Educational Resources Information Center
Gabbard, Carl
1988-01-01
Details are presented regarding the essential elements of an effective early childhood physical education curriculum. Components include movement awareness, fundamental locomotor skills, fundamental nonlocomotor skills, fundamental manipulative skills, and health-related fitness. (CB)
NASA Astrophysics Data System (ADS)
Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.
2015-12-01
The atmospheric particulate matter has a large impact on climate, biosphere behaviour and human health. Its study is complex because of large number of species are present at low concentrations and the continuous time evolution, being not easily separable from meteorology, and transport processes. Closed systems have been proposed by isolating specific reactions, pollutants or products and controlling the oxidizing environment. High volume simulation chambers, such as EUropean PHOtoREactor (EUPHORE), are an essential tool used to simulate atmospheric photochemical reactions. This communication describes the last results about the reactivity of prominent atmospheric pollutants and the subsequent particulate matter formation. Specific experiments focused on organic aerosols have been developed at the EUPHORE photo-reactor. The use of on-line instrumentation, supported by off-line techniques, has provided well-defined reaction profiles, physical properties, and up to 300 different species are determined in particulate matter. The application fields include the degradation of anthropogenic and biogenic pollutants, and pesticides under several atmospheric conditions, studying their contribution on the formation of secondary organic aerosols (SOA). The studies performed at the EUPHORE have improved the mechanistic studies of atmospheric degradation processes and the knowledge about the chemical and physical properties of atmospheric particulate matter formed during these processes.
NASA Astrophysics Data System (ADS)
Faria, S. H.; Kipfstuhl, S.; Garbe, C. S.; Bendel, V.; Weikusat, C.; Weikusat, I.
2010-12-01
The great value of polar deep ice cores stems mainly from two essential features of polar ice: its crystalline structure and its impurities. They determine the physical properties of the ice matrix and provide proxies for the investigation of past climates. Experience shows that these two essential features of polar ice manifest themselves in a multiscale diversity of dynamic structures, including dislocations, grain boundaries, solid particles, air bubbles, clathrate hydrates and cloudy bands, among others. The fact that these structures are dynamic implies that they evolve with time through intricate interactions between the crystalline structure, impurities, and the ice flow. Records of these interactions have been carefully investigated in samples of the EPICA deep ice core drilled in Dronning Maud Land, Antarctica (75°S, 0°E, 2882 m elevation, 2774.15 m core length). Here we show how the distributions of sizes and shapes of air bubbles correlate with impurities and the crystalline structure, how the interaction between moving grain boundaries and micro-inclusions changes with ice depth and temperature, as well as the possible causes for the abrupt change in ice rheology observed in the MIS6-MIS5e transition. We also discuss how these observations may affect the flow of the ice sheet and the interpretation of paleoclimate records. Micrograph of an EDML sample from 555m depth. One can identify air bubbles (dark, round objects), microinclusions (tiny defocused spots), and a grain boundary pinned by a bubble. The width of the image is 700 micrometers.
Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems
Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; ...
2016-11-23
The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and relatedmore » phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Jongwon; Altman, Michael D.; Baker, James
2015-06-11
Interleukin-1 receptor associated kinase 4 (IRAK4) is an essential signal transducer downstream of the IL-1R and TLR superfamily, and selective inhibition of the kinase activity of the protein represents an attractive target for the treatment of inflammatory diseases. A series of 5-amino-N-(1H-pyrazol-4-yl)pyrazolo[1,5-a]pyrimidine-3-carboxamides was developed via sequential modifications to the 5-position of the pyrazolopyrimidine ring and the 3-position of the pyrazole ring. Replacement of substituents responsible for poor permeability and improvement of physical properties guided by cLogD led to the identification of IRAK4 inhibitors with excellent potency, kinase selectivity, and pharmacokinetic properties suitable for oral dosing.
Taylor, Marianne G.; Rhodes, Marjorie; Gelman, Susan A.
2010-01-01
Two studies (N = 456) compared the development of concepts of animal species and human gender, using a switched-at-birth reasoning task. Younger children (5- and 6-year-olds) treated animal species and human gender as equivalent; they made similar levels of category-based inferences and endorsed similar explanations for development in these two domains. In contrast, 10-year-olds and adults treated gender and species concepts as distinct from one another. They viewed gender-linked behavioral properties as open to environmental influence, and endorsed environment-based mechanisms to explain gender development. At all ages, children demonstrated differentiated reasoning about physical and behavioral properties, although this differentiation became more stable with age. The role of psychological essentialism in guiding conceptual development is discussed. PMID:19467004
Taylor, Marianne G; Rhodes, Marjorie; Gelman, Susan A
2009-01-01
Two studies (N = 456) compared the development of concepts of animal species and human gender, using a switched-at-birth reasoning task. Younger children (5- and 6-year-olds) treated animal species and human gender as equivalent; they made similar levels of category-based inferences and endorsed similar explanations for development in these 2 domains. In contrast, 10-year-olds and adults treated gender and species concepts as distinct from one another. They viewed gender-linked behavioral properties as open to environmental influence and endorsed environment-based mechanisms to explain gender development. At all ages, children demonstrated differentiated reasoning about physical and behavioral properties, although this differentiation became more stable with age. The role of psychological essentialism in guiding conceptual development is discussed.
Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa
The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and relatedmore » phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications.« less
NASA Astrophysics Data System (ADS)
Yuan, Chang-Qing; Zhao, Tong-Jun; Zhan, Yong; Zhang, Su-Hua; Liu, Hui; Zhang, Yu-Hong
2009-11-01
Based on the well accepted Hodgkin-Huxley neuron model, the neuronal intrinsic excitability is studied when the neuron is subject to varying environmental temperatures, the typical impact for its regulating ways. With computer simulation, it is found that altering environmental temperature can improve or inhibit the neuronal intrinsic excitability so as to influence the neuronal spiking properties. The impacts from environmental factors can be understood that the neuronal spiking threshold is essentially influenced by the fluctuations in the environment. With the environmental temperature varying, burst spiking is realized for the neuronal membrane voltage because of the environment-dependent spiking threshold. This burst induced by changes in spiking threshold is different from that excited by input currents or other stimulus.
Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems
Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan
2016-01-01
The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications. PMID:28335349
Mechanical and physical properties of AlSi10Mg processed through selective laser melting
NASA Astrophysics Data System (ADS)
Raus, A. A.; Wahab, M. S.; Ibrahim, M.; Kamarudin, K.; Ahmed, Aqeel; Shamsudin, S.
2017-04-01
In the past few decade, Additive Manufacturing (AM) has become popular and substantial to manufacture direct functional parts in varieties industrial applications even in very challenging like aerospace, medical and manufacturing sectors. Selective Laser Melting (SLM) is one of the most efficient technique in the additive Manufacturing (AM) which able to manufacture metal component directly from Computer Aided Design (CAD) file data. Accuracy, mechanical and physical properties are essentials requirement in order to meet the demand of those engineering components. In this paper, the mechanical properties of SLM manufactured AlSi10Mg samples such as hardness, tensile strength, and impact toughness are investigated and compared to conventionally high pressure die cast A360 alloy. The results exposed that the hardness and the yield strength of AlSi10Mg samples by SLM were increased by 42% and 31% respectively to those of conventionally high pressure die cast A360 alloy even though without comprehensive post processing methods. It is also discovered that AlSi10Mg parts fabricated by SLM achieved the highest density of 99.13% at the best setting parameters from a previous study of 350 watts laser power, 1650 mm/s scanning speed and hatching distance 0.13 mm.
Gumí-Audenis, Berta; Costa, Luca; Carlá, Francesco; Comin, Fabio; Sanz, Fausto; Giannotti, Marina I
2016-12-19
Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information.
Gumí-Audenis, Berta; Costa, Luca; Carlá, Francesco; Comin, Fabio; Sanz, Fausto; Giannotti, Marina I.
2016-01-01
Biological membranes mediate several biological processes that are directly associated with their physical properties but sometimes difficult to evaluate. Supported lipid bilayers (SLBs) are model systems widely used to characterize the structure of biological membranes. Cholesterol (Chol) plays an essential role in the modulation of membrane physical properties. It directly influences the order and mechanical stability of the lipid bilayers, and it is known to laterally segregate in rafts in the outer leaflet of the membrane together with sphingolipids (SLs). Atomic force microscope (AFM) is a powerful tool as it is capable to sense and apply forces with high accuracy, with distance and force resolution at the nanoscale, and in a controlled environment. AFM-based force spectroscopy (AFM-FS) has become a crucial technique to study the nanomechanical stability of SLBs by controlling the liquid media and the temperature variations. In this contribution, we review recent AFM and AFM-FS studies on the effect of Chol on the morphology and mechanical properties of model SLBs, including complex bilayers containing SLs. We also introduce a promising combination of AFM and X-ray (XR) techniques that allows for in situ characterization of dynamic processes, providing structural, morphological, and nanomechanical information. PMID:27999368
NASA Astrophysics Data System (ADS)
Leighly, Karen
2017-08-01
A significant fraction of quasars exhibits blueshifted broadabsorption lines (BALs) in their rest-UV spectra, indicating powerfuloutflows emerging from the central engine. These outflows may removeangular momentum to enable black hole growth, enrich the intergalacticmedium with metals, and trigger quenching of star formation ingalaxies. Despite years of study, the physical conditions of theoutflowing gas are poorly understood. The handful of objects that havebeen subjected to detailed analysis are atypical and characterized byrelatively narrow lines where blending is unimportant. However,investigating more powerful BAL quasars will give us better insightinto the types of outflows much more likely to impact galaxyevolution.SimBAL is a novel spectral synthesis fitting method for BAL quasarsthat uses Bayesian model calibration to compare synthetic to observedspectra. With the model inputs of ionization parameter, columndensity, and covering fraction specified, the gas properties givingrise to the BAL features can be determined. We propose to applySimBAL to archival spectra of a sample of 14 luminous BAL quasars to characterize their bulk outflow properties as a function of velocityfor the first time. Our results will show the range of parameterstypical of powerful outflows, an essential step towards constrainingthe physics behind quasar winds and thus their impact on theirenvironments.
Friction and wear properties of novel HDPE--HAp--Al2O3 biocomposites against alumina counterface.
Bodhak, Subhadip; Nath, Shekhar; Basu, Bikramjit
2009-03-01
In an effort to enhance physical properties of biopolymers (high-density polyethylene, HDPE) in terms of elastic modulus and hardness, various ceramic fillers, like alumina (Al2O3) and hydroxyapatite (HAp) are added, and therefore it is essential to assess the friction and wear resistance properties of HDPE biocomposites. In this perspective, HDPE composites with varying ceramic filler content (upto 40 vol%) were fabricated under the optimal compression molding conditions and their friction and wear properties were evaluated against Al2O3 at fretting contacts. All the experiments were conducted at a load of 10 N for duration of 100,000 cycles in both dry as well as simulated body fluid (SBF). Such planned set of experiments has been designed to address three important issues: (a) whether the improvement in physical properties (hardness, E-modulus) will lead to corresponding improvement in friction and wear properties; (b) whether the fretting in SBF will provide sufficient lubrication in order to considerably enhance the tribological properties, as compared to that in ambient conditions; and (c) whether the generation of wear debris particles be reduced for various compositionally modified polymer composites, in comparison to unreinforced HDPE. The experimental results indicate the possibility of achieving extremely low coefficient of friction (COF approximately 0.047) as well as higher wear resistance (wear rate in the order of approximately 10(-7) mm3 N(-1) m(-1)) with the newly developed composites in SBF. A low wear depth of 3.5-4 microm is recorded, irrespective of fretting environment. Much effort has been put forward to correlate the friction and wear mechanisms with abrasion, adhesion, and wear debris formation.
Nutrigenomics of essential oils and their potential domestic use for improving health.
Cayuela Sánchez, José Antonio; Elamrani, Abdelaziz
2014-11-01
The use of essential oils as industrial food additives is notorious, like their medicinal properties. However, their use in household food spicing is for now limited. In this work, we have made a review to reveal the nutrigenomic actions exerted by their bioactive components, to promote awareness of their modulating gene expression ability and the potential that this implies. Also considered is how essential oils can be used as flavoring and seasoning after cooking and before consumption, such as diet components which can improve human health. Genetic mechanisms involved in the medicinal properties of essential oils for food use are identified from literature. These genetic mechanisms reveal nutrigenomic actions. Reviews on the medicinal properties of essential oils have been particularly considered. A wide diversity of nutrigenomic effects from essential oils useful potentially for food spicing is reviewed. General ideas are discussed about essential oils and their properties, such as anti-inflammatory, analgesic, immunomodulatory, anticancer, hepatoprotective, hypolipidemic, anti-diabetic, antioxidant, bone-reparation, anti-depressant and mitigatory for Alzheimer's disease. The essential oils for food use are potentially promoting health agents, and, therefore, worth using as flavoring and condiments. Becoming aware of the modulating gene expression actions from essential oils is important for understanding their potential for use in household dishes as spices to improve health.
Kringel, Dianini Hüttner; Antunes, Mariana Dias; Klein, Bruna; Crizel, Rosane Lopes; Wagner, Roger; de Oliveira, Roberto Pedroso; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa
2017-11-01
The aim of this study was to produce and characterize inclusion complexes (IC) between β-cyclodextrin (β-CD) and orange essential oil (OEO) or eucalyptus essential oil (EEO), and to compare these with their pure compounds and physical mixtures. The samples were evaluated by chemical composition, morphology, thermal stability, and volatile compounds by static headspace-gas chromatography (SH-GC). Comparing the free essential oil and physical mixture with the inclusion complex, of both essential oils (OEO and EEO), it was observed differences occurred in the chemical composition, thermal stability, and morphology. These differences show that there was the formation of the inclusion complex and demonstrate the necessity of the precipitation method used to guarantee the interaction between β-CD and essential oils. The slow loss of the volatile compounds from both essential oils, when complexed with β-CD, showed a higher stability when compared with their physical mixtures and free essential oils. Therefore, the results showed that the chemical composition, molecular size, and structure of the essential oils influence the characteristics of the inclusion complexes. The application of the β-CD in the formation of inclusion complexes with essential oils can expand the potential applications in foods. © 2017 Institute of Food Technologists®.
Biosynthesis and therapeutic properties of Lavandula essential oil constituents.
Woronuk, Grant; Demissie, Zerihun; Rheault, Mark; Mahmoud, Soheil
2011-01-01
Lavenders and their essential oils have been used in alternative medicine for several centuries. The volatile compounds that comprise lavender essential oils, including linalool and linalyl acetate, have demonstrative therapeutic properties, and the relative abundance of these metabolites is greatly influenced by the genetics and environment of the developing plants. With the rapid progress of molecular biology and the genomic sciences, our understanding of essential oil biosynthesis has greatly improved over the past few decades. At the same time, there is a recent surge of interest in the use of natural remedies, including lavender essential oils, in alternative medicine and aromatherapy. This article provides a review of recent developments related to the biosynthesis and medicinal properties of lavender essential oils. © Georg Thieme Verlag KG Stuttgart · New York.
Essentially semismall Quasi-Dedekind module relative to a module
NASA Astrophysics Data System (ADS)
Hussain, Mukdad Q.
2018-05-01
Let R be associative ring with identity and M be a unitary R-module. In this paper study the direct summand of essentially semismall quasi-Dedekind module and prove that the direct sum of essentially semismall quasi-Dedekind modules need not be essentially semismall quasi-Dedekind and give the definition of essentially semismall quasi-Dedekind relative to a module with some examples, also give some of their basic properties and some examples that illustrate these properties.
[Antiradical properties of essential oils and extracts from clove bud and pimento].
Misharina, T A; Alinkina, E S; Medvedeva, I B
2015-01-01
The antiradical properties of essential oils and extracts from the clove bud (Eugenia caryophyllata Thumb.) and berries of tree (Pimenta dioica (L.) Meriff) were studied and compared with the properties of synthetic antioxidant ionol (2,6-ditret-butyl-4-hydroxytoluene, BHT) in model reactions with the stable free 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The essential oils of clove bud and pimento had qualitatively close composition of the main components but differed by their quantitative content. In the studied samples, eugenol was the main compound with high antiradical activity. The reaction rates of essential oils and extracts with the DPPH radical were practically the same for essential oils and twice the reaction rate of BHT. The values of antiradical efficiency (AE) were also close for essential oils and were twice that for extracts and ionol. A synergetic action of components in the essential oil and extract of pimento on antiradical efficiency values was found.
Imaging the hard/soft tissue interface.
Bannerman, Alistair; Paxton, Jennifer Z; Grover, Liam M
2014-03-01
Interfaces between different tissues play an essential role in the biomechanics of native tissues and their recapitulation is now recognized as critical to function. As a consequence, imaging the hard/soft tissue interface has become increasingly important in the area of tissue engineering. Particularly as several biotechnology based products have made it onto the market or are close to human trials and an understanding of their function and development is essential. A range of imaging modalities have been developed that allow a wealth of information on the morphological and physical properties of samples to be obtained non-destructively in vivo or via destructive means. This review summarizes the use of a selection of imaging modalities on interfaces to date considering the strengths and weaknesses of each. We will also consider techniques which have not yet been utilized to their full potential or are likely to play a role in future work in the area.
Manufactured soils for plant growth at a lunar base
NASA Technical Reports Server (NTRS)
Ming, Douglas W.
1989-01-01
Advantages and disadvantages of synthetic soils are discussed. It is pointed out that synthetic soils may provide the proper physical and chemical properties necessary to maximize plant growth, such as a toxic-free composition and cation exchange capacities. The importance of nutrient retention, aeration, moisture retention, and mechanical support as qualities for synthetic soils are stressed. Zeoponics, or the cultivation of plants in zeolite substrates that both contain essential plant-growth cations on their exchange sites and have minor amounts of mineral phases and/or anion-exchange resins that supply essential plant growth ions, is discussed. It is suggested that synthetic zeolites at lunar bases could provide adsorption media for separation of various gases, act as catalysts and as molecular sieves, and serve as cation exchangers in sewage-effluent treatment, radioactive-waste disposal, and pollution control. A flow chart of a potential zeoponics system illustrates this process.
Spicule matrix protein LSM34 is essential for biomineralization of the sea urchin spicule.
Peled-Kamar, Mira; Hamilton, Patricia; Wilt, Fred H
2002-01-01
Biomineralized skeletal structures are composite materials containing mineral and matrix protein(s). The cell biological mechanisms that underlie the formation, secretion, and organization of the biomineralized materials are not well understood. Although the matrix proteins influence physical properties of the structures, little is known of the role of these matrix proteins in the actual formation of the biomineralized structure. We present here results using an antisense oligonucleotide directed against a spicule matrix protein, LSM34, present in spicules of embryos of Lytechinus pictus. After injection of anti-LSM34 into the blastocoel of a sea urchin embryo, LSM34 protein in the primary mesenchyme cells decreases and biomineralization ceases, demonstrating that LSM34 function is essential for the formation of the calcareous endoskeletal spicule of the embryo. Since LSM34 is found primarily in a specialized extracellular matrix surrounding the spicule, it is probable that this matrix is important for the biomineralization process.
Essential Oils: Sources of Antimicrobials and Food Preservatives
Pandey, Abhay K.; Kumar, Pradeep; Singh, Pooja; Tripathi, Nijendra N.; Bajpai, Vivek K.
2017-01-01
Aromatic and medicinal plants produce essential oils in the form of secondary metabolites. These essential oils can be used in diverse applications in food, perfume, and cosmetic industries. The use of essential oils as antimicrobials and food preservative agents is of concern because of several reported side effects of synthetic oils. Essential oils have the potential to be used as a food preservative for cereals, grains, pulses, fruits, and vegetables. In this review, we briefly describe the results in relevant literature and summarize the uses of essential oils with special emphasis on their antibacterial, bactericidal, antifungal, fungicidal, and food preservative properties. Essential oils have pronounced antimicrobial and food preservative properties because they consist of a variety of active constituents (e.g., terpenes, terpenoids, carotenoids, coumarins, curcumins) that have great significance in the food industry. Thus, the various properties of essential oils offer the possibility of using natural, safe, eco-friendly, cost-effective, renewable, and easily biodegradable antimicrobials for food commodity preservation in the near future. PMID:28138324
48 CFR 6.502 - Duties and responsibilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... of functions to be performed, performance required or essential physical characteristics, and... burdensome contract clauses. (b) Agency competition advocates shall— (1) Review the contracting operations of... functions to be performed, performance required or essential physical characteristics; (iv) Any condition or...
Khan, M A; Kuiantseva, L V; Rassulova, M A; Bykova, H I
2011-01-01
The results of the present study confirm the efficacy of combined health improvement measures applied in the children's health promotion facility for the treatment of frequently ill children. These measures included climatic therapy, rational day regimen, full-rate balanced diet, therapeutic physical exercises, and aromatherapy with the use of natural essential oils, e.g. clary sage oil. Children presenting with the symptoms of an acute respiratory infection were additionally treated with polarized light having the anti-inflammatory, immunocorrective, and antioxidative properties and thereby improved adaptive capacity of the organism.
2016-01-01
Due to the development of nanotechnology graphene and graphene-based nanomaterials have attracted the most attention owing to their unique physical, chemical, and mechanical properties. Graphene can be applied in many fields among which biomedical applications especially diagnostics, cancer therapy, and drug delivery have been arousing a lot of interest. Therefore it is essential to understand better the graphene-cell interactions, especially toxicity and underlying mechanisms for proper use and development. This review presents the recent knowledge concerning graphene cytotoxicity and influence on different cancer cell lines. PMID:26649139
Classical Electrodynamics: Lecture notes
NASA Astrophysics Data System (ADS)
Likharev, Konstantin K.
2018-06-01
Essential Advanced Physics is a series comprising four parts: Classical Mechanics, Classical Electrodynamics, Quantum Mechanics and Statistical Mechanics. Each part consists of two volumes, Lecture notes and Problems with solutions, further supplemented by an additional collection of test problems and solutions available to qualifying university instructors. This volume, Classical Electrodynamics: Lecture notes is intended to be the basis for a two-semester graduate-level course on electricity and magnetism, including not only the interaction and dynamics charged point particles, but also properties of dielectric, conducting, and magnetic media. The course also covers special relativity, including its kinematics and particle-dynamics aspects, and electromagnetic radiation by relativistic particles.
Remote measurement of pollution
NASA Technical Reports Server (NTRS)
1971-01-01
A summary of the major conclusions and recommendations developed by the panels on gaseous air pollution, water pollution, and particulate air pollution is presented. It becomes evident that many of the trace gases are amenable to remote sensing; that certain water pollutants can be measured by remote techniques, but their number is limited; and that a similar approach to the remote measurement of specific particulate pollutants will follow only after understanding of their physical, chemical, and radiative properties is improved. It is also clear that remote sensing can provide essential information in all three categories that can not be obtained by any other means.
NASA Astrophysics Data System (ADS)
Foley, Tyler; Pegram, Matthew; Jenkins, Zachary; Hester, Brooke C.; Burris, Jennifer L.
2015-01-01
We have developed an eye-catching demonstration that showcases a variety of physics topics from total internal reflection to electrostatics to non-Newtonian fluid dynamics, including the Kaye effect. The essential components of the demonstration include a vertical stream of liquid soap in which a laser pointer is internally reflected, and which subsequently hits an inclined plane. As the liquid soap, a non-Newtonian fluid, begins to accumulate into a pile, its shear properties change and the incoming fluid rebounds from the pile, forming striking parabolic arcs. We present here a readily reproducible and inexpensive version of a laser soap fountain.
Rare earth element and rare metal inventory of central Asia
Mihalasky, Mark J.; Tucker, Robert D.; Renaud, Karine; Verstraeten, Ingrid M.
2018-03-06
Rare earth elements (REE), with their unique physical and chemical properties, are an essential part of modern living. REE have enabled development and manufacture of high-performance materials, processes, and electronic technologies commonly used today in computing and communications, clean energy and transportation, medical treatment and health care, glass and ceramics, aerospace and defense, and metallurgy and chemical refining. Central Asia is an emerging REE and rare metals (RM) producing region. A newly compiled inventory of REE-RM-bearing mineral occurrences and delineation of areas-of-interest indicate this region may have considerable undiscovered resources.
Quark matter droplets in neutron stars
NASA Technical Reports Server (NTRS)
Heiselberg, H.; Pethick, C. J.; Staubo, E. F.
1993-01-01
We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.
[On the biological properties of fragrance compounds and essential oils].
Buchbauer, Gerhard
2004-11-01
In the present review the physiological and/or pharmacological properties of essential oils and of single fragrance compounds are discussed. Essential oils are known and have been used since ancient times as natural medicines. As natural products essential oils are dependent on climate and their composition varies according to conditions of soil, to solar irradiation, to harvest time, to production methods, to storage conditions and similar facts which are discussed in chapter 2 of this review. The next chapters deal with the therapeutic use of essential oils in treating diseases, disorders or ailments of the nervous system, against cancer and as penetration enhancers. For space-saving reasons, however, the manifold antimicrobial and antifungal properties of these natural products have been left out. In the last chapter, the pros and cons in the use of essential oils in therapy are also discussed.
MT+, integrating magnetotellurics to determine earth structure, physical state, and processes
Bedrosian, P.A.
2007-01-01
As one of the few deep-earth imaging techniques, magnetotellurics provides information on both the structure and physical state of the crust and upper mantle. Magnetotellurics is sensitive to electrical conductivity, which varies within the earth by many orders of magnitude and is modified by a range of earth processes. As with all geophysical techniques, magnetotellurics has a non-unique inverse problem and has limitations in resolution and sensitivity. As such, an integrated approach, either via the joint interpretation of independent geophysical models, or through the simultaneous inversion of independent data sets is valuable, and at times essential to an accurate interpretation. Magnetotelluric data and models are increasingly integrated with geological, geophysical and geochemical information. This review considers recent studies that illustrate the ways in which such information is combined, from qualitative comparisons to statistical correlation studies to multi-property inversions. Also emphasized are the range of problems addressed by these integrated approaches, and their value in elucidating earth structure, physical state, and processes. ?? Springer Science+Business Media B.V. 2007.
Foreword to the Special Issue on Ejecta
Buttler, William Tillman; Williams, Robin J. R.; Najjar, Fady M.
2017-05-22
We report that ejecta physics is a young field, having developed over the last 60 years or so. Essentially, ejecta forms as a spray of dense particles generated from the free surface of metals subjected to strong shocks, but the detailed mechanisms controlling the properties of this particulate ejecta are only now being fully elucidated. The field is dynamic and rapidly growing, with military and industrial applications, and applications to areas such as fusion research. This Special Issue on Ejecta reports the current state of the art in ejecta physics, describing experimental, theoretical and computational work by research groups aroundmore » the world. While much remains to be done, the dramatic recent progress in the field, some of it first reported here, means that this volume provides a particularly timely review. In this foreword, we provide a brief historical overview of the development of ejecta physics, to define the context for the work in the rest of this Special Issue.« less
NASA Astrophysics Data System (ADS)
Ronde, Christian De
In classical physics, probabilistic or statistical knowledge has been always related to ignorance or inaccurate subjective knowledge about an actual state of affairs. This idea has been extended to quantum mechanics through a completely incoherent interpretation of the Fermi-Dirac and Bose-Einstein statistics in terms of "strange" quantum particles. This interpretation, naturalized through a widespread "way of speaking" in the physics community, contradicts Born's physical account of Ψ as a "probability wave" which provides statistical information about outcomes that, in fact, cannot be interpreted in terms of `ignorance about an actual state of affairs'. In the present paper we discuss how the metaphysics of actuality has played an essential role in limiting the possibilities of understating things differently. We propose instead a metaphysical scheme in terms of immanent powers with definite potentia which allows us to consider quantum probability in a new light, namely, as providing objective knowledge about a potential state of affairs.
Shc and the mechanotransduction of cellular anchorage and metastasis.
Terada, Lance S
2017-02-17
Tissue cells continually monitor anchorage conditions by gauging the physical properties of their underlying matrix and surrounding environment. The Rho and Ras GTPases are essential components of these mechanosensory pathways. These molecular switches control both cytoskeletal as well as cell fate responses to anchorage conditions and are thus critical to our understanding of how cells respond to their physical environment and, by extension, how malignant cells gainsay these regulatory pathways. Recent studies indicate that 2 proteins produced by the SHC1 gene, thought for the most part to functionally oppose each other, collaborate in their ability to respond to mechanical force by initiating respective Rho and Ras signals. In this review, we focus on the coupling of Shc and GTPases in the cellular response to mechanical anchorage signals, with emphasis on its relevance for cancer.
Optical and physical requirements for fluid particles marking trailing vortices from aircraft
NASA Technical Reports Server (NTRS)
Back, L. H.
1976-01-01
A theoretical study of the optical and physical requirements of marking trailing vortices that emanate from aircraft wings was carried out by considering particulate light-scattering properties, ability of particles to follow trailing vortices, and survival time of particles to vortex dissipation. Liquid droplets undergoing evaporation and molecular dispersion were investigated. Droplets should have lifetimes of about 300 sec. Droplet size should be about 1 micron to maximize light scattering with the minimum mass of liquid required. Droplets of this small size would spiral outward very slowly and essentially remain in the vortex cores. Nontoxic hygroscopic liquids, having an affinity for moisture in the air, have been identified. These liquids have relatively low vapor pressures of order 10 to the -5 mm Hg that would insure droplet persistence long enough to mark trailing vortices.
Role of geologist in estimating value of projects and assets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lankford, S.M.; Nilssen, T.J.; Hill, J.M.
1987-05-01
During this period of depressed oil prices, the economic viability of many capital projects has become marginal at best. When considering new drilling or property acquisition, it is essential that a sound financial analysis be performed. Unless the geologist understands the theoretic basis and operational significance of the engineer's role and the financial concepts, the final evaluation will not be as accurate as it should be. Geologists should understand all of the steps in a property evaluation as they no longer can rely on increasing prices to bail out poor investments. Five essential steps in performing a complete property evaluationmore » are (1) geologic review, (2) engineering review, (3) economic premises, (4) development plan, and (5) financial analysis. It is crucial that the geologist and engineer cooperate in describing the physical and chemical character of the reservoir and the trapped fluids. Only in this way can one be satisfied that the estimated future production stream is maximized yet realistic. Oil in the ground is not reserves unless it can be extracted at a profit. The technical and financial personnel will need to cooperate to determine which proposed wells are economically viable and then to rank them. The construction of the best possible development plan requires input from the financial analyst as well as geologists and engineers. When the best possible development plan has been generated, it is then possible to perform the calculations required to determine the most likely value of a property or decide which new well(s) to drill.« less
Engineered Nanomaterials, Sexy New Technology and Potential Hazards
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaulieu, R A
Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lungmore » deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls.« less
Physical and antibacterial properties of edible films formulated with apple skin polyphenols.
Du, W-X; Olsen, C W; Avena-Bustillos, R J; Friedman, M; McHugh, T H
2011-03-01
Fruit and vegetable skins have polyphenolic compounds, terpenes, and phenols with antimicrobial and antioxidant activity. These flavoring plant essential oil components are generally regarded as safe. Edible films made from fruits or vegetables containing apple skin polyphenols have the potential to be used commercially to protect food against contamination by pathogenic bacteria. The main objective of this study was to evaluate physical properties as well as antimicrobial activities against Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella enterica of apple skin polyphenols at 0% to 10% (w/w) concentrations in apple puree film-forming solutions formulated into edible films. Commercial apple skin polyphenol powder had a water activity of 0.44 and high total soluble phenolic compounds and antioxidant capacity (995.3 mg chlorogenic acid/100 g and 14.4 mg Trolox/g, respectively). Antimicrobial activities of edible film containing apple skin polyphenols were determined by the overlay method. Apple edible film with apple skin polyphenols was highly effective against L. monocytogenes. The minimum concentration need to inactive L. monocytogenes was 1.5%. However, apple skin polyphenols did not show any antimicrobial effect against E. coli O157:H7 and S. enterica even at 10% level. The presence of apple skin polyphenols reduced water vapor permeability of films. Apple skin polyphenols increased elongation of films and darkened the color of films. The results of the present study show that apple skin polyphenols can be used to prepare apple-based antimicrobial edible films with good physical properties for food applications by direct contact.
Effect of Minerals on Intestinal IgA Production Using Deep Sea Water Drinks.
Shiraishi, Hisashi; Fujino, Maho; Shirakawa, Naoki; Ishida, Nanao; Funato, Hiroki; Hirata, Ayumu; Abe, Noriaki; Iizuka, Michiro; Jobu, Kohei; Yokota, Junko; Miyamura, Mitsuhiko
2017-01-01
Minerals are essential for life, as they are a vital part of protein constituents, enzyme cofactors, and other components in living organisms. Deep sea water is characterized by its cleanliness and stable low temperature, and its possible health- and medical benefits are being studied. However, no study has yet evaluated the physical properties of the numerous commercially available deep sea water products, which have varying water sources and production methods. We analyzed these products' mineral content and investigated their effect on living organism, focusing on immune functions, and investigated the relation between physiological immunoactivities and mineral intake. We qualitatively analyzed the mineral compositions of the deep sea water drinks and evaluated the drinks' physical properties using principal component analysis, a type of multivariate analysis, of their mineral content. We create an iron and copper-deficient rat model and administered deep sea water drinks for 8 weeks. We then measured their fecal immunoglobulin A (IgA) to evaluate immune function. Principal component analysis suggested that physical properties of deep sea water drinks could be determined by their sources. Administration of deep sea water drinks increased fecal IgA, thus tending to stimulate immune function, but the extent of this effect varied by drink. Of the minerals contained in deep sea water, iron showed positive correlations with the fecal IgA. The principal component analysis used in this study is suitable for evaluating deep sea water containing many minerals, and our results form a useful basis for comparative evaluations of deep sea water's bioactivity.
Properties of cassava starch-based edible coating containing essential oils.
Oriani, Vivian Boesso; Molina, Gustavo; Chiumarelli, Marcela; Pastore, Gláucia Maria; Hubinger, Miriam Dupas
2014-02-01
Edible coatings were produced using cassava starch (2% and 3% w/v) containing cinnamon bark (0.05% to 0.30% v/v) or fennel (0.05% to 0.30% v/v) essential oils. Edible cassava starch coating at 2% and 3% (w/v) containing or not containing 0.30% (v/v) of each essential oils conferred increased in water vapor resistance and decreased in the respiration rates of coated apple slices when compared with uncoated fruit. Cassava starch coatings (2% w/v) added 0.10% or 0.30% (v/v) fennel or cinnamon bark essential oils showed antioxidant capacity, and the addition of 0.30% (v/v) of each essential oil demonstrated antimicrobial properties. The coating containing cinnamon bark essential oil showed a significant antioxidant capacity, comparing to fennel essential oil. Antimicrobial tests showed that the addition of 0.30% (v/v) cinnamon bark essential oil to the edible coating inhibited the growth of Staphylococcus aureus and Salmonella choleraesuis, and 0.30% fennel essential oil inhibited just S. aureus. Treatment with 2% (w/v) of cassava starch containing 0.30% (v/v) of the cinnamon bark essential oil showed barrier properties, an antioxidant capacity and microbial inhibition. © 2014 Institute of Food Technologists®
High-Energy-Density-Physics Studies for Inertial Confinement Fusion Applications
NASA Astrophysics Data System (ADS)
Hu, S. X.
2017-10-01
Accurate knowledge of the static, transport, and optical properties of high-energy-density (HED) plasmas is essential for reliably designing and understanding inertial confinement fusion (ICF) implosions. In the warm-dense-matter regime routinely accessed by low-adiabat ICF implosions, many-body strong-coupling and quantum electron degeneracy effects play an important role in determining plasma properties. The past several years have witnessed intense efforts to assess the importance of the microphysics of ICF targets, both theoretically and experimentally. On the theory side, first-principles methods based on quantum mechanics have been applied to investigate the properties of warm, dense plasmas. Specifically, self-consistent investigations have recently been performed on the equation of state, thermal conductivity, and opacity of a variety of ICF ablators such as polystyrene (CH), beryllium, carbon, and silicon over a wide range of densities and temperatures. In this talk, we will focus on the most-recent progress on these ab initio HED physics studies, which generally result in favorable comparisons with experiments. Upon incorporation into hydrocodes for ICF simulations, these first-principles ablator-plasma properties have produced significant differences over traditional models in predicting 1-D target performance of ICF implosions on OMEGA and direct-drive-ignition designs for the National Ignition Facility. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944. *In collaboration with L. A. Collins, T. R. Boehly, G. W. Collins, J. D. Kress, and V. N. Goncharov.
Schuerger, Andrew C; Ming, Douglas W; Newsom, Horton E; Ferl, Robert J; McKay, Christopher P
2002-01-01
In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.
NASA Technical Reports Server (NTRS)
Schuerger, Andrew C.; Ming, Douglas W.; Newsom, Horton E.; Ferl, Robert J.; McKay, Christopher P.
2002-01-01
In order to support humans for long-duration missions to Mars, bioregenerative Advanced Life Support (ALS) systems have been proposed that would use higher plants as the primary candidates for photosynthesis. Hydroponic technologies have been suggested as the primary method of plant production in ALS systems, but the use of Mars regolith as a plant growth medium may have several advantages over hydroponic systems. The advantages for using Mars regolith include the likely bioavailability of plant-essential ions, mechanical support for plants, and easy access of the material once on the surface. We propose that plant biology experiments must be included in near-term Mars lander missions in order to begin defining the optimum approach for growing plants on Mars. Second, we discuss a range of soil chemistry and soil physics tests that must be conducted prior to, or in concert with, a plant biology experiment in order to properly interpret the results of plant growth studies in Mars regolith. The recommended chemical tests include measurements on soil pH, electrical conductivity and soluble salts, redox potential, bioavailability of essential plant nutrients, and bioavailability of phytotoxic elements. In addition, a future plant growth experiment should include procedures for determining the buffering and leaching requirements of Mars regolith prior to planting. Soil physical tests useful for plant biology studies in Mars regolith include bulk density, particle size distribution, porosity, water retention, and hydraulic conductivity.
NASA Astrophysics Data System (ADS)
Arima, Taka-Hisa
2014-03-01
Pyrochlore-type 5d transition-metal oxide compounds Cd2Os2O7 and R2Ir2O7 (R =rare earth) undergo a metal-insulator transition accompanied by a magnetic transition. Recently, the magnetic structures of Cd2Os2O7 and Eu2Ir2O7 were investigated by means of resonant x-ray magnetic scattering. The x-ray data indicated the all-in/all-out type magnetic order. The all-in/all-out order breaks the time-reversal symmetry, while the spontaneous magnetization is essentially absent. The magnetic order can be viewed as ferroic magnetic octupolar order. The magnetic order is expected to provide several unique physical properties like quadratic magnetization. linear magneto-capacitance, linear magneto-resistance, linear magneto-mechanical coupling and so on. The symmetry breaking results in two non-equivalent domains, ``all-in/all-out'' and ``all-out/all-in.'' Interestingly, some theoretical works predict that a peculiar metallic state would appear on the domain wall. The observation and control of the domain distribution are essential for studying verious exotic physical responses. We have developed an x-ray technique for domain imaging and started studying the effects of external stimuli on the domain distribution. This work was performed in collaboration with S. Tardif, S. Takeshita, H. Ohsumi, D. Uematsu, H. Sagayama, J. J. Ishikawa, S. Nakatsuji, J. Yamaura, and Z. Hiroi.
7 CFR 764.351 - Emergency loan uses.
Code of Federal Regulations, 2010 CFR
2010-01-01
... repair or replace essential property damaged or destroyed as a result of a disaster as follows: (i) For... repair or replace essential property damaged or destroyed as a result of a disaster as follows: (i... prior to the disaster; (v) Pay essential family living and farm operating expenses, in the case of an...
Mannfors, Berit; Palmo, Kim; Krimm, Samuel
2008-12-11
Our ab initio transformed spectroscopically determined force field (SDFF) methodology emphasizes, in addition to accurate structure and energy performance, comparable prediction of vibrational properties in order to improve reproduction of interaction forces. It is now applied to the determination of a molecular mechanics (MM) force field for the water monomer and dimer as an initial step in developing a more physically based treatment of the hydrogen bonding that not only underlies condensed-phase water but also must be important in molecular-level protein-water interactions. Essential electrical components of the SDFF for monomer water are found to be the following: an off-plane charge distribution, this distribution consisting of four off-atom charge sites in traditional lone pair (LP) but also in inverted lone pair (ILP) positions; allowance for a diffuse size to these off-atom sites; and the incorporation of charge fluxes (i.e., the change in charge with change in internal coordinate). Parametrization of such an LP/ILP model together with the SDFF analytically transformed valence force field results in essentially exact agreement with ab initio (in this case MP2/6-31++G(d,p)) structure, electrical, and vibrational properties. Although we demonstrate that the properties of this monomer electrical model together with its van der Waals and polarization interactions are transferable to the dimer, this is not sufficient in reproducing comparable dimer properties, most notably the huge increase in infrared intensity of a donor OH stretch mode. This deficiency, which can be eliminated by a large dipole-derivative-determined change in the effective charge flux of the donor hydrogen-bonded OH bond, is not accounted for by the charge flux change in this bond due to the induction effects of the acceptor electric field alone, and can only be fully removed by an added bond flux associated with the extent of overlap of the wave functions of the two molecules. We show that this overlap charge flux (OCF) emulates an actual O-H...LP-O intermolecular dipole flux, reflecting the unitary nature of the hydrogen-bonded system in the context of MM-separable molecules. The effectiveness of incorporating the OCF noncanonical character demonstrates that a distinctively QM-unique property can be substantively represented in MM energy functions.
Depositing nanoparticles on a silicon substrate using a freeze drying technique.
Sigehuzi, Tomoo
2017-08-28
For the microscopic observation of nanoparticles, an adequate sample preparation is an essential part of this task. Much research has been performed for usable preparation methods that will yield aggregate-free samples. A freeze drying technique, which only requires a -80 ° C freezer and a freeze dryer, is shown to provide an on-substrate dispersion of mostly isolated nanoparticles. The particle density could be made sufficiently high for efficient observations using atomic force microscopy. Since this sandwich method is purely physical, it could be applied to deposit various nanoparticles independent of their surface chemical properties. Suspension film thickness, or the dimensionality of the suspension film, was shown to be crucial for the isolation of the particles. Silica nanoparticles were dispersed on a silicon substrate using this method and the sample properties were examined using atomic force microscopy.
NASA Astrophysics Data System (ADS)
Meng, Zhaokai; Jaiswal, Manish K.; Chitrakar, Chandani; Thakur, Teena; Gaharwar, Akhilesh K.; Yakovlev, Vladislav V.
2016-03-01
Developing new biomaterials is essential for the next-generation of materials for bioenergy, bioelectronics, basic biology, medical diagnostics, cancer research, and regenerative medicine. Specifically, recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. The physical properties of nanocomposite biomaterials, including elasticity and viscosity, play key roles in controlling cell fate, which underlines therapeutic success. Conventional mechanical tests, including uniaxial compression and tension, dynamic mechanical analysis and shear rheology, require mechanical forces to be directly exerted onto the sample and therefore may not be suitable for in situ measurements or continuous monitoring of mechanical stiffness. In this study, we employ spontaneous Brillouin spectroscopy as a viscoelasticity-specific probing technique. We utilized a Brillouin spectrometer to characterize biomaterial's microscopic elasticity and correlated those with conventional mechanical tests (e.g., rheology).
Science and ethics meet: a mathematical view on one kind of violation of publication ethics
NASA Astrophysics Data System (ADS)
Shinyaeva, Taisiya S.; Tarasevich, Yuri Yu
2018-01-01
When a person who did not make a significant intellectual contribution to a published research is included into the co-author list, the person is called gift or guest author depending on the reason why the person has been added to the co-authors. Essential deviation of properties of a particular co-author network from typical values may evidenced that the network is artificial. Using network analysis, we have performed an attempt to characterize a typical co-author network. We performed analysis of the co-author networks using references in the thesis on Physics and Mathematics, Economics defended from 2012 to 2017 and planned to be defended in 2017 and 2018 in Russia. Properties of the co-author networks are expected to be a reference sample in future research.
Practical device-independent quantum cryptography via entropy accumulation.
Arnon-Friedman, Rotem; Dupuis, Frédéric; Fawzi, Omar; Renner, Renato; Vidick, Thomas
2018-01-31
Device-independent cryptography goes beyond conventional quantum cryptography by providing security that holds independently of the quality of the underlying physical devices. Device-independent protocols are based on the quantum phenomena of non-locality and the violation of Bell inequalities. This high level of security could so far only be established under conditions which are not achievable experimentally. Here we present a property of entropy, termed "entropy accumulation", which asserts that the total amount of entropy of a large system is the sum of its parts. We use this property to prove the security of cryptographic protocols, including device-independent quantum key distribution, while achieving essentially optimal parameters. Recent experimental progress, which enabled loophole-free Bell tests, suggests that the achieved parameters are technologically accessible. Our work hence provides the theoretical groundwork for experimental demonstrations of device-independent cryptography.
Protein-Protein Interactions of Azurin Complex by Coarse-Grained Simulations with a Gō-Like Model
NASA Astrophysics Data System (ADS)
Rusmerryani, Micke; Takasu, Masako; Kawaguchi, Kazutomo; Saito, Hiroaki; Nagao, Hidemi
Proteins usually perform their biological functions by forming a complex with other proteins. It is very important to study the protein-protein interactions since these interactions are crucial in many processes of a living organism. In this study, we develop a coarse grained model to simulate protein complex in liquid system. We carry out molecular dynamics simulations with topology-based potential interactions to simulate dynamical properties of Pseudomonas Aeruginosa azurin complex systems. Azurin is known to play an essential role as an anticancer agent and bind many important intracellular molecules. Some physical properties are monitored during simulation time to get a better understanding of the influence of protein-protein interactions to the azurin complex dynamics. These studies will provide valuable insights for further investigation on protein-protein interactions in more realistic system.
Dust silicate emission in FIR/submm
NASA Astrophysics Data System (ADS)
Coupeaud, A.; Demyk, K.; Mény, C.; Nayral, C.
2010-12-01
The far-infrared to millimeter wavelength (FIR-mm) range in astronomical observations is dominated by the thermal emission from large (10-100 nm) and cold (10-20 K) dust grains, which are in thermal equilibrium with the interstellar radiation field. However, the physics of the FIR-mm emission from such cold matter is not well understood as shown by the observed dependence with the temperature of the spectral index of the dust emissivity β and by the observed far infrared excess. Interestingly, a similar behaviour is observed in experiments of characterization of the spectral properties of dust analogues. We present a study of the optical properties of analogues of interstellar silicate grains at low temperature in the FIR/submm range aiming to understand their peculiar behaviour. Such studies are essential for the interpretation of the Herschel and Planck data.
Excitons in Single-Walled Carbon Nanotubes and Their Dynamics
NASA Astrophysics Data System (ADS)
Amori, Amanda R.; Hou, Zhentao; Krauss, Todd D.
2018-04-01
Understanding exciton dynamics in single-walled carbon nanotubes (SWCNTs) is essential to unlocking the many potential applications of these materials. This review summarizes recent progress in understanding exciton photophysics and, in particular, exciton dynamics in SWCNTs. We outline the basic physical and electronic properties of SWCNTs, as well as bright and dark transitions within the framework of a strongly bound one-dimensional excitonic model. We discuss the many facets of ultrafast carrier dynamics in SWCNTs, including both single-exciton states (bright and dark) and multiple-exciton states. Photophysical properties that directly relate to excitons and their dynamics, including exciton diffusion lengths, chemical and structural defects, environmental effects, and photoluminescence photon statistics as observed through photon antibunching measurements, are also discussed. Finally, we identify a few key areas for advancing further research in the field of SWCNT excitons and photonics.
Impact Craters on Mars: Natural 3D Exploration Probes of Geological Evolution
NASA Technical Reports Server (NTRS)
Garvin, James B.
2005-01-01
Introduction: The population of impact craters preserved on the surface of Mars offers fundamental constraints on the three- dimensional mechanical characteristics of the martian crust, its volatile abundance, and on the styles of erosion that have operated during essentially all epochs of martian geological history. On the basis of the present- day wealth of morphologic and geometric observations of impact landforms on Mars [ 1-31, an emerging understanding of the three-dimensional physical properties of the martian uppermost crust in space and time is at hand. In this summary, the current basis of understanding of the relatively non- degraded population of impact landforms on Mars is reviewed, and new Mars Global Surveyor (MGS)-based (MOLA) measurements of global geometric properties are summarized in the context of upcoming observations by Mars Reconnaissance Orbiter (MRO).
The refractive index and electronic gap of water and ice increase with increasing pressure
Pan, Ding; Wan, Quan; Galli, Giulia
2014-01-01
Determining the electronic and dielectric properties of water at high pressure and temperature is an essential prerequisite to understand the physical and chemical properties of aqueous environments under supercritical conditions, for example, in the Earth interior. However, optical measurements of compressed ice and water remain challenging, and it has been common practice to assume that their band gap is inversely correlated with the measured refractive index, consistent with observations reported for hundreds of materials. Here we report ab initio molecular dynamics and electronic structure calculations showing that both the refractive index and the electronic gap of water and ice increase with increasing pressure, at least up to 30 GPa. Subtle electronic effects, related to the nature of interband transitions and band edge localization under pressure, are responsible for this apparently anomalous behaviour. PMID:24861665
Mechanical Properties of a Primary Cilium Measured by Resonant Oscillation
NASA Astrophysics Data System (ADS)
Resnick, Andrew
Primary cilia are ubiquitous mammalian cellular substructures implicated in an ever-increasing number of regulatory pathways. The well-established `ciliary hypothesis' states that physical bending of the cilium (for example, due to fluid flow) initiates signaling cascades, yet the mechanical properties of the cilium remain incompletely measured, resulting in confusion regarding the biological significance of flow-induced ciliary mechanotransduction. In this work we measure the mechanical properties of a primary cilium by using an optical trap to induce resonant oscillation of the structure. Our data indicate 1), the primary cilium is not a simple cantilevered beam, 2), the base of the cilium may be modeled as a nonlinear rotatory spring, the linear spring constant `k' of the cilium base calculated to be (4.6 +/- 0.62)*10-12 N/rad and nonlinear spring constant ` α' to be (-1 +/- 0.34) *10-10 N/rad2 , and 3) the ciliary base may be an essential regulator of mechanotransduction signalling. Our method is also particularly suited to measure mechanical properties of nodal cilia, stereocilia, and motile cilia, anatomically similar structures with very different physiological functions.
Carrier-induced ferromagnetism in the insulating Mn-doped III-V semiconductor InP
NASA Astrophysics Data System (ADS)
Bouzerar, Richard; May, Daniel; Löw, Ute; Machon, Denis; Melinon, Patrice; Zhou, Shengqiang; Bouzerar, Georges
2016-09-01
Although InP and GaAs have very similar band structure their magnetic properties appear to drastically differ. Critical temperatures in (In,Mn)P are much smaller than those of (Ga,Mn)As and scale linearly with Mn concentration. This is in contrast to the square-root behavior found in (Ga,Mn)As. Moreover the magnetization curve exhibits an unconventional shape in (In,Mn)P contrasting with the conventional one of well-annealed (Ga,Mn)As. By combining several theoretical approaches, the nature of ferromagnetism in Mn-doped InP is investigated. It appears that the magnetic properties are essentially controlled by the position of the Mn acceptor level. Our calculations are in excellent agreement with recent measurements for both critical temperatures and magnetizations. The results are only consistent with a Fermi level lying in an impurity band, ruling out the possibility to understand the physical properties of Mn-doped InP within the valence band scenario. The quantitative success found here reveals a predictive tool of choice that should open interesting pathways to address magnetic properties in other compounds.
Association of Quality Physical Education Teaching with Students’ Physical Fitness
Chen, Weiyun; Mason, Steve; Hypnar, Andrew; Hammond-Bennett, Austin
2016-01-01
This study examined the extent to which four essential dimensions of quality physical education teaching (QPET) were associated with healthy levels of physical fitness in elementary school students. Participants were nine elementary PE teachers and 1, 201 fourth- and fifth-grade students who were enrolled in nine elementary schools. The students’ physical fitness were assessed using four FITNESSGRAM tests. The PE teachers’ levels of QPET were assessed using the Assessing Quality Teaching Rubrics (AQTR). The AQTR consisted of four essential dimensions including Task Design, Task Presentation, Class Management, and Instructional Guidance. Codes were confirmed through inter-rater reliability (82.4% and 84.5%). Data were analyzed through descriptive statistics, multiple R-squared regression models, and independent sample t-tests. The four essential teaching dimensions of QPET were significantly associated with the students’ cardiovascular endurance, muscular strength and endurance, and flexibility. However, they accounted for relatively low percentage of the total variance in PACER test, followed by Curl-up test, while explaining very low portions of the total variance in Push-up and Trunk Lift tests. This study indicated that the students who had experienced high level of QPET were more physically fit than their peers who did not have this experience in PACER and Curl-up tests, but not in Push-up and Trunk lift tests. In addition, the significant contribution of the four essential teaching dimensions to physical fitness components was gender-specific. It was concluded that the four teaching dimensions of QPET were significantly associated with students’ health-enhancing physical fitness. Key points Although Task Design, Task Presentation, Class Management, and Instructional Guidance has its unique and critical teaching components, each essential teaching dimensions is intertwined and immersed in teaching practices. Four essential teaching dimensions all significantly contributed to students’ health-enhancing physical fitness. Implementation of QPET in a lesson plays more significant role in contributing to improving girls’ cardiovascular endurance. Implementation of QPET in a lesson contributed significantly to improving boy’s abdominal, upper-body, and back extensor muscular strength and endurance as well as flexibility PMID:27274673
Vibrational and thermodynamic properties of β-HMX: a first-principles investigation.
Wu, Zhongqing; Kalia, Rajiv K; Nakano, Aiichiro; Vashishta, Priya
2011-05-28
Thermodynamic properties of β-HMX crystal are investigated using the quasi-harmonic approximation and density functional theory within the local density approximation (LDA), generalized gradient approximation (GGA), and GGA + empirical van der Waals (vdW) correction. It is found that GGA well describes the thermal expansion coefficient and heat capacity but fails to produce correct bulk modulus and equilibrium volume. The vdW correction improves the bulk modulus and volume, but worsens the thermal expansion coefficient and heat capacity. In contrast, LDA describes all thermodynamic properties with reasonable accuracy, and overall is a good exchange-correlation functional for β-HMX molecular crystal. The results also demonstrate significant contributions of phonons to the equation of state. The static calculation of equilibrium volume for β-HMX differs from the room-temperature value incorporating lattice vibrations by over 5%. Therefore, for molecular crystals, it is essential to include phonon contributions when calculated equation of state is compared with experimental data at ambient condition. © 2011 American Institute of Physics
NASA Technical Reports Server (NTRS)
Cain, Bruce L.
1990-01-01
The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.
Quantitative Modeling of Human-Environment Interactions in Preindustrial Time
NASA Astrophysics Data System (ADS)
Sommer, Philipp S.; Kaplan, Jed O.
2017-04-01
Quantifying human-environment interactions and anthropogenic influences on the environment prior to the Industrial revolution is essential for understanding the current state of the earth system. This is particularly true for the terrestrial biosphere, but marine ecosystems and even climate were likely modified by human activities centuries to millennia ago. Direct observations are however very sparse in space and time, especially as one considers prehistory. Numerical models are therefore essential to produce a continuous picture of human-environment interactions in the past. Agent-based approaches, while widely applied to quantifying human influence on the environment in localized studies, are unsuitable for global spatial domains and Holocene timescales because of computational demands and large parameter uncertainty. Here we outline a new paradigm for the quantitative modeling of human-environment interactions in preindustrial time that is adapted to the global Holocene. Rather than attempting to simulate agency directly, the model is informed by a suite of characteristics describing those things about society that cannot be predicted on the basis of environment, e.g., diet, presence of agriculture, or range of animals exploited. These categorical data are combined with the properties of the physical environment in coupled human-environment model. The model is, at its core, a dynamic global vegetation model with a module for simulating crop growth that is adapted for preindustrial agriculture. This allows us to simulate yield and calories for feeding both humans and their domesticated animals. We couple this basic caloric availability with a simple demographic model to calculate potential population, and, constrained by labor requirements and land limitations, we create scenarios of land use and land cover on a moderate-resolution grid. We further implement a feedback loop where anthropogenic activities lead to changes in the properties of the physical environment, e.g., through soil erosion.
Luminescence and fluorescence of essential oils. Fluorescence imaging in vivo of wild chamomile oil.
Boschi, F; Fontanella, M; Calderan, L; Sbarbati, A
2011-06-16
Essential oils are currently of great importance to pharmaceutical companies, cosmetics producers and manufacturers of veterinary products. They are found in perfumes, creams, bath products, and household cleaning substances, and are used for flavouring food and drinks. It is well known that some of them act on the respiratory apparatus. The increasing interest in optical imaging techniques and the development of related technologies have made possible the investigation of the optical properties of several compounds. Luminescent properties of essential oils have not been extensively investigated. We evaluated the luminescent and fluorescent emissions of several essential oils, in order to detect them in living organisms by exploiting their optical properties. Some fluorescent emission data were high enough to be detected in dermal treatments. Consequently, we demonstrated how the fluorescent signal can be monitored for at least three hours on the skin of living mice treated with wild chamomile oil. The results encourage development of this technique to investigate the properties of drugs and cosmetics containing essential oils.
Luminescence and fluorescence of essential oils. Fluorescence imaging in vivo of wild chamomile oil
Boschi, F.; Fontanella, M.; Calderan, L.; Sbarbati, A.
2011-01-01
Essential oils are currently of great importance to pharmaceutical companies, cosmetics producers and manufacturers of veterinary products. They are found in perfumes, creams, bath products, and household cleaning substances, and are used for flavouring food and drinks. It is well known that some of them act on the respiratory apparatus. The increasing interest in optical imaging techniques and the development of related technologies have made possible the investigation of the optical properties of several compounds. Luminescent properties of essential oils have not been extensively investigated. We evaluated the luminescent and fluorescent emissions of several essential oils, in order to detect them in living organisms by exploiting their optical properties. Some fluorescent emission data were high enough to be detected in dermal treatments. Consequently, we demonstrated how the fluorescent signal can be monitored for at least three hours on the skin of living mice treated with wild chamomile oil. The results encourage development of this technique to investigate the properties of drugs and cosmetics containing essential oils. PMID:22193298
What are the low- Q and large- x boundaries of collinear QCD factorization theorems?
Moffat, E.; Melnitchouk, W.; Rogers, T. C.; ...
2017-05-26
Familiar factorized descriptions of classic QCD processes such as deeply-inelastic scattering (DIS) apply in the limit of very large hard scales, much larger than nonperturbative mass scales and other nonperturbative physical properties like intrinsic transverse momentum. Since many interesting DIS studies occur at kinematic regions where the hard scale,more » $$Q \\sim$$ 1-2 GeV, is not very much greater than the hadron masses involved, and the Bjorken scaling variable $$x_{bj}$$ is large, $$x_{bj} \\gtrsim 0.5$$, it is important to examine the boundaries of the most basic factorization assumptions and assess whether improved starting points are needed. Using an idealized field-theoretic model that contains most of the essential elements that a factorization derivation must confront, we retrace in this paper the steps of factorization approximations and compare with calculations that keep all kinematics exact. We examine the relative importance of such quantities as the target mass, light quark masses, and intrinsic parton transverse momentum, and argue that a careful accounting of parton virtuality is essential for treating power corrections to collinear factorization. Finally, we use our observations to motivate searches for new or enhanced factorization theorems specifically designed to deal with moderately low-$Q$ and large-$$x_{bj}$$ physics.« less
O'Connor, Daniel W; Eppingstall, Barbara; Taffe, John; van der Ploeg, Eva S
2013-11-13
Lavender essential oil shows evidence of sedative properties in neurophysiological and animal studies but clinical trials of its effectiveness as a treatment of agitation in people with dementia have shown mixed results. Study methods have varied widely, however, making comparisons hazardous. To help remedy previous methodological shortcomings, we delivered high grade lavender oil in specified amounts to nursing home residents whose agitated behaviours were recorded objectively. 64 nursing home residents with frequent physically agitated behaviours were entered into a randomized, single-blind cross-over trial of dermally-applied, neurophysiologically active, high purity 30% lavender oil versus an inactive control oil. A blinded observer counted the presence or absence of target behaviours and rated participants' predominant affect during each minute for 30 minutes prior to exposure and for 60 minutes afterwards. Lavender oil did not prove superior to the control oil in reducing the frequency of physically agitated behaviours or in improving participants' affect. Studies of essential oils are constrained by their variable formulations and uncertain pharmacokinetics and so optimal dosing and delivery regimens remain speculative. Notwithstanding this, topically delivered, high strength, pure lavender oil had no discernible effect on affect and behaviour in a well-defined clinical sample. Australian and New Zealand Clinical Trials Registry (ACTRN 12609000569202).
DATA ASSIMILATION APPROACH FOR FORECAST OF SOLAR ACTIVITY CYCLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitiashvili, Irina N., E-mail: irina.n.kitiashvili@nasa.gov
Numerous attempts to predict future solar cycles are mostly based on empirical relations derived from observations of previous cycles, and they yield a wide range of predicted strengths and durations of the cycles. Results obtained with current dynamo models also deviate strongly from each other, thus raising questions about criteria to quantify the reliability of such predictions. The primary difficulties in modeling future solar activity are shortcomings of both the dynamo models and observations that do not allow us to determine the current and past states of the global solar magnetic structure and its dynamics. Data assimilation is a relativelymore » new approach to develop physics-based predictions and estimate their uncertainties in situations where the physical properties of a system are not well-known. This paper presents an application of the ensemble Kalman filter method for modeling and prediction of solar cycles through use of a low-order nonlinear dynamo model that includes the essential physics and can describe general properties of the sunspot cycles. Despite the simplicity of this model, the data assimilation approach provides reasonable estimates for the strengths of future solar cycles. In particular, the prediction of Cycle 24 calculated and published in 2008 is so far holding up quite well. In this paper, I will present my first attempt to predict Cycle 25 using the data assimilation approach, and discuss the uncertainties of that prediction.« less
X-ray Absorbers as Probes of AGN Unification
NASA Astrophysics Data System (ADS)
Kazannas, Demosthenes
We have developed, over the past few years, models of photoionized MHD winds off black hole accretion disks and showed that their properties are consistent with those of the AGN warm absorbers and those of the tori invoked in AGN unification schemes. Furthermore, we have shown that these models are sufficiently robust to reproduce the absorber properties (UV and X-ray) in AGN classes as diverse as Seyferts and BAL QSOs.With this proposal we request funding to model archival spectroscopic data of eighteen AGN with photoionized MHD winds. Successful implementation of this program will provide for the first time an association of the properties of warm absorbers with the parameters of a well-defined physical model, namely their density profiles, mass fluxes and inclination angles. Furthermore, determination of these parameters for our AGN sample will allow a statistical analysis of their properties and, as such, a better understanding of the properties of AGN structure. The value of our models lies in their simplicity: the winds are essentially analytic with only a small number of parameters. This simplicity makes possible the generation of a large grid of models which will be made available to the community through XSPEC/mtable for analysis of similar data by the observers.
The omega-3 fatty acid nutritional landscape: health benefits and sources.
Deckelbaum, Richard J; Torrejon, Claudia
2012-03-01
Dietary fatty acids (FA) are increasingly recognized as major biologic regulators and have properties that relate to health outcomes and disease. The longer chain, more bioactive (n-6) (or omega-6) FA and (n-3) (or omega-3) FA share similar elongation and desaturation enzymes in their conversion from the essential (n-6) FA, linoleic acid, and (n-3) FA, α-linolenic acid (ALA). Conversion from these essential FA is very inefficient. However, now for the (n-3) FA series, soy oil can be enriched with (n-3) stearidonic acid (SDA) to allow for much more efficient conversion to longer chain EPA. EPA and the longer chain DHA possess distinct physical and biological properties that generally impart properties to cells and tissue, which underlie their ability to promote health and prevent disease. Although active in a number of areas of human biology, mechanisms of action of EPA and DHA are perhaps best defined in cardiovascular disease. There is concern that to reach the intake recommendations of EPA and DHA, their supply from cold water fish will be insufficient. Gaps in understanding mechanisms of action of (n-3) FA in a number of health and disease areas as well as optimal sources and intake levels for each need to be defined by further research. Because of the inefficient conversion of ALA, the appearance of SDA in enriched soy oil offers a biologically effective and cost effective approach to providing a sustainable plant source for (n-3) FA in the future.
NASA Astrophysics Data System (ADS)
Shen, Yanjun; Yang, Yang; Yang, Gengshe; Hou, Xin; Ye, Wanjun; You, Zhemin; Xi, Jiami
2018-05-01
A series of experiments were carried out to measure the damage characteristics of two common sedimentary rocks of limestone and sandstone at temperatures ranging from -30 °C to 1000 °C The apparent thermal conductivity, thermal diffusivity and specific heat capacity were investigated respectively. Then, several discrepancy reasons for the damage characteristics and thermo-physical properties of limestone and sandstone were probed. The results show that water migration and phase transition are two core factors for the frost damage and thermal behaviors improvement during the cooling process(20 °C → -30 °C).The heating process (20 °C → 1000 °C) was divided into three stages of 20 °C → 200 °C, 200 °C → 600 °Cand 600 °C → 1000 °C. The first stage was closely related to pore-water evaporation, and the next two stages were attributed to the thermal reactions of mineral partials. The mineral decomposition tended to be intensified and resulted in the interior damage or even the accelerated degradation of thermal properties until at a threshold temperature of 600 °C. In essential, the structural features and the sensitivity of mineral composition to temperature were two mainly influential factors on the damage effects and heat conduct of the sedimentary rocks during variations in environmental temperature.
NASA Astrophysics Data System (ADS)
Tilley, Richard J. D.
2003-05-01
Colour is an important and integral part of everyday life, and an understanding and knowledge of the scientific principles behind colour, with its many applications and uses, is becoming increasingly important to a wide range of academic disciplines, from physical, medical and biological sciences through to the arts. Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chose to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. Features: * Introduces the science behind the subject whilst closely connecting it to modern applications, such as colour displays, optical amplifiers and colour centre lasers * Richly illustrated with full-colour plates * Includes many worked examples, along with problems and exercises at the end of each chapter and selected answers at the back of the book * A Web site, including additional problems and full solutions to all the problems, which may be accessed at: www.cardiff.ac.uk/uwcc/engin/staff/rdjt/colour Written for students taking an introductory course in colour in a wide range of disciplines such as physics, chemistry, engineering, materials science, computer science, design, photography, architecture and textiles.
Ordered Mesoporous NiCeAl Containing Catalysts for Hydrogenolysis of Sorbitol to Glycols
NASA Astrophysics Data System (ADS)
Zhou, Zhiwei; Zhang, Jiaqi; Qin, Juan; Li, Dong; Wu, Wenliang
2018-03-01
Cellulose-derived sorbitol is emerging as a feasible and renewable feedstock for the production of value-added chemicals. Highly active and stable catalyst is essential for sorbitol hydrogenolysis. Ordered mesoporous M- xNi yCeAl catalysts with different loadings of nickel and cerium species were successfully synthesized via one-pot evaporation-induced self-assembly strategy (EISA) and their catalytic performance were tested in the hydrogenolysis of sorbitol. The physical chemical properties for the catalysts were characterized by XRD, N2 physisorption, H2-TPR, H2 impulse chemisorption, ICP and TEM techniques. The results showed that the ordered mesopores with uniform pore sizes can be obtained and the Ni nanoparticles around 6 nm in size were homogeneously dispersed in the mesopore channels. A little amount of cerium species introduced would be beneficial to their textural properties resulting in higher Ni dispersion, metal area and smaller size of Ni nanoparticles. The M-10Ni2CeAl catalyst with Ni and Ce loading of 10.9 and 6.3 wt % shows better catalytic performance than other catalysts, and the yield of 1,2-PG and EG can reach 56.9% at 493 K and 6 MPa pressure for 8 h after repeating reactions for 12 times without obvious deterioration of physical and chemical properties. Ordered mesoporous M-NiCeAl catalysts are active and stable in sorbitol hydrogenolysis.
NASA Astrophysics Data System (ADS)
Joglekar, M.; Shah, H.; Trivedi, V.; Mahajan, S.; Chhaniwal, V.; Leitgeb, R.; Javidi, B.; Anand, A.
2017-07-01
Adequate supply of oxygen to the body is the most essential requirement. In vertebrate species this function is performed by Hemoglobin contained in red blood cells. The mass concentration of the Hb determines the oxygen carrying capacity of the blood. Thus it becomes necessary to determine its concentration in the blood, which helps in monitoring the health of a person. If the amount of Hb crosses certain range, then it is considered critical. As the Hb constitutes upto 96% of red blood cells dry content, it would be interesting to examine various physical and mechanical parameters of RBCs which depends upon its concentration. Various diseases bring about significant variation in the amount of hemoglobin which may alter certain parameters of the RBC such as surface area, volume, membrane fluctuation etc. The study of the variations of these parameters may be helpful in determining Hb content which will reflect the state of health of a human body leading to disease diagnosis. Any increase or decrease in the amount of Hb will change the density and hence the optical thickness of the RBCs, which affects the cell membrane and thereby changing its mechanical and physical properties. Here we describe the use of lateral shearing digital holographic microscope for quantifying the cell parameters for studying the change in biophysical properties of cells due to variation in hemoglobin concentration.
Misharina, T A; Samusenko, A L
2008-01-01
Antioxidant properties of individual essential oils from lemon (Citrus limon L.), pink grapefruit (Citrus paradise L.), coriander (Coriandrum sativum L.), and clove (Caryophyllus aromaticus L.) buds and their mixtures were studied by capillary gas-liquid chromatography. Antioxidant activity was assessed by oxidation of the aliphatic aldehyde hexanal to the carboxylic acid. The lowest and highest antioxidant activities were exhibited by grapefruit and clove bud essential oils, respectively. Mixtures containing clove bud essential oil also strongly inhibited oxidation of hexanal. Changes in the composition of essential oils and their mixtures in the course of long-term storage in the light were studied. The stability of components of lemon and coriander essential oils in mixtures increased compared to individual essential oils.
NASA Technical Reports Server (NTRS)
Farassat, Fereidoun; Myers, Michael K.
2011-01-01
This paper is the first part of a three part tutorial on multidimensional generalized functions (GFs) and their applications in aeroacoustics and fluid mechanics. The subject is highly fascinating and essential in many areas of science and, in particular, wave propagation problems. In this tutorial, we strive to present rigorously and clearly the basic concepts and the tools that are needed to use GFs in applications effectively and with ease. We give many examples to help the readers in understanding the mathematical ideas presented here. The first part of the tutorial is on the basic concepts of GFs. Here we define GFs, their properties and some common operations on them. We define the important concept of generalized differentiation and then give some interesting elementary and advanced examples on Green's functions and wave propagation problems. Here, the analytic power of GFs in applications is demonstrated with ease and elegance. Part 2 of this tutorial is on the diverse applications of generalized derivatives (GDs). Part 3 is on generalized Fourier transformations and some more advanced topics. One goal of writing this tutorial is to convince readers that, because of their powerful operational properties, GFs are absolutely essential and useful in engineering and physics, particularly in aeroacoustics and fluid mechanics.
Laboratory spectroscopy and space astrophysics: A tribute to Joe Reader
NASA Astrophysics Data System (ADS)
Leckrone, David S.
2013-07-01
Beginning with the launch of the Copernicus Satellite in 1973, and continuing with the International Ultraviolet Explorer (IUE), and the state-of-the-art spectrographs on the Hubble Space Telescope (GHRS, FOS, STIS and COS), astrophysics experienced dramatic advancements in capabilities to study the composition and physical properties of planets, comets, stars, nebulae, the interstellar medium, galaxies, quasars and the intergalactic medium at visible and ultraviolet wavelengths. It became clear almost immediately that the available atomic data needed to calibrate and quantitatively analyze these superb spectroscopic observations, obtained at great cost from space observatories, was not up to that task. Over the past 3+ decades, Joe Reader and his collaborators at NIST have provided, essentially "on demand", laboratory observations and analyses of extraordinary quality to help astrophysicists extract the maximum possible physical understanding of objects in the cosmos from their space observations. This talk is one scientist's grateful retrospective about these invaluable collaborations.
Gutheil, Grant; Gelman, Susan A; Klein, Eileen; Michos, Katherine; Kelaita, Kara
2008-04-01
Humans construe their environment as composed largely of discrete individuals, which are also members of kinds (e.g., trees, cars, and people). On what basis do young children determine individual identity? How important are featural properties (e.g., physical appearance, name) relative to spatiotemporal history? Two studies examined the relative importance of these factors in preschoolers' and adults' identity judgments. Participants were shown pairs of individuals who looked identical but differed in their spatiotemporal history (e.g., two physically distinct but identical Winnie-the-Pooh dolls), and were asked whether both members in the pair would have access to knowledge that had been supplied to only one of the pairs. The results provide clear support for spatiotemporal history as the primary basis of identity judgments in both preschoolers and adults, and further place issues of identity within the broader cognitive framework of psychological essentialism.
... use this site. health.gov Physical Activity Guidelines Physical Activity Physical activity is key to improving the health of the Nation. Based on the latest science, the Physical Activity Guidelines for Americans is an essential resource for ...
The micrometeoroid complex and evolution of the lunar regolith
NASA Technical Reports Server (NTRS)
Hoerz, F.; Morrison, D. A.; Gault, D. E.; Oberbeck, V. R.; Quaide, W. L.; Vedder, J. F.; Brownlee, D. E.; Hartung, J. B.
1974-01-01
The interaction of the micrometeoroid complex with the lunar surface is evidenced by numerous glass-lined microcraters on virtually every lunar surface exposed to space. Such craters range in size from less than .1 micron to approximately 2 sq cm diameter. Using small scale laboratory cratering experiments for calibration, the observed crater-sized frequency distributions may be converted into micrometeoroid mass distributions. These lunar mass distributions are in essential agreement with satellite data. Some physical properties of micrometeoroids may be deduced by comparing lunar crater geometries with those obtained in laboratory experiments. The proponderance of circular outlines of lunar microcraters necessitates equidimensional, if not spherical, micrometeoroids.
Image Analysis of a Negatively Curved Graphitic Sheet Model for Amorphous Carbon
NASA Astrophysics Data System (ADS)
Bursill, L. A.; Bourgeois, Laure N.
High-resolution electron micrographs are presented which show essentially curved single sheets of graphitic carbon. Image calculations are then presented for the random surface schwarzite-related model of Townsend et al. (Phys. Rev. Lett. 69, 921-924, 1992). Comparison with experimental images does not rule out the contention that such models, containing surfaces of negative curvature, may be useful for predicting some physical properties of specific forms of nanoporous carbon. Some difficulties of the model predictions, when compared with the experimental images, are pointed out. The range of application of this model, as well as competing models, is discussed briefly.
NASA Astrophysics Data System (ADS)
Light, B.; Krembs, C.
2003-12-01
Laboratory-based studies of the physical and biological properties of sea ice are an essential link between high latitude field observations and existing numerical models. Such studies promote improved understanding of climatic variability and its impact on sea ice and the structure of ice-dependent marine ecosystems. Controlled laboratory experiments can help identify feedback mechanisms between physical and biological processes and their response to climate fluctuations. Climatically sensitive processes occurring between sea ice and the atmosphere and sea ice and the ocean determine surface radiative energy fluxes and the transfer of nutrients and mass across these boundaries. High temporally and spatially resolved analyses of sea ice under controlled environmental conditions lend insight to the physics that drive these transfer processes. Techniques such as optical probing, thin section photography, and microscopy can be used to conduct experiments on natural sea ice core samples and laboratory-grown ice. Such experiments yield insight on small scale processes from the microscopic to the meter scale and can be powerful interdisciplinary tools for education and model parameterization development. Examples of laboratory investigations by the authors include observation of the response of sea ice microstructure to changes in temperature, assessment of the relationships between ice structure and the partitioning of solar radiation by first-year sea ice covers, observation of pore evolution and interfacial structure, and quantification of the production and impact of microbial metabolic products on the mechanical, optical, and textural characteristics of sea ice.
Essential oils as natural food antimicrobial agents: a review.
Vergis, Jess; Gokulakrishnan, P; Agarwal, R K; Kumar, Ashok
2015-01-01
Food-borne illnesses pose a real scourge in the present scenario as the consumerism of packaged food has increased to a great extend. Pathogens entering the packaged foods may survive longer, which needs a check. Antimicrobial agents either alone or in combination are added to the food or packaging materials for this purpose. Exploiting the antimicrobial property, essential oils are considered as a "natural" remedy to this problem other than its flavoring property instead of using synthetic agents. The essential oils are well known for its antibacterial, antiviral, antimycotic, antiparasitic, and antioxidant properties due to the presence of phenolic functional group. Gram-positive organisms are found more susceptible to the action of the essential oils. Essential oils improve the shelf-life of packaged products, control the microbial growth, and unriddle the consumer concerns regarding the use of chemical preservatives. This review is intended to provide an overview of the essential oils and their role as natural antimicrobial agents in the food industry.
NASA Astrophysics Data System (ADS)
Russo, P.; Acierno, D.; Capezzuto, F.; Buonocore, G. G.; Di Maio, L.; Lavorgna, M.
2015-12-01
Thermoplastic polyurethanes (TPUs) have been widely used for a variety of applications such as fibers, coating, adhesives, and biomedical items because of their melt processability and versatile properties essentially related to their intrinsic two-phase segmented structure. However, their low stiffness and tensile strength as well as their weak barrier properties still limit their use. Currently, improvements of functional properties of plastics are usually obtained by the inclusion of nanofillers which, in this case, should be able to modify the segregated hard/soft domains of TPU matrix. In this frame, noteworthy results have been already achieved by using carbon based fillers as carbon nanotubes, graphene, graphene oxide, carbon nanofibers and so on. In this frame, this research was focused on blown films based on TPU composites including 0.2%, 0.5% and 1% of a commercial graphene oxide (GO). These latter were obtained according to a two-step procedure: a co-solvent methodology to obtain a concentrated TPU/graphene master followed by a dilution with the neat TPU matrix by extrusion melt compounding. Film samples were analyzed in terms of thermal, structural and barrier properties. Preliminary results indicated structural modifications of the TPU matrix as a result of the GO included with consequent influences on the water vapor barrier properties.
Lejonklev, J; Kidmose, U; Jensen, S; Petersen, M A; Helwing, A L F; Mortensen, G; Weisbjerg, M R; Larsen, M K
2016-10-01
Many essential oils and their terpene constituents display antimicrobial properties, which may affect rumen metabolism and influence milk production parameters. Many of these compounds also have distinct flavors and aromas that may make their way into the milk, altering its sensory properties. Essential oils from caraway (Carum carvi) seeds and oregano (Origanum vulgare) plants were included in dairy cow diets to study the effects on terpene composition and sensory properties of the produced milk, as well as feed consumption, production levels of milk, and methane emissions. Two levels of essential oils, 0.2 and 1.0g of oil/kg of dry matter, were added to the feed of lactating cows for 24d. No effects on feed consumption, milk production, and methane emissions were observed. The amount and composition of volatile terpenes were altered in the produced milk based on the terpene content of the essential oils used, with the total amount of terpenes increasing when essential oils were added to the diet. Sensory properties of the produced milk were altered as well, and milk samples from animals receiving essential oil treatment were perceived as having a fresher aroma and lower stored aroma and flavor. The levels of essential oils used in this study mimic realistic levels of essential oils in herbs from feed, but were too low to affect milk production and methane emissions, and their inclusion in the animal diet did not adversely affect milk flavor. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Bruno, Thomas J; Ott, Lisa S; Lovestead, Tara M; Huber, Marcia L
2010-04-16
The analysis of complex fluids such as crude oils, fuels, vegetable oils and mixed waste streams poses significant challenges arising primarily from the multiplicity of components, the different properties of the components (polarity, polarizability, etc.) and matrix properties. We have recently introduced an analytical strategy that simplifies many of these analyses, and provides the added potential of linking compositional information with physical property information. This aspect can be used to facilitate equation of state development for the complex fluids. In addition to chemical characterization, the approach provides the ability to calculate thermodynamic properties for such complex heterogeneous streams. The technique is based on the advanced distillation curve (ADC) metrology, which separates a complex fluid by distillation into fractions that are sampled, and for which thermodynamically consistent temperatures are measured at atmospheric pressure. The collected sample fractions can be analyzed by any method that is appropriate. The analytical methods we have applied include gas chromatography (with flame ionization, mass spectrometric and sulfur chemiluminescence detection), thin layer chromatography, FTIR, corrosivity analysis, neutron activation analysis and cold neutron prompt gamma activation analysis. By far, the most widely used analytical technique we have used with the ADC is gas chromatography. This has enabled us to study finished fuels (gasoline, diesel fuels, aviation fuels, rocket propellants), crude oils (including a crude oil made from swine manure) and waste oils streams (used automotive and transformer oils). In this special issue of the Journal of Chromatography, specifically dedicated to extraction technologies, we describe the essential features of the advanced distillation curve metrology as an analytical strategy for complex fluids. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Shang, De-Yi; Zhong, Liang-Cai
2017-01-01
Our novel models for fluid's variable physical properties are improved and reported systematically in this work for enhancement of theoretical and practical value on study of convection heat and mass transfer. It consists of three models, namely (1) temperature parameter model, (2) polynomial model, and (3) weighted-sum model, respectively for treatment of temperature-dependent physical properties of gases, temperature-dependent physical properties of liquids, and concentration- and temperature-dependent physical properties of vapour-gas mixture. Two related components are proposed, and involved in each model for fluid's variable physical properties. They are basic physic property equations and theoretical similarity equations on physical property factors. The former, as the foundation of the latter, is based on the typical experimental data and physical analysis. The latter is built up by similarity analysis and mathematical derivation based on the former basic physical properties equations. These models are available for smooth simulation and treatment of fluid's variable physical properties for assurance of theoretical and practical value of study on convection of heat and mass transfer. Especially, so far, there has been lack of available study on heat and mass transfer of film condensation convection of vapour-gas mixture, and the wrong heat transfer results existed in widespread studies on the related research topics, due to ignorance of proper consideration of the concentration- and temperature-dependent physical properties of vapour-gas mixture. For resolving such difficult issues, the present novel physical property models have their special advantages.
Application and machining of Zerodur for optical purposes
NASA Astrophysics Data System (ADS)
Reisert, Norbert
1991-03-01
'Zerodur' is a glass ceramic made by SCHOTT GLASWERKE, exhibiting special physical properties, while also being optimally suited for a variety of applications. Thermal expansion of 'Zerodur' is zero over a large temperature range and temperature variations, thus, have no bearing on the geometry of workpieces, which makes 'Zerodur' ideally suited for the use as mirror substrate blanks for astronomical telescopes, x-ray telescopes, or even for chips production, where maximum precision is a prime requirement. The temperature-independent base blocks of ring laser gyroscopes, as well as range spacers in laser resonators are likewise made of 'Zerodur'. 'Zerodur' can be machined like glass, but unlike with many optical glasses the warming generated upon cementing and polishing does not cause any deformations of tension at the surface. The paper aims to provide a general view of the most essential properties of 'Zerodur', its major fields of application, the manufacture and the machining in the forma of grinding and polishing.
Hettick, Bryan E; Cañas-Carrell, Jaclyn E; French, Amanda D; Klein, David M
2015-08-19
Arsenic is a naturally occurring element with a long history of toxicity. Sites of contamination are found worldwide as a result of both natural processes and anthropogenic activities. The broad scope of arsenic toxicity to humans and its unique interaction with the environment have led to extensive research into its physicochemical properties and toxic behavior in biological systems. The purpose of this review is to compile the results of recent studies concerning the metalloid and consider the chemical and physical properties of arsenic in the broad context of human toxicity and phytoremediation. Areas of focus include arsenic's mechanisms of human toxicity, interaction with plant systems, potential methods of remediation, and protocols for the determination of metals in experimentation. This assessment of the literature indicates that controlling contamination of water sources and plants through effective remediation and management is essential to successfully addressing the problems of arsenic toxicity and contamination.
Level Anticrossing of Impurity States in Semiconductor Nanocrystals
Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Ponomareva, Irina O.; Leonov, Mikhail Yu.; Perova, Tatiana S.; Berwick, Kevin; Baranov, Alexander V.; Fedorov, Anatoly V.
2014-01-01
The size dependence of the quantized energies of elementary excitations is an essential feature of quantum nanostructures, underlying most of their applications in science and technology. Here we report on a fundamental property of impurity states in semiconductor nanocrystals that appears to have been overlooked—the anticrossing of energy levels exhibiting different size dependencies. We show that this property is inherent to the energy spectra of charge carriers whose spatial motion is simultaneously affected by the Coulomb potential of the impurity ion and the confining potential of the nanocrystal. The coupling of impurity states, which leads to the anticrossing, can be induced by interactions with elementary excitations residing inside the nanocrystal or an external electromagnetic field. We formulate physical conditions that allow a straightforward interpretation of level anticrossings in the nanocrystal energy spectrum and an accurate estimation of the states' coupling strength. PMID:25369911
NASA Technical Reports Server (NTRS)
Yon, S. A.; Pieters, C. M.
1988-01-01
The nature of the interactions of visible and NIR radiation with the surfaces of rock and mineral samples was investigated by measuring the reflectance and the polarization properties of scattered and reflected light for slab samples of obsidian and fine-grained basalt, prepared to controlled surface roughness. It is shown that the degree to which radiation can penetrate a surface and then scatter back out, an essential criterion for mineralogic determinations based on reflectance spectra, depends not only upon the composition of the material, but also on its physical condition such as sample grain size and surface roughness. Comparison of the experimentally measured reflectance and polarization from smooth and rough slab materials with the predicted models indicates that single Fresnel reflections are responsible for the largest part of the reflected intensity resulting from interactions with the surfaces of dielectric materials; multiple Fresnel reflections are much less important for such surfaces.
Studying Si/SiGe disordered alloys within effective mass theory
NASA Astrophysics Data System (ADS)
Gamble, John; Montaño, Inès; Carroll, Malcolm S.; Muller, Richard P.
Si/SiGe is an attractive material system for electrostatically-defined quantum dot qubits due to its high-quality crystalline quantum well interface. Modeling the properties of single-electron quantum dots in this system is complicated by the presence of alloy disorder, which typically requires atomistic techniques in order to treat properly. Here, we use the NEMO-3D empirical tight binding code to calibrate a multi-valley effective mass theory (MVEMT) to properly handle alloy disorder. The resulting MVEMT simulations give good insight into the essential physics of alloy disorder, while being extremely computationally efficient and well-suited to determining statistical properties. Sandia is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.
High Temperature Transfer Molding Resins: Preliminary Composite Properties of PETI-375
NASA Technical Reports Server (NTRS)
Connell, J. W.; Smith, J. G., Jr.; Hergenrother, P. M.; Criss, J. M., Jr.
2004-01-01
As part of an ongoing effort to develop materials for resin transfer molding (RTM) of high performance/high temperature composites, a new phenylethynyl containing imide designated as PETI-375 has been under evaluation. PETI-375 was prepared using 2,3,3 ,4 - biphenyltetracarboxylic dianhydride (a-BPDA), 1,3-bis(4-aminophenoxy)benzene and 2,2 - bis(trifluoromethyl)benzidine and endcapped with 4-phenylethynylphthalic anhydride. This material exhibited a stable melt viscosity of 0.1-0.4 Pa sec at 280 C. High quality, void-free laminates were fabricated by high temperature RTM using unsized T-650 carbon fabric and evaluated. After curing for 1 hour at 371 C, the laminates exhibited a glass transition temperature of approx. 375 C by thermomechanical analysis. The laminates were essentially void and microcrack free as evidenced by optical microscopic examination. The chemistry, physical, and composite properties of PETI-375 will be discussed.
Joint Geophysical Inversion With Multi-Objective Global Optimization Methods
NASA Astrophysics Data System (ADS)
Lelievre, P. G.; Bijani, R.; Farquharson, C. G.
2015-12-01
Pareto multi-objective global optimization (PMOGO) methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. We are applying PMOGO methods to three classes of inverse problems. The first class are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The second class of problems are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the third class we consider a fundamentally different type of inversion in which a model comprises wireframe surfaces representing contacts between rock units; the physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. This third class of problem is essentially a geometry inversion, which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. Joint inversion is greatly simplified for the latter two problem classes because no additional mathematical coupling measure is required in the objective function. PMOGO methods can solve numerically complicated problems that could not be solved with standard descent-based local minimization methods. This includes the latter two classes of problems mentioned above. There are significant increases in the computational requirements when PMOGO methods are used but these can be ameliorated using parallelization and problem dimension reduction strategies.
Calixto, L S; Maia Campos, P M B G
2017-10-01
The correct choice of raw materials in the development of cosmetic formulations is essential for obtaining stable and pleasant skin care products. Therefore, rheological, texture and sensory analyses are important to understand the behaviour and stability of the formulations. In this context, the aim of this study was to develop cosmetic formulations containing or not (vehicle) UV filters and chicory root extract, to evaluate their stability as well as to characterize their physical and texture properties and correlate them with the sensory attributes. Four formulations containing organic UV filters and chicory extract, each alone or in combination, were developed and evaluated for 180 days with a cone and plate rheometer, a texture analyzer and consumer's sensorial analysis. Thus, the data obtained were correlated to observe the different influences. The developed formulations remained stable after 180 days regarding macroscopic aspects, organoleptic characteristics and pH values. The addition of the UV filters alone and in combination with the active substance resulted in significant increases in rheology properties, viscosity and consistency. The formulation with the active ingredient showed significant decreases in the texture parameters after 180 days, mainly due to its polysaccharide inulin. All formulations obtained high scores in sensorial parameters. A strong correlation was mainly found between spreadability and work of shear, and between the texture parameters. The raw materials strongly influenced the physical, texture and sensorial parameters. Finally, the UV filters showed a greater influence on the results of the formulations than the chicory root extract. In conclusion, the association of the mentioned methods allows the correct choice of ingredients and their combinations. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
20 CFR 416.1220 - Property essential to self-support; general.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and supplies, motor vehicles, and tools, etc.) used in a trade or business (as defined in § 404.1066... activities. Liquid resources other than those used as part of a trade or business are not property essential...
Physical Education: Essential Issues
ERIC Educational Resources Information Center
Green, Ken, Ed.; Hardman, Ken, Ed.
2005-01-01
This book is aimed primarily at under and postgraduate students pursuing entire programmes or discrete courses and modules in the broad area of physical education and sport in schools. It consists of a collection of what is considered to be essential readings in the sense that they are contributions from eminent authors on a breadth of salient…
NASA Astrophysics Data System (ADS)
Safriani, R.; Sugihartini, N.; Yuliani, S.
2017-11-01
Essential oil of Syzigium aromaticum has been formulated in O/W and W/O creams as anti-inflammatory dosage form. The purpose of this study was to evaluate the physical characteristic and irritation index of S. aromaticum essential oil in O/W and W/O creams. The creams were made by fusion method. The creams then were evaluated the physical characteristic including pH, viscosity, spreadability and adhesivity. The irritation index was obtained by irritation skin test in male rabbit. The results showed that the W/O and O/W creams have the value of pH: 6.3 and 6.27; spreadability: 3,18 and 4.17 cm2; adhesivity: 5.59 and 0.07 minutes; viscosity: 4.43 and 2.88 Pa.S, respectively. The irritation test showed that the control enhancer caused mild irritation in both of W/O and O/W creams. These findings indicated that type of cream might influence the physical characteristic and irritation index of S. aromaticum essential oil cream.
Ahmad, Mehraj; Benjakul, Soottawat; Sumpavapol, Punnanee; Nirmal, Nilesh Prakash
2012-04-16
Microbiological, chemical and physical changes of sea bass slices wrapped with gelatin film incorporated with 25% (w/w) lemongrass essential oil (LEO) during storage of 12 days at 4 °C were investigated. Sea bass slices wrapped with LEO film had the retarded growth of lactic acid bacteria (LAB), psychrophilic bacteria and spoilage microorganisms including H₂S-producing bacteria and Enterobacteriaceae throughout storage of 12 days in comparison with the control and those wrapped with gelatin film without LEO (G film) (P<0.05). Lowered changes of colour, K value, total volatile base nitrogen (TVB) and TBARS value were also found in LEO film wrapped samples, compared with those wrapped with G film and control, respectively. Therefore, the incorporation of LEO into gelatin film could enhance the antimicrobial and antioxidative properties of the film, thereby maintaining the qualities and extending the shelf-life of the sea bass slices stored at refrigerated temperature. Copyright © 2012 Elsevier B.V. All rights reserved.
Mapping the force field of a hydrogen-bonded assembly
NASA Astrophysics Data System (ADS)
Sweetman, A. M.; Jarvis, S. P.; Sang, Hongqian; Lekkas, I.; Rahe, P.; Wang, Yu; Wang, Jianbo; Champness, N. R.; Kantorovich, L.; Moriarty, P.
2014-05-01
Hydrogen bonding underpins the properties of a vast array of systems spanning a wide variety of scientific fields. From the elegance of base pair interactions in DNA to the symmetry of extended supramolecular assemblies, hydrogen bonds play an essential role in directing intermolecular forces. Yet fundamental aspects of the hydrogen bond continue to be vigorously debated. Here we use dynamic force microscopy (DFM) to quantitatively map the tip-sample force field for naphthalene tetracarboxylic diimide molecules hydrogen-bonded in two-dimensional assemblies. A comparison of experimental images and force spectra with their simulated counterparts shows that intermolecular contrast arises from repulsive tip-sample interactions whose interpretation can be aided via an examination of charge density depletion across the molecular system. Interpreting DFM images of hydrogen-bonded systems therefore necessitates detailed consideration of the coupled tip-molecule system: analyses based on intermolecular charge density in the absence of the tip fail to capture the essential physical chemistry underpinning the imaging mechanism.
Kayser, Jona; Haslbeck, Martin; Dempfle, Lisa; Krause, Maike; Grashoff, Carsten; Buchner, Johannes; Herrmann, Harald; Bausch, Andreas R
2013-10-15
The mechanical properties of living cells are essential for many processes. They are defined by the cytoskeleton, a composite network of protein fibers. Thus, the precise control of its architecture is of paramount importance. Our knowledge about the molecular and physical mechanisms defining the network structure remains scarce, especially for the intermediate filament cytoskeleton. Here, we investigate the effect of small heat shock proteins on the keratin 8/18 intermediate filament cytoskeleton using a well-controlled model system of reconstituted keratin networks. We demonstrate that Hsp27 severely alters the structure of such networks by changing their assembly dynamics. Furthermore, the C-terminal tail domain of keratin 8 is shown to be essential for this effect. Combining results from fluorescence and electron microscopy with data from analytical ultracentrifugation reveals the crucial role of kinetic trapping in keratin network formation. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Assembly and positioning of actomyosin rings by contractility and planar cell polarity
Sehring, Ivonne M; Recho, Pierre; Denker, Elsa; Kourakis, Matthew; Mathiesen, Birthe; Hannezo, Edouard; Dong, Bo; Jiang, Di
2015-01-01
The actomyosin cytoskeleton is a primary force-generating mechanism in morphogenesis, thus a robust spatial control of cytoskeletal positioning is essential. In this report, we demonstrate that actomyosin contractility and planar cell polarity (PCP) interact in post-mitotic Ciona notochord cells to self-assemble and reposition actomyosin rings, which play an essential role for cell elongation. Intriguingly, rings always form at the cells′ anterior edge before migrating towards the center as contractility increases, reflecting a novel dynamical property of the cortex. Our drug and genetic manipulations uncover a tug-of-war between contractility, which localizes cortical flows toward the equator and PCP, which tries to reposition them. We develop a simple model of the physical forces underlying this tug-of-war, which quantitatively reproduces our results. We thus propose a quantitative framework for dissecting the relative contribution of contractility and PCP to the self-assembly and repositioning of cytoskeletal structures, which should be applicable to other morphogenetic events. DOI: http://dx.doi.org/10.7554/eLife.09206.001 PMID:26486861
Llana-Ruiz-Cabello, M; Pichardo, S; Bermúdez, J M; Baños, A; Núñez, C; Guillamón, E; Aucejo, S; Cameán, A M
2016-08-01
Consumers' concerns about the environment and health have led to the development of new food packaging materials avoiding petroleum-based matrices and synthetic additives. The present study has developed polylactic acid (PLA) films containing different concentrations of essential oil from Origanum vulgare L. virens (OEO). The effectiveness of this new active packaging was checked for use in ready-to-eat salads. A plasticising effect was observed when OEO was incorporated in PLA films. The rest of the mechanical and physical properties of developed films did not show much change when OEO was included in the film. An antioxidant effect was recorded only for films containing the highest percentages of the active agent (5% and 10%). In addition, films exhibited in vitro antibacterial activity against Staphylococcus aureus, Yersinia enterocolitica, Listeria monocytogenes, Enterococcus faecalis and Staphylococcus carnosus. Moreover, in ready-to-eat salads, antimicrobial activity was only observed against yeast and moulds, where 5% and 10% of OEO was the most effective.
All Property is Riverfront Property: The Raindrop App and FLOW Project
NASA Astrophysics Data System (ADS)
Carter, T.; Miss, M.; Kirn, M.; Niyogi, D.; Bachta, E.; Steckel, J.
2011-12-01
Rivers in the United States are essential to sustain lives of both nonhuman species and of human societies. Urban areas rely heavily upon their nearby rivers and watersheds for their survival and yet citizens are often unaware of inextricable linkages between societal and river functions. One way to overcome this lack of awareness is by exploring new avenues for engagement with the general public. In this project, we use three fields for this engagement (science, art, and technology) to produce a river awareness tool that creates connections between citizens and their watersheds through visceral and technological interfaces. The target area is the White River watershed, which is entirely contained within the state of Indiana and encompasses nearly 30,000 km2 in the central and southern portions of the state including the metropolitan region of Indianapolis. We developed a mobile device application called "Raindrop" that uses geographic information systems (GIS) and mobile device GPS technology to map a raindrop's path from a user's home to the river and identifies the various flow paths and pollutant constituents transported by this water along the way. Physical markers along the White River designed by an artist on the project team allows for the virtual features of the application to be grounded in physical space. The use of Raindrop to connect users with their urban watershed is shown to have significant promise for widespread application. A number of key advantages of using this technology over traditional forms of outreach are enumerated below. First, by collaborating with a nationally renowned artist both in the design of the application and for physical markers, the audience for Raindrop is greatly expanded and interesting dynamics between the scientific and artist members of the general public are developed. Second, in urban areas the use of mobile devices and handheld Web technology are ubiquitous and thus the information can be conveyed to an audience in a form that is familiar and relevant. By pulling the mobile device users into physical spaces along the river, the experience is enhanced further. Finally, the ability to concisely display essential watershed, weather, and climate information using iconography, predefined data analysis, and dynamic programming allows for the application to run quickly and usability to be optimized. Future work will focus on end user evaluation and replicability in other urban watersheds around the country.
Twist effects in quantum vortices and phase defects
NASA Astrophysics Data System (ADS)
Zuccher, Simone; Ricca, Renzo L.
2018-02-01
In this paper we show that twist, defined in terms of rotation of the phase associated with quantum vortices and other physical defects effectively deprived of internal structure, is a property that has observable effects in terms of induced axial flow. For this we consider quantum vortices governed by the Gross-Pitaevskii equation (GPE) and perform a number of test cases to investigate and compare the effects of twist in two different contexts: (i) when this is artificially superimposed on an initially untwisted vortex ring; (ii) when it is naturally produced on the ring by the simultaneous presence of a central straight vortex. In the first case large amplitude perturbations quickly develop, generated by the unnatural setting of the initial condition that is not an analytical solution of the GPE. In the second case much milder perturbations emerge, signature of a genuine physical process. This scenario is confirmed by other test cases performed at higher twist values. Since the second setting corresponds to essential linking, these results provide new evidence of the influence of topology on physics.
NASA Technical Reports Server (NTRS)
Monier, Eric M.; Mathur, Smita; Wilkes, Belinda; Elvis, Martin
2001-01-01
The presence of a 'warm absorber' was first suggested to explain spectral variability in an X-ray spectrum of the radio-quiet quasi-stellar object (QSO) MR 2251-178. A unified picture, in which X-ray warm absorbers and 'intrinsic' UV absorbers are the same, offers the opportunity to probe the nuclear environment of active galactic nuclei. To test this scenario and understand the physical properties of the absorber, we obtained a UV spectrum of MR 2251-178 with the Faint Object Spectrograph on board the Hubble Space Telescope (HST). The HST spectrum clearly shows absorption due to Lyalpha, N v, and C IV, blueshifted by 300 km s(exp -1) from the emission redshift of the QSO. The rarity of both X-ray and UV absorbers in radio-quiet QSOs suggests these absorbers are physically related, if not identical. Assuming the unified scenario, we place constraints on the physical parameters of the absorber and conclude the mass outflow rate is essentially the same as the accretion rate in MR 2251-178.
Topological electronic liquids: Electronic physics of one dimension beyond the one spatial dimension
NASA Astrophysics Data System (ADS)
Wiegmann, P. B.
1999-06-01
There is a class of electronic liquids in dimensions greater than 1 that shows all essential properties of one-dimensional electronic physics. These are topological liquids-correlated electronic systems with a spectral flow. Compressible topological electronic liquids are superfluids. In this paper we present a study of a conventional model of a topological superfluid in two spatial dimensions. This model is thought to be relevant to a doped Mott insulator. We show how the spectral flow leads to the superfluid hydrodynamics and how the orthogonality catastrophe affects off-diagonal matrix elements. We also compute the major electronic correlation functions. Among them are the spectral function, the pair wave function, and various tunneling amplitudes. To compute correlation functions we develop a method of current algebra-an extension of the bosonization technique of one spatial dimension. In order to emphasize a similarity between electronic liquids in one dimension and topological liquids in dimensions greater than 1, we first review the Fröhlich-Peierls mechanism of ideal conductivity in one dimension and then extend the physics and the methods into two spatial dimensions.
Huang, Huey-Chun; Chang, Tzu-Yun; Chang, Long-Zen; Wang, Hsiao-Fen; Yih, Kuang-Hway; Hsieh, Wan-Yu; Chang, Tsong-Min
2012-03-30
This study was aimed at investigating the antimelanogenic and antioxidative properties of the essential oil extracted from leaves of V. negundo Linn and the analysis of the chemical composition of this essential oil. The efficacy of the essential oil was evaluated spectrophotometrically, whereas the volatile chemical compounds in the essential oil were analyzed by gas chromatography-mass spectrometry (GC-MS). The results revealed that the essential oil effectively suppresses murine B16F10 tyrosinase activity and decreases the amount of melanin in a dose-dependent manner. Additionally, the essential oil significantly scavenged 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals, and showed potent reducing power versus metal-ion chelating properties in a dose-dependent pattern. The chemical constituents in the essential oil are sesquiterpenes (44.41%), monoterpenes (19.25%), esters (14.77%), alcohols (8.53%), aromatic compound (5.90%), ketone (4.96%), ethers (0.4%) that together account for 98.22% of its chemical composition. It is predicted that the aromatic compound in the essential oil may contribute to its antioxidant activities. The results indicated that essential oil extracted from V. negundo Linn leaves decreased melanin production in B16F10 melanoma cells and showed potent antioxidant activities. The essential oil can thereby serve as an inhibitor of melanin synthesis and could also act as a natural antioxidant.
Essential oils: extraction, bioactivities, and their uses for food preservation.
Tongnuanchan, Phakawat; Benjakul, Soottawat
2014-07-01
Essential oils are concentrated liquids of complex mixtures of volatile compounds and can be extracted from several plant organs. Essential oils are a good source of several bioactive compounds, which possess antioxidative and antimicrobial properties. In addition, some essential oils have been used as medicine. Furthermore, the uses of essential oils have received increasing attention as the natural additives for the shelf-life extension of food products, due to the risk in using synthetic preservatives. Essential oils can be incorporated into packaging, in which they can provide multifunctions termed "active or smart packaging." Those essential oils are able to modify the matrix of packaging materials, thereby rendering the improved properties. This review covers up-to-date literatures on essential oils including sources, chemical composition, extraction methods, bioactivities, and their applications, particularly with the emphasis on preservation and the shelf-life extension of food products. © 2014 Institute of Food Technologists®
Quantum-like behavior without quantum physics I : Kinematics of neural-like systems.
Selesnick, S A; Rawling, J P; Piccinini, Gualtiero
2017-09-01
Recently there has been much interest in the possible quantum-like behavior of the human brain in such functions as cognition, the mental lexicon, memory, etc., producing a vast literature. These studies are both empirical and theoretical, the tenets of the theory in question being mainly, and apparently inevitably, those of quantum physics itself, for lack of other arenas in which quantum-like properties are presumed to obtain. However, attempts to explain this behavior on the basis of actual quantum physics going on at the atomic or molecular level within some element of brain or neuronal anatomy (other than the ordinary quantum physics that underlies everything), do not seem to survive much scrutiny. Moreover, it has been found empirically that the usual physics-like Hilbert space model seems not to apply in detail to human cognition in the large. In this paper we lay the groundwork for a theory that might explain the provenance of quantum-like behavior in complex systems whose internal structure is essentially hidden or inaccessible. The approach is via the logic obeyed by these systems which is similar to, but not identical with, the logic obeyed by actual quantum systems. The results reveal certain effects in such systems which, though quantum-like, are not identical to the kinds of quantum effects found in physics. These effects increase with the size of the system.
A unified dislocation density-dependent physical-based constitutive model for cold metal forming
NASA Astrophysics Data System (ADS)
Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.
2017-10-01
Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.
NASA Astrophysics Data System (ADS)
Ye, L.; Parsons, D. R.; Manning, A. J.
2016-12-01
Cohesive sediment, or mud, is ubiquitously found in most aqueous environments, such as coasts and estuaries. The study of cohesive sediment behaviors requires the synchronous description of mutual interactions of grains (e.g., winnowing and flocculation), their physical properties (e.g., grain size) and also the ambient water. Herein, a series of flume experiments (14 runs) with different substrate mixtures of sand-clay-EPS (Extracellular Polymeric Substrates: secreted by aquatic microorganisms) are combined with an estuarine field survey (Dee estuary, NW England) to investigate the behavior of suspensions over bio-physical cohesive substrates. The experimental results indicate that winnowing and flocculation occur pervasively in bio-physical cohesive flow systems. Importantly however, the evolution of the bed and bedform dynamics and hence turbulence production can be lower when cohesivity is high. The estuarine survey also revealed that the bio-physical cohesion provided by both the clay and microorganism fractions in the bed, that pervasively exists in many natural estuarine systems, plays a significant role in controlling the interactions between bed substrate and sediment suspension and deposition, including controlling processes such as sediment winnowing, flocculation and re-deposition. Full understanding of these processes are essential in advancing sediment transport modelling and prediction studies across natural estuarine systems and the work will report on an improved conceptual model for sediment sorting deposition in bio-physical cohesive substrates.
Lifecycle of a large-scale polar coronal pseudostreamer/cavity system
NASA Astrophysics Data System (ADS)
Guennou, Chloé; Auchere, Frederic; Seaton, Daniel; Rachmeler, Laurel
2016-07-01
Coronal cavities, tunnel-like areas of rarefied density, provide important information about the magnetic structures that support prominences. The magnetic energy is stored through the twisted or shared magnetic field, ultimately released through Coronal Mass Ejections (CME). To be able to forecast these energetic releases of material and prevent potential terrestrial consequences, the understanding of the cavity 3D morphology, magnetic and thermal properties are essential. The prominences embedded in the cavity only trace a small part of the magnetic field, whereas the much larger cavity provides more information about the magnetic field morphology. As a result, a clear understanding of the coronal volume of the cavity significantly advances our understanding of both the pre-eruption equilibrium and the triggers of such eruptions. Determining both morphological and thermodynamical coronal structures is difficult due to the optically thin nature of the plasma. Observations are subject to integration along the line-of-sight (LOS). This effect can strongly complicate both the derivation and the interpretation of important physical quantities. One way to deduce the 3D structure is with Solar Rotational Tomography (SRT). The 3D plasma emissivity is estimated from EUV/white light images taken from different viewpoints. Physical properties can be then derived using Differential Emission Measure analysis from multi-wavelength 3D reconstructions. We applied this technique to an exceptional large-scale coronal pseudostreamer/cavity system in the southern polar region of the solar corona that was visible for approximately a year starting in February 2014. It is unusual to see such a large closed-field structure embedded within the open polar coronal hole. We investigate this structure to document its formation, evolution and eventually its shrinking process using data from both the PROBA2/SWAP and SDO/AIA EUV imagers. We found that the cavity temperature is extremely stable with time and is essentially at a similar or slightly hotter temperature than the surrounding pseudostreamer. Two regimes in cavity thermal properties were observed: during the first 5 months of observation, we found lower density depletion and highly multi-thermal plasma, while after the pseudostreamer became stable and slowly shrank, the depletion was more pronounced and the plasma was less multithermal. As the thermodynamic properties are strongly correlated with the magnetic structure, these results provide constraints on both the trigger of CMEs and the processes that maintain cavities stability for such a long lifetime.
NASA Astrophysics Data System (ADS)
Borja Ramon, Pablo; Alvarado Moncayo, Dario; Vanacker, Veerle; Cisneros, Pedro; Molina, Armando; Govers, Gerard
2015-04-01
Revegetation projects in degraded lands have the potential to recover essential soil functions. If vegetation restoration is combined with bioengineering techniques, such as the construction of retention dams in active gully systems, soil restoration could be enhanced. One important aspect of this process is the role of vegetation on restoration of soil chemical and physical properties. There is currently a lack of knowledge on the potential of soil restoration in active badland systems, as most studies have concentrated on the direct and visible effect of revegetation on erosion control. The aim of this study is to evaluate the role of revegetation and bioengineering works on the restoration of soil physical and chemical properties. The analyses are realized in a highly degraded area of 3 km2, located in the lower part of the Loreto catchment (Southern Ecuadorian Andes). First, the soil physical and/or chemical parameters that are most sensitive to track environmental change were evaluated. Second, the role of vegetation on soil restoration was quantified. . Soil samples were taken in sites with different vegetation cover, land use and physiographic position. The following physical and chemical parameters were measured: volumetric water content (θsat, θact), bulk density, pH, texture, organic matter, C and N content. Our first results do not show a clear relationship between volumetric water content at saturation (θsat), bulk density, or C content. The saturation water content does not vary significantly between different sites, or land use types. However, significant differences are found between sites at different stages of restoration; and this for most chemical and physical soil properties. Vegetation cover (%) appears to exert a strong control on the C content in the mineral soils. The highest C values are found in soils of forest plantations with Eucalyptus and Pinus species. These plantations are located in areas that were previously affected by active gullying. Our results show that the establishment of a protective vegetation cover is an important factor in soil restoration.
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
41 CFR 109-1.5110 - Physical inventories of personal property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical inventories of...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5110 Physical inventories of personal property. (a) Physical inventories of those categories of personal property as specified in...
ERIC Educational Resources Information Center
Mikula, Brendon D.; Heckler, Andrew F.
2017-01-01
We propose a framework for improving accuracy, fluency, and retention of basic skills essential for solving problems relevant to STEM introductory courses, and implement the framework for the case of basic vector math skills over several semesters in an introductory physics course. Using an iterative development process, the framework begins with…
Money Is Essential: Ownership Intuitions Are Linked to Physical Currency
ERIC Educational Resources Information Center
Uhlmann, Eric Luis; Zhu, Luke
2013-01-01
Due to basic processes of psychological essentialism and contagion, one particular token of monetary currency is not always interchangeable with another piece of currency of equal economic value. When money loses its physical form it is perceived as "not quite the same" money (i.e., to have partly lost the original essence that distinguished it…
Signature properties of water: Their molecular electronic origins
Jones, Andrew P.; Cipcigan, Flaviu S.; Crain, Jason; Martyna, Glenn J.
2015-01-01
Water challenges our fundamental understanding of emergent materials properties from a molecular perspective. It exhibits a uniquely rich phenomenology including dramatic variations in behavior over the wide temperature range of the liquid into water’s crystalline phases and amorphous states. We show that many-body responses arising from water’s electronic structure are essential mechanisms harnessed by the molecule to encode for the distinguishing features of its condensed states. We treat the complete set of these many-body responses nonperturbatively within a coarse-grained electronic structure derived exclusively from single-molecule properties. Such a “strong coupling” approach generates interaction terms of all symmetries to all orders, thereby enabling unique transferability to diverse local environments such as those encountered along the coexistence curve. The symmetries of local motifs that can potentially emerge are not known a priori. Consequently, electronic responses unfiltered by artificial truncation are then required to embody the terms that tip the balance to the correct set of structures. Therefore, our fully responsive molecular model produces, a simple, accurate, and intuitive picture of water’s complexity and its molecular origin, predicting water’s signature physical properties from ice, through liquid–vapor coexistence, to the critical point. PMID:25941394
Rauch, Cyril; Cherkaoui, Mohammed; Egan, Sharon; Leigh, James
2017-02-01
The anionic-polyelectrolyte nature of the wall of Gram-positive bacteria has long been suspected to be involved in homeostasis of essential cations and bacterial growth. A better understanding of the coupling between the biophysics and the biology of the wall is essential to understand some key features at play in ion-homeostasis in this living system. We consider the wall as a polyelectrolyte gel and balance the long-range electrostatic repulsion within this structure against the penalty entropy required to condense cations around wall polyelectrolytes. The resulting equations define how cations interact physically with the wall and the characteristic time required for a cation to leave the wall and enter into the bacterium to enable its usage for bacterial metabolism and growth. The model was challenged against experimental data regarding growth of Gram-positive bacteria in the presence of varying concentration of divalent ions. The model explains qualitatively and quantitatively how divalent cations interact with the wall as well as how the biophysical properties of the wall impact on bacterial growth (in particular the initiation of bacterial growth). The interplay between polymer biophysics and the biology of Gram positive bacteria is defined for the first time as a new set of variables that contribute to the kinetics of bacterial growth. Providing an understanding of how bacteria capture essential metal cations in way that does not follow usual binding laws has implications when considering the control of such organisms and their ability to survive and grow in extreme environments. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.
The Importance of Water for Life
NASA Astrophysics Data System (ADS)
Westall, Frances; Brack, André
2018-03-01
Liquid water is essential for life as we know it, i.e. carbon-based life. Although other compound-solvent pairs that could exist in very specific physical environments could be envisaged, the elements essential to carbon and water-based life are among the most common in the universe. Carbon molecules and liquid water have physical and chemical properties that make them optimised compound-solvent pairs. Liquid water is essential for important prebiotic reactions. But equally important for the emergence of life is the contact of carbon molecules in liquid water with hot rocks and minerals. We here review the environmental conditions of the early Earth, as soon as it had liquid water at its surface and was habitable. Basing our approach to life as a "cosmic phenomenon" (de Duve 1995), i.e. a chemical continuum, we briefly address the various hypotheses for the origin of life, noting their relevance with respect to early environmental conditions. It appears that hydrothermal environments were important in this respect. We continue with the record of early life noting that, by 3.5 Ga, when the sedimentary environment started being well-preserved, anaerobic life forms had colonised all habitable microenvironments from the sea floor to exposed beach environments and, possibly, in the photic planktonic zone of the sea. Life on Earth had also evolved to the relatively sophisticated stage of anoxygenic photosynthesis. We conclude with an evaluation of the potential for habitability and colonisation of other planets and satellites in the Solar System, noting that the most common life forms in the Solar System and probably in the Universe would be similar to terrestrial chemotrophs whose carbon source is either reduced carbon or CO2 dissolved in water and whose energy would be sourced from oxidized carbon, H2, or other transition elements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stapp, Henry
Robert Griffiths has recently addressed, within the framework of a ‘consistent quantum theory’ (CQT) that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues, on the basis of his examination of certain arguments that claim to demonstrate the existence of such nonlocal influences, that such influences do not exist. However, his examination was restricted mainly to hidden-variable-based arguments that include in their premises some essentially classical-physics-type assumptions that are fundamentally incompatible with the precepts of quantum physics. One cannot logically prove properties ofmore » a system by attributing to the system properties alien to that system. Hence Griffiths’ rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his ‘consistent quantum theory’ shows that the cited proof is valid within that restrictive framework. This necessary existence, within the ‘consistent’ framework, of long range essentially instantaneous influences refutes the claim made by Griffiths that his ‘consistent’ framework is superior to the orthodox quantum theory of von Neumann because it does not entail instantaneous influences. An added section responds to Griffiths’ reply, which cites a litany of ambiguities that seem to restrict, devastatingly, the scope of his CQT formalism, apparently to buttress his claim that my use of that formalism to validate the nonlocality theorem is flawed. But the vagaries that he cites do not upset the proof in question. It is show here in detail why the precise statement of this theorem justifies the specified application of CQT. It is also shown, in response to his challenge, why a putative proof of locality that he has proposed is not valid.« less
Qin, Chao; Sun, Yongqi; Dong, Yadong
2017-01-01
Essential proteins are the proteins that are indispensable to the survival and development of an organism. Deleting a single essential protein will cause lethality or infertility. Identifying and analysing essential proteins are key to understanding the molecular mechanisms of living cells. There are two types of methods for predicting essential proteins: experimental methods, which require considerable time and resources, and computational methods, which overcome the shortcomings of experimental methods. However, the prediction accuracy of computational methods for essential proteins requires further improvement. In this paper, we propose a new computational strategy named CoTB for identifying essential proteins based on a combination of topological properties, subcellular localization information and orthologous protein information. First, we introduce several topological properties of the protein-protein interaction (PPI) network. Second, we propose new methods for measuring orthologous information and subcellular localization and a new computational strategy that uses a random forest prediction model to obtain a probability score for the proteins being essential. Finally, we conduct experiments on four different Saccharomyces cerevisiae datasets. The experimental results demonstrate that our strategy for identifying essential proteins outperforms traditional computational methods and the most recently developed method, SON. In particular, our strategy improves the prediction accuracy to 89, 78, 79, and 85 percent on the YDIP, YMIPS, YMBD and YHQ datasets at the top 100 level, respectively.
Shannon information entropy in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Ma, Chun-Wang; Ma, Yu-Gang
2018-03-01
The general idea of information entropy provided by C.E. Shannon "hangs over everything we do" and can be applied to a great variety of problems once the connection between a distribution and the quantities of interest is found. The Shannon information entropy essentially quantify the information of a quantity with its specific distribution, for which the information entropy based methods have been deeply developed in many scientific areas including physics. The dynamical properties of heavy-ion collisions (HICs) process make it difficult and complex to study the nuclear matter and its evolution, for which Shannon information entropy theory can provide new methods and observables to understand the physical phenomena both theoretically and experimentally. To better understand the processes of HICs, the main characteristics of typical models, including the quantum molecular dynamics models, thermodynamics models, and statistical models, etc., are briefly introduced. The typical applications of Shannon information theory in HICs are collected, which cover the chaotic behavior in branching process of hadron collisions, the liquid-gas phase transition in HICs, and the isobaric difference scaling phenomenon for intermediate mass fragments produced in HICs of neutron-rich systems. Even though the present applications in heavy-ion collision physics are still relatively simple, it would shed light on key questions we are seeking for. It is suggested to further develop the information entropy methods in nuclear reactions models, as well as to develop new analysis methods to study the properties of nuclear matters in HICs, especially the evolution of dynamics system.
Storch, Mark; Scalzo, Howard; Van Lue, Stephen; Jacinto, Gabriel
2002-01-01
The goal of this study was to compare the physical and functional properties of coated polyglactin 910 suture with and without triclosan by human assessment and instrument-based measurements. Surgeons specializing in general, orthopedic, plastic, or gynecologic surgery evaluated the suture materials in an in vivo porcine model with regard to (1) ease of passage through tissue, (2) first-throw knot holding, (3) knot tie-down smoothness, (4) knot security, (5) surgical handling, and (6) overall evaluation. Breaking strength retention was determined at 14, 21, 28, and 35 days post-implantation in rats using a tensile strength measurement device. The absorption rate was determined in rats by histopathology at 7, 28, 56, 63, 70, and 77 days post-implantation. The tactile smoothness and tie-down behavior of both wet and dry sutures were evaluated by product characterization technicians. The scores for surgeons' evaluation of suture material were favorable and similar for both sutures. Surgeons could not reliably make a distinction in handling between the two sutures. Breaking strength retention was the same for both sutures, ranging from 79% on day 14 to 5% on day 35. Both sutures were essentially absorbed at 70 days post-implantation. Product characterization assessment of the two sutures found them to be indistinguishable. The addition of triclosan to coated polyglactin 910 sutures did not affect physical handling properties or performance characteristics based on the testing and evaluations performed.
Teixeira, Bárbara; Marques, António; Ramos, Cristina; Serrano, Carmo; Matos, Olívia; Neng, Nuno R; Nogueira, José M F; Saraiva, Jorge Alexandre; Nunes, Maria Leonor
2013-08-30
There is a growing interest in industry to replace synthetic chemicals by natural products with bioactive properties. Aromatic plants are excellent sources of bioactive compounds that can be extracted using several processes. As far as oregano is concerned, studies are lacking addressing the effect of extraction processes in bioactivity of extracts. This study aimed to characterise the in vitro antioxidant and antibacterial properties of oregano (Origanum vulgare) essential oil and extracts (in hot and cold water, and ethanol), and the chemical composition of its essential oil. The major components of oregano essential oil were carvacrol, β-fenchyl alcohol, thymol, and γ-terpinene. Hot water extract had the strongest antioxidant properties and the highest phenolic content. All extracts were ineffective in inhibiting the growth of the seven tested bacteria. In contrast, the essential oil inhibited the growth of all bacteria, causing greater reductions on both Listeria strains (L. monocytogenes and L. innocua). O. vulgare extracts and essential oil from Portuguese origin are strong candidates to replace synthetic chemicals used by the industry. © 2013 Society of Chemical Industry.
Tural, Serpil; Turhan, Sadettin
2017-03-01
In this study, some properties and antioxidant capacity of anchovy ( Engraulis encrasicholus ) by-product protein films with added 0.5, 1.0 and 1.5% of thyme essential oil were investigated. The films with thyme essential oil had higher elongation at break, water vapour permeability and oxygen permeability, lower solubility and tensile strength than control film (p<0.05). The incorporation of thyme essential oil affected transparency values of the films, but only the addition of 1.5% of thyme essential oil significantly reduced the transparency (p<0.05). In the film matrix, molecular organisation and intermolecular interaction were changed by thyme essential oil addition. The films with thyme essential oil had a heterogeneous surface and a relatively smooth cross-section structure. Slightly higher phase transition and lower glass transition temperatures were observed in films with thyme essential oil. The antioxidant capacity of the films was improved by incorporating thyme essential oil depending on its volume fraction.
Tural, Serpil
2017-01-01
Summary In this study, some properties and antioxidant capacity of anchovy (Engraulis encrasicholus) by-product protein films with added 0.5, 1.0 and 1.5% of thyme essential oil were investigated. The films with thyme essential oil had higher elongation at break, water vapour permeability and oxygen permeability, lower solubility and tensile strength than control film (p<0.05). The incorporation of thyme essential oil affected transparency values of the films, but only the addition of 1.5% of thyme essential oil significantly reduced the transparency (p<0.05). In the film matrix, molecular organisation and intermolecular interaction were changed by thyme essential oil addition. The films with thyme essential oil had a heterogeneous surface and a relatively smooth cross-section structure. Slightly higher phase transition and lower glass transition temperatures were observed in films with thyme essential oil. The antioxidant capacity of the films was improved by incorporating thyme essential oil depending on its volume fraction. PMID:28559736
USDA-ARS?s Scientific Manuscript database
Lignin depolymerization to aromatic monomers with high yields and selectivity is essential for the economic feasibility of many lignin-valorization strategies within integrated biorefining processes. Importantly, the quality and properties of the lignin source play an essential role in impacting the...
2013-01-01
Background Lavender essential oil shows evidence of sedative properties in neurophysiological and animal studies but clinical trials of its effectiveness as a treatment of agitation in people with dementia have shown mixed results. Study methods have varied widely, however, making comparisons hazardous. To help remedy previous methodological shortcomings, we delivered high grade lavender oil in specified amounts to nursing home residents whose agitated behaviours were recorded objectively. Methods 64 nursing home residents with frequent physically agitated behaviours were entered into a randomized, single-blind cross-over trial of dermally-applied, neurophysiologically active, high purity 30% lavender oil versus an inactive control oil. A blinded observer counted the presence or absence of target behaviours and rated participants’ predominant affect during each minute for 30 minutes prior to exposure and for 60 minutes afterwards. Results Lavender oil did not prove superior to the control oil in reducing the frequency of physically agitated behaviours or in improving participants’ affect. Conclusions Studies of essential oils are constrained by their variable formulations and uncertain pharmacokinetics and so optimal dosing and delivery regimens remain speculative. Notwithstanding this, topically delivered, high strength, pure lavender oil had no discernible effect on affect and behaviour in a well-defined clinical sample. Trial registration Australian and New Zealand Clinical Trials Registry (ACTRN 12609000569202) PMID:24219098
CSI-EPT in Presence of RF-Shield for MR-Coils.
Arduino, Alessandro; Zilberti, Luca; Chiampi, Mario; Bottauscio, Oriano
2017-07-01
Contrast source inversion electric properties tomography (CSI-EPT) is a recently developed technique for the electric properties tomography that recovers the electric properties distribution starting from measurements performed by magnetic resonance imaging scanners. This method is an optimal control approach based on the contrast source inversion technique, which distinguishes itself from other electric properties tomography techniques for its capability to recover also the local specific absorption rate distribution, essential for online dosimetry. Up to now, CSI-EPT has only been described in terms of integral equations, limiting its applicability to homogeneous unbounded background. In order to extend the method to the presence of a shield in the domain-as in the recurring case of shielded radio frequency coils-a more general formulation of CSI-EPT, based on a functional viewpoint, is introduced here. Two different implementations of CSI-EPT are proposed for a 2-D transverse magnetic model problem, one dealing with an unbounded domain and one considering the presence of a perfectly conductive shield. The two implementations are applied on the same virtual measurements obtained by numerically simulating a shielded radio frequency coil. The results are compared in terms of both electric properties recovery and local specific absorption rate estimate, in order to investigate the requirement of an accurate modeling of the underlying physical problem.
Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels
Yue, Kan; Santiago, Grissel Trujillo-de; Alvarez, Mario Moisés; Tamayol, Ali; Annabi, Nasim; Khademhosseini, Ali
2015-01-01
Gelatin methacryloyl (GelMA) hydrogels have been widely used for various biomedical applications due to their suitable biological properties and tunable physical characteristics. Three dimensional (3D) GelMA hydrogels closely resemble some essential properties of native extracellular matrix (ECM) due to the presence of cell-attaching and matrix metalloproteinase responsive peptide motifs, which allow cells to proliferate and spread in GelMA-based scaffolds. GelMA is also versatile from a processing perspective. It crosslinks when exposed to light irradiation to form hydrogels with tunable mechanical properties which mimic the native ECM. It can also be microfabricated using different methodologies including micromolding, photomasking, bioprinting, self-assembly, and microfluidic techniques to generate constructs with controlled architectures. Hybrid hydrogel systems can also be formed by mixing GelMA with nanoparticles such as carbon nanotubes and graphene oxide, and other polymers to form networks with desired combined properties and characteristics for specific biological applications. Recent research has demonstrated the proficiency of GelMA-based hydrogels in a wide range of applications including engineering of bone, cartilage, cardiac, and vascular tissues, among others. Other applications of GelMA hydrogels, besides tissue engineering, include fundamental single-single cell research, cell signaling, drug and gene delivery, and bio-sensing. PMID:26414409
A Review of Injectable Polymeric Hydrogel Systems for Application in Bone Tissue Engineering.
Kondiah, Pariksha J; Choonara, Yahya E; Kondiah, Pierre P D; Marimuthu, Thashree; Kumar, Pradeep; du Toit, Lisa C; Pillay, Viness
2016-11-21
Biodegradable, stimuli-responsive polymers are essential platforms in the field of drug delivery and injectable biomaterials for application of bone tissue engineering. Various thermo-responsive hydrogels display water-based homogenous properties to encapsulate, manipulate and transfer its contents to the surrounding tissue, in the least invasive manner. The success of bioengineered injectable tissue modified delivery systems depends significantly on their chemical, physical and biological properties. Irrespective of shape and defect geometry, injectable therapy has an unparalleled advantage in which intricate therapy sites can be effortlessly targeted with minimally invasive procedures. Using material testing, it was found that properties of stimuli-responsive hydrogel systems enhance cellular responses and cell distribution at any site prior to the transitional phase leading to gelation. The substantially hydrated nature allows significant simulation of the extracellular matrix (ECM), due to its similar structural properties. Significant current research strategies have been identified and reported to date by various institutions, with particular attention to thermo-responsive hydrogel delivery systems, and their pertinent focus for bone tissue engineering. Research on future perspective studies which have been proposed for evaluation, have also been reported in this review, directing considerable attention to the modification of delivering natural and synthetic polymers, to improve their biocompatibility and mechanical properties.
[Compression treatment for burned skin].
Jaafar, Fadhel; Lassoued, Mohamed A; Sahnoun, Mahdi; Sfar, Souad; Cheikhrouhou, Morched
2012-02-01
The regularity of a compressive knit is defined as its ability to perform its function in a burnt skin. This property is essential to avoid the phenomenon of rejection of the material or toxicity problems But: Make knits biocompatible with high burnet of human skin. We fabric knits of elastic material. To ensure good adhesion to the skin, we made elastic material, typically a tight loop knitted. The Length of yarn absorbed by stitch and the raw matter are changed with each sample. The physical properties of each sample are measured and compared. Surface modifications are made to these samples by impregnation of microcapsules based on jojoba oil. Knits are compressif, elastic in all directions, light, thin, comfortable, and washable for hygiene issues. In addition, the washing can find their compressive properties. The Jojoba Oil microcapsules hydrated the human burnet skin. This moisturizer is used to the firmness of the wound and it gives flexibility to the skin. Compressive Knits are biocompatible with burnet skin. The mixture of natural and synthetic fibers is irreplaceable in terms comfort and regularity.
A New Way to Measure Cirrus Ice Water Content by Using Ice Raman Scatter with Raman Lidar
NASA Technical Reports Server (NTRS)
Wang, Zhien; Whiteman, David N.; Demoz, Belay; Veselovskii, Igor
2004-01-01
High and cold cirrus clouds mainly contain irregular ice crystals, such as, columns, hexagonal plates, bullet rosettes, and dendrites, and have different impacts on the climate system than low-level clouds, such as stratus, stratocumulus, and cumulus. The radiative effects of cirrus clouds on the current and future climate depend strongly on cirrus cloud microphysical properties including ice water content (IWC) and ice crystal sizes, which are mostly an unknown aspect of cinus clouds. Because of the natural complexity of cirrus clouds and their high locations, it is a challenging task to get them accurately by both remote sensing and in situ sampling. This study presents a new method to remotely sense cirrus microphysical properties by using ice Raman scatter with a Raman lidar. The intensity of Raman scattering is fundamentally proportional to the number of molecules involved. Therefore, ice Raman scattering signal provides a more direct way to measure IWC than other remote sensing methods. Case studies show that this method has the potential to provide essential information of cirrus microphysical properties to study cloud physical processes in cirrus clouds.
NASA Astrophysics Data System (ADS)
Yuan, Duanduan; Jin, Shifeng; Liu, Ning; Shen, Shijie; Lin, Zhiping; Li, Kunkun; Chen, Xiaolong
2017-03-01
We report that Fe3GeTe2 can form a wide solid solution by substitution of As for Ge, providing an opportunity to tune the magnetic and electronic properties in this 2D material. The crystal structure, physical properties and electronic structure of iron-deficient solid solution Fe3-y Ge1-x As x Te2 (0 ⩽ x ⩽ 0.85) are studied. We found that the Curie temperature can substantially change from 177 K to 33 K and resistivity decreases by about 30% with the arsenic doping x from 0 to 0.85. First principles calculations demonstrate that the elongation of Fe(1)-Fe(1) dumb-bells along c axis is essentially responsible for decreasing the integrated spin density of states below Fermi level and weakening spin polarization, resulting in a decrease of Curie temperature. Our study reveals the magnetism manipulation can be realized via modification of bondlengths in 2D magnetic materials.
Najafi, Ebrahim; Liao, Bolin; Scarborough, Timothy; Zewail, Ahmed
2018-01-01
Understanding the mechanical properties of organic semiconductors is essential to their electronic and photovoltaic applications. Despite a large volume of research directed toward elucidating the chemical, physical and electronic properties of these materials, little attention has been directed toward understanding their thermo-mechanical behavior. Here, we report the ultrafast imaging of surface acoustic waves (SAWs) on the surface of the Poly(3-hexylthiophene-2,5-diyl) (P3HT) thin film at the picosecond and nanosecond timescales. We then use these images to measure the propagation velocity of SAWs, which we then employ to determine the Young's modulus of P3HT. We further validate our experimental observation by performing a semi-empirical transient thermoelastic finite element analysis. Our findings demonstrate the potential of ultrafast electron microscopy to not only probe charge carrier dynamics in materials as previously reported, but also to measure their mechanical properties with great accuracy. This is particularly important when in situ characterization of stiffness for thin devices and nanomaterials is required. Copyright © 2017 Elsevier B.V. All rights reserved.
Role of the Z band in the mechanical properties of the heart.
Goldstein, M A; Schroeter, J P; Michael, L H
1991-05-01
In striated muscle the mechanism of contraction involves the cooperative movement of contractile and elastic components. This review emphasizes a structural approach that describes the cellular and extracellular components with known anatomical, biochemical, and physical properties that make them candidates for these contractile and elastic components. Classical models of contractile and elastic elements and their underlying assumptions are presented. Mechanical properties of cardiac and skeletal muscle are compared and contrasted and then related to ultrastructure. Information from these approaches leads to the conclusion that the Z band is essential for muscle contraction. Our review of Z band structure shows the Z band at the interface where extracellular components meet the cell surface. The Z band is also the interface from cell surface to myofibril, from extra-myofibrillar to myofibril, and finally from sarcomere to sarcomere. Our studies of Z band in defined physiologic states show that this lattice is an integral part of the contractile elements and can function as an elastic component. The Z band is a complex dynamic lattice uniquely suited to play several roles in muscle contraction.
NASA Astrophysics Data System (ADS)
Xia, Xiuli; Shao, Yuanzhi
2018-02-01
We report the magneto-electric behavior of a dual-modality biomedical nanoprobe, a ternary nanosystem consisting of gold and gadolinia clusters and water molecules, with the effect of both nanoclusters on the structural and electronic properties of water. The hydrogen-oxygen bond lengths and angles as well as electronic charges of water molecules surrounding both nanoclusters were calculated using Hubbard U corrected density functional theory aided by molecular dynamics approach. The calculations reveal existence of a magneto-electric interaction between gold and gadolinium oxide nanoclusters, which influences the physical properties of surrounding water remarkably. A broader (narrower) distribution of Hsbnd O bond lengths (Hsbnd Osbnd H bond angles) was observed at the presence of either gold or gadolinia nanoclusters. The presence of Gd6O9 cluster leads to the larger charges of neighbour oxygen atoms. The distribution of oxygen atom charges becomes border when both Gd6O9 and Au13 clusters coexist. Ab initio calculation provides a feasible approach to explore the most essential interactions among functional components of a multimodal nanoprobe applied in aqueous environment.
2013-01-01
Background In the last years essential oils from different plants were used in the prevention of fungi and mycotoxins accumulation in cereals. The most attractive aspect derived from using of essential oils as seed grains protectants is due to their non-toxicity. This study was focused on assessment the inhibitory effect of some essential oils: Melissa officinalis (O1), Salvia officinalis (O2), Coriandrum sativum (O3), Thymus vulgaris (O4) Mentha piperita (O5) and Cinnamomum zeylanicum (O6) against natural mycoflora and Fusarium mycotoxins production correlated with their antioxidants properties. Results All essential oils showed inhibitory effect on fungal contamination of wheat seeds. This ability was dose-dependent. The highest inhibitory effect on Fusarium and Aspergillus fungi was recorded after 5 days of treatment. Fungi such as yeast (Pichia, Saccharomyces and Hyphopichia) were predominantly on seeds mycoflora after 22 days. Each treatment had a selective inhibitory effect on frequency of fungus genera. After 5 days of treatment the most fungicidal effect was recorder for O4, followed by O1. In terms of essential oils effect on mycotoxins development, the best control on fumonisins (FUMO) production was recorded for O6. The antioxidant properties of essential oils decreased in order: O4 > O1 > O6 > O5 > O2 > O3. Also, our data suggested that there is a significant negative correlation between antioxidant properties and seed contamination index (SCI), but there was not recorded a good correlation between antioxidant properties and FUMO content. Conclusions Based on proven antifungal and antimycotoxin effects as well as their antioxidant properties, the essential oils could be recommended as natural preservatives for stored cereals. The highest inhibition of fungal growth was noted after 5 days of treatment and decreased after 22 days. PMID:23409841
Sumalan, Renata-Maria; Alexa, Ersilia; Poiana, Mariana-Atena
2013-02-14
In the last years essential oils from different plants were used in the prevention of fungi and mycotoxins accumulation in cereals. The most attractive aspect derived from using of essential oils as seed grains protectants is due to their non-toxicity. This study was focused on assessment the inhibitory effect of some essential oils: Melissa officinalis (O1), Salvia officinalis (O2), Coriandrum sativum (O3), Thymus vulgaris (O4) Mentha piperita (O5) and Cinnamomum zeylanicum (O6) against natural mycoflora and Fusarium mycotoxins production correlated with their antioxidants properties. All essential oils showed inhibitory effect on fungal contamination of wheat seeds. This ability was dose-dependent. The highest inhibitory effect on Fusarium and Aspergillus fungi was recorded after 5 days of treatment. Fungi such as yeast (Pichia, Saccharomyces and Hyphopichia) were predominantly on seeds mycoflora after 22 days. Each treatment had a selective inhibitory effect on frequency of fungus genera. After 5 days of treatment the most fungicidal effect was recorder for O4, followed by O1. In terms of essential oils effect on mycotoxins development, the best control on fumonisins (FUMO) production was recorded for O6. The antioxidant properties of essential oils decreased in order: O4 > O1 > O6 > O5 > O2 > O3. Also, our data suggested that there is a significant negative correlation between antioxidant properties and seed contamination index (SCI), but there was not recorded a good correlation between antioxidant properties and FUMO content. Based on proven antifungal and antimycotoxin effects as well as their antioxidant properties, the essential oils could be recommended as natural preservatives for stored cereals. The highest inhibition of fungal growth was noted after 5 days of treatment and decreased after 22 days.
Tavakolpour, Yousef; Moosavi-Nasab, Marzieh; Niakousari, Mehrdad; Haghighi-Manesh, Soroush
2016-03-01
The essential oil (EO) from dried ground powder leaves and stems of Thymua danesis was extracted using hydrodistillation (HD), ohmic extraction (OE), ultrasound-assisted HD and ultrasound-assisted OE methods. Then, the antioxidant, antimicrobial, and sensory properties of the EO were investigated both in vitro and in food systems. Thyme EO extracted by ultrasound-assisted HD method had promising antibacterial activities against Escherichia coli and Staphylococcus aureus and had the best antioxidant properties when tested in vitro. In food systems, higher concentrations of the EO were needed to exert similar antibacterial and antioxidant effects. Furthermore, thyme EO added yogurt and drink yogurt revealed better sensory properties than the control and fresh samples. Essential oil from Thymua danesis has a good potential to be used as an antioxidant, antimicrobial, and flavoring agent in food systems and the extraction method effects on the antioxidant and antimicrobial properties of the thyme extract.
Code of Federal Regulations, 2010 CFR
2010-07-01
... consideration the economic and technical feasibility of each project. (a) Preservation. (1) A property will be... related new construction will be undertaken in such a manner that, if removed in the future, the essential... such reconstruction is essential to the public understanding of the property. (2) Reconstruction of a...
2011-01-01
Background Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data. Results Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus. Conclusions The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases. PMID:21255393
Generator Set Durability Testing Using 25% ATJ Fuel Blend
2016-02-01
Table Page Table 1. Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 3 Table 2... Chemical & Physical Properties of Evaluated 25% ATJ Blend .................................................... 4 Table 3. Chemical & Physical...Properties of Evaluated 25% ATJ Blend .................................................... 5 Table 4. Chemical & Physical Properties of Evaluated 25
Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-01-01
Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis. PMID:26374384
Huang, Nan; Sun, Chao; Zhu, Mingwei; Zhang, Bin; Gong, Jun; Jiang, Xin
2011-07-01
ZnO:Al thin films with Al incorporation of 0-20 at.% were deposited through the sol-gel technique. Such a film undergoes a significant microstructure development, from columnar to granular structures and then nanorod arrays with increasing Al content. The important role of Al incorporation level in the microstructure evolution was determined using scanning electron microscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. At low Al level, the transition from columnar to granular grains can be attributed to the coarsening barrier resulting from the introduction of Al into the matrix. However, oriented structures of ZnO nanorod arrays are formed at a high Al level. TEM investigation reveals that a nanorod with smooth morphology at the top and rough morphology at the bottom has a single-crystalline wurtzite structure, which is the aggregation of nanoparticles of a few nanometers in size formed through the orientation attachment mechanism followed by epitaxial growth on the aggregated particles. Finally, the physical properties of the ZnO films with different degrees of Al concentration are discussed. Such detailed microstructure studies may aid the understanding of the doping effect process on the growth of a film, which is essential to altering its physical or chemical properties.
Adsorption of poly(ethylene succinate) chain onto graphene nanosheets: A molecular simulation.
Kelich, Payam; Asadinezhad, Ahmad
2016-09-01
Understanding the interaction between single polymer chain and graphene nanosheets at local and global length scales is essential for it underlies the mesoscopic properties of polymer nanocomposites. A computational attempt was then performed using atomistic molecular dynamics simulation to gain physical insights into behavior of a model aliphatic polyester, poly(ethylene succinate), single chain near graphene nanosheets, where the effects of the polymer chain length, graphene functionalization, and temperature on conformational properties of the polymer were studied comparatively. Graphene functionalization was carried out through extending the parameters set of an all-atom force field. The results showed a significant conformational transition of the polymer chain from three-dimensional statistical coil, in initial state, to two-dimensional fold, in final state, during adsorption on graphene. The conformational order, overall shape, end-to-end separation statistics, and mobility of the polymer chain were found to be influenced by the graphene functionalization, temperature, and polymer chain length. Furthermore, the polymer chain dynamics mode during adsorption on graphene was observed to transit from normal diffusive to slow subdiffusive mode. The findings from this computational study could shed light on the physics of the early stages of aliphatic polyester chain organization induced by graphene. Copyright © 2016 Elsevier Inc. All rights reserved.
Imai, Misako; Furusawa, Kazuya; Mizutani, Takeomi; Kawabata, Kazushige; Haga, Hisashi
2015-09-16
Substrate physical properties are essential for many physiological events such as embryonic development and 3D tissue formation. Physical properties of the extracellular matrix such as viscoelasticity and geometrical constraints are understood as factors that affect cell behaviour. In this study, we focused on the relationship between epithelial cell 3D morphogenesis and the substrate viscosity. We observed that Madin-Darby Canine Kidney (MDCK) cells formed 3D structures on a viscous substrate (Matrigel). The structures appear as a tulip hat. We then changed the substrate viscosity by genipin (GP) treatment. GP is a cross-linker of amino groups. Cells cultured on GP-treated-matrigel changed their 3D morphology in a substrate viscosity-dependent manner. Furthermore, to elucidate the spatial distribution of the cellular contractile force, localization of mono-phosphorylated and di-phosphorylated myosin regulatory light chain (P-MRLCs) was visualized by immunofluorescence. P-MRLCs localized along the periphery of epithelial sheets. Treatment with Y-27632, a Rho-kinase inhibitor, blocked the P-MRLCs localization at the edge of epithelial sheets and halted 3D morphogenesis. Our results indicate that the substrate viscosity, the substrate deformation, and the cellular contractile forces induced by P-MRLCs play crucial roles in 3D morphogenesis.
NASA Astrophysics Data System (ADS)
Stapp, Henry P.
2012-05-01
Robert Griffiths has recently addressed, within the framework of a `consistent quantum theory' that he has developed, the issue of whether, as is often claimed, quantum mechanics entails a need for faster-than-light transfers of information over long distances. He argues that the putative proofs of this property that involve hidden variables include in their premises some essentially classical-physics-type assumptions that are not entailed by the precepts of quantum mechanics. Thus whatever is proved is not a feature of quantum mechanics, but is a property of a theory that tries to combine quantum theory with quasi-classical features that go beyond what is entailed by quantum theory itself. One cannot logically prove properties of a system by establishing, instead, properties of a system modified by adding properties alien to the original system. Hence Griffiths' rejection of hidden-variable-based proofs is logically warranted. Griffiths mentions the existence of a certain alternative proof that does not involve hidden variables, and that uses only macroscopically described observable properties. He notes that he had examined in his book proofs of this general kind, and concluded that they provide no evidence for nonlocal influences. But he did not examine the particular proof that he cites. An examination of that particular proof by the method specified by his `consistent quantum theory' shows that the cited proof is valid within that restrictive version of quantum theory. An added section responds to Griffiths' reply, which cites general possibilities of ambiguities that might make what is to be proved ill-defined, and hence render the pertinent `consistent framework' ill defined. But the vagaries that he cites do not upset the proof in question, which, both by its physical formulation and by explicit identification, specify the framework to be used. Griffiths confirms the validity of the proof insofar as that pertinent framework is used. The section also shows, in response to Griffiths' challenge, why a putative proof of locality that he has described is flawed.
A discrete element method-based approach to predict the breakage of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Sun, Xin; Xu, Wei
Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less
A discrete element method-based approach to predict the breakage of coal
Gupta, Varun; Sun, Xin; Xu, Wei; ...
2017-08-05
Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been determined by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments, with limited predictive capabilities for new coals and processes. Our work presents a Discrete Element Method (DEM)-based computational approach to model coal particle breakage with experimentally characterized coal physical properties. We also examined the effect of select operating parameters on the breakagemore » behavior of coal particles.« less
NASA Astrophysics Data System (ADS)
Dudnikov, V. A.; Orlov, Yu. S.; Kazak, N. V.; Platunov, M. S.; Ovchinnikov, S. G.
2016-10-01
The features of the characteristics of LnCoO3 cobaltites, where Ln is a rare-earth element, are discussed. Both experiment and theory demonstrate that their essentials are related to the low-spin ground state of cobalt ions. The thermally induced occupation of the excited high-spin state gives rise to peaks in the magnetic susceptibility, specific heat, and thermal expansion, as well as to a smooth insulator-metal transition. The analysis is based both on the data from the current literature concerning LaCoO3 and in many aspects on our own studies of GdCoO3 and La1- x Gd x CoO3 solid solutions.
Characterization of recycled rubber media for hydrogen sulphide (H2S) control.
Wang, Ning; Park, Jaeyoung; Evans, Eric A; Ellis, Timothy G
2014-01-01
Hydrogen sulphide (H2S) adsorption capacities on recycled rubber media, tyre-derived rubber particle (TDRP), and other rubber material (ORM) have been evaluated. As part of the research, densities, moisture contents, and surface properties of TDRP and ORM have been determined. The research team findings show that TDRP and ORM are more particulate in nature and not highly porous-like activated carbon. The characteristics of surface area, pore size, and moisture content support chemisorption on the macrosurface rather than physical adsorption in micropores. For example, moisture content is essential for H2S adsorption on ORM, and an increase in moisture content results in an increase in adsorption capacity.
NASA Astrophysics Data System (ADS)
Li, Jianing; Liu, Kegao; Yuan, Xingdong; Shan, Feihu; Zhang, Bolun; Wang, Zhe; Xu, Wenzhuo; Zhang, Zheng; An, Xiangchen
2017-10-01
The nanoscale quasicrystals (NQs), amorphous and ultrafine nanocrystals (UNs) modified hard composites are produced by laser cladding (LC) of the Ni60A-TiC-NbC-Sb mixed powders on the additive manufacturing (AM) TA1 titanium alloy. The LC technique is favorable to formations of icosahedral quasicrystals (I-phase) with five-fold symmetry due to its rapid cooling and solidification characteristics. The formation mechanism of this I-phase is explained here. Under the actions of NQs, amorphous and UNs, such LC composites exhibited an extremely high micro-hardness. UNs may also intertwin with amorphous, forming yarn-shape materials. This research provides essential theoretical basis to improve the quality of laser-treated composites.
Capillary Assembly of Colloids: Interactions on Planar and Curved Interfaces
NASA Astrophysics Data System (ADS)
Liu, Iris B.; Sharifi-Mood, Nima; Stebe, Kathleen J.
2018-03-01
In directed assembly, small building blocks are assembled into an organized structure under the influence of guiding fields. Capillary interactions provide a versatile route for structure formation. Colloids adsorbed on fluid interfaces distort the interface, which creates an associated energy field. When neighboring distortions overlap, colloids interact to minimize interfacial area. Contact line pinning, particle shape, and surface chemistry play important roles in structure formation. Interface curvature acts like an external field; particles migrate and assemble in patterns dictated by curvature gradients. We review basic analysis and recent findings in this rapidly evolving literature. Understanding the roles of assembly is essential for tuning the mechanical, physical, and optical properties of the structure.
The NEOShield-2 EU Project - The Italian contribution
NASA Astrophysics Data System (ADS)
Ieva, Simone; Dotto, Elisabetta; Mazzotta Epifani, Elena; Di Paola, Andrea; Speziali, Roberto; Cortese, Matteo; Lazzarin, Monica; Bertini, Ivano; Magrin, Sara; Barucci, Maria Antonietta; Perna, Davide; Perozzi, Ettore; Micheli, Marco
2016-04-01
The Near Earth Object (NEO) population comprehends small bodies that periodically approach or intersect the Earth's orbit. NEOs could have possible impacts with the Earth and, whatever the scenario, their physical characterization is essential to define successful mitigation strategies. Moreover, their study is important per se, since they represent the closest remnants of the planetary formation, 4.5 billion years ago, and the knowledge of their physical properties allows us to put constraints on the formation and early evolution of the Solar System. On the basis of these considerations, the NEO population is an important target for ground-based studies. Unfortunately, less than 15% of the 13500 known NEOs has a physical characterization, showing a great diversity - in sizes, shapes, rotational periods, albedos, and composition - and their increasing discovery rate (currently ˜1500 objects/year) makes the situation progressively worse. At a European level, the European Commission promoted the study on NEOs by approving and financing the NEOShield-2 project (2015-2017) in the framework of the Horizon 2020 program. The aims of NEOShield-2 are: i) to study detailed technologies and instruments to conduct close approach missions to NEOs or to undertake mitigation demonstration, and ii) to retrieve the physical properties of a wide number of NEOs, in order to design impact mitigation missions and assess the consequences of an impact on Earth. The Italian contributors to the NEOShield-2 project (INAF-OAR and Padova University) are responsible for the Task 10.2.1 'Colours and Phase function'. The aim of this task is to acquire photometric measurements for a wide sample of NEOs in order to i) perform phase function analysis, ii) retrieve surface colors and iii) obtain a preliminary taxonomical classification. This activity is developed in close collaboration with the ESA SSA NEO Coordination Centre.
NASA Astrophysics Data System (ADS)
2002-11-01
CD-ROM REVIEW (551) Essential Physics BOOK REVIEWS (551) Collins Advanced Science: Physics, 2nd edition Quarks, Leptons and the Big Bang, 2nd edition Do Brilliantly: A2 Physics IGCSE Physics Geophysics in the UK Synoptic Skills in Advanced Physics Flash! The hunt for the biggest explosions in the universe Materials Maths for Advanced Physics
Break for Physical Activity: Incorporating Classroom-Based Physical Activity Breaks into Preschools
ERIC Educational Resources Information Center
Wadsworth, Danielle D.; Robinson, Leah E.; Beckham, Karen; Webster, Kip
2012-01-01
Engaging in moderate-to-vigorous physical activity is essential to lifelong health and wellness. Physical activity behaviors established in early childhood relate to physical activity behaviors in later years. However, research has shown that children are adopting more sedentary behaviors. Incorporating structured and planned physical activity…
Evolution of a beam dynamics model for the transport line in a proton therapy facility
NASA Astrophysics Data System (ADS)
Rizzoglio, V.; Adelmann, A.; Baumgarten, C.; Frey, M.; Gerbershagen, A.; Meer, D.; Schippers, J. M.
2017-12-01
During the conceptual design of an accelerator or beamline, first-order beam dynamics models are essential for studying beam properties. However, they can only produce approximate results. During commissioning, these approximate results are compared to measurements, which will rarely coincide if the model does not include the relevant physics. It is therefore essential that this linear model is extended to include higher-order effects. In this paper, the effects of particle-matter interaction have been included in the model of the transport lines in the proton therapy facility at the Paul Scherrer Institut (PSI) in Switzerland. The first-order models of these beamlines provide an approximated estimation of beam size, energy loss and transmission. To improve the performance of the facility, a more precise model was required and has been developed with opal (Object Oriented Parallel Accelerator Library), a multiparticle open source beam dynamics code. In opal, the Monte Carlo simulations of Coulomb scattering and energy loss are performed seamless with the particle tracking. Beside the linear optics, the influence of the passive elements (e.g., degrader, collimators, scattering foils, and air gaps) on the beam emittance and energy spread can be analyzed in the new model. This allows for a significantly improved precision in the prediction of beam transmission and beam properties. The accuracy of the opal model has been confirmed by numerous measurements.
Physical-chemical property based sequence motifs and methods regarding same
Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX
2008-09-09
A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.
20 CFR 416.1220 - Property essential to self-support; general.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Property essential to self-support; general. 416.1220 Section 416.1220 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY...-support; general. When counting the value of resources an individual (and spouse, if any) has, the value...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
41 CFR 109-1.5107 - Physical protection of personal property.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical protection of personal property. 109-1.5107 Section 109-1.5107 Public Contracts and Property Management Federal Property...-INTRODUCTION 1.51-Personal Property Management Standards and Practices § 109-1.5107 Physical protection of...
Antimicrobial properties of essential oils against Salmonella in organic soil
USDA-ARS?s Scientific Manuscript database
Soil is one of the important sources of preharvest contamination of produce with pathogens. Demand for natural pesticides such as essential oils for organic farming practices has increased. Antimicrobial activity of essential oils in vitro has been documented. The antimicrobial activity of essential...
[Inhibition of oxidation of unsaturated fatty acid methyl esters by essential oils].
Misharina, T A; Alinkina, E S; Vorobjeva, A K; Terenina, M B; Krikunova, N I
2016-01-01
The essential oils from 16 various spice plants were studied as natural antioxidants for the inhibition of autooxidation of polyunsaturated fatty acids methyl esters isolated from linseed oil. The content of methyl oleate, methyl linoleate, and methyl linolenoate after 1, 2, and 4 months of autooxidation were used as criteria to estimate the antioxidant efficiencies of essential oils. In 4 months, 92% of the methyl linolenoate and 79% of the methyl linoleate were oxidized in a control sample of a model system. It was found that the most effective antioxidants were essential oils from clove bud, cinnamon leaves, and oregano. They inhibited autooxidation of methyl linolenoate by 76–85%. The antioxidant properties of these essential oils were due to phenols— eugenol, carvacrol, and thymol. Essential oil from coriander did not contain phenols, but it inhibited methyl linolenoate oxidation by 38%. Essential oils from thyme, savory, mace, lemon, and tea tree inhibited methyl linolenoate oxidation by 17–24%. The other essential oils had no antioxidant properties.
Agricultural utilization of biosolids: A review on potential effects on soil and plant grown.
Sharma, Bhavisha; Sarkar, Abhijit; Singh, Pooja; Singh, Rajeev Pratap
2017-06-01
Environmental and economic implications linked with the proper ecofriendly disposal of modern day wastes, has made it essential to come up with alternative waste management practices that reduce the environmental pressures resulting from unwise disposal of such wastes. Urban wastes like biosolids are loaded with essential plant nutrients. In this view, agricultural use of biosolids would enable recycling of these nutrients and could be a sustainable approach towards management of this hugely generated waste. Therefore biosolids i.e. sewage sludge can serve as an important resource for agricultural utilization. Biosolids are characterized by the occurrence of beneficial plant nutrients (essential elements and micro and macronutrients) which can make help them to work as an effective soil amendment, thereby minimizing the reliance on chemical fertilizers. However, biosolids might contain toxic heavy metals that may limit its usage in the cropland. Heavy metals at higher concentration than the permissible limits may lead to food chain contamination and have fatal consequences. Biosolids amendment in soil can improve physical and nutrient property of soil depending on the quantity and portion of the mixture. Hence, biosolids can be a promising soil ameliorating supplement to increase plant productivity, reduce bioavailability of heavy metals and also lead to effective waste management. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roellig, Mike; Meier, Karsten; Metasch, Rene
2010-11-01
The recent development of 3D-integrated electronic packages is characterized by the need to increase the diversity of functions and to miniaturize. Currently many 3D-integration concepts are being developed and all of them demand new materials, new designs and new processing technologies. The combination of simulation and experimental investigation becomes increasingly accepted since simulations help to shorten the R&D cycle time and reduce costs. Numerical calculations like the Finite-Element-Method are strong tools to calculate stress conditions in electronic packages resulting from thermal strains due to the manufacturing process and environmental loads. It is essential for the application of numerical calculations that the material data is accurate and describes sufficiently the physical behaviour. The developed machine allows the measurement of time and temperature dependent micromechanical properties of solder joints. Solder joints, which are used to mechanically and electrically connect different packages, are physically measured as they leave the process. This allows accounting for process influences, which may change material properties. Additionally, joint sizes and metallurgical interactions between solder and under bump metallization can be respected by this particular measurement. The measurement allows the determination of material properties within a temperature range of 20° C-200° C. Further, the time dependent creep deformation can be measured within a strain-rate range of 10-31/s-10-81/s. Solder alloys based on Sn-Ag/Sn-Ag-Cu with additionally impurities and joint sizes down to O/ 200 μm were investigated. To finish the material characterization process the material model coefficient were extracted by FEM-Simulation to increase the accuracy of data.
Foundations for Gerontological Education.
ERIC Educational Resources Information Center
Johnson, Harold R.; And Others
1980-01-01
Focuses on: (1) components of a basic core of knowledge essential for all people working in the field of aging; (2) knowledge essential for professions related to biomedical science, human services, social and physical environment; and (3) knowledge essential for clinical psychology, nursing, nutrition, and social work. (Author)
Natural wrapping paper from banana (Musa paradisiaca Linn) peel waste with additive essential oils
NASA Astrophysics Data System (ADS)
Widiastuti Agustina, E. S.; Elfi Susanti, V. H.
2018-05-01
The research aimed to produce natural wrapping paper from banana (Musa Paradisiaca Linn.) peel waste with additive essentials oils. The method used in this research was alkalization. The delignification process is done with the use of NaOH 4% at the temperature of 100°C for 1.5 hours. Additive materials in the form of essential oils are added as a preservative and aroma agent, namely cinnamon oil, lemon oil, clove oil and lime oil respectively 2% and 3%. Chemical and physical properties of the produced papers are tested included water content (dry-oven method SNI ISO 287:2010), pH (SNI ISO 6588-1.2010), grammage (SNI ISO 536:2010) and brightness (SNI ISO 2470:2010). Testing results of each paper were compared with commercial wrapping paper. The result shows that the natural paper from banana peel waste with additive essential oil meets the standard of ISO 6519:2016 about Basic Paper for Laminated Plastic Wrapping Paper within the parameter of pH and water content. The paper produced also meet the standard of ISO 8218:2015 about Food Paper and Cardboard within the grammage parameter (high-grade grammage), except the paper with 2% lemon oil. The paper which is closest to the characteristic of commercial wrapping paper is the paper with the additive of 2% cinnamon oil, with pH of 6.95, the water content of 7.14%, grammage of 347.6 gram/m2 and the brightness level of 24.68%.
Manou, I; Bouillard, L; Devleeschouwer, M J; Barel, A O
1998-03-01
The preservative properties of thyme essential oil (3%) with a known composition were evaluated in two types of final formulations, suitable for use as pharmaceutical or cosmetic vehicles, by means of a standard challenge test proposed by the latest European Pharmacopoeia. The required preservation efficacy criteria were satisfied against the bacterial strains, against the yeast in one of the formulations, but not against the mould strain involved in this study. Interactions between the essential oil compounds and other factors present in the final formulation might have influenced the activity of this essential oil, leading to an incomplete satisfaction of the criteria.
Kordsardouei, Habibe; Barzegar, Mohsen; Sahari, Mohamad Ali
2013-01-01
Oxidation of oils has an important effect on nutritional and organoleptic properties of foodstuffs. Nowadays, new tendency has created a necessity to use natural compounds such as essential oils for producing functional foods. In this study, antioxidant, antifungal, and organoleptic properties of Zataria multiflora Boiss. (ZMEO) and Cinnamon zeylanicum essential oils (CZEO) have been checked as two natural preservatives in the cakes. The antioxidant activity of essential oils were determined by measuring thiobarbituric, peroxide, and free fatty acid values of prepared cakes during 60 days storage at 25 ˚C. Antifungal properties of essential oils were determined and given as the ratio of colony number in samples containing ZMEO and CZEO to the control. Different concentrations of essential oils prevented oxidation rate and reducd preliminary and secondary oxidation products compared with butylate hydroxyanisole (BHA (100 and 200 ppm)) and control cakes. Moreover, ZMEO and CZEO at three concentrations (500, 1000, and 1500 ppm) reduced the fungal growth more than samples containing BHA (100 and 200 ppm) and the control. Our results showed that optimum concenteration of ZMEO and CZEO for using in the cakes was 500 ppm therefore it can be replaced instead of synthetic preservatives in foodstuffs.
Physiological optics and physical geometry.
Hyder, D J
2001-09-01
Hermann von Helmholtz's distinction between "pure intuitive" and "physical" geometry must be counted as the most influential of his many contributions to the philosophy of science. In a series of papers from the 1860s and 70s, Helmholtz argued against Kant's claim that our knowledge of Euclidean geometry was an a priori condition for empirical knowledge. He claimed that geometrical propositions could be meaningful only if they were taken to concern the behaviors of physical bodies used in measurement, from which it followed that it was posterior to our acquaintance with this behavior. This paper argues that Helmholtz's understanding of geometry was fundamentally shaped by his work in sense-physiology, above all on the continuum of colors. For in the course of that research, Helmholtz was forced to realize that the color-space had no inherent metrical structure. The latter was a product of axiomatic definitions of color-addition and the empirical results of such additions. Helmholtz's development of these views is explained with detailed reference to the competing work of the mathematician Hermann Grassmann and that of the young James Clerk Maxwell. It is this separation between 1) essential properties of a continuum, 2) supplementary axioms concerning distance-measurement, and 3) the behaviors of the physical apparatus used to realize the axioms, which is definitive of Helmholtz's arguments concerning geometry.
NASA Astrophysics Data System (ADS)
Ilmi, A.; Praseptiangga, D.; Muhammad, D. R. A.
2017-04-01
Cocoa (Theobroma cacao) is one of Indonesia's main commodities with annually increasing production. Chocolates are semi-solid suspensions of fine solid particles in a continuous fat phase. Primary chocolate categories are dark, milk, and white that differs in content of cocoa solid, milk fat, and cocoa butter. Milk chocolate bar is one of the most popular processed cocoa products in Indonesia. Widely cultivated in Indonesia, cinnamon is potential to be developed and is expected to add flavor and taste as well as enhance functional properties of milk chocolate, since it is well-known of its high antioxidant properties. The aim of this study was to determine the effect of cinnamon essential oil addition on the sensory attributes and physicochemical properties of milk chocolate bar. Three formulas of milk chocolate bar with an addition of cinnamon essential oil (0.1%, 0.3%, and 0.5%) were evaluated in this study. Panelists acceptance level decreased with increasing concentrations of cinnamon essential oil added, while moisture content and color analysis results did not show any significantly different for each formula, suggesting that milk chocolate bar with the addition of 0.1% of cinnamon essential oil had the highest level of acceptance and preferences for some of properties evaluated.
Physico-mechanical properties of a brick based with sand of dunes stabilized by hydraulic lime
NASA Astrophysics Data System (ADS)
Djouhri, Mohamed; Bentebba, Mohamed Taher
2017-02-01
Brick establishment is an essential and elementary cell in any construction. In this study, bricks in mortar with sand of dunes (BRSD) were made and submitted to the various trials of characterization. The addition of hydraulic lime according to progressive rates allowed following the influence of the dosage of the latter on the physical characteristics and on the mechanical performances of bricks according to several formulations. The experimental method of formulation is mainly based on the optimization of materials constituting the hydraulic lime and the sand dunes, with the aim of reaching a new composition to enjoy physico-mechanical characteristics wishes. The various realized tries showed that the addition of lime, in a certain interval, possesses an important influence on the physic-mechanical performances of bricks in particular the mechanical resistance and the heat insulation, for a dosage of 30 % of hydraulic lime, the compression resistance of the brick is 8 MPa with a thermal conductivity of 1.7 W/m°C.
Observation of one-way Einstein-Podolsky-Rosen steering
NASA Astrophysics Data System (ADS)
Händchen, Vitus; Eberle, Tobias; Steinlechner, Sebastian; Samblowski, Aiko; Franz, Torsten; Werner, Reinhard F.; Schnabel, Roman
2012-09-01
The distinctive non-classical features of quantum physics were first discussed in the seminal paper by A. Einstein, B. Podolsky and N. Rosen (EPR) in 1935. In his immediate response, E. Schrödinger introduced the notion of entanglement, now seen as the essential resource in quantum information as well as in quantum metrology. Furthermore, he showed that at the core of the EPR argument is a phenomenon that he called steering. In contrast to entanglement and violations of Bell's inequalities, steering implies a direction between the parties involved. Recent theoretical works have precisely defined this property, but the question arose as to whether there are bipartite states showing steering only in one direction. Here, we present an experimental realization of two entangled Gaussian modes of light that in fact shows the steering effect in one direction but not in the other. The generated one-way steering gives a new insight into quantum physics and may open a new field of applications in quantum information.
Challenges and dreams: physics of weak interactions essential to life
Chien, Peter; Gierasch, Lila M.
2014-01-01
Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak “quinary” interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological “glue” that sustains life at a molecular and cellular level. PMID:25368424
Tumour and normal tissue radiobiology in mouse models: how close are mice to mini-humans?
Koontz, Bridget F; Verhaegen, Frank; De Ruysscher, Dirk
2017-01-01
Animal modelling is essential to the study of radiobiology and the advancement of clinical radiation oncology by providing preclinical data. Mouse models in particular have been highly utilized in the study of both tumour and normal tissue radiobiology because of their cost effectiveness and versatility. Technology has significantly advanced in preclinical radiation techniques to allow highly conformal image-guided irradiation of small animals in an effort to mimic human treatment capabilities. However, the biological and physical limitations of animal modelling should be recognized and considered when interpreting preclinical radiotherapy (RT) studies. Murine tumour and normal tissue radioresponse has been shown to vary from human cellular and molecular pathways. Small animal irradiation techniques utilize different anatomical boundaries and may have different physical properties than human RT. This review addresses the difference between the human condition and mouse models and discusses possible strategies for future refinement of murine models of cancer and radiation for the benefit of both basic radiobiology and clinical translation.
NASA Astrophysics Data System (ADS)
Langevin, Dominique; Saint-Jalmes, Arnaud; Marze, Sébastien; Cox, Simon; Hutzler, Stefan; Drenckhan, Wiebke; Weaire, Denis; Caps, Hervé; Vandewalle, Nicolas; Adler, Micheàle; Pitois, Olivier; Rouyer, Florence; Cohen-Addad, Sylvie; Höhler, Reinhard; Ritacco, Hernan
2005-10-01
Foams and foaming pose important questions and problems to the chemical industry. As a material, foam is unusual in being a desired product while also being an unwanted byproduct within industry. Liquid foams are an essential part of gas/liquid contacting processes such as distillation and absorption, but over-production of foam in these processes can lead to downtime and loss of efficiency. Solid polymeric foams, such as polystyrene and polyurethane, find applications as insulation panels in the construction industry. Their combination of low weight and unique elastic/plastic properties make them ideal as packing and cushioning materials. Foams made with proteins are extensively used in the food industry. Despite the fact that foam science is a rapidly maturing field, critical aspects of foam physics and chemistry remain unclear. Several gaps in knowledge were identified to be tackled as the core of this MAP project. In addition, microgravity affords conditions for extending our understanding far beyond the possibilities offered by ground-based investigation. This MAP project addresses the challenges posed by the physics of foams under microgravity.
Optical coherence tomography and confocal microscopy investigations of dental prostheses
NASA Astrophysics Data System (ADS)
Negrutiu, Meda L.; Sinescu, Cosmin; Hughes, Michael; Bradu, Adrian; Rominu, Mihai; Todea, Carmen; Dobre, George; Podoleanu, Adrian
2008-09-01
Dental prostheses are very complex systems, heterogenous in structure, made up from various materials, with different physical properties. An essential question mark is on the physical, chemical and mechanical compatibility between these materials. They have to satisfy high stress requirements as well as esthetic challenges. The masticatory stress may induce fractures of the prostheses, which may be triggered by initial materials defects or by alterations of the technological process. The failures of dental prostheses lead to functional, esthetic and phonetic disturbances which finally render the prosthetic treatment inefficient. The purpose of this study is to evaluate the capability of en-face optical coherence tomography as a possible non-invasive high resolution method in supplying the necessary information on the material defects of dental prostheses and microleakage at prosthetic interfaces. C-scan and B-scan OCT images as well as confocal images are acquired from a large range of samples. Gaps between the dental interfaces and material defects are clearly exposed. We conclude that OCT can successfully be used as a noninvasive analysis method.
Tumour and normal tissue radiobiology in mouse models: how close are mice to mini-humans?
Verhaegen, Frank; De Ruysscher, Dirk
2017-01-01
Animal modelling is essential to the study of radiobiology and the advancement of clinical radiation oncology by providing preclinical data. Mouse models in particular have been highly utilized in the study of both tumour and normal tissue radiobiology because of their cost effectiveness and versatility. Technology has significantly advanced in preclinical radiation techniques to allow highly conformal image-guided irradiation of small animals in an effort to mimic human treatment capabilities. However, the biological and physical limitations of animal modelling should be recognized and considered when interpreting preclinical radiotherapy (RT) studies. Murine tumour and normal tissue radioresponse has been shown to vary from human cellular and molecular pathways. Small animal irradiation techniques utilize different anatomical boundaries and may have different physical properties than human RT. This review addresses the difference between the human condition and mouse models and discusses possible strategies for future refinement of murine models of cancer and radiation for the benefit of both basic radiobiology and clinical translation. PMID:27612010
Imaging energy landscapes with concentrated diffusing colloidal probes
NASA Astrophysics Data System (ADS)
Bahukudumbi, Pradipkumar; Bevan, Michael A.
2007-06-01
The ability to locally interrogate interactions between particles and energetically patterned surfaces provides essential information to design, control, and optimize template directed self-assembly processes. Although numerous techniques are capable of characterizing local physicochemical surface properties, no current method resolves interactions between colloids and patterned surfaces on the order of the thermal energy kT, which is the inherent energy scale of equilibrium self-assembly processes. Here, the authors describe video microscopy measurements and an inverse Monte Carlo analysis of diffusing colloidal probes as a means to image three dimensional free energy and potential energy landscapes due to physically patterned surfaces. In addition, they also develop a consistent analysis of self-diffusion in inhomogeneous fluids of concentrated diffusing probes on energy landscapes, which is important to the temporal imaging process and to self-assembly kinetics. Extension of the concepts developed in this work suggests a general strategy to image multidimensional and multiscale physical, chemical, and biological surfaces using a variety of diffusing probes (i.e., molecules, macromolecules, nanoparticles, and colloids).
Migration of cells in a social context
Vedel, Søren; Tay, Savaş; Johnston, Darius M.; Bruus, Henrik; Quake, Stephen R.
2013-01-01
In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified “cellular traffic rules” and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells. PMID:23251032
Migration of cells in a social context.
Vedel, Søren; Tay, Savaş; Johnston, Darius M; Bruus, Henrik; Quake, Stephen R
2013-01-02
In multicellular organisms and complex ecosystems, cells migrate in a social context. Whereas this is essential for the basic processes of life, the influence of neighboring cells on the individual remains poorly understood. Previous work on isolated cells has observed a stereotypical migratory behavior characterized by short-time directional persistence with long-time random movement. We discovered a much richer dynamic in the social context, with significant variations in directionality, displacement, and speed, which are all modulated by local cell density. We developed a mathematical model based on the experimentally identified "cellular traffic rules" and basic physics that revealed that these emergent behaviors are caused by the interplay of single-cell properties and intercellular interactions, the latter being dominated by a pseudopod formation bias mediated by secreted chemicals and pseudopod collapse following collisions. The model demonstrates how aspects of complex biology can be explained by simple rules of physics and constitutes a rapid test bed for future studies of collective migration of individual cells.
Fully implicit adaptive mesh refinement solver for 2D MHD
NASA Astrophysics Data System (ADS)
Philip, B.; Chacon, L.; Pernice, M.
2008-11-01
Application of implicit adaptive mesh refinement (AMR) to simulate resistive magnetohydrodynamics is described. Solving this challenging multi-scale, multi-physics problem can improve understanding of reconnection in magnetically-confined plasmas. AMR is employed to resolve extremely thin current sheets, essential for an accurate macroscopic description. Implicit time stepping allows us to accurately follow the dynamical time scale of the developing magnetic field, without being restricted by fast Alfven time scales. At each time step, the large-scale system of nonlinear equations is solved by a Jacobian-free Newton-Krylov method together with a physics-based preconditioner. Each block within the preconditioner is solved optimally using the Fast Adaptive Composite grid method, which can be considered as a multiplicative Schwarz method on AMR grids. We will demonstrate the excellent accuracy and efficiency properties of the method with several challenging reduced MHD applications, including tearing, island coalescence, and tilt instabilities. B. Philip, L. Chac'on, M. Pernice, J. Comput. Phys., in press (2008)
Modelling the Impact of Soil Management on Soil Functions
NASA Astrophysics Data System (ADS)
Vogel, H. J.; Weller, U.; Rabot, E.; Stößel, B.; Lang, B.; Wiesmeier, M.; Urbanski, L.; Wollschläger, U.
2017-12-01
Due to an increasing soil loss and an increasing demand for food and energy there is an enormous pressure on soils as the central resource for agricultural production. Besides the importance of soils for biomass production there are other essential soil functions, i.e. filter and buffer for water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these functions have a direct feed back to biogeochemical cycles and climate. To render agricultural production efficient and sustainable we need to develop model tools that are capable to predict quantitatively the impact of a multitude of management measures on these soil functions. These functions are considered as emergent properties produced by soils as complex systems. The major challenge is to handle the multitude of physical, chemical and biological processes interacting in a non-linear manner. A large number of validated models for specific soil processes are available. However, it is not possible to simulate soil functions by coupling all the relevant processes at the detailed (i.e. molecular) level where they are well understood. A new systems perspective is required to evaluate the ensemble of soil functions and their sensitivity to external forcing. Another challenge is that soils are spatially heterogeneous systems by nature. Soil processes are highly dependent on the local soil properties and, hence, any model to predict soil functions needs to account for the site-specific conditions. For upscaling towards regional scales the spatial distribution of functional soil types need to be taken into account. We propose a new systemic model approach based on a thorough analysis of the interactions between physical, chemical and biological processes considering their site-specific characteristics. It is demonstrated for the example of soil compaction and the recovery of soil structure, water capacity and carbon stocks as a result of plant growth and biological activity. Coupling of the observed nonlinear interactions allows for modeling the stability and resilience of soil systems in terms of their essential functions.
Elementary Physical Education and Math Skill Development
ERIC Educational Resources Information Center
DeFrancesco, Charmaine; Casas, Betty
2004-01-01
Physical education programs are essential to holistic development of children, because learning occurs within several domains. In addition to addressing the psychomotor objectives related to physical development, many physical education curriculums include learning objectives geared toward facilitating the cognitive development of children. One…
PREFACE: Nanobiology: from physics and engineering to biology
NASA Astrophysics Data System (ADS)
Nussinov, Ruth; Alemán, Carlos
2006-03-01
Biological systems are inherently nano in scale. Unlike nanotechnology, nanobiology is characterized by the interplay between physics, materials science, synthetic organic chemistry, engineering and biology. Nanobiology is a new discipline, with the potential of revolutionizing medicine: it combines the tools, ideas and materials of nanoscience and biology; it addresses biological problems that can be studied and solved by nanotechnology; it devises ways to construct molecular devices using biomacromolecules; and it attempts to build molecular machines utilizing concepts seen in nature. Its ultimate aim is to be able to predictably manipulate these, tailoring them to specified needs. Nanobiology targets biological systems and uses biomacromolecules. Hence, on the one hand, nanobiology is seemingly constrained in its scope as compared to general nanotechnology. Yet the amazing intricacy of biological systems, their complexity, and the richness of the shapes and properties provided by the biological polymers, enrich nanobiology. Targeting biological systems entails comprehension of how they work and the ability to use their components in design. From the physical standpoint, ultimately, if we are to understand biology we need to learn how to apply physical principles to figure out how these systems actually work. The goal of nanobiology is to assist in probing these systems at the appropriate length scale, heralding a new era in the biological, physical and chemical sciences. Biology is increasingly asking quantitative questions. Quantitation is essential if we are to understand how the cell works, and the details of its regulation. The physical sciences provide tools and strategies to obtain accurate measurements and simulate the information to allow comprehension of the processes. Nanobiology is at the interface of the physical and the biological sciences. Biology offers to the physical sciences fascinating problems, sophisticated systems and a rich repertoire of shapes and materials. Inspection of the protein structure databank illustrates the breadth of scaffolds, shapes and properties that protein molecules and their building blocks can provide. Via a shape-guided self-assembly strategy, these can be put together toward a specific function. Further, by inserting synthetic non-natural residues at judiciously selected positions, or synthetic peptide linkers, we may selectively rigidify the construct, or obtain a totally new world of shapes and scaffolds. Such broadening of the chemical space may lead to an almost unlimited range of nanosystems and architectures. Merging computation with experiment will accelerate nanodesign. Computational modeling will enhance the application of nanotechnology to key areas such as drug delivery and biomaterial design. Nanobiology is a field where interdisciplinary collaborations are essential and disciplines converge. Discipline convergence should enable the quantitation, leading to a better understanding of the regulatory networks within cells and between cells of an organism. These networks dictate how a cell responds to external stimuli, which in turn activate signaling cascades. It should allow the addressing of a broad range of questions on the structure and function of the cytoskeleton; the nuclear envelope; signal transduction by membrane embedded receptors; the nanomechanical properties of the extracellular matrix; nuclear transport; and voltage induced channel gating. For successful nanostructure design, we need to figure out and be able to control the intermolecular associations. For a stable functional construct, there are two key elements: first, the conformations of the building blocks in the designed structure should follow their natural tendencies; and second, the associations should be favorable. Molecules interact through their surfaces. Thus, favorable associations derive from shape complementarity and contributions of the various physical components. Nanobiology is in its infancy. Yet, biology provides an enormous range of engaging and stimulating problems with many in vivo examples of intricate, complex, fascinating biological systems. Understanding, mimicking and controlling the devices which target these processes and which are constructed from these molecules is a tremendous challenge to the converging disciplines in nanobiology.
Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils
NASA Astrophysics Data System (ADS)
Rafiq, M.; Hussain, T.; Abid, S.; Nazir, A.; Masood, R.
2018-03-01
Electrospinning is a well known method for the manufacturing of nanoscale fibers. Electrospun nanofibers have higher surface area to volume ratio and can be used for the incorporation of different materials. Essential oils are well known for their antimicrobial and healing properties since ancient times. The main objective of this study was to develop antibacterial nanofibers by the incorporation of essential oils in sodium alginate/PVA solution. Sodium alginate and PVA have excellent biocompatible properties which are the base of their use in wound care applications. Three different essential oils (cinnamon, clove, and lavender) at three different concentrations (0.5, 1 and 1.5%) were used to optimize the fiber forming conditions during electrospinning and then the desired antibacterial properties were evaluated. Addition of oils in PVA/SA solutions increased the viscosity but reduced the surface tension and conductivity as compared to pure PVA/sodium alginate solution. FTIR Spectra of composite fibers verified the successful incorporation of essential oils in nanofibers through electrospinning. All oil containing samples showed good antibacterial properties against staphylococcus aureus which make them a good replacement of antibiotics. Cinnamon oil loaded nanofibers showed the best results among selected oils regarding the antibacterial properties. Nanofibers with 1.5% cinnamon oil exhibited highest zone of inhabitation of 2.7 cm. Nanofibrous coated cotton gauze showed higher liquid absorptions as compared to simple cotton gauze and potential to be used as wound dressings for its improved liquid absorption and antibacterial activity.
Antioxidant, antimicrobial and toxicological properties of Schinus molle L. essential oils.
Martins, Maria do Rosário; Arantes, Silvia; Candeias, Fátima; Tinoco, Maria Teresa; Cruz-Morais, Júlio
2014-01-01
Schinus molle L. has been used in folk medicine as antibacterial, antiviral, topical antiseptic, antifungal, antioxidant, anti-inflammatory, anti-tumoural as well as antispasmodic and analgesic; however, there are few studies of pharmacological and toxicological properties of Schinus molle essential oils. The aim of this study was to evaluate the antioxidant and antimicrobial activities of Schinus molle leaf and fruit essential oils, correlated with their chemical composition and evaluate their acute toxicity. The chemical composition of Schinus molle leaf and fruit essential oils were evaluated by GC-FID and GC-MS. Antioxidant properties were determined using the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical and β-carotene/linoleic acid methods. Antimicrobial properties were evaluated by the agar disc diffusion method and minimal inhibitory concentration assay. Toxicity in Artemia salina and acute toxicity with behavioural screening in mice were evaluated. The dominant compounds found in leaf and fruit essential oils (EOs) were monoterpene hydrocarbons, namely α-phellandrene, β-phellandrene, β-myrcene, limonene and α-pinene. EOs showed low scavenging antioxidant activity by the DPPH free radical method and a higher activity by the β-carotene/linoleic acid method. Antimicrobial activity of EOs was observed for Gram+, Gram- pathogenic bacteria and food spoilage fungi. EOs showed totoxicity for Artemia salina and lower toxicity in Swiss mice. The result showed that EOs of leaves and fruits of Schinus molle demonstrated antioxidant and antimicrobial properties, suggesting their potential use in food or pharmaceutical industries. © 2013 Published by Elsevier Ireland Ltd.
Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun
2015-06-01
The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.
Measurement in Physical Education. 5th Edition.
ERIC Educational Resources Information Center
Mathews, Donald K.
Concepts of measurement in physical education are presented in this college-level text to enable the preservice physical education major to develop skills in determining pupil status, designing effective physical activity programs, and measuring student progress. Emphasis is placed upon discussion of essential statistical methods, test…
Nanoemulsions of thymol and eugenol co-emulsified by lauric arginate and lecithin.
Ma, Qiumin; Davidson, P Michael; Zhong, Qixin
2016-09-01
Lauric arginate (LAE) is a cationic surfactant with excellent antimicrobial activities. To incorporate essential oil components (EOCs) in aqueous systems, properties of EOC nanoemulsions prepared with a LAE and lecithin mixture were studied. The LAE-lecithin mixture resulted in stable translucent nanoemulsions of thymol and eugenol with spherical droplets smaller than 100nm, contrasting with the turbid emulsions prepared with individual emulsifiers. Zeta-potential data suggested the formation of LAE-lecithin complexes probably through hydrophobic interaction. Negligible difference was observed for antimicrobial activities of nanoemulsions and LAE in tryptic soy broth. In 2% reduced fat milk, nanoemulsions showed similar antilisterial activities compared to free LAE in inhibiting Listeria monocytogenes, but was less effective against Escherichia coli O157:H7 than free LAE, which was correlated with the availability of LAE as observed in release kinetics. Therefore, mixing LAE with lecithin improved the physical properties of EOC nanoemulsions but did not improve antimicrobial activities, especially against Gram-negative bacteria. Copyright © 2016 Elsevier Ltd. All rights reserved.
Derivation of relativistic SEP properties through neutron monitor data modeling
NASA Astrophysics Data System (ADS)
Plainaki, C.; Laurenza, M.; Mavromichalaki, H.; Storini, M.; Gerontidou, M.; Kanellakopoulos, A.; Andriopoulou, M.; Belov, A.; Eroshenko, E.; Yanke, V.
2015-08-01
The Ground Level Enhancement (GLE) data recorded by the worldwide Neutron Monitor (NM) network are useful resources for space weather modeling during solar extreme events. The derivation of Solar Energetic Particles (SEPs) properties through NM-data modeling is essential for the study of solar-terrestrial physics, providing information that cannot be obtained through the exclusive use of space techniques; an example is the derivation of the higher-energy part of the SEP spectrum. We briefly review how the application of the Neutron Monitor Based Anisotropic GLE Pure Power Law (NMBANGLE PPOLA) model (Plainaki et al. 2010), can provide the characteristics of the relativistic SEP flux, at a selected altitude in the Earth's atmosphere, during a GLE. Technically, the model treats the NM network as an integrated omnidirectional spectrometer and solves the inverse problem of the SEP-GLE coupling. As test cases, we present the results obtained for two different GLEs, namely GLE 60 and GLE 71, occurring at a temporal distance of ∼ 11 years.
Near-surface bulk densities of asteroids derived from dual-polarization radar observations
NASA Astrophysics Data System (ADS)
Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.
2017-09-01
We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.
Steady state and a general scale law of deformation
NASA Astrophysics Data System (ADS)
Huang, Yan
2017-07-01
Steady state deformation has been characterized based on the experimental results for dilute single-phase aluminium alloys. It was found that although characteristic properties such as flow stress and grain size remained constant with time, a continuous loss of grain boundaries occurred as an essential feature at steady state. A physical model, which takes into account the activity of grain boundary dislocations, was developed to describe the kinetics of steady state deformation. According to this model, the steady state as a function of strain rate and temperature defines the limit of the conventional grain size and strength relationship, i.e., the Hall-Petch relation holds when the grain size is larger than that at the steady state, and an inverse Hall-Petch relation takes over if grain size is smaller than the steady state value. The transition between the two relationships relating grain size and strength is a phenomenon that depends on deformation conditions, rather than an intrinsic property as generally perceived. A general scale law of deformation is established accordingly.
Microtexture diagnostics of asphalt pavement surfaces
NASA Astrophysics Data System (ADS)
Florková, Zuzana; Pepucha, L.'ubomír
2017-09-01
The microtexture of asphalt pavement surface is an essential parameter from the traffic safety point of view and it closely relates to a geometrical, petrological and physical properties of aggregate particle used in asphalt pavement. Microtexture has a significant influence for assurance basic friction values between tire and pavement in relation to a skid resistance properties. Therefore, the microtexture detecting methods are necessary. The British pendulum tester measurements have been carried out on selected sections of roads with different asphalt surfaces. Individual grains of aggregates were taken from the surface of each section from the sliding path and also from the core sample after the extraction. The laboratory profilometry measurements have been practiced on these aggregate samples and subsequently the surface microtexture was investigated based on commonly used texture characteristics and the filtration approach was applied in calculation process. The results have shown the degradation of microtexture values occurs due to polishing of aggregate under loading from traffic in relation to the type of used aggregate. Some correlation between BPN values and texture characteristics was found.
Interatomic Potentials for Structure Simulation of Alkaline-Earth Cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremin, N.N.; Leonyuk, L.I.; Urusov, V.S.
2001-05-01
A specific potential model of interionic interactions was derived in which the crystal structures of alkaline-earth cuprates were satisfactorily described and some of their physical properties were predicted. It was found that a harmonic three-particle O-Cu-O potential and some Morse-type contributions to the simple Buckingham-type Cu-O repulsive potential enable one to improve essentially the results of crystal structure modeling for cuprates. The obtained potential set seems to be well transferable for different cuprates, despite the variety in linkages of the CuO{sub 4} groups. In the present work this potential set model was applied in the crystal structure modeling for Ca{submore » 2}CuO{sub 3}, CaCuO{sub 2}, SrCuO{sub 3}, (Sr{sub 1.19}Ca{sub 0.73})Cu{sub 2}O{sub 4}, and BaCuO{sub 2}. Some elastic and energetic properties of the compounds under question were predicted.« less
Piwoński, Hubert; Michinobu, Tsuyoshi; Habuchi, Satoshi
2017-01-01
Applications of conjugated polymer nanoparticles (Pdots) for imaging and sensing depend on their size, fluorescence brightness and intraparticle energy transfer. The molecular design of conjugated polymers (CPs) has been the main focus of the development of Pdots. Here we demonstrate that proper control of the physical interactions between the chains is as critical as the molecular design. The unique design of twisted CPs and fine-tuning of the reprecipitation conditions allow us to fabricate ultrasmall (3.0–4.5 nm) Pdots with excellent photostability. Extensive photophysical and structural characterization reveals the essential role played by the packing of the polymer chains in the particles in the intraparticle spatial alignment of the emitting sites, which regulate the fluorescence brightness and the intraparticle energy migration efficiency. Our findings enhance understanding of the relationship between chain interactions and the photophysical properties of CP nanomaterials, providing a framework for designing and fabricating functional Pdots for imaging applications. PMID:28508857
Why is Physics Important to Cancer Research?
NASA Astrophysics Data System (ADS)
Barker, Anna D.
Cancer is increasingly described as a ''disease of the genes'', and while the genome (in fact all of the ``omes'') are important information molecules that drive aspects of the initiation and progression of cancer, they are far from the whole story. Cancer is an extraordinarily complex system (in fact a complex of systems) that occurs in three-dimensional space, across multiple scales - and often over extended periods of time. The most challenging issues that plague the cancer field such as metastasis, cellular heterogeneity and resistance to therapy are in large part more rationally explained in the context of the physics of these systems vs. genomics. For example, the biology of metastasis has been studied extensively for decades with little progress. Metastatic disease depends on cells acquiring (or expressing innate information) new properties that enable and sustain their ability to migrate to distant sites. Developing a fundamental understanding of key cancer processes ranging from metastasis to immunotherapeutic responses requires that physicists (and mathematicians and engineers) be integrated into a new generation of cancer research - period! The presentation will focus on those areas where physics is essential - and the how's and whose of achieving the integration required.
Corrosion processes of physical vapor deposition-coated metallic implants.
Antunes, Renato Altobelli; de Oliveira, Mara Cristina Lopes
2009-01-01
Protecting metallic implants from the harsh environment of physiological fluids is essential to guaranteeing successful long-term use in a patient's body. Chemical degradation may lead to the failure of an implant device in two different ways. First, metal ions may cause inflammatory reactions in the tissues surrounding the implant and, in extreme cases, these reactions may inflict acute pain on the patient and lead to loosening of the device. Therefore, increasing wear strength is beneficial to the performance of the metallic implant. Second, localized corrosion processes contribute to the nucleation of fatigue cracks, and corrosion fatigue is the main reason for the mechanical failure of metallic implants. Common biomedical alloys such as stainless steel, cobalt-chrome alloys, and titanium alloys are prone to at least one of these problems. Vapor-deposited hard coatings act directly to improve corrosion, wear, and fatigue resistances of metallic materials. The effectiveness of the corrosion protection is strongly related to the structure of the physical vapor deposition layer. The aim of this paper is to present a comprehensive review of the correlation between the structure of physical vapor deposition layers and the corrosion properties of metallic implants.
NASA Astrophysics Data System (ADS)
Fedosov, Dmitry
2011-03-01
Computational biophysics is a large and rapidly growing area of computational physics. In this talk, we will focus on a number of biophysical problems related to blood cells and blood flow in health and disease. Blood flow plays a fundamental role in a wide range of physiological processes and pathologies in the organism. To understand and, if necessary, manipulate the course of these processes it is essential to investigate blood flow under realistic conditions including deformability of blood cells, their interactions, and behavior in the complex microvascular network. Using a multiscale cell model we are able to accurately capture red blood cell mechanics, rheology, and dynamics in agreement with a number of single cell experiments. Further, this validated model yields accurate predictions of the blood rheological properties, cell migration, cell-free layer, and hemodynamic resistance in microvessels. In addition, we investigate blood related changes in malaria, which include a considerable stiffening of red blood cells and their cytoadherence to endothelium. For these biophysical problems computational modeling is able to provide new physical insights and capabilities for quantitative predictions of blood flow in health and disease.
NASA Astrophysics Data System (ADS)
Yu, Liuqian; Fennel, Katja; Bertino, Laurent; Gharamti, Mohamad El; Thompson, Keith R.
2018-06-01
Effective data assimilation methods for incorporating observations into marine biogeochemical models are required to improve hindcasts, nowcasts and forecasts of the ocean's biogeochemical state. Recent assimilation efforts have shown that updating model physics alone can degrade biogeochemical fields while only updating biogeochemical variables may not improve a model's predictive skill when the physical fields are inaccurate. Here we systematically investigate whether multivariate updates of physical and biogeochemical model states are superior to only updating either physical or biogeochemical variables. We conducted a series of twin experiments in an idealized ocean channel that experiences wind-driven upwelling. The forecast model was forced with biased wind stress and perturbed biogeochemical model parameters compared to the model run representing the "truth". Taking advantage of the multivariate nature of the deterministic Ensemble Kalman Filter (DEnKF), we assimilated different combinations of synthetic physical (sea surface height, sea surface temperature and temperature profiles) and biogeochemical (surface chlorophyll and nitrate profiles) observations. We show that when biogeochemical and physical properties are highly correlated (e.g., thermocline and nutricline), multivariate updates of both are essential for improving model skill and can be accomplished by assimilating either physical (e.g., temperature profiles) or biogeochemical (e.g., nutrient profiles) observations. In our idealized domain, the improvement is largely due to a better representation of nutrient upwelling, which results in a more accurate nutrient input into the euphotic zone. In contrast, assimilating surface chlorophyll improves the model state only slightly, because surface chlorophyll contains little information about the vertical density structure. We also show that a degradation of the correlation between observed subsurface temperature and nutrient fields, which has been an issue in several previous assimilation studies, can be reduced by multivariate updates of physical and biogeochemical fields.
Origin of Unusual Dependencies of LUMO Levels on Conjugation Length in Quinoidal Fused Oligosiloles
NASA Astrophysics Data System (ADS)
Misawa, Nana; Fujii, Mikiya; Shintani, Ryo; Tsuda, Tomohiro; Nozaki, Kyoko; Yamashita, Koichi
Quinoidal fused oligosiloles, a new family of silicon-bridged π-conjugated compounds, have been synthesized and their physical properties showed a unique trend in their LUMO levels, which become higher with longer π-conjugation. Although this trend was reproduced by the DFT calculations, its origin remained to be discussed. In this work we performed quantum chemical calculations and discovered that the unusual LUMO trend is attributable to the π-frameworks. We elucidated its origin by orbital correlation diagrams based on classical Hückel calculations, essentially. However, LUMO trends cannot fully be explained only by Hückel calculations because of the lack of the consideration of geometries. In the case of quinoidal fused oligosiloles, judging from DFT calculation results, the presence of silole fused structure play an important role in fixing the bond angles of the linear polyenes as an interior angle of siloles, leading to the unusual LUMO behavior. The qualitative but essential understanding of these LUMO trend would provide new insight into molecular design of π-conjugated compounds for tuning their LUMO levels.
Physical properties of forest soils
Charles H. Perry; Michael C. Amacher
2007-01-01
Why Are Physical Properties of the Soil Important? The soil quality indicator, when combined with other data collected by the FIA program, can indicate the current rates of soil erosion, the extent and intensity of soil compaction, and some basic physical properties of the forest floor and the top 20 cm of soil. In this report, two particular physical properties of the...
Llana-Ruiz-Cabello, María; Pichardo, Silvia; Bermudez, José María; Baños, Alberto; Ariza, Juan José; Guillamón, Enrique; Aucejo, Susana; Cameán, Ana M
2018-04-01
Cooked ham is more prone to spoilage than other meat products, making preservation a key step in its commercialisation. One of the most promising preservation strategies is the use of active packaging. Oregano essential oil (OEO) and Proallium® (an Allium extract) have previously been shown to be useful in polylactic acid (PLA)-active films for ready-to-eat salads. The present work aims to study the suitability of polypropylene (PP) films containing OEO and Proallium® in the preservation of cooked ham. Concerning the technological features of the studied material, no significant changes in the mechanical or optical properties of PP films containing the active substances were recorded in comparison to the PP film without extracts. However, films containing both active substances were more flexible than the control film and less strong, highlighting the plasticisation effect of the natural extracts. Moreover, physical properties changed when active substances were added to the film. Incorporation of 4% Proallium® affected the transparency of the film to a higher extent compared to 8% OEO, undergoing decreases in transparency of 40% and 45%, respectively. Moreover, only the film containing the highest amount of OEO (8%) significantly decreased the thickness. Both active substances showed antibacterial properties; however, Proallium®-active films seemed to be more effective against Brochothrix thermosphacta than PP films containing OEO, with all percentages of Proallium® killing the bacterial population present in the ham after 60 days. In addition, materials containing the lowest Proallium® content exhibited higher acceptability by consumers in the sensory analyses with 63-100% willing to purchase, better even than the control package (56-89%). In fact, 2% of Proallium® obtained the best results in the odour study performed by the panellists.
Hyldgaard, Morten; Mygind, Tina; Meyer, Rikke Louise
2012-01-01
Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds’ mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods. PMID:22291693
Hyldgaard, Morten; Mygind, Tina; Meyer, Rikke Louise
2012-01-01
Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds' mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods.
Asensio, Claudia M; Nepote, Valeria; Grosso, Nelson R
2012-09-01
Four commercial varieties of oregano are farmed in Argentina: "Compacto,"Cordobes,"Criollo," y "Mendocino." Oregano essential oil is known for antioxidant properties. The objective of this study was to evaluate changes in the intensities of positive and negative attributes in extra virgin olive oil with addition of essential oil obtained from the 4 Argentinean oregano types. Oregano essential oil was added into olive oil at 0.05% w/w. The samples were stored in darkness and light exposure during 126 d at room temperature. The intensity ratings of fruity, pungency, bitterness, oregano flavor, and rancid flavor were evaluated every 21 d by a trained sensory panel. In general, samples with addition of oregano essential oil in olive oil exhibited higher and lower intensity ratings of positive and negative attributes, respectively, during storage compared with the control samples. The first 2 principal components explained 72.3% of the variability in the olive oil samples. In general, positive attributes of olive oil were highly associated with the addition of oregano essential oil in darkness, whereas rancid flavor was negatively associated with them. Olive oil with oregano "Cordobes" essential oil was oppositely associated with light exposure treatments and negative attribute (rancid flavor) suggesting better performance as natural antioxidant of this essential oil in olive oil. The result of this study showed that the presence of oregano essential oil, specially "Cordobes" type, preserve sensory quality of extra virgin olive oil prolonging the shelf life of this product. Extra virgin olive oil is highly appreciated for its health benefits, taste, and aroma. These properties are an important aspect in this product quality and need to be preserved. The addition of natural additives instead of synthetic ones covers the present trend in food technology. This research showed that the addition of oregano essential oil preserved the intensity ratings of positive attributes in extra virgin olive oil during storage. The essential oil of the oregano variety called "Cordobes" exhibited better protecting effect on sensory properties of olive oil than the other oregano varieties. The addition of oregano essential oil should be considered for the food industry as a natural source of antioxidant additives for preserving sensory properties in extra virgin olive oil and other similar food products. © 2012 Institute of Food Technologists®
Moldicidal properties of seven essential oils
Vina W. Yang; Carol A. Clausen
2006-01-01
When wood and wood products are exposed to moisture during storage, construction or while in-service, mold growth can occur in 24 to 48 hours. Mold growth could be suppressed or prevented if wood was treated with an effective mold inhibitor. The objective of this study was to evaluate the mold inhibiting properties of natural plant extracts such as essential oils....
Quantum Materials at the Nanoscale - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Stephen Lance
The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the fundingmore » period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters; 16 papers in Nature, Nature Physics, Nature Materials, or Nature Communications; 4 papers in Science, and 8 papers in Applied Physics Letters. In this report, we provide some key highlights of the collaborative projects in which the QMN cluster members have been involved since 2007.« less
[Requirements imposed on model objects in microevolutionary investigations].
Mina, M V
2015-01-01
Extrapolation of results of investigations of a model object is justified only within the limits of a set of objects that have essential properties in common with the modal object. Which properties are essential depends on the aim of a study. Similarity of objects emerged in the process of their independent evolution does not prove similarity of ways and mechanisms of their evolution. If the objects differ in their essential properties then extrapolation of results of investigation of an object on another one is risky because it may lead to wrong decisions and, moreover, to the loss of interest to alternative hypotheses. Positions formulated above are considered with the reference to species flocks of fishes, large African Barbus in particular.
Physics and Biology Collaborate to Color the World
ERIC Educational Resources Information Center
Liu, Dennis W. C.
2013-01-01
To understand how life works, it is essential to understand physics and chemistry. Most biologists have a clear notion of where chemistry fits into their life sciences research and teaching. Although we are physical beings, physics does not always find a place in the biology curriculum. Physics informs and enlightens biology in myriad dimensions,…
Apparent rotation properties of space debris extracted from photometric measurements
NASA Astrophysics Data System (ADS)
Šilha, Jiří; Pittet, Jean-Noël; Hamara, Michal; Schildknecht, Thomas
2018-02-01
Knowledge about the rotation properties of space debris objects is essential for the active debris removal missions, accurate re-entry predictions and to investigate the long-term effects of the space environment on the attitude motion change. Different orbital regions and object's physical properties lead to different attitude states and their change over time. Since 2007 the Astronomical Institute of the University of Bern (AIUB) performs photometric measurements of space debris objects. To June 2016 almost 2000 light curves of more than 400 individual objects have been acquired and processed. These objects are situated in all orbital regions, from low Earth orbit (LEO), via global navigation systems orbits and high eccentricity orbit (HEO), to geosynchronous Earth orbit (GEO). All types of objects were observed including the non-functional spacecraft, rocket bodies, fragmentation debris and uncorrelated objects discovered during dedicated surveys. For data acquisition, we used the 1-meter Zimmerwald Laser and Astrometry Telescope (ZIMLAT) at the Swiss Optical Ground Station and Geodynamics Observatory Zimmerwald, Switzerland. We applied our own method of phase-diagram reconstruction to extract the apparent rotation period from the light curve. Presented is the AIUB's light curve database and the obtained rotation properties of space debris as a function of object type and orbit.
The application of PA/CF in stab resistance body armor
NASA Astrophysics Data System (ADS)
Yuan, M. Q.; Liu, Y.; Gong, Z.; Qian, X. M.
2017-06-01
Stab resistance body armor (SRBA) is an essential defensive equipment to protect human body against injuries from stabbing. The conventional SRBAs shared low wearing frequency since they are heavy and poor in flexibility. This paper designed a structured stab-resistance plate using the model of crocodile armor and manufactured using 3D printing technology-laser sintering (LS). CF(Carbon fiber) was applied to enhance the stab resistance properties of SRBA. The effects of the material and structure were analysed through the stab resistance property tests based on the national standard GA68-2008. It is found that the stab resistance property of flat plates sintered by PA powder and PA/CF are both weaker than that of the structured plate. The penetrating depth of PA/CF structured plate is significantly 2-mm-less than the pure PA structured plate. The SEM observations confirmed the conclusion that addition of the CF largely improved the plate stab resistance property. Moreover, using PA/CF structured plate to produce the stab resistance body armor would result in a weight reduction by about 30-40% as compared to the existing SRBA that was made up of metal plates, which could largely reduce the wearer physical burden and improve the wearing frequency.
NASA Astrophysics Data System (ADS)
Chamindu Deepagoda, T. K. K.; Chen Lopez, Jose Choc; Møldrup, Per; de Jonge, Lis Wollesen; Tuller, Markus
2013-10-01
Over the last decade there has been a significant shift in global agricultural practice. Because the rapid increase of human population poses unprecedented challenges to production of an adequate and economically feasible food supply for undernourished populations, soilless greenhouse production systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While there are considerable empirical and theoretical efforts devoted to characterize water retention and aeration substrate properties, a holistic, physically-based approach considering water retention and aeration concurrently is lacking. In this study, the previously developed concept of integral water storage and energy was expanded to dual-porosity substrates and an analog integral oxygen diffusivity parameter was introduced to simultaneously characterize aeration properties of four common soilless greenhouse growth media. Integral parameters were derived for greenhouse crops in general, as well as for tomatoes. The integral approach provided important insights for irrigation management and for potential optimization of substrate properties. Furthermore, an observed relationship between the integral parameters for water availability and oxygen diffusivity can be potentially applied for the design of advanced irrigation and management strategies to ensure stress-free growth conditions, while conserving water resources.
The texture, sensory properties and stability of cookies prepared with wax oleogels.
Yılmaz, Emin; Öğütcü, Mustafa
2015-04-01
Shortening is the essential component of high quality baked foods. Its effects on dough structure formation and the desired final product attributes depend mostly on its solid fat content and β' crystalline polymorphs. Saturated and trans fatty acids present in shortening pose some important negative health considerations. Hence, alternative plastic fats with lower or zero quantity of saturated and trans fatty acids are in high demand. Oleogels are gel networks of liquid edible oils with no trans and very low saturated fatty acids. In this study, sunflower wax (SW) and beeswax (BW) oleogels of hazelnut oil were used in cookie preparation against commercial bakery shortening (CBS) as the control, to compare the textural, sensory and stability properties of the cookies. The basic chemical composition, textural properties, and some physical attributes of the cookies were compared. Sensory texture/flavor profile analysis (T/FPA) and consumer hedonic tests were also accomplished. Furthermore, the changes in cookie texture and stability were monitored during 30 day storage at room temperature. It was found out that in almost all properties, the oleogel cookies resembled CBS cookies. T/FPA results present detailed data for literature. Consumer hedonic scores indicated that oleogel cookies were better than CBS cookies and were also well accepted by consumers. Wax oleogels can be used as cookie shortening successfully.
Barari, Bamdad; Omrani, Emad; Dorri Moghadam, Afsaneh; Menezes, Pradeep L; Pillai, Krishna M; Rohatgi, Pradeep K
2016-08-20
The development of bio-based composites is essential in order to protect the environment while enhancing energy efficiencies. In the present investigation, the plant-derived cellulose nano-fibers (CNFs)/bio-based epoxy composites were manufactured using the Liquid Composite Molding (LCM) process. More specifically, the CNFs with and without chemical modification were utilized in the composites. The curing kinetics of the prepared composites was studied using both the isothermal and dynamic Differential Scanning Calorimetry (DSC) methods. The microstructure as well as the mechanical and tribological properties were investigated on the cured composites in order to understand the structure-property correlations of the composites. The results indicated that the manufactured composites showed improved mechanical and tribological properties when compared to the pure epoxy samples. Furthermore, the chemically modified CNFs reinforced composites outperformed the untreated composites. The surface modification of the fibers improved the curing of the resin by reducing the activation energy, and led to an improvement in the mechanical properties. The CNFs/bio-based epoxy composites form uniform tribo-layer during sliding which minimizes the direct contact between surfaces, thus reducing both the friction and wear of the composites. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Spencer, Matthew Todd
Aerosols affect the lives of people every day. They can decrease visibility, alter cloud formation and cloud lifetimes, change the energy balance of the earth and are implicated in causing numerous health problems. Measuring the physical and chemical properties of aerosols is essential to understand and mitigate any negative impacts that aerosols might have on climate and human health. Aerosol time-of-flight mass spectrometry (ATOFMS) is a technique that measures the size and chemical composition of individual particles in real time. The goal of this dissertation is to develop new and useful approaches for measuring the physical and/or chemical properties of particles using ATOFMS. This has been accomplished using laboratory experiments, ambient field measurements and sometimes comparisons between them. A comparison of mass spectra generated from petrochemical particles was made to light duty vehicle (LDV) and heavy duty diesel vehicle (HDDV) particle mass spectra. This comparison has given us new insight into how to differentiate between particles from these two sources. A method for coating elemental carbon (EC) particles with organic carbon (OC) was used to generate a calibration curve for quantifying the fraction of organic carbon and elemental carbon on particles using ATOFMS. This work demonstrates that it is possible to obtain quantitative chemical information with regards to EC and OC using ATOFMS. The relationship between electrical mobility diameter and aerodynamic diameter is used to develop a tandem differential mobility analyzer-ATOFMS technique to measure the effective density, size and chemical composition of particles. The method is applied in the field and gives new insight into the physical/chemical properties of particles. The size resolved chemical composition of aerosols was measured in the Indian Ocean during the monsoonal transition period. This field work shows that a significant fraction of aerosol transported from India was from biomass burning and appeared to be internally mixed with sulfate which suggests it was cloud processed during transport. Lastly, noble metal nanoparticles are explored as potential matrices for visible wavelength single particle matrix assisted laser desorption/ionization mass spectrometry (VIS-MALDI). This work demonstrates that noble metal nanoparticle matrices can be used for VIS-MALDI analysis.
NASA Astrophysics Data System (ADS)
Abedi, S.; Mashhadian, M.; Noshadravan, A.
2015-12-01
Increasing the efficiency and sustainability in operation of hydrocarbon recovery from organic-rich shales requires a fundamental understanding of chemomechanical properties of organic-rich shales. This understanding is manifested in form of physics-bases predictive models capable of capturing highly heterogeneous and multi-scale structure of organic-rich shale materials. In this work we present a framework of experimental characterization, micromechanical modeling, and uncertainty quantification that spans from nanoscale to macroscale. Application of experiments such as coupled grid nano-indentation and energy dispersive x-ray spectroscopy and micromechanical modeling attributing the role of organic maturity to the texture of the material, allow us to identify unique clay mechanical properties among different samples that are independent of maturity of shale formations and total organic content. The results can then be used to inform the physically-based multiscale model for organic rich shales consisting of three levels that spans from the scale of elementary building blocks (e.g. clay minerals in clay-dominated formations) of organic rich shales to the scale of the macroscopic inorganic/organic hard/soft inclusion composite. Although this approach is powerful in capturing the effective properties of organic-rich shale in an average sense, it does not account for the uncertainty in compositional and mechanical model parameters. Thus, we take this model one step forward by systematically incorporating the main sources of uncertainty in modeling multiscale behavior of organic-rich shales. In particular we account for the uncertainty in main model parameters at different scales such as porosity, elastic properties and mineralogy mass percent. To that end, we use Maximum Entropy Principle and random matrix theory to construct probabilistic descriptions of model inputs based on available information. The Monte Carlo simulation is then carried out to propagate the uncertainty and consequently construct probabilistic descriptions of properties at multiple length-scales. The combination of experimental characterization and stochastic multi-scale modeling presented in this work improves the robustness in the prediction of essential subsurface parameters in engineering scale.
32 CFR 644.140 - Physical protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Physical protection. 644.140 Section 644.140... ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer make provision for the physical protection for all facilities under...
32 CFR 644.140 - Physical protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 4 2013-07-01 2013-07-01 false Physical protection. 644.140 Section 644.140... ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer make provision for the physical protection for all facilities under...
32 CFR 644.140 - Physical protection.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 4 2014-07-01 2013-07-01 true Physical protection. 644.140 Section 644.140... ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer make provision for the physical protection for all facilities under...
32 CFR 644.140 - Physical protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false Physical protection. 644.140 Section 644.140... ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer make provision for the physical protection for all facilities under...
32 CFR 644.140 - Physical protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true Physical protection. 644.140 Section 644.140... ESTATE HANDBOOK Acquisition Acquisition by Leasing § 644.140 Physical protection. It is essential that the Division or District Engineer make provision for the physical protection for all facilities under...
NASA Astrophysics Data System (ADS)
Kelly, Cynthia
2008-04-01
The Manhattan Project transformed the course of American and world history, science, politics and society. If we can read about this in books and watch History Channel documentaries, why do we need to preserve some of the properties of this enormous undertaking? The presentation, ``A History Worth Preserving,'' will address why some of the physical properties need to be preserved and which ones we are struggling to maintain for future generations. The story of this effort begins in 1997 as the Department of Energy was posed to demolish the last remaining Manhattan Project properties at the Los Alamos laboratory. Located deep behind security fences, the ``V Site's'' asbestos-shingled wooden buildings looked like humble garages with over-sized wooden doors. The ``V Site'' properties were almost lost twice, first to bulldozers and then the Cerro Grande fire of 2000. Now, visitors can stand inside the building where J. Robert Oppenheimer and his crew once worked and imagine the Trinity ``gadget'' hanging from its hoist shortly before it ushered in the Atomic Age on July 16, 1945. As Richard Rhodes has commented, we preserve what we value of the physical past because it specifically embodies our social past. But many challenge whether the Manhattan Project properties ought to be preserved. Rather than recognize the Manhattan Project as a great achievement worthy of commemoration, some see it as a regrettable event, producing an instrument to take man's inhumanity to man to extremes. While these divergent views will no doubt persist, the significance of the Manhattan Project in producing the world's first atomic bombs is irrefutable. Preserving some of its tangible remains is essential so that future generations can understand what the undertaking entailed from its humble wooden sheds to enormous first-of-a-kind industrial plants with 125,000 people working in secret and living in frontier-like communities. With continuing pressure for their demolition, what progress has been made in preserving some properties of the Manhattan Project? The presentation will share the handful of remaining properties that we believe are needed to tell the story of the Manhattan Project. It will share our successes, what is still at risk, and the on-going struggle to preserve this history.
NASA Astrophysics Data System (ADS)
Valdes-Abellan, Javier; Jiménez-Martínez, Joaquín; Candela, Lucila; Jacques, Diederik; Kohfahl, Claus; Tamoh, Karim
2017-06-01
The use of non-conventional water (e.g., treated wastewater, desalinated water) for different purposes is increasing in many water scarce regions of the world. Its use for irrigation may have potential drawbacks, because of mineral dissolution/precipitation processes, such as changes in soil physical and hydraulic properties (e.g., porosity, permeability), modifying infiltration and aquifer recharge processes or blocking root growth. Prediction of soil and groundwater impacts is essential for achieving sustainable agricultural practices. A numerical model to solve unsaturated water flow and non-isothermal multicomponent reactive transport has been modified implementing the spatio-temporal evolution of soil physical and hydraulic properties. A long-term process simulation (30 years) of agricultural irrigation with desalinated water, based on a calibrated/validated 1D numerical model in a semi-arid region, is presented. Different scenarios conditioning reactive transport (i.e., rainwater irrigation, lack of gypsum in the soil profile, and lower partial pressure of CO2 (pCO2)) have also been considered. Results show that although boundary conditions and mineral soil composition highly influence the reactive processes, dissolution/precipitation of carbonate species is triggered mainly by pCO2, closely related to plant roots. Calcite dissolution occurs in the root zone, precipitation takes place under it and at the soil surface, which will lead a root growth blockage and a direct soil evaporation decrease, respectively. For the studied soil, a gypsum dissolution up to 40 cm depth is expected at long-term, with a general increase of porosity and hydraulic conductivity.
Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures
Sadan, Maya Bar; Houben, Lothar; Enyashin, Andrey N.; Seifert, Gotthard; Tenne, Reshef
2008-01-01
The characterization of nanostructures down to the atomic scale is essential to understand some physical properties. Such a characterization is possible today using direct imaging methods such as aberration-corrected high-resolution transmission electron microscopy (HRTEM), when iteratively backed by advanced modeling produced by theoretical structure calculations and image calculations. Aberration-corrected HRTEM is therefore extremely useful for investigating low-dimensional structures, such as inorganic fullerene-like particles and inorganic nanotubes. The atomic arrangement in these nanostructures can lead to new insights into the growth mechanism or physical properties, where imminent commercial applications are unfolding. This article will focus on two structures that are symmetric and reproducible. The first structure that will be dealt with is the smallest stable symmetric closed-cage structure in the inorganic system, a MoS2 nanooctahedron. It is investigated by means of aberration-corrected microscopy which allowed validating the suggested DFTB-MD model. It will be shown that structures diverging from the energetically most stable structures are present in the laser ablated soot and that the alignment of the different shells is parallel, unlike the bulk material where the alignment is antiparallel. These findings correspond well with the high-energy synthetic route and they provide more insight into the growth mechanism. The second structure studied is WS2 nanotubes, which have already been shown to have a unique structure with very desirable mechanical properties. The joint HRTEM study combined with modeling reveals new information regarding the chirality of the different shells and provides a better understanding of their growth mechanism. PMID:18838681
Atom by atom: HRTEM insights into inorganic nanotubes and fullerene-like structures.
Bar Sadan, Maya; Houben, Lothar; Enyashin, Andrey N; Seifert, Gotthard; Tenne, Reshef
2008-10-14
The characterization of nanostructures down to the atomic scale is essential to understand some physical properties. Such a characterization is possible today using direct imaging methods such as aberration-corrected high-resolution transmission electron microscopy (HRTEM), when iteratively backed by advanced modeling produced by theoretical structure calculations and image calculations. Aberration-corrected HRTEM is therefore extremely useful for investigating low-dimensional structures, such as inorganic fullerene-like particles and inorganic nanotubes. The atomic arrangement in these nanostructures can lead to new insights into the growth mechanism or physical properties, where imminent commercial applications are unfolding. This article will focus on two structures that are symmetric and reproducible. The first structure that will be dealt with is the smallest stable symmetric closed-cage structure in the inorganic system, a MoS(2) nanooctahedron. It is investigated by means of aberration-corrected microscopy which allowed validating the suggested DFTB-MD model. It will be shown that structures diverging from the energetically most stable structures are present in the laser ablated soot and that the alignment of the different shells is parallel, unlike the bulk material where the alignment is antiparallel. These findings correspond well with the high-energy synthetic route and they provide more insight into the growth mechanism. The second structure studied is WS(2) nanotubes, which have already been shown to have a unique structure with very desirable mechanical properties. The joint HRTEM study combined with modeling reveals new information regarding the chirality of the different shells and provides a better understanding of their growth mechanism.
Unraveling DNA dynamics using atomic force microscopy.
Suzuki, Yuki; Yoshikawa, Yuko; Yoshimura, Shige H; Yoshikawa, Kenichi; Takeyasu, Kunio
2011-01-01
The elucidation of structure-function relationships of biological samples has become important issue in post-genomic researches. In order to unveil the molecular mechanisms controlling gene regulations, it is essential to understand the interplay between fundamental DNA properties and the dynamics of the entire molecule. The wide range of applicability of atomic force microscopy (AFM) has allowed us to extract physicochemical properties of DNA and DNA-protein complexes, as well as to determine their topographical information. Here, we review how AFM techniques have been utilized to study DNA and DNA-protein complexes and what types of analyses have accelerated the understanding of the DNA dynamics. We begin by illustrating the application of AFM to investigate the fundamental feature of DNA molecules; topological transition of DNA, length dependent properties of DNA molecules, flexibility of double-stranded DNA, and capability of the formation of non-Watson-Crick base pairing. These properties of DNA are critical for the DNA folding and enzymatic reactions. The technical advancement in the time-resolution of AFM and sample preparation methods enabled visual analysis of DNA-protein interactions at sub-second time region. DNA tension-dependent enzymatic reaction and DNA looping dynamics by restriction enzymes were examined at a nanoscale in physiological environments. Contribution of physical properties of DNA to dynamics of nucleosomes and transition of the higher-order structure of reconstituted chromatin are also reviewed. Copyright © 2011 John Wiley & Sons, Inc.
Computational study of Drucker-Prager plasticity of rock using microtomography
NASA Astrophysics Data System (ADS)
Liu, J.; Sarout, J.; Zhang, M.; Dautriat, J.; Veveakis, M.; Regenauer-Lieb, K.
2016-12-01
Understanding the physics of rocks is essential for the industry of mining and petroleum. Microtomography provides a new way to quantify the relationship between the microstructure and their mechanical and transport properties. Transport and elastic properties have been studied widely while plastic properties are still poorly understood. In this study, we analyse a synthetic sandstone sample for its up-scaled plastic properties from the micro-scale. The computations are based on the representative volume element (RVE). The mechanical RVE was determined by the upper and lower bound finite element computations of elasticity. By comparing with experimental curves, the parameters of the matrix (solid part), which consists of calcite-cemented quartz grains, were investigated and quite accurate values obtained. Analyses deduced the bulk properties of yield stress, cohesion and the angle of friction of the rock with pores. Computations of a series of models of volume-sizes from 240-cube to 400-cube showed almost overlapped stress-strain curves, suggesting that the mechanical RVE determined by elastic computations is valid for plastic yielding. Furthermore, a series of derivative models were created which have similar structure but different porosity values. The analyses of these models showed that yield stress, cohesion and the angle of friction linearly decrease with the porosity increasing in the range of porosity from 8% to 28%. The angle of friction decreases the fastest and cohesion shows the most stable along with porosity.
NASA Astrophysics Data System (ADS)
Şeker, Cevdet; Hüseyin Özaytekin, Hasan; Negiş, Hamza; Gümüş, İlknur; Dedeoğlu, Mert; Atmaca, Emel; Karaca, Ümmühan
2017-05-01
Sustainable agriculture largely depends on soil quality. The evaluation of agricultural soil quality is essential for economic success and environmental stability in rapidly developing regions. In this context, a wide variety of methods using vastly different indicators are currently used to evaluate soil quality. This study was conducted in one of the most important irrigated agriculture areas of Konya in central Anatolia, Turkey, to analyze the soil quality indicators of Çumra County in combination with an indicator selection method, with the minimum data set using a total of 38 soil parameters. We therefore determined a minimum data set with principle component analysis to assess soil quality in the study area and soil quality was evaluated on the basis of a scoring function. From the broad range of soil properties analyzed, the following parameters were chosen: field capacity, bulk density, aggregate stability, and permanent wilting point (from physical soil properties); electrical conductivity, Mn, total nitrogen, available phosphorus, pH, and NO3-N (from chemical soil properties); and urease enzyme activity, root health value, organic carbon, respiration, and potentially mineralized nitrogen (from biological properties). According to the results, the chosen properties were found as the most sensitive indicators of soil quality and they can be used as indicators for evaluating and monitoring soil quality at a regional scale.
A discrete element method-based approach to predict the breakage of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Varun; Sun, Xin; Xu, Wei
Pulverization is an essential pre-combustion technique employed for solid fuels, such as coal, to reduce particle sizes. Smaller particles ensure rapid and complete combustion, leading to low carbon emissions. Traditionally, the resulting particle size distributions from pulverizers have been informed by empirical or semi-empirical approaches that rely on extensive data gathered over several decades during operations or experiments. However, the predictive capabilities for new coals and processes are limited. This work presents a Discrete Element Method based computational framework to predict particle size distribution resulting from the breakage of coal particles characterized by the coal’s physical properties. The effect ofmore » certain operating parameters on the breakage behavior of coal particles also is examined.« less
Peculiar behavior of magnetoresistance in HgSe single crystal with low electron concentration
NASA Astrophysics Data System (ADS)
Lonchakov, A. T.; Bobin, S. B.; Deryushkin, V. V.; Okulov, V. I.; Govorkova, T. E.; Neverov, V. N.
2018-02-01
Magnetoresistive properties of the single crystal of HgSe with a low electron concentration were studied in a wide range of temperatures and magnetic fields. Some fundamental parameters of the spectrum and scattering of electrons were experimentally determined. Two important features of magnetic transport were found—strong transverse magnetoresistance (MR) and negative longitudinal MR, which can indicate the existence of the topological phase of the Weyl semimetal (WSM) in HgSe. Taking this hypothesis into account, we suggest a modified band diagram of mercury selenide at low electron energies. The obtained results are essential for the deeper understanding of both physics of gapless semiconductors and WSMs—promising materials for various applications in electronics, spintronics, computer, and laser technologies.
Radiation resistant austenitic stainless steel alloys
Maziasz, P.J.; Braski, D.N.; Rowcliffe, A.F.
1987-02-11
An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01 to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties. 4 figs.
Radiation resistant austenitic stainless steel alloys
Maziasz, Philip J.; Braski, David N.; Rowcliffe, Arthur F.
1989-01-01
An austenitic stainless steel alloy, with improved resistance to radiation-induced swelling and helium embrittlement, and improved resistance to thermal creep at high temperatures, consisting essentially of, by weight percent: from 16 to 18% nickel; from 13 to 17% chromium; from 2 to 3% molybdenum; from 1.5 to 2.5% manganese; from 0.01 to 0.5% silicon; from 0.2 to 0.4% titanium; from 0.1 to 0.2% niobium; from 0.1 to 0.6% vanadium; from 0.06 to 0.12% carbon; from 0.01% to 0.03% nitrogen; from 0.03 to 0.08% phosphorus; from 0.005 to 0.01% boron; and the balance iron, and wherein the alloy may be thermomechanically treated to enhance physical and mechanical properties.
NASA Astrophysics Data System (ADS)
Frohlich, Cliff
Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).
The Role of MreB in Escherichia Coli's Cellular Rigidity
NASA Astrophysics Data System (ADS)
Shaevitz, Joshua W.
2009-03-01
Bacteria possess homologs of all three classes of eukaryotic cytoskeletal proteins. These filamentous proteins have been shown to localize proteins essential for a number of cell-biological processes in prokaryotes such as cell growth and division. However, to date, there has been no direct evidence that the cytoskeleton in bacteria bears mechanical loads or can generate physical forces than are used by the cell. I will present evidence from combined fluorescence and force microscopy measurements that MreB, an actin homolog, is responsible for half of Escherichia coli's cellular rigidity. These data support an interpretation in which the cytoskeleton, the peptidoglycan cell wall and a large turgor pressure work together to give gram-negative cells their mechanical properties.
Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States
NASA Astrophysics Data System (ADS)
Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas
2017-11-01
Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.
Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States.
Walschaers, Mattia; Fabre, Claude; Parigi, Valentina; Treps, Nicolas
2017-11-03
Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.
The waveguide laser - A review
NASA Technical Reports Server (NTRS)
Degnan, J. J.
1976-01-01
The present article reviews the fundamental physical principles essential to an understanding of waveguide gas and liquid lasers, and the current technological state of these devices. At the present time, waveguide laser transitions span the visible through submillimeter regions of the wavelength spectrum. The introduction discusses the many applications of waveguide lasers and the wide variety of laser configurations that are possible. Section 1 summarizes the properties of modes in hollow dielectric waveguides of circular, rectangular, and planar cross section. Section 2 considers various approaches to optical feedback including internal and external mirror Fabry-Perot type resonators, hollow waveguide distributed feedback structures, and ring-resonant configurations. Section 3 discusses those aspects of molecular kinetic and laser theory pertinent to the design and optimization of waveguide gas lasers.
Optimal growth entails risky localization in population dynamics
NASA Astrophysics Data System (ADS)
Gueudré, Thomas; Martin, David G.
2018-03-01
Essential to each other, growth and exploration are jointly observed in alive and inanimate entities, such as animals, cells or goods. But how the environment's structural and temporal properties weights in this balance remains elusive. We analyze a model of stochastic growth with time correlations and diffusive dynamics that sheds light on the way populations grow and spread over general networks. This model suggests natural explanations of empirical facts in econo-physics or ecology, such as the risk-return trade-off and the Zipf law. We conclude that optimal growth leads to a localized population distribution, but such risky position can be mitigated through the space geometry. These results have broad applicability and are subsequently illustrated over an empirical study of financial data.
NASA Astrophysics Data System (ADS)
Trofimov, V. A.; Varentsova, S. A.
2016-04-01
Essential limitations of the standard THz Time Domain Spectroscopy (TDS), which lead to false detection of dangerous and neutral substances in commonly used materials, are demonstrated using the physical experiment with chocolate under real conditions as well as with semiconductors under laboratory conditions. To overcome this disadvantage, we propose using the time-dependent spectrum of the THz pulse, transmitted through or reflected from a substance. For quality assessment of the standard substance absorption frequency presence in the signal under analysis, we use time-dependent integral correlation criteria. The influence of aperture placed in front of the sample on spectral properties of silicon wafers with different resistivity is demonstrated as well.
Kordsardouei, Habibe; Barzegar, Mohsen; Sahari, Mohamad Ali
2013-01-01
Objective: Oxidation of oils has an important effect on nutritional and organoleptic properties of foodstuffs. Nowadays, new tendency has created a necessity to use natural compounds such as essential oils for producing functional foods. In this study, antioxidant, antifungal, and organoleptic properties of Zataria multiflora Boiss. (ZMEO) and Cinnamon zeylanicum essential oils (CZEO) have been checked as two natural preservatives in the cakes. Materials and Methods: The antioxidant activity of essential oils were determined by measuring thiobarbituric, peroxide, and free fatty acid values of prepared cakes during 60 days storage at 25 ˚C. Antifungal properties of essential oils were determined and given as the ratio of colony number in samples containing ZMEO and CZEO to the control. Results: Different concentrations of essential oils prevented oxidation rate and reducd preliminary and secondary oxidation products compared with butylate hydroxyanisole (BHA (100 and 200 ppm)) and control cakes. Moreover, ZMEO and CZEO at three concentrations (500, 1000, and 1500 ppm) reduced the fungal growth more than samples containing BHA (100 and 200 ppm) and the control. Conclusion: Our results showed that optimum concenteration of ZMEO and CZEO for using in the cakes was 500 ppm therefore it can be replaced instead of synthetic preservatives in foodstuffs. PMID:25050280
NASA Astrophysics Data System (ADS)
Kamaruddin, Shazlin; Mustapha, Wan Aida Wan; Haiyee, Zaibunnisa Abdul
2018-04-01
The objectives of this study were to compare the properties of moisture content, colour and essential oil compounds between stem and leaves of lemongrass (Cymbopogun citratus). The essential oil was extracted using two different methods which are hydrodistillation and supercritical fluid extraction (SFE). There was no significant difference of moisture content between stem and leaves of lemongrass. The lightness (L) and yellowness (+b) values of the stems were significantly higher (p<0.05) compared to the leaves. The highest yield of essential oil was obtained by extraction using supercritical fluid extraction (SFE) in leaves (˜ 0.7%) by treatment at 1700psi and 50°C. The main compound of extracted essential oil was citral (geranial and neral).
Extraction of Profile Information from Cloud Contaminated Radiances. Appendixes 2
NASA Technical Reports Server (NTRS)
Smith, W. L.; Zhou, D. K.; Huang, H.-L.; Li, Jun; Liu, X.; Larar, A. M.
2003-01-01
Clouds act to reduce the signal level and may produce noise dependence on the complexity of the cloud properties and the manner in which they are treated in the profile retrieval process. There are essentially three ways to extract profile information from cloud contaminated radiances: (1) cloud-clearing using spatially adjacent cloud contaminated radiance measurements, (2) retrieval based upon the assumption of opaque cloud conditions, and (3) retrieval or radiance assimilation using a physically correct cloud radiative transfer model which accounts for the absorption and scattering of the radiance observed. Cloud clearing extracts the radiance arising from the clear air portion of partly clouded fields of view permitting soundings to the surface or the assimilation of radiances as in the clear field of view case. However, the accuracy of the clear air radiance signal depends upon the cloud height and optical property uniformity across the two fields of view used in the cloud clearing process. The assumption of opaque clouds within the field of view permits relatively accurate profiles to be retrieved down to near cloud top levels, the accuracy near the cloud top level being dependent upon the actual microphysical properties of the cloud. The use of a physically correct cloud radiative transfer model enables accurate retrievals down to cloud top levels and below semi-transparent cloud layers (e.g., cirrus). It should also be possible to assimilate cloudy radiances directly into the model given a physically correct cloud radiative transfer model using geometric and microphysical cloud parameters retrieved from the radiance spectra as initial cloud variables in the radiance assimilation process. This presentation reviews the above three ways to extract profile information from cloud contaminated radiances. NPOESS Airborne Sounder Testbed-Interferometer radiance spectra and Aqua satellite AIRS radiance spectra are used to illustrate how cloudy radiances can be used in the profile retrieval process.
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
40 CFR 716.50 - Reporting physical and chemical properties.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...
An Investigation of Tertiary-Level Learning in Some Practical Physics Courses
ERIC Educational Resources Information Center
Wang, Weili; Coll, Richard K.
2005-01-01
Experimental physics is seen as an essential part of tertiary physics education. Students are supposed to develop practical skills and advance from closed "cookbook" experiments to open experiment and design experiment procedures independently. As a consequence tertiary practical physics courses increase in the level of challenge…
Emergency Action Plans in Physical Education
ERIC Educational Resources Information Center
Tanis, Cindy J.; Hebel, Susan L.
2016-01-01
Emergency Action Plans (EAP) are essential to properly manage injuries and illnesses in physical education and sport. However, most literature discusses EAP's in the athletic arena instead of physical education. The purpose of this study was to examine physical education instructors' experiences of student illness and injury, discuss the steps of…
ERIC Educational Resources Information Center
Bowyer, Jessica; Darlington, Ellie
2017-01-01
It is essential that physics undergraduates are appropriately prepared for the mathematical demands of their course. This study investigated physics students' perceptions of post-compulsory mathematics as preparation for their degree course. 494 physics undergraduates responded to an online questionnaire about their experiences of A-level…
Bright-field electron tomography of individual inorganic fullerene-like structures
NASA Astrophysics Data System (ADS)
Bar Sadan, Maya; Wolf, Sharon G.; Houben, Lothar
2010-03-01
Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS2 or MoS2 fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties.Nanotubes and fullerene-like nanoparticles of various inorganic layered compounds have been studied extensively in recent years. Their characterisation on the atomic scale has proven essential for progress in synthesis as well as for the theoretical modelling of their physical properties. We show that with electron tomography it is possible to achieve a reliable reconstruction of the 3D structure of nested WS2 or MoS2 fullerene-like and nanotube structures with sub-nanometre resolution using electron microscopes that are not aberration-corrected. Model-based simulations were used to identify imaging parameters, under which structural features such as the shell structure can be retained in the tomogram reconstructed from bright-field micrographs. The isolation of a particle out of an agglomerate for the analysis of a single structure and its interconnection with other particles is facilitated through the tomograms. The internal structure of the layers within the particle alongside the shape and content of its internal void are reconstructed. The tomographic reconstruction yields insights regarding the growth process as well as structural defects, such as non-continuous layers, which relate to the lubrication properties. Electronic supplementary information (ESI) available: Figs. S1 and S2 and movies S1-S6. See DOI: 10.1039/b9nr00251k
Simulated Space Environment Effects on a Candidate Solar Sail Material
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.
2017-01-01
For long duration missions of solar sail vehicles, the sail material needs to survive the harsh space environment as the degradation of the sail material determines its operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, the effect of simulated space environments of ionizing radiation and thermal aging were investigated. In order to assess some of the potential damage effects on the mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane. The solar sail membrane was exposed to high energy electrons [about 70 keV and 10 nA/cm(exp. 2)], and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by 20 to 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The mechanical properties of a precracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film, will be discussed.
Simulated Space Environment Effects on a Candidate Solar Sail Material
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Bryant, Robert G.; Wilkie, W. Keats; Wadsworth, Heather M.; Craven, Paul D.; Nehls, Mary K.; Vaughn, Jason A.
2017-01-01
For long duration missions of solar sails, the sail material needs to survive harsh space environments and the degradation of the sail material controls operational lifetime. Therefore, understanding the effects of the space environment on the sail membrane is essential for mission success. In this study, we investigated the effect of simulated space environment effects of ionizing radiation, thermal aging and simulated potential damage on mechanical, thermal and optical properties of a commercial off the shelf (COTS) polyester solar sail membrane to assess the degradation mechanisms on a feasible solar sail. The solar sail membrane was exposed to high energy electrons (about 70 keV and 10 nA/cm2), and the physical properties were characterized. After about 8.3 Grad dose, the tensile modulus, tensile strength and failure strain of the sail membrane decreased by about 20 95%. The aluminum reflective layer was damaged and partially delaminated but it did not show any significant change in solar absorbance or thermal emittance. The effect on mechanical properties of a pre-cracked sample, simulating potential impact damage of the sail membrane, as well as thermal aging effects on metallized PEN (polyethylene naphthalate) film will be discussed.
Superstatistical model of bacterial DNA architecture
NASA Astrophysics Data System (ADS)
Bogachev, Mikhail I.; Markelov, Oleg A.; Kayumov, Airat R.; Bunde, Armin
2017-02-01
Understanding the physical principles that govern the complex DNA structural organization as well as its mechanical and thermodynamical properties is essential for the advancement in both life sciences and genetic engineering. Recently we have discovered that the complex DNA organization is explicitly reflected in the arrangement of nucleotides depicted by the universal power law tailed internucleotide interval distribution that is valid for complete genomes of various prokaryotic and eukaryotic organisms. Here we suggest a superstatistical model that represents a long DNA molecule by a series of consecutive ~150 bp DNA segments with the alternation of the local nucleotide composition between segments exhibiting long-range correlations. We show that the superstatistical model and the corresponding DNA generation algorithm explicitly reproduce the laws governing the empirical nucleotide arrangement properties of the DNA sequences for various global GC contents and optimal living temperatures. Finally, we discuss the relevance of our model in terms of the DNA mechanical properties. As an outlook, we focus on finding the DNA sequences that encode a given protein while simultaneously reproducing the nucleotide arrangement laws observed from empirical genomes, that may be of interest in the optimization of genetic engineering of long DNA molecules.
Importance of liquid fragility for energy applications of ionic liquids
NASA Astrophysics Data System (ADS)
Sippel, Pit; Lunkenheimer, Peter; Krohns, Stephan; Thoms, Erik; Loidl, Alois
Ionic liquids (ILs) are salts that are liquid at ambient temperatures. The strong electrostatic forces between their molecular ions result, e.g., in low volatility and high stability for many members of this huge material class. For this reason they bear a high potential for new advancements in applications, e.g., as electrolytes in energy-storage devices such as supercapacitors or batteries, where the ionic conductivity is an essential figure of merit. Most ILs show dynamic properties typical for glassy matter, which dominate many of their physical properties. An important method to study these dynamical glass-properties is dielectric spectroscopy that can access relaxation times of dynamic processes and the conductivity in a broad frequency and temperature range. In the present contribution, we present results on a large variety of ionic liquids showing that the conductivity of ILs depends in a systematic way not only on their glass temperature but also on the so-called fragility, characterizing the non-canonical super-Arrhenius temperature dependence of their ionic mobility. This work was supported by the Deutsche Forschungsgemeinschaft via Research Unit FOR1394 and by the BMBF via ENREKON 03EK3015.
Control of the Pore Texture in Nanoporous Silicon via Chemical Dissolution.
Secret, Emilie; Wu, Chia-Chen; Chaix, Arnaud; Galarneau, Anne; Gonzalez, Philippe; Cot, Didier; Sailor, Michael J; Jestin, Jacques; Zanotti, Jean-Marc; Cunin, Frédérique; Coasne, Benoit
2015-07-28
The surface and textural properties of porous silicon (pSi) control many of its physical properties essential to its performance in key applications such as optoelectronics, energy storage, luminescence, sensing, and drug delivery. Here, we combine experimental and theoretical tools to demonstrate that the surface roughness at the nanometer scale of pSi can be tuned in a controlled fashion using partial thermal oxidation followed by removal of the resulting silicon oxide layer with hydrofluoric acid (HF) solution. Such a process is shown to smooth the pSi surface by means of nitrogen adsorption, electron microscopy, and small-angle X-ray and neutron scattering. Statistical mechanics Monte Carlo simulations, which are consistent with the experimental data, support the interpretation that the pore surface is initially rough and that the oxidation/oxide removal procedure diminishes the surface roughness while increasing the pore diameter. As a specific example considered in this work, the initial roughness ξ ∼ 3.2 nm of pSi pores having a diameter of 7.6 nm can be decreased to 1.0 nm following the simple procedure above. This study allows envisioning the design of pSi samples with optimal surface properties toward a specific process.
NASA Technical Reports Server (NTRS)
Steffen, K.; Abdalati, W.; Stroeve, J.; Nolin, A.; Box, J.; Key, J.; Zwally, J.; Stober, M.; Kreuter, J.
1996-01-01
The proposed research involves the application of multispectral satellite data in combination with ground truth measurements to monitor surface properties of the Greenland Ice Sheet which are essential for describing the energy and mass of the ice sheet. Several key components of the energy balance are parameterized using satellite data and in situ measurements. The analysis has been done for a 6 to 17 year time period in order to analyze the seasonal and interannual variations of the surface processes and the climatology. Our goal was to investigate to what accuracy and over what geographic areas large scale snow properties and radiative fluxes can be derived based upon a combination of available remote sensing and meteorological data sets. For the understanding of the surface processes a field program was designed to collect information on spectral albedo, specular reflectance, soot content, grain size and the physical properties of different snow types. Further, the radiative and turbulent fluxes at the ice/snow surface were monitored for the parameterization and interpretation of the satellite data. Highlights include AVHRR time series and surface based radiation measurements, passive microwave time series, and geodetic results from the ETH/CU camp.
Stability of lime essential oil microparticles produced with protein-carbohydrate blends.
Campelo, Pedro Henrique; Sanches, Edgar Aparecido; Fernandes, Regiane Victória de Barros; Botrel, Diego Alvarenga; Borges, Soraia Vilela
2018-03-01
The objective of this work was to analyze the influence of maltodextrin equivalent dextrose on the lime essential oil reconstitution, storage, release and protection properties. Four treatments were evaluated: whey protein concentrate (WPC), and blends of maltodextrin with dextrose equivalents of 5 (WM5), 10 (WM10) and 20 (WM20). The reconstitution and storage properties of the microparticles (solubility, wettability and density), water kinetics adsorption, sorption isotherms, thermogravimetric properties, controlled release and degradation kinetics of encapsulated lime essential oil were studied to measure the quality of the encapsulated materials. The results of the study indicated that the DE degree influences the characteristics of reconstitution, storage, controlled release and degradation characteristics of encapsulated bioactive compounds. The increase in dextrose equivalent improves microparticle solubility, wettability and density, mainly due to the size of the maltodextrin molecules. The adsorption kinetics and sorption isotherm curves confirmed the increase in the hygroscopicity of maltodextrins with higher degrees of polymerization. The size of the maltodextrin chains influenced the release and protection of the encapsulated lime essential oil. Finally, the maltodextrin polymerization degree can be considered a parameter that will influence the physicochemical properties of microencapsulated food. Copyright © 2017 Elsevier Ltd. All rights reserved.
Uptake and elimination kinetics of metals in soil invertebrates: a review.
Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M
2014-10-01
Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bentayeb, Karim; Vera, Paula; Rubio, Carlos; Nerín, Cristina
2014-04-01
The ORAC assay is applied to measure the antioxidant capacity of foods or dietary supplements. Sometimes, the manufacturers claim antioxidant capacities that may not correspond to the constituents of the product. These statements are sheltered by the general understanding that antioxidants might exhibit synergistic properties, but this is not necessarily true when dealing with ORAC assay values. This contribution applies the ORAC assay to measure the antioxidant capacity of ten essential oils typically added to foodstuffs: citronella, dill, basil, red thyme, thyme, rosemary, oregano, clove and cinnamon. The major components of these essential oils were twenty-one chemicals in total. After a preliminary discrimination, the antioxidant capacity of eugenol, carvacrol, thymol, α-pinene, limonene and linalool was determined. The results showed that 72-115% of the antioxidant capacity of the essential oils corresponded to the addition of the antioxidant capacity of their constituents. Thus, the ORAC assay showed additive properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tongnuanchan, Phakawat; Benjakul, Soottawat; Prodpran, Thummanoon
2012-10-01
Properties of protein-based film from fish skin gelatin incorporated with different citrus essential oils, including bergamot, kaffir lime, lemon and lime (50% based on protein) in the presence of 20% and 30% glycerol were investigated. Films containing 20% glycerol had higher tensile strength (TS) but lower elongation at break (EAB), compared with those prepared with 30% glycerol, regardless of essential oils incorporated (p<0.05). Films incorporated with essential oils, especially from lime, at both glycerol levels showed the lower TS but higher EAB than the control films (without incorporated essential oil) (p<0.05). Water vapour permeability (WVP) of films containing essential oils was lower than that of control films for both glycerol levels (p<0.05). Films with essential oils had varying ΔE(*) (total colour difference), where the highest value was observed in that added with bergamot essential oil (p<0.05). Higher glycerol content increased EAB and WVP but decreased TS of films. Fourier transforms infrared (FTIR) spectra indicated that films added with essential oils exhibited higher hydrophobicity with higher amplitude at wavenumber of 2874-2926 cm(-1) and 1731-1742 cm(-1) than control film. Film incorporated with essential oils exhibited slightly lower thermal degradation resistance, compared to the control film. Varying effect of essential oil on thermal degradation temperature and weight loss was noticeable, but all films prepared using 20% glycerol had higher thermal degradation temperature with lower weight loss, compared with those containing 30% glycerol. Films added with all types of essential oils had rough cross-section, compared with control films, irrespective of glycerol levels. However, smooth surface was observed in all film samples. Film incorporated with lemon essential oil showed the highest ABTS radical scavenging activity and ferric reducing antioxidant power (FRAP) (p<0.05), while the other films had lower activity. Thus, the incorporation of different essential oils and glycerol levels directly affected the properties of gelatin-based film from fish skin. Copyright © 2012 Elsevier Ltd. All rights reserved.
STEAM: a software tool based on empirical analysis for micro electro mechanical systems
NASA Astrophysics Data System (ADS)
Devasia, Archana; Pasupuleti, Ajay; Sahin, Ferat
2006-03-01
In this research a generalized software framework that enables accurate computer aided design of MEMS devices is developed. The proposed simulation engine utilizes a novel material property estimation technique that generates effective material properties at the microscopic level. The material property models were developed based on empirical analysis and the behavior extraction of standard test structures. A literature review is provided on the physical phenomena that govern the mechanical behavior of thin films materials. This survey indicates that the present day models operate under a wide range of assumptions that may not be applicable to the micro-world. Thus, this methodology is foreseen to be an essential tool for MEMS designers as it would develop empirical models that relate the loading parameters, material properties, and the geometry of the microstructures with its performance characteristics. This process involves learning the relationship between the above parameters using non-parametric learning algorithms such as radial basis function networks and genetic algorithms. The proposed simulation engine has a graphical user interface (GUI) which is very adaptable, flexible, and transparent. The GUI is able to encompass all parameters associated with the determination of the desired material property so as to create models that provide an accurate estimation of the desired property. This technique was verified by fabricating and simulating bilayer cantilevers consisting of aluminum and glass (TEOS oxide) in our previous work. The results obtained were found to be very encouraging.
Abnormal metabolism of glycogen phosphate as a cause for Lafora disease.
Tagliabracci, Vincent S; Girard, Jean Marie; Segvich, Dyann; Meyer, Catalina; Turnbull, Julie; Zhao, Xiaochu; Minassian, Berge A; Depaoli-Roach, Anna A; Roach, Peter J
2008-12-05
Lafora disease is a progressive myoclonus epilepsy with onset in the teenage years followed by neurodegeneration and death within 10 years. A characteristic is the widespread formation of poorly branched, insoluble glycogen-like polymers (polyglucosan) known as Lafora bodies, which accumulate in neurons, muscle, liver, and other tissues. Approximately half of the cases of Lafora disease result from mutations in the EPM2A gene, which encodes laforin, a member of the dual specificity protein phosphatase family that is able to release the small amount of covalent phosphate normally present in glycogen. In studies of Epm2a(-/-) mice that lack laforin, we observed a progressive change in the properties and structure of glycogen that paralleled the formation of Lafora bodies. At three months, glycogen metabolism remained essentially normal, even though the phosphorylation of glycogen has increased 4-fold and causes altered physical properties of the polysaccharide. By 9 months, the glycogen has overaccumulated by 3-fold, has become somewhat more phosphorylated, but, more notably, is now poorly branched, is insoluble in water, and has acquired an abnormal morphology visible by electron microscopy. These glycogen molecules have a tendency to aggregate and can be recovered in the pellet after low speed centrifugation of tissue extracts. The aggregation requires the phosphorylation of glycogen. The aggregrated glycogen sequesters glycogen synthase but not other glycogen metabolizing enzymes. We propose that laforin functions to suppress excessive glycogen phosphorylation and is an essential component of the metabolism of normally structured glycogen.
NASA Astrophysics Data System (ADS)
Paredes, Virginia; Salvagni, Emiliano; Rodríguez-Castellón, Enrique; Manero, José María
2017-08-01
Metals are widely employed for many biological artificial replacements, and it is known that the quality and the physical/chemical properties of the surface are crucial for the success of the implant. Therefore, control over surface implant materials and their elastic moduli may be crucial to avoid undesired effects. In this study, surface modification upon cleaning and activation of a low elastic modulus Ti alloy (Ti25Hf21Nb) was investigated. Two different methods, oxygen plasma (OP) cleaning and piranha (PI) solution, were studied and compared. Both surface treatments were effective for organic contaminant removal and to increase the Ti-oxide layer thickness rather than other metal-oxides present at the surface, which is beneficial for biocompatibility of the material. Furthermore, both techniques drastically increased hydrophilicity and introduced oxidation and hydroxylation (OH)-functional groups at the surface that may be beneficial for further chemical modifications. However, these treatments did not alter the surface roughness and bulk material properties. The surfaces were fully characterized in terms of surface roughness, wettability, oxide layer composition, and hydroxyl surface density through analytical techniques (interferometry, X-ray photoelectron spectroscopy (XPS), contact angle, and zinc complexation). These findings provide essential information when planning surface modifications for cleanliness, oxide layer thickness, and surface hydroxyl density, as control over these factors is essential for many applications, especially in biomaterials.
Engineering design constraints of the lunar surface environment
NASA Technical Reports Server (NTRS)
Morrison, D. A.
1992-01-01
Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.
Engineering design constraints of the lunar surface environment
NASA Astrophysics Data System (ADS)
Morrison, D. A.
1992-02-01
Living and working on the lunar surface will be difficult. Design of habitats, machines, tools, and operational scenarios in order to allow maximum flexibility in human activity will require paying attention to certain constraints imposed by conditions at the surface and the characteristics of lunar material. Primary design drivers for habitat, crew health and safety, and crew equipment are: ionizing radiation, the meteoroid flux, and the thermal environment. Secondary constraints for engineering derive from: the physical and chemical properties of lunar surface materials, rock distributions and regolith thicknesses, topography, electromagnetic properties, and seismicity. Protection from ionizing radiation is essential for crew health and safety. The total dose acquired by a crew member will be the sum of the dose acquired during EVA time (when shielding will be least) plus the dose acquired during time spent in the habitat (when shielding will be maximum). Minimizing the dose acquired in the habitat extends the time allowable for EVA's before a dose limit is reached. Habitat shielding is enabling, and higher precision in predicting secondary fluxes produced in shielding material would be desirable. Means for minimizing dose during a solar flare event while on extended EVA will be essential. Early warning of the onset of flare activity (at least a half-hour is feasible) will dictate the time available to take mitigating steps. Warning capability affects design of rovers (or rover tools) and site layout. Uncertainty in solar flare timing is a design constraint that points to the need for quickly accessible or constructible safe havens.
NASA Astrophysics Data System (ADS)
Utami, R.; Kawiji; Khasanah, L. U.; Solikhah, R.
2018-03-01
The aim of this study was to determine the effect of edible coating enriched with kaffir lime (Citrus hystrix DC) leaves essential oil at various concentration on beef sausage quality during frozen storage (-18°±2°C). The concentration of kaffir lime leaves essential oil enriched in edible coating were varied at 0%; 0.2%; 1.4%. Microbiological, physical and chemical characteristics (TPC, color, TBA, TVB, and pH) were investigated at 0, 1, 2, 3, and 4 months of storage. The result showed that edible coating with the addition of kaffir lime leaves essential oils decreased the microbial growth, TVB value, and TBA value of beef sausage. The color and pH of samples can be stabilized during storage. The selected kaffir lime leaves essential oil concentrations based on microbial, physical, and chemical characteristics of beef sausages during frozen storage at -18°C was 0.2%.
Anti-biofilm properties of Satureja hortensis L. essential oil against periodontal pathogens.
Gursoy, Ulvi Kahraman; Gursoy, Mervi; Gursoy, Orhan Vedat; Cakmakci, Lutfu; Könönen, Eija; Uitto, Veli-Jukka
2009-08-01
Essential oils of several plants are widely used in ethnomedicine for their antimicrobial and anti-inflammatory properties. However, very limited data exist on their use in connection to periodontal diseases. The aim of the present study was to investigate the bacterial growth inhibiting and anti-biofilm effects of Satureja hortensis L. (summer savory), Salvia fruticosa M. (sage), Lavandula stoechas L. (lavender), Myrtus communis L., and Juniperus communis L. (juniper) essential oils. Chemical compositions of the essential oils were analyzed by gas chromatography-mass spectrometry, minimum inhibitor concentrations (MICs) with the agar dilution method, and anti-biofilm effects by the microplate biofilm assay. The toxicity of each essential oil was tested on cultured keratinocytes. Of the 5 essential oils, S. hortensis L. essential oil had the strongest growth inhibition effect. Subinhibitory dose of S. hortensis L. essential oil had anti-biofilm effects only against Prevotella nigrescens. Essential oils did not inhibit keratinocyte viability at the concentrations of 1 and 5 microl/ml, however at the concentration of 5 microl/ml epithelial cells detached from the culture well bottom. The present findings suggest that S. hortensis L. essential oil inhibits the growth of periodontal bacteria in the concentration that is safe on keratinocytes, however, in the subinhibitory concentration its anti-biofilm effect is limited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, Roger E; Nordlund, Kai; Melerba, L
The processes that give rise to changes in the microstructure and the physical and mechanical properties of materials exposed to energetic particles are initiated by essentially elastic collisions between atoms in what has been called an atomic displacement cascade. The formation and evolution of this primary radiation damage mechanism are described to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the primary variables cascade energy and irradiation temperature are discussed, along with a range of secondary factors that can influence damage formation.Radiation-inducedmore » changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less
Strickland, Michelle; Tudorica, Victor; Řezáč, Milan; Thomas, Neil R; Goodacre, Sara L
2018-06-01
Spiders produce multiple silks with different physical properties that allow them to occupy a diverse range of ecological niches, including the underwater environment. Despite this functional diversity, past molecular analyses show a high degree of amino acid sequence similarity between C-terminal regions of silk genes that appear to be independent of the physical properties of the resulting silks; instead, this domain is crucial to the formation of silk fibers. Here, we present an analysis of the C-terminal domain of all known types of spider silk and include silk sequences from the spider Argyroneta aquatica, which spins the majority of its silk underwater. Our work indicates that spiders have retained a highly conserved mechanism of silk assembly, despite the extraordinary diversification of species, silk types and applications of silk over 350 million years. Sequence analysis of the silk C-terminal domain across the entire gene family shows the conservation of two uncommon amino acids that are implicated in the formation of a salt bridge, a functional bond essential to protein assembly. This conservation extends to the novel sequences isolated from A. aquatica. This finding is relevant to research regarding the artificial synthesis of spider silk, suggesting that synthesis of all silk types will be possible using a single process.
48 CFR 1852.245-78 - Physical inventory of capital personal property.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 6 2011-10-01 2011-10-01 false Physical inventory of... Provisions and Clauses 1852.245-78 Physical inventory of capital personal property. As prescribed in 1845.107-70(i), insert the following clause. Physical Inventory of Capital Personal Property (JAN 2011) (a) In...
Review of Ethnobotanical, Phytochemical, and Pharmacological Study of Thymus serpyllum L.
Jarić, Snežana; Mitrović, Miroslava; Pavlović, Pavle
2015-01-01
Thymus serpyllum L. (wild thyme) is a perennial shrub, native to areas of northern and central Europe. Its aerial parts are most frequently used in ethnomedicine (mainly for treating illnesses and problems related to the respiratory and gastrointestinal systems), although recently its essential oils are becoming more popular as an important plant-derived product. The composition of these oils is affected by geographic region, the development stage of the plant, the harvest season, habitat, and climatic conditions. Wild thyme essential oil has an ever-growing number of uses in contemporary medicine due to its pharmacological properties: antioxidative, antimicrobial, and anticancerogenic activities. The antioxidative and antimicrobial properties of the essential oil are related to the synergistic and cumulative effect of its components. In terms of antitumor and cytotoxic activity, further research into the effects of essential oil is necessary, aimed at improving its cytotoxic effects, on the basis of which appropriate medicines can be formulated. Due to its pharmacological properties, the essential oil of wild thyme, a plant used in traditional medicine, represents an important natural resource for the pharmaceutical industry. In addition, it can be a source of natural antioxidants, nutritional supplements, or components of functional foods in the food industry. PMID:26265920
Introduction to physical properties and elasticity models: Chapter 20
Dvorkin, Jack; Helgerud, Michael B.; Waite, William F.; Kirby, Stephen H.; Nur, Amos
2003-01-01
Estimating the in situ methane hydrate volume from seismic surveys requires knowledge of the rock physics relations between wave speeds and elastic moduli in hydrate/sediment mixtures. The elastic moduli of hydrate/sediment mixtures depend on the elastic properties of the individual sedimentary particles and the manner in which they are arranged. In this chapter, we present some rock physics data currently available from literature. The unreferenced values in Table I were not measured directly, but were derived from other values in Tables I and II using standard relationships between elastic properties for homogeneous, isotropic material. These derivations allow us to extend the list of physical property estimates, but at the expense of introducing uncertainties due to combining property values measured under different physical conditions. This is most apparent in the case of structure II (sII) hydrate for which very few physical properties have been measured under identical conditions.
Physical approaches to biomaterial design
Mitragotri, Samir; Lahann, Joerg
2009-01-01
The development of biomaterials for drug delivery, tissue engineering and medical diagnostics has traditionally been based on new chemistries. However, there is growing recognition that the physical as well as the chemical properties of materials can regulate biological responses. Here, we review this transition with regard to selected physical properties including size, shape, mechanical properties, surface texture and compartmentalization. In each case, we present examples demonstrating the significance of these properties in biology. We also discuss synthesis methods and biological applications for designer biomaterials, which offer unique physical properties. PMID:19096389
Xi, Jun-zuan; Qian, Da-wei; Duan, Jin-ao; Liu, Pei; Zhu, Yue; Zhu, Zhen-hua; Zhang, Li
2015-08-01
Although the essential oil of Xiangfu Siwu decoction (XFSWD) has strong pharmacological activity, its special physical and chemical properties restrict the clinical application and curative effect. In this paper, Xiangfu Siwu decoction essential oil (XFS-WO) was prepared by forming inclusion complex with β-cyclodextrin (β-CD). The present study is to investigate the effect of β-CD inclusion complex on the transport of major components of XFSWO using Caco-2 cell monolayer model, thus to research the effect of this formation on the absorption of drugs with low solubility and high permeability, which belong to class 2 in biopharmaceutics classification system. A sensitive and rapid UPLC-MS/MS method was developed for simultaneous quantification of senkyunolide A, 3-n-butylphthalide, Z-ligustilide, dehydrocostus lactone and α-cyperone, which are active compounds in XFSWO. The transport parameters were analyzed and compared in free oil and its β-CD inclusion complex. The result revealed that the formation of XFSWO/β-CD inclusion complex has significantly increased the transportation and absorption of major active ingredients than free oil. Accordingly, it can be speculated that cyclodextrin inclusion complex can improve bioavailability of poorly water-soluble drugs. Above all these mentioned researches, it provided foundation and basis for physiological disposition and pharmaceutical study of XFSWD.
Oliveira, Julyana de Araújo; da Silva, Ingrid Carla Guedes; Trindade, Leonardo Antunes; Lima, Edeltrudes Oliveira; Carlo, Hugo Lemes; Cavalcanti, Alessandro Leite; de Castro, Ricardo Dias
2014-01-01
The anti-Candida activity of essential oil from Cinnamomum zeylanicum Blume, as well as its effect on the roughness and hardness of the acrylic resin used in dental prostheses, was assessed. The safety and tolerability of the test product were assessed through a phase I clinical trial involving users of removable dentures. Minimum inhibitory concentration (MIC) and minimum fungicidal concentrations (MFC) were determined against twelve Candida strains. Acrylic resin specimens were exposed to artificial saliva (GI), C. zeylanicum (GII), and nystatin (GIII) for 15 days. Data were submitted to ANOVA and Tukey posttest (α = 5%). For the phase I clinical trial, 15 healthy patients used solution of C. zeylanicum at MIC (15 days, 3 times a day) and were submitted to clinical and mycological examinations. C. zeylanicum showed anti-Candida activity, with MIC = 625.0 µg/mL being equivalent to MFC. Nystatin caused greater increase in roughness and decreased the hardness of the material (P < 0.0001), with no significant differences between GI and GII. As regards the clinical trial, no adverse clinical signs were observed after intervention. The substance tested had a satisfactory level of safety and tolerability, supporting new advances involving the clinical use of essential oil from C. zeylanicum. PMID:25574178
NASA Astrophysics Data System (ADS)
Panahi, Nima S.
We studied the problem of understanding and computing the essential features and dynamics of molecular motions through the development of two theories for two different systems. First, we studied the process of the Berry Pseudorotation of PF5 and the rotations it induces in the molecule through its natural and intrinsic geometric nature by setting it in the language of fiber bundles and graph theory. With these tools, we successfully extracted the essentials of the process' loops and induced rotations. The infinite number of pseudorotation loops were broken down into a small set of essential loops called "super loops", with their intrinsic properties and link to the physical movements of the molecule extensively studied. In addition, only the three "self-edge loops" generated any induced rotations, and then only a finite number of classes of them. Second, we studied applying the statistical methods of Principal Components Analysis (PCA) and Principal Coordinate Analysis (PCO) to capture only the most important changes in Argon clusters so as to reduce computational costs and graph the potential energy surface (PES) in three dimensions respectively. Both methods proved successful, but PCA was only partially successful since one will only see advantages for PES database systems much larger than those both currently being studied and those that can be computationally studied in the next few decades to come. In addition, PCA is only needed for the very rare case of a PES database that does not already include Hessian eigenvalues.
Biological Activities of Three Essential Oils of the Lamiaceae Family
Nieto, Gema
2017-01-01
Herbs and spices have been used since ancient times to improve the sensory characteristics of food, to act as preservatives and for their nutritional and healthy properties. Herbs and spices are generally recognized as safe (GRAS) and are excellent substitutes for chemical additives. Essential oils are mixtures of volatile compounds obtained, mainly by steam distillation, from medicinal and aromatic plants. They are an alternative to synthetic additives for the food industry, and they have gained attention as potential sources for natural food preservatives due to the growing interest in the development of safe, effective, natural food preservation. Lamiaceae is one of the most important families in the production of essential oils with antioxidants and antimicrobial properties. Aromatic plants are rich in essential oils and are mainly found in the Mediterranean region, where the production of such oils is a profitable source of ecological and economic development. The use of essential oils with antimicrobial and antioxidant properties to increase the shelf life of food is a promising technology, and the essential oils of the Lamiaceae family, such as rosemary, thyme, and sage, have been extensively studied with respect to their use as food preservatives. Regarding the new applications of essential oils, this review gives an overview of the current knowledge and recent trends in the use of these oils from aromatic plants as antimicrobials and antioxidants in foods, as well as their biological activities, future potential, and challenges. PMID:28930277
Guerrini, Alessandra; Rossi, Damiano; Paganetto, Guglielmo; Tognolini, Massimiliano; Muzzoli, Mariavittoria; Romagnoli, Carlo; Antognoni, Fabiana; Vertuani, Silvia; Medici, Alessandro; Bruni, Alessandro; Useli, Chiara; Tamburini, Elena; Bruni, Renato; Sacchetti, Gianni
2011-04-01
Chemical fingerprinting of commercial Pelargonium capitatum (Geraniaceae) essential oil samples of south African origin was performed by GC, GC/MS, and (13) C- and (1) H-NMR. Thirty-seven compounds were identified, among which citronellol (32.71%) and geraniol (19.58%) were the most abundant. NMR Spectra of characteristic chemicals were provided. Broad-spectrum bioactivity properties of the oil were evaluated and compared with those of commercial Thymus vulgaris essential oil with the aim to obtain a functional profile in terms of efficacy and safety. P. capitatum essential oil provides a good performance as antimicrobial, with particular efficacy against Candida albicans strains. Antifungal activity performed against dermatophyte and phytopathogen strains revealed the latter as more sensitive, while antibacterial activity was not remarkable against both Gram-positive and Gram-negative bacteria. P. capitatum oil provided a lower antioxidant activity (IC(50) ) than that expressed by thyme essential oil, both in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and β-carotene bleaching tests. Results in photochemiluminescence (PCL) assay were negligible. To test the safety aspects of P. capitatum essential oil, mutagenic and toxicity properties were assayed by Ames test, with and without metabolic activation. Possible efficacy of P. capitatum essential oil as mutagenic protective agent against NaN(3) , 2-nitrofluorene, and 2-aminoanthracene was also assayed, providing interesting and significant antigenotoxic properties. Copyright © 2011 Verlag Helvetica Chimica Acta AG, Zürich.
Sensitivity analysis of non-cohesive sediment transport formulae
NASA Astrophysics Data System (ADS)
Pinto, Lígia; Fortunato, André B.; Freire, Paula
2006-10-01
Sand transport models are often based on semi-empirical equilibrium transport formulae that relate sediment fluxes to physical properties such as velocity, depth and characteristic sediment grain sizes. In engineering applications, errors in these physical properties affect the accuracy of the sediment fluxes. The present analysis quantifies error propagation from the input physical properties to the sediment fluxes, determines which ones control the final errors, and provides insight into the relative strengths, weaknesses and limitations of four total load formulae (Ackers and White, Engelund and Hansen, van Rijn, and Karim and Kennedy) and one bed load formulation (van Rijn). The various sources of uncertainty are first investigated individually, in order to pinpoint the key physical properties that control the errors. Since the strong non-linearity of most sand transport formulae precludes analytical approaches, a Monte Carlo method is validated and used in the analysis. Results show that the accuracy in total sediment transport evaluations is mainly determined by errors in the current velocity and in the sediment median grain size. For the bed load transport using the van Rijn formula, errors in the current velocity alone control the final accuracy. In a final set of tests, all physical properties are allowed to vary simultaneously in order to analyze the combined effect of errors. The combined effect of errors in all the physical properties is then compared to an estimate of the errors due to the intrinsic limitations of the formulae. Results show that errors in the physical properties can be dominant for typical uncertainties associated with these properties, particularly for small depths. A comparison between the various formulae reveals that the van Rijn formula is more sensitive to basic physical properties. Hence, it should only be used when physical properties are known with precision.
NASA Astrophysics Data System (ADS)
Douglas, Jack
2014-03-01
One of the things that puzzled me when I was a PhD student working under Karl Freed was the curious unity between the theoretical descriptions of excluded volume interactions in polymers, the hydrodynamic properties of polymers in solution, and the critical properties of fluid mixtures, gases and diverse other materials (magnets, superfluids,etc.) when these problems were formally expressed in terms of Wiener path integration and the interactions treated through a combination of epsilon expansion and renormalization group (RG) theory. It seemed that only the interaction labels changed from one problem to the other. What do these problems have in common? Essential clues to these interrelations became apparent when Karl Freed, myself and Shi-Qing Wang together began to study polymers interacting with hyper-surfaces of continuously variable dimension where the Feynman perturbation expansions could be performed through infinite order so that we could really understand what the RG theory was doing. It is evidently simply a particular method for resuming perturbation theory, and former ambiguities no longer existed. An integral equation extension of this type of exact calculation to ``surfaces'' of arbitrary fixed shape finally revealed the central mathematical object that links these diverse physical models- the capacity of polymer chains, whose value vanishes at the critical dimension of 4 and whose magnitude is linked to the friction coefficient of polymer chains, the virial coefficient of polymers and the 4-point function of the phi-4 field theory,...Once this central object was recognized, it then became possible solve diverse problems in material science through the calculation of capacity, and related ``virials'' properties, through Monte Carlo sampling of random walk paths. The essential ideas of this computational method are discussed and some applications given to non-trivial problems: nanotubes treated as either rigid rods or ensembles worm-like chains having finite cross-section, DNA, nanoparticles with grafted chain layers and knotted polymers. The path-integration method, which grew up from research in Karl Freed's group, is evidently a powerful tool for computing basic transport properties of complex-shaped objects and should find increasing application in polymer science, nanotechnological applications and biology.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-26
... essential to the conservation of the species should be included in the designation and why; (c) Special management considerations or protection that may be needed for the physical and biological features essential... our criteria for being essential for the conservation of the species and, therefore, should be...
Energy and the Confused Student I: Work
ERIC Educational Resources Information Center
Jewett, John W., Jr.
2008-01-01
Energy is a critical concept that is used in analyzing physical phenomena and is often an essential starting point in physics problem-solving. It is a global concept that appears throughout the physics curriculum in mechanics, thermodynamics, electromagnetism, and modern physics. Energy is also at the heart of descriptions of processes in biology,…
Gymnastics and Movement Instruction: Fighting the Decline in Motor Fitness
ERIC Educational Resources Information Center
Coelho, Jeffrey
2010-01-01
Historically, gymnastics has served an essential role in physical education and the development of physical fitness. Participating in gymnastics-related activities can improve the physical and motor fitness of children of all ages and can make significant contributions to the goals of physical education. This article describes the importance of…
Modelling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys
NASA Astrophysics Data System (ADS)
Saunders, N.; Li, X.; Miodownik, A. P.; Schillé, J.-P.
The thermo-physical and physical properties of the liquid and solid phases are critical components in casting simulations. Such properties include the fraction solid transformed, enthalpy release, thermal conductivity, volume and density, all as a function of temperature. Due to the difficulty in experimentally determining such properties at solidification temperatures, little information exists for multi-component alloys. As part of the development of a new computer program for modelling of materials properties (JMatPro) extensive work has been carried out on the development of sound, physically based models for these properties. Wide ranging results will presented for Al-based alloys, which will include more detailed information concerning the density change of the liquid that intrinsically occurs during solidification due to its change in composition.
33 CFR 106.305 - Facility Security Assessment (FSA) requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... available to maintain essential services; (vi) The essential maintenance equipment and storage areas; (vii... procedures relating to essential services; (v) Measures to protect radio and telecommunication equipment... property, or economic disruption, of an attack on or at the OCS facility; and (7) Locations where access...
DOT National Transportation Integrated Search
1980-01-01
This report on kinetic bridges is essentially a state-of-the-art study on two types of bridges whose location or physical characteristics are designed to be time dependent. The first type, called a "relocatable bridge", is essentially for use as a te...
Kladar, Nebojša V; Anačkov, Goran T; Rat, Milica M; Srđenović, Branislava U; Grujić, Nevena N; Šefer, Emilia I; Božin, Biljana N
2015-03-01
The chemical composition and antioxidant properties of the essential oil and EtOH extract of immortelle (Helichrysum italicum (Roth) G.Don subsp. italicum, Asteraceae) collected in Montenegro were evaluated. The essential oil was characterized by GC/MS analysis, and the content of total phenolics and flavonoids in the EtOH extract was determined using the FolinCiocalteu reagent. The free-radical-scavenging capacity (RSC) of both the essential oil and the EtOH extract was assessed with the 2,2-diphenyl-1-pycrylhydrazyl (DPPH) method. Moreover, the inhibition of hydroxyl radical ((.) OH) generation by the EtOH extract of immortelle was evaluated for the first time here. Neryl acetate (28.2%) and γ-curcumene (18.8%) were the main compounds in the essential oil, followed by neryl propionate (9.1%) and ar-curcumene (8.3%). The chemical composition of the oils of the examined and additional 16 selected Helichrysum italicum taxa described in literature were compared using principal component (PCA) and cluster (CA) analyses. The results of the statistical analyses implied the occurrence of at least four different main and three subchemotypes of essential oils. Considering the antioxidant properties, the EtOH extract of immortelle exhibited similar potential as propyl gallate and quercetin, while the essential oil exhibited relatively weak DPPH(.) -scavenging capacity. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Huang, Huey-Chun; Ho, Ya-Chi; Lim, Jia-Min; Chang, Tzu-Yun; Ho, Chen-Lung; Chang, Tsong-Min
2015-05-07
The effects of essential oil from Eucalyptus camaldulensis flowers oil on melanogenesis and the oil's antioxidant characteristics were investigated. Assays of mushroom and cellular tyrosinase activities and melanin content of mouse melanoma cells were performed spectrophotometrically, and the expression of melanogenesis-related proteins was determined by Western blotting. The possible signaling pathways involved in essential oil-mediated depigmentation were also investigated using specific protein kinase inhibitors. The results revealed that E. camaldulensis flower essential oil effectively suppresses intracellular tyrosinase activity and decreases melanin amount in B16F10 mouse melanoma cells. The essential oil also exhibits antioxidant properties and effectively decreases intracellular reactive oxygen species (ROS) levels. The volatile chemical composition of the essential oil was analyzed with gas chromatography-mass spectrometry (GC/MS). The chemical constituents in the essential oil are predominately oxygenated monoterpenes (34.9%), followed by oxygenated sesquiterpenes (31.8%), monoterpene hydrocarbons (29.0%) and sesquiterpene hydrocarbons (4.3%). Our results indicated that E. camaldulensis flower essential oil inhibits melanogenesis through its antioxidant properties and by down-regulating both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways. The present study indicates that the essential oil has the potential to be developed into a skin care product.
Huang, Huey-Chun; Ho, Ya-Chi; Lim, Jia-Min; Chang, Tzu-Yun; Ho, Chen-Lung; Chang, Tsong-Min
2015-01-01
The effects of essential oil from Eucalyptus camaldulensis flowers oil on melanogenesis and the oil’s antioxidant characteristics were investigated. Assays of mushroom and cellular tyrosinase activities and melanin content of mouse melanoma cells were performed spectrophotometrically, and the expression of melanogenesis-related proteins was determined by Western blotting. The possible signaling pathways involved in essential oil-mediated depigmentation were also investigated using specific protein kinase inhibitors. The results revealed that E. camaldulensis flower essential oil effectively suppresses intracellular tyrosinase activity and decreases melanin amount in B16F10 mouse melanoma cells. The essential oil also exhibits antioxidant properties and effectively decreases intracellular reactive oxygen species (ROS) levels. The volatile chemical composition of the essential oil was analyzed with gas chromatography–mass spectrometry (GC/MS). The chemical constituents in the essential oil are predominately oxygenated monoterpenes (34.9%), followed by oxygenated sesquiterpenes (31.8%), monoterpene hydrocarbons (29.0%) and sesquiterpene hydrocarbons (4.3%). Our results indicated that E. camaldulensis flower essential oil inhibits melanogenesis through its antioxidant properties and by down-regulating both mitogen-activated protein kinases (MAPK) and protein kinase A (PKA) signaling pathways. The present study indicates that the essential oil has the potential to be developed into a skin care product. PMID:25961954
Rafiq, Ragina; Hayek, Saeed A.; Anyanwu, Ugochukwu; Hardy, Bonita I.; Giddings, Valerie L.; Ibrahim, Salam A.; Tahergorabi, Reza; Kang, Hye Won
2016-01-01
Essential oils are natural antimicrobials that have the potential to provide a safer alternative to synthetic antimicrobials currently used in the food industry. Therefore, the aim of this study was to evaluate the antimicrobial and antioxidant activities of essential oils from white wormwood, rose-scented geranium and bay laurel against Salmonella typhimurium and Escherichia coli O157:H7 on fresh produce and to examine consumer acceptability of fresh produce treated with these essential oils. Our results showed that essential oil derived from rose-scented geranium exhibited the most effective antimicrobial activity at the same and similar minimum inhibition concentration levels (0.4%, v/v and 0.4% and 0.5%, v/v) respectively against Salmonella typhimurium and Escherichia coli O157:H7. All three essential oils showed antioxidant properties, with the highest activity occurring in bay laurel essential oil. In a sensory test, tomatoes, cantaloupe and spinach sprayed with 0.4% rose-scented geranium essential oil received higher scores by panelists. In conclusion, rose-scented geranium essential oil could be developed into a natural antimicrobial to prevent contamination of Salmonella typhimurium and Escherichia coli O157:H7 in fresh produce, plus this oil would provide additional health benefits due to the antioxidant properties of its residue. PMID:28231123
NASA Astrophysics Data System (ADS)
Babaie, Hassan; Davarpanah, Armita
2016-04-01
We are semantically modeling the structural and dynamic process components of the plastic deformation of minerals and rocks in the Plastic Deformation Ontology (PDO). Applying the Ontology of Physics in Biology, the PDO classifies the spatial entities that participate in the diverse processes of plastic deformation into the Physical_Plastic_Deformation_Entity and Nonphysical_Plastic_Deformation_Entity classes. The Material_Physical_Plastic_Deformation_Entity class includes things such as microstructures, lattice defects, atoms, liquid, and grain boundaries, and the Immaterial_Physical_Plastic_Deformation_Entity class includes vacancies in crystals and voids along mineral grain boundaries. The objects under the many subclasses of these classes (e.g., crystal, lattice defect, layering) have spatial parts that are related to each other through taxonomic (e.g., Line_Defect isA Lattice_Defect), structural (mereological, e.g., Twin_Plane partOf Twin), spatial-topological (e.g., Vacancy adjacentTo Atom, Fluid locatedAlong Grain_Boundary), and domain specific (e.g., displaces, Fluid crystallizes Dissolved_Ion, Void existsAlong Grain_Boundary) relationships. The dynamic aspect of the plastic deformation is modeled under the dynamical Process_Entity class that subsumes classes such as Recrystallization and Pressure_Solution that define the flow of energy amongst the physical entities. The values of the dynamical state properties of the physical entities (e.g., Chemical_Potential, Temperature, Particle_Velocity) change while they take part in the deformational processes such as Diffusion and Dislocation_Glide. The process entities have temporal parts (phases) that are related to each other through temporal relations such as precedes, isSubprocessOf, and overlaps. The properties of the physical entities, defined under the Physical_Property class, change as they participate in the plastic deformational processes. The properties are categorized into dynamical, constitutive, spatial, temporal, statistical, and thermodynamical. The dynamical properties, categorized under the Dynamical_Rate_Property and Dynamical_State_Property classes, subsume different classes of properties (e.g., Fluid_Flow_Rate, Temperature, Chemical_Potential, Displacement, Electrical_Charge) based on the physical domain (e.g., fluid, heat, chemical, solid, electrical). The properties are related to the objects under the Physical_Entity class through diverse object type (e.g., physicalPropertyOf) and data type (e.g., Fluid_Pressure unit 'MPa') properties. The changes of the dynamical properties of the physical entities, described by the empirical laws (equations) modeled by experimental structural geologists, are modeled through the Physical_Property_Dependency class that subsumes the more specialized constitutive, kinetic, and thermodynamic expressions of the relationships among the dynamic properties. Annotation based on the PDO will make it possible to integrate and reuse experimental plastic deformation data, knowledge, and simulation models, and conduct semantic-based search of the source data originating from different rock testing laboratories.
ERIC Educational Resources Information Center
Abdul-Razzaq, W.; Bushey, R.; Winn, G.
2011-01-01
Physics is essential for students who want to succeed in science and engineering. Excitement and interest in the content matter contribute to enhancing this success. We have developed a laboratory experiment that takes advantage of microwave ovens to demonstrate important physical concepts and increase interest in physics. This experiment…
7 CFR 766.104 - Borrower eligibility requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... economic conditions such as low commodity prices; (iv) Damage or destruction of property essential to the farming operation; or (v) Loss of, or reduction in, the borrower or spouse's essential non-farm income. (2) The borrower does not have non-essential assets for which the net recovery value is sufficient to...
NASA Astrophysics Data System (ADS)
Botyánszki, János; Kasen, Daniel
2017-08-01
We present a radiative transfer code to model the nebular phase spectra of supernovae (SNe) in non-LTE (NLTE). We apply it to a systematic study of SNe Ia using parameterized 1D models and show how nebular spectral features depend on key physical parameters, such as the time since explosion, total ejecta mass, kinetic energy, radial density profile, and the masses of 56Ni, intermediate-mass elements, and stable iron-group elements. We also quantify the impact of uncertainties in atomic data inputs. We find the following. (1) The main features of SN Ia nebular spectra are relatively insensitive to most physical parameters. Degeneracy among parameters precludes a unique determination of the ejecta properties from spectral fitting. In particular, features can be equally well fit with generic Chandrasekhar mass ({M}{ch}), sub-{M}{Ch}, and super-{M}{Ch} models. (2) A sizable (≳0.1 {M}⊙ ) central region of stable iron-group elements, often claimed as evidence for {M}{Ch} models, is not essential to fit the optical spectra and may produce an unusual flat-top [Co III] profile. (3) The strength of [S III] emission near 9500 Å can provide a useful diagnostic of explosion nucleosynthesis. (4) Substantial amounts (≳0.1 {M}⊙ ) of unburned C/O mixed throughout the ejecta produce [O III] emission not seen in observations. (5) Shifts in the wavelength of line peaks can arise from line-blending effects. (6) The steepness of the ejecta density profile affects the line shapes, offering a constraint on explosion models. (7) Uncertainties in atomic data limit the ability to infer physical parameters.
Diffusion-advection within dynamic biological gaps driven by structural motion
NASA Astrophysics Data System (ADS)
Asaro, Robert J.; Zhu, Qiang; Lin, Kuanpo
2018-04-01
To study the significance of advection in the transport of solutes, or particles, within thin biological gaps (channels), we examine theoretically the process driven by stochastic fluid flow caused by random thermal structural motion, and we compare it with transport via diffusion. The model geometry chosen resembles the synaptic cleft; this choice is motivated by the cleft's readily modeled structure, which allows for well-defined mechanical and physical features that control the advection process. Our analysis defines a Péclet-like number, AD, that quantifies the ratio of time scales of advection versus diffusion. Another parameter, AM, is also defined by the analysis that quantifies the full potential extent of advection in the absence of diffusion. These parameters provide a clear and compact description of the interplay among the well-defined structural, geometric, and physical properties vis-a ̀-vis the advection versus diffusion process. For example, it is found that AD˜1 /R2 , where R is the cleft diameter and hence diffusion distance. This curious, and perhaps unexpected, result follows from the dependence of structural motion that drives fluid flow on R . AM, on the other hand, is directly related (essentially proportional to) the energetic input into structural motion, and thereby to fluid flow, as well as to the mechanical stiffness of the cleftlike structure. Our model analysis thus provides unambiguous insight into the prospect of competition of advection versus diffusion within biological gaplike structures. The importance of the random, versus a regular, nature of structural motion and of the resulting transient nature of advection under random motion is made clear in our analysis. Further, by quantifying the effects of geometric and physical properties on the competition between advection and diffusion, our results clearly demonstrate the important role that metabolic energy (ATP) plays in this competitive process.
Physical medicine and rehabilitation
... WR, Silver JK, Rizzo TD, eds. Essentials of Physical Medicine and Rehabilitation: Musculoskeletal Disorders, Pain, and Rehabilitation . 3rd ed. Philadelphia, PA: Elsevier Saunders; 2015. Review Date 10/23/2017 Updated by: Andrew W. ...
Math and Movement: Practical Ways to Incorporate Math into Physical Education
ERIC Educational Resources Information Center
Wade, Marcia
2016-01-01
Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…
Quantum Talk: How Small-Group Discussions May Enhance Students' Understanding in Quantum Physics
ERIC Educational Resources Information Center
Bungum, Berit; Bøe, Maria Vetleseter; Henriksen, Ellen Karoline
2018-01-01
Quantum physics challenges our views of the physical world and describes phenomena that cannot be directly observed. The use of language is hence essential in the teaching of quantum physics. With a sociocultural view of learning, we investigate characteristics of preuniversity students' small-group discussions and their potential for enhancing…
Problem Solving and the Use of Math in Physics Courses
ERIC Educational Resources Information Center
Redish, Edward F.
2006-01-01
Mathematics is an essential element of physics problem solving, but experts often fail to appreciate exactly how they use it. Math may be the language of science, but math-in-physics is a distinct dialect of that language. Physicists tend to blend conceptual physics with mathematical symbolism in a way that profoundly affects the way equations are…
ERIC Educational Resources Information Center
Swart, Kathryn D.
2011-01-01
Background and Purpose: Physical therapy (PT) is an essential component of the healthcare system in providing a comprehensive treatment plan for patients with functional limitations. The demand for physical therapy services is projected to expand in the next eight years, leading to an increased need for practicing physical therapists. The Mountain…
ERIC Educational Resources Information Center
Cangemi, Joseph P.
2014-01-01
Some individuals believe physical death is the only form of death we experience on this planet. Is such a belief valid? In the Western world, essentially, physical death is seen as the end of life on this planet. It's all over "here." But is physical death really the only form of death experienced while on earth? Physical death is the…
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
41 CFR 109-27.5007 - Physical inventories.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Physical inventories. 109-27.5007 Section 109-27.5007 Public Contracts and Property Management Federal Property Management...-INVENTORY MANAGEMENT 27.50-Inventory Management Policies, Procedures, and Guidelines § 109-27.5007 Physical...
Characterization and nultivariate analysis of physical properties of processing peaches
USDA-ARS?s Scientific Manuscript database
Characterization of physical properties of fruits represents the first vital step to ensure optimal performance of fruit processing operations and is also a prerequisite in the development of new processing equipment. In this study, physical properties of engineering significance to processing of th...
Physical Properties of Gas Hydrates: A Review
Gabitto, Jorge F.; Tsouris, Costas
2010-01-01
Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16 m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less
ERIC Educational Resources Information Center
American Alliance for Health, Physical Education, Recreation and Dance (NJ1), 2006
2006-01-01
It is the position of the National Association for Sport and Physical Education (NASPE) that all K-12 students should take all required physical education courses and that no substitutions, waivers, or exemptions should be permitted. Physical education is an essential and integral component of a total education. The National Standards for Physical…
Educating through the Physical--Rationale
ERIC Educational Resources Information Center
Eldar, Eitan; Ayvazo, Shiri
2009-01-01
Social competence is essential for successful performance in school and life. Siedentop (1980) suggested that physical education settings and related activities may serve as useful vehicles for improving pro-social skills and values. Physical education literature draws a clear distinction between educating about, in, and through movement (Arnold,…
Confronting Myths about Teacher Leadership
ERIC Educational Resources Information Center
Sinha, Somnath; Hanuscin, Deborah; Rebello, Carina; Muslu, Nilay; Cheng, Ya-Wen
2012-01-01
"Leadership in Freshman Physics" is an NSF-funded professional development program designed to support 9th grade teacher leaders in the successful implementation of a "Physics First" or curriculum sequence that places physics prior to biology and chemistry. Leadership is viewed as an essential component in the initial success…
Using TPSR as a Teaching Strategy in Health Classes
ERIC Educational Resources Information Center
Diedrich, K. C.
2014-01-01
Health education and physical education are essential components of a school's coordinated health and physical education (HPE) curriculum. Traditionally, teachers have taught the subject matters in these programs using a skill development approach to enhance students' personal and social responsibility. Physical education teachers have been using…
Educating Primary Teachers to Teach Physical Education
ERIC Educational Resources Information Center
Tsangaridou, Niki
2012-01-01
Research evidence suggests that, worldwide, physical education in early years is mainly taught by primary teachers (Graber et al., 2008; Hunter, 2006; Kirk, 2005). Descriptions of primary teachers' experiences of teaching physical education are particularly essential as an avenue for developing better-quality teacher training for teaching primary…
Investigation of indigenous water, salt and soil for solar ponds
NASA Astrophysics Data System (ADS)
Marsh, H. E.
The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.
Propagational characteristics in a warm hybrid plasmonic waveguide
NASA Astrophysics Data System (ADS)
Mahmodi Moghadam, M.; Shahmansouri, M.; Farokhi, B.
2017-12-01
We theoretically analyze the properties of guided modes in a warm planar conductor-gap-dielectric (CGD) system. The latter consists of a high index dielectric, separated from a warm metallic plasma with a low index nano-sized dielectric layer (gap) by using the hydrodynamic model coupled to Maxwell's equations. The effects of thermal pressure on the confinement and the propagation losses of Hybrid Plasmon Polariton (HPP) modes are studied. We found that the thermal effect leads to a reduction in the effective refractive index as well as in the propagation losses of the HPP mode. Furthermore, the cutoff thickness in the warm CGD waveguide is found to be smaller than that in a cold CGD waveguide. The results may be useful in understanding the essential physics of active/passive Plasmonic devices and chip-scale systems.
Tuning Fluorescence Direction with Plasmonic Metal–Dielectric– Metal Substrates
Choudhury, Sharmistha Dutta; Badugu, Ramachandram; Nowaczyk, Kazimierz; Ray, Krishanu; Lakowicz, Joseph R.
2013-01-01
Controlling the emission properties of fluorophores is essential for improving the performance of fluorescence-based techniques in modern biochemical research, medical diagnosis, and sensing. Fluorescence emission is isotropic in nature, which makes it difficult to capture more than a small fraction of the total emission. Metal– dielectric–metal (MDM) substrates, discussed in this Letter, convert isotropic fluorescence into beaming emission normal to the substrate. This improves fluorescence collection efficiency and also opens up new avenues for a wide range of fluorescence-based applications. We suggest that MDM substrates can be readily adapted for multiple uses, such as in microarray formats, for directional fluorescence studies of multiple probes or for molecule-specific sensing with a high degree of spatial control over the fluorescence emission. SECTION: Physical Processes in Nanomaterials and Nanostructures PMID:24013521
Imaging in focus: Imaging the dynamics of endocytosis.
Rosendale, Morgane; Perrais, David
2017-12-01
Endocytosis, the formation of membrane vesicles from the plasma membrane, is an essential feature of eukaryotic cell biology. Intense research effort has been dedicated to developing methods that can detect endocytosis events with the highest resolution. We have classified these methods into four families. They exploit the physical properties of endocytosis, namely: 1. Distinguishing extracellular from internalised cargo in fixed samples, 2. Monitoring endosomal acidification, 3. Measuring the turnover of endocytic zones and 4. Detecting vesicle scission. The last three families, all based on fluorescence imaging, are used to study endocytosis in living cells. We discuss the advantages and limitations of these methods and conclude on the future developments required to tackle the upcoming challenges in this fundamental field of cell biology. Copyright © 2017. Published by Elsevier Ltd.
A glycoporphyrin story: from chemistry to PDT treatment of cancer mouse models.
Lupu, M; Maillard, Ph; Mispelter, J; Poyer, F; Thomas, C D
2018-06-01
Photodynamic therapy (PDT) represents a non-toxic and non-mutagenic antitumor therapy. The photosensitizer's (PS) chemo-physical properties are essential for the therapy, being responsible for the biological effects induced in the targeted tissues. In this study, we present the synthesis and development of some glycoconjugated porphyrins based on lectin-type receptor interaction. They were tested in vitro for finally choosing the most effective chemical structure for an optimum antitumor outcome. The most effective photosensitizer is substituted by three diethylene glycol α-d-mannosyl groups. In vivo studies allow firstly the determination of some characteristics of the biological processes triggered by the initial photochemical activation. Secondly, they make it possible to improve the therapeutic protocol in the function of the structural architecture of the targeted tumor tissue.
Investigation of indigenous water, salt and soil for solar ponds
NASA Technical Reports Server (NTRS)
Marsh, H. E.
1983-01-01
The existence of salt-gradient solar ponds in nature is a strong indication that the successful exploitation of this phenomenon must account adequately for the influences of the local setting. Sun, weather and other general factors are treated elsewhere. This paper deals with water, salt, and soil. A general methodology for evaluating and, where feasible, adjusting the effects of these elements is under development. Eight essential solar pond characteristics have been identified, along with a variety of their dependencies upon properties of water, salt and soil. The comprehensive methodology, when fully developed, will include laboratory investigation in such diverse areas as brine physical chemistry, light transmission, water treatment, brine-soil interactions, sealants, and others. With the Salton Sea solar pond investigation as an example, some methods under development will be described.
Analytic approximation for random muffin-tin alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mills, R.; Gray, L.J.; Kaplan, T.
1983-03-15
The methods introduced in a previous paper under the name of ''traveling-cluster approximation'' (TCA) are applied, in a multiple-scattering approach, to the case of a random muffin-tin substitutional alloy. This permits the iterative part of a self-consistent calculation to be carried out entirely in terms of on-the-energy-shell scattering amplitudes. Off-shell components of the mean resolvent, needed for the calculation of spectral functions, are obtained by standard methods involving single-site scattering wave functions. The single-site TCA is just the usual coherent-potential approximation, expressed in a form particularly suited for iteration. A fixed-point theorem is proved for the general t-matrix TCA, ensuringmore » convergence upon iteration to a unique self-consistent solution with the physically essential Herglotz properties.« less
Late-time X-rays to map the Zoo of Engine-driven Stellar Explosions
NASA Astrophysics Data System (ADS)
Margutti, Raffaella
2017-09-01
We propose a continuation of our effort to monitor nearby long GRBs (z <=0.3) with Chandra. Our synergistic multi-wavelength program (radio, optical, Swift and proposed Chandra) is designed to extract the true energy of these explosions and to reveal the activity of their central engines. This effort allows us to: (i) investigate whether sub-energetic GRBs share the same explosion mechanisms and central engines as ordinary GRBs; (ii) investigate what essential physical property enables only a small fraction of supernovae to harbor a relativistic outflow; (iii) understand if jet-driven explosions are common in all SNe. These objectives are only possible by expanding the current small sample of well-observed local GRBs and by drawing comparisons with cosmological GRBs and common SNe.
EBT reactor systems analysis and cost code: description and users guide (Version 1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santoro, R.T.; Uckan, N.A.; Barnes, J.M.
1984-06-01
An ELMO Bumpy Torus (EBT) reactor systems analysis and cost code that incorporates the most recent advances in EBT physics has been written. The code determines a set of reactors that fall within an allowed operating window determined from the coupling of ring and core plasma properties and the self-consistent treatment of the coupled ring-core stability and power balance requirements. The essential elements of the systems analysis and cost code are described, along with the calculational sequences leading to the specification of the reactor options and their associated costs. The input parameters, the constraints imposed upon them, and the operatingmore » range over which the code provides valid results are discussed. A sample problem and the interpretation of the results are also presented.« less
Electric currents in cosmic plasmas
NASA Technical Reports Server (NTRS)
Alfven, H.
1977-01-01
It is suggested that dualism is essential for the physics of cosmic plasmas, that is, that some phenomena should be described by a magnetic field formalism, and others by an electric current formalism. While in earlier work the magnetic field aspect has dominated, at present there is a systematic exploration of the particle (or current) aspect. A number of phenomena which can be understood only from the particle aspect are surveyed. Topics include the formation of electric double layers, the origin of 'explosive' events like magnetic substorms and solar flares, and the transfer of energy from one region to another. A method for exploring many of these phenomena is to draw the electric circuit in which the current flows and then study its properties. A number of simple circuits are analyzed in this way.
NASA Astrophysics Data System (ADS)
Rosenberg, Peter; Shi, Hao; Zhang, Shiwei
2017-12-01
We present an ab initio, numerically exact study of attractive fermions in square lattices with Rashba spin-orbit coupling. The ground state of this system is a supersolid, with coexisting charge and superfluid order. The superfluid is composed of both singlet and triplet pairs induced by spin-orbit coupling. We perform large-scale calculations using the auxiliary-field quantum Monte Carlo method to provide the first full, quantitative description of the charge, spin, and pairing properties of the system. In addition to characterizing the exotic physics, our results will serve as essential high-accuracy benchmarks for the intense theoretical and especially experimental efforts in ultracold atoms to realize and understand an expanding variety of quantum Hall and topological superconductor systems.
Ultrasound Elastography: The New Frontier in Direct Measurement of Muscle Stiffness
Brandenburg, Joline E.; Eby, Sarah F.; Song, Pengfei; Zhao, Heng; Brault, Jeffrey S.; Chen, Shigao; An, Kai-Nan
2014-01-01
The use of brightness-mode ultrasound and Doppler ultrasound in physical medicine and rehabilitation has increased dramatically. The continuing evolution of ultrasound technology has also produced ultrasound elastography, a cutting-edge technology that can directly measure the mechanical properties of tissue, including muscle stiffness. Its real-time and direct measurements of muscle stiffness can aid the diagnosis and rehabilitation of acute musculoskeletal injuries and chronic myofascial pain. It can also help monitor outcomes of interventions affecting muscle in neuromuscular and musculoskeletal diseases, and it can better inform the functional prognosis. This technology has implications for even broader use of ultrasound in physical medicine and rehabilitation practice, but more knowledge about its uses and limitations is essential to its appropriate clinical implementation. In this review, we describe different ultrasound elastography techniques for studying muscle stiffness, including strain elastography, acoustic radiation force impulse imaging, and shear-wave elastography. We discuss the basic principles of these techniques, including the strengths and limitations of their measurement capabilities. We review the current muscle research, discuss physiatric clinical applications of these techniques, and note directions for future research. PMID:25064780
Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films
Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; ...
2017-07-31
Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering bymore » largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2–), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.« less
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta
2018-03-01
Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.
NASA Astrophysics Data System (ADS)
Proykova, Ana
2009-04-01
Essential contributions have been made in the field of finite-size systems of ingredients interacting with potentials of various ranges. Theoretical simulations have revealed peculiar size effects on stability, ground state structure, phases, and phase transformation of systems confined in space and time. Models developed in the field of pure physics (atomic and molecular clusters) have been extended and successfully transferred to finite-size systems that seem very different—small-scale financial markets, autoimmune reactions, and social group reactions to advertisements. The models show that small-scale markets diverge unexpectedly fast as a result of small fluctuations; autoimmune reactions are sequences of two discontinuous phase transitions; and social groups possess critical behavior (social percolation) under the influence of an external field (advertisement). Some predicted size-dependent properties have been experimentally observed. These findings lead to the hypothesis that restrictions on an object's size determine the object's total internal (configuration) and external (environmental) interactions. Since phases are emergent phenomena produced by self-organization of a large number of particles, the occurrence of a phase in a system containing a small number of ingredients is remarkable.
The Composition and Thermal State of Mars
NASA Astrophysics Data System (ADS)
Khan, A.; Connolly, J.
Previous studies concerning the internal composition and constitution of Mars are essentially limited to forward modeling of some relatively simple models of the martian internal structure and therefore provide little information on what we can actually learn from the data. In view of the limitations inherent in forward models, we propose to invert a number of geophysical data to directly constrain the martian composition and thermal state. The inverse method employed here is general and provides through the unified description of phase equilibria a way of constructing planetary models where the radial variation of mineralogy and physical structure with pressure and temperature is naturally specified, allowing us to directly invert for chemical composition and temperature. Given these parameters mineralogy, Mg# (MgO/(MgO+FeO)) and bulk physical properties can be calculated. The approach used here has recently been applied successfully to the Moon and Earth in analyses of both eletromagnetic sounding as well as seismic data. The data used in the inversion are, mean moment of inertia, mean density, second degree tidal Love number, tidal dissipation factor and of course mean radius.
The SAMI Galaxy Survey: can we trust aperture corrections to predict star formation?
NASA Astrophysics Data System (ADS)
Richards, S. N.; Bryant, J. J.; Croom, S. M.; Hopkins, A. M.; Schaefer, A. L.; Bland-Hawthorn, J.; Allen, J. T.; Brough, S.; Cecil, G.; Cortese, L.; Fogarty, L. M. R.; Gunawardhana, M. L. P.; Goodwin, M.; Green, A. W.; Ho, I.-T.; Kewley, L. J.; Konstantopoulos, I. S.; Lawrence, J. S.; Lorente, N. P. F.; Medling, A. M.; Owers, M. S.; Sharp, R.; Sweet, S. M.; Taylor, E. N.
2016-01-01
In the low-redshift Universe (z < 0.3), our view of galaxy evolution is primarily based on fibre optic spectroscopy surveys. Elaborate methods have been developed to address aperture effects when fixed aperture sizes only probe the inner regions for galaxies of ever decreasing redshift or increasing physical size. These aperture corrections rely on assumptions about the physical properties of galaxies. The adequacy of these aperture corrections can be tested with integral-field spectroscopic data. We use integral-field spectra drawn from 1212 galaxies observed as part of the SAMI Galaxy Survey to investigate the validity of two aperture correction methods that attempt to estimate a galaxy's total instantaneous star formation rate. We show that biases arise when assuming that instantaneous star formation is traced by broad-band imaging, and when the aperture correction is built only from spectra of the nuclear region of galaxies. These biases may be significant depending on the selection criteria of a survey sample. Understanding the sensitivities of these aperture corrections is essential for correct handling of systematic errors in galaxy evolution studies.
Transmission Electron Microscopy of Minerals and Rocks
NASA Astrophysics Data System (ADS)
McLaren, Alex C.
1991-04-01
Of the many techniques that have been applied to the study of crystal defects, none has contributed more to our understanding of their nature and influence on the physical and chemical properties of crystalline materials than transmission electron microscopy (TEM). TEM is now used extensively by an increasing number of earth scientists for direct observation of defect microstructures in minerals and rocks. Transmission Electron Microscopy of Rocks and Minerals is an introduction to the principles of the technique and is the only book to date on the subject written specifically for geologists and mineralogists. The first part of the book deals with the essential physics of the transmission electron microscope and presents the basic theoretical background required for the interpretation of images and electron diffraction patterns. The final chapters are concerned with specific applications of TEM in mineralogy and deal with such topics as planar defects, intergrowths, radiation-induced defects, dislocations and deformation-induced microstructures. The examples cover a wide range of rock-forming minerals from crustal rocks to those in the lower mantle, and also take into account the role of defects in important mineralogical and geological processes.
Liu, Hong; Zheng, Jie; Liu, Pengzhan; Zeng, Fankui
2018-06-01
In this study, the effects of different pulverizing methods on the chemical attributes and thermal properties of black, white and green pepper were evaluated. Cryogenic grinding minimally damaged the lipid, moisture, crude protein, starch, non-volatile ether extract, piperine, essential oil and the typical pepper essential oil compounds of the spices. The pulverizing methods and storage significantly affected the compositions of the fatty acid in the peppers, except for palmitic acid and lignoceric acid. The amino acid contents and the thermo-gravimetric analysis curve were hardly influenced by the grinding techniques. The use of cryogenic grinding to prepare pepper ensured the highest quality of pepper products. Regardless of grinding technique, the values of moisture, piperine, unsaturated fatty acids, essential oil, monoterpenes, and the absolute concentrations of typical pepper essential oil constituents (except caryophyllene oxide) decreased, whereas the amino acid, lipid, protein, starch, and non-volatile ether extract content as well as the thermal properties were insignificantly changed after storage at 4 °C for 6 months.