Worker Personality and Its Association with Spatially Structured Division of Labor
Pamminger, Tobias; Foitzik, Susanne; Kaufmann, Katharina C.; Schützler, Natalie; Menzel, Florian
2014-01-01
Division of labor is a defining characteristic of social insects and fundamental to their ecological success. Many of the numerous tasks essential for the survival of the colony must be performed at a specific location. Consequently, spatial organization is an integral aspect of division of labor. The mechanisms organizing the spatial distribution of workers, separating inside and outside workers without central control, is an essential, but so far neglected aspect of division of labor. In this study, we investigate the behavioral mechanisms governing the spatial distribution of individual workers and its physiological underpinning in the ant Myrmica rubra. By investigating worker personalities we uncover position-associated behavioral syndromes. This context-independent and temporally stable set of correlated behaviors (positive association between movements and attraction towards light) could promote the basic separation between inside (brood tenders) and outside workers (foragers). These position-associated behavior syndromes are coupled with a high probability to perform tasks, located at the defined position, and a characteristic cuticular hydrocarbon profile. We discuss the potentially physiological causes for the observed behavioral syndromes and highlight how the study of animal personalities can provide new insights for the study of division of labor and self-organized processes in general. PMID:24497911
Qualitative Description of Spatial Quality in Inclusive Architecture.
Ryhl, Camilla; Kajita, Masashi; Sørensen, René
2016-01-01
Universal design (UD) has gained global significance and is in the process of institutionalisation in the Nordic Region. This is despite an urgent necessity for developing the theoretical basis and practical applicability of UD. Reflecting this need for furthering the comprehensive understanding of spatial implication of UD, this paper aims to contribute for articulating a means to assess the quality of UD in architecture. Drawing upon numerous cases from research conducted at the Danish Building Research Institute, the paper focuses on sensory aspects of spatial quality, and discusses as well as reflects an applied method for producing the qualitative description of selected buildings that embody UD through creative solutions. The qualitative description of collected examples appears to be effective in delineating sensory aspects of spatial experience; however the systematic development of assessment criteria is essential in order to support students and designers to make responsible decisions in shaping built environments that are accessible and inclusive but also enjoyable.
Accounting for substitution and spatial heterogeneity in a labelled choice experiment.
Lizin, S; Brouwer, R; Liekens, I; Broeckx, S
2016-10-01
Many environmental valuation studies using stated preferences techniques are single-site studies that ignore essential spatial aspects, including possible substitution effects. In this paper substitution effects are captured explicitly in the design of a labelled choice experiment and the inclusion of different distance variables in the choice model specification. We test the effect of spatial heterogeneity on welfare estimates and transfer errors for minor and major river restoration works, and the transferability of river specific utility functions, accounting for key variables such as site visitation, spatial clustering and income. River specific utility functions appear to be transferable, resulting in low transfer errors. However, ignoring spatial heterogeneity increases transfer errors. Copyright © 2016 Elsevier Ltd. All rights reserved.
The Art and Science of Climate Model Tuning
Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew; ...
2017-03-31
The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less
The Art and Science of Climate Model Tuning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hourdin, Frederic; Mauritsen, Thorsten; Gettelman, Andrew
The process of parameter estimation targeting a chosen set of observations is an essential aspect of numerical modeling. This process is usually named tuning in the climate modeling community. In climate models, the variety and complexity of physical processes involved, and their interplay through a wide range of spatial and temporal scales, must be summarized in a series of approximate submodels. Most submodels depend on uncertain parameters. Tuning consists of adjusting the values of these parameters to bring the solution as a whole into line with aspects of the observed climate. Tuning is an essential aspect of climate modeling withmore » its own scientific issues, which is probably not advertised enough outside the community of model developers. Optimization of climate models raises important questions about whether tuning methods a priori constrain the model results in unintended ways that would affect our confidence in climate projections. Here, we present the definition and rationale behind model tuning, review specific methodological aspects, and survey the diversity of tuning approaches used in current climate models. We also discuss the challenges and opportunities in applying so-called objective methods in climate model tuning. Here, we discuss how tuning methodologies may affect fundamental results of climate models, such as climate sensitivity. The article concludes with a series of recommendations to make the process of climate model tuning more transparent.« less
Phase-space analysis of the Schwinger effect in inhomogeneous electromagnetic fields
NASA Astrophysics Data System (ADS)
Kohlfürst, Christian
2018-05-01
Schwinger pair production in spatially and temporally inhomogeneous electric and magnetic fields is studied. The focus is on the particle phase-space distribution within a high-intensity few-cycle pulse. Accurate numerical solutions of a quantum kinetic theory (DHW formalism) are presented in momentum space and, with the aid of coarse-graining techniques, in a mixed spatial-momentum representation. Additionally, signatures of the carrier-envelope phase as well as spin-field interactions are discussed on the basis of a trajectory-based model taking into account instantaneous pair production and relativistic single-particle dynamics. Although our simple semi-classical single-particle model cannot describe every aspect of the particle production process (quantum interferences), essential features such as spin-field interactions are captured.
Colas, Fanny; Archaimbault, Virginie; Devin, Simon
2011-03-01
Due to their nutrient recycling function and their importance in food-webs, macroinvertebrates are essential for the functioning of aquatic ecosystems. These organisms also constitute an important component of biodiversity. Sediment evaluation and monitoring is an essential aspect of ecosystem monitoring since sediments represent an important component of aquatic habitats and are also a potential source of contamination. In this study, we focused on macroinvertebrate communities within run-of-river dams, that are prime areas for sediment and pollutant accumulation. Little is known about littoral macroinvertebrate communities within run-of-river dam or their response to sediment levels and pollution. We therefore aimed to evaluate the following aspects: the functional and structural composition of macroinvertebrate communities in run-of-river dams; the impact of pollutant accumulation on such communities, and the most efficient scales and tools needed for the biomonitoring of contaminated sediments in such environments. Two run-of-river dams located in the French alpine area were selected and three spatial scales were examined: transversal (banks and channel), transversal x longitudinal (banks/channel x tail/middle/dam) and patch scale (erosion, sedimentation and vegetation habitats). At the patch scale, we noted that the heterogeneity of littoral habitats provided many available niches that allow for the development of diversified macroinvertebrate communities. This implies highly variable responses to contamination. Once combined on a global 'banks' spatial scale, littoral habitats can highlight the effects of toxic disturbances. Copyright © 2011 Elsevier B.V. All rights reserved.
Forma y acción de la liberación de energía en la atmósfera solar
NASA Astrophysics Data System (ADS)
Mandrini, C. H.
2016-08-01
We briefly describe the lines of work developed over more than twenty years and their relevant results. Our scope is essentially that of active events that occur in the solar atmosphere covering wide temporal and spatial scales and energy range. We present results derived from the comparative analysis of active events and their interplanetary counterparts, as well as of aspects related to the quiet solar atmosphere, such as the heating of the corona and the origin of the slow solar wind.
Monolithically Integrated, Mechanically Resilient Carbon-Based Probes for Scanning Probe Microscopy
NASA Technical Reports Server (NTRS)
Kaul, Anupama B.; Megerian, Krikor G.; Jennings, Andrew T.; Greer, Julia R.
2010-01-01
Scanning probe microscopy (SPM) is an important tool for performing measurements at the nanoscale in imaging bacteria or proteins in biology, as well as in the electronics industry. An essential element of SPM is a sharp, stable tip that possesses a small radius of curvature to enhance spatial resolution. Existing techniques for forming such tips are not ideal. High-aspect-ratio, monolithically integrated, as-grown carbon nanofibers (CNFs) have been formed that show promise for SPM applications by overcoming the limitations present in wet chemical and separate substrate etching processes.
Psychological aspects of living in space - architectural challenges
NASA Astrophysics Data System (ADS)
Häuplik, Sandra; Lorenz, Susanne
2002-10-01
Space missions have generally involved crews, drawn from a highly homogeneous pool (such as white, educated, young adult males) and functioned for limited periods of time. Future missions may involve crews drawn from a more heterogeneous pool and missions could eventually last years. 3 to 5-person groups are considered appropriate for the Space Shuttle and the first interplanetry missions. In addition to the above mentioned topics the success of a mission will no longer be dependent only on safety issues due to technological progress, but sociological and psychological aspects will become important determinants off the success or failure of future space missions. To create and ensure the social and psychological balance an adequate spatial planning is essential. In the following essay notions for a conception basis of designing a space station will be described.
NASA Technical Reports Server (NTRS)
Coeckelenbergh, Y.; Macelroy, R. D.; Rein, R.
1978-01-01
The investigation of specific interactions among biological molecules must take into consideration the stereochemistry of the structures. Thus, models of the molecules are essential for describing the spatial organization of potentially interacting groups, and estimations of conformation are required for a description of spatial organization. Both the function of visualizing molecules, and that of estimating conformation through calculations of energy, are part of the molecular modeling system described in the present paper. The potential uses of the system in investigating some aspects of the origin of life rest on the assumption that translation of conformation from genetic elements to catalytic elements would have been required for the development of the first replicating systems subject to the process of biological evolution.
Can Sap Flow Help Us to Better Understand Transpiration Patterns in Landscapes?
NASA Astrophysics Data System (ADS)
Hassler, S. K.; Weiler, M.; Blume, T.
2017-12-01
Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions and for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. At the tree scale, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status, stand-specific characteristics such as basal area or stand density and site-specific characteristics such as geology, slope position or aspect control sap flow of individual trees. However, little is known about the relative importance or the dynamic interplay of these controls. We studied these influences with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km²-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we applied linear models to the daily spatial pattern of sap velocity and determined the importance of the different predictors. By upscaling sap velocities to the tree level with the help of species-dependent empirical estimates for sapwood area we also examined patterns of sap flow as a more direct representation of transpiration. Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in this landscape, namely tree species, tree diameter, geology and aspect. For sap flow, the site-specific predictors provided the largest contribution to the explained variance, however, in contrast to the sap velocity analysis, geology was more important than aspect. Spatial variability of atmospheric demand and soil moisture explained only a small fraction of the variance. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, were correlated to the temporal dynamics of potential evaporation. We conclude that spatial representation of transpiration in models could benefit from including patterns according to tree and site characteristics.
McHugh, Stephen B; Niewoehner, Burkhard; Rawlins, J N P; Bannerman, David M
2008-01-10
Previous lesion studies have suggested a functional dissociation along the septotemporal axis of the hippocampus. Whereas the dorsal hippocampus has been implicated in spatial memory processes, the ventral hippocampus may play a role in anxiety. However, these lesion studies are potentially confounded by demyelination of fibres passing through the lesion site, and the possibility of secondary, downstream changes in associated brain structures as a consequence of their chronic denervation following the lesion. In the present study, we have used the microinfusion of muscimol to temporarily inactivate either the dorsal or ventral hippocampus in order to re-examine the contribution of the hippocampal sub-regions to spatial memory. Microinfusion studies spare fibres of passage and offer fewer opportunities for compensatory changes because the effects are transient and short-lasting. Rats were infused prior to spatial working memory testing on a non-matching to place T-maze alternation task. Spatial working memory was impaired by dorsal but not ventral hippocampal inactivation. In a second experiment, infusion of the NMDAR antagonist, D-AP5, into dorsal hippocampus also impaired spatial working memory performance, suggesting that NMDAR function within the dorsal hippocampus makes an essential contribution to this aspect of hippocampal information processing.
Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter
2015-01-01
In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.
Functional resilience of microbial ecosystems in soil: How important is a spatial analysis?
NASA Astrophysics Data System (ADS)
König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Thullner, Martin
2015-04-01
Microbial life in soil is exposed to fluctuating environmental conditions influencing the performance of microbially mediated ecosystem services such as biodegradation of contaminants. However, as this environment is typically very heterogeneous, spatial aspects can be expected to play a major role for the ability to recover from a stress event. To determine key processes for functional resilience, simple scenarios with varying stress intensities were simulated within a microbial simulation model and the biodegradation rate in the recovery phase monitored. Parameters including microbial growth and dispersal rates were varied over a typical range to consider microorganisms with varying properties. Besides an aggregated temporal monitoring, the explicit observation of the spatio-temporal dynamics proved essential to understand the recovery process. For a mechanistic understanding of the model system, scenarios were also simulated with selected processes being switched-off. Results of the mechanistic and the spatial view show that the key factors for functional recovery with respect to biodegradation after a simple stress event depend on the location of the observed habitats. The limiting factors near unstressed areas are spatial processes - the mobility of the bacteria as well as substrate diffusion - the longer the distance to the unstressed region the more important becomes the process growth. Furthermore, recovery depends on the stress intensity - after a low stress event the spatial configuration has no influence on the key factors for functional resilience. To confirm these results, we repeated the stress scenarios but this time including an additional dispersal network representing a fungal network in soil. The system benefits from an increased spatial performance due to the higher mobility of the degrading microorganisms. However, this effect appears only in scenarios where the spatial distribution of the stressed area plays a role. With these simulations we show that spatial aspects play a main role for recovering after a severe stress event in a highly heterogeneous environment such as soil, and thus the relevance of the exact distribution of the stressed area. In consequence a spatial-mechanistic view is necessary for examining the functional resilience as the aggregated temporal view alone could not have led to these conclusions. Further research should explore the importance of a spatial view for quantifying the recovery of the ecosystem service also after more complex stress regimes.
NASA Astrophysics Data System (ADS)
Di Ludovico, Donato; D'Ovidio, Gino
2017-10-01
This paper refers to an interdisciplinary planning research approach that aims to combine urban aspects related to a territorial spatial development with transport requirements connected to an efficiency and sustainable mobility. The proposed research method is based on “Territorial Frames” (TFs) model that derived from an original interpretation of the local context divided into a summation of territorial settlement fabrics characterized in terms of spatial tile, morphology and mobility axes. The TFs, with their own autonomous, different size and structure, are used as the main plot, able to assemble the settlement systems and their posturbane forms. With a view to polycentric and spatial development, the research method allows us to analyse the completeness of the TFs and their connective potential, in order to locate the missing/inefficient elements of the transportation network and planning other TFs essential to support economic and social development processes of the most isolated and disadvantaged inland areas. Finally, a case study of the Italian Median Macroregion configuration based on TFs model approach is proposed, analysed and discussed.
Kandasamy, Muthugapatti K; McKinney, Elizabeth C; Roy, Eileen; Meagher, Richard B
2012-05-01
Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin's competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals.
Kandasamy, Muthugapatti K.; McKinney, Elizabeth C.; Roy, Eileen; Meagher, Richard B.
2012-01-01
Actin is an essential multifunctional protein encoded by two distinct ancient classes of genes in animals (cytoplasmic and muscle) and plants (vegetative and reproductive). The prevailing view is that each class of actin variants is functionally distinct. However, we propose that the vegetative plant and cytoplasmic animal variants have conserved functional competence for spatial development inherited from an ancestral protist actin sequence. To test this idea, we ectopically expressed animal and protist actins in Arabidopsis thaliana double vegetative actin mutants that are dramatically altered in cell and organ morphologies. We found that expression of cytoplasmic actins from humans and even a highly divergent invertebrate Ciona intestinalis qualitatively and quantitatively suppressed the root cell polarity and organ defects of act8 act7 mutants and moderately suppressed the root-hairless phenotype of act2 act8 mutants. By contrast, human muscle actins were unable to support prominently any aspect of plant development. Furthermore, actins from three protists representing Choanozoa, Archamoeba, and green algae efficiently suppressed all the phenotypes of both the plant mutants. Remarkably, these data imply that actin’s competence to carry out a complex suite of processes essential for multicellular development was already fully developed in single-celled protists and evolved nonprogressively from protists to plants and animals. PMID:22589468
Kumberger, Peter; Durso-Cain, Karina; Uprichard, Susan L; Dahari, Harel; Graw, Frederik
2018-04-17
Mathematical models based on ordinary differential equations (ODE) that describe the population dynamics of viruses and infected cells have been an essential tool to characterize and quantify viral infection dynamics. Although an important aspect of viral infection is the dynamics of viral spread, which includes transmission by cell-free virions and direct cell-to-cell transmission, models used so far ignored cell-to-cell transmission completely, or accounted for this process by simple mass-action kinetics between infected and uninfected cells. In this study, we show that the simple mass-action approach falls short when describing viral spread in a spatially-defined environment. Using simulated data, we present a model extension that allows correct quantification of cell-to-cell transmission dynamics within a monolayer of cells. By considering the decreasing proportion of cells that can contribute to cell-to-cell spread with progressing infection, our extension accounts for the transmission dynamics on a single cell level while still remaining applicable to standard population-based experimental measurements. While the ability to infer the proportion of cells infected by either of the transmission modes depends on the viral diffusion rate, the improved estimates obtained using our novel approach emphasize the need to correctly account for spatial aspects when analyzing viral spread.
On the use of IT investment assessment methods in the area of spatial data infrastructure
NASA Astrophysics Data System (ADS)
Zwirowicz-Rutkowska, Agnieszka
2016-06-01
One of the important issues concerning development of spatial data infrastructures (SDIs) is the carrying out of economic and financial analysis. It is essential to determine expenses and also assess effects resulting from the development and use of infrastructures. Costs and benefits assessment could be associated with assessment of the infrastructure effectiveness and efficiency as well as the infrastructure value, understood as the infrastructure impact on economic aspects of an organisational performance, both of an organisation which realises an SDI project and all users of the infrastructure. The aim of this paper is an overview of various assessment methods of investment as well as an analysis of different types of costs and benefits used for information technology (IT) projects. Based on the literature, the analysis of the examples of the use of these methods in the area of spatial data infrastructures is also presented. Furthermore, the issues of SDI projects and investments are outlined. The results of the analysis indicate usefulness of the financial methods from different fields of management in the area of SDI building, development and use. The author proposes, in addition to the financial methods, the adaptation of the various techniques used for IT investments and their development, taking into consideration the SDI specificity for the purpose of assessment of different types of costs and benefits and integration of financial aspects with non-financial ones. Among the challenges are identification and quantification of costs and benefits, as well as establishing measures which would fit the characteristics of the SDI project and artefacts resulting from the project realisation. Moreover, aspects of subjectivity and variability in time should be taken into account as the consequences of definite goals and policies as well as business context of organisation undertaking the project or using its artefacts and also investors.
NASA Astrophysics Data System (ADS)
Ma, X.; Mahecha, M. D.; Migliavacca, M.; Luo, Y.; Urban, M.; Bohn, F. J.; Huth, A.; Reichstein, M.
2017-12-01
A key challenge for monitoring biodiversity change is the lack of consistent measures of biodiversity across space and time. This challenge may be addressed by exploring the potentials provided by novel remote sensing observations. By continuously observing broad-scale patterns of vegetation and land surface parameters, remote sensing can complement the restricted coverage afforded by field measurements. Here we develop methods to infer spatial patterns of biodiversity at ecosystem level from ESA's next-generation Sentinel sensors (Sentinel-1: C-band radar & Sentinel-2: multispectral). Both satellites offer very high spatial (10 m) and temporal resolutions (5 days) measurements with global coverage. We propose and test several ecosystem biodiversity proxies, including landscape spectral diversity, phenological diversity, and canopy structural diversity. These diversity proxies are highly related to some key aspects of essential biodiversity variables (EBVs) as defined by GEO-BON, such as habitat structure, community composition, ecosystem function and structure. We verify spaceborne retrievals of these biodiversity proxies with in situ measurements from drone (spectral diversity), phenocam (phenological diversity), and airborne LiDAR (canopy structural diversity) over multiple flux tower sites within the Mediterranean region. We further compare our remote sensing retrievals of biodiversity proxies against several biodiversity indices as derived from field measurements (incl. ⍺-/β- diversity and Shannon-index) to explore the limitations and potentials of extending the RS proxies to a greater spatial extent. We expect the new concept as to maximize the potential of remote sensing information might help to monitor key aspects of EBVs on a global scale.
NASA Astrophysics Data System (ADS)
Luo, X.; Hong, Y.; Lei, X.; Leung, L. R.; Li, H. Y.; Getirana, A.
2017-12-01
As one essential component of the Earth system modeling, the continental-scale river routing computation plays an important role in applications of Earth system models, such as evaluating the impacts of the global change on water resources and flood hazards. The streamflow timing, which depends on the modeled flow velocities, can be an important aspect of the model results. River flow velocities have been estimated by using the Manning's equation where the Manning roughness coefficient is a key and sensitive parameter. In some early continental-scale studies, the Manning coefficient was determined with simplified methods, such as using a constant value for the entire basin. However, large spatial variability is expected in the Manning coefficients for the numerous channels composing the river network in distributed continental-scale hydrologic modeling. In the application of a continental-scale river routing model in the Amazon Basin, we use spatially varying Manning coefficients dependent on channel sizes and attempt to represent the dominant spatial variability of Manning coefficients. Based on the comparisons of simulation results with in situ streamflow records and remotely sensed river stages, we investigate the comparatively optimal Manning coefficients and explicitly demonstrate the advantages of using spatially varying Manning coefficients. The understanding obtained in this study could be helpful in the modeling of surface hydrology at regional to continental scales.
Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface.
Knodel, Markus M; Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; Targett-Adams, Paul; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel
2018-01-08
Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles.
Spatial mapping and quantification of developmental branching morphogenesis.
Short, Kieran; Hodson, Mark; Smyth, Ian
2013-01-15
Branching morphogenesis is a fundamental developmental mechanism that shapes the formation of many organs. The complex three-dimensional shapes derived by this process reflect equally complex genetic interactions between branching epithelia and their surrounding mesenchyme. Despite the importance of this process to normal adult organ function, analysis of branching has been stymied by the absence of a bespoke method to quantify accurately the complex spatial datasets that describe it. As a consequence, although many developmentally important genes are proposed to influence branching morphogenesis, we have no way of objectively assessing their individual contributions to this process. We report the development of a method for accurately quantifying many aspects of branching morphogenesis and we demonstrate its application to the study of organ development. As proof of principle we have employed this approach to analyse the developing mouse lung and kidney, describing the spatial characteristics of the branching ureteric bud and pulmonary epithelia. To demonstrate further its capacity to profile unrecognised genetic contributions to organ development, we examine Tgfb2 mutant kidneys, identifying elements of both developmental delay and specific spatial dysmorphology caused by haplo-insufficiency for this gene. This technical advance provides a crucial resource that will enable rigorous characterisation of the genetic and environmental factors that regulate this essential and evolutionarily conserved developmental mechanism.
Quantitative Analysis of Hepatitis C NS5A Viral Protein Dynamics on the ER Surface
Nägel, Arne; Reiter, Sebastian; Vogel, Andreas; McLauchlan, John; Herrmann, Eva; Wittum, Gabriel
2018-01-01
Exploring biophysical properties of virus-encoded components and their requirement for virus replication is an exciting new area of interdisciplinary virological research. To date, spatial resolution has only rarely been analyzed in computational/biophysical descriptions of virus replication dynamics. However, it is widely acknowledged that intracellular spatial dependence is a crucial component of virus life cycles. The hepatitis C virus-encoded NS5A protein is an endoplasmatic reticulum (ER)-anchored viral protein and an essential component of the virus replication machinery. Therefore, we simulate NS5A dynamics on realistic reconstructed, curved ER surfaces by means of surface partial differential equations (sPDE) upon unstructured grids. We match the in silico NS5A diffusion constant such that the NS5A sPDE simulation data reproduce experimental NS5A fluorescence recovery after photobleaching (FRAP) time series data. This parameter estimation yields the NS5A diffusion constant. Such parameters are needed for spatial models of HCV dynamics, which we are developing in parallel but remain qualitative at this stage. Thus, our present study likely provides the first quantitative biophysical description of the movement of a viral component. Our spatio-temporal resolved ansatz paves new ways for understanding intricate spatial-defined processes central to specfic aspects of virus life cycles. PMID:29316722
Subjective figures and texture perception.
Zucker, S W; Cavanagh, P
1985-01-01
A texture discrimination task using the Ehrenstein illusion demonstrates that subjective brightness effects can play an essential role in early vision. The subjectively bright regions of the Ehrenstein can be organized either as discs or as stripes, depending on orientation. The accuracy of discrimination between variants of the Ehrenstein and control patterns was a direct function of the presence of the illusory brightness stripes, being high when they were present and low otherwise. It is argued that neither receptive field structure nor spatial-frequency content can adequately account for these results. We suggest that the subjective brightness illusions, rather than being a high-level, cognitive aspect of vision, are in fact the result of an early visual process.
Spatial Pattern of Attacks of the Invasive Woodwasp Sirex noctilio, at Landscape and Stand Scales.
Lantschner, M Victoria; Corley, Juan C
2015-01-01
Invasive insect pests are responsible for important damage to native and plantation forests, when population outbreaks occur. Understanding the spatial pattern of attacks by forest pest populations is essential to improve our understanding of insect population dynamics and for predicting attack risk by invasives or planning pest management strategies. The woodwasp Sirex noctilio is an invasive woodwasp that has become probably the most important pest of pine plantations in the Southern Hemisphere. Our aim was to study the spatial dynamics of S. noctilio populations in Southern Argentina. Specifically we describe: (1) the spatial patterns of S. noctilio outbreaks and their relation with environmental factors at a landscape scale; and (2) characterize the spatial pattern of attacked trees at the stand scale. We surveyed the spatial distribution of S. noctilio outbreaks in three pine plantation landscapes, and we assessed potential associations with topographic variables, habitat characteristics, and distance to other outbreaks. We also looked at the spatial distribution of attacked trees in 20 stands with different levels of infestation, and assessed the relationship of attacks with stand composition and management. We found that the spatial pattern of pine stands with S. noctilio outbreaks at the landscape scale is influenced mainly by the host species present, slope aspect, and distance to other outbreaks. At a stand scale, there is strong aggregation of attacked trees in stands with intermediate infestation levels, and the degree of attacks is influenced by host species and plantation management. We conclude that the pattern of S. noctilio damage at different spatial scales is influenced by a combination of both inherent population dynamics and the underlying patterns of environmental factors. Our results have important implications for the understanding and management of invasive insect outbreaks in forest systems.
Appraisal of rural-urban migration determinants: a case study of Constantine, Algeria.
Boukhemis, K; Zeghiche, A
1988-02-01
Despite some impressive achievements, Algerian planning strategy has neglected the spatial aspect of development, which has accelerated interregional migration and consequently has reinforced existing urban problems: 1) overcrowding, 2) the housing crisis, 3) unemployment, and 4) inadequate infrastructure services. It has become obvious that policy makers must take into account the major role of migration in balanced economic growth, and yet knowledge of migration patterns and processes is very limited in Algeria. Constantine's geographic location and role as a regional metropolis played an essential part in shaping migration flows. Up to 1966, Constantine's disproportionate growth was largely the result of massive migration. Since then, there has been a noticeable slowdown in migration, and natural increase has become the largest component of urban growth. This change reflects the government's development policies. Migration flows to Constantine have been deflected to the new industrial poles, which offer greater employment opportunities. More knowledge of migration is essential for an understanding of the factors that determine the rate and direction of migration flows.
Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes
NASA Astrophysics Data System (ADS)
Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.
2017-12-01
Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation differences amplify the soil moisture variability of semi-arid landscapes.
Brand, Richard A
2005-01-01
A joint's normal mechanical history contributes to the maintenance of articular cartilage and underlying bone. Loading facilitates the flow of nutrients into cartilage and waste products away, and additionally provides the mechanical signals essential for normal cell and tissue maintenance. Deleteriously low or high contact stresses have been presumed to result in joint deterioration, and particular aspects of the mechanical environment may facilitate repair of damaged cartilage. For decades, investigators have explored static joint contact stresses (under some more or less arbitrary condition) as a surrogate of the relevant mechanical history. Contact stresses have been estimated in vitro in many joints and in a number of species, although only rarely in vivo. Despite a number of widely varying techniques (and spatial resolutions) to measure these contact stresses, reported ranges of static peak normal stresses are relatively similar from joint to joint across species, and in the range of 0.5 to 5.0 MPa. This suggests vertebrate diarthrodial joints have evolved to achieve similar mechanical design criteria. Available evidence also suggests some disorders of cartilage deterioration are associated with somewhat higher peak pressures ranging from 1-20 MPa, but overlapping the range of normal pressures. Some evidence and considerable logic suggests static contact stresses per se do not predict cartilage responses, but rather temporal aspects of the contact stress history. Static contact stresses may therefore not be a reasonable surrogate for biomechanical studies. Rather, temporal and spatial aspects of the loading history undoubtedly induce beneficial and deleterious biological responses. Finally, since all articular cartilage experiences similar stresses, the concept of a "weight-bearing" versus a "non-weight-bearing" joint seems flawed, and should be abandoned. PMID:16089079
Lustig, Audrey; Worner, Susan P; Pitt, Joel P W; Doscher, Crile; Stouffer, Daniel B; Senay, Senait D
2017-10-01
Natural and human-induced events are continuously altering the structure of our landscapes and as a result impacting the spatial relationships between individual landscape elements and the species living in the area. Yet, only recently has the influence of the surrounding landscape on invasive species spread started to be considered. The scientific community increasingly recognizes the need for broader modeling framework that focuses on cross-study comparisons at different spatiotemporal scales. Using two illustrative examples, we introduce a general modeling framework that allows for a systematic investigation of the effect of habitat change on invasive species establishment and spread. The essential parts of the framework are (i) a mechanistic spatially explicit model (a modular dispersal framework-MDIG) that allows population dynamics and dispersal to be modeled in a geographical information system (GIS), (ii) a landscape generator that allows replicated landscape patterns with partially controllable spatial properties to be generated, and (iii) landscape metrics that depict the essential aspects of landscape with which dispersal and demographic processes interact. The modeling framework provides functionality for a wide variety of applications ranging from predictions of the spatiotemporal spread of real species and comparison of potential management strategies, to theoretical investigation of the effect of habitat change on population dynamics. Such a framework allows to quantify how small-grain landscape characteristics, such as habitat size and habitat connectivity, interact with life-history traits to determine the dynamics of invasive species spread in fragmented landscape. As such, it will give deeper insights into species traits and landscape features that lead to establishment and spread success and may be key to preventing new incursions and the development of efficient monitoring, surveillance, control or eradication programs.
Barsi, Julius C; Davidson, Eric H
2016-01-01
Specification of the ciliated band (CB) of echinoid embryos executes three spatial functions essential for postgastrular organization. These are establishment of a band about 5 cells wide which delimits and bounds other embryonic territories; definition of a neurogenic domain within this band; and generation within it of arrays of ciliary cells that bear the special long cilia from which the structure derives its name. In Strongylocentrotus purpuratus the spatial coordinates of the future ciliated band are initially and exactly determined by the disposition of a ring of cells that transcriptionally activate the onecut homeodomain regulatory gene, beginning in blastula stage, long before the appearance of the CB per se. Thus the cis-regulatory apparatus that governs onecut expression in the blastula directly reveals the genomic sequence code by which these aspects of the spatial organization of the embryo are initially determined. We screened the entire onecut locus and its flanking region for transcriptionally active cis-regulatory elements, and by means of BAC recombineered deletions identified three separated and required cis-regulatory modules that execute different functions. The operating logic of the crucial spatial control module accounting for the spectacularly precise and beautiful early onecut expression domain depends on spatial repression. Previously predicted oral ectoderm and aboral ectoderm repressors were identified by cis-regulatory mutation as the products of goosecoid and irxa genes respectively, while the pan-ectodermal activator SoxB1 supplies a transcriptional driver function. Copyright © 2015. Published by Elsevier Inc.
Teaching Spatial Thinking with the National Atlas of Korea in U.S. Secondary Level Education
NASA Astrophysics Data System (ADS)
Chu, Gregory H.; Hwang, Chul Sue; Choi, Jongnam
2018-05-01
This paper is predicated on the body of literature that supports a theoretical concept that middle and high school age children possess the cognitive ability to understand thematic maps and achieve some degree of cartographic literacy. In 2006, the US National Research Council (NRC) of the National Academies published a landmark book on Learning to Think Spatially. This book documented essential secondary education components and various aspects of teaching spatial thinking. The NRC defines spatial thinking as "a form of thinking based on a constructive amalgam of three elements: concepts of space, tools of representation, and processes of reasoning" (NRC, 2006, ix). This paper is an attempt to document and understand some of the attributes associated with these three elements. Specifically, it aims to find ways that can effectively contribute to the teaching of these elements associated with spatial thinking. The National Atlas of Korea is chosen for lesson plan development because it is well-designed and provides a range of contents and comprehensiveness that are ideal; in addition, it is freely accessible online and downloadable (http://nationalatlas.ngii.go.kr/). Four master geography teachers were invited to examine the Atlas to conceive and develop Advanced Placement Human Geography (APHG) lesson plans. Four lesson plans were written and have continually been implemented in classrooms to over 800 students in the States of Utah, Georgia, Minnesota, and Tennessee since the 2015 Fall semester. Results are presented in this paper.
Minimalist approach to the classification of symmetry protected topological phases
NASA Astrophysics Data System (ADS)
Xiong, Zhaoxi
A number of proposals with differing predictions (e.g. group cohomology, cobordisms, group supercohomology, spin cobordisms, etc.) have been made for the classification of symmetry protected topological (SPT) phases. Here we treat various proposals on equal footing and present rigorous, general results that are independent of which proposal is correct. We do so by formulating a minimalist Generalized Cohomology Hypothesis, which is satisfied by existing proposals and captures essential aspects of SPT classification. From this Hypothesis alone, formulas relating classifications in different dimensions and/or protected by different symmetry groups are derived. Our formalism is expected to work for fermionic as well as bosonic phases, Floquet as well as stationary phases, and spatial as well as on-site symmetries.
NASA Astrophysics Data System (ADS)
Rimbatmojo, S.; Kusmayadi, T. A.; Riyadi, R.
2017-09-01
This study aims to find out students metacognition difficulty during solving open-ended problem in mathematics. It focuses on analysing the metacognition difficulty of students with visual-spatial intelligence in solving open-ended problem. A qualitative research with case study strategy is used in this study. Data in the form of visual-spatial intelligence test result and recorded interview during solving open-ended problems were analysed qualitatively. The results show that: (1) students with high visual-spatial intelligence have no difficulty on each metacognition aspects, (2) students with medium visual-spatial intelligence have difficulty on knowledge aspect on strategy and cognitive tasks, (3) students with low visual-spatial intelligence have difficulty on three metacognition aspects, namely knowledge on strategy, cognitive tasks and self-knowledge. Even though, several researches about metacognition process and metacognition literature recommended the steps to know the characteristics. It is still important to discuss that the difficulties of metacognitive is happened because of several factors, one of which on the characteristics of student’ visual-spatial intelligence. Therefore, it is really important for mathematics educators to consider and pay more attention toward students’ visual-spatial intelligence and metacognition difficulty in designing better mathematics learning.
Spatial and temporal aspects of navigation in two neurological patients.
van der Ham, Ineke J M; van Zandvoort, Martine J E; Meilinger, Tobias; Bosch, Sander E; Kant, Neeltje; Postma, Albert
2010-07-14
We present two cases (A.C. and W.J.) with navigation problems resulting from parieto-occipital right hemisphere damage. For both the cases, performance on the neuropsychological tests did not indicate specific impairments in spatial processing, despite severe subjective complaints of spatial disorientation. Various aspects of navigation were tested in a new virtual reality task, the Virtual Tübingen task. A double dissociation between spatial and temporal deficits was found; A.C. was impaired in route ordering, a temporal test, whereas W.J. was impaired in scene recognition and route continuation, which are spatial in nature. These findings offer important insights in the functional and neural architecture of navigation.
Ecosystem services (ESS) represent an ecosystems capacity for satisfying essential human needs, directly or indirectly, above that required to maintain ecosystem integrity (structure, function and processes). The spatial characterization and mapping of ESS is an essential first s...
Combining disparate data sources for improved poverty prediction and mapping.
Pokhriyal, Neeti; Jacques, Damien Christophe
2017-11-14
More than 330 million people are still living in extreme poverty in Africa. Timely, accurate, and spatially fine-grained baseline data are essential to determining policy in favor of reducing poverty. The potential of "Big Data" to estimate socioeconomic factors in Africa has been proven. However, most current studies are limited to using a single data source. We propose a computational framework to accurately predict the Global Multidimensional Poverty Index (MPI) at a finest spatial granularity and coverage of 552 communes in Senegal using environmental data (related to food security, economic activity, and accessibility to facilities) and call data records (capturing individualistic, spatial, and temporal aspects of people). Our framework is based on Gaussian Process regression, a Bayesian learning technique, providing uncertainty associated with predictions. We perform model selection using elastic net regularization to prevent overfitting. Our results empirically prove the superior accuracy when using disparate data (Pearson correlation of 0.91). Our approach is used to accurately predict important dimensions of poverty: health, education, and standard of living (Pearson correlation of 0.84-0.86). All predictions are validated using deprivations calculated from census. Our approach can be used to generate poverty maps frequently, and its diagnostic nature is, likely, to assist policy makers in designing better interventions for poverty eradication. Copyright © 2017 the Author(s). Published by PNAS.
Combining disparate data sources for improved poverty prediction and mapping
2017-01-01
More than 330 million people are still living in extreme poverty in Africa. Timely, accurate, and spatially fine-grained baseline data are essential to determining policy in favor of reducing poverty. The potential of “Big Data” to estimate socioeconomic factors in Africa has been proven. However, most current studies are limited to using a single data source. We propose a computational framework to accurately predict the Global Multidimensional Poverty Index (MPI) at a finest spatial granularity and coverage of 552 communes in Senegal using environmental data (related to food security, economic activity, and accessibility to facilities) and call data records (capturing individualistic, spatial, and temporal aspects of people). Our framework is based on Gaussian Process regression, a Bayesian learning technique, providing uncertainty associated with predictions. We perform model selection using elastic net regularization to prevent overfitting. Our results empirically prove the superior accuracy when using disparate data (Pearson correlation of 0.91). Our approach is used to accurately predict important dimensions of poverty: health, education, and standard of living (Pearson correlation of 0.84–0.86). All predictions are validated using deprivations calculated from census. Our approach can be used to generate poverty maps frequently, and its diagnostic nature is, likely, to assist policy makers in designing better interventions for poverty eradication. PMID:29087949
The quantitative modelling of human spatial habitability
NASA Technical Reports Server (NTRS)
Wise, J. A.
1985-01-01
A model for the quantitative assessment of human spatial habitability is presented in the space station context. The visual aspect assesses how interior spaces appear to the inhabitants. This aspect concerns criteria such as sensed spaciousness and the affective (emotional) connotations of settings' appearances. The kinesthetic aspect evaluates the available space in terms of its suitability to accommodate human movement patterns, as well as the postural and anthrometric changes due to microgravity. Finally, social logic concerns how the volume and geometry of available space either affirms or contravenes established social and organizational expectations for spatial arrangements. Here, the criteria include privacy, status, social power, and proxemics (the uses of space as a medium of social communication).
Spatial representations elicit dual-coding effects in mental imagery.
Verges, Michelle; Duffy, Sean
2009-08-01
Spatial aspects of words are associated with their canonical locations in the real world. Yet little research has tested whether spatial associations denoted in language comprehension generalize to their corresponding images. We directly tested the spatial aspects of mental imagery in picture and word processing (Experiment 1). We also tested whether spatial representations of motion words produce similar perceptual-interference effects as demonstrated by object words (Experiment 2). Findings revealed that words denoting an upward spatial location produced slower responses to targets appearing at the top of the display, whereas words denoting a downward spatial location produced slower responses to targets appearing at the bottom of the display. Perceptual-interference effects did not obtain for pictures or for words lacking a spatial relation. These findings provide greater empirical support for the perceptual-symbols system theory (Barsalou, 1999, 2008). Copyright © 2009 Cognitive Science Society, Inc.
Smulders, Tom V; Gould, Kristy L; Leaver, Lisa A
2010-03-27
Understanding the survival value of behaviour does not tell us how the mechanisms that control this behaviour work. Nevertheless, understanding survival value can guide the study of these mechanisms. In this paper, we apply this principle to understanding the cognitive mechanisms that support cache retrieval in scatter-hoarding animals. We believe it is too simplistic to predict that all scatter-hoarding animals will outperform non-hoarding animals on all tests of spatial memory. Instead, we argue that we should look at the detailed ecology and natural history of each species. This understanding of natural history then allows us to make predictions about which aspects of spatial memory should be better in which species. We use the natural hoarding behaviour of the three best-studied groups of scatter-hoarding animals to make predictions about three aspects of their spatial memory: duration, capacity and spatial resolution, and we test these predictions against the existing literature. Having laid out how ecology and natural history can be used to predict detailed cognitive abilities, we then suggest using this approach to guide the study of the neural basis of these abilities. We believe that this complementary approach will reveal aspects of memory processing that would otherwise be difficult to discover.
Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia
NASA Astrophysics Data System (ADS)
Kim, Kiyoung; Park, Jongmin; Baik, Jongjin; Choi, Minha
2017-05-01
The acquisition of accurate precipitation data is essential for analyzing various hydrological phenomena and climate change. Recently, the Global Precipitation Measurement (GPM) satellites were launched as a next-generation rainfall mission for observing global precipitation characteristics. The main objective in this study is to assess precipitation products from GPM, especially the Integrated Multi-satellitE Retrievals (GPM-3IMERGHH) and the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA), using gauge-based precipitation data from Far-East Asia during the pre-monsoon and monsoon seasons. Evaluation was performed by focusing on three different factors: geographical aspects, seasonal factors, and spatial distributions. In both mountainous and coastal regions, the GPM-3IMERGHH product showed better performance than the TRMM 3B42 V7, although both rainfall products showed uncertainties caused by orographic convection and the land-ocean classification algorithm. GPM-3IMERGHH performed about 8% better than TRMM 3B42 V7 during the pre-monsoon and monsoon seasons due to the improvement of loaded sensor and reinforcement in capturing convective rainfall, respectively. In depicting the spatial distribution of precipitation, GPM-3IMERGHH was more accurate than TRMM 3B42 V7 because of its enhanced spatial and temporal resolutions of 10 km and 30 min, respectively. Based on these results, GPM-3IMERGHH would be helpful for not only understanding the characteristics of precipitation with high spatial and temporal resolution, but also for estimating near-real-time runoff patterns.
Fostering Spatial vs. Metric Understanding in Geometry
ERIC Educational Resources Information Center
Kinach, Barbara M.
2012-01-01
Learning to reason spatially is increasingly recognized as an essential component of geometry education. Generally taken to be the "ability to represent, generate, transform, communicate, document, and reflect on visual information," "spatial reasoning" uses the spatial relationships between objects to form ideas. Spatial thinking takes a variety…
ERIC Educational Resources Information Center
Puerta Melguizo, Mari Carmen; Vidya, Uti; van Oostendorp, Herre
2012-01-01
We studied the effects of menu type, navigation path complexity and spatial ability on information retrieval performance and web disorientation or lostness. Two innovative aspects were included: (a) navigation path relevance and (b) information gathering tasks. As expected we found that, when measuring aspects directly related to navigation…
The vestibular system: a spatial reference for bodily self-consciousness
Pfeiffer, Christian; Serino, Andrea; Blanke, Olaf
2014-01-01
Self-consciousness is the remarkable human experience of being a subject: the “I”. Self-consciousness is typically bound to a body, and particularly to the spatial dimensions of the body, as well as to its location and displacement in the gravitational field. Because the vestibular system encodes head position and movement in three-dimensional space, vestibular cortical processing likely contributes to spatial aspects of bodily self-consciousness. We review here recent data showing vestibular effects on first-person perspective (the feeling from where “I” experience the world) and self-location (the feeling where “I” am located in space). We compare these findings to data showing vestibular effects on mental spatial transformation, self-motion perception, and body representation showing vestibular contributions to various spatial representations of the body with respect to the external world. Finally, we discuss the role for four posterior brain regions that process vestibular and other multisensory signals to encode spatial aspects of bodily self-consciousness: temporoparietal junction, parietoinsular vestibular cortex, ventral intraparietal region, and medial superior temporal region. We propose that vestibular processing in these cortical regions is critical in linking multisensory signals from the body (personal and peripersonal space) with external (extrapersonal) space. Therefore, the vestibular system plays a critical role for neural representations of spatial aspects of bodily self-consciousness. PMID:24860446
Essential Oils, Part I: Introduction.
de Groot, Anton C; Schmidt, Erich
2016-01-01
Essential oils are widely used in the flavor, food, fragrance, and cosmetic industries in many applications. Contact allergy to them is well known and has been described for 80 essential oils. The relevance of positive patch test reactions often remains unknown. Knowledge of the chemical composition of essential oils among dermatologists is suspected to be limited, as such data are published in journals not read by the dermatological community. Therefore, the authors have fully reviewed and published the literature on contact allergy to and chemical composition of essential oils. Selected topics from this publication will be presented in abbreviated form in Dermatitis starting with this issue, including I. Introduction; II. General aspects; III. Chemistry; IV. General aspects of contact allergy; V. Peppermint oil, lavender oil and lemongrass oil; VI: Sandalwood oil, ylang-ylang oil, and jasmine absolute.
Teachers' Spatial Literacy as Visualization, Reasoning, and Communication
ERIC Educational Resources Information Center
Moore-Russo, Deborah; Viglietti, Janine M.; Chiu, Ming Ming; Bateman, Susan M.
2013-01-01
This paper conceptualizes spatial literacy as consisting of three overlapping domains: visualization, reasoning, and communication. By considering these domains, this study explores different aspects of spatial literacy to better understand how a group of mathematics teachers reasoned about spatial tasks. Seventy-five preservice and inservice…
Ferrer-Paris, José Rafael; Sánchez-Mercado, Ada; Rodríguez, Jon Paul
2013-03-01
The development of efficient sampling protocols is an essential prerequisite to evaluate and identify priority conservation areas. There are f ew protocols for fauna inventory and monitoring in wide geographical scales for the tropics, where the complexity of communities and high biodiversity levels, make the implementation of efficient protocols more difficult. We proposed here a simple strategy to optimize the capture of dung beetles, applied to sampling with baited traps and generalizable to other sampling methods. We analyzed data from eight transects sampled between 2006-2008 withthe aim to develop an uniform sampling design, that allows to confidently estimate species richness, abundance and composition at wide geographical scales. We examined four characteristics of any sampling design that affect the effectiveness of the sampling effort: the number of traps, sampling duration, type and proportion of bait, and spatial arrangement of the traps along transects. We used species accumulation curves, rank-abundance plots, indicator species analysis, and multivariate correlograms. We captured 40 337 individuals (115 species/morphospecies of 23 genera). Most species were attracted by both dung and carrion, but two thirds had greater relative abundance in traps baited with human dung. Different aspects of the sampling design influenced each diversity attribute in different ways. To obtain reliable richness estimates, the number of traps was the most important aspect. Accurate abundance estimates were obtained when the sampling period was increased, while the spatial arrangement of traps was determinant to capture the species composition pattern. An optimum sampling strategy for accurate estimates of richness, abundance and diversity should: (1) set 50-70 traps to maximize the number of species detected, (2) get samples during 48-72 hours and set trap groups along the transect to reliably estimate species abundance, (3) set traps in groups of at least 10 traps to suitably record the local species composition, and (4) separate trap groups by a distance greater than 5-10km to avoid spatial autocorrelation. For the evaluation of other sampling protocols we recommend to, first, identify the elements of sampling design that could affect the sampled effort (the number of traps, sampling duration, type and proportion of bait) and their spatial distribution (spatial arrangement of the traps) and then, to evaluate how they affect richness, abundance and species composition estimates.
Goodhew, Stephanie C; Shen, Elizabeth; Edwards, Mark
2016-08-01
An important but often neglected aspect of attention is how changes in the attentional spotlight size impact perception. The zoom-lens model predicts that a small ("focal") attentional spotlight enhances all aspects of perception relative to a larger ("diffuse" spotlight). However, based on the physiological properties of the two major classes of visual cells (magnocellular and parvocellular neurons) we predicted trade-offs in spatial and temporal acuity as a function of spotlight size. Contrary to both of these accounts, however, across two experiments we found that attentional spotlight size affected spatial acuity, such that spatial acuity was enhanced for a focal relative to a diffuse spotlight, whereas the same modulations in spotlight size had no impact on temporal acuity. This likely reflects the function of attention: to induce the high spatial resolution of the fovea in periphery, where spatial resolution is poor but temporal resolution is good. It is adaptive, therefore, for the attentional spotlight to enhance spatial acuity, whereas enhancing temporal acuity does not confer the same benefit.
Le Cointe, Ronan; Simon, Thomas E.; Delarue, Patrick; Hervé, Maxime; Leclerc, Melen; Poggi, Sylvain
2016-01-01
Reducing our reliance on pesticides is an essential step towards the sustainability of agricultural production. One approach involves the rational use of pesticides combined with innovative crop management. Most control strategies currently focus on the temporal aspect of epidemics, e.g. determining the optimal date for spraying, regardless of the spatial mechanics and ecology of disease spread. Designing innovative pest management strategies incorporating the spatial aspect of epidemics involves thorough knowledge on how disease control affects the life-history traits of the pathogen. In this study, using Rhizoctonia solani/Raphanus sativus as an example of a soil-borne pathosystem, we investigated the effects of a chemical control currently used by growers, Monceren® L, on key epidemiological components (saprotrophic spread and infectivity). We tested the potential “shield effect” of Monceren® L on pathogenic spread in a site-specific application context, i.e. the efficiency of this chemical to contain the spread of the fungus from an infected host when application is spatially localized, in our case, a strip placed between the infected host and a recipient bait. Our results showed that Monceren® L mainly inhibits the saprotrophic spread of the fungus in soil and may prevent the fungus from reaching its host plant. However, perhaps surprisingly we did not detect any significant effect of the fungicide on the pathogen infectivity. Finally, highly localized application of the fungicide—a narrow strip of soil (12.5 mm wide) sprayed with Monceren® L—significantly decreased local transmission of the pathogen, suggesting lowered risk of occurrence of invasive epidemics. Our results highlight that detailed knowledge on epidemiological processes could contribute to the design of innovative management strategies based on precision agriculture tools to improve the efficacy of disease control and reduce pesticide use. PMID:27668731
Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration
NASA Astrophysics Data System (ADS)
Hassler, Sibylle; Markus, Weiler; Theresa, Blume
2017-04-01
Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls. We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km2-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocities of these 61 trees and determined the importance of the different predictors. Results indicate that a combination of tree-, stand- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, the stand density, geology and aspect. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, are correlated to the temporal dynamics of potential evaporation. Thus, transpiration estimates at the landscape scale would benefit from not only considering hydro-meteorological drivers, but also including tree, stand and site characteristics in order to improve the spatial representation of transpiration for hydrological and soil-vegetation-atmosphere transfer models.
NASA Astrophysics Data System (ADS)
Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina
1995-04-01
This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.
Neuro-genetic non-invasive temperature estimation: intensity and spatial prediction.
Teixeira, César A; Ruano, M Graça; Ruano, António E; Pereira, Wagner C A
2008-06-01
The existence of proper non-invasive temperature estimators is an essential aspect when thermal therapy applications are envisaged. These estimators must be good predictors to enable temperature estimation at different operational situations, providing better control of the therapeutic instrumentation. In this work, radial basis functions artificial neural networks were constructed to access temperature evolution on an ultrasound insonated medium. The employed models were radial basis functions neural networks with external dynamics induced by their inputs. Both the most suited set of model inputs and number of neurons in the network were found using the multi-objective genetic algorithm. The neural models were validated in two situations: the operating ones, as used in the construction of the network; and in 11 unseen situations. The new data addressed two new spatial locations and a new intensity level, assessing the intensity and space prediction capacity of the proposed model. Good performance was obtained during the validation process both in terms of the spatial points considered and whenever the new intensity level was within the range of applied intensities. A maximum absolute error of 0.5 degrees C+/-10% (0.5 degrees C is the gold-standard threshold in hyperthermia/diathermia) was attained with low computationally complex models. The results confirm that the proposed neuro-genetic approach enables foreseeing temperature propagation, in connection to intensity and space parameters, thus enabling the assessment of different operating situations with proper temperature resolution.
NASA Astrophysics Data System (ADS)
Cao, B.; Domke, G. M.; Russell, M.; McRoberts, R. E.; Walters, B. F.
2017-12-01
Forest ecosystems contribute substantially to carbon (C) storage. The dynamics of litter decomposition, translocation and stabilization into soil layers are essential processes in the functioning of forest ecosystems, as they control the cycling of soil organic matter and the accumulation and release of C to the atmosphere. Therefore, the spatial distributions of litter and soil C stocks are important in greenhouse gas estimation and reporting and inform land management decisions, policy, and climate change mitigation strategies. In this study, we explored the effects of spatial aggregation of climatic, biotic, topographic and soil input data on national estimates of litter and soil C stocks and characterized the spatial distribution of litter and soil C stocks in the conterminous United States. Data from the Forest Inventory and Analysis (FIA) program within the US Forest Service were used with vegetation phenology data estimated from LANDSAT imagery (30 m) and raster data describing relevant environmental parameters (e.g. temperature, precipitation, topographic properties) for the entire conterminous US. Litter and soil C stocks were estimated and mapped through geostatistical analysis and statistical uncertainty bounds on the pixel level predictions were constructed using a Monte Carlo-bootstrap technique, by which credible variance estimates for the C stocks were calculated. The sensitivity of model estimates to spatial aggregation depends on geographic region. Further, using long-term (30-year) climate averages during periods with strong climatic trends results in large differences in litter and soil C stock estimates. In addition, results suggest that local topographic aspect is an important variable in litter and soil C estimation at the continental scale.
Validation of Clinical Observations of Mastication in Persons with ALS.
Simione, Meg; Wilson, Erin M; Yunusova, Yana; Green, Jordan R
2016-06-01
Amyotrophic lateral sclerosis (ALS) is a progressive neurological disease that can result in difficulties with mastication leading to malnutrition, choking or aspiration, and reduced quality of life. When evaluating mastication, clinicians primarily observe spatial and temporal aspects of jaw motion. The reliability and validity of clinical observations for detecting jaw movement abnormalities is unknown. The purpose of this study is to determine the reliability and validity of clinician-based ratings of chewing performance in neuro-typical controls and persons with varying degrees of chewing impairments due to ALS. Adults chewed a solid food consistency while full-face video were recorded along with jaw kinematic data using a 3D optical motion capture system. Five experienced speech-language pathologists watched the videos and rated the spatial and temporal aspects of chewing performance. The jaw kinematic data served as the gold-standard for validating the clinicians' ratings. Results showed that the clinician-based rating of temporal aspects of chewing performance had strong inter-rater reliability and correlated well with comparable kinematic measures. In contrast, the reliability of rating the spatial and spatiotemporal aspects of chewing (i.e., range of motion of the jaw, consistency of the chewing pattern) was mixed. Specifically, ratings of range of motion were at best only moderately reliable. Ratings of chewing movement consistency were reliable but only weakly correlated with comparable measures of jaw kinematics. These findings suggest that clinician ratings of temporal aspects of chewing are appropriate for clinical use, whereas ratings of the spatial and spatiotemporal aspects of chewing may not be reliable or valid.
Getting the Big Picture: Development of Spatial Scaling Abilities
ERIC Educational Resources Information Center
Frick, Andrea; Newcombe, Nora S.
2012-01-01
Spatial scaling is an integral aspect of many spatial tasks that involve symbol-to-referent correspondences (e.g., map reading, drawing). In this study, we asked 3-6-year-olds and adults to locate objects in a two-dimensional spatial layout using information from a second spatial representation (map). We examined how scaling factor and reference…
Covert Auditory Spatial Orienting: An Evaluation of the Spatial Relevance Hypothesis
ERIC Educational Resources Information Center
Roberts, Katherine L.; Summerfield, A. Quentin; Hall, Deborah A.
2009-01-01
The spatial relevance hypothesis (J. J. McDonald & L. M. Ward, 1999) proposes that covert auditory spatial orienting can only be beneficial to auditory processing when task stimuli are encoded spatially. We present a series of experiments that evaluate 2 key aspects of the hypothesis: (a) that "reflexive activation of location-sensitive neurons is…
Understanding the spatial complexity of surface hoar from slope to range scale
NASA Astrophysics Data System (ADS)
Hendrikx, J.
2015-12-01
Surface hoar, once buried, is a common weak layer type in avalanche accidents in continental and intermountain snowpacks around the World. Despite this, there is still limited understanding of the spatial variability in both the formation of, and eventual burial of, surface hoar at spatial scales which are of critical importance to avalanche forecasters. While it is relatively well understood that aspect plays an important role in the spatial location of the formation, and burial of these grain forms, due to the unequal distribution of incoming radiation, this factor alone does not explain the complex and often confusing spatial pattern of these grains forms throughout the landscape at different spatial scales. In this paper we present additional data from a unique data set including over two hundred days of manual observations of surface hoar at sixteen locations on Pioneer Mountain at the Yellowstone Club in southwestern Montana. Using this wealth of observational data located on different aspects, elevations and exposures, coupled with detailed meteorological observations, and detailed slope scale observation, we examine the spatial variability of surface hoar at this scale, and examine the factors that control its spatial distribution. Our results further supports our preliminary work, which shows that small-scale slope conditions, meteorological differences, and local scale lapse rates, can greatly influence the spatial variability of surface hoar, over and above that which aspect alone can explain. These results highlight our incomplete understanding of the processes at both the slope and range scale, and are likely to have implications for both regional and local scale avalanche forecasting in environments where surface hoar cause ongoing instabilities.
Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration
NASA Astrophysics Data System (ADS)
Kathrin Hassler, Sibylle; Weiler, Markus; Blume, Theresa
2018-01-01
Transpiration is a key process in the hydrological cycle, and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation and evaluation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology and soils, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls.We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites across a 290 km2 catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocity and derived sap flow patterns of these 61 trees, and we determined the importance of the different controls.Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, geology and aspect. For sap flow we included only the stand- and site-specific predictors in the models to ensure variable independence. Of those, geology and aspect were most important. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, are correlated to the temporal dynamics of potential evaporation. We conclude that transpiration estimates on the landscape scale would benefit from not only consideration of hydro-meteorological drivers, but also tree, stand and site characteristics in order to improve the spatial and temporal representation of transpiration for hydrological and soil-vegetation-atmosphere transfer models.
Dell’Acqua, F.; Gamba, P.; Jaiswal, K.
2012-01-01
This paper discusses spatial aspects of the global exposure dataset and mapping needs for earthquake risk assessment. We discuss this in the context of development of a Global Exposure Database for the Global Earthquake Model (GED4GEM), which requires compilation of a multi-scale inventory of assets at risk, for example, buildings, populations, and economic exposure. After defining the relevant spatial and geographic scales of interest, different procedures are proposed to disaggregate coarse-resolution data, to map them, and if necessary to infer missing data by using proxies. We discuss the advantages and limitations of these methodologies and detail the potentials of utilizing remote-sensing data. The latter is used especially to homogenize an existing coarser dataset and, where possible, replace it with detailed information extracted from remote sensing using the built-up indicators for different environments. Present research shows that the spatial aspects of earthquake risk computation are tightly connected with the availability of datasets of the resolution necessary for producing sufficiently detailed exposure. The global exposure database designed by the GED4GEM project is able to manage datasets and queries of multiple spatial scales.
Modularizing Spatial Ontologies for Assisted Living Systems
NASA Astrophysics Data System (ADS)
Hois, Joana
Assisted living systems are intended to support daily-life activities in user homes by automatizing and monitoring behavior of the environment while interacting with the user in a non-intrusive way. The knowledge base of such systems therefore has to define thematically different aspects of the environment mostly related to space, such as basic spatial floor plan information, pieces of technical equipment in the environment and their functions and spatial ranges, activities users can perform, entities that occur in the environment, etc. In this paper, we present thematically different ontologies, each of which describing environmental aspects from a particular perspective. The resulting modular structure allows the selection of application-specific ontologies as necessary. This hides information and reduces complexity in terms of the represented spatial knowledge and reasoning practicability. We motivate and present the different spatial ontologies applied to an ambient assisted living application.
The Spatial Thinking Workbook: A Research-Validated Spatial Skills Curriculum for Geology Majors
ERIC Educational Resources Information Center
Ormand, Carol J.; Shipley, Thomas F.; Tikoff, Basil; Dutrow, Barbara; Goodwin, Laurel B.; Hickson, Thomas; Atit, Kinnari; Gagnier, Kristin; Resnick, Ilyse
2017-01-01
Spatial visualization is an essential prerequisite for understanding geological features at all scales, such as the atomic structures of minerals, the geometry of a complex fault system, or the architecture of sedimentary deposits. Undergraduate geoscience majors bring a range of spatial skill levels to upper-level courses. Fortunately, spatial…
The Ability of Young Korean Children to Use Spatial Representations
ERIC Educational Resources Information Center
Kim, Minsung; Bednarz, Robert; Kim, Jaeyil
2012-01-01
The National Research Council emphasizes using tools of representation as an essential element of spatial thinking. However, it is debatable at what age the use of spatial representation for spatial thinking skills should begin. This study investigated whether young Korean children possess the potential to understand map-like representation using…
Spatial-Sequential and Spatial-Simultaneous Working Memory in Individuals with Williams Syndrome
ERIC Educational Resources Information Center
Lanfranchi, Silvia; De Mori, Letizia; Mammarella, Irene C.; Carretti, Barbara; Vianello, Renzo
2015-01-01
The aim of the present study was to compare visuospatial working memory performance in 18 individuals with Williams syndrome (WS) and 18 typically developing (TD) children matched for nonverbal mental age. Two aspects were considered: task presentation format (i.e., spatial-sequential or spatial-simultaneous), and level of attentional control…
Talk is cheap: the tobacco companies' violations of their own cigarette advertising code.
Arnett, Jeffrey Jensen
2005-01-01
In two studies, adolescents and adults were shown a series of cigarette advertisements and asked to respond to a variety of questions concerning aspects of the Cigarette Advertising and Promotion Code, specifically, their perceptions of the ages of the models in the ads and of whether the ads depicted smoking as essential to sexual attraction or essential to success. For many of the ads, especially ads for brands most popular among youth, a majority of the participants perceived the models to be less than 25 years old. A majority also perceived many of the ads to depict smoking as essential to sexual attraction or essential to success. Thus, despite their public pledge, the tobacco companies routinely violate a variety of aspects of the Cigarette Advertising and Promotion Code.
Lateralization of spatial information processing in response monitoring
Stock, Ann-Kathrin; Beste, Christian
2014-01-01
The current study aims at identifying how lateralized multisensory spatial information processing affects response monitoring and action control. In a previous study, we investigated multimodal sensory integration in response monitoring processes using a Simon task. Behavioral and neurophysiologic results suggested that different aspects of response monitoring are asymmetrically and independently allocated to the hemispheres: while efference-copy-based information on the motor execution of the task is further processed in the hemisphere that originally generated the motor command, proprioception-based spatial information is processed in the hemisphere contralateral to the effector. Hence, crossing hands (entering a “foreign” spatial hemifield) yielded an augmented bilateral activation during response monitoring since these two kinds of information were processed in opposing hemispheres. Because the traditional Simon task does not provide the possibility to investigate which aspect of the spatial configuration leads to the observed hemispheric allocation, we introduced a new “double crossed” condition that allows for the dissociation of internal/physiological and external/physical influences on response monitoring processes. Comparing behavioral and neurophysiologic measures of this new condition to those of the traditional Simon task setup, we could demonstrate that the egocentric representation of the physiological effector's spatial location accounts for the observed lateralization of spatial information in action control. The finding that the location of the physical effector had a very small influence on response monitoring measures suggests that this aspect is either less important and/or processed in different brain areas than egocentric physiological information. PMID:24550855
Miller, Jonathan; Watrous, Andrew J; Tsitsiklis, Melina; Lee, Sang Ah; Sheth, Sameer A; Schevon, Catherine A; Smith, Elliot H; Sperling, Michael R; Sharan, Ashwini; Asadi-Pooya, Ali Akbar; Worrell, Gregory A; Meisenhelter, Stephen; Inman, Cory S; Davis, Kathryn A; Lega, Bradley; Wanda, Paul A; Das, Sandhitsu R; Stein, Joel M; Gorniak, Richard; Jacobs, Joshua
2018-06-21
The hippocampus plays a vital role in various aspects of cognition including both memory and spatial navigation. To understand electrophysiologically how the hippocampus supports these processes, we recorded intracranial electroencephalographic activity from 46 neurosurgical patients as they performed a spatial memory task. We measure signals from multiple brain regions, including both left and right hippocampi, and we use spectral analysis to identify oscillatory patterns related to memory encoding and navigation. We show that in the left but not right hippocampus, the amplitude of oscillations in the 1-3-Hz "low theta" band increases when viewing subsequently remembered object-location pairs. In contrast, in the right but not left hippocampus, low-theta activity increases during periods of navigation. The frequencies of these hippocampal signals are slower than task-related signals in the neocortex. These results suggest that the human brain includes multiple lateralized oscillatory networks that support different aspects of cognition.
Ycaza Herrera, Alexandra; Wang, Jiaxi; Mather, Mara
2018-05-19
Across three different domains, there are similar sex differences in how men and women process information. There tends to be a male advantage in attending to and remembering the gist (essential central information of a scene or situation), but a female advantage in attending to and remembering the details (non-essential peripheral information of a scene or situation). This is seen in emotional memory, where emotion enhances gist memory more for males than for females, but enhances detail memory more for females than for males. It also occurs in spatial memory, where men tend to notice and remember the gist of where they or objects are in space, allowing them to more flexibly manipulate themselves or objects within that space, whereas women tend to recall the details of the space around them, allowing them to accurately remember the locations of objects. Finally, such sex differences have also been noted in perception of stimuli such that men attend to global aspects of stimuli (such as a large letter E) more than women, whereas women attend more to the local aspects (such as the many smaller letter Ts making up the E). We review the parallel sex differences seen across these domains in this paper and how they relate to the different brain systems involved in each of these task domains. In addition, we discuss how sex differences in evolutionary pressures and in the locus coeruleus and norepinephrine system may account for why parallel sex differences occur across these different task domains. Copyright © 2018 Elsevier Ltd. All rights reserved.
H. H. Welsh; C. A. Wheeler; A. J. Lind
2010-01-01
Spatial patterns of animals have important implications for population dynamics and can reveal other key aspects of a species' ecology. Movements and the resulting spatial arrangements have fitness and genetic consequences for both individuals and populations. We studied the spatial and dispersal patterns of the Oregon Gartersnake, Thamnophis atratus...
Electrophysiological models of neural processing.
Nelson, Mark E
2011-01-01
The brain is an amazing information processing system that allows organisms to adaptively monitor and control complex dynamic interactions with their environment across multiple spatial and temporal scales. Mathematical modeling and computer simulation techniques have become essential tools in understanding diverse aspects of neural processing ranging from sub-millisecond temporal coding in the sound localization circuity of barn owls to long-term memory storage and retrieval in humans that can span decades. The processing capabilities of individual neurons lie at the core of these models, with the emphasis shifting upward and downward across different levels of biological organization depending on the nature of the questions being addressed. This review provides an introduction to the techniques for constructing biophysically based models of individual neurons and local networks. Topics include Hodgkin-Huxley-type models of macroscopic membrane currents, Markov models of individual ion-channel currents, compartmental models of neuronal morphology, and network models involving synaptic interactions among multiple neurons.
Advances in HgCdTe APDs and LADAR Receivers
NASA Technical Reports Server (NTRS)
Bailey, Steven; McKeag, William; Wang, Jinxue; Jack, Michael; Amzajerdian, Farzin
2010-01-01
Raytheon is developing NIR sensor chip assemblies (SCAs) for scanning and staring 3D LADAR systems. High sensitivity is obtained by integrating high performance detectors with gain i.e. APDs with very low noise Readout Integrated Circuits. Unique aspects of these designs include: independent acquisition (non-gated) of pulse returns, multiple pulse returns with both time and intensity reported to enable full 3D reconstruction of the image. Recent breakthrough in device design has resulted in HgCdTe APDs operating at 300K with essentially no excess noise to gains in excess of 100, low NEP <1nW and GHz bandwidths and have demonstrated linear mode photon counting. SCAs utilizing these high performance APDs have been integrated and demonstrated excellent spatial and range resolution enabling detailed 3D imagery both at short range and long ranges. In this presentation we will review progress in high resolution scanning, staring and ultra-high sensitivity photon counting LADAR sensors.
Scanning nuclear resonance imaging of a hyperfine-coupled quantum Hall system.
Hashimoto, Katsushi; Tomimatsu, Toru; Sato, Ken; Hirayama, Yoshiro
2018-06-07
Nuclear resonance (NR) is widely used to detect and characterise nuclear spin polarisation and conduction electron spin polarisation coupled by a hyperfine interaction. While the macroscopic aspects of such hyperfine-coupled systems have been addressed in most relevant studies, the essential role of local variation in both types of spin polarisation has been indicated in 2D semiconductor systems. In this study, we apply a recently developed local and highly sensitive NR based on a scanning probe to a hyperfine-coupled quantum Hall (QH) system in a 2D electron gas subject to a strong magnetic field. We succeed in imaging the NR intensity and Knight shift, uncovering the spatial distribution of both the nuclear and electron spin polarisation. The results reveal the microscopic origin of the nonequilibrium QH phenomena, and highlight the potential use of our technique in microscopic studies on various electron spin systems as well as their correlations with nuclear spins.
A molecular mechanism of chaperone-client recognition
He, Lichun; Sharpe, Timothy; Mazur, Adam; Hiller, Sebastian
2016-01-01
Molecular chaperones are essential in aiding client proteins to fold into their native structure and in maintaining cellular protein homeostasis. However, mechanistic aspects of chaperone function are still not well understood at the atomic level. We use nuclear magnetic resonance spectroscopy to elucidate the mechanism underlying client recognition by the adenosine triphosphate-independent chaperone Spy at the atomic level and derive a structural model for the chaperone-client complex. Spy interacts with its partially folded client Im7 by selective recognition of flexible, locally frustrated regions in a dynamic fashion. The interaction with Spy destabilizes a partially folded client but spatially compacts an unfolded client conformational ensemble. By increasing client backbone dynamics, the chaperone facilitates the search for the native structure. A comparison of the interaction of Im7 with two other chaperones suggests that the underlying principle of recognizing frustrated segments is of a fundamental nature. PMID:28138538
Autonomy in robots and other agents.
Smithers, T
1997-06-01
The word "autonomous" has become widely used in artificial intelligence, robotics, and, more recently, artificial life and is typically used to qualify types of systems, agents, or robots: we see terms like "autonomous systems," "autonomous agents," and "autonomous robots." Its use in these fields is, however, both weak, with no distinctions being made that are not better and more precisely made with other existing terms, and varied, with no single underlying concept being involved. This ill-disciplined usage contrasts strongly with the use of the same term in other fields such as biology, philosophy, ethics, law, and human rights, for example. In all these quite different areas the concept of autonomy is essentially the same, though the language used and the aspects and issues of concern, of course, differ. In all these cases the underlying notion is one of self-law making and the closely related concept of self-identity. In this paper I argue that the loose and varied use of the term autonomous in artificial intelligence, robotics, and artificial life has effectively robbed these fields of an important concept. A concept essentially the same as we find it in biology, philosophy, ethics, and law, and one that is needed to distinguish a particular kind of agent or robot from those developed and built so far. I suggest that robots and other agents will have to be autonomous, i.e., self-law making, not just self-regulating, if they are to be able effectively to deal with the kinds of environments in which we live and work: environments which have significant large scale spatial and temporal invariant structure, but which also have large amounts of local spatial and temporal dynamic variation and unpredictability, and which lead to the frequent occurrence of previously unexperienced situations for the agents that interact with them.
Akhmanova, Maria; Osidak, Egor; Domogatsky, Sergey; Rodin, Sergey; Domogatskaya, Anna
2015-01-01
Extracellular matrix can influence stem cell choices, such as self-renewal, quiescence, migration, proliferation, phenotype maintenance, differentiation, or apoptosis. Three aspects of extracellular matrix were extensively studied during the last decade: physical properties, spatial presentation of adhesive epitopes, and molecular complexity. Over 15 different parameters have been shown to influence stem cell choices. Physical aspects include stiffness (or elasticity), viscoelasticity, pore size, porosity, amplitude and frequency of static and dynamic deformations applied to the matrix. Spatial aspects include scaffold dimensionality (2D or 3D) and thickness; cell polarity; area, shape, and microscale topography of cell adhesion surface; epitope concentration, epitope clustering characteristics (number of epitopes per cluster, spacing between epitopes within cluster, spacing between separate clusters, cluster patterns, and level of disorder in epitope arrangement), and nanotopography. Biochemical characteristics of natural extracellular matrix molecules regard diversity and structural complexity of matrix molecules, affinity and specificity of epitope interaction with cell receptors, role of non-affinity domains, complexity of supramolecular organization, and co-signaling by growth factors or matrix epitopes. Synergy between several matrix aspects enables stem cells to retain their function in vivo and may be a key to generation of long-term, robust, and effective in vitro stem cell culture systems. PMID:26351461
A new third order finite volume weighted essentially non-oscillatory scheme on tetrahedral meshes
NASA Astrophysics Data System (ADS)
Zhu, Jun; Qiu, Jianxian
2017-11-01
In this paper a third order finite volume weighted essentially non-oscillatory scheme is designed for solving hyperbolic conservation laws on tetrahedral meshes. Comparing with other finite volume WENO schemes designed on tetrahedral meshes, the crucial advantages of such new WENO scheme are its simplicity and compactness with the application of only six unequal size spatial stencils for reconstructing unequal degree polynomials in the WENO type spatial procedures, and easy choice of the positive linear weights without considering the topology of the meshes. The original innovation of such scheme is to use a quadratic polynomial defined on a big central spatial stencil for obtaining third order numerical approximation at any points inside the target tetrahedral cell in smooth region and switch to at least one of five linear polynomials defined on small biased/central spatial stencils for sustaining sharp shock transitions and keeping essentially non-oscillatory property simultaneously. By performing such new procedures in spatial reconstructions and adopting a third order TVD Runge-Kutta time discretization method for solving the ordinary differential equation (ODE), the new scheme's memory occupancy is decreased and the computing efficiency is increased. So it is suitable for large scale engineering requirements on tetrahedral meshes. Some numerical results are provided to illustrate the good performance of such scheme.
Stewart, Barclay T.; Gyedu, Adam; Boakye, Godfred; Lewis, Daniel; Hoogerboord, Marius; Mock, Charles
2017-01-01
Background Surgical disease burden falls disproportionately on individuals in low- and middle-income countries. These populations are also the least likely to have access to surgical care. Understanding the barriers to access in these populations is therefore necessary to meet the global surgical need. Methods Using geospatial methods, this study explores the district-level variation of two access barriers in Ghana: poverty and spatial access to care. National survey data were used to estimate the average total household expenditure (THE) in each district. Estimates of the spatial access to essential surgical care were generated from a cost-distance model based on a recent surgical capacity assessment. Correlations were analyzed using regression and displayed cartographically. Results Both THE and spatial access to surgical care were found to have statistically significant regional variation in Ghana (p < 0.001). An inverse relationship was identified between THE and spatial access to essential surgical care (β −5.15 USD, p < 0.001). Poverty and poor spatial access to surgical care were found to co-localize in the northwest of the country. Conclusions Multiple barriers to accessing surgical care can coexist within populations. A careful understanding of all access barriers is necessary to identify and target strategies to address unmet surgical need within a given population. PMID:27766400
ERIC Educational Resources Information Center
Liao, Kun-Hsi
2017-01-01
Three-dimensional (3D) product design is an essential ability that students of subjects related to product design must acquire. The factors that affect designers' performance in 3D design are numerous, one of which is spatial abilities. Studies have reported that spatial abilities can be used to effectively predict people's performance in…
2011-01-01
Background There is growing interest in the study of the relationships between individual health-related behaviours (e.g. food intake and physical activity) and measurements of spatial accessibility to the associated facilities (e.g. food outlets and sport facilities). The aim of this study is to propose measurements of spatial accessibility to facilities on the regional scale, using aggregated data. We first used a potential accessibility model that partly makes it possible to overcome the limitations of the most frequently used indices such as the count of opportunities within a given neighbourhood. We then propose an extended model in order to take into account both home and work-based accessibility for a commuting population. Results Potential accessibility estimation provides a very different picture of the accessibility levels experienced by the population than the more classical "number of opportunities per census tract" index. The extended model for commuters increases the overall accessibility levels but this increase differs according to the urbanisation level. Strongest increases are observed in some rural municipalities with initial low accessibility levels. Distance to major urban poles seems to play an essential role. Conclusions Accessibility is a multi-dimensional concept that should integrate some aspects of travel behaviour. Our work supports the evidence that the choice of appropriate accessibility indices including both residential and non-residential environmental features is necessary. Such models have potential implications for providing relevant information to policy-makers in the field of public health. PMID:21219597
Castro-Prieto, Jessica; Andrade-Núñez, Maria José
2018-06-01
The overpopulation of stray cats in urban areas represents a potential risk for humans, as stray cats may carry diseases, such as toxoplasmosis, and virus such as rabies, the feline immunodeficiency, and the feline leukemia. In Old San Juan, a historic neighborhood and one of the most touristic places in Puerto Rico, there is an overpopulation of stray cats. In this study, we generated baseline information fundamental to developing a successful control program by estimating the stray cat population size, density, and spatial distribution. Furthermore, we quantified the number of neutered cats and developed a spatial database to include information about the external physical condition of each individual. We estimated a population of 178 (±21) cats, with a density of 3.6 cats/ha. Overall, we observed 209 cats, from which 149 (71%) were identified as new and 60 (29%) were recaptured. We found stray cats had a significant non-random and clustered spatial distribution (z-score = -19.39 SD; ratio = 0.29; p<0.0001), with an observable larger abundance in residential zones where food was provided. A total of 105 (70%) cats were neutered, and 32 (21%) individuals exhibited very poor physical conditions, including skin problems, scars, underweight, and blindness. We concluded that the ecological and descriptive data generated in this study are essential for an effective control of stray cats and their potential impacts on humans living in this neighborhood.
NASA Astrophysics Data System (ADS)
Barron-Gafford, G.; Minor, R. L.; Heard, M. M.; Sutter, L. F.; Yang, J.; Potts, D. L.
2015-12-01
The southwestern U.S. is predicted to experience increasing temperatures and longer periods of inter-storm drought. High temperature and water deficit restrict plant productivity and ecosystem functioning, but the influence of future climate is predicted to be highly heterogeneous because of the complex terrain characteristic of much of the Critical Zone (CZ). Within our Critical Zone Observatory (CZO) in the Southwestern US, we monitor ecosystem-scale carbon and water fluxes using eddy covariance. This whole-ecosystem metric is a powerful integrating measure of ecosystem function over time, but details on spatial heterogeneity resulting from topographic features of the landscape are not captured, nor are interactions among below- and aboveground processes. We supplement eddy covariance monitoring with distributed measures of carbon flux from soil and vegetation across different aspects to quantify the causes and consequences of spatial heterogeneity through time. Given that (i) aspect influences how incoming energy drives evaporative water loss and (ii) seasonality drives temporal patterns of soil moisture recharge, we were able to examine the influence of these processes on CO2 efflux by investigating variation across aspect. We found that aspect was a significant source of spatial heterogeneity in soil CO2 efflux, but the influence varied across seasonal periods. Snow on South-facing aspects melted earlier and yielded higher efflux rates in the spring. However, during summer, North- and South-facing aspects had similar amounts of soil moisture, but soil temperatures were warmer on the North-facing aspect, yielding greater rates of CO2 efflux. Interestingly, aspect did not influence photosynthetic rates. Taken together, we found that physical features of the landscape yielded predictable patterns of levels and phenologies of soil moisture and temperature, but these drivers differentially influenced below- and aboveground sources of carbon exchange. Conducting these spatially distributed measurements are time consuming. Looking forward, we have begun using unmanned aerial vehicles outfitted with thermal and multi-spectral cameras to quantify patterns of water flux, NDVI, needle browning due to moisture stress, and overall phenology in the CZ.
Isl1 Is required for multiple aspects of motor neuron development
Liang, Xingqun; Song, Mi-Ryoung; Xu, ZengGuang; Lanuza, Guillermo M.; Liu, Yali; Zhuang, Tao; Chen, Yihan; Pfaff, Samuel L.; Evans, Sylvia M.; Sun, Yunfu
2011-01-01
The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons. PMID:21569850
What aspects of vision facilitate haptic processing?
Millar, Susanna; Al-Attar, Zainab
2005-12-01
We investigate how vision affects haptic performance when task-relevant visual cues are reduced or excluded. The task was to remember the spatial location of six landmarks that were explored by touch in a tactile map. Here, we use specially designed spectacles that simulate residual peripheral vision, tunnel vision, diffuse light perception, and total blindness. Results for target locations differed, suggesting additional effects from adjacent touch cues. These are discussed. Touch with full vision was most accurate, as expected. Peripheral and tunnel vision, which reduce visuo-spatial cues, differed in error pattern. Both were less accurate than full vision, and significantly more accurate than touch with diffuse light perception, and touch alone. The important finding was that touch with diffuse light perception, which excludes spatial cues, did not differ from touch without vision in performance accuracy, nor in location error pattern. The contrast between spatially relevant versus spatially irrelevant vision provides new, rather decisive, evidence against the hypothesis that vision affects haptic processing even if it does not add task-relevant information. The results support optimal integration theories, and suggest that spatial and non-spatial aspects of vision need explicit distinction in bimodal studies and theories of spatial integration.
Conservation physiology across scales: insights from the marine realm
Cooke, Steven J.; Killen, Shaun S.; Metcalfe, Julian D.; McKenzie, David J.; Mouillot, David; Jørgensen, Christian; Peck, Myron A.
2014-01-01
As the field of conservation physiology develops and becomes increasingly integrated with ecology and conservation science, the fundamental concept of scale is being recognized as important, particularly for ensuring that physiological knowledge is contextualized in a manner most relevant to policy makers, conservation practitioners and stakeholders. Failure to consider the importance of scale in conservation physiology—both the challenges and the opportunities that it creates—will impede the ability of this discipline to generate the scientific understanding needed to contribute to meaningful conservation outcomes. Here, we have focused on five aspects of scale: biological, spatial, temporal, allometric and phylogenetic. We also considered the scale of policy and policy application relevant to those five types of scale as well as the merits of upscaling and downscaling to explore and address conservation problems. Although relevant to all systems (e.g. freshwater, terrestrial) we have used examples from the marine realm, with a particular emphasis on fishes, given the fact that there is existing discourse regarding scale and its relevance for marine conservation and management. Our synthesis revealed that all five aspects of scale are relevant to conservation physiology, with many aspects inherently linked. It is apparent that there are both opportunities and challenges afforded by working across scales but, to understand mechanisms underlying conservation problems, it is essential to consider scale of all sorts and to work across scales to the greatest extent possible. Moreover, given that the scales in biological processes will often not match policy and management scales, conservation physiology needs to show how it is relevant to aspects at different policy/management scales, change the scales at which policy/management intervention is applied or be prepared to be ignored. PMID:27293645
Characterizing and Improving Spatial Visualization Skills
ERIC Educational Resources Information Center
Titus, Sarah; Horsman, Eric
2009-01-01
Three-dimensional spatial visualization is an essential skill for geoscientists. We conducted two evaluations of students' spatial skills to examine whether their skills improve after enrollment in a geology course or courses. First, we present results of pre- and post-course survey of abstract visualization skills used to characterize the range…
Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention.
ERIC Educational Resources Information Center
Chun, Marvin M.; Jiang, Yuhong
1998-01-01
Six experiments involving a total of 112 college students demonstrate that a robust memory for visual context exists to guide spatial attention. Results show how implicit learning and memory of visual context can guide spatial attention toward task-relevant aspects of a scene. (SLD)
NASA Astrophysics Data System (ADS)
Morev, Dmitriy; Vasenev, Ivan
2015-04-01
The essential spatial variability is mutual feature for most natural and man-changed soils at the Central region of European territory of Russia. The original spatial heterogeneity of forest soils has been further complicated by a specific land-use history and human impacts. For demand-driven land-use planning and decision making the quantitative analysis and agroecological interpretation of representative soil cover spatial variability is an important and challenging task that receives increasing attention from private companies, governmental and environmental bodies. Pereslavskoye Opolye is traditionally actively used in agriculture due to dominated high-quality cultivated soddy-podzoluvisols which are relatively reached in organic matter (especially for conditions of the North part at the European territory of Russia). However, the soil cover patterns are often very complicated even within the field that significantly influences on crop yield variability and have to be considered in farming system development and land agroecological quality evaluation. The detailed investigations of soil regimes and mapping of the winter rye yield have been carried in conditions of two representative fields with slopes sharply contrasted both in aspects and degrees. Rye biological productivity and weed infestation have been measured in elementary plots of 0.25 m2 with the following analysis the quality of the yield. In the same plot soil temperature and moisture have been measured by portable devices. Soil sampling was provided from three upper layers by drilling. The results of ray yield detailed mapping shown high differences both in average values and within-field variability on different slopes. In case of low-gradient slope (field 1) there is variability of ray yield from 39.4 to 44.8 dt/ha. In case of expressed slope (field 2) the same species of winter rye grown with the same technology has essentially lower yield and within-field variability from 20 to 29.6 dt/ha. The variability in crop yield between two fields is determined by their differences in mesorelief, A-horizon average thickness and slightly changes in soil temperature. The within-field crop yield variability is determined by microrelief and connected differences in soil moisture. Higher soil cover variability reflects in higher variability of winter ray yield and its quality that could be predicted and planed in conditions of concrete field and year according to principal limiting factors evaluation.
Essentials of Career Interest Assessment. Essentials of Psychological Assessment Series.
ERIC Educational Resources Information Center
Prince, Jeffrey P.; Heiser, Lisa J.
This book is a quick reference source to guide the career professional through the essentials of using the most popular career interest tools. It summarizes important technical aspects of each inventory, and offers step-by-step guidance in the interpretation and use of the various inventories. The chapters are: (1) "Overview"; (2)…
The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster
Lattao, Ramona; Kovács, Levente; Glover, David M.
2017-01-01
Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila. Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster, highlighting their contributions to different aspects of development and cell division. PMID:28476861
List, Nanna Holmgaard; Kauczor, Joanna; Saue, Trond; Jensen, Hans Jørgen Aagaard; Norman, Patrick
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure of the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.
4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heenan, T. M. M.; Finegan, D. P.; Tjaden, B.
Electrochemical energy devices offer a variety of alternate means for low-carbon, multi-scale energy conversion and storage. Reactions in these devices are supported by electrodes with characteristically complex microstructures. To meet the increasing capacity and lifetime demands across a range of applications, it is essential to understand microstructural evolutions at a cell and electrode level which are thought to be critical aspects influencing material and device lifetime and performance. X-ray computed tomography (CT) has become a highly employed method for non-destructive characterisation of such microstructures with high spatial resolution. However, sub-micron resolutions present significant challenges for sample preparation and handling particularlymore » in 4D studies, (three spatial dimensions plus time). Here, microstructural information is collected from the same region of interest within two electrode materials: a solid oxide fuel cell and the positive electrode from a lithium-ion battery. Using a lab-based X-ray instrument, tomograms with sub-micron resolutions were obtained between thermal cycling. The intricate microstructural evolutions captured within these two materials provide model examples of 4D X-ray nano-CT capabilities in tracking challenging degradation mechanisms. This technique is valuable in the advancement of electrochemical research as well as broader applications for materials characterisation.« less
Bekar, Lane K; Wei, Helen S; Nedergaard, Maiken
2012-12-01
Given the brain's uniquely high cell density and tissue oxygen levels bordering on hypoxia, the ability to rapidly and precisely match blood flow to constantly changing patterns in neural activity is an essential feature of cerebrovascular regulation. Locus coeruleus-norepinephrine (LC-NE) projections innervate the cerebral vasculature and can mediate vasoconstriction. However, function of the LC-mediated constriction in blood-flow regulation has never been addressed. Here, using intrinsic optical imaging coupled with an anesthesia regimen that only minimally interferes with LC activity, we show that NE enhances spatial and temporal aspects of functional hyperemia in the mouse somatosensory cortex. Increasing NE levels in the cortex using an α(2)-adrenergic receptor antagonist paradoxically reduces the extent of functional hyperemia while enhancing the surround blood-flow reduction. However, the NE-mediated vasoconstriction optimizes spatial and temporal focusing of the hyperemic response resulting in a sixfold decrease in the disparity between blood volume and oxygen demand. In addition, NE-mediated vasoconstriction accelerated redistribution to subsequently active regions, enhancing temporal synchronization of blood delivery. These observations show an important role for NE in optimizing neurovascular coupling. As LC neuron loss is prominent in Alzheimer and Parkinson diseases, the diminished ability to couple blood volume to oxygen demand may contribute to their pathogenesis.
CDPOP: A spatially explicit cost distance population genetics program
Erin L. Landguth; S. A. Cushman
2010-01-01
Spatially explicit simulation of gene flow in complex landscapes is essential to explain observed population responses and provide a foundation for landscape genetics. To address this need, we wrote a spatially explicit, individual-based population genetics model (CDPOP). The model implements individual-based population modelling with Mendelian inheritance and k-allele...
Seeing Relationships: Using Spatial Thinking to Teach Science, Mathematics, and Social Studies
ERIC Educational Resources Information Center
Newcombe, Nora S.
2013-01-01
The author discusses four specific strategies for enhancing and supporting the spatial aspects of the science, mathematics, and social studies curricula. However, these four strategies are examples of what can be done, not an exhaustive list. The overarching concept is to embrace the spatial visualizations used for discovery and communication in…
Spatial Language, Visual Attention, and Perceptual Simulation
ERIC Educational Resources Information Center
Coventry, Kenny R.; Lynott, Dermot; Cangelosi, Angelo; Monrouxe, Lynn; Joyce, Dan; Richardson, Daniel C.
2010-01-01
Spatial language descriptions, such as "The bottle is over the glass", direct the attention of the hearer to particular aspects of the visual world. This paper asks how they do so, and what brain mechanisms underlie this process. In two experiments employing behavioural and eye tracking methodologies we examined the effects of spatial language on…
Isl1 is required for multiple aspects of motor neuron development.
Liang, Xingqun; Song, Mi-Ryoung; Xu, ZengGuang; Lanuza, Guillermo M; Liu, Yali; Zhuang, Tao; Chen, Yihan; Pfaff, Samuel L; Evans, Sylvia M; Sun, Yunfu
2011-07-01
The LIM homeodomain transcription factor Islet1 (Isl1) is expressed in multiple organs and plays essential roles during embryogenesis. Isl1 is required for the survival and specification of spinal cord motor neurons. Due to early embryonic lethality and loss of motor neurons, the role of Isl1 in other aspects of motor neuron development remains unclear. In this study, we generated Isl1 mutant mouse lines expressing graded doses of Isl1. Our study has revealed essential roles of Isl1 in multiple aspects of motor neuron development, including motor neuron cell body localization, motor column formation and axon growth. In addition, Isl1 is required for survival of cranial ganglia neurons. Copyright © 2011 Elsevier Inc. All rights reserved.
Mind over matter? I: philosophical aspects of the mind-brain problem.
Schimmel, P
2001-08-01
To conceptualize the essence of the mind-body or mind-brain problem as one of metaphysics rather than science, and to propose a formulation of the problem in the context of current scientific knowledge and its limitations. The background and conceptual parameters of the mind-body problem are delineated, and the limitations of brain research in formulating a solution identified. The problem is reformulated and stated in terms of two propositions. These constitute a 'double aspect theory'. The problem appears to arise as a consequence of the conceptual limitations of the human mind, and hence remains essentially a metaphysical one. A 'double aspect theory' recognizes the essential unity of mind and brain, while remaining consistent with the dualism inherent in human experience.
Endogenous spatial attention: evidence for intact functioning in adults with autism
Grubb, Michael A.; Behrmann, Marlene; Egan, Ryan; Minshew, Nancy J.; Carrasco, Marisa; Heeger, David J.
2012-01-01
Lay Abstract Attention allows us to selectively process the vast amount of information with which we are confronted. Focusing on a certain location of the visual scene (visual spatial attention) enables the prioritization of some aspects of information while ignoring others. Rapid manipulation of the attention field (i.e., the location and spread of visual spatial attention) is a critical aspect of human cognition, and previous research on spatial attention in individuals with autism spectrum disorders (ASD) has produced inconsistent results. In a series of three experiments, we evaluated claims in the literature that individuals with ASD exhibit a deficit in voluntarily controlling the deployment and size of the spatial attention field. We measured how well participants perform a visual discrimination task (accuracy) and how quickly they do so (reaction time), with and without spatial uncertainty (i.e., the lack of predictability concerning the spatial position of the upcoming stimulus). We found that high–functioning adults with autism exhibited slower reactions times overall with spatial uncertainty, but the effects of attention on performance accuracies and reaction times were indistinguishable between individuals with autism and typically developing individuals, in all three experiments. These results provide evidence of intact endogenous spatial attention function in high–functioning adults with ASD, suggesting that atypical endogenous spatial attention cannot be a latent characteristic of autism in general. Scientific Abstract Rapid manipulation of the attention field (i.e., the location and spread of visual spatial attention) is a critical aspect of human cognition, and previous research on spatial attention in individuals with autism spectrum disorders (ASD) has produced inconsistent results. In a series of three psychophysical experiments, we evaluated claims in the literature that individuals with ASD exhibit a deficit in voluntarily controlling the deployment and size of the spatial attention field. We measured the spatial distribution of performance accuracies and reaction times to quantify the sizes and locations of the attention field, with and without spatial uncertainty (i.e., the lack of predictability concerning the spatial position of the upcoming stimulus). We found that high–functioning adults with autism exhibited slower reactions times overall with spatial uncertainty, but the effects of attention on performance accuracies and reaction times were indistinguishable between individuals with autism and typically developing individuals, in all three experiments. These results provide evidence of intact endogenous spatial attention function in high–functioning adults with ASD, suggesting that atypical endogenous attention cannot be a latent characteristic of autism in general. PMID:23427075
Garg, Rakesh
2016-09-01
The conduct of research requires a systematic approach involving diligent planning and its execution as planned. It comprises various essential predefined components such as aims, population, conduct/technique, outcome and statistical considerations. These need to be objective, reliable and in a repeatable format. Hence, the understanding of the basic aspects of methodology is essential for any researcher. This is a narrative review and focuses on various aspects of the methodology for conduct of a clinical research. The relevant keywords were used for literature search from various databases and from bibliographies of the articles.
Hyperspectral imaging spectro radiometer improves radiometric accuracy
NASA Astrophysics Data System (ADS)
Prel, Florent; Moreau, Louis; Bouchard, Robert; Bullis, Ritchie D.; Roy, Claude; Vallières, Christian; Levesque, Luc
2013-06-01
Reliable and accurate infrared characterization is necessary to measure the specific spectral signatures of aircrafts and associated infrared counter-measures protections (i.e. flares). Infrared characterization is essential to improve counter measures efficiency, improve friend-foe identification and reduce the risk of friendly fire. Typical infrared characterization measurement setups include a variety of panchromatic cameras and spectroradiometers. Each instrument brings essential information; cameras measure the spatial distribution of targets and spectroradiometers provide the spectral distribution of the emitted energy. However, the combination of separate instruments brings out possible radiometric errors and uncertainties that can be reduced with Hyperspectral imagers. These instruments combine both spectral and spatial information into the same data. These instruments measure both the spectral and spatial distribution of the energy at the same time ensuring the temporal and spatial cohesion of collected information. This paper presents a quantitative analysis of the main contributors of radiometric uncertainties and shows how a hyperspectral imager can reduce these uncertainties.
Essential oil yield and composition reflect browsing damage of junipers.
Markó, Gábor; Gyuricza, Veronika; Bernáth, Jeno; Altbacker, Vilmos
2008-12-01
The impact of browsing on vegetation depends on the relative density and species composition of browsers. Herbivore density and plant damage can be either site-specific or change seasonally and spatially. For juniper (Juniperus communis) forests of a sand dune region in Hungary, it has been assumed that plant damage investigated at different temporal and spatial scales would reflect selective herbivory. The level of juniper damage was tested for a possible correlation with the concentration of plant secondary metabolites (PSMs) in plants and seasonal changes in browsing pressure. Heavily browsed and nonbrowsed junipers were also assumed to differ in their chemical composition, and the spatial distribution of browsing damage within each forest was analyzed to reveal the main browser. Long-term differences in local browsing pressure were also expected and would be reflected in site-specific age distributions of distant juniper populations. The concentrations of PSMs (essential oils) varied significantly among junipers and seasons. Heavily browsed shrubs contained the lowest oil yield; essential oils were highest in shrubs bearing no damage, indicating that PSMs might contribute to reduce browsing in undamaged shrubs. There was a seasonal fluctuation in the yield of essential oil that was lower in the summer period than in other seasons. Gas chromatography (GC) revealed differences in some essential oil components, suggesting that certain chemicals could have contributed to reduced consumption. The consequential long-term changes were reflected in differences in age distribution between distant juniper forests. These results confirm that both the concentration of PSMs and specific compounds of the essential oil may play a role in selective browsing damage by local herbivores.
Effect of Visual-Spatial Ability on Medical Students' Performance in a Gross Anatomy Course
ERIC Educational Resources Information Center
Lufler, Rebecca S.; Zumwalt, Ann C.; Romney, Carla A.; Hoagland, Todd M.
2012-01-01
The ability to mentally manipulate objects in three dimensions is essential to the practice of many clinical medical specialties. The relationship between this type of visual-spatial ability and performance in preclinical courses such as medical gross anatomy is poorly understood. This study determined if visual-spatial ability is associated with…
Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region
Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall
2011-01-01
Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...
ERIC Educational Resources Information Center
Crescentini, Cristiano; Fabbro, Franco; Urgesi, Cosimo
2014-01-01
Despite the large body of knowledge on adults suggesting that 2 basic types of mental spatial transformation--namely, object-based and egocentric perspective transformations--are dissociable and specialized for different situations, there is much less research investigating the developmental aspects of such spatial transformation systems. Here, an…
Spatial distribution of human-caused forest fires in Galicia (NW Spain)
M. L. Chas-Amil; J. Touza; P. Prestemon
2010-01-01
It is crucial for fire prevention policies to assess the spatial patterns of human-started fires and their relationship with geographical and socioeconomic aspects. This study uses fire reports for the period 1988-2006 in Galicia, Spain, to analyze the spatial distribution of human-induced fire risk attending to causes and underlying motivations associated with fire...
Modelling and simulation techniques for membrane biology.
Burrage, Kevin; Hancock, John; Leier, André; Nicolau, Dan V
2007-07-01
One of the most important aspects of Computational Cell Biology is the understanding of the complicated dynamical processes that take place on plasma membranes. These processes are often so complicated that purely temporal models cannot always adequately capture the dynamics. On the other hand, spatial models can have large computational overheads. In this article, we review some of these issues with respect to chemistry, membrane microdomains and anomalous diffusion and discuss how to select appropriate modelling and simulation paradigms based on some or all the following aspects: discrete, continuous, stochastic, delayed and complex spatial processes.
Bouzabata, Amel; Casanova, Joseph; Bighelli, Ange; Cavaleiro, Carlos; Salgueiro, Ligia; Tomi, Félix
2016-06-01
The genus Myrtus L. (Myrtaceae family) comprises two species, Myrtus communis L. (known as common myrtle) growing wild all around the Mediterranean basin and Myrtus nivellei Batt. and Trab. (known as Saharan myrtle), found in central Sahara. Only one country, Algeria, hosts both species, M. communis in the North and M. nivellei in the South. The aim of this review was to collect, summarize, and compare the main results reported relative to the essential oils isolated from aerial parts of both species: botanical aspects, habitat, traditional use, chemical composition, new compounds, antimicrobial activity, antioxidant activity, anti-inflammatory effect, and insecticidal activity. Both essential oils have potential applications in human health. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
Access to dialysis services: A systematic mapping review based on geographical information systems.
Hoseini, Benyamin; Bagheri, Nasser; Kiani, Behzad; Azizi, Amirabbas; Tabesh, Hamed; Tara, Mahmood
2018-05-07
Equitable access to healthcare services constitutes one of the leading priorities of healthcare provision and access to dialysis services (ADS) has an essential impact on patients depending on renal dialysis. The many existing GIS-based ADS evaluations include various spatial and non-spatial factors affecting ADS. We systematically mapped and reviewed the available literature with reference to this area identifying gaps in current GIS-based ADS measurements and developing recommendations for future studies. A threestep, systematic mapping review of the available GIS-related evidence in PubMed, Embase, Web of science, Scopus, Science Direct and IEEE Xplore was performed in May 2016 and the information collected updated October 2017 by two independent selection processes. The quality of the studies was assessed using an informal, mixed-approach scoring system. Out of 1119 literature references identified, 36 were identified and used for final review after removal of duplicates, study screenings and applying inclusion/exclusion criteria. Given the contents of the selected studies, three study groups were identified and 41 factors with potential effects on ADS determined. These studies mainly addressed the potential and/or spatial aspects of ADS. Our systematic mapping review of the evidence revealed that current GIS-based measures of ADS tend to calculate potential ADS instead of a realized one. It was also noted that listed factors affecting ADS were mainly nonspatial bringing forth the hypothesis that designing an integrated ADS index could possibly produce better ADS score than those currently advocated. Some primary and secondary research suggestions are made and a list of recommendations offered.
Using Terrain Analysis and Remote Sensing to Improve Snow Mass Balance and Runoff Prediction
NASA Astrophysics Data System (ADS)
Venteris, E. R.; Coleman, A. M.; Wigmosta, M. S.
2010-12-01
Approximately 70-80% of the water in the international Columbia River basin is sourced from snowmelt. The demand for this water has competing needs, as it is used for agricultural irrigation, municipal, hydro and nuclear power generation, and environmental in-stream flow requirements. Accurate forecasting of water supply is essential for planning current needs and prediction of future demands due to growth and climate change. A significant limitation on current forecasting is spatial and temporal uncertainty in snowpack characteristics, particularly snow water equivalent. Currently, point measurements of snow mass balance are provided by the NRCS SNOTEL network. Each site consists of a snow mass sensor and meteorology station that monitors snow water equivalent, snow depth, precipitation, and temperature. There are currently 152 sites in the mountains of Oregon and Washington. An important step in improving forecasts is determining how representative each SNOTEL site is of the total mass balance of the watershed through a full accounting of the spatiotemporal variability in snowpack processes. This variation is driven by the interaction between meteorological processes, land cover, and landform. Statistical and geostatistical spatial models relate the state of the snowpack (characterized through SNOTEL, snow course measurements, and multispectral remote sensing) to terrain attributes derived from digital elevation models (elevation, aspect, slope, compound topographic index, topographic shading, etc.) and land cover. Time steps representing the progression of the snow season for several meteorologically distinct water years are investigated to identify and quantify dominant physical processes. The spatially distributed snow balance data can be used directly as model inputs to improve short- and long-range hydrologic forecasts.
Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I
NASA Astrophysics Data System (ADS)
Lee, Sang-Il
This research is concerned with developing a bivariate spatial association measure or spatial correlation coefficient, which is intended to capture spatial association among observations in terms of their point-to-point relationships across two spatial patterns. The need for parameterization of the bivariate spatial dependence is precipitated by the realization that aspatial bivariate association measures, such as Pearson's correlation coefficient, do not recognize spatial distributional aspects of data sets. This study devises an L statistic by integrating Pearson's r as an aspatial bivariate association measure and Moran's I as a univariate spatial association measure. The concept of a spatial smoothing scalar (SSS) plays a pivotal role in this task.
ERIC Educational Resources Information Center
De Leonibus, Elvira; Oliverio, Alberto; Mele, Andrea
2005-01-01
There is now accumulating evidence that the striatal complex in its two major components, the dorsal striatum and the nucleus accumbens, contributes to spatial memory. However, the possibility that different striatal subregions might modulate specific aspects of spatial navigation has not been completely elucidated. Therefore, in this study, two…
Cipolletta, Sabrina; Malighetti, Clelia; Serino, Silvia; Riva, Giuseppe; Winter, David
2017-06-01
Anorexia nervosa (AN) is an eating disorder characterized by severe body image disturbances. Recent studies from spatial cognition showed a connection between the experience of body and of space. The objectives of this study were to explore the meanings that characterize AN experience and to deepen the examination of spatiality in relational terms, through the study of how the patient construes herself and her interpersonal world. More specifically this study aimed (1) to verify whether spatial variables and aspects of construing differentiate patients with AN and healthy controls (HCs) and are related to severity of anorexic symptomatology; (2) to explore correlations between impairments in spatial abilities and interpersonal construing. A sample of 12 AN patients and 12 HCs participated in the study. The Eating Disorder Inventory, a virtual reality-based procedure, traditional measures of spatial abilities, and repertory grids were administered. The AN group compared to HCs showed significant impairments in spatial abilities, more unidimensional construing, and more extreme construing of the present self and of the self as seen by others. All these dimensions correlated with the severity of symptomatology. Extreme ways of construing characterized individuals with AN and might represent the interpersonal aspect of impairment in spatial reference frames. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Characterizing and Mapping of Ecosystem Services (CMESs) Literature Database Version 1.0
Ecosystem services (ESs) represent an ecosystem’s capacity for satisfying essential human needs, directly or indirectly, above that required to maintain ecosystem integrity (structure, function and processes). The spatial characterization and mapping of ESs is an essential first ...
Hook, Tomas O.; Rutherford, Edward S.; Brines, Shannon J.; Mason, Doran M.; Schwab, David J.; McCormick, Michael; Desorcie, Timothy J.
2003-01-01
The identification and protection of essential habitats for early life stages of fishes are necessary to sustain fish stocks. Essential fish habitat for early life stages may be defined as areas where fish densities, growth, survival, or production rates are relatively high. To identify critical habitats for young-of-year (YOY) alewives (Alosa pseud oharengus) in Lake Michigan, we integrated bioenergetics models with GIS (Geographic Information Systems) to generate spatially explicit estimates of potential population production (an index of habitat quality). These estimates were based upon YOY alewife bioenergetic growth rate potential and their salmonine predators’ consumptive demand. We compared estimates of potential population production to YOY alewife yield (an index of habitat importance). Our analysis suggested that during 1994–1995, YOY alewife habitat quality and yield varied widely throughout Lake Michigan. Spatial patterns of alewife yield were not significantly correlated to habitat quality. Various mechanisms (e.g., predator migrations, lake circulation patterns, alternative strategies) may preclude YOY alewives from concentrating in areas of high habitat quality in Lake Michigan.
Brain Mechanisms Supporting Discrimination of Sensory Features of Pain: A New Model
Oshiro, Yoshitetsu; Quevedo, Alexandre S.; McHaffie, John G.; Kraft, Robert A.; Coghill, Robert C.
2010-01-01
Pain can be very intense or only mild, and can be well localized or diffuse. To date, little is known as to how such distinct sensory aspects of noxious stimuli are processed by the human brain. Using functional magnetic resonance imaging and a delayed match-to-sample task, we show that discrimination of pain intensity, a non-spatial aspect of pain, activates a ventrally directed pathway extending bilaterally from the insular cortex to the prefrontal cortex. This activation is distinct from the dorsally-directed activation of the posterior parietal cortex and right dorsolateral prefrontal cortex that occurs during spatial discrimination of pain. Both intensity and spatial discrimination tasks activate highly similar aspects of the anterior cingulate cortex, suggesting that this structure contributes to common elements of the discrimination task such as the monitoring of sensory comparisons and response selection. Taken together, these results provide the foundation for a new model of pain in which bidirectional dorsal and ventral streams preferentially amplify and process distinct sensory features of noxious stimuli according to top-down task demands. PMID:19940188
Spatial Visualization by Isometric View
ERIC Educational Resources Information Center
Yue, Jianping
2007-01-01
Spatial visualization is a fundamental skill in technical graphics and engineering designs. From conventional multiview drawing to modern solid modeling using computer-aided design, visualization skills have always been essential for representing three-dimensional objects and assemblies. Researchers have developed various types of tests to measure…
Building Bridges to Spatial Reasoning
ERIC Educational Resources Information Center
Shumway, Jessica F.
2013-01-01
Spatial reasoning, which involves "building and manipulating mental representations of two-and three-dimensional objects and perceiving an object from different perspectives" is a critical aspect of geometric thinking and reasoning. Through building, drawing, and analyzing two-and three-dimensional shapes, students develop a foundation…
NASA Astrophysics Data System (ADS)
Lisimenka, Aliaksandr; Kubicki, Adam
2017-02-01
A new spectral analysis technique is proposed for rhythmic bedform quantification, based on the 2D Fourier transform involving the calculation of a set of low-order spectral moments. The approach provides a tool for efficient quantification of bedform length and height as well as spatial crest-line alignment. Contrary to the conventional method, it not only describes the most energetic component of an undulating seabed surface but also retrieves information on its secondary structure without application of any band-pass filter of which the upper and lower cut-off frequencies are a priori unknown. Validation is based on bathymetric data collected in the main Vistula River mouth area (Przekop Wisły), Poland. This revealed two generations (distinct groups) of dunes which are migrating seawards along distinct paths, probably related to the hydrological regime of the river. The data enable the identification of dune divergence and convergence zones. The approach proved successful in the parameterisation of topographic roughness, an essential aspect in numerical modelling studies.
The transesophageal echocardiography simulator based on computed tomography images.
Piórkowski, Adam; Kempny, Aleksander
2013-02-01
Simulators are a new tool in education in many fields, including medicine, where they greatly improve familiarity with medical procedures, reduce costs, and, importantly, cause no harm to patients. This is so in the case of transesophageal echocardiography (TEE), in which the use of a simulator facilitates spatial orientation and helps in case studies. The aim of the project described in this paper is to simulate an examination by TEE. This research makes use of available computed tomography data to simulate the corresponding echocardiographic view. This paper describes the essential characteristics that distinguish these two modalities and the key principles of the wave phenomena that should be considered in the simulation process, taking into account the conditions specific to the echocardiography. The construction of the CT2TEE (Web-based TEE simulator) is also presented. The considerations include ray-tracing and ray-casting techniques in the context of ultrasound beam and artifact simulation. An important aspect of the interaction with the user is raised.
High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Robert; Lewis, Brett B.; Fowlkes, Jason Davidson
While 3D-printing is currently experiencing significant growth and having a significant impact on science and technology, the expansion into the nanoworld is still a highly challenging task. Among the increasing number of approaches, focused electron-beam-induced deposition (FEBID) was recently demonstrated to be a viable candidate toward a generic direct-write fabrication technology with spatial nanometer accuracy for complex shaped 3D-nanoarchitectures. In this comprehensive study, we explore the parameter space for 3D-FEBID and investigate the implications of individual and interdependent parameters on freestanding nanosegments, which act as a fundamental building block for complex 3D-structures. In particular, the study provides new basic insightsmore » such as precursor transport limitations and angle dependent growth rates, both essential for high-fidelity fabrication. In conclusion, complemented by practical aspects, we provide both basic insights in 3D-growth dynamics and technical guidance for specific process adaption to enable predictable and reliable direct-write synthesis of freestanding 3D-nanoarchitectures.« less
High-Fidelity 3D-Nanoprinting via Focused Electron Beams: Growth Fundamentals
Winkler, Robert; Lewis, Brett B.; Fowlkes, Jason Davidson; ...
2018-02-14
While 3D-printing is currently experiencing significant growth and having a significant impact on science and technology, the expansion into the nanoworld is still a highly challenging task. Among the increasing number of approaches, focused electron-beam-induced deposition (FEBID) was recently demonstrated to be a viable candidate toward a generic direct-write fabrication technology with spatial nanometer accuracy for complex shaped 3D-nanoarchitectures. In this comprehensive study, we explore the parameter space for 3D-FEBID and investigate the implications of individual and interdependent parameters on freestanding nanosegments, which act as a fundamental building block for complex 3D-structures. In particular, the study provides new basic insightsmore » such as precursor transport limitations and angle dependent growth rates, both essential for high-fidelity fabrication. In conclusion, complemented by practical aspects, we provide both basic insights in 3D-growth dynamics and technical guidance for specific process adaption to enable predictable and reliable direct-write synthesis of freestanding 3D-nanoarchitectures.« less
Using Citygml to Deploy Smart-City Services for Urban Ecosystems
NASA Astrophysics Data System (ADS)
Prandi, F.; De Amicis, R.; Piffer, S.; Soave, M.; Cadzow, S.; Gonzalez Boix, E.; D'Hont, E.
2013-05-01
The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, becomes a key factor to trigger true user-driven innovation. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The goal of this paper is to introduce the i-SCOPE (interoperable Smart City services through an Open Platform for urban Ecosystems) project methodology and implementations together with key technologies and open standards. Based on interoperable 3D CityGML UIMs, the aim of i-Scope is to deliver an open platform on top of which it possible to develop, within different domains, various "smart city" services. Moreover, in i-SCOPE different issues, transcending the mere technological domain, are being tackled, including aspects dealing with social and environmental issues. Indeed several tasks including citizen awareness, crowd source and voluntary based data collection as well as privacy issue concerning involved people should be considered.
Revealing the vectors of cellular identity with single-cell genomics
Wagner, Allon; Regev, Aviv; Yosef, Nir
2017-01-01
Single-cell genomics has now made it possible to create a comprehensive atlas of human cells. At the same time, it has reopened definitions of a cell’s identity and type and of the ways in which they are regulated by the cell’s molecular circuitry. Emerging computational analysis methods, especially in single-cell RNA sequencing (scRNA-seq), have already begun to reveal, in a data-driven way, the diverse simultaneous facets of a cell’s identity, from a taxonomy of discrete cell types to continuous dynamic transitions and spatial locations. These developments will eventually allow a cell to be represented as a superposition of ‘basis vectors’, each determining a different (but possibly dependent) aspect of cellular organization and function. However, computational methods must also overcome considerable challenges—from handling technical noise and data scale to forming new abstractions of biology. As the scale of single-cell experiments continues to increase, new computational approaches will be essential for constructing and characterizing a reference map of cell identities. PMID:27824854
Stewart, Barclay T; Tansley, Gavin; Gyedu, Adam; Ofosu, Anthony; Donkor, Peter; Appiah-Denkyira, Ebenezer; Quansah, Robert; Clarke, Damian L; Volmink, Jimmy; Mock, Charles
2016-08-17
Conditions that can be treated by surgery comprise more than 16% of the global disease burden. However, 5 billion people do not have access to essential surgical care. An estimated 90% of the 87 million disability-adjusted life-years incurred by surgical conditions could be averted by providing access to timely and safe surgery in low-income and middle-income countries. Population-level spatial access to essential surgery in Ghana is not known. To assess the performance of bellwether procedures (ie, open fracture repair, emergency laparotomy, and cesarean section) as a proxy for performing essential surgery more broadly, to map population-level spatial access to essential surgery, and to identify first-level referral hospitals that would most improve access to essential surgery if strengthened in Ghana. Population-based study among all households and public and private not-for-profit hospitals in Ghana. Households were represented by georeferenced census data. First-level and second-level referral hospitals managed by the Ministry of Health and all tertiary hospitals were included. Surgical data were collected from January 1 to December 31, 2014. All procedures performed at first-level referral hospitals in Ghana in 2014 were used to sort each facility into 1 of the following 3 hospital groups: those without capability to perform all 3 bellwether procedures, those that performed 1 to 11 of each procedure, and those that performed at least 12 of each procedure. Candidates for targeted capability improvement were identified by cost-distance and network analysis. Of 155 first-level referral hospitals managed by the Ghana Health Service and the Christian Health Association of Ghana, 123 (79.4%) reported surgical data. Ninety-five (77.2%) did not have the capability in 2014 to perform all 3 bellwether procedures, 24 (19.5%) performed 1 to 11 of each bellwether procedure, and 4 (3.3%) performed at least 12. The essential surgical procedure rate was greater in bellwether procedure-capable first-level referral hospitals than in noncapable hospitals (median, 638; interquartile range, 440-1418 vs 360; interquartile range, 0-896 procedures per 100 000 population; P = .03). Population-level spatial access within 2 hours to a hospital that performed 1 to 11 and at least 12 of each bellwether procedure was 83.2% (uncertainty interval [UI], 82.2%-83.4%) and 71.4% (UI, 64.4%-75.0%), respectively. Five hospitals were identified for targeted capability improvement. Almost 30% of Ghanaians cannot access essential surgery within 2 hours. Bellwether capability is a useful metric for essential surgery more broadly. Similar strategic planning exercises might be useful for other low-income and middle-income countries aiming to improve access to essential surgery.
Analysis of Large Scale Spatial Variability of Soil Moisture Using a Geostatistical Method
2010-01-25
2010 / Accepted: 19 January 2010 / Published: 25 January 2010 Abstract: Spatial and temporal soil moisture dynamics are critically needed to...scale observed and simulated estimates of soil moisture under pre- and post-precipitation event conditions. This large scale variability is a crucial... dynamics is essential in the hydrological and meteorological modeling, improves our understanding of land surface–atmosphere interactions. Spatial and
Spatially explicit rangeland erosion monitoring using high-resolution digital aerial imagery
USDA-ARS?s Scientific Manuscript database
Nearly all of the ecosystem services supported by rangelands, including production of livestock forage, carbon sequestration, and provisioning of clean water, are negatively impacted by soil erosion. Accordingly, monitoring the severity, spatial extent, and rate of soil erosion is essential for long...
The geography of spatial synchrony
Jonathan A. Walter; Lawrence W. Sheppard; Thomas L. Anderson; Jude H. Kastens; Ottar N. Bjørnstad; Andrew M. Liebhold; Daniel C. Reuman; Bernd Blasius
2017-01-01
Spatial synchrony, defined as correlated temporal fluctuations among populations, is a fundamental feature of population dynamics, but many aspects of synchrony remain poorly understood. Few studies have examined detailed geographical patterns of synchrony; instead most focus on how synchrony declines with increasing linear distance between locations, making the...
Some Remarks on Navajo Geometry and Piagetian Genetic Theory.
ERIC Educational Resources Information Center
Pinxten, Rik
1991-01-01
Examines aspects of Navajo cosmology relevant to understanding Navajo spatial representations. Compares Navajo children's spatial knowledge with Piaget's findings about the development of geometric concepts in Swiss children. Describes classroom activities whereby Navajo children explore the geometry inherent in their cultural and physical…
Topological Schemas of Cognitive Maps and Spatial Learning.
Babichev, Andrey; Cheng, Sen; Dabaghian, Yuri A
2016-01-01
Spatial navigation in mammals is based on building a mental representation of their environment-a cognitive map. However, both the nature of this cognitive map and its underpinning in neural structures and activity remains vague. A key difficulty is that these maps are collective, emergent phenomena that cannot be reduced to a simple combination of inputs provided by individual neurons. In this paper we suggest computational frameworks for integrating the spiking signals of individual cells into a spatial map, which we call schemas. We provide examples of four schemas defined by different types of topological relations that may be neurophysiologically encoded in the brain and demonstrate that each schema provides its own large-scale characteristics of the environment-the schema integrals. Moreover, we find that, in all cases, these integrals are learned at a rate which is faster than the rate of complete training of neural networks. Thus, the proposed schema framework differentiates between the cognitive aspect of spatial learning and the physiological aspect at the neural network level.
The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster.
Lattao, Ramona; Kovács, Levente; Glover, David M
2017-05-01
Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster , highlighting their contributions to different aspects of development and cell division. Copyright © 2017 Lattao et al.
Rhodes, Matthew K; Fant, Jeremie B; Skogen, Krissa A
2014-01-01
Identifying factors that shape the spatial distribution of genetic variation is crucial to understanding many population- and landscape-level processes. In this study, we explore fine-scale spatial genetic structure in Oenothera harringtonii (Onagraceae), an insect-pollinated, gravity-dispersed herb endemic to the grasslands of south-central and southeastern Colorado, USA. We genotyped 315 individuals with 11 microsatellite markers and utilized a combination of spatial autocorrelation analyses and landscape genetic models to relate life history traits and landscape features to dispersal processes. Spatial genetic structure was consistent with theoretical expectations of isolation by distance, but this pattern was weak (Sp = 0.00374). Anisotropic analyses indicated that spatial genetic structure was markedly directional, in this case consistent with increased dispersal along prominent slopes. Landscape genetic models subsequently confirmed that spatial genetic variation was significantly influenced by local topographic heterogeneity, specifically that geographic distance, elevation and aspect were important predictors of spatial genetic structure. Among these variables, geographic distance was ~68% more important than elevation in describing spatial genetic variation, and elevation was ~42% more important than aspect after removing the effect of geographic distance. From these results, we infer a mechanism of hydrochorous seed dispersal along major drainages aided by seasonal monsoon rains. Our findings suggest that landscape features may shape microevolutionary processes at much finer spatial scales than typically considered, and stress the importance of considering how particular dispersal vectors are influenced by their environmental context. © The American Genetic Association 2014. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
List, Nanna Holmgaard, E-mail: nhl@sdu.dk; Jensen, Hans Jørgen Aagaard; Kauczor, Joanna
2015-06-28
We present a formulation of molecular response theory for the description of a quantum mechanical molecular system in the presence of a weak, monochromatic, linearly polarized electromagnetic field without introducing truncated multipolar expansions. The presentation focuses on a description of linear absorption by adopting the energy-loss approach in combination with the complex polarization propagator formulation of response theory. Going beyond the electric-dipole approximation is essential whenever studying electric-dipole-forbidden transitions, and in general, non-dipolar effects become increasingly important when addressing spectroscopies involving higher-energy photons. These two aspects are examined by our study of the near K-edge X-ray absorption fine structure ofmore » the alkaline earth metals (Mg, Ca, Sr, Ba, and Ra) as well as the trans-polyenes. In following the series of alkaline earth metals, the sizes of non-dipolar effects are probed with respect to increasing photon energies and a detailed assessment of results is made in terms of studying the pertinent transition electron densities and in particular their spatial extension in comparison with the photon wavelength. Along the series of trans-polyenes, the sizes of non-dipolar effects are probed for X-ray spectroscopies on organic molecules with respect to the spatial extension of the chromophore.« less
FAPRS Manual: Manual for the Functional Analytic Psychotherapy Rating Scale
ERIC Educational Resources Information Center
Callaghan, Glenn M.; Follette, William C.
2008-01-01
The Functional Analytic Psychotherapy Rating Scale (FAPRS) is behavioral coding system designed to capture those essential client and therapist behaviors that occur during Functional Analytic Psychotherapy (FAP). The FAPRS manual presents the purpose and rules for documenting essential aspects of FAP. The FAPRS codes are exclusive and exhaustive…
Addendum: Parker Charter Essential School's Wellness Program
ERIC Educational Resources Information Center
Horace, 2008
2008-01-01
Wellness is an integrated curriculum combining aspects of traditional health classes with physical education, games, fitness skills and other mind-body connection skills. The goals of Parker Charter Essential School's Wellness program developed by members of the Parker community are: (1) to develop and nurture resilience; (2) to foster and promote…
An Undergraduate Electrical Engineering Course on Computer Organization.
ERIC Educational Resources Information Center
Commission on Engineering Education, Washington, DC.
Outlined is an undergraduate electrical engineering course on computer organization designed to meet the need for electrical engineers familiar with digital system design. The program includes both hardware and software aspects of digital systems essential to design function and correlates design and organizational aspects of the subject. The…
The Mathematics Values in Classroom Inventory: Development and Initial Validation
ERIC Educational Resources Information Center
Tapsir, Ruzela; Nik Azis, Nik Pa
2017-01-01
Value has been identified as an essential aspect towards the quality in mathematics education at various levels of the system, institutional, curriculum, education management, and classroom interactions. However, few studies were focused on values, its development, measurement, and impact in education as compared to other affective aspects such as…
High-quality, daily meteorological data at high spatial resolution are essential for a variety of hydrologic and ecological modeling applications that support environmental risk assessments and decision making. This paper describes the development, application, and assessment of ...
Entorhinal-Hippocampal Neuronal Circuits Bridge Temporally Discontiguous Events
ERIC Educational Resources Information Center
Kitamura, Takashi; Macdonald, Christopher J.; Tonegawa, Susumu
2015-01-01
The entorhinal cortex (EC)-hippocampal (HPC) network plays an essential role for episodic memory, which preserves spatial and temporal information about the occurrence of past events. Although there has been significant progress toward understanding the neural circuits underlying the spatial dimension of episodic memory, the relevant circuits…
Wasimuddin; Menke, Sebastian; Melzheimer, Jörg; Thalwitzer, Susanne; Heinrich, Sonja; Wachter, Bettina; Sommer, Simone
2017-10-01
Although the significance of the gut microbiome for host health is well acknowledged, the impact of host traits and environmental factors on the interindividual variation of gut microbiomes of wildlife species is not well understood. Such information is essential; however, as changes in the composition of these microbial communities beyond the natural range might cause dysbiosis leading to increased susceptibility to infections. We examined the potential influence of sex, age, genetic relatedness, spatial tactics and the environment on the natural range of the gut microbiome diversity in free-ranging Namibian cheetahs (Acinonyx jubatus). We further explored the impact of an altered diet and frequent contact with roaming dogs and cats on the occurrence of potential bacterial pathogens by comparing free-ranging and captive individuals living under the same climatic conditions. Abundance patterns of particular bacterial genera differed between the sexes, and bacterial diversity and richness were higher in older (>3.5 years) than in younger individuals. In contrast, male spatial tactics, which probably influence host exposure to environmental bacteria, had no discernible effect on the gut microbiome. The profound resemblance of the gut microbiome of kin in contrast to nonkin suggests a predominant role of genetics in shaping bacterial community characteristics and functional similarities. We also detected various Operational Taxonomic Units (OTUs) assigned to potential pathogenic bacteria known to cause diseases in humans and wildlife species, such as Helicobacter spp., and Clostridium perfringens. Captive individuals did not differ in their microbial alpha diversity but exhibited higher abundances of OTUs related to potential pathogenic bacteria and shifts in disease-associated functional pathways. Our study emphasizes the need to integrate ecological, genetic and pathogenic aspects to improve our comprehension of the main drivers of natural variation and shifts in gut microbial communities possibly affecting host health. This knowledge is essential for in situ and ex situ conservation management. © 2017 John Wiley & Sons Ltd.
Continuous model for the rock-scissors-paper game between bacteriocin producing bacteria.
Neumann, Gunter; Schuster, Stefan
2007-06-01
In this work, important aspects of bacteriocin producing bacteria and their interplay are elucidated. Various attempts to model the resistant, producer and sensitive Escherichia coli strains in the so-called rock-scissors-paper (RSP) game had been made in the literature. The question arose whether there is a continuous model with a cyclic structure and admitting an oscillatory dynamics as observed in various experiments. The May-Leonard system admits a Hopf bifurcation, which is, however, degenerate and hence inadequate. The traditional differential equation model of the RSP-game cannot be applied either to the bacteriocin system because it involves positive interaction terms. In this paper, a plausible competitive Lotka-Volterra system model of the RSP game is presented and the dynamics generated by that model is analyzed. For the first time, a continuous, spatially homogeneous model that describes the competitive interaction between bacteriocin-producing, resistant and sensitive bacteria is established. The interaction terms have negative coefficients. In some experiments, for example, in mice cultures, migration seemed to be essential for the reinfection in the RSP cycle. Often statistical and spatial effects such as migration and mutation are regarded to be essential for periodicity. Our model gives rise to oscillatory dynamics in the RSP game without such effects. Here, a normal form description of the limit cycle and conditions for its stability are derived. The toxicity of the bacteriocin is used as a bifurcation parameter. Exact parameter ranges are obtained for which a stable (robust) limit cycle and a stable heteroclinic cycle exist in the three-species game. These parameters are in good accordance with the observed relations for the E. coli strains. The roles of growth rate and growth yield of the three strains are discussed. Numerical calculations show that the sensitive, which might be regarded as the weakest, can have the longest sojourn times.
Che, Yonglu; Khavari, Paul A
2017-12-01
Interactions between proteins are essential for fundamental cellular processes, and the diversity of such interactions enables the vast variety of functions essential for life. A persistent goal in biological research is to develop assays that can faithfully capture different types of protein interactions to allow their study. A major step forward in this direction came with a family of methods that delineates spatial proximity of proteins as an indirect measure of protein-protein interaction. A variety of enzyme- and DNA ligation-based methods measure protein co-localization in space, capturing novel interactions that were previously too transient or low affinity to be identified. Here we review some of the methods that have been successfully used to measure spatially proximal protein-protein interactions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Welch, R. M.; Sengupta, S. K.; Chen, D. W.
1990-01-01
Stratocumulus cloud fields in the FIRE IFO region are analyzed using LANDSAT Thematic Mapper imagery. Structural properties such as cloud cell size distribution, cell horizontal aspect ratio, fractional coverage and fractal dimension are determined. It is found that stratocumulus cloud number densities are represented by a power law. Cell horizontal aspect ratio has a tendency to increase at large cell sizes, and cells are bi-fractal in nature. Using LANDSAT Multispectral Scanner imagery for twelve selected stratocumulus scenes acquired during previous years, similar structural characteristics are obtained. Cloud field spatial organization also is analyzed. Nearest-neighbor spacings are fit with a number of functions, with Weibull and Gamma distributions providing the best fits. Poisson tests show that the spatial separations are not random. Second order statistics are used to examine clustering.
Spatial evaporation patterns within a small drainage basin in the Negev Desert
NASA Astrophysics Data System (ADS)
Kidron, Giora J.; Zohar, Motti
2010-01-01
SummaryAlthough important, data regarding the spatial distribution of evaporation are scarce. With the development of a small reference atmometer (RAM), studying the spatial distribution of evaporation was made more feasible and consequently carried out at the hilltops (TOP), wadi beds (WADI) and along the northern (NF), southern (SF), eastern (EF) and western (WF) aspects within a second order drainage basin in the Negev Desert Highlands during June 2004 to May 2006. Evaporation rates showed high variability in accordance with season and aspect following the order: TOP > SF ⩾ EF ⩾ WF > WADI > NF. The data showed (a) an increase in evaporation with elevation; (b) that the average evaporation rates of the stations located at the slopes and the wadi beds were respectively ˜14% and ˜23% lower than that of the hilltop stations; (c) that while insignificant differences characterized the eastern and the western aspects during summer and winter, significant differences characterized the northern and the southern aspects, and (d) that the ratio obtained between the northern and southern aspects is significantly different from that calculated based on direct-beam shortwave radiation. The findings were explained by the effects of sun and wind upon evaporation, with each factor explaining up to ˜45-50% of the results. The findings are in agreement with the dense vegetation at the north-facing footslope and at the wadi bed, and may have important implications towards the understanding of microorganism and plant distribution as well as geomorphological and pedological topics such as weathering rates and soil forming processes.
Spatial-Operator Algebra For Flexible-Link Manipulators
NASA Technical Reports Server (NTRS)
Jain, Abhinandan; Rodriguez, Guillermo
1994-01-01
Method of computing dynamics of multiple-flexible-link robotic manipulators based on spatial-operator algebra, which originally applied to rigid-link manipulators. Aspects of spatial-operator-algebra approach described in several previous articles in NASA Tech Briefs-most recently "Robot Control Based on Spatial-Operator Algebra" (NPO-17918). In extension of spatial-operator algebra to manipulators with flexible links, each link represented by finite-element model: mass of flexible link apportioned among smaller, lumped-mass rigid bodies, coupling of motions expressed in terms of vibrational modes. This leads to operator expression for modal-mass matrix of link.
Simultaneous shape repulsion and global assimilation in the perception of aspect ratio
Sweeny, Timothy D.; Grabowecky, Marcia; Suzuki, Satoru
2012-01-01
Although local interactions involving orientation and spatial frequency are well understood, less is known about spatial interactions involving higher level pattern features. We examined interactive coding of aspect ratio, a prevalent two-dimensional feature. We measured perception of two simultaneously flashed ellipses by randomly post-cueing one of them and having observers indicate its aspect ratio. Aspect ratios interacted in two ways. One manifested as an aspect-ratio-repulsion effect. For example, when a slightly tall ellipse and a taller ellipse were simultaneously flashed, the less tall ellipse appeared flatter and the taller ellipse appeared even taller. This repulsive interaction was long range, occurring even when the ellipses were presented in different visual hemifields. The other interaction manifested as a global assimilation effect. An ellipse appeared taller when it was a part of a global vertical organization than when it was a part of a global horizontal organization. The repulsion and assimilation effects temporally dissociated as the former slightly strengthened, and the latter disappeared when the ellipse-to-mask stimulus onset asynchrony was increased from 40 to 140 ms. These results are consistent with the idea that shape perception emerges from rapid lateral and hierarchical neural interactions. PMID:21248223
Spatial partitioning by mule deer and elk in relation to traffic.
Michael J. Wisdom; Norman J. Cimon; Bruce K. Johnson; Edward O. Garton; Jack Ward. Thomas
2004-01-01
Elk (Cervus elaphus) and mule deer (Odocoileus hemionus) have overlapping ranges on millions of acres of forests and rangelands in western North America. Accurate prediction of their spatial distributions within these ranges is essential to effective land-use planning, stocking allocation and population management (Wisdom and...
Spatial Mapping of Organic Carbon in Returned Samples from Mars
NASA Astrophysics Data System (ADS)
Siljeström, S.; Fornaro, T.; Greenwalt, D.; Steele, A.
2018-04-01
To map organic material spatially to minerals present in the sample will be essential for the understanding of the origin of any organics in returned samples from Mars. It will be shown how ToF-SIMS may be used to map organics in samples from Mars.
Spatial repellency screening in a high-throughput apparatus with Aedes aegypti and Anopheles gambiae
USDA-ARS?s Scientific Manuscript database
Spatial repellents are essential for personal protection against mosquitoes, such as Aedes aegypti and Anopheles gambiae, to reduce annoyance biting and transmission of mosquito-borne diseases. The number of safe and effective repellents, including DEET, picaridin, and IR3535, is limited and contin...
ERIC Educational Resources Information Center
Mills, Kathy A.
2015-01-01
"Literacy Theories for the Digital Age" insightfully brings together six essential approaches to literacy research and educational practice. The book provides powerful and accessible theories for readers, including Socio-cultural, Critical, Multimodal, Socio-spatial, Socio-material and Sensory Literacies. The brand new Sensory Literacies…
Some Spatial Aspects of Southeastern United States Climatology.
ERIC Educational Resources Information Center
Soule, Peter T.
1998-01-01
Focuses on the climatology of an eight-state region in the southern and southeastern United States. Discusses general controls of climate and spatial patterns of various climatic averages. Examines mapped extremes as a means of fostering increased awareness of the variability that exists for climatic conditions in the region. (CMK)
Modeling Spatial and Temporal Aspects of Visual Backward Masking
ERIC Educational Resources Information Center
Hermens, Frouke; Luksys, Gediminas; Gerstner, Wulfram; Herzog, Michael H.; Ernst, Udo
2008-01-01
Visual backward masking is a versatile tool for understanding principles and limitations of visual information processing in the human brain. However, the mechanisms underlying masking are still poorly understood. In the current contribution, the authors show that a structurally simple mathematical model can explain many spatial and temporal…
NASA Astrophysics Data System (ADS)
Salawu, Emmanuel Oluwatobi; Hesse, Evelyn; Stopford, Chris; Davey, Neil; Sun, Yi
2017-11-01
Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles' orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle's size and size PADs.
Patterns in the Land Surface Phenology of North American Mountain Systems from 2000 to 2011
NASA Astrophysics Data System (ADS)
Hudson Dunn, A.; de Beurs, K. M.; Prisley, S. P.
2011-12-01
Mountain and alpine ecosystems cover more than twenty percent of the Earth's land surface spanning an area from the equator to just near the poles. In addition to the commonly known characteristics of a marked topographic variation resulting in steep slopes and varied aspects, mountains are highly diverse systems in flora, fauna, and human ethnicity, and are found, at varying altitudes, on every continent. These regions experience unique climate patterns aiding in the creation of niche vegetation zones; the development of alpine and tundra environments; as well as glaciers; and are expected to experience growing impacts due to shifts in climate patterns currently being seen in all ecosystems worldwide. In order to understand future natural and anthropogenic impacts on these high elevation areas it is essential that we first capture the spatial and temporal patterns and processes that are occurring there. One vital step in this process is the understanding of vegetation phenology throughout. Here, we use the MODIS/Terra satellite 16-day Nadir BRDF Adjusted Reflectance product, to assess the annual seasonality of a diverse variety of North American mountain environments from Alaska to the Appalachian Mountains and down to Sierra Madres in Mexico for the years of 2000 to 2011. Independent data for elevation, slope, aspect, solar radiation, temperature, and precipitation as well as longitude and latitude were related to the seasonal outputs for start of season (SOS), end of season (EOS), maximum photosynthetic activity (MPA), and growing season length (GSL). Preliminary results of these analyses show that the seasonal vegetation pattern within these zones is primarily controlled by elevation, aspect, latitude, and temperature.
Information and communication technologies in tomorrow's digital classroom
NASA Astrophysics Data System (ADS)
Bogoeva, Asya
2014-05-01
Education has to respond to the new challenges and opportunities offered by the 21-th Century as well as to the main trend in the world community development related to a creation of Knowledge Society. Implementation of ICT at school is a priority of the Global education and helps to develop the four pillars of learning - learning to know, learning to do, learning to be and learning to live together. Digital competence of the students is also a part of the European Union key competences. The essential elements in geographical study are: spatial analysis, with an emphasis on location; ecological analysis, with an emphasis on people-environment relationships; and regional analysis, with an emphasis on areal differentiation. Modern geography is best characterized as the study of distributions and relationships among different natural and social patterns of distributions. Viewing the world from a spatial perspective and employing a holistic approach are important characteristics of contemporary and future Geography learning. Using innovative methods for presenting the global aspects of distribution patterns and their changes is a priority of teaching geosciences at our school. The use of geo-media in classroom helps learners develop their ICT competences. Geolocalised information is used everywhere in society and it is therefore essential for students to learn how to use different forms of geographic media Geo-media is now being used in scientific researches and reasoning. One of the geo-media tools that I use in my classes is Google Earth for presenting different geographic processes and phenomena like visualization of current global weather conditions, global warming, deforestation areas, earthquake areas, etc. Using Geographic Information systems for presenting and studying geographical processes is also one way to identify, analyze, and understand the locations. Our school is a part of digital-earth.eu network which is under development now. The European Centers of Excellence at national level promote innovative approaches of teaching and learning environments including the active use of geo-media and GIS is started to develop. The main objectives of the Bulgarian Center of Excellence are to create in collaboration with teachers and ESRI organization learning materials for school education. Students learn how to use ArcGIS in order to create their own interactive maps related to the Bulgarian geography education. They have already used ArcGIS software to study and analyze changes in the Bulgarian geographical location, boundaries and border controls, as well as Pan European transport corridors and define positive and negative aspects of crossroad location of Bulgaria. There is also available software about the Bulgarian water resources as well as about the Bulgarian population and its demographic characteristics. During the classes students create their own map according to given tasks, analyze maps elicit certain information for decision making and in that way they develop their spatial thinking skills. Interdisciplinary approach in teaching geosciences at comprehensive school by using ICT is another innovative method that can be used in the classroom. Chemistry and geography as geosciences have common objects of investigation - minerals, rocks and ores as raw materials for industry. Subject objectives for both disciplines can be achieved in a binary lesson. Students make their own preliminary web-based investigation and in the classroom they discuss characteristics of a certain metallic ores, their global distribution and local deposits, their significance for economic development and environmental issues related to their extraction. Implementation of ICT in tomorrow's digital classroom will help students to understand the complexity of the world around us, show them different examples of our changing planet and develop their spatial thinking knowledge.
Bino, Gilad; Kingsford, Richard T; Grant, Tom; Taylor, Matthew D; Vogelnest, Larry
2018-03-23
The platypus (Ornithorhynchus anatinus) is an evolutionarily distinct mammal, endemic to Australian freshwaters. Many aspects of its ecology and life-history, including detailed understanding of movements, are poorly known, hampered by its cryptic and mainly nocturnal habits and small numbers. We effectively trialled intraperitoneal implanted acoustic transmitters in nine platypuses in the Severn River (NSW), Australia, as a potential approach for studying movements in this challenging species. We tracked platypus movements over six months, at fine and broad spatial scales, using an array of acoustic sensors. Over six months (March-August 2016), four of five adult platypuses (two females\\three males) maintained localized movements (average monthly maximums 0.37 km ± 0.03 sd), while one adult, one sub-adult, and one juvenile (males) moved further: average monthly maxima 1.2 km ± 2.0 sd, 0.9 km ± 0.6 sd, 4.5 km ± 5.9 sd, respectively. The longest recorded movement was by a male adult, covering 11.1 km in three days and travelling a maximum distance of about 13 km between records. Only one implanted animal was not detected immediately after release, indicative of transmission failure rather than an adverse event. High cumulative daily movements (daily 1.9 km ± 0.8 sd) indicated high metabolic requirements, with implications for previous estimates of platypus abundances and carrying capacities, essential for effective conservation. This novel approach offers new avenues to investigate relating to mating, nesting, and intraspecific competition behaviours and their temporal and spatial variation.
Essential Oils, Part VI: Sandalwood Oil, Ylang-Ylang Oil, and Jasmine Absolute.
de Groot, Anton C; Schmidt, Erich
In this article, some aspects of sandalwood oil, ylang-ylang oil, and jasmine absolute are discussed including their botanical origin, uses of the plants and the oils and absolute, chemical composition, contact allergy to and allergic contact dermatitis from these essential oils and absolute, and their causative allergenic ingredients.
School Climate: An Essential Component of a Comprehensive School Safety Plan
ERIC Educational Resources Information Center
Stark, Heidi
2017-01-01
The intentional assessment and management of school climate is an essential component of a comprehensive school safety plan. The value of this preventive aspect of school safety is often diminished as schools invest resources in physical security measures as a narrowly focused effort to increase school safety (Addington, 2009). This dissertation…
Shaky Hands, Shaky Self-Image. Identifying the Child with Essential Tremor.
ERIC Educational Resources Information Center
Busenbark, Karen L.
1994-01-01
Shaky handwriting is often the first symptom of essential tremor (ET) in children. Physical limitations include difficulty in eating and drinking. One very disabling aspect of ET is the social embarrassment it causes. The article looks at what parents and teachers can do if they suspect a child has ET. (SM)
Stewart, Barclay T.; Tansley, Gavin; Gyedu, Adam; Ofosu, Anthony; Donkor, Peter; Appiah-Denkyira, Ebenezer; Quansah, Robert; Clarke, Damian L.; Volmink, Jimmy; Mock, Charles
2017-01-01
IMPORTANCE Conditions that can be treated by surgery comprise more than 16% of the global disease burden. However, 5 billion people do not have access to essential surgical care. An estimated 90% of the 87 million disability-adjusted life-years incurred by surgical conditions could be averted by providing access to timely and safe surgery in low-income and middle-income countries. Population-level spatial access to essential surgery in Ghana is not known. OBJECTIVES To assess the performance of bellwether procedures (ie, open fracture repair, emergency laparotomy, and cesarean section) as a proxy for performing essential surgery more broadly, to map population-level spatial access to essential surgery, and to identify first-level referral hospitals that would most improve access to essential surgery if strengthened in Ghana. DESIGN, SETTING, AND PARTICIPANTS Population-based study among all households and public and private not-for-profit hospitals in Ghana. Households were represented by georeferenced census data. First-level and second-level referral hospitals managed by the Ministry of Health and all tertiary hospitals were included. Surgical data were collected from January 1 to December 31, 2014. MAIN OUTCOMES AND MEASURES All procedures performed at first-level referral hospitals in Ghana in 2014 were used to sort each facility into 1 of the following 3 hospital groups: those without capability to perform all 3 bellwether procedures, those that performed 1 to 11 of each procedure, and those that performed at least 12 of each procedure. Candidates for targeted capability improvement were identified by cost-distance and network analysis. RESULTS Of 155 first-level referral hospitals managed by the Ghana Health Service and the Christian Health Association of Ghana, 123 (79.4%) reported surgical data. Ninety-five (77.2%) did not have the capability in 2014 to perform all 3 bellwether procedures, 24 (19.5%) performed 1 to 11 of each bellwether procedure, and 4 (3.3%) performed at least 12. The essential surgical procedure rate was greater in bellwether procedure–capable first-level referral hospitals than in noncapable hospitals (median, 638; interquartile range, 440–1418 vs 360; interquartile range, 0–896 procedures per 100 000 population; P = .03). Population-level spatial access within 2 hours to a hospital that performed 1 to 11 and at least 12 of each bellwether procedure was 83.2% (uncertainty interval [UI], 82.2%–83.4%) and 71.4% (UI, 64.4%–75.0%), respectively. Five hospitals were identified for targeted capability improvement. CONCLUSIONS AND RELEVANCE Almost 30% of Ghanaians cannot access essential surgery within 2 hours. Bellwether capability is a useful metric for essential surgery more broadly. Similar strategic planning exercises might be useful for other low-income and middle-income countries aiming to improve access to essential surgery. PMID:27331865
Ning Liu; Peng-Sen Sun; Shi-Rong Liu; Ge Sun
2013-01-01
Main publication is written in Chinese.Aims: Optimal spatial scale of hydrological response unit (HRU) is a precondition for eco-hydrological modeling as it is essential to improve accuracy. Our objective was to evaluate the spatial scale of HRU for application of the WASSSI-C model.Methods: We determined the best HRU scale for the eco-...
Shear-induced migration and orientation of rigid fibers
NASA Astrophysics Data System (ADS)
Butler, Jason; Strednak, Scott; Shaikh, Saif; Guazzelli, Elisabeth
2017-11-01
The spatial and orientation distributions are measured for a suspension of fibers during pressure-driven flow. The fibers are rigid and non-colloidal, and two aspect ratios (length to diameter ratios) of 12 and 24 were tested; the suspending fluid is viscous, Newtonian, and density matched to the particles. As with the migration of spheres in parabolic flows, the fibers migrate toward the centerline of the channel if the concentration is sufficiently high. Migration is not observed for concentrations below a volume fraction of 0.035 for aspect ratio 24 and 0.07 for aspect ratio 12. The orientation distribution of the fibers is spatially dependent. Fibers near the center of the channel align closely with the flow direction, but fibers near the wall are observed to preferentially align in the vorticity (perpendicular to the flow and gradient) direction. National Science Foundation (Grants #1511787 and #1362060).
NASA Technical Reports Server (NTRS)
Aldcroft, T.; Karovska, M.; Cresitello-Dittmar, M.; Cameron, R.
2000-01-01
The aspect system of the Chandra Observatory plays a key role in realizing the full potential of Chandra's x-ray optics and detectors. To achieve the highest spatial and spectral resolution (for grating observations), an accurate post-facto time history of the spacecraft attitude and internal alignment is needed. The CXC has developed a suite of tools which process sensor data from the aspect camera assembly and gyroscopes, and produce the spacecraft aspect solution. In this poster, the design of the aspect pipeline software is briefly described, followed by details of aspect system performance during the first eight months of flight. The two key metrics of aspect performance are: image reconstruction accuracy, which measures the x-ray image blurring introduced by aspect; and celestial location, which is the accuracy of detected source positions in absolute sky coordinates.
Access to Spatial Data: The Political Power of Legal Control Mechanisms
ERIC Educational Resources Information Center
Day, Patrice
2012-01-01
According to the U.S. Supreme Court ("Island Trees School District v. Pico," 457 U.S. 853, 1982), the Constitution presupposes that the free flow of information between the government and the public is essential to maintaining an informed citizenry, which in turn is essential to holding governments accountable. However, local governments…
Enzai Du; Wim de Vries; Steven McNulty; Mark E. Fenn
2018-01-01
Base cations, such as potassium (K+), calcium (Ca2+) and magnesium (Mg2+), are essential nutrients for plant growth and their atmospheric inputs can buffer the effect of acid deposition by nitrogen (N) and sulphur (S) compounds. However, the spatial variation in atmospheric deposition of these base...
Farm Fair Voices, Space, History, the Middle Ground and "The Future" of Rural Communities
ERIC Educational Resources Information Center
Halsey, John
2011-01-01
This article is essentially written as two linked parts. The first part considers how space, spatiality and history can contribute to understanding and "doing something about" the sustainability of rural communities. This is done by extensive reference to Soja's (1989 & 1996) space and spatial theorising and selective perspectives of…
Eric R. Waits; Mark J. Bagley; Michael J. Blum; Frank H. McCormick; James M. Lazorchak
2008-01-01
Relating local demographic processes to spatial structure (e.g. habitat heterogeneity) is essential for understanding population and species persistence (Hanski & Gilpin, 1997; Fagan, 2002). Yet few studies have tested general hypotheses about the importance of spatial patterns in determining population dynamics within riverÂstream networks (Lowe, Likens &...
A geologic and mineral exploration spatial database for the Stillwater Complex, Montana
Zientek, Michael L.; Parks, Heather L.
2014-01-01
This report provides essential spatially referenced datasets based on geologic mapping and mineral exploration activities conducted from the 1920s to the 1990s. This information will facilitate research on the complex and provide background material needed to explore for mineral resources and to develop sound land-management policy.
The Importance of Spatial Ability and Mental Models in Learning Anatomy
ERIC Educational Resources Information Center
Chatterjee, Allison K.
2011-01-01
As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing…
Pre-Service Primary School Teachers' Spatial Abilities
ERIC Educational Resources Information Center
Marchis, Iuliana
2017-01-01
Spatial abilities are used in many aspects of everyday life, thus developing these abilities should be one of the most important goal of Mathematics Education. These abilities should be developed starting with early school years, thus pre-school and primary school teachers have an important role in setting the foundation of these abilities. A…
Photographic Mosaics and Geographic Generalizations: A Perceptual Approach to Geographic Education
ERIC Educational Resources Information Center
Castner, Henry W.
2003-01-01
If vision can be considered the basis of geographic inquiry, then it must involve looking with discrimination--the ability to discern clues in our surroundings that speak to spatial processes or patterns in all aspects of geography--physical, cultural, economic, and so on. Geographic thinking also involves making spatial generalizations. We do…
In this paper we develop a conceptual framework for selecting stressor data and anlyzing their relationship to geographic patterns of species richness at large spatial scales. Aspects of climate and topography, which are not stressors per se, have been most strongly linked with g...
Integrating Spatial Components into FIA Models of Forest Resources: Some Technical Aspects
Pat Terletzky; Tracey Frescino
2005-01-01
We examined two software packages to determine their feasibility of implementing spatially explicit, forest resource models that integrate Forest Inventory and Analysis data (FIA). ARCINFO and Interactive Data Language (IDL) were examined for their input requirements, speed of processing, storage requirements, and flexibility of implementing. Implementations of two...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Thomas B., E-mail: fischer@liverpool.ac.u
This paper summarises the results of a research project from early 2008, involving the author of this paper, as well as 18 post-graduate University of Liverpool students, in which the quality of European Directive based strategic environmental assessment (SEA) reports of English spatial plan core strategies (conducted within the context of the spatial planning sustainability appraisal-SA-regime) was reviewed. The project aimed at establishing the extensiveness of emerging spatial plan related SEA practice, as well as highlighting shortcomings and problems. Overall, it was found that whilst some aspects of assessment were done well, others were not of a satisfactory quality. Shortcomingsmore » were connected particularly with the practice of listing potentially relevant baseline documents and data without distinguishing sufficiently between those that are important in terms of significant impacts and those that are not. Problems were also found to exist with the evaluation of options and impacts, the consideration of substantive aspects, such as health, as well as regarding the formulation of final recommendations and monitoring.« less
APPLICATION OF SPATIAL INFORMATION TECHNOLOGY TO PETROLEUM RESOURCE ASSESSMENT ANALYSIS.
Miller, Betty M.; Domaratz, Michael A.
1984-01-01
Petroleum resource assessment procedures require the analysis of a large volume of spatial data. The US Geological Survey (USGS) has developed and applied spatial information handling procedures and digital cartographic techniques to a recent study involving the assessment of oil and gas resource potential for 74 million acres of designated and proposed wilderness lands in the western United States. The part of the study which dealt with the application of spatial information technology to petroleum resource assessment procedures is reviewed. A method was designed to expedite the gathering, integrating, managing, manipulating and plotting of spatial data from multiple data sources that are essential in modern resource assessment procedures.
Spatial Aspects of Interspecific Competition
NASA Technical Reports Server (NTRS)
Durrett, Rick; Levin, Simon
1998-01-01
Using several variants of a stochastic spatial model introduced by Silvertown et al., we investigate the effect of spatial distribution of individuals on the outcome of competition. First, we prove rigorously that if one species has a competitive advantage over each of the others, then eventually it takes over all the sites in the system. Second, we examine tradeoffs between competition and dispersal distance in a two-species system. Third, we consider a cyclic competitive relationship between three types. In this case, a nonspatial treatment leads to densities that follow neutrally stable cycles or even unstable spiral solutions, while a spatial model yields a stationary distribution with an interesting spatial structure.
A user-targeted synthesis of the VALUE perfect predictor experiment
NASA Astrophysics Data System (ADS)
Maraun, Douglas; Widmann, Martin; Gutierrez, Jose; Kotlarski, Sven; Hertig, Elke; Wibig, Joanna; Rössler, Ole; Huth, Radan
2016-04-01
VALUE is an open European network to validate and compare downscaling methods for climate change research. A key deliverable of VALUE is the development of a systematic validation framework to enable the assessment and comparison of both dynamical and statistical downscaling methods. VALUE's main approach to validation is user-focused: starting from a specific user problem, a validation tree guides the selection of relevant validation indices and performance measures. We consider different aspects: (1) marginal aspects such as mean, variance and extremes; (2) temporal aspects such as spell length characteristics; (3) spatial aspects such as the de-correlation length of precipitation extremes; and multi-variate aspects such as the interplay of temperature and precipitation or scale-interactions. Several experiments have been designed to isolate specific points in the downscaling procedure where problems may occur. Experiment 1 (perfect predictors): what is the isolated downscaling skill? How do statistical and dynamical methods compare? How do methods perform at different spatial scales? Experiment 2 (Global climate model predictors): how is the overall representation of regional climate, including errors inherited from global climate models? Experiment 3 (pseudo reality): do methods fail in representing regional climate change? Here, we present a user-targeted synthesis of the results of the first VALUE experiment. In this experiment, downscaling methods are driven with ERA-Interim reanalysis data to eliminate global climate model errors, over the period 1979-2008. As reference data we use, depending on the question addressed, (1) observations from 86 meteorological stations distributed across Europe; (2) gridded observations at the corresponding 86 locations or (3) gridded spatially extended observations for selected European regions. With more than 40 contributing methods, this study is the most comprehensive downscaling inter-comparison project so far. The results clearly indicate that for several aspects, the downscaling skill varies considerably between different methods. For specific purposes, some methods can therefore clearly be excluded.
USDA-ARS?s Scientific Manuscript database
Qualitative changes in floral pollen protein have been shown to be an important aspect of pollinator health. Flowering late in the season, goldenrod (Solidago spp.), provides an essential autumnal source of floral pollen for wild bee and honeybee populations prior to winter, with tall or Canada gol...
Can Colors, Voices, and Images Help Learners Acquire the Grammatical Gender of German Nouns?
ERIC Educational Resources Information Center
Dias de Oliveira Santos, Victor
2015-01-01
Knowledge of lexical items is arguably the most essential aspect of being able to communicate in a foreign language (Richards, 2000). Many studies have examined effective strategies for retaining the meaning of foreign words, but studies investigating the effectiveness of different methods for the retention of essential grammatical features of…
The Legal Aspects of Educational Planning and Administration. Fundamentals of Educational Planning.
ERIC Educational Resources Information Center
Durand-Prinborgne, Claude
The purpose of this monograph, which is aimed at educational planners, is to explain the essential aspects of the relationship between planning and law. It is intended to illustrate the role of law in the planning and administration of school systems and thus familiarize education specialists with the tools needed to understand legal…
NASA Astrophysics Data System (ADS)
Sheridan, Gary; nyman, petter; Duff, Tom; Baillie, Craig; Bovill, William; Lane, Patrick; Tolhurst, Kevin
2015-04-01
The prediction of fuel moisture content is important for estimating the rate of spread of wildfires, the ignition probability of firebrands, and for the efficient scheduling of prescribed fire. The moisture content of fine surface fuels varies spatially at large scales (10's to 100's km) due to variation in meteorological variables (eg. temperature, relative humidity, precipitation). At smaller scales (100's of metres) in steep topography spatial variability is attributed to topographic influences that include differences in radiation due to aspect and slope, differences in precipitation, temperature and relative humidity due to elevation, and differences in soil moisture due to hillslope drainage position. Variable forest structure and canopy shading adds further to the spatial variability in surface fuel moisture. In this study we aim to combine daily 5km resolution gridded weather data with 20m resolution DEM and vegetation structure data to predict the spatial variability of fine surface fuels in steep topography. Microclimate stations were established in south east Australia to monitor surface fine fuel moisture continuously (every 15 minutes) using newly developed instrumented litter packs, in addition to temperature and relative humidity measurements inside the litter pack, and measurement of precipitation and energy inputs above and below the forest canopy. Microclimate stations were established across a gradient of aspect (5 stations), drainage position (7 stations), elevation (15 stations), and canopy cover conditions (6 stations). The data from this extensive network of microclimate stations across a broad spectrum of topographic conditions is being analysed to enable the downscaling of gridded weather data to spatial scales that are relevant to the connectivity of wildfire fuels and to the scheduling and outcome of prescribed fires. The initial results from the first year of this study are presented here.
2008-12-01
1 THE ROLE OF SPATIAL ABILITY IN THE RELATIONSHIP BETWEEN VIDEO GAME EXPERIENCE AND ROUTE EFFECTIVENESS AMONG UNMANNED VEHICLE OPERATORS...ABSTRACT Effective route planning is essential to the successful operation of unmanned vehicles. Video game experience has been shown to affect...route planning and execution, but why video game experience helps has not been addressed. One answer may be that spatial skills, necessary for route
Millette, Katie L; Keyghobadi, Nusha
2015-01-01
Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (FST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent. PMID:25628865
Millette, Katie L; Keyghobadi, Nusha
2015-01-01
Despite strong interest in understanding how habitat spatial structure shapes the genetics of populations, the relative importance of habitat amount and configuration for patterns of genetic differentiation remains largely unexplored in empirical systems. In this study, we evaluate the relative influence of, and interactions among, the amount of habitat and aspects of its spatial configuration on genetic differentiation in the pitcher plant midge, Metriocnemus knabi. Larvae of this species are found exclusively within the water-filled leaves of pitcher plants (Sarracenia purpurea) in a system that is naturally patchy at multiple spatial scales (i.e., leaf, plant, cluster, peatland). Using generalized linear mixed models and multimodel inference, we estimated effects of the amount of habitat, patch size, interpatch distance, and patch isolation, measured at different spatial scales, on genetic differentiation (F ST) among larval samples from leaves within plants, plants within clusters, and clusters within peatlands. Among leaves and plants, genetic differentiation appears to be driven by female oviposition behaviors and is influenced by habitat isolation at a broad (peatland) scale. Among clusters, gene flow is spatially restricted and aspects of both the amount of habitat and configuration at the focal scale are important, as is their interaction. Our results suggest that both habitat amount and configuration can be important determinants of genetic structure and that their relative influence is scale dependent.
A review of quasi-coherent structures in a numerically simulated turbulent boundary layer
NASA Technical Reports Server (NTRS)
Robinson, S. K.; Kline, S. J.; Spalart, P. R.
1989-01-01
Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated.
Spatial-sequential and spatial-simultaneous working memory in individuals with Williams syndrome.
Lanfranchi, Silvia; De Mori, Letizia; Mammarella, Irene C; Carretti, Barbara; Vianello, Renzo
2015-05-01
The aim of the present study was to compare visuospatial working memory performance in 18 individuals with Williams syndrome (WS) and 18 typically developing (TD) children matched for nonverbal mental age. Two aspects were considered: task presentation format (i.e., spatial-sequential or spatial-simultaneous), and level of attentional control (i.e., passive or active tasks). Our results showed that individuals with WS performed less well than TD children in passive spatial-simultaneous tasks, but not in passive spatial-sequential tasks. The former's performance was also worse in both active tasks. These findings suggest an impairment in the spatial-simultaneous working memory of individuals with WS, together with a more generalized difficulty in tasks requiring information storage and concurrent processing, as seen in other etiologies of intellectual disability.
Teaching the Six Essential Elements of Geography with Quality Children's Literature
ERIC Educational Resources Information Center
Holloway, Jennifer
2015-01-01
In this article the author describes how she teaches third and sixth grade classes about the six essential elements of geography at the beginning of each school year. The six elements organize the eighteen national standards and include: the world in spatial terms, places and regions, physical systems, human systems, environment and society, and…
NASA Astrophysics Data System (ADS)
Perez Arango, J. D.; Lintner, B. R.; Lyon, B.
2016-12-01
Although many aspects of the tropical response to ENSO are well-known, the spatial characteristics of the rainfall response to ENSO remain relatively unexplored. Moreover, in current generation climate models, the spatial signatures of the ENSO tropical teleconnection are more uncertain than other aspects of ENSO variability, such as the amplitude of rainfall anomalies. Following the approach of Lyon (2004) and Lyon and Barnston (2005), we analyze here integrated measures of the spatial extent of drought and pluvial conditions in the tropics and their relationship to ENSO in observations as well as simulations of Phase 5 of the Coupled Model Intercomparison Project (CMIP5) with prescribed SST forcing. We compute diagnostics including the model ensemble-means and standard deviations of moderate, intermediate, and severe droughts and pluvials and the lagged correlations with respect to ENSO-based SST indices like NINO3. Overall, in a tropics-wide sense, the models generally capture the areal extent of observed droughts and pluvials and their phasing with respect to ENSO. However, at more local scales, e.g., tropical South America, the simulated metrics agree less strongly with observations, underscoring the role of errors in the spatial patterns of ENSO-induced rainfall anomalies.
Spatial identification of tributary impacts in river networks
Christian E. Torgersen; Robert E. Gresswell; Douglas S. Bateman; Kelly M. Burnett
2008-01-01
The ability to assess spatial patterns of ecological conditions in river networks has been confounded by difficulties of measuring and perceiving features that are essentially invisible to observers on land and to aircraft and satellites from above. The nature of flowing water, which is opaque or at best semi-transparent, makes it difficult to visualize fine-scale...
Reflecting on Classroom Practice: Spatial Reasoning and Simple Coding
ERIC Educational Resources Information Center
King, Alessandra
2015-01-01
Spatial reasoning--the ability to visualise and play with shapes in one's mind--is essential in many fields, and crucial in any Science, Technology, Engineering, Mathematics [STEM] discipline. It is, for example, the ability that the engineer needs to build bridges; the chemist to see the three-dimensional structure of a molecule; the architect to…
NASA Astrophysics Data System (ADS)
Efimkov, V. F.; Zubarev, I. G.; Kolobrodov, V. V.; Sobolev, V. B.
1989-08-01
A method for the determination of the spatial characteristics of a laser beam is proposed and implemented. This method is based on the interaction of an interference field of two laser beams, which are spatially similar to the one being investigated, with a light-sensitive material characterized by a sensitivity threshold.
Representing uncertainty in a spatial invasion model that incorporates human-mediated dispersal
Frank H. Koch; Denys Yemshanov; Robert A. Haack
2013-01-01
Most modes of human-mediated dispersal of invasive species are directional and vector-based. Classical spatial spread models usually depend on probabilistic dispersal kernels that emphasize distance over direction and have limited ability to depict rare but influential long-distance dispersal events. These aspects are problematic if such models are used to estimate...
ERIC Educational Resources Information Center
Ford, Derek R.
2014-01-01
Over the last two decades, educational theory has begun to incorporate analyses of space where formerly temporal considerations dominated. In this article, Marxist educational theory is spatialized by considering the school as (1) a form of fixed capital, (2) a crucial aspect of the built environment and (3) a relational space. The author begins…
ERIC Educational Resources Information Center
Akayuure, Peter; Asiedu-Addo, S. K.; Alebna, Victor
2016-01-01
Whereas origami is said to have pedagogical benefits in geometry education, research is inclusive about its effect on spatial ability and geometric knowledge among preservice teachers. The study investigated the effect of origami instruction on these aspects using pretest posttest quasi-experiment design. The experimental group consisted of 52…
Mazes and Maps: Can Young Children Find Their Way?
ERIC Educational Resources Information Center
Jirout, Jamie J.; Newcombe, Nora S.
2014-01-01
Games provide important informal learning activities for young children, and spatial game play (e.g., puzzles and blocks) has been found to relate to the development of spatial skills. This study investigates 4- and 5-year-old children's use of scaled and unscaled maps when solving mazes, asking whether an important aspect of spatial…
Wireless Sensor Networks for Environmental Monitoring
NASA Astrophysics Data System (ADS)
Liang, X.; Liang, Y.; Navarro, M.; Zhong, X.; Villalba, G.; Li, Y.; Davis, T.; Erratt, N.
2015-12-01
Wireless sensor networks (WSNs) have gained an increasing interest in a broad range of new scientific research and applications. WSN technologies can provide high resolution for spatial and temporal data which has not been possible before, opening up new opportunities. On the other hand, WSNs, particularly outdoor WSNs in harsh environments, present great challenges for scientists and engineers in terms of the network design, deployment, operation, management, and maintenance. Since 2010, we have been working on the deployment of an outdoor multi-hop WSN testbed for hydrological/environmental monitoring in a forested hill-sloped region at the Audubon Society of Western Pennsylvania (ASWP), Pennsylvania, USA. The ASWP WSN testbed has continuously evolved and had more than 80 nodes by now. To our knowledge, the ASWP WSN testbed represents one of the first known long-term multi-hop WSN deployments in an outdoor environment. As simulation and laboratory methods are unable to capture the complexity of outdoor environments (e.g., forests, oceans, mountains, or glaciers), which significantly affect WSN operations and maintenance, experimental deployments are essential to investigate and understand WSN behaviors and performances as well as its maintenance characteristics under these harsh conditions. In this talk, based on our empirical studies with the ASWP WSN testbed, we will present our discoveries and investigations on several important aspects including WSN energy profile, node reprogramming, network management system, and testbed maintenance. We will then provide our insight into these critical aspects of outdoor WSN deployments and operations.
Modelling runoff on ceramic tile roofs using the kinematic wave equations
NASA Astrophysics Data System (ADS)
Silveira, Alexandre; Abrantes, João; de Lima, João; Lira, Lincoln
2016-04-01
Rainwater harvesting is a water saving alternative strategy that presents many advantages and can provide solutions to address major water resources problems, such as fresh water scarcity, urban stream degradation and flooding. In recent years, these problems have become global challenges, due to climatic change, population growth and increasing urbanisation. Generally, roofs are the first to come into contact with rainwater; thus, they are the best candidates for rainwater harvesting. In this context, the correct evaluation of roof runoff quantity and quality is essential to effectively design rainwater harvesting systems. Despite this, many studies usually focus on the qualitative aspects in detriment of the quantitative aspects. Laboratory studies using rainfall simulators have been widely used to investigate rainfall-runoff processes. These studies enabled a detailed exploration and systematic replication of a large range of hydrologic conditions, such as rainfall spatial and temporal characteristics, providing for a fast way to obtain precise and consistent data that can be used to calibrate and validate numerical models. This study aims to evaluate the performance of a kinematic wave based numerical model in simulating runoff on sloping roofs, by comparing the numerical results with the ones obtained from laboratory rainfall simulations on a real-scale ceramic tile roof (Lusa tiles). For all studied slopes, simulated discharge hydrographs had a good adjust to observed ones. Coefficient of determination and Nash-Sutcliffe efficiency values were close to 1.0. Particularly, peak discharges, times to peak and peak durations were very well simulated.
Intramural Gymnastics Competition.
ERIC Educational Resources Information Center
Cornelius, William L.
1981-01-01
An intramural gymnastic competition, if properly organized, can foster student and community interest in gymnastics. Aspects of organization and essential preplanning include: directing, judging, scoring, and managing. (JN)
Activity in Human Auditory Cortex Represents Spatial Separation Between Concurrent Sounds.
Shiell, Martha M; Hausfeld, Lars; Formisano, Elia
2018-05-23
The primary and posterior auditory cortex (AC) are known for their sensitivity to spatial information, but how this information is processed is not yet understood. AC that is sensitive to spatial manipulations is also modulated by the number of auditory streams present in a scene (Smith et al., 2010), suggesting that spatial and nonspatial cues are integrated for stream segregation. We reasoned that, if this is the case, then it is the distance between sounds rather than their absolute positions that is essential. To test this hypothesis, we measured human brain activity in response to spatially separated concurrent sounds with fMRI at 7 tesla in five men and five women. Stimuli were spatialized amplitude-modulated broadband noises recorded for each participant via in-ear microphones before scanning. Using a linear support vector machine classifier, we investigated whether sound location and/or location plus spatial separation between sounds could be decoded from the activity in Heschl's gyrus and the planum temporale. The classifier was successful only when comparing patterns associated with the conditions that had the largest difference in perceptual spatial separation. Our pattern of results suggests that the representation of spatial separation is not merely the combination of single locations, but rather is an independent feature of the auditory scene. SIGNIFICANCE STATEMENT Often, when we think of auditory spatial information, we think of where sounds are coming from-that is, the process of localization. However, this information can also be used in scene analysis, the process of grouping and segregating features of a soundwave into objects. Essentially, when sounds are further apart, they are more likely to be segregated into separate streams. Here, we provide evidence that activity in the human auditory cortex represents the spatial separation between sounds rather than their absolute locations, indicating that scene analysis and localization processes may be independent. Copyright © 2018 the authors 0270-6474/18/384977-08$15.00/0.
Nutritional and medicinal aspects of D-amino acids.
Friedman, Mendel; Levin, Carol E
2012-05-01
This paper reviews and interprets a method for determining the nutritional value of D-amino acids, D-peptides, and amino acid derivatives using a growth assay in mice fed a synthetic all-amino acid diet. A large number of experiments were carried out in which a molar equivalent of the test compound replaced a nutritionally essential amino acid such as L-lysine (L-Lys), L-methionine (L-Met), L-phenylalanine (L-Phe), and L-tryptophan (L-Trp) as well as the semi-essential amino acids L-cysteine (L-Cys) and L-tyrosine (L-Tyr). The results show wide-ranging variations in the biological utilization of test substances. The method is generally applicable to the determination of the biological utilization and safety of any amino acid derivative as a potential nutritional source of the corresponding L-amino acid. Because the organism is forced to use the D-amino acid or amino acid derivative as the sole source of the essential or semi-essential amino acid being replaced, and because a free amino acid diet allows better control of composition, the use of all-amino-acid diets for such determinations may be preferable to protein-based diets. Also covered are brief summaries of the widely scattered literature on dietary and pharmacological aspects of 27 individual D-amino acids, D-peptides, and isomeric amino acid derivatives and suggested research needs in each of these areas. The described results provide a valuable record and resource for further progress on the multifaceted aspects of D-amino acids in food and biological samples.
Spatial-temporal migration laws of Cd in Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Yang, Dongfang; Li, Haixia; Zhang, Xiaolong; Wang, Qi; Miao, Zhenqing
2018-02-01
Many marine bays have been polluted by various pollutants, and understanding the migration laws is essential to scientific research and pollution control. This paper analyzed the spatial and temporal migration laws of Cd in waters in Jiaozhou Bay during 1979—1983. Results showed that there were twenty spatial-temporal migration law for the migration processes of Cd. These laws were helpful for better understanding the migration of Cd in marine bay, providing basis for scientific research and pollution control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, E.W.
A class of Projected Discrete-Ordinates (PDO) methods is described for obtaining iterative solutions of discrete-ordinates problems with convergence rates comparable to those observed using Diffusion Synthetic Acceleration (DSA). The spatially discretized PDO solutions are generally not equal to the DSA solutions, but unlike DSA, which requires great care in the use of spatial discretizations to preserve stability, the PDO solutions remain stable and rapidly convergent with essentially arbitrary spatial discretizations. Numerical results are presented which illustrate the rapid convergence and the accuracy of solutions obtained using PDO methods with commonplace differencing methods.
2009-05-01
gangs. Important aspects of these are the concept of micro locations, or “set space” where gangs tend to locate ( Tita et al. 2005) and patterns of...spatial diffusion of gang activity (Cohen and Tita 1999, Tita and Cohen 2004). A particularly promising approach is the combination of concepts from...matches their social interaction ( Tita 2007, Tita and Ridgeway 2007). An illustration of the incorporation of insights from a spatial analysis into
Pintus, Roberta; Riggi, Margherita; Cannarozzo, Cecilia; Valeri, Andrea; de Leo, Gioacchino; Romano, Maurizio; Gulino, Rosario; Leanza, Giampiero
2018-05-01
Extensive loss of noradrenaline-containing neurons and fibers is a nearly invariant feature of Alzheimer's Disease (AD). However, the exact noradrenergic contribution to cognitive and histopathological changes in AD is still unclear. Here, this issue was addressed following selective lesioning and intrahippocampal implantation of embryonic noradrenergic progenitors in developing rats. Starting from about 3 months and up to 12 months post-surgery, animals underwent behavioral tests to evaluate sensory-motor, as well as spatial learning and memory, followed by post-mortem morphometric analyses. At 9 months, Control, Lesioned and Lesion + Transplant animals exhibited equally efficient sensory-motor and reference memory performance. Interestingly, working memory abilities were seen severely impaired in Lesion-only rats and fully recovered in Transplanted rats, and appeared partly lost again 2 months after ablation of the implanted neuroblasts. Morphological analyses confirmed the almost total lesion-induced noradrenergic neuronal and terminal fiber loss, the near-normal reinnervation of the hippocampus promoted by the transplants, and its complete removal by the second lesion. Notably, the noradrenergic-rich transplants normalized also the nuclear expression of the transactive response DNA-binding protein 43 (TDP-43) in various hippocampal subregions, whose cytoplasmic (i.e., pathological) occurrence appeared dramatically increased as a result of the lesions. Thus, integrity of ascending noradrenergic inputs to the hippocampus may be required for the regulation of specific aspects of learning and memory and to prevent TDP-43 tissue pathology. © 2018 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Botha, Pieter; Butcher, Alan R.; Horsch, Hana; Rickman, Doug; Wentworth, Susan J.; Schrader, Christian M.; Stoeser, Doug; Benedictus, Aukje; Gottlieb, Paul; McKay, David
2008-01-01
Polished thin-sections of samples extracted from Apollo drive tubes provide unique insights into the structure of the Moon's regolith at various landing sites. In particular, they allow the mineralogy and texture of the regolith to be studied as a function of depth. Much has been written about such thin-sections based on optical, SEM and EPMA studies, in terms of their essential petrographic features, but there has been little attempt to quantify these aspects from a spatial perspective. In this study, we report the findings of experimental analysis of two thin-sections (64002, 6019, depth range 5.0 - 8.0 cm & 64001, 6031, depth range 50.0 - 53.1 cm), from a single Apollo 16 drive tube using QEMSCAN . A key feature of the method is phase identification by ultrafast energy dispersive x-ray mapping on a pixel-by-pixel basis. By selecting pixel resolutions ranging from 1 - 5 microns, typically 8,500,000 individual measurement points can be collected on a thin-section. The results we present include false colour digital images of both thin-sections. From these images, information such as phase proportions (major, minor and trace phases), particle textures, packing densities, and particle geometries, has been quantified. Parameters such as porosity and average phase density, which are of geomechanical interest, can also be calculated automatically. This study is part of an on-going investigation into spatial variation of lunar regolith and NASA's ISRU Lunar Simulant Development Project.
Homeostatic Agent for General Environment
NASA Astrophysics Data System (ADS)
Yoshida, Naoto
2018-03-01
One of the essential aspect in biological agents is dynamic stability. This aspect, called homeostasis, is widely discussed in ethology, neuroscience and during the early stages of artificial intelligence. Ashby's homeostats are general-purpose learning machines for stabilizing essential variables of the agent in the face of general environments. However, despite their generality, the original homeostats couldn't be scaled because they searched their parameters randomly. In this paper, first we re-define the objective of homeostats as the maximization of a multi-step survival probability from the view point of sequential decision theory and probabilistic theory. Then we show that this optimization problem can be treated by using reinforcement learning algorithms with special agent architectures and theoretically-derived intrinsic reward functions. Finally we empirically demonstrate that agents with our architecture automatically learn to survive in a given environment, including environments with visual stimuli. Our survival agents can learn to eat food, avoid poison and stabilize essential variables through theoretically-derived single intrinsic reward formulations.
ERIC Educational Resources Information Center
Lam, H. C.; Ki, W. W.; Chung, A. L. S.; Ko, P. Y.; Lai, A. C. Y.; Lai, S. M. S.; Chou, P. W. Y.; Lau, E. C. C.
2004-01-01
Effective teaching should focus the attention of learners to its essential aspects. It follows that instructional software can be designed in such a way that allows learners to experience the important variations in the critical aspects of the content to be learned. This paper reports on the experience of designing such special kinds of…
Autism-like behavior caused by deletion of vaccinia-related kinase 3 is improved by TrkB stimulation
Kang, Myung-Su; Lee, Dohyun; Lee, Seung-Hyun
2017-01-01
Vaccinia-related kinases (VRKs) are multifaceted serine/threonine kinases that play essential roles in various aspects of cell signaling, cell cycle progression, apoptosis, and neuronal development and differentiation. However, the neuronal function of VRK3 is still unknown despite its etiological potential in human autism spectrum disorder (ASD). Here, we report that VRK3-deficient mice exhibit typical symptoms of autism-like behavior, including hyperactivity, stereotyped behaviors, reduced social interaction, and impaired context-dependent spatial memory. A significant decrease in dendritic spine number and arborization were identified in the hippocampus CA1 of VRK3-deficient mice. These mice also exhibited a reduced rectification of AMPA receptor–mediated current and changes in expression of synaptic and signaling proteins, including tyrosine receptor kinase B (TrkB), Arc, and CaMKIIα. Notably, TrkB stimulation with 7,8-dihydroxyflavone reversed the altered synaptic structure and function and successfully restored autism-like behavior in VRK3-deficient mice. These results reveal that VRK3 plays a critical role in neurodevelopmental disorders and suggest a potential therapeutic strategy for ASD. PMID:28899869
Evaluation of Spatial Uncertainties In Modeling of Cadastral Systems
NASA Astrophysics Data System (ADS)
Fathi, Morteza; Teymurian, Farideh
2013-04-01
Cadastre plays an essential role in sustainable development especially in developing countries like Iran. A well-developed Cadastre results in transparency of estates tax system, transparency of data of estate, reduction of action before the courts and effective management of estates and natural sources and environment. Multipurpose Cadastre through gathering of other related data has a vital role in civil, economic and social programs and projects. Iran is being performed Cadastre for many years but success in this program is subject to correct geometric and descriptive data of estates. Since there are various sources of data with different accuracy and precision in Iran, some difficulties and uncertainties are existed in modeling of geometric part of Cadastre such as inconsistency between data in deeds and Cadastral map which cause some troubles in execution of cadastre and result in losing national and natural source, rights of nation. Now there is no uniform and effective technical method for resolving such conflicts. This article describes various aspects of such conflicts in geometric part of cadastre and suggests a solution through some modeling tools of GIS.
Raza Shaikh, Saame; Brown, David A
2013-01-01
Bioactive n-3 polyunsaturated fatty acids (PUFA), abundant in fish oil, have potential for treating symptoms associated with inflammatory and metabolic disorders; therefore, it is essential to determine their fundamental molecular mechanisms. Recently, several labs have demonstrated the n-3 PUFA docosahexaenoic acid (DHA) exerts anti-inflammatory effects by targeting the molecular organization of plasma membrane microdomains. Here we briefly review the evidence that DHA reorganizes the spatial distribution of microdomains in several model systems. We then emphasize how models on DHA and plasma membrane microdomains can be applied to mitochondrial membranes. We discuss the role of DHA acyl chains in regulating mitochondrial lipid-protein clustering, and how these changes alter several aspects of mitochondrial function. In particular, we summarize effects of DHA on mitochondrial respiration, electron leak, permeability transition, and mitochondrial calcium handling. Finally, we conclude by postulating future experiments that will augment our understanding of DHA-dependent membrane organization in health and disease. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Enyuan; Wang, Xuelong; Yu, Xiqian
The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less
Kang, Myung-Su; Choi, Tae-Yong; Ryu, Hye Guk; Lee, Dohyun; Lee, Seung-Hyun; Choi, Se-Young; Kim, Kyong-Tai
2017-10-02
Vaccinia-related kinases (VRKs) are multifaceted serine/threonine kinases that play essential roles in various aspects of cell signaling, cell cycle progression, apoptosis, and neuronal development and differentiation. However, the neuronal function of VRK3 is still unknown despite its etiological potential in human autism spectrum disorder (ASD). Here, we report that VRK3 -deficient mice exhibit typical symptoms of autism-like behavior, including hyperactivity, stereotyped behaviors, reduced social interaction, and impaired context-dependent spatial memory. A significant decrease in dendritic spine number and arborization were identified in the hippocampus CA1 of VRK3 -deficient mice. These mice also exhibited a reduced rectification of AMPA receptor-mediated current and changes in expression of synaptic and signaling proteins, including tyrosine receptor kinase B (TrkB), Arc, and CaMKIIα. Notably, TrkB stimulation with 7,8-dihydroxyflavone reversed the altered synaptic structure and function and successfully restored autism-like behavior in VRK3 -deficient mice. These results reveal that VRK3 plays a critical role in neurodevelopmental disorders and suggest a potential therapeutic strategy for ASD. © 2017 Kang et al.
Animal Models of Subjective Tinnitus
2014-01-01
Tinnitus is one of the major audiological diseases, affecting a significant portion of the ageing society. Despite its huge personal and presumed economic impact there are only limited therapeutic options available. The reason for this deficiency lies in the very nature of the disease as it is deeply connected to elementary plasticity of auditory processing in the central nervous system. Understanding these mechanisms is essential for developing a therapy that reverses the plastic changes underlying the pathogenesis of tinnitus. This requires experiments that address individual neurons and small networks, something usually not feasible in human patients. However, in animals such invasive experiments on the level of single neurons with high spatial and temporal resolution are possible. Therefore, animal models are a very critical element in the combined efforts for engineering new therapies. This review provides an overview over the most important features of animal models of tinnitus: which laboratory species are suitable, how to induce tinnitus, and how to characterize the perceived tinnitus by behavioral means. In particular, these aspects of tinnitus animal models are discussed in the light of transferability to the human patients. PMID:24829805
The disk-halo connection and the nature of the interstellar medium
NASA Technical Reports Server (NTRS)
Norman, Colin A.; Ikeuchi, Satoru
1988-01-01
Some results on the nature of the interstellar medium that are specifically concerned with the disk-halo interaction are discussed. Over the last five years or so it has become clear that the supernovae rate in our Galaxy is spatially clumped and the consequences of such clumping are superbubbles and supershells fed by tens or hundreds of supernovae per shell. These objects evolve and expand rapidly and soon break out of the disk of the Galaxy, feeding the halo with very significant mass, energy, and momentum. As cooling occurs, gas will rain down onto the disk of the Galaxy completing the cycle. The basic flow of physical quantities from disk to halo and vice versa are discussed. Some of the many implications are noted including aspects of dynamo theory, quasar absorption lines, the theory of galactic coronae, and the nature of the x ray background. The essential difference here with the McKee-Ostriker (1977) theory is that the filling factor of the hot gas in the disk is significantly less than unity.
Differential Electrochemical Conductance Imaging at the Nanoscale.
López-Martínez, Montserrat; Artés, Juan Manuel; Sarasso, Veronica; Carminati, Marco; Díez-Pérez, Ismael; Sanz, Fausto; Gorostiza, Pau
2017-09-01
Electron transfer in proteins is essential in crucial biological processes. Although the fundamental aspects of biological electron transfer are well characterized, currently there are no experimental tools to determine the atomic-scale electronic pathways in redox proteins, and thus to fully understand their outstanding efficiency and environmental adaptability. This knowledge is also required to design and optimize biomolecular electronic devices. In order to measure the local conductance of an electrode surface immersed in an electrolyte, this study builds upon the current-potential spectroscopic capacity of electrochemical scanning tunneling microscopy, by adding an alternating current modulation technique. With this setup, spatially resolved, differential electrochemical conductance images under bipotentiostatic control are recorded. Differential electrochemical conductance imaging allows visualizing the reversible oxidation of an iron electrode in borate buffer and individual azurin proteins immobilized on atomically flat gold surfaces. In particular, this method reveals submolecular regions with high conductance within the protein. The direct observation of nanoscale conduction pathways in redox proteins and complexes enables important advances in biochemistry and bionanotechnology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stakeholder Participation in Marine Spatial Plan Making Process in Lampung Province
NASA Astrophysics Data System (ADS)
Asirin; Asbi, A. M.; Pakpahan, V. H.
2018-05-01
Lampung Province has coastal areas, seas and small islands facing conflicts of interest between tourism, conservation areas for defense, environmental conservation, and the threat of unsustainable marine resource utilization. Indonesia (including Lampung Province) has committed itself to achieving the objectives of conservation and sustainable use of oceans, seas and marine resources in view of sustainable development. One of the instruments used to achieve this goal is by using marine spatial planning (MSP). The purpose of this research was to analyse the marine spatial plan making process in Lampung Province. This research also evaluated the participation process and participation level based on plan-making process criteria and the stakeholder participation ladder. This research can be useful as a recommendation in the evaluation step to improve the plan-making process in order to address conflicts of interest between various related interest groups, so that planning can be accomplished with the involvement of all relevant parties to reach consensus on how to achieve a sustainable marine environment. This research used a qualitative research method as well as a case study approach. The scope of this study was limited by the conceptual framework of marine spatial planning and the stakeholder participation ladder. The authors recommend study of the preparation of marine spatial planning in addition to a technocratic approach considering the results of the study aspects of spatial allocation and physical aspects of marine resources, while prioritizing building consensus among various interest groups related to the utilization of marine resources. Thus, it is necessary to develop technical steps to build consensus in the marine spatial plan-making process.
Satoh, Shinya; Tang, Ke; Iida, Atsumi; Inoue, Mariko; Kodama, Tatsuhiko; Tsai, Sophia Y.; Tsai, Ming-Jer; Furuta, Yasuhide; Watanabe, Sumiko
2009-01-01
Cone photopigments, known as opsins, are pivotal elements and the first detection module employed in color vision. In mice, cone photoreceptors are distributed throughout the retina, and S- and M-opsins have unique expression patterns in the retina with a gradient along the dorsoventral axis; however, the mechanisms regulating the spatial patterning of cone opsin expression have not been well documented. The purpose of this study was to define the mechanisms regulating the spatial patterning of cone opsin expression. By analyzing knockouts for bone morphogenetic protein (BMP) signaling, we found an essential role for BMP in forming cone opsin expression patterns in the retina; however, BMP signaling is activated only transiently in the dorsal half of the retina during early retinal development. Thus, BMP is not likely to play a direct role in opsin gene expression, which starts at a later stage of retinal development. We identified the chicken ovalbumin upstream promoter-transcription factor (COUP-TF) nuclear receptor as a link between BMP and opsin expression. BMP signaling is essential for the correct dorsoventral spatial expression of COUP-TFI and -TFII. Through gain- and loss-of-function analyses, we found that both COUP-TFI and -TFII are required to suppress S-opsin expression in the dorsal retina but that only COUP-TFI plays an essential role in suppressing M-opsin expression in the ventral retina. Based on these findings, we propose a new molecular cascade involving BMP and COUP-TFs that conveys dorsoventral information to direct the expression of cone opsins during retinal development. PMID:19812316
Loxley, P N
2017-10-01
The two-dimensional Gabor function is adapted to natural image statistics, leading to a tractable probabilistic generative model that can be used to model simple cell receptive field profiles, or generate basis functions for sparse coding applications. Learning is found to be most pronounced in three Gabor function parameters representing the size and spatial frequency of the two-dimensional Gabor function and characterized by a nonuniform probability distribution with heavy tails. All three parameters are found to be strongly correlated, resulting in a basis of multiscale Gabor functions with similar aspect ratios and size-dependent spatial frequencies. A key finding is that the distribution of receptive-field sizes is scale invariant over a wide range of values, so there is no characteristic receptive field size selected by natural image statistics. The Gabor function aspect ratio is found to be approximately conserved by the learning rules and is therefore not well determined by natural image statistics. This allows for three distinct solutions: a basis of Gabor functions with sharp orientation resolution at the expense of spatial-frequency resolution, a basis of Gabor functions with sharp spatial-frequency resolution at the expense of orientation resolution, or a basis with unit aspect ratio. Arbitrary mixtures of all three cases are also possible. Two parameters controlling the shape of the marginal distributions in a probabilistic generative model fully account for all three solutions. The best-performing probabilistic generative model for sparse coding applications is found to be a gaussian copula with Pareto marginal probability density functions.
Hu, Dan; Yang, Guodong; Wu, Qiong; Li, Hongqing; Liu, Xusheng; Niu, Xuefeng; Wang, Zhiheng; Wang, Qiong
2008-09-03
Remote sensing and GIS have been widely employed to study temporal and spatial urban land use changes in southern and southeastern China. However, few studies have been conducted in northeastern regions. This study analyzed land use change and spatial patterns of urban expansion in the metropolitan area of Jilin City, located on the extension of Changbai Mountain, based on aerial photos from 1989 and 2005 Spot images. The results indicated that urban land and transportation land increased dramatically (by 94.04% and 211.20%, respectively); isolated industrial and mining land decreased moderately (by 29.54%); rural residential land increased moderately (by 26.48%); dry land and paddy fields increased slightly (by 15.68% and 11.78%, respectively); forest and orchards decreased slightly (by 5.27% and 4.61%, respectively); grasslands and unused land decreased dramatically (by 99.12% and 86.04%, respectively). Sloped dry land (more than 4 degrees) was mainly distributed on the land below 10 degrees with an east, southeastern and south sunny direction aspect, and most sloped dry land transformed to forest was located on an east aspect lower than 12 degrees, while forest changed to dry land were mainly distributed on east and south aspects lower than 10 degrees. A spatial dependency analysis of land use change showed that the increased urban land was a logarithmic function of distance to the Songhua River. This study also provided some data with spatial details about the uneven land development in the upstream areas of Songhua River basin.
Hritcu, Lucian; Bagci, Eyup; Aydin, Emel; Mihasan, Marius
2015-09-01
Ferulago angulata (Apiaceae) is a shrub indigenous to western Iran, Turkey and Iraq. In traditional medicine, F. angulata is recommended for treating digestive pains, hemorrhoids, snake bite, ulcers and as sedative. In the present study, the effects of inhaled F. angulata essential oil (1 and 3%, daily, for 21 days) on spatial memory performance were assessed in scopolamine-treated rats. Scopolamine-induced memory impairments were observed, as measured by the Y-maze and radial arm-maze tasks. Decreased activities of superoxide dismutase, glutathione peroxidase and catalase along with increase of acetylcholinesterase activity and decrease of total content of reduced glutathione were observed in the rat hippocampal homogenates of scopolamine-treated animals as compared with control. Production of protein carbonyl and malondialdehyde significantly increased in the rat hippocampal homogenates of scopolamine-treated animals as compared with control, as a consequence of impaired antioxidant enzymes activities. Additionally, in scopolamine-treated rats exposure to F. angulata essential oil significantly improved memory formation and decreased oxidative stress, suggesting memory-enhancing and antioxidant effects. Therefore, our results suggest that multiple exposures to F. angulata essential oil ameliorate scopolamine-induced spatial memory impairment by attenuation of the oxidative stress in the rat hippocampus.
J. Greg Jones; Woodam Chung; Carl Seielstad; Janet Sullivan; Kurt Krueger
2010-01-01
There is a recognized need to apply and maintain fuel treatments to reduce catastrophic wildland fires. A number of models and decision support systems have been developed for addressing different aspects of fuel treatments while considering other important resource management issues and constraints. Although these models address diverse aspects of the fuel treatment-...
Sedimentation and mobility of PDCs: a reappraisal of ignimbrites' aspect ratio.
Giordano, Guido; Doronzo, Domenico M
2017-06-30
The aspect ratio of ignimbrites is a commonly used parameter that has been related to the energy of the parent pyroclastic density currents (PDCs). However this parameter, calculated as the ratio between the average thickness and the average lateral extent of ignimbrites, does not capture fundamental differences in pyroclastic flow mobility nor relates to lithofacies variations of the final deposits. We herein introduce the "topological aspect ratio" (ARt) as the ratio of the local deposit thickness (Ht) to the distance between the local site and the maximum runout distance (Lt), where Ht is a proxy for the PDC tendency to deposit, and Lt a proxy for the PDC mobility or its tendency to further transport the pyroclastic material. The positive versus negative spatial gradient d(ARt)/dx along flow paths discriminate zones where PDCs are forced (i.e. where they transport the total energy under the action of mass discharge rate) from zones where they are inertial (i.e. where they transport the total energy under the action of viscous or turbulent fluidization). Though simple to apply, the topological aspect ratio and its spatial gradient are powerful descriptors of the interplay between sedimentation and mobility of PDCs, and of the resulting lithofacies variations.
Governance, agricultural intensification, and land sparing in tropical South America.
Ceddia, Michele Graziano; Bardsley, Nicholas Oliver; Gomez-y-Paloma, Sergio; Sedlacek, Sabine
2014-05-20
In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970-2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process.
Governance, agricultural intensification, and land sparing in tropical South America
Ceddia, Michele Graziano; Bardsley, Nicholas Oliver; Gomez-y-Paloma, Sergio; Sedlacek, Sabine
2014-01-01
In this paper we address two topical questions: How do the quality of governance and agricultural intensification impact on spatial expansion of agriculture? Which aspects of governance are more likely to ensure that agricultural intensification allows sparing land for nature? Using data from the Food and Agriculture Organization, the World Bank, the World Database on Protected Areas, and the Yale Center for Environmental Law and Policy, we estimate a panel data model for six South American countries and quantify the effects of major determinants of agricultural land expansion, including various dimensions of governance, over the period 1970–2006. The results indicate that the effect of agricultural intensification on agricultural expansion is conditional on the quality and type of governance. When considering conventional aspects of governance, agricultural intensification leads to an expansion of agricultural area when governance scores are high. When looking specifically at environmental aspects of governance, intensification leads to a spatial contraction of agriculture when governance scores are high, signaling a sustainable intensification process. PMID:24799696
Cheminée, Adrien; Rider, Mary; Lenfant, Philippe; Zawadzki, Audrey; Mercière, Alexandre; Crec'hriou, Romain; Mercader, Manon; Saragoni, Gilles; Neveu, Reda; Ternon, Quentin; Pastor, Jérémy
2017-06-15
Coastal nursery habitats are essential for the renewal of adult fish populations. We quantified the availability of a coastal nursery habitat (shallow heterogeneous rocky bottoms) and the spatial variability of its juvenile fish populations along 250km of the Catalan coastline (France and Spain). Nurseries were present in 27% of the coastline, but only 2% of them benefited from strict protection status. For nine taxa characteristic of this habitat, total juvenile densities varied significantly between nursery sites along the coastline, with the highest densities being found on the northern sites. Recruitment level (i.e. a proxy of nursery value) was not explained by protection level, but it was moderately and positively correlated with an anthropization index. Patterns of spatial variations were taxa-specific. Exceptional observations of four juveniles of the protected grouper Epinephelus marginatus were recorded. Our data on habitat availability and recruitment levels provides important informations which help to focus MPA management efforts. Copyright © 2017 Elsevier Ltd. All rights reserved.
S. Conor Keitzer; Reuben R. Goforth
2013-01-01
Salamanders are abundant consumers in many temperate streams and may be important recyclers of biologically essential nutrients, but their ecological role is poorly understood. The ecological significance of nutrient recycling by salamanders may vary spatially and seasonally because of their potentially patchy distribution in streams and the dynamic nature of stream...
Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior
Russell A. Parsons; William E. Mell; Peter McCauley
2011-01-01
Crownfire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (...
Christopher Daly; Jonathan W. Smith; Joseph I. Smith; Robert B. McKane
2007-01-01
High-quality daily meteorological data at high spatial resolution are essential for a variety of hydrologic and ecological modeling applications that support environmental risk assessments and decisionmaking. This paper describes the development. application. and assessment of methods to construct daily high resolution (~50-m cell size) meteorological grids for the...
ERIC Educational Resources Information Center
Reichelt, Amy C.; Morris, Margaret J.; Westbrook, Reginald Frederick
2016-01-01
High sugar diets reduce hippocampal neurogenesis, which is required for minimizing interference between memories, a process that involves "pattern separation." We provided rats with 2 h daily access to a sucrose solution for 28 d and assessed their performance on a spatial memory task. Sucrose consuming rats discriminated between objects…
Gamma-Ray Imager With High Spatial And Spectral Resolution
NASA Technical Reports Server (NTRS)
Callas, John L.; Varnell, Larry S.; Wheaton, William A.; Mahoney, William A.
1996-01-01
Gamma-ray instrument developed to enable both two-dimensional imaging at relatively high spatial resolution and spectroscopy at fractional-photon-energy resolution of about 10 to the negative 3rd power in photon-energy range from 10 keV to greater than 10 MeV. In its spectroscopic aspect, instrument enables identification of both narrow and weak gamma-ray spectral peaks.
ERIC Educational Resources Information Center
Hauptman, Hanoch; Cohen, Arie
2011-01-01
Students have difficulty learning 3D geometry; spatial thinking is an important aspect of the learning processes in this academic area. In light of the unique features of virtual environments and the influence of metacognitive processes (e.g., self-regulating questions) on the teaching of mathematics, we assumed that a combination of…
The Use of Geostatistics in the Study of Floral Phenology of Vulpia geniculata (L.) Link
León Ruiz, Eduardo J.; García Mozo, Herminia; Domínguez Vilches, Eugenio; Galán, Carmen
2012-01-01
Traditionally phenology studies have been focused on changes through time, but there exist many instances in ecological research where it is necessary to interpolate among spatially stratified samples. The combined use of Geographical Information Systems (GIS) and Geostatistics can be an essential tool for spatial analysis in phenological studies. Geostatistics are a family of statistics that describe correlations through space/time and they can be used for both quantifying spatial correlation and interpolating unsampled points. In the present work, estimations based upon Geostatistics and GIS mapping have enabled the construction of spatial models that reflect phenological evolution of Vulpia geniculata (L.) Link throughout the study area during sampling season. Ten sampling points, scattered troughout the city and low mountains in the “Sierra de Córdoba” were chosen to carry out the weekly phenological monitoring during flowering season. The phenological data were interpolated by applying the traditional geostatitical method of Kriging, which was used to ellaborate weekly estimations of V. geniculata phenology in unsampled areas. Finally, the application of Geostatistics and GIS to create phenological maps could be an essential complement in pollen aerobiological studies, given the increased interest in obtaining automatic aerobiological forecasting maps. PMID:22629169
The use of geostatistics in the study of floral phenology of Vulpia geniculata (L.) link.
León Ruiz, Eduardo J; García Mozo, Herminia; Domínguez Vilches, Eugenio; Galán, Carmen
2012-01-01
Traditionally phenology studies have been focused on changes through time, but there exist many instances in ecological research where it is necessary to interpolate among spatially stratified samples. The combined use of Geographical Information Systems (GIS) and Geostatistics can be an essential tool for spatial analysis in phenological studies. Geostatistics are a family of statistics that describe correlations through space/time and they can be used for both quantifying spatial correlation and interpolating unsampled points. In the present work, estimations based upon Geostatistics and GIS mapping have enabled the construction of spatial models that reflect phenological evolution of Vulpia geniculata (L.) Link throughout the study area during sampling season. Ten sampling points, scattered throughout the city and low mountains in the "Sierra de Córdoba" were chosen to carry out the weekly phenological monitoring during flowering season. The phenological data were interpolated by applying the traditional geostatitical method of Kriging, which was used to elaborate weekly estimations of V. geniculata phenology in unsampled areas. Finally, the application of Geostatistics and GIS to create phenological maps could be an essential complement in pollen aerobiological studies, given the increased interest in obtaining automatic aerobiological forecasting maps.
Simão, Ana; Densham, Paul J; Haklay, Mordechai Muki
2009-05-01
Spatial planning typically involves multiple stakeholders. To any specific planning problem, stakeholders often bring different levels of knowledge about the components of the problem and make assumptions, reflecting their individual experiences, that yield conflicting views about desirable planning outcomes. Consequently, stakeholders need to learn about the likely outcomes that result from their stated preferences; this learning can be supported through enhanced access to information, increased public participation in spatial decision-making and support for distributed collaboration amongst planners, stakeholders and the public. This paper presents a conceptual system framework for web-based GIS that supports public participation in collaborative planning. The framework combines an information area, a Multi-Criteria Spatial Decision Support System (MC-SDSS) and an argumentation map to support distributed and asynchronous collaboration in spatial planning. After analysing the novel aspects of this framework, the paper describes its implementation, as a proof of concept, in a system for Web-based Participatory Wind Energy Planning (WePWEP). Details are provided on the specific implementation of each of WePWEP's four tiers, including technical and structural aspects. Throughout the paper, particular emphasis is placed on the need to support user learning throughout the planning process.
1990-05-30
Paper’s authors to downplay that aspect. This paper will argue that a strong, decisive plan to defend Norway is essential for the success of NATO. Soviet...ineffective, as the landings were essentially complete before the troops could man the guns. Beachhead consolidation and the landing of follow-on echelons...Germany and the most significant naval threat was the Baltic Fleet, essentially an adjunct to the land forces. The Northern Fleet, in waters adjacent
Analgesic-Like Activity of Essential Oil Constituents: An Update
de Cássia da Silveira e Sá, Rita; Lima, Tamires Cardoso; da Nóbrega, Flávio Rogério; de Brito, Anna Emmanuela Medeiros
2017-01-01
The constituents of essential oils are widely found in foods and aromatic plants giving characteristic odor and flavor. However, pharmacological studies evidence its therapeutic potential for the treatment of several diseases and promising use as compounds with analgesic-like action. Considering that pain affects a significant part of the world population and the need for the development of new analgesics, this review reports on the current studies of essential oils’ chemical constituents with analgesic-like activity, including a description of their mechanisms of action and chemical aspects. PMID:29232831
Wansard, Murielle; Bartolomeo, Paolo; Bastin, Christine; Segovia, Fermín; Gillet, Sophie; Duret, Christophe; Meulemans, Thierry
2015-01-01
Over the last decade, many studies have demonstrated that visuospatial working memory (VSWM) can be divided into separate subsystems dedicated to the retention of visual patterns and their serial order. Impaired VSWM has been suggested to exacerbate left visual neglect in right-brain-damaged individuals. The aim of this study was to investigate the segregation between spatial-sequential and spatial-simultaneous working memory in individuals with neglect. We demonstrated that patterns of results on these VSWM tasks can be dissociated. Spatial-simultaneous and sequential aspects of VSWM can be selectively impaired in unilateral neglect. Our results support the hypothesis of multiple VSWM subsystems, which should be taken into account to better understand neglect-related deficits.
ERIC Educational Resources Information Center
Loth, Eva; Happe, Francesca; Gomez, Juan Carlos
2010-01-01
This study used a novel rating task to investigate whether high-functioning individuals with autism spectrum disorder (ASD) have difficulties distinguishing essential from variable aspects of familiar events. Participants read stories about everyday events and judged how often central, variable, and inappropriate event-components normally occur in…
Spatial atomic layer deposition for coating flexible porous Li-ion battery electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yersak, Alexander S.; Sharma, Kashish; Wallas, Jasmine M.
Ultrathin atomic layer deposition (ALD) coatings on the electrodes of Li-ion batteries can enhance the capacity stability of the Li-ion batteries. To commercialize ALD for Li-ion battery production, spatial ALD is needed to decrease coating times and provide a coating process compatible with continuous roll-to-roll (R2R) processing. The porous electrodes of Li-ion batteries provide a special challenge because higher reactant exposures are needed for spatial ALD in porous substrates. This work utilized a modular rotating cylinder spatial ALD reactor operating at rotation speeds up to 200 revolutions/min (RPM) and substrate speeds up to 200 m/min. The conditions for spatial ALDmore » were adjusted to coat flexible porous substrates. The reactor was initially used to characterize spatial Al2O3 and ZnO ALD on flat, flexible metalized polyethylene terephthalate foils. These studies showed that slower rotation speeds and spacers between the precursor module and the two adjacent pumping modules could significantly increase the reactant exposure. The modular rotating cylinder reactor was then used to coat flexible, model porous anodic aluminum oxide (AAO) membranes. The uniformity of the ZnO ALD coatings on the porous AAO membranes was dependent on the aspect ratio of the pores and the reactant exposures. Larger reactant exposures led to better uniformity in the pores with higher aspect ratios. The reactant exposures were increased by adding spacers between the precursor module and the two adjacent pumping modules. The modular rotating cylinder reactor was also employed for Al2O3 ALD on porous LiCoO2 (LCO) battery electrodes. Uniform Al coverages were obtained using spacers between the precursor module and the two adjacent pumping modules at rotation speeds of 25 and 50 RPM. The LCO electrodes had a thickness of ~49 um and pores with aspect ratios of ~12-25. Coin cells were then constructed using the ALD-coated LCO electrodes and were tested to determine their battery performance. The capacity of the Al2O3 ALD-coated LCO battery electrodes was measured versus the number of charge-discharge cycles. Both temporal and spatial ALD processing methods led to higher capacity stability compared with uncoated LCO battery electrodes. The results for improved battery performance were comparable for temporal and spatial ALD-coated electrodes. The next steps are also presented for scale-up to R2R spatial ALD using the modular rotating cylinder reactor.« less
High spatial precision nano-imaging of polarization-sensitive plasmonic particles
NASA Astrophysics Data System (ADS)
Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice
2018-02-01
Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.
Aspect has a greater impact on alpine soil bacterial community structure than elevation.
Wu, Jieyun; Anderson, Barbara J; Buckley, Hannah L; Lewis, Gillian; Lear, Gavin
2017-03-01
Gradients in environmental conditions, including climate factors and resource availability, occur along mountain inclines, providing a 'natural laboratory' to explore their combined impacts on microbial distributions. Conflicting spatial patterns observed across elevation gradients in soil bacterial community structure suggest that they are driven by various interacting factors at different spatial scales. Here, we investigated the relative impacts of non-resource (e.g. soil temperature, pH) and resource conditions (e.g. soil carbon and nitrogen) on the biogeography of soil bacterial communities across broad (i.e. along a 1500 m mountain elevation gradient) and fine sampling scales (i.e. along sunny and shady aspects of a mountain ridge). Our analysis of 16S rRNA gene data confirmed that when sampling across distances of < 1000 m, bacterial community composition was more closely related to the aspect of a site than its elevation. However, despite large differences in climate and resource-availability factors across elevation- and aspect-related gradients, bacterial community composition and richness were most strongly correlated with soil pH. These findings highlight the need to incorporate knowledge of multiple factors, including site aspect and soil pH for the appropriate use of elevation gradients as a proxy to explore the impacts of climate change on microbial community composition. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Cohen-Kohler, Jillian Clare; Forman, Lisa; Lipkus, Nathaniel
2008-07-01
Despite myriad programs aimed at increasing access to essential medicines in the developing world, the global drug gap persists. This paper focuses on the major legal and political constraints preventing implementation of coordinated global policy solutions - particularly, the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) and bilateral and regional free trade agreements. We argue that several policy and research routes should be taken to mitigate the restrictive impact of TRIPS and TRIPS-plus rules, including greater use of TRIPS flexibilities, advancement of human rights, and an ethical framework for essential medicines distribution, and a broader campaign that debates the legitimacy of TRIPS and TRIPS-plus standards themselves.
Introducing Technical Aspects of Research Data Management in the Leipzig Health Atlas.
Meineke, Frank A; Löbe, Matthias; Stäubert, Sebastian
2018-01-01
Medical research is an active field in which a wide range of information is collected, collated, combined and analyzed. Essential results are reported in publications, but it is often problematic to have the data (raw and processed), algorithms and tools associated with the publication available. The Leipzig Health Atlas (LHA) project has therefore set itself the goal of providing a repository for this purpose and enabling controlled access to it via a web-based portal. A data sharing concept in accordance to FAIR and OAIS is the basis for the processing and provision of data in the LHA. An IT architecture has been designed for this purpose. The paper presents essential aspects of the data sharing concept, the IT architecture and the methods used.
Complexity vs. unity in unilateral spatial neglect.
Rode, G; Fourtassi, M; Pagliari, C; Pisella, L; Rossetti, Y
Unilateral spatial neglect constitutes a heterogeneous syndrome characterized by two main entangled components: a contralesional bias of spatial attention orientation; and impaired building and/or exploration of mental representations of space. These two components are present in different subtypes of unilateral spatial neglect (visual, auditory, somatosensory, motor, allocentric, egocentric, personal, representational and productive manifestations). Detailed anatomical and clinical analyses of these conditions and their underlying disorders show the complexity of spatial cognitive deficits and the difficulty of proposing just one explanation. This complexity is in contrast, however, to the widely acknowledged effectiveness of rehabilitation of the various symptoms and subtypes of unilateral spatial neglect, exemplified in the case of prism adaptation. These common effects are reflections of the unity of the physiotherapeutic mechanisms behind the higher brain functions related to multisensory integration and spatial representations, whereas the paradoxical aspects of unilateral spatial neglect emphasize the need for a greater understanding of spatial cognitive disorders. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Spatial decision support system for tobacco enterprise based on spatial data mining
NASA Astrophysics Data System (ADS)
Mei, Xin; Liu, Junyi; Zhang, Xuexia; Cui, Weihong
2007-11-01
Tobacco enterprise is a special enterprise, which has strong correlation to regional geography. But in the past research and application, the combination between tobacco and GIS is limited to use digital maps to assist cigarette distribution. How to comprehensively import 3S technique and spatial data mining (SDM) to construct spatial decision support system (SDSS) of tobacco enterprise is the main research aspect in this paper. The paper concretely analyzes the GIS requirements in tobacco enterprise for planning location of production, monitoring production management and product sale at the beginning. Then holistic solution is presented and frame design for tobacco enterprise spatial decision based on SDM is given. This paper describes how to use spatial analysis and data mining to realize the spatial decision processing such as monitoring tobacco planted acreage, analyzing and planning the cigarette sale network and so on.
This project is to develop, deploy, and disseminate a suite of open source tools and integrated informatics platform that will facilitate multi-scale, correlative analyses of high resolution whole slide tissue image data, spatially mapped genetics and molecular data for cancer research. This platform will play an essential role in supporting studies of tumor initiation, development, heterogeneity, invasion, and metastasis.
Development of Spatial and Verbal Working Memory Capacity in the Human Brain
ERIC Educational Resources Information Center
Thomason, Moriah E.; Race, Elizabeth; Burrows, Brittany; Whitfield-Gabrieli, Susan; Glover, Gary H.; Gabrieli, John D. E.
2009-01-01
A core aspect of working memory (WM) is the capacity to maintain goal-relevant information in mind, but little is known about how this capacity develops in the human brain. We compared brain activation, via fMRI, between children (ages 7-12 years) and adults (ages 20-29 years) performing tests of verbal and spatial WM with varying amounts (loads)…
Xiaoqian Sun; Zhuoqiong He; John Kabrick
2008-01-01
This paper presents a Bayesian spatial method for analysing the site index data from the Missouri Ozark Forest Ecosystem Project (MOFEP). Based on ecological background and availability, we select three variables, the aspect class, the soil depth and the land type association as covariates for analysis. To allow great flexibility of the smoothness of the random field,...
R. Bruce Anderson; R. Bruce Anderson
1991-01-01
To assess the impact of grocery pallet production on future hardwood resources, better information is needed on the current use of reusable pallets by the grocery and related products industry. A spatial model of pallet use in the grocery distribution system that identifies the locational aspects of grocery pallet production and distribution, determines how these...
Cisneros, Laura M; Fagan, Matthew E; Willig, Michael R
2016-01-01
Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space.
Fagan, Matthew E.; Willig, Michael R.
2016-01-01
Background Assembly of species into communities following human disturbance (e.g., deforestation, fragmentation) may be governed by spatial (e.g., dispersal) or environmental (e.g., niche partitioning) mechanisms. Variation partitioning has been used to broadly disentangle spatial and environmental mechanisms, and approaches utilizing functional and phylogenetic characteristics of communities have been implemented to determine the relative importance of particular environmental (or niche-based) mechanisms. Nonetheless, few studies have integrated these quantitative approaches to comprehensively assess the relative importance of particular structuring processes. Methods We employed a novel variation partitioning approach to evaluate the relative importance of particular spatial and environmental drivers of taxonomic, functional, and phylogenetic aspects of bat communities in a human-modified landscape in Costa Rica. Specifically, we estimated the amount of variation in species composition (taxonomic structure) and in two aspects of functional and phylogenetic structure (i.e., composition and dispersion) along a forest loss and fragmentation gradient that are uniquely explained by landscape characteristics (i.e., environment) or space to assess the importance of competing mechanisms. Results The unique effects of space on taxonomic, functional and phylogenetic structure were consistently small. In contrast, landscape characteristics (i.e., environment) played an appreciable role in structuring bat communities. Spatially-structured landscape characteristics explained 84% of the variation in functional or phylogenetic dispersion, and the unique effects of landscape characteristics significantly explained 14% of the variation in species composition. Furthermore, variation in bat community structure was primarily due to differences in dispersion of species within functional or phylogenetic space along the gradient, rather than due to differences in functional or phylogenetic composition. Discussion Variation among bat communities was related to environmental mechanisms, especially niche-based (i.e., environmental) processes, rather than spatial mechanisms. High variation in functional or phylogenetic dispersion, as opposed to functional or phylogenetic composition, suggests that loss or gain of niche space is driving the progressive loss or gain of species with particular traits from communities along the human-modified gradient. Thus, environmental characteristics associated with landscape structure influence functional or phylogenetic aspects of bat communities by effectively altering the ways in which species partition niche space. PMID:27761338
Dissociation between melodic and rhythmic processing during piano performance from musical scores.
Bengtsson, Sara L; Ullén, Fredrik
2006-03-01
When performing or perceiving music, we experience the melodic (spatial) and rhythmic aspects as a unified whole. Moreover, the motor program theory stipulates that the relative timing and the serial order of the movement are invariant features of a motor program. Still, clinical and psychophysical observations suggest independent processing of these two aspects, in both production and perception. Here, we used functional magnetic resonance imaging to dissociate between brain areas processing the melodic and the rhythmic aspects during piano playing from musical scores. This behavior requires that the pianist decodes two types of information from the score in order to produce the desired piece of music. The spatial location of a note head determines which piano key to strike, and the various features of the note, such as the stem and flags determine the timing of each key stroke. We found that the medial occipital lobe, the superior temporal lobe, the rostral cingulate cortex, the putamen and the cerebellum process the melodic information, whereas the lateral occipital and the inferior temporal cortex, the left supramarginal gyrus, the left inferior and ventral frontal gyri, the caudate nucleus, and the cerebellum process the rhythmic information. Thus, we suggest a dissociate involvement of the dorsal visual stream in the spatial pitch processing and the ventral visual stream in temporal movement preparation. We propose that this dissociate organization may be important for fast learning and flexibility in motor control.
Corrales-Guerrero, Laura; Tal, Asaf; Arbel-Goren, Rinat; Mariscal, Vicente; Flores, Enrique; Herrero, Antonia; Stavans, Joel
2015-04-01
Under nitrogen deprivation, filaments of the cyanobacterium Anabaena undergo a process of development, resulting in a one-dimensional pattern of nitrogen-fixing heterocysts separated by about ten photosynthetic vegetative cells. Many aspects of gene expression before nitrogen deprivation and during the developmental process remain to be elucidated. Furthermore, the coupling of gene expression fluctuations between cells along a multicellular filament is unknown. We studied the statistics of fluctuations of gene expression of HetR, a transcription factor essential for heterocyst differentiation, both under steady-state growth in nitrogen-rich conditions and at different times following nitrogen deprivation, using a chromosomally-encoded translational hetR-gfp fusion. Statistical analysis of fluorescence at the individual cell level in wild-type and mutant filaments demonstrates that expression fluctuations of hetR in nearby cells are coupled, with a characteristic spatial range of circa two to three cells, setting the scale for cellular interactions along a filament. Correlations between cells predominantly arise from intercellular molecular transfer and less from cell division. Fluctuations after nitrogen step-down can build up on those under nitrogen-replete conditions. We found that under nitrogen-rich conditions, basal, steady-state expression of the HetR inhibitor PatS, cell-cell communication influenced by the septal protein SepJ and positive HetR auto-regulation are essential determinants of fluctuations in hetR expression and its distribution along filaments. A comparison between the expression of hetR-gfp under nitrogen-rich and nitrogen-poor conditions highlights the differences between the two HetR inhibitors PatS and HetN, as well as the differences in specificity between the septal proteins SepJ and FraC/FraD. Activation, inhibition and cell-cell communication lie at the heart of developmental processes. Our results show that proteins involved in these basic ingredients combine together in the presence of inevitable stochasticity in gene expression, to control the coupled fluctuations of gene expression that give rise to a one-dimensional developmental pattern in this organism.
a Three-Step Spatial-Temporal Clustering Method for Human Activity Pattern Analysis
NASA Astrophysics Data System (ADS)
Huang, W.; Li, S.; Xu, S.
2016-06-01
How people move in cities and what they do in various locations at different times form human activity patterns. Human activity pattern plays a key role in in urban planning, traffic forecasting, public health and safety, emergency response, friend recommendation, and so on. Therefore, scholars from different fields, such as social science, geography, transportation, physics and computer science, have made great efforts in modelling and analysing human activity patterns or human mobility patterns. One of the essential tasks in such studies is to find the locations or places where individuals stay to perform some kind of activities before further activity pattern analysis. In the era of Big Data, the emerging of social media along with wearable devices enables human activity data to be collected more easily and efficiently. Furthermore, the dimension of the accessible human activity data has been extended from two to three (space or space-time) to four dimensions (space, time and semantics). More specifically, not only a location and time that people stay and spend are collected, but also what people "say" for in a location at a time can be obtained. The characteristics of these datasets shed new light on the analysis of human mobility, where some of new methodologies should be accordingly developed to handle them. Traditional methods such as neural networks, statistics and clustering have been applied to study human activity patterns using geosocial media data. Among them, clustering methods have been widely used to analyse spatiotemporal patterns. However, to our best knowledge, few of clustering algorithms are specifically developed for handling the datasets that contain spatial, temporal and semantic aspects all together. In this work, we propose a three-step human activity clustering method based on space, time and semantics to fill this gap. One-year Twitter data, posted in Toronto, Canada, is used to test the clustering-based method. The results show that the approximate 55% spatiotemporal clusters distributed in different locations can be eventually grouped as the same type of clusters with consideration of semantic aspect.
Effects of spatial scale of sampling on food web structure
Wood, Spencer A; Russell, Roly; Hanson, Dieta; Williams, Richard J; Dunne, Jennifer A
2015-01-01
This study asks whether the spatial scale of sampling alters structural properties of food webs and whether any differences are attributable to changes in species richness and connectance with scale. Understanding how different aspects of sampling effort affect ecological network structure is important for both fundamental ecological knowledge and the application of network analysis in conservation and management. Using a highly resolved food web for the marine intertidal ecosystem of the Sanak Archipelago in the Eastern Aleutian Islands, Alaska, we assess how commonly studied properties of network structure differ for 281 versions of the food web sampled at five levels of spatial scale representing six orders of magnitude in area spread across the archipelago. Species (S) and link (L) richness both increased by approximately one order of magnitude across the five spatial scales. Links per species (L/S) more than doubled, while connectance (C) decreased by approximately two-thirds. Fourteen commonly studied properties of network structure varied systematically with spatial scale of sampling, some increasing and others decreasing. While ecological network properties varied systematically with sampling extent, analyses using the niche model and a power-law scaling relationship indicate that for many properties, this apparent sensitivity is attributable to the increasing S and decreasing C of webs with increasing spatial scale. As long as effects of S and C are accounted for, areal sampling bias does not have a special impact on our understanding of many aspects of network structure. However, attention does need be paid to some properties such as the fraction of species in loops, which increases more than expected with greater spatial scales of sampling. PMID:26380704
Mechanisms for Human Spatial Competence
NASA Astrophysics Data System (ADS)
Gunzelmann, Glenn; Lyon, Don R.
Research spanning decades has generated a long list of phenomena associated with human spatial information processing. Additionally, a number of theories have been proposed about the representation, organization and processing of spatial information by humans. This paper presents a broad account of human spatial competence, integrated with the ACT-R cognitive architecture. Using a cognitive architecture grounds the research in a validated theory of human cognition, enhancing the plausibility of the overall account. This work posits a close link of aspects of spatial information processing to vision and motor planning, and integrates theoretical perspectives that have been proposed over the history of research in this area. In addition, the account is supported by evidence from neuropsychological investigations of human spatial ability. The mechanisms provide a means of accounting for a broad range of phenomena described in the experimental literature.
Spatial Skill Profile of Mathematics Pre-Service Teachers
NASA Astrophysics Data System (ADS)
Putri, R. O. E.
2018-01-01
This study is aimed to investigate the spatial intelligence of mathematics pre-service teachers and find the best instructional strategy that facilitates this aspect. Data were collected from 35 mathematics pre-service teachers. The Purdue Spatial Visualization Test (PSVT) was used to identify the spatial skill of mathematics pre-service teachers. Statistical analysis indicate that more than 50% of the participants possessed spatial skill in intermediate level, whereas the other were in high and low level of spatial skill. The result also shows that there is a positive correlation between spatial skill and mathematics ability, especially in geometrical problem solving. High spatial skill students tend to have better mathematical performance compare to those in two other levels. Furthermore, qualitative analysis reveals that most students have difficulty in manipulating geometrical objects mentally. This problem mostly appears in intermediate and low-level spatial skill students. The observation revealed that 3-D geometrical figures is the best method that can overcome the mentally manipulation problem and develop the spatial visualization. Computer application can also be used to improve students’ spatial skill.
Neural Development Under Conditions of Spaceflight
NASA Technical Reports Server (NTRS)
Kosik, Kenneth S.; Steward, Oswald; Temple, Meredith D.; Denslow, Maria J.
2003-01-01
One of the key tasks the developing brain must learn is how to navigate within the environment. This skill depends on the brain's ability to establish memories of places and things in the environment so that it can form cognitive maps. Earth's gravity defines the plane of orientation of the spatial environment in which animals navigate, and cognitive maps are based on this plane of orientation. Given that experience during early development plays a key role in the development of other aspects of brain function, experience in a gravitational environment is likely to be essential for the proper organization of brain regions mediating learning and memory of spatial information. Since the hippocampus is the brain region responsible for cognitive mapping abilities, this study evaluated the development of hippocampal structure and function in rats that spent part of their early development in microgravity. Litters of male and female Sprague-Dawley rats were launched into space aboard the Space Shuttle Columbia on either postnatal day eight (P8) or 14 (P14) and remained in space for 16 days. Upon return to Earth, the rats were tested for their ability to remember spatial information and navigate using a variety of tests (the Morris water maze, a modified radial arm maze, and an open field apparatus). These rats were then tested physiologically to determine whether they exhibited normal synaptic plasticity in the hippocampus. In a separate group of rats (flight and controls), the hippocampus was analyzed using anatomical, molecular biological, and biochemical techniques immediately postlanding. There were remarkably few differences between the flight groups and their Earth-bound controls in either the navigation and spatial memory tasks or activity-induced synaptic plasticity. Microscopic and immunocytochemical analyses of the brain also did not reveal differences between flight animals and ground-based controls. These data suggest that, within the developmental window studied, microgravity has minimal long-term impact on cognitive mapping function and cellular substrates important for this function. Any differences due to development in microgravity were transient and returned to normal soon after return to Earth.
NASA Astrophysics Data System (ADS)
Feng, Guixiang; Ming, Dongping; Wang, Min; Yang, Jianyu
2017-06-01
Scale problems are a major source of concern in the field of remote sensing. Since the remote sensing is a complex technology system, there is a lack of enough cognition on the connotation of scale and scale effect in remote sensing. Thus, this paper first introduces the connotations of pixel-based scale and summarizes the general understanding of pixel-based scale effect. Pixel-based scale effect analysis is essentially important for choosing the appropriate remote sensing data and the proper processing parameters. Fractal dimension is a useful measurement to analysis pixel-based scale. However in traditional fractal dimension calculation, the impact of spatial resolution is not considered, which leads that the scale effect change with spatial resolution can't be clearly reflected. Therefore, this paper proposes to use spatial resolution as the modified scale parameter of two fractal methods to further analyze the pixel-based scale effect. To verify the results of two modified methods (MFBM (Modified Windowed Fractal Brownian Motion Based on the Surface Area) and MDBM (Modified Windowed Double Blanket Method)); the existing scale effect analysis method (information entropy method) is used to evaluate. And six sub-regions of building areas and farmland areas were cut out from QuickBird images to be used as the experimental data. The results of the experiment show that both the fractal dimension and information entropy present the same trend with the decrease of spatial resolution, and some inflection points appear at the same feature scales. Further analysis shows that these feature scales (corresponding to the inflection points) are related to the actual sizes of the geo-object, which results in fewer mixed pixels in the image, and these inflection points are significantly indicative of the observed features. Therefore, the experiment results indicate that the modified fractal methods are effective to reflect the pixel-based scale effect existing in remote sensing data and it is helpful to analyze the observation scale from different aspects. This research will ultimately benefit for remote sensing data selection and application.
NASA Astrophysics Data System (ADS)
Zhang, Yu; Li, Fei; Zhang, Shengkai; Zhu, Tingting
2017-04-01
Synthetic Aperture Radar (SAR) is significantly important for polar remote sensing since it can provide continuous observations in all days and all weather. SAR can be used for extracting the surface roughness information characterized by the variance of dielectric properties and different polarization channels, which make it possible to observe different ice types and surface structure for deformation analysis. In November, 2016, Chinese National Antarctic Research Expedition (CHINARE) 33rd cruise has set sails in sea ice zone in Antarctic. Accurate leads spatial distribution in sea ice zone for routine planning of ship navigation is essential. In this study, the semantic relationship between leads and sea ice categories has been described by the Conditional Random Fields (CRF) model, and leads characteristics have been modeled by statistical distributions in SAR imagery. In the proposed algorithm, a mixture statistical distribution based CRF is developed by considering the contexture information and the statistical characteristics of sea ice for improving leads detection in Sentinel-1A dual polarization SAR imagery. The unary potential and pairwise potential in CRF model is constructed by integrating the posteriori probability estimated from statistical distributions. For mixture statistical distribution parameter estimation, Method of Logarithmic Cumulants (MoLC) is exploited for single statistical distribution parameters estimation. The iteration based Expectation Maximal (EM) algorithm is investigated to calculate the parameters in mixture statistical distribution based CRF model. In the posteriori probability inference, graph-cut energy minimization method is adopted in the initial leads detection. The post-processing procedures including aspect ratio constrain and spatial smoothing approaches are utilized to improve the visual result. The proposed method is validated on Sentinel-1A SAR C-band Extra Wide Swath (EW) Ground Range Detected (GRD) imagery with a pixel spacing of 40 meters near Prydz Bay area, East Antarctica. Main work is listed as follows: 1) A mixture statistical distribution based CRF algorithm has been developed for leads detection from Sentinel-1A dual polarization images. 2) The assessment of the proposed mixture statistical distribution based CRF method and single distribution based CRF algorithm has been presented. 3) The preferable parameters sets including statistical distributions, the aspect ratio threshold and spatial smoothing window size have been provided. In the future, the proposed algorithm will be developed for the operational Sentinel series data sets processing due to its less time consuming cost and high accuracy in leads detection.
Spatial patterns in community response to aircraft noise associated with non-noise factors
NASA Astrophysics Data System (ADS)
Hall, F. L.; Taylor, S. M.; Birnie, S. E.
1980-08-01
Non-noise aspects of airport operations may affect individuals' responses to aircraft noise. Fear of crashes, other forms of pollution, and proximity to the flight path are three such non-noise aspects which have spatial patterns that are closely related to the pattern of noise contours around an airport. If these variables affect response to aircraft noise, they may therefore confound attempts to understand relationships between noise level and community response. Analyses based on data from 673 individuals around Toronto International Airport suggest that these factors do affect annoyance responses, but do not affect reported activity interference. Hence it may prove fruitful, in aggregate analyses of community response data, to control for these variables in order to better understand the noise-annoyance relationships.
Benefits and limitations of composites in carrier-based aircraft
NASA Technical Reports Server (NTRS)
Mcerlean, Donald P.
1992-01-01
There are many unique aspects of Navy air missions that lead to the differentiation between the design and performance of ship and shore-based aircraft. The major aspects are discussed from which essentially all Navy aircraft design requirements derive. (1) Navy aircraft operate from carriers at sea imposes a broad spectrum of physical conditions, constraints, and requirements ranging from the harsh sea environment, the space limitations of a carrier, takeoff and landing requirements as well as for endurance at long distances from the carrier. (2) Because the carrier and its airwing are intended to be capable of responding to a broad range of contingencies, mission flexibility is essential (maximum weapon carriage, rapid reconfiguration, multiple mission capability). (3) The embarked aircraft provides the long range defense of the battle group against air, surface and subsurface launched antiship missiles. (4) The carrier and its aircraft must operate independently and outside of normal supply lines. Taking into account these aspects, the use of composite materials in the design and performance of naval aircraft is outlined, also listing advantages and disadvantages.
A Land System representation for global assessments and land-use modeling.
van Asselen, Sanneke; Verburg, Peter H
2012-10-01
Current global scale land-change models used for integrated assessments and climate modeling are based on classifications of land cover. However, land-use management intensity and livestock keeping are also important aspects of land use, and are an integrated part of land systems. This article aims to classify, map, and to characterize Land Systems (LS) at a global scale and analyze the spatial determinants of these systems. Besides proposing such a classification, the article tests if global assessments can be based on globally uniform allocation rules. Land cover, livestock, and agricultural intensity data are used to map LS using a hierarchical classification method. Logistic regressions are used to analyze variation in spatial determinants of LS. The analysis of the spatial determinants of LS indicates strong associations between LS and a range of socioeconomic and biophysical indicators of human-environment interactions. The set of identified spatial determinants of a LS differs among regions and scales, especially for (mosaic) cropland systems, grassland systems with livestock, and settlements. (Semi-)Natural LS have more similar spatial determinants across regions and scales. Using LS in global models is expected to result in a more accurate representation of land use capturing important aspects of land systems and land architecture: the variation in land cover and the link between land-use intensity and landscape composition. Because the set of most important spatial determinants of LS varies among regions and scales, land-change models that include the human drivers of land change are best parameterized at sub-global level, where similar biophysical, socioeconomic and cultural conditions prevail in the specific regions. © 2012 Blackwell Publishing Ltd.
The impact of single and shared rooms on family-centred care in children's hospitals.
Curtis, Penny; Northcott, Andy
2017-06-01
To explore whether and how spatial aspects of children's hospital wards (single and shared rooms) impact upon family-centred care. Family-centred care has been widely adopted in paediatric hospitals internationally. Recent hospital building programmes in many countries have prioritised the provision of single rooms over shared rooms. Limited attention has, however, been paid to the potential impact of spatial aspects of paediatric wards on family-centred care. Qualitative, ethnographic. Phase 1; observation within four wards of a specialist children's hospital. Phase 2; interviews with 17 children aged 5-16 years and 60 parents/carers. Sixty nursing and support staff also took part in interviews and focus group discussions. All data were subjected to thematic analysis. Two themes emerged from the data analysis: 'role expectations' and 'family-nurse interactions'. The latter theme comprised three subthemes: 'family support needs', 'monitoring children's well-being' and 'survey-assess-interact within spatial contexts'. Spatial configurations within hospital wards significantly impacted upon the relationships and interactions between children, parents and nurses, which played out differently in single and shared rooms. Increasing the provision of single rooms within wards is therefore likely to directly affect how family-centred care manifests in practice. Nurses need to be sensitive to the impact of spatial characteristics, and particularly of single and shared rooms, on families' experiences of children's hospital wards. Nurses' contribution to and experience of family-centred care can be expected to change significantly when spatial characteristics of wards change and, as is currently the vogue, hospitals maximise the provision of single rather than shared rooms. © 2016 John Wiley & Sons Ltd.
2012-07-20
This final rule establishes data collection standards necessary to implement aspects of section 1302 of the Patient Protection and Affordable Care Act (Affordable Care Act), which directs the Secretary of Health and Human Services to define essential health benefits. This final rule outlines the data on applicable plans to be collected from certain issuers to support the definition of essential health benefits. This final rule also establishes a process for the recognition of accrediting entities for purposes of certification of qualified health plans.
NASA Astrophysics Data System (ADS)
Castagnetti, C.; Bertacchini, E.; Capra, A.; Corsini, A.
2012-04-01
The use of advanced technologies for remotely monitor surface processes is a successful way for improving the knowledge of phenomena evolution. In addition, the integration of various techniques is becoming more and more common in order to implement early warning systems that can monitor the evolution of landslides in time and prevent emergencies. The reliability of those systems plays a key role when Public Administrations have to plan actions in case of disasters or for preventing an incoming emergency. To have confidence in the information given by the system is an essential condition for a successful policy aiming to protect the population. The research deals with the major critical aspects to be taken into account when implementing a reliable monitoring system for unstable slopes. The importance of those aspects is often neglected, unlike the effects of a not careful implementation and management of the system can lead to erroneous interpretations of the phenomenon itself. The case study which ruled the research and highlighted the actual need of guidelines for setting up a reliable monitoring system is the Valoria landslide, located in the Northern Italy. The system is based on the integration of an automatic Total Station (TS) measuring 45 reflectors and a master GPS, acting as the reference station for three rovers placed within the landslide. In order to monitor local disturbing effects, a bi-dimensional clinometer has been applied on the TS pillar. Topographic measurements have been also integrated with geotechnical sensors (inclinometers and piezometers) in a GIS for landslide risk management. At the very beginning, periodic measurements were carried out, while the system is now performing continuously since 2008. The system permitted to evaluate movements from few millimeter till some meters per day in most dangerous areas. A more spatially continuous description has been also provided by LiDAR and terrestrial SAR interferometry. Some of the most interesting and critical aspects that will be deeper described and analyzed are: - strategy for planning a successful integrated system for continuous monitoring. - Choice of the reference frame: local coordinate system or georeferenced one. - Stability of the site for the master unit positioning: GPS time series analysis for controlling the effective stability. Thanks to the GPS master station that are operating for over three years, atmospheric disturbances affecting the signal may be removed in order to carefully verify the stability of the area and to establish whether the site is geologically stable, as originally suggested, or not. In the latter case, the magnitude of movements may also be computed for providing corrections to TS observations. - Stability of the monumentation, both for reference points and TS pillar. This is an essential aspect for avoiding misinterpretations when analyzing displacements of prisms placed within the landslide. The results of experiences carried out by Authors over last years about different landslides will be presented in order to propose guidelines for a sort of procedure aiming to increase the reliability of the information provided by the system and the usefulness for local Agencies.
Statistical Analysis of Sport Movement Observations: the Case of Orienteering
NASA Astrophysics Data System (ADS)
Amouzandeh, K.; Karimipour, F.
2017-09-01
Study of movement observations is becoming more popular in several applications. Particularly, analyzing sport movement time series has been considered as a demanding area. However, most of the attempts made on analyzing movement sport data have focused on spatial aspects of movement to extract some movement characteristics, such as spatial patterns and similarities. This paper proposes statistical analysis of sport movement observations, which refers to analyzing changes in the spatial movement attributes (e.g. distance, altitude and slope) and non-spatial movement attributes (e.g. speed and heart rate) of athletes. As the case study, an example dataset of movement observations acquired during the "orienteering" sport is presented and statistically analyzed.
75 FR 60732 - Marine Fisheries Advisory Committee; Public Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... and Improvement Plan, essential fish habitat, and critical habitat for endangered species... oil spill, NOAA budgets, catch share policy, the National Ocean Policy, and coastal and marine spatial...
ERIC Educational Resources Information Center
Zarei, Abbas Ali; Aleali, Maryam
2015-01-01
The present study was an attempt to investigate the differences in the accessibility of phonological, semantic, and orthographic aspects of words in L2 vocabulary learning. For this purpose, a sample of 119 Iranian intermediate level EFL students in a private language institute in Karaj was selected. All of the participants received the same…
Mapping spatial patterns of people's risk perception of landslides
NASA Astrophysics Data System (ADS)
Kofler, Christian; Pedoth, Lydia; Elzbieta Stawinoga, Agnieszka; Schneiderbauer, Stefan
2016-04-01
The resilience of communities against natural hazards is largely influenced by how the individuals perceive risk. A good understanding of people's risk perception, awareness and hazard knowledge is crucial for developing and improving risk management and communication strategies between authorities and the affected population. A lot of research has been done in investigating the social aspects of risks to natural hazards by means of interviews or questionnaires. However, there is still a lack of research in the investigation of the influence of the spatial distance to a hazard event on peoples risk perception. While the spatial dimension of a natural hazard event is always assessed in works with a natural science approach, it is often neglected in works on social aspects of natural hazards. In the present study, we aimed to overcome these gaps by combining methods from different disciplines and assessing and mapping the spatial pattern of risk perception through multivariate statistical approaches based on empirical data from questionnaires. We will present results from a case study carried out in Badia, located in the Province of South Tyrol- Italy, where in December 2012 a landslide destroyed four residential buildings and led to the evacuation of 36 people. By means of questionnaires distributed to all adults living in the case study area we assessed people's risk perception and asked respondents to allocate their place of residence on a map of the case study area subdivided in 7 zones. Based on the data of the questionnaire results we developed a risk perception factor in order to express various assessed aspects linked to risk perception with one metric. We analyzed and mapped this factor according to the different zones reflecting the spatial distance to the event. Furthermore, a cluster analysis identified various risk behavior profiles within the population. We also investigated the spatial patterns of these risk profiles. We revealed that the residential zone in the immediate proximity to the landslide event showed significantly different results than all other zones. Though we have been able to observe spatial patterns of our developed metrics that changed significantly with geographic distance, our results led to the assumption that risk perception cannot be expressed in units of length. The appropriate spatial unit rather seems to be "immediate proximity" to the event. The results of our study can support response forces and authorities in planning and adopting different communication and management strategies tailored to different groups of affected persons.
The spatial comfort study of shophouse at Kampung Madras
NASA Astrophysics Data System (ADS)
Ginting, Y. U. U.; Ginting, N.; Zahrah, W.
2018-03-01
This Research comes from the increasing quantity of shophouse in downtown Medan and the suburban area. The condition of shophouse tend to have narrowly spaced rooms, the middle area of the house are poorly lighted, and lots of space left unused. This research is supported by many spatial issues from previous studies. This study is conducted to determine the level of comfort of shophouse as a function of living space and focused on the spatial aspect namely anthropometry, indoor space circulation, space requirement and function, spatial design and indoor visual. This study uses the descriptive method with the qualitative and quantitative approach. Data collection technique is done by field observation, questionnaire method is also used to get the respondent perception of the spatial comfort of a shophouse. The result indicates that the level of spatial comfort of the shophouse is an uncomfort. So the improvements in the circulation of access to the building, spatial design, lighting, and aeration are needed to improve the spatial comfort of a shophouse.
Spatially organized «vertical city» as a synthesis of tall buildings and airships
NASA Astrophysics Data System (ADS)
Gagulina, Olga; Matovnikov, Sergei
2018-03-01
The paper explores the compact city concept based on the «spatial» urban development principles and describes the prerequisites and possible methods to move from «horizontal» planning to «vertical» urban environments. It highlights the close connection between urban space, high-rise city landscape and conveyance options and sets out the ideas for upgrading the existing architectural and urban planning principles. It also conceptualizes the use of airships to create additional spatial connections between urban structure elements and high-rise buildings. Functional changes are considered in creating both urban environment and internal space of tall buildings, and the environmental aspects of the new spatial model are brought to light. The paper delineates the prospects for making a truly «spatial» multidimensional city space.
NASA Astrophysics Data System (ADS)
Box, Paul W.
GIS and spatial analysis is suited mainly for static pictures of the landscape, but many of the processes that need exploring are dynamic in nature. Dynamic processes can be complex when put in a spatial context; our ability to study such processes will probably come with advances in understanding complex systems in general. Cellular automata and agent-based models are two prime candidates for exploring complex spatial systems, but are difficult to implement. Innovative tools that help build complex simulations will create larger user communities, who will probably find novel solutions for understanding complexity. A significant source for such innovations is likely to be from the collective efforts of hobbyists and part-time programmers, who have been dubbed ``garage-band scientists'' in the popular press.
Reduced cortical BDNF expression and aberrant memory in Carf knockout mice
McDowell, Kelli A.; Hutchinson, Ashley N.; Wong-Goodrich, Sarah J.E.; Presby, Matthew M.; Su, Dan; Rodriguiz, Ramona M.; Law, Krystal C.; Williams, Christina L.; Wetsel, William C.; West, Anne E.
2010-01-01
Transcription factors are a key point of convergence between the cell-intrinsic and extracellular signals that guide synaptic development and brain plasticity. Calcium-Response Factor (CaRF) is a unique transcription factor first identified as a binding protein for a calcium-response element in the gene encoding Brain-Derived Neurotrophic Factor (Bdnf). We have now generated Carf knockout (KO) mice to characterize the function of this factor in vivo. Intriguingly, Carf KO mice have selectively reduced expression of Bdnf exon IV-containing mRNA transcripts and BDNF protein in the cerebral cortex while BDNF levels in the hippocampus and striatum remain unchanged, implicating CaRF as a brain region-selective regulator of BDNF expression. At the cellular level, Carf KO mice show altered expression of GABAergic proteins at striatal synapses, raising the possibility that CaRF may contribute to aspects of inhibitory synapse development. Carf KO mice show normal spatial learning in the Morris water maze and normal context-dependent fear conditioning. However they have an enhanced ability to find a new platform location on the first day of reversal training in the water maze and they extinguish conditioned fear more slowly than their wildtype (WT) littermates. Finally, Carf KO mice show normal short-term and long-term memory in a novel object recognition task, but exhibit impairments during the remote memory phase of testing. Taken together these data reveal novel roles for CaRF in the organization and/or function of neural circuits that underlie essential aspects of learning and memory. PMID:20519520
Digitizing Patterns of Power - Cartographic Communication for Digital Humanities
NASA Astrophysics Data System (ADS)
Kriz, Karel; Pucher, Alexander; Breier, Markus
2018-05-01
The representation of space in medieval texts, the appropriation of land and the subsequent installation of new structures of power are central research topics of the project "Digitizing Patterns of Power" (DPP). The project focuses on three regional case studies: the Eastern Alps and the Morava-Thaya region, the historical region of Macedonia, and historical Southern Armenia. DPP is a multidisciplinary project, conducted by the Austrian Academy of Sciences the Institute for Medieval Research (IMAFO) in cooperation with the University of Vienna, Department of Geography and Regional Research. It is part of an initiative to promote digital humanities research in Austria. DPP brings together expertise from historical and archaeological research as well as cartography and geocommunication to explore medieval geographies. The communication of space, time and spatial interconnectivity is an essential aspect of DPP. By incorporating digital cartographic expertise, relevant facts can be depicted in a more effective visual form. Optimal cartographic visualization of base data as well as the historical and archaeological information in an interactive map-based online platform are important features. However, the multidisciplinary of the project presents the participants with various challenges. The different involved disciplines, among them cartography, archaeology and history each have their own approaches to relevant aspects of geography and geocommunication. This paper treats geocommunication characteristics and approaches to interactive mapping in a historical and archaeological context within a multidisciplinary project environment. The fundamental challenges of cartographic communication within DPP will be presented. Furthermore, recent results on the communication of historical topographic, as well as uncertain thematic content will be demonstrated.
NASA Astrophysics Data System (ADS)
Canciani, M.; Saccone, M.
2016-06-01
In 3D survey the aspects most discussed in the scientific community are those related to the acquisition of data from integrated survey (laser scanner, photogrammetric, topographic and traditional direct), rather than those relating to the interpretation of the data. Yet in the methods of traditional representation, the data interpretation, such as that of the philological reconstruction, constitutes the most important aspect. It is therefore essential in modern systems of survey and representation, filter the information acquired. In the system, based on the integrated survey that we have adopted, the 3D object, characterized by a cloud of georeferenced points, defined but their color values, defines the core of the elaboration. It allows to carry out targeted analysis, using section planes as a tool of selection and filtering data, comparable with those of traditional drawings. In the case study of the Abbey of Casamari (Veroli), one of the most important Cistercian Settlement in Italy, the survey made for an Agreement with the Ministry of Cultural Heritage and Activities and Tourism (MiBACT) and University of RomaTre, within the project "Accessment of the sismic safety of the state museum", the reference 3D model, consisting of the superposition and geo-references data from various surveys, is the tool with which yo develop representative models comparable to traditional ones. It provides the necessary spatial environment for drawing up plans and sections with a definition such as to develop thematic analysis related to phases of construction, state of deterioration and structural features.
Hellmann, B; Güntürkün, O
2001-01-01
Visual information processing within the ascending tectofugal pathway to the forebrain undergoes essential rearrangements between the mesencephalic tectum opticum and the diencephalic nucleus rotundus of birds. The outer tectal layers constitute a two-dimensional map of the visual surrounding, whereas nucleus rotundus is characterized by functional domains in which different visual features such as movement, color, or luminance are processed in parallel. Morphologic correlates of this reorganization were investigated by means of focal injections of the neuronal tracer choleratoxin subunit B into different regions of the nuclei rotundus and triangularis of the pigeon. Dependent on the thalamic injection site, variations in the retrograde labeling pattern of ascending tectal efferents were observed. All rotundal projecting neurons were located within the deep tectal layer 13. Five different cell populations were distinguished that could be differentiated according to their dendritic ramifications within different retinorecipient laminae and their axons projecting to different subcomponents of the nucleus rotundus. Because retinorecipient tectal layers differ in their input from distinct classes of retinal ganglion cells, each tectorotundal cell type probably processes different aspects of the visual surrounding. Therefore, the differential input/output connections of the five tectorotundal cell groups might constitute the structural basis for spatially segregated parallel information processing of different stimulus aspects within the tectofugal visual system. Because two of five rotundal projecting cell groups additionally exhibited quantitative shifts along the dorsoventral extension of the tectum, data also indicate visual field-dependent alterations in information processing for particular visual features. Copyright 2001 Wiley-Liss, Inc.
Brandon M. Lind; Christopher J. Friedline; Jill L. Wegrzyn; Patricia E. Maloney; Detlev R. Vogler; David B. Neale; Andrew J. Eckert
2017-01-01
Patterns of local adaptation at fine spatial scales are central to understanding how evolution proceeds, and are essential to the effective management of economically and ecologically important forest tree species. Here, we employ single and multilocus analyses of genetic data (n = 116 231 SNPs) to describe signatures of fine-scale...
Allen, Kevin; Fuchs, Elke C.; Jaschonek, Hannah; Bannerman, David M.; Monyer, Hannah
2011-01-01
Gap junctions containing connexin-36 (Cx36) electrically couple interneurons in many brain regions and synchronize their activity. We used Cx36 knockout mice (Cx36−/−) to study the importance of electrical coupling between interneurons for spatial coding in the hippocampus and for different forms of hippocampus-dependent spatial memory. Recordings in behaving mice revealed that the spatial selectivity of hippocampal pyramidal neurons was reduced and less stable in Cx36−/− mice. Altered network activity was reflected in slower theta oscillations in the mutants. Temporal coding, assessed by determining the presence and characteristics of theta phase precession, had different dynamics in Cx36−/− mice compared to controls. At the behavioral level, Cx36−/− mice displayed impaired short-term spatial memory but normal spatial reference memory. These results highlight the functional role of electrically coupled interneurons for spatial coding and cognition. Moreover, they suggest that the precise spatial selectivity of place cells is not essential for normal performance on spatial tasks assessing associative long-term memory. PMID:21525295
Urban green valuation integrating biophysical and qualitative aspects.
Lang, Stefan
2018-01-01
Urban green mapping has become an operational task in city planning, urban land management, and quality of life assessments. As a multi-dimensional, integrative concept, urban green comprising several ecological, socio-economic, and policy-related aspects. In this paper, the author advances the representation of urban green by deriving scale-adapted, policy-relevant units. These so-called geons represent areas of uniform green valuation under certain size and homogeneity constraints in a spatially explicit representation. The study accompanies a regular monitoring scheme carried out by the urban municipality of the city of Salzburg, Austria, using optical satellite data. It was conducted in two stages, namely SBG_QB (10.2 km², QuickBird data from 2005) and SBG_WV (140 km², WorldView-2 data from 2010), within the functional urban area of Salzburg. The geon delineation was validated by several quantitative measures and spatial analysis techniques, as well as ground documentation, including panorama photographs and visual interpretation. The spatial association pattern was assessed by calculating Global Moran's I with incremental search distances. The final geonscape, consisting of 1083 units with an average size of 13.5 ha, was analyzed by spatial metrics. Finally, categories were derived for different types of functional geons. Future research paths and improvements to the described strategy are outlined.
Boal, C.W.; Snyder, H.A.; Bibles, Brent D.; Estabrook, T.S.
2003-01-01
We mapped Red-tailed Hawk (Buteo jamaicensis) territories in the Luquillo Experimental Forest (LEF) of Puerto Rico in 1998. We combined our 1998 data with that collected during previous studies of Red-tailed Hawks in the LEF to examine population numbers and spatial stability of territorial boundaries over a 26-yr period. We also investigated potential relationships between Red-tailed Hawk territory sizes and topographic and climatic factors. Mean size of 16 defended territories during 1998 was 124.3 ?? 12.0 ha, which was not significantly different from our calculations of mean territory sizes derived from data collected in 1974 and 1984. Aspect and slope influenced territory size with the smallest territories having high slope and easterly aspects. Territory size was small compared to that reported for other parts of the species' range. In addition, there was remarkably little temporal change in the spatial distribution, area, and boundaries of Red-tailed Hawk territories among the study periods. Further, there was substantial boundary overlap (21-27%) between defended territories among the different study periods. The temporal stability of the spatial distribution of Red-tailed Hawk territories in the study area leads us to believe the area might be at or near saturation.
Optimal Scaling of Aftershock Zones using Ground Motion Forecasts
NASA Astrophysics Data System (ADS)
Wilson, John Max; Yoder, Mark R.; Rundle, John B.
2018-02-01
The spatial distribution of aftershocks following major earthquakes has received significant attention due to the shaking hazard these events pose for structures and populations in the affected region. Forecasting the spatial distribution of aftershock events is an important part of the estimation of future seismic hazard. A simple spatial shape for the zone of activity has often been assumed in the form of an ellipse having semimajor axis to semiminor axis ratio of 2.0. However, since an important application of these calculations is the estimation of ground shaking hazard, an effective criterion for forecasting future aftershock impacts is to use ground motion prediction equations (GMPEs) in addition to the more usual approach of using epicentral or hypocentral locations. Based on these ideas, we present an aftershock model that uses self-similarity and scaling relations to constrain parameters as an option for such hazard assessment. We fit the spatial aspect ratio to previous earthquake sequences in the studied regions, and demonstrate the effect of the fitting on the likelihood of post-disaster ground motion forecasts for eighteen recent large earthquakes. We find that the forecasts in most geographic regions studied benefit from this optimization technique, while some are better suited to the use of the a priori aspect ratio.
Henderson, Fiona; Hart, Philippa J; Pradillo, Jesus M; Kassiou, Michael; Christie, Lidan; Williams, Kaye J; Boutin, Herve; McMahon, Adam
2018-05-15
Stroke is a leading cause of disability worldwide. Understanding the recovery process post-stroke is essential; however, longer-term recovery studies are lacking. In vivo positron emission tomography (PET) can image biological recovery processes, but is limited by spatial resolution and its targeted nature. Untargeted mass spectrometry imaging offers high spatial resolution, providing an ideal ex vivo tool for brain recovery imaging. Magnetic resonance imaging (MRI) was used to image a rat brain 48 h after ischaemic stroke to locate the infarcted regions of the brain. PET was carried out 3 months post-stroke using the tracers [ 18 F]DPA-714 for TSPO and [ 18 F]IAM6067 for sigma-1 receptors to image neuroinflammation and neurodegeneration, respectively. The rat brain was flash-frozen immediately after PET scanning, and sectioned for matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) imaging. Three months post-stroke, PET imaging shows minimal detection of neurodegeneration and neuroinflammation, indicating that the brain has stabilised. However, MALDI-MS images reveal distinct differences in lipid distributions (e.g. phosphatidylcholine and sphingomyelin) between the scar and the healthy brain, suggesting that recovery processes are still in play. It is currently not known if the altered lipids in the scar will change on a longer time scale, or if they are stabilised products of the brain post-stroke. The data demonstrates the ability to combine MALD-MS with in vivo PET to image different aspects of stroke recovery. Copyright © 2018 John Wiley & Sons, Ltd.
Stepan, Jens; Dine, Julien; Eder, Matthias
2015-01-01
Decades of brain research have identified various parallel loops linking the hippocampus with neocortical areas, enabling the acquisition of spatial and episodic memories. Especially the hippocampal trisynaptic circuit [entorhinal cortex layer II → dentate gyrus (DG) → cornu ammonis (CA)-3 → CA1] was studied in great detail because of its seemingly simple connectivity and characteristic structures that are experimentally well accessible. While numerous researchers focused on functional aspects, obtained from a limited number of cells in distinct hippocampal subregions, little is known about the neuronal network dynamics which drive information across multiple synapses for subsequent long-term storage. Fast voltage-sensitive dye imaging in vitro allows real-time recording of activity patterns in large/meso-scale neuronal networks with high spatial resolution. In this way, we recently found that entorhinal theta-frequency input to the DG most effectively passes filter mechanisms of the trisynaptic circuit network, generating activity waves which propagate across the entire DG-CA axis. These "trisynaptic circuit waves" involve high-frequency firing of CA3 pyramidal neurons, leading to a rapid induction of classical NMDA receptor-dependent long-term potentiation (LTP) at CA3-CA1 synapses (CA1 LTP). CA1 LTP has been substantially evidenced to be essential for some forms of explicit learning in mammals. Here, we review data with particular reference to whole network-level approaches, illustrating how activity propagation can take place within the trisynaptic circuit to drive formation of CA1 LTP.
NASA Astrophysics Data System (ADS)
Casper, Malte; Schulz-Hildebrandt, Hinnerk; Evers, Michael; Nguyen, Cuc; Birngruber, Reginald; Hüttmann, Gereon; Manstein, Dieter
2017-02-01
In dermatology the reflexes of vasoconstriction and vasodilation are known as important mechanisms of thermoregulation of the inner body. Imaging the physiology of microvasculature of the skin with high spatial resolution in three dimensions while reacting to changes in temperature is crucial for understanding the complex processes of vasodynamics, which result in constriction and dilation of vessels. However, previous studies using Laser-Doppler flowmetry and -imaging could not provide reliable angiographic images which allow to quantify changes in blood vessel diameter. Here, we report a different approach for angiographic imaging of microvasculature of a anaesthetized rodent model using speckle variance optical coherence tomography (svOCT) during and after localized cooling. Therefore a commercial OCT with a center wavelength of 1.3 μm and a spatial resolution of 13µm was used in combination with a custom built cooling device to image such reflexes at the mouse ear pinna and dorsal skinfold. Cooling was applied in steps of 2-5° C starting at the baseline temperature of 27° C down to -10° C. To our surprise and in contrast to the general opinion in literature, we were able to observe that the majority of vessels with a diameter larger than 20 μm maintain perfused with a constant diameter when the tissue is cooled from baseline to subzero temperatures. However, vasoconstriction was observed very rarely and only in veins, which led to their occlusion. The results of this experiment lead us to reconsider essential aspects of previous understanding of temperature-induced vasodynamics in cutaneous microvasculature.
Motivation and Organizational Principles for Anatomical Knowledge Representation
Rosse, Cornelius; Mejino, José L.; Modayur, Bharath R.; Jakobovits, Rex; Hinshaw, Kevin P.; Brinkley, James F.
1998-01-01
Abstract Objective: Conceptualization of the physical objects and spaces that constitute the human body at the macroscopic level of organization, specified as a machine-parseable ontology that, in its human-readable form, is comprehensible to both expert and novice users of anatomical information. Design: Conceived as an anatomical enhancement of the UMLS Semantic Network and Metathesaurus, the anatomical ontology was formulated by specifying defining attributes and differentia for classes and subclasses of physical anatomical entities based on their partitive and spatial relationships. The validity of the classification was assessed by instantiating the ontology for the thorax. Several transitive relationships were used for symbolically modeling aspects of the physical organization of the thorax. Results: By declaring Organ as the macroscopic organizational unit of the body, and defining the entities that constitute organs and higher level entities constituted by organs, all anatomical entities could be assigned to one of three top level classes (Anatomical structure, Anatomical spatial entity and Body substance). The ontology accommodates both the systemic and regional (topographical) views of anatomy, as well as diverse clinical naming conventions of anatomical entities. Conclusions: The ontology formulated for the thorax is extendible to microscopic and cellular levels, as well as to other body parts, in that its classes subsume essentially all anatomical entities that constitute the body. Explicit definitions of these entities and their relationships provide the first requirement for standards in anatomical concept representation. Conceived from an anatomical viewpoint, the ontology can be generalized and mapped to other biomedical domains and problem solving tasks that require anatomical knowledge. PMID:9452983
NASA Astrophysics Data System (ADS)
Székely, B.; Kania, A.; Standovár, T.; Heilmeier, H.
2016-06-01
The horizontal variation and vertical layering of the vegetation are important properties of the canopy structure determining the habitat; three-dimensional (3D) distribution of objects (shrub layers, understory vegetation, etc.) is related to the environmental factors (e.g., illumination, visibility). It has been shown that gaps in forests, mosaic-like structures are essential to biodiversity; various methods have been introduced to quantify this property. As the distribution of gaps in the vegetation is a multi-scale phenomenon, in order to capture it in its entirety, scale-independent methods are preferred; one of these is the calculation of lacunarity. We used Airborne Laser Scanning point clouds measured over a forest plantation situated in a former floodplain. The flat topographic relief ensured that the tree growth is independent of the topographic effects. The tree pattern in the plantation crops provided various quasi-regular and irregular patterns, as well as various ages of the stands. The point clouds were voxelized and layers of voxels were considered as images for two-dimensional input. These images calculated for a certain vicinity of reference points were taken as images for the computation of lacunarity curves, providing a stack of lacunarity curves for each reference points. These sets of curves have been compared to reveal spatial changes of this property. As the dynamic range of the lacunarity values is very large, the natural logarithms of the values were considered. Logarithms of lacunarity functions show canopy-related variations, we analysed these variations along transects. The spatial variation can be related to forest properties and ecology-specific aspects.
Nemeth, Matthias; Millesi, Eva; Wagner, Karl-Heinz; Wallner, Bernard
2015-01-01
Unsaturated fatty acids (UFAs), including omega-3, omega-6 polyunsaturated and omega-9 monounsaturated fatty acids, are essential components and modulators of neuromembranes and may affect various aspects of physiology and cognition. UFAs are suggested to positively affect spatial learning and memory and also to diminish the negative consequences of physiological stress on cognitive abilities. Due to pronounced sex differences in neurophysiological functions, we hypothesize that these UFA-related effects might differ between male and female individuals. We therefore determined the effects of dietary UFAs on cognitive performances in a radial-Y-maze in male and female guinea pigs in relation to saliva cortisol concentrations, a marker for physiological stress. Animals were assigned to four treatment groups and maintained on diets enriched in either chia seeds (omega-3), walnuts (omega-6), or peanuts (omega-9), or a control diet. Female learning abilities throughout a three-day learning phase were positively affected by omega-3 and omega-9, as determined by a decreasing latency to pass the test and the number of conducted errors, while males generally showed distinct learning abilities, irrespective of the diet. A sex difference in learning performances was found in the control group, with males outperforming females, which was not detected in the UFA-supplemented groups. This was paralleled by significantly increased saliva cortisol concentrations in males throughout the cognition test compared to females. Three days after this learning phase, UFA-supplemented males and all females showed unchanged performances, while control males showed an increased latency and therefore an impaired performance. These results were corroborated by pronounced differences in the plasma UFA-status, corresponding to the different dietary treatments. Our findings indicate sex-specific effects of dietary UFAs, apparently enhancing spatial learning abilities only in females and protecting males from long-term memory impairment, while male learning abilities seem to be more strongly affected by an acute physiological stress response to the maze task.
Caridakis, G; Karpouzis, K; Drosopoulos, A; Kollias, S
2012-12-01
Modeling and recognizing spatiotemporal, as opposed to static input, is a challenging task since it incorporates input dynamics as part of the problem. The vast majority of existing methods tackle the problem as an extension of the static counterpart, using dynamics, such as input derivatives, at feature level and adopting artificial intelligence and machine learning techniques originally designed for solving problems that do not specifically address the temporal aspect. The proposed approach deals with temporal and spatial aspects of the spatiotemporal domain in a discriminative as well as coupling manner. Self Organizing Maps (SOM) model the spatial aspect of the problem and Markov models its temporal counterpart. Incorporation of adjacency, both in training and classification, enhances the overall architecture with robustness and adaptability. The proposed scheme is validated both theoretically, through an error propagation study, and experimentally, on the recognition of individual signs, performed by different, native Greek Sign Language users. Results illustrate the architecture's superiority when compared to Hidden Markov Model techniques and variations both in terms of classification performance and computational cost. Copyright © 2012 Elsevier Ltd. All rights reserved.
Spatiotemporal analysis of the agricultural drought risk in Heilongjiang Province, China
NASA Astrophysics Data System (ADS)
Pei, Wei; Fu, Qiang; Liu, Dong; Li, Tian-xiao; Cheng, Kun; Cui, Song
2017-06-01
Droughts are natural disasters that pose significant threats to agricultural production as well as living conditions, and a spatial-temporal difference analysis of agricultural drought risk can help determine the spatial distribution and temporal variation of the drought risk within a region. Moreover, this type of analysis can provide a theoretical basis for the identification, prevention, and mitigation of drought disasters. In this study, the overall dispersion and local aggregation of projection points were based on research by Friedman and Tukey (IEEE Trans on Computer 23:881-890, 1974). In this work, high-dimensional samples were clustered by cluster analysis. The clustering results were represented by the clustering matrix, which determined the local density in the projection index. This method avoids the problem of determining a cutoff radius. An improved projection pursuit model is proposed that combines cluster analysis and the projection pursuit model, which offer advantages for classification and assessment, respectively. The improved model was applied to analyze the agricultural drought risk of 13 cities in Heilongjiang Province over 6 years (2004, 2006, 2008, 2010, 2012, and 2014). The risk of an agricultural drought disaster was characterized by 14 indicators and the following four aspects: hazard, exposure, sensitivity, and resistance capacity. The spatial distribution and temporal variation characteristics of the agricultural drought risk in Heilongjiang Province were analyzed. The spatial distribution results indicated that Suihua, Qigihar, Daqing, Harbin, and Jiamusi are located in high-risk areas, Daxing'anling and Yichun are located in low-risk areas, and the differences among the regions were primarily caused by the aspects exposure and resistance capacity. The temporal variation results indicated that the risk of agricultural drought in most areas presented an initially increasing and then decreasing trend. A higher value for the exposure aspect increased the risk of drought, whereas a higher value for the resistance capacity aspect reduced the risk of drought. Over the long term, the exposure level of the region presented limited increases, whereas the resistance capacity presented considerable increases. Therefore, the risk of agricultural drought in Heilongjiang Province will continue to exhibit a decreasing trend.
Probabilistic self-localisation on a qualitative map based on occlusions
NASA Astrophysics Data System (ADS)
Santos, Paulo E.; Martins, Murilo F.; Fenelon, Valquiria; Cozman, Fabio G.; Dee, Hannah M.
2016-09-01
Spatial knowledge plays an essential role in human reasoning, permitting tasks such as locating objects in the world (including oneself), reasoning about everyday actions and describing perceptual information. This is also the case in the field of mobile robotics, where one of the most basic (and essential) tasks is the autonomous determination of the pose of a robot with respect to a map, given its perception of the environment. This is the problem of robot self-localisation (or simply the localisation problem). This paper presents a probabilistic algorithm for robot self-localisation that is based on a topological map constructed from the observation of spatial occlusion. Distinct locations on the map are defined by means of a classical formalism for qualitative spatial reasoning, whose base definitions are closer to the human categorisation of space than traditional, numerical, localisation procedures. The approach herein proposed was systematically evaluated through experiments using a mobile robot equipped with a RGB-D sensor. The results obtained show that the localisation algorithm is successful in locating the robot in qualitatively distinct regions.
Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice.
Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton
2016-05-17
PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice.
Care, compassion and communication.
Bloomfield, Jacqueline; Pegram, Anne
2015-02-20
Care, compassion and effective communication are essential elements of nursing, which must be demonstrated by all nurses and nursing students. These requirements form the basis of the first essential skills cluster, which stipulates key skills and behaviours that must be demonstrated to meet the standards for registration with the Nursing and Midwifery Council. This article discusses the core aspects of compassionate care and effective communication and, in doing so, uses examples to demonstrate their use within nursing.
ERIC Educational Resources Information Center
Hegoburu, Chloe; Sevelinges, Yannick; Thevenet, Marc; Gervais, Remi; Parrot, Sandrine; Mouly, Anne-Marie
2009-01-01
Although the amygdala seems to be essential to the formation and storage of fear memories, it might store only some aspects of the aversive event and facilitate the storage of more specific sensory aspects in cortical areas. We addressed the time course of amygdala and cortical activation in the context of odor fear conditioning in rats. Using…
2013-01-01
Background The coexistence of macromolecular replicators and thus the stability of presumed prebiotic replicator communities have been shown to critically depend on spatially constrained catalytic cooperation among RNA-like modular replicators. The necessary spatial constraints might have been supplied by mineral surfaces initially, preceding the more effective compartmentalization in membrane vesicles which must have been a later development of chemical evolution. Results Using our surface-bound RNA world model – the Metabolic Replicator Model (MRM) platform – we show that the mobilities on the mineral substrate surface of both the macromolecular replicators and the small molecules of metabolites they produce catalytically are the key factors determining the stable persistence of an evolvable metabolic replicator community. Conclusion The effects of replicator mobility and metabolite diffusion on different aspects of replicator coexistence in MRM are determined, including the maximum attainable size of the metabolic replicator system and its resistance to the invasion of parasitic replicators. We suggest a chemically plausible hypothetical scenario for the evolution of the first protocell starting from the surface-bound MRM system. PMID:24053177
de Sousa, Hilário
2012-01-01
It has long been argued that spatial aspects of language influence people’s conception of time. However, what spatial aspect of language is the most influential in this regard? To test this, two experiments were conducted in Hong Kong and Macau with literate Cantonese speakers. The results suggest that the crucial factor in literate Cantonese people’s spatial conceptualization of time is their experience with writing and reading Chinese script. In Hong Kong and Macau, Chinese script is written either in the traditional vertical orientation, which is still used, or the newer horizontal orientation, which is more common these days. Before the 1950s, the dominant horizontal direction was right-to-left. However, by the 1970s, the dominant horizontal direction had become left-to-right. In both experiments, the older participants predominately demonstrated time in a right-to-left direction, whereas younger participants predominately demonstrated time in a left-to-right direction, consistent with the horizontal direction that was prevalent when they first became literate. PMID:22855679
Kennedy, W Joshua; Slinker, Keith A; Volk, Brent L; Koerner, Hilmar; Godar, Trenton J; Ehlert, Gregory J; Baur, Jeffery W
2015-12-23
A technique is reported for measuring and mapping the maximum internal temperature of a structural epoxy resin with high spatial resolution via the optically detected shape transformation of embedded gold nanorods (AuNRs). Spatially resolved absorption spectra of the nanocomposites are used to determine the frequencies of surface plasmon resonances. From these frequencies the AuNR aspect ratio is calculated using a new analytical approximation for the Mie-Gans scattering theory, which takes into account coincident changes in the local dielectric. Despite changes in the chemical environment, the calculated aspect ratio of the embedded nanorods is found to decrease over time to a steady-state value that depends linearly on the temperature over the range of 100-200 °C. Thus, the optical absorption can be used to determine the maximum temperature experienced at a particular location when exposure times exceed the temperature-dependent relaxation time. The usefulness of this approach is demonstrated by mapping the temperature of an internally heated structural epoxy resin with 10 μm lateral spatial resolution.
NASA Astrophysics Data System (ADS)
Kobler, Johannes; Zehetgruber, Bernhard; Jandl, Robert; Dirnböck, Thomas; Schindlbacher, Andreas
2017-04-01
Own to the complexity of landscape morphology, mountainous landscapes are characterized by substantial changes of site parameters (i.e. elevation, slope, aspect) within short distances. As these site parameters affect the spatial-temporal dynamics of landscape climate and therefore the spatial patterns of forest carbon (C) distribution, they pose a substantial impact on landscape-related soil C dynamics. Aspect and elevation form natural temperature gradients and thereby can be used as a surrogate to infer to potential climate change effects on forest C. We aimed at studying how slope aspect affected soil respiration, soil C stocks, tree increment and litter production along two elevation gradients in the Zöbelboden catchment, northern limestone Alps, Austria during 2015 and 2016. A preliminary assessment showed that soil respiration was significantly higher at the west facing slope across all elevations. Soil temperature was only slightly higher at the west facing slope, and warmer soil only partly explained the large difference in soil respiration between east and west facing slopes. Aspect had no clear effect on soil moisture, which seemed to be strongly affected by stocking density at the different forest sites. The dense grassy ground vegetation at some of the sites further seems to play a key role in determining soil respiration rates and litter input. A detailed analysis and C-budgets along the elevation gradients will be presented at the conference.
The role of the hippocampus in navigation is memory
2017-01-01
There is considerable research on the neurobiological mechanisms within the hippocampal system that support spatial navigation. In this article I review the literature on navigational strategies in humans and animals, observations on hippocampal function in navigation, and studies of hippocampal neural activity in animals and humans performing different navigational tasks and tests of memory. Whereas the hippocampus is essential to spatial navigation via a cognitive map, its role derives from the relational organization and flexibility of cognitive maps and not from a selective role in the spatial domain. Correspondingly, hippocampal networks map multiple navigational strategies, as well as other spatial and nonspatial memories and knowledge domains that share an emphasis on relational organization. These observations suggest that the hippocampal system is not dedicated to spatial cognition and navigation, but organizes experiences in memory, for which spatial mapping and navigation are both a metaphor for and a prominent application of relational memory organization. PMID:28148640
Mandolesi, L; Leggio, M G; Graziano, A; Neri, P; Petrosini, L
2001-12-01
Spatial function is one of the cognitive functions altered in the presence of cerebellar lesions. We investigated the cerebellar contribution to the acquisition of spatial procedural and working memory components by means of a radial maze. To establish whether a cerebellar lesion would cause a deficit in solving the radial maze, a first experiment was carried out by using a full-baited maze procedure in different experimental groups, with or without cerebellar lesion and with or without pretraining. Non-pretrained hemicerebellectomized (HCbed) animals exhibited impaired performances in all (motor, spatial and procedural) task aspects. Pre-trained HCbed animals performed similarly to control animals in the task aspects linked to the processing of spatial and procedural factors. To distinguish procedural from working memory components, a forced-choice paradigm of the radial maze was used in the second experiment. Non-pretrained HCbed rats continued to make a lot of errors and show severe perseverative tendencies, already observed in the first experiment, supporting a specific cerebellar role in acquiring new behaviours and in modifying them in relation to the context. Interestingly, hindered from putting the acquired explorative patterns into action and compelled to use only working memory abilities, the pretrained HCbed group exhibited a dramatic worsening of performance. In conclusion, the present findings demonstrate that cerebellar damage induces a specific behaviour in radial maze tasks, characterized by an inflexible use of the procedures (if indeed any procedure was acquired before the lesion) and by a severe impairment in working memory processes.
NASA Astrophysics Data System (ADS)
Weber, Karin; Tscharner, Susanna; Stickler, Therese; Fuchs, Britta; Damyanovic, Doris; Hübl, Johannes
2017-04-01
Understanding spatial and social aspects of vulnerability is of growing importance in the context of climate change and natural hazards. The interplay of structural factors, socio-demographic aspects, current risk communication strategies, spatial planning instruments and related processes and the current spatial and environmental situation, including hazards and hazard zones, geographical locations, building and settlement types, contributing to people`s vulnerabilities needs to be analysed and understood to reduce vulnerability and to foster resilience. The project "CCCapMig" (Climate change and capacity building for people with migration background in Austria) aims at linking spatial and technical, as well as organisational and social aspects of climate change and natural hazards. This paper focuses on the co-creation of the theoretical framework and concepts and outlines the research design for this interdisciplinary cross-analysis of several case studies in rural Austria. The project is designed as an inter- and transdisciplinary survey and brings together engineering sciences, spatial sciences and social sciences. Reflecting the interdisciplinary approach, a theoretical framework was developed that refers to a combination of both theories and frameworks from vulnerability research, theories of risk perception and spatial theories and methods like the Sustainable Livelihoods Framework, the Protection-Motivation Theory and Landscape-Planning Theories: The "Sustainable Livelihoods Framework" adapted (by FA0) for disaster risk management offers an analytical framework to understand the emergence of vulnerabilities from the perspective of people`s livelihoods on individual and community level. It includes human, social, natural, physical and financial aspects and the role of institutions, policies and legal rights in reducing or increasing exposure to disaster risk and coping capacities. Additionally, theories on risk perception, especially Protection-Motivation Theory, developed by social sciences, will be used as assessment frame to understand people`s flood damage mitigation behaviour. Furthermore, spatial theories and landscape planning approaches (like an everyday, evidence-based approach) are combined with theories from social sciences reflecting the interdisciplinary approach of this project that has become standard in studies on disaster and climate change. This theoretical approach was developed through a collaborative research at the beginning of the research design in order to a) develop further and test existing concepts, b) to fine-tune the proposed method setting, c) to foster common understanding of theories and methods within the interdisciplinary research team. In general, the research process is characterised by critical theory and brings in reflective elements, allowing feedback circles between methods and theories. End-users and decision-makers will be integral partners, ensuring that feasibility of the recommendations and guidelines will be guaranteed. Consequently, the methods of data collection in this project reflect the results of the critical discussion of the theoretical frameworks and combine methods of social sciences: interviews with inhabitants living in hazard zones, detailed surveys of families, focus group discussions, and expert interviews with local and regional stakeholders involved in disaster risk management. In addition to that, structural factors, demographic data, current risk communication strategies, legal instruments and related processes and the current spatial and environmental situation (including hazards and hazard zones, geographical locations, building and settlement types) are analysed.
A Cache Design to Exploit Structural Locality
1991-12-01
memory and secondary storage. Main memory was used to store the instructions and data of an executing pro- gram, while secondary storage held programs ...efficiency of the CPU and faster turnaround of executing programs . In addition to the well known spatial and temporal aspects of locality, Hobart has...identified a third aspect, which he has called structural locality (9). This type of locality is defined as the tendency of an executing program to
De Falco, Enrica; Mancini, Emilia; Roscigno, Graziana; Mignola, Enrico; Taglialatela-Scafati, Orazio; Senatore, Felice
2013-12-04
This research was aimed at investigating the essential oil production, chemical composition and biological activity of a crop of pink flowered oregano (Origanum vulgare L. subsp. vulgare L.) under different spatial distribution of the plants (single and binate rows). This plant factor was shown to affect its growth, soil covering, fresh biomass, essential oil amount and composition. In particular, the essential oil percentage was higher for the binate row treatment at the full bloom. The chemical composition of the oils obtained by hydrodistillation was fully characterized by GC and GC-MS. The oil from plants grown in single rows was rich in sabinene, while plants grown in double rows were richer in ocimenes. The essential oils showed antimicrobial action, mainly against Gram-positive pathogens and particularly Bacillus cereus and B. subtilis.
Lechuga, Lawrence; Weidlich, Georg A
2016-09-12
A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities-fan beam and cone beam-was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient.
Weidlich, Georg A.
2016-01-01
A comparison of image quality and dose delivered between two differing computed tomography (CT) imaging modalities—fan beam and cone beam—was performed. A literature review of quantitative analyses for various image quality aspects such as uniformity, signal-to-noise ratio, artifact presence, spatial resolution, modulation transfer function (MTF), and low contrast resolution was generated. With these aspects quantified, cone beam computed tomography (CBCT) shows a superior spatial resolution to that of fan beam, while fan beam shows a greater ability to produce clear and anatomically correct images with better soft tissue differentiation. The results indicate that fan beam CT produces superior images to that of on-board imaging (OBI) cone beam CT systems, while providing a considerably less dose to the patient. PMID:27752404
O'Brien, Michael J; Pugnaire, Francisco I; Armas, Cristina; Rodríguez-Echeverría, Susana; Schöb, Christian
2017-04-01
The stress-gradient hypothesis predicts a higher frequency of facilitative interactions as resource limitation increases. Under severe resource limitation, it has been suggested that facilitation may revert to competition, and identifying the presence as well as determining the magnitude of this shift is important for predicting the effect of climate change on biodiversity and plant community dynamics. In this study, we perform a meta-analysis to compare temporal differences of species diversity and productivity under a nurse plant ( Retama sphaerocarpa ) with varying annual rainfall quantity to test the effect of water limitation on facilitation. Furthermore, we assess spatial differences in the herbaceous community under nurse plants in situ during a year with below-average rainfall. We found evidence that severe rainfall deficit reduced species diversity and plant productivity under nurse plants relative to open areas. Our results indicate that the switch from facilitation to competition in response to rainfall quantity is nonlinear. The magnitude of this switch depended on the aspect around the nurse plant. Hotter south aspects under nurse plants resulted in negative effects on beneficiary species, while the north aspect still showed facilitation. Combined, these results emphasize the importance of spatial heterogeneity under nurse plants for mediating species loss under reduced precipitation, as predicted by future climate change scenarios. However, the decreased water availability expected under climate change will likely reduce overall facilitation and limit the role of nurse plants as refugia, amplifying biodiversity loss.
Barry, Michael T.; Rusconi, Roberto; Guasto, Jeffrey S.; Stocker, Roman
2015-01-01
Fluid flow, ubiquitous in natural and man-made environments, has the potential to profoundly impact the transport of microorganisms, including phytoplankton in aquatic habitats and bioreactors. Yet, the effect of ambient flow on the swimming behaviour of phytoplankton has remained poorly understood, largely owing to the difficulty of observing cell–flow interactions at the microscale. Here, we present microfluidic experiments where we tracked individual cells for four species of motile phytoplankton exposed to a spatially non-uniform fluid shear rate, characteristic of many flows in natural and artificial environments. We observed that medium-to-high mean shear rates (1–25 s−1) produce heterogeneous cell concentrations in the form of regions of accumulation and regions of depletion. The location of these regions relative to the flow depends on the cells' propulsion mechanism, body shape and flagellar arrangement, as captured by an effective aspect ratio. Species having a large effective aspect ratio accumulated in the high-shear regions, owing to shear-induced alignment of the swimming orientation with the fluid streamlines. Species having an effective aspect ratio close to unity exhibited little preferential accumulation at low-to-moderate flow rates, but strongly accumulated in the low-shear regions under high flow conditions, potentially owing to an active, behavioural response of cells to shear. These observations demonstrate that ambient fluid flow can strongly affect the motility and spatial distribution of phytoplankton and highlight the rich dynamics emerging from the interaction between motility, morphology and flow. PMID:26538558
PESTAN: Pesticide Analytical Model Version 4.0 User's Guide
The principal objective of this User's Guide to provide essential information on the aspects such as model conceptualization, model theory, assumptions and limitations, determination of input parameters, analysis of results and sensitivity analysis.
NASA Astrophysics Data System (ADS)
Boothroyd, R.; Hardy, R. J.; Warburton, J.; Marjoribanks, T.
2015-12-01
Aquatic vegetation has a significant influence on the hydraulic functioning of river systems. Plant morphology has previously been shown to alter the mean and turbulent properties of flow, influenced by the spatial distribution of branches and foliage, and these effects can be further investigated through numerical models. We report on a novel method for the measurement and incorporation of complex plant morphologies into a computational fluid dynamics (CFD) model. The morphological complexity of Prunus laurocerasus is captured under foliated and defoliated states through terrestrial laser scanning (TLS). Point clouds are characterised by a voxelised representation and incorporated into a CFD scheme using a mass flux scaling algorithm, allowing the numerical prediction of flows around individual plants. Here we examine the sensitivity of plant aspect, i.e. the positioning of the plant relative to the primary flow direction, by rotating the voxelised plant representation through 15° increments (24 rotations) about the vertical axis. This enables the impact of plant aspect to be quantified upon the velocity and pressure fields, and in particular how this effects species-specific drag forces and drag coefficients. Plant aspect is shown to considerably influence the flow field response, producing spatially heterogeneous downstream velocity fields with both symmetric and asymmetric wake shapes, and point of reattachments that extend up to seven plant lengths downstream. For the same plant, changes in aspect are shown to account for a maximum variation in drag force of 168%, which equates to a 65% difference in the drag coefficient. An explicit consideration of plant aspect is therefore important in studies concerning flow-vegetation interactions, especially when reducing the uncertainty in parameterising the effect of vegetation in numerical models.
NASA Astrophysics Data System (ADS)
Becker, T.; König, G.
2015-10-01
Cartographic visualizations of crises are used to create a Common Operational Picture (COP) and enforce Situational Awareness by presenting relevant information to the involved actors. As nearly all crises affect geospatial entities, geo-data representations have to support location-specific analysis throughout the decision-making process. Meaningful cartographic presentation is needed for coordinating the activities of crisis manager in a highly dynamic situation, since operators' attention span and their spatial memories are limiting factors during the perception and interpretation process. Situational Awareness of operators in conjunction with a COP are key aspects in decision-making process and essential for making well thought-out and appropriate decisions. Considering utility networks as one of the most complex and particularly frequent required systems in urban environment, meaningful cartographic presentation of multiple utility networks with respect to disaster management do not exist. Therefore, an optimized visualization of utility infrastructure for emergency response procedures is proposed. The article will describe a conceptual approach on how to simplify, aggregate, and visualize multiple utility networks and their components to meet the requirements of the decision-making process and to support Situational Awareness.
Toward End-to-End Face Recognition Through Alignment Learning
NASA Astrophysics Data System (ADS)
Zhong, Yuanyi; Chen, Jiansheng; Huang, Bo
2017-08-01
Plenty of effective methods have been proposed for face recognition during the past decade. Although these methods differ essentially in many aspects, a common practice of them is to specifically align the facial area based on the prior knowledge of human face structure before feature extraction. In most systems, the face alignment module is implemented independently. This has actually caused difficulties in the designing and training of end-to-end face recognition models. In this paper we study the possibility of alignment learning in end-to-end face recognition, in which neither prior knowledge on facial landmarks nor artificially defined geometric transformations are required. Specifically, spatial transformer layers are inserted in front of the feature extraction layers in a Convolutional Neural Network (CNN) for face recognition. Only human identity clues are used for driving the neural network to automatically learn the most suitable geometric transformation and the most appropriate facial area for the recognition task. To ensure reproducibility, our model is trained purely on the publicly available CASIA-WebFace dataset, and is tested on the Labeled Face in the Wild (LFW) dataset. We have achieved a verification accuracy of 99.08\\% which is comparable to state-of-the-art single model based methods.
NASA Astrophysics Data System (ADS)
Schiele, Nathan R.; Koppes, Ryan A.; Corr, David T.; Ellison, Karen S.; Thompson, Deanna M.; Ligon, Lee A.; Lippert, Thomas K. M.; Chrisey, Douglas B.
2009-03-01
The ability to control cell placement and to produce idealized cellular constructs is essential for understanding and controlling intercellular processes and ultimately for producing engineered tissue replacements. We have utilized a novel intra-cavity variable aperture excimer laser operated at 193 nm to reproducibly direct write mammalian cells with micrometer resolution to form a combinatorial array of idealized cellular constructs. We deposited patterns of human dermal fibroblasts, mouse myoblasts, rat neural stem cells, human breast cancer cells, and bovine pulmonary artery endothelial cells to study aspects of collagen network formation, breast cancer progression, and neural stem cell proliferation, respectively. Mammalian cells were deposited by matrix assisted pulsed laser evaporation direct write from ribbons comprised of a UV transparent quartz coated with either a thin layer of extracellular matrix or triazene as a dynamic release layer using CAD/CAM control. We demonstrate that through optical imaging and incorporation of a machine vision algorithm, specific cells on the ribbon can be laser deposited in spatial coherence with respect to geometrical arrays and existing cells on the receiving substrate. Having the ability to direct write cells into idealized cellular constructs can help to answer many biomedical questions and advance tissue engineering and cancer research.
Joint detection and localization of multiple anatomical landmarks through learning
NASA Astrophysics Data System (ADS)
Dikmen, Mert; Zhan, Yiqiang; Zhou, Xiang Sean
2008-03-01
Reliable landmark detection in medical images provides the essential groundwork for successful automation of various open problems such as localization, segmentation, and registration of anatomical structures. In this paper, we present a learning-based system to jointly detect (is it there?) and localize (where?) multiple anatomical landmarks in medical images. The contributions of this work exist in two aspects. First, this method takes the advantage from the learning scenario that is able to automatically extract the most distinctive features for multi-landmark detection. Therefore, it is easily adaptable to detect arbitrary landmarks in various kinds of imaging modalities, e.g., CT, MRI and PET. Second, the use of multi-class/cascaded classifier architecture in different phases of the detection stage combined with robust features that are highly efficient in terms of computation time enables a seemingly real time performance, with very high localization accuracy. This method is validated on CT scans of different body sections, e.g., whole body scans, chest scans and abdominal scans. Aside from improved robustness (due to the exploitation of spatial correlations), it gains a run time efficiency in landmark detection. It also shows good scalability performance under increasing number of landmarks.
Ecosystem extent and fragmentation
Sayre, Roger; Hansen, Matt
2017-01-01
One of the candidate essential biodiversity variable (EBV) groups described in the seminal paper by Pereira et al. (2014) concerns Ecosystem Structure. This EBV group is distinguished from another EBV group which encompasses aspects of Ecosystem Function. While the Ecosystem Function EBV treats ecosystem processes like nutrient cycling, primary production, trophic interactions, etc., the Ecosystem Structure EBV relates to the set of biophysical properties of ecosystems that create biophysical environmental context, confer biophysical structure, and occur geographically. The Ecosystem Extent and Fragmentation EBV is one of the EBVs in the Ecosystem Structure EBV group.Ecosystems are understood to exist at multiple scales, from very large areas (macro-ecosystems) like the Arctic tundra, for example, to something as small as a tree in an Amazonian rain forest. As such, ecosystems occupy space and therefore can be mapped across any geography of interest, whether that area of interest be a site, a nation, a region, a continent, or the planet. One of the most obvious and seemingly straightforward EBVs is Ecosystem Extent and Fragmentation. Ecosystem extent refers to the location and geographic distribution of ecosystems across landscapes or in the oceans, while ecosystem fragmentation refers to the spatial pattern and connectivity of ecosystem occurrences on the landscape.
Variable investment, the Continuous Prisoner's Dilemma, and the origin of cooperation.
Killingback, T; Doebeli, M; Knowlton, N
1999-09-07
Cooperation is fundamental to many biological systems. A common metaphor for studying the evolution of cooperation is the Prisoner's Dilemma, a game with two strategies: cooperate or defect. However, cooperation is rare all or nothing, and its evolution probably involves the gradual extension of initially modest degrees of assistance. The inability of the Prisoner's Dilemma to capture this basic aspect limits its use for understanding the evolutionary origins of cooperation. Here we consider a framework for cooperation based on the concept of investment: an act which is costly, but which benefits other individuals, where the cost and benefit depend on the level of investment made. In the resulting Continuous Prisoner's Dilemma the essential problem of cooperation remains: in the absence of any additional structure non-zero levels of investment cannot evolve. However, if investments are considered in a spatially structured context, selfish individuals who make arbitrarily low investments can be invaded by higher-investing mutants. This results in the mean level of investment evolving to significant levels, where it is maintained indefinitely. This approach provides a natural solution to the fundamental problem of how cooperation gradually increases from a non-cooperative state.
Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection.
Grunewald, Wim; Cannoot, Bernard; Friml, Jirí; Gheysen, Godelieve
2009-01-01
Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.
Focal plane instrument for the Solar UV-Vis-IR Telescope aboard SOLAR-C
NASA Astrophysics Data System (ADS)
Katsukawa, Yukio; Suematsu, Yoshinori; Shimizu, Toshifumi; Ichimoto, Kiyoshi; Takeyama, Norihide
2011-10-01
It is presented the conceptual design of a focal plane instrument for the Solar UV-Vis-IR Telescope (SUVIT) aboard the next Japanese solar mission SOLAR-C. A primary purpose of the telescope is to achieve precise as well as high resolution spectroscopic and polarimetric measurements of the solar chromosphere with a big aperture of 1.5 m, which is expected to make a significant progress in understanding basic MHD processes in the solar atmosphere. The focal plane instrument consists of two packages: A filtergraph package is to get not only monochromatic images but also Dopplergrams and magnetograms using a tunable narrow-band filter and interference filters. A spectrograph package is to perform accurate spectro-polarimetric observations for measuring chromospheric magnetic fields, and is employing a Littrow-type spectrograph. The most challenging aspect in the instrument design is wide wavelength coverage from 280 nm to 1.1 μm to observe multiple chromospheric lines, which is to be realized with a lens unit including fluoride glasses. A high-speed camera for correlation tracking of granular motion is also implemented in one of the packages for an image stabilization system, which is essential to achieve high spatial resolution and high polarimetric accuracy.
Predictive modeling of deep-sea fish distribution in the Azores
NASA Astrophysics Data System (ADS)
Parra, Hugo E.; Pham, Christopher K.; Menezes, Gui M.; Rosa, Alexandra; Tempera, Fernando; Morato, Telmo
2017-11-01
Understanding the link between fish and their habitat is essential for an ecosystem approach to fisheries management. However, determining such relationship is challenging, especially for deep-sea species. In this study, we applied generalized additive models (GAMs) to relate presence-absence and relative abundance data of eight economically-important fish species to environmental variables (depth, slope, aspect, substrate type, bottom temperature, salinity and oxygen saturation). We combined 13 years of catch data collected from systematic longline surveys performed across the region. Overall, presence-absence GAMs performed better than abundance models and predictions made for the observed data successfully predicted the occurrence of the eight deep-sea fish species. Depth was the most influential predictor of all fish species occurrence and abundance distributions, whereas other factors were found to be significant for some species but did not show such a clear influence. Our results predicted that despite the extensive Azores EEZ, the habitats available for the studied deep-sea fish species are highly limited and patchy, restricted to seamounts slopes and summits, offshore banks and island slopes. Despite some identified limitations, our GAMs provide an improved knowledge of the spatial distribution of these commercially important fish species in the region.
NASA Astrophysics Data System (ADS)
Rosati, Roberto; Dolcini, Fabrizio; Rossi, Fausto
2015-12-01
A recent study [Rosati, Dolcini, and Rossi, Appl. Phys. Lett. 106, 243101 (2015), 10.1063/1.4922739] has predicted that, while in semiconducting single-walled carbon nanotubes (SWNTs) an electronic wave packet experiences the typical spatial diffusion of conventional materials, in metallic SWNTs, its shape remains essentially unaltered up to micrometer distances at room temperature, even in the presence of the electron-phonon coupling. Here, by utilizing a Lindblad-based density-matrix approach enabling us to account for both dissipation and decoherence effects, we test such a prediction by analyzing various aspects that were so far unexplored. In particular, accounting for initial nonequilibrium excitations, characterized by an excess energy E0, and including both intra- and interband phonon scattering, we show that for realistically high values of E0 the electronic diffusion is extremely small and nearly independent of its energetic distribution, in spite of a significant energy-dissipation and decoherence dynamics. Furthermore, we demonstrate that the effect is robust with respect to the variation of the chemical potential. Our results thus suggest that metallic SWNTs are a promising platform to realize quantum channels for the nondispersive transmission of electronic wave packets.
Object-based land-cover classification for metropolitan Phoenix, Arizona, using aerial photography
NASA Astrophysics Data System (ADS)
Li, Xiaoxiao; Myint, Soe W.; Zhang, Yujia; Galletti, Chritopher; Zhang, Xiaoxiang; Turner, Billie L.
2014-12-01
Detailed land-cover mapping is essential for a range of research issues addressed by the sustainability and land system sciences and planning. This study uses an object-based approach to create a 1 m land-cover classification map of the expansive Phoenix metropolitan area through the use of high spatial resolution aerial photography from National Agricultural Imagery Program. It employs an expert knowledge decision rule set and incorporates the cadastral GIS vector layer as auxiliary data. The classification rule was established on a hierarchical image object network, and the properties of parcels in the vector layer were used to establish land cover types. Image segmentations were initially utilized to separate the aerial photos into parcel sized objects, and were further used for detailed land type identification within the parcels. Characteristics of image objects from contextual and geometrical aspects were used in the decision rule set to reduce the spectral limitation of the four-band aerial photography. Classification results include 12 land-cover classes and subclasses that may be assessed from the sub-parcel to the landscape scales, facilitating examination of scale dynamics. The proposed object-based classification method provides robust results, uses minimal and readily available ancillary data, and reduces computational time.
NASA Astrophysics Data System (ADS)
Jung, Chinte; Sun, Chih-Hong
2006-10-01
Motivated by the increasing accessibility of technology, more and more spatial data are being made digitally available. How to extract the valuable knowledge from these large (spatial) databases is becoming increasingly important to businesses, as well. It is essential to be able to analyze and utilize these large datasets, convert them into useful knowledge, and transmit them through GIS-enabled instruments and the Internet, conveying the key information to business decision-makers effectively and benefiting business entities. In this research, we combine the techniques of GIS, spatial decision support system (SDSS), spatial data mining (SDM), and ArcGIS Server to achieve the following goals: (1) integrate databases from spatial and non-spatial datasets about the locations of businesses in Taipei, Taiwan; (2) use the association rules, one of the SDM methods, to extract the knowledge from the integrated databases; and (3) develop a Web-based SDSS GIService as a location-selection tool for business by the product of ArcGIS Server.
Short-term memory for spatial configurations in the tactile modality: a comparison with vision.
Picard, Delphine; Monnier, Catherine
2009-11-01
This study investigates the role of acquisition constraints on the short-term retention of spatial configurations in the tactile modality in comparison with vision. It tests whether the sequential processing of information inherent to the tactile modality could account for limitation in short-term memory span for tactual-spatial information. In addition, this study investigates developmental aspects of short-term memory for tactual- and visual-spatial configurations. A total of 144 child and adult participants were assessed for their memory span in three different conditions: tactual, visual, and visual with a limited field of view. The results showed lower tactual-spatial memory span than visual-spatial, regardless of age. However, differences in memory span observed between the tactile and visual modalities vanished when the visual processing of information occurred within a limited field. These results provide evidence for an impact of acquisition constraints on the retention of spatial information in the tactile modality in both childhood and adulthood.
Zhang, Rong; Leng, Yun-fa; Zhu, Meng-meng; Wang, Fang
2007-11-01
Based on geographic information system and geostatistics, the spatial structure of Therioaphis trifolii population of different periods in Yuanzhou district of Guyuan City, the southern Ningxia Province, was analyzed. The spatial distribution of Therioaphis trifolii population was also simulated by ordinary Kriging interpretation. The results showed that Therioaphis trifolii population of different periods was correlated spatially in the study area. The semivariograms of Therioaphis trifolii could be described by exponential model, indicating an aggregated spatial arrangement. The spatial variance varied from 34.13%-48.77%, and the range varied from 8.751-12.049 km. The degree and direction of aggregation showed that the trend was increased gradually from southwest to northeast. The dynamic change of Therioaphis trifolii population in different periods could be analyzed intuitively on the simulated maps of the spatial distribution from the two aspects of time and space, The occurrence position and degree of Therioaphis trifolii to a state of certain time could be determined easily.
Users as essential contributors to spatial cyberinfrastructures
Poore, Barbara S.
2011-01-01
Current accounts of spatial cyberinfrastructure development tend to overemphasize technologies to the neglect of critical social and cultural issues on which adoption depends. Spatial cyberinfrastructures will have a higher chance of success if users of many types, including nonprofessionals, are made central to the development process. Recent studies in the history of infrastructures reveal key turning points and issues that should be considered in the development of spatial cyberinfrastructure projects. These studies highlight the importance of adopting qualitative research methods to learn how users work with data and digital tools, and how user communities form. The author's empirical research on data sharing networks in the Pacific Northwest salmon crisis at the turn of the 21st century demonstrates that ordinary citizens can contribute critical local knowledge to global databases and should be considered in the design and construction of spatial cyberinfrastructures. PMID:21444825
Users as essential contributors to spatial cyberinfrastructures.
Poore, Barbara S
2011-04-05
Current accounts of spatial cyberinfrastructure development tend to overemphasize technologies to the neglect of critical social and cultural issues on which adoption depends. Spatial cyberinfrastructures will have a higher chance of success if users of many types, including nonprofessionals, are made central to the development process. Recent studies in the history of infrastructures reveal key turning points and issues that should be considered in the development of spatial cyberinfrastructure projects. These studies highlight the importance of adopting qualitative research methods to learn how users work with data and digital tools, and how user communities form. The author's empirical research on data sharing networks in the Pacific Northwest salmon crisis at the turn of the 21st century demonstrates that ordinary citizens can contribute critical local knowledge to global databases and should be considered in the design and construction of spatial cyberinfrastructures.
Users as essential contributors to spatial cyberinfrastructures
Poore, B.S.
2011-01-01
Current accounts of spatial cyberinfrastructure development tend to overemphasize technologies to the neglect of critical social and cultural issues on which adoption depends. Spatial cyberinfrastructures will have a higher chance of success if users of many types, including nonprofessionals, are made central to the development process. Recent studies in the history of infrastructures reveal key turning points and issues that should be considered in the development of spatial cyberinfrastructure projects. These studies highlight the importance of adopting qualitative research methods to learn how users work with data and digital tools, and how user communities form. The author's empirical research on data sharing networks in the Pacific Northwest salmon crisis at the turn of the 21st century demonstrates that ordinary citizens can contribute critical local knowledge to global databases and should be considered in the design and construction of spatial cyberinfrastructures.
Contextual cueing: implicit learning and memory of visual context guides spatial attention.
Chun, M M; Jiang, Y
1998-06-01
Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.
NASA Astrophysics Data System (ADS)
Cid, Ximena; Lopez, Ramon
2011-10-01
It is well known that student have difficulties with concepts in physics and space science as well as other STEM fields. Some of these difficulties may be rooted in student conceptual errors, whereas other difficulties may arise from issues with visual cognition and spatial intelligence. It has also been suggested that some aspects of high attrition rates from STEM fields can be attributed to students' visual spatial abilities. We will be presenting data collected from introductory courses in the College of Engineering, Department of Physics, Department of Chemistry, and the Department of Mathematics at the University of Texas at Arlington. These data examine the relationship between students' visual spatial abilities and comprehension in the subject matter. Where correlations are found to exist, visual spatial interventions can be implemented to reduce the attrition rates.
Motor–sensory convergence in object localization: a comparative study in rats and humans
Horev, Guy; Saig, Avraham; Knutsen, Per Magne; Pietr, Maciej; Yu, Chunxiu; Ahissar, Ehud
2011-01-01
In order to identify basic aspects in the process of tactile perception, we trained rats and humans in similar object localization tasks and compared the strategies used by the two species. We found that rats integrated temporally related sensory inputs (‘temporal inputs’) from early whisk cycles with spatially related inputs (‘spatial inputs’) to align their whiskers with the objects; their perceptual reports appeared to be based primarily on this spatial alignment. In a similar manner, human subjects also integrated temporal and spatial inputs, but relied mainly on temporal inputs for object localization. These results suggest that during tactile object localization, an iterative motor–sensory process gradually converges on a stable percept of object location in both species. PMID:21969688
Research on tobacco enterprise spatial decision support system based on GIS
NASA Astrophysics Data System (ADS)
Mei, Xin; Cui, Weihong
2006-10-01
Tobacco enterprise is a special enterprise, which has strong correlation to regional geography. But in the past research and application, the combination between tobacco and GIS is limited to use digital maps to assist cigarette distribution. How to comprehensively import 3S technique taking GIS as representation to construct spatial decision support system of tobacco enterprise is the main research aspect in this paper. The paper concretely analyzes the GIS requirements in tobacco enterprise for planning location of production, monitoring production management and product sale at the beginning. Then holistic solution is presented and frame design for tobacco enterprise spatial decision is given. At last the example of tobacco enterprise spatial CRM (client relation management) system is set up.
NASA Astrophysics Data System (ADS)
Ratnasari, Nila; Dwi Candra, Erika; Herdianta Saputra, Defa; Putra Perdana, Aji
2016-11-01
Urban development in Indonesia significantly incerasing in line with rapid development of infrastructure, utility, and transportation network. Recently, people live depend on lights at night and social media and these two aspects can depicted urban spatial pattern and interaction. This research used nighttime remote sensing data with the VIIRS (Visible Infrared Imaging Radiometer Suite) day-night band detects lights, gas flares, auroras, and wildfires. Geo-social media information derived from twitter data gave big picture on spatial interaction from the geospatial footprint. Combined both data produced comprehensive urban spatial pattern and interaction in general for Indonesian territory. The result is shown as a preliminary study of integrating nighttime remote sensing data and geospatial footprint from twitter data.
Cooke, Steven J.; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Powers, Michael H.; Doka, Susan E.; Dettmers, John M.; Crook, David A; Lucas, Martyn C.; Holbrook, Christopher; Krueger, Charles C.
2016-01-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Cooke, Steven J; Martins, Eduardo G; Struthers, Daniel P; Gutowsky, Lee F G; Power, Michael; Doka, Susan E; Dettmers, John M; Crook, David A; Lucas, Martyn C; Holbrook, Christopher M; Krueger, Charles C
2016-04-01
Freshwater fish move vertically and horizontally through the aquatic landscape for a variety of reasons, such as to find and exploit patchy resources or to locate essential habitats (e.g., for spawning). Inherent challenges exist with the assessment of fish populations because they are moving targets. We submit that quantifying and describing the spatial ecology of fish and their habitat is an important component of freshwater fishery assessment and management. With a growing number of tools available for studying the spatial ecology of fishes (e.g., telemetry, population genetics, hydroacoustics, otolith microchemistry, stable isotope analysis), new knowledge can now be generated and incorporated into biological assessment and fishery management. For example, knowing when, where, and how to deploy assessment gears is essential to inform, refine, or calibrate assessment protocols. Such information is also useful for quantifying or avoiding bycatch of imperiled species. Knowledge of habitat connectivity and usage can identify critically important migration corridors and habitats and can be used to improve our understanding of variables that influence spatial structuring of fish populations. Similarly, demographic processes are partly driven by the behavior of fish and mediated by environmental drivers. Information on these processes is critical to the development and application of realistic population dynamics models. Collectively, biological assessment, when informed by knowledge of spatial ecology, can provide managers with the ability to understand how and when fish and their habitats may be exposed to different threats. Naturally, this knowledge helps to better evaluate or develop strategies to protect the long-term viability of fishery production. Failure to understand the spatial ecology of fishes and to incorporate spatiotemporal data can bias population assessments and forecasts and potentially lead to ineffective or counterproductive management actions.
Triple-aspect monism: physiological, mental unconscious and conscious aspects of brain activity.
Pereira, Alfredo
2014-06-01
Brain activity contains three fundamental aspects: (a) The physiological aspect, covering all kinds of processes that involve matter and/or energy; (b) the mental unconscious aspect, consisting of dynamical patterns (i.e., frequency, amplitude and phase-modulated waves) embodied in neural activity. These patterns are variously operated (transmitted, stored, combined, matched, amplified, erased, etc), forming cognitive and emotional unconscious processes and (c) the mental conscious aspect, consisting of feelings experienced in the first-person perspective and cognitive functions grounded in feelings, as memory formation, selection of the focus of attention, voluntary behavior, aesthetical appraisal and ethical judgment. Triple-aspect monism (TAM) is a philosophical theory that provides a model of the relation of the three aspects. Spatially distributed neuronal dendritic potentials generate amplitude-modulated waveforms transmitted to the extracellular medium and adjacent astrocytes, prompting the formation of large waves in the astrocyte network, which are claimed to both integrate distributed information and instantiate feelings. According to the valence of the feeling, the large wave feeds back on neuronal synapses, modulating (reinforcing or depressing) cognitive and behavioral functions.
CHLORINE DISINFECTION OF AEROMONAS
The bacterial genus Aeromonas is currently listed on the USEPA's Candidate Contaminant List (CCL). Resistance to chemical disinfection is an essential aspect regarding all microbial groups listed on the CCL. This study was designed to determine the inactivation kinetics of Aeromo...
Elements of orbit-determination theory - Textbook
NASA Technical Reports Server (NTRS)
Solloway, C. B.
1971-01-01
Text applies to solution of various optimization problems. Concepts are logically introduced and refinements and complexities for computerized numerical solutions are avoided. Specific topics and essential equivalence of several different approaches to various aspects of the problem are given.
Some Aspects of Catalase Induction in Baker's Yeast (Saccharomyces cerevisiae)
ERIC Educational Resources Information Center
Freeland, P. W.
1974-01-01
Described are experiments for demonstrating essential features of substrate-induced enzyme synthesis based on the Jacob-Monod model, and for showing that the activity of certain genes can be modified by environmental temperature. (RH)
Cross-cultural perspectives on critical thinking.
Jenkins, Sheryl Daun
2011-05-01
The purpose of this cross-cultural study was to explore critical thinking among nurse scholars in Thailand and the United States. The study used qualitative methodology to examine how nurse scholars describe critical thinking in nursing. Nurse educators in Thailand and the United States were questioned concerning the following aspects of critical thinking: essential components; teaching and evaluation techniques; characteristics of critical thinkers; and the importance of a consensus definition for critical thinking in nursing. Their statements, which revealed both common and specific cultural aspects of critical thinking, were subjected to content analysis. Certain themes emerged that have not been widely discussed in the literature, including the link between staying calm and thinking critically, the assertion that happiness is an essential component of critical thinking, and the participants' nearly unanimous support for coming to a consensus definition of critical thinking for nursing. Copyright 2011, SLACK Incorporated.
The essential aspect in sewerage regulation in Indonesia
NASA Astrophysics Data System (ADS)
Siami, L.
2018-01-01
Several cities in Indonesia have the sewerage local regulation such as Banjarmasin, Bantul, Surakarta and Denpasar. Meanwhile, The National Government have guideline in composing domestic sewerage regulation. Each city have their own characteristic and issues that need to be carried out by the local regulation. By using SWOT analysis, this study tries to figure out several aspect that need to be included in the local regulation. International references from developed and developing countries like Japan, Phillipines, Malaysia and Thailand were also used as benchmark without neglecting the local conditions of cities in Indonesia. Several crucial aspect of local regulation are institutional authority, composition on-site and off-site system, tariff, evaluation and monitoring, as well as punishment and rewards. Both tariff and evaluation aspects need to be narrowed down into specific regulations.
The French model of psychoanalytic training: Ethical conflicts.
François-Poncet, Claire-Marine
2009-12-01
Research on psychoanalytical education within the IPA may be clarified by reflecting on the ethic behind each of the three main models (Eitingonian, French and Uruguayan). In fact, the ethic underpinning psychoanalytical education, whatever the model, is confronted by irreducible conflicts between transmitting psychoanalysis by means of analytical experience or by means of academic teaching. Transmission by experience is essentially based on the ethic of psychoanalytic practice, which is difficult to regulate through institutional standards, whereas the academic aspect can be evaluated by objective and public criteria. The importance of both aspects and their relative weight in the training process depend on the conception of psychoanalysis underlying each model. This paper will look primarily at the French training model, the essentially analytical aspects of which favour the transmission of the very ethical foundations of psychoanalytic practice itself: the application of the method both as a working tool and as a tool of evaluation. It presupposes expanding the observation and analysis of transference beyond the framework of treatment to that of supervision. From this analysis, the paper will attempt to demonstrate how the French model proposes dealing with the inevitable conflicts between transmission by means of analysis and training by means of apprenticeship.
Consequences of Delayed, Unfinished, or Missed Nursing Care During Labor and Birth.
Simpson, Kathleen Rice; Lyndon, Audrey
: The purpose of this study was to examine the concept of delayed, unfinished, or missed nursing care when patient census and acuity exceed nurse staffing resources with nurses who care for women during labor and birth. Focus groups were held during which labor nurses were asked about aspects of nursing care that may be regularly delayed, unfinished, or completely missed during labor and birth, including possible reasons and potential consequences. Seventy-one labor nurses participated in 11 focus groups in 6 hospitals. Nurses focused on support and encouragement as aspects of care that they felt are essential but often not able to be performed when the unit is busy. Nurses seemed to assume technical features of care as a "given" in the background and not always noticed unless missed. They voiced concerns about risks to maternal and fetal well-being when they were short-staffed. Potential outcomes were discussed including cesarean birth, depressed infants at birth, hemorrhage, and negative effects on patient satisfaction, successful breast-feeding, and the overall patient experience. When essential aspects of nursing care are delayed, unfinished, or completely missed, there are potentially negative implications for numerous patient outcomes and patient safety is at risk.
Elimination of coherent noise in a coherent light imaging system
NASA Technical Reports Server (NTRS)
Grebowsky, G. J.; Hermann, R. L.; Paull, H. B.; Shulman, A. R.
1970-01-01
Optical imaging systems using coherent light introduce objectionable noise into the output image plane. Dust and bubbles on and in lenses cause most of the noise in the output image. This noise usually appears as bull's-eye diffraction patterns in the image. By rotating the lens about the optical axis these diffraction patterns can be essentially eliminated. The technique does not destroy the spatial coherence of the light and permits spatial filtering of the input plane.
Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy
Macaluso, Emiliano; Doricchi, Fabrizio
2013-01-01
The mechanisms of attention control have been extensively studied with a variety of methodologies in animals and in humans. Human studies using non-invasive imaging techniques highlighted a remarkable difference between the pattern of responses in dorsal fronto-parietal regions vs. ventral fronto-parietal (vFP) regions, primarily lateralized to the right hemisphere. Initially, this distinction at the neuro-physiological level has been related to the distinction between cognitive processes associated with strategic/endogenous vs. stimulus-driven/exogenous of attention control. Nonetheless, quite soon it has become evident that, in almost any situation, attention control entails a complex combination of factors related to both the current sensory input and endogenous aspects associated with the experimental context. Here, we review several of these aspects first discussing the joint contribution of endogenous and stimulus-driven factors during spatial orienting in complex environments and, then, turning to the role of expectations and predictions in spatial re-orienting. We emphasize that strategic factors play a pivotal role for the activation of the ventral system during stimulus-driven control, and that the dorsal system makes use of stimulus-driven signals for top-down control. We conclude that both the dorsal and the vFP networks integrate endogenous and exogenous signals during spatial attention control and that future investigations should manipulate both these factors concurrently, so as to reveal to full extent of these interactions. PMID:24155707
Claes, Peter; Walters, Mark; Shriver, Mark D; Puts, David; Gibson, Greg; Clement, John; Baynam, Gareth; Verbeke, Geert; Vandermeulen, Dirk; Suetens, Paul
2012-08-01
Accurate measurement of facial sexual dimorphism is useful to understanding facial anatomy and specifically how faces influence, and have been influenced by, sexual selection. An important facial aspect is the display of bilateral symmetry, invoking the need to investigate aspects of symmetry and asymmetry separately when examining facial shape. Previous studies typically employed landmarks that provided only a sparse facial representation, where different landmark choices could lead to contrasting outcomes. Furthermore, sexual dimorphism is only tested as a difference of sample means, which is statistically the same as a difference in population location only. Within the framework of geometric morphometrics, we partition facial shape, represented in a spatially dense way, into patterns of symmetry and asymmetry, following a two-factor anova design. Subsequently, we investigate sexual dimorphism in symmetry and asymmetry patterns separately, and on multiple aspects, by examining (i) population location differences as well as differences in population variance-covariance; (ii) scale; and (iii) orientation. One important challenge in this approach is the proportionally high number of variables to observations necessitating the implementation of permutational and computationally feasible statistics. In a sample of gender-matched young adults (18-25 years) with self-reported European ancestry, we found greater variation in male faces than in women for all measurements. Statistically significant sexual dimorphism was found for the aspect of location in both symmetry and asymmetry (directional asymmetry), for the aspect of scale only in asymmetry (magnitude of fluctuating asymmetry) and, in contrast, for the aspect of orientation only in symmetry. Interesting interplays with hypotheses in evolutionary and developmental biology were observed, such as the selective nature of the force underpinning sexual dimorphism and the genetic independence of the structural patterns of fluctuating asymmetry. Additionally, insights into growth patterns of the soft tissue envelope of the face and underlying skull structure can also be obtained from the results. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.
Claes, Peter; Walters, Mark; Shriver, Mark D; Puts, David; Gibson, Greg; Clement, John; Baynam, Gareth; Verbeke, Geert; Vandermeulen, Dirk; Suetens, Paul
2012-01-01
Accurate measurement of facial sexual dimorphism is useful to understanding facial anatomy and specifically how faces influence, and have been influenced by, sexual selection. An important facial aspect is the display of bilateral symmetry, invoking the need to investigate aspects of symmetry and asymmetry separately when examining facial shape. Previous studies typically employed landmarks that provided only a sparse facial representation, where different landmark choices could lead to contrasting outcomes. Furthermore, sexual dimorphism is only tested as a difference of sample means, which is statistically the same as a difference in population location only. Within the framework of geometric morphometrics, we partition facial shape, represented in a spatially dense way, into patterns of symmetry and asymmetry, following a two-factor anova design. Subsequently, we investigate sexual dimorphism in symmetry and asymmetry patterns separately, and on multiple aspects, by examining (i) population location differences as well as differences in population variance-covariance; (ii) scale; and (iii) orientation. One important challenge in this approach is the proportionally high number of variables to observations necessitating the implementation of permutational and computationally feasible statistics. In a sample of gender-matched young adults (18–25 years) with self-reported European ancestry, we found greater variation in male faces than in women for all measurements. Statistically significant sexual dimorphism was found for the aspect of location in both symmetry and asymmetry (directional asymmetry), for the aspect of scale only in asymmetry (magnitude of fluctuating asymmetry) and, in contrast, for the aspect of orientation only in symmetry. Interesting interplays with hypotheses in evolutionary and developmental biology were observed, such as the selective nature of the force underpinning sexual dimorphism and the genetic independence of the structural patterns of fluctuating asymmetry. Additionally, insights into growth patterns of the soft tissue envelope of the face and underlying skull structure can also be obtained from the results. PMID:22702244
Essentials of Pediatric Emergency Medicine Fellowship: Part 3: Clinical Education and Experience.
Mittiga, Matthew R; Nagler, Joshua; Eldridge, Charles D; Ishimine, Paul; Zuckerbraun, Noel S; McAneney, Constance M
2016-07-01
This article is the third in a 7-part series that aims to comprehensively describe the current state and future directions of pediatric emergency medicine fellowship training from the essential requirements to considerations for successfully administering and managing a program to the careers that may be anticipated upon program completion. This article focuses on the clinical aspects of fellowship training including the impact of the clinical environment, modalities for teaching and evaluation, and threats and opportunities in clinical education.
Cognitive impairment and pragmatics.
Gutiérrez-Rexach, Javier; Schatz, Sara
2016-01-01
One of the most important ingredients of felicitous conversation exchanges is the adequate expression of illocutionary force and the achievement of perlocutionary effects, which can be considered essential to the functioning of pragmatic competence. The breakdown of illocutionary and perlocutionary functions is one of the most prominent external features of cognitive impairment in Alzheimer's Disease, with devastating psychological and social consequences for patients, their family and caregivers. The study of pragmatic functions is essential for a proper understanding of the linguistic and communicative aspects of Alzheimer's disease.
Accounting for Landscape Heterogeneity Improves Spatial Predictions of Tree Vulnerability to Drought
NASA Astrophysics Data System (ADS)
Schwantes, A. M.; Parolari, A.; Swenson, J. J.; Johnson, D. M.; Domec, J. C.; Jackson, R. B.; Pelak, N. F., III; Porporato, A. M.
2017-12-01
Globally, as climate change continues, forest vulnerability to droughts and heatwaves is increasing, but vulnerability differs regionally and locally depending on landscape position. However, most models used in forecasting forest responses to heatwaves and droughts do not incorporate relevant spatial processes. To improve predictions of spatial tree vulnerability, we employed a non-linear stochastic model of soil moisture dynamics across a landscape, accounting for spatial differences in aspect, topography, and soils. Our unique approach integrated plant hydraulics and landscape processes, incorporating effects from lateral redistribution of water using a topographic index and radiation and temperature differences attributable to aspect. Across a watershed in central Texas we modeled dynamic water stress for a dominant tree species, Juniperus ashei. We compared our results to a detailed spatial dataset of drought-impacted areas (>25% canopy loss) derived from remote sensing during the severe 2011 drought. We then projected future dynamic water stress through the 21st century using climate projections from 10 global climate models under two scenarios, and compared models with and without landscape heterogeneity. Within this watershed, 42% of J. ashei dominated systems were impacted by the 2011 drought. Modeled dynamic water stress tracked these spatial patterns of observed drought-impacted areas. Total accuracy increased from 59%, when accounting only for soil variability, to 73% when including lateral redistribution of water and radiation and temperature effects. Dynamic water stress was projected to increase through the 21st century, with only minimal buffering from the landscape. During the hotter and more severe droughts projected in the 21st century, up to 90% of the watershed crossed a dynamic water stress threshold associated with canopy loss in 2011. Favorable microsites may exist across a landscape where trees can persist; however, if future droughts are too severe, the buffering capacity of a heterogenous landscape could be overwhelmed. Incorporating spatial data will improve projections of future tree water stress and identification of potential resilient refugia.
NASA Astrophysics Data System (ADS)
Gebhardt, Steffen; Wehrmann, Thilo; Klinger, Verena; Schettler, Ingo; Huth, Juliane; Künzer, Claudia; Dech, Stefan
2010-10-01
The German-Vietnamese water-related information system for the Mekong Delta (WISDOM) project supports business processes in Integrated Water Resources Management in Vietnam. Multiple disciplines bring together earth and ground based observation themes, such as environmental monitoring, water management, demographics, economy, information technology, and infrastructural systems. This paper introduces the components of the web-based WISDOM system including data, logic and presentation tier. It focuses on the data models upon which the database management system is built, including techniques for tagging or linking metadata with the stored information. The model also uses ordered groupings of spatial, thematic and temporal reference objects to semantically tag datasets to enable fast data retrieval, such as finding all data in a specific administrative unit belonging to a specific theme. A spatial database extension is employed by the PostgreSQL database. This object-oriented database was chosen over a relational database to tag spatial objects to tabular data, improving the retrieval of census and observational data at regional, provincial, and local areas. While the spatial database hinders processing raster data, a "work-around" was built into WISDOM to permit efficient management of both raster and vector data. The data model also incorporates styling aspects of the spatial datasets through styled layer descriptions (SLD) and web mapping service (WMS) layer specifications, allowing retrieval of rendered maps. Metadata elements of the spatial data are based on the ISO19115 standard. XML structured information of the SLD and metadata are stored in an XML database. The data models and the data management system are robust for managing the large quantity of spatial objects, sensor observations, census and document data. The operational WISDOM information system prototype contains modules for data management, automatic data integration, and web services for data retrieval, analysis, and distribution. The graphical user interfaces facilitate metadata cataloguing, data warehousing, web sensor data analysis and thematic mapping.
NASA Astrophysics Data System (ADS)
Pan, Yanxia; Li, Xinrong; Hui, Rong; Zhao, Yang
2016-04-01
The formation characteristics of hygroscopic and condensate water for different topographic positions were observed using the PVC pipes manual weighing and CPM method in the typical mobile dunes fixed by straw checkerboard barriers in Shapotou. The results indicated that the formation amounts and duration of hygroscopic and condensate water show moderate spatial heterogeneity at the influence of topography. The formation amounts of hygroscopic and condensate water at different aspects conform to the classical convection model, in which the hygroscopic and condensate water amounts are highest at hollow, and windward aspect gets more water than leeward aspect, the hygroscopic and condensate water amounts at different aspects are expressed as: hollow>Western-faced aspect>Northern-faced aspect>hilltop>Southern-faced aspect>Eastern-faced aspect. The hygroscopic and condensate water amounts at different slope positions for every aspect are as follows: the foot of slope>middle slope>hilltop. A negatively linear correlation is got between slope angles and hygroscopic and condensate water amounts, hygroscopic and condensate water amounts decrease gradually along with the increase of slope angles, the amounts of hygroscopic and condensate water at the vertical aspect are only half of horizontal aspect, which indicated topography were important influence factors for the formation of the hygroscopic and condensate water in arid area.
SPATIAL PREDICTION OF AIR QUALITY DATA
Site-specific air quality monitoring data have been used extensively in both scientific and regulatory programs. As such, these data provide essential information to the public, environmental managers, and the atmospheric research community. Currently, air quality management prac...
Estimating spatial travel times using automatic vehicle identification data
DOT National Transportation Integrated Search
2001-01-01
Prepared ca. 2001. The paper describes an algorithm that was developed for estimating reliable and accurate average roadway link travel times using Automatic Vehicle Identification (AVI) data. The algorithm presented is unique in two aspects. First, ...
An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon
NASA Astrophysics Data System (ADS)
Venticinque, Eduardo; Forsberg, Bruce; Barthem, Ronaldo; Petry, Paulo; Hess, Laura; Mercado, Armando; Cañas, Carlos; Montoya, Mariana; Durigan, Carlos; Goulding, Michael
2016-11-01
Despite large-scale infrastructure development, deforestation, mining and petroleum exploration in the Amazon Basin, relatively little attention has been paid to the management scale required for the protection of wetlands, fisheries and other aspects of aquatic ecosystems. This is due, in part, to the enormous size, multinational composition and interconnected nature of the Amazon River system, as well as to the absence of an adequate spatial model for integrating data across the entire Amazon Basin. In this data article we present a spatially uniform multi-scale GIS framework that was developed especially for the analysis, management and monitoring of various aspects of aquatic systems in the Amazon Basin. The Amazon GIS-Based River Basin Framework is accessible as an ESRI geodatabase at doi:10.5063/F1BG2KX8.
Attention: oscillations and neuropharmacology.
Deco, Gustavo; Thiele, Alexander
2009-08-01
Attention is a rich psychological and neurobiological construct that influences almost all aspects of cognitive behaviour. It enables enhanced processing of behaviourally relevant stimuli at the expense of irrelevant stimuli. At the cellular level, rhythmic synchronization at local and long-range spatial scales complements the attention-induced firing rate changes of neurons. The former is hypothesized to enable efficient communication between neuronal ensembles tuned to spatial and featural aspects of the attended stimulus. Recent modelling studies suggest that the rhythmic synchronization in the gamma range may be mediated by a fine balance between N-methyl-D-aspartate and alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate postsynaptic currents, whereas other studies have highlighted the possible contribution of the neuromodulator acetylcholine. This review summarizes some recent modelling and experimental studies investigating mechanisms of attention in sensory areas and discusses possibilities of how glutamatergic and cholinergic systems could contribute to increased processing abilities at the cellular and network level during states of top-down attention.
Ergonomic adequacy of the baby nursery of child development center located in UFSC - Florianópolis.
Vergara, Lizandra Garcia Lupi; Ribet, Lucie Elisa
2012-01-01
A study in the educators' work station at baby nursery of NDI/UFSC, located in Florianópolis, was conducted using the Work Ergonomic Analysis methodological tool. The demand considered was the educators' physical exhaustion caused by the weight carried when taking care of the babies, the postures assumed during the labor activity and the spatial arrangement of the baby nursery. Thinking ergonomically, the spatial arrangement is directly associated to three factors: the formal aspect of the environment, the esthetic aspect including colors and finish quality and the ease of understanding involved in the baby nursery labor. By the ergonomic adequacy it is possible to assert that if were established better conditions of posture and comfort for the educators, as well as satisfactory technical and operational information to carry out the activities, greater safety and welfare would be provided to the babies, the main focus of the work.
2017-01-01
The review is devoted to the physical, chemical, and technological aspects of the breath-figure self-assembly process. The main stages of the process and impact of the polymer architecture and physical parameters of breath-figure self-assembly on the eventual pattern are covered. The review is focused on the hierarchy of spatial and temporal scales inherent to breath-figure self-assembly. Multi-scale patterns arising from the process are addressed. The characteristic spatial lateral scales of patterns vary from nanometers to dozens of micrometers. The temporal scale of the process spans from microseconds to seconds. The qualitative analysis performed in the paper demonstrates that the process is mainly governed by interfacial phenomena, whereas the impact of inertia and gravity are negligible. Characterization and applications of polymer films manufactured with breath-figure self-assembly are discussed. PMID:28813026
[Education of patients with rheumatoid arthritis. Assessment of a survey of interests].
Pacheco, D; Berdichevsky, R; Ballesteros, F; Jérez, J; Sobarzo, E; Fuentealba, C; Pino, C; Sanhueza, R; Estefan, M E; Medina, C
1998-02-01
The congruence of interests between health care providers and clients is essential if subjects with chronic diseases will be educated. To assess, in patients with rheumatoid arthritis, those fields in which they would like to receive education. Eighty eight patients with rheumatoid arthritis were surveyed about the topics in which they would like to be educated. The inquiry included medical aspects, handicap overcoming, social issues and labor aspects. Eighty two percent of patients were interested in medical aspects, 77% in social issues and 71% in handicap overcoming. Eighty three percent of patients with greater handicaps preferred handicap overcoming, 75% social aspects and 74% medical aspects. Younger patients had a greater interest in labor aspects, those with a recently diagnosed disease were interested in their legal rights and those with a prolonged disease wanted information about self help groups. The greater educational interests of patients with rheumatoid arthritis were on medical aspects. However, those impaired by the disease were interested in handicap overcoming. Age and duration of the disease also influenced the educational interests of patients. Thus, education in these patients must be individualized.
DOT National Transportation Integrated Search
2002-01-31
Accurate modeling of the lateral attenuation of sound is : essential for accurate prediction of aircraft noise. Lateral : attenuation contains many aspects of sound generation and : propagation, including ground effects (sometimes referred to :...
Planning PR for a Community-Based Program
ERIC Educational Resources Information Center
Keim, William A.
1977-01-01
An essential for public relations is a combination of marketing techniques and an understanding of the community in its social, economic, political, and geographic aspects. Reaching disadvantaged clientele requires the use of community agencies and development of specialized programs. (RT)
Iron is essential for many aspects of cellular function. However, it can also generate oxygen-based free radicals that result in injury to biological molecules. For this reason, iron acquisition and distribution are tightly regulated. Constant exposure to the atmosphere result...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, K., E-mail: likai@imech.ac.cn; University of Chinese Academy of Sciences, Beijing 100190; Xun, B.
2016-05-15
As a part of the preliminary studies for the future space experiment (Zona-K) in the Russian module of the International Space Station, some bifurcation routes to chaos of thermocapillary convection in two-dimensional liquid layers filled with 10 cSt silicone oil have been numerically studied in this paper. As the laterally applied temperature difference is raised, variations in the spatial structure and temporal evolution of the thermocapillary convection and a complex sequence of transitions are observed. The results show that the finite extent of the liquid layer significantly influences the tempo-spatial evolution of the thermocapillary convection. Moreover, the bifurcation route ofmore » the thermocapillary convection changes very sensitively by the aspect ratio of the liquid layer. With the increasing Reynolds number (applied temperature difference), the steady thermocapillary convection experiences two consecutive transitions from periodic oscillatory state to quasi-periodic oscillatory state with frequency-locking before emergence of chaotic convection in a liquid layer of aspect ratio 14.25, and the thermocapillary convection undergoes period-doubling cascades leading to chaotic convection in a liquid layer of aspect ratio 13.0.« less
Compensation for PKMζ in long-term potentiation and spatial long-term memory in mutant mice
Tsokas, Panayiotis; Hsieh, Changchi; Yao, Yudong; Lesburguères, Edith; Wallace, Emma Jane Claire; Tcherepanov, Andrew; Jothianandan, Desingarao; Hartley, Benjamin Rush; Pan, Ling; Rivard, Bruno; Farese, Robert V; Sajan, Mini P; Bergold, Peter John; Hernández, Alejandro Iván; Cottrell, James E; Shouval, Harel Z; Fenton, André Antonio; Sacktor, Todd Charlton
2016-01-01
PKMζ is a persistently active PKC isoform proposed to maintain late-LTP and long-term memory. But late-LTP and memory are maintained without PKMζ in PKMζ-null mice. Two hypotheses can account for these findings. First, PKMζ is unimportant for LTP or memory. Second, PKMζ is essential for late-LTP and long-term memory in wild-type mice, and PKMζ-null mice recruit compensatory mechanisms. We find that whereas PKMζ persistently increases in LTP maintenance in wild-type mice, PKCι/λ, a gene-product closely related to PKMζ, persistently increases in LTP maintenance in PKMζ-null mice. Using a pharmacogenetic approach, we find PKMζ-antisense in hippocampus blocks late-LTP and spatial long-term memory in wild-type mice, but not in PKMζ-null mice without the target mRNA. Conversely, a PKCι/λ-antagonist disrupts late-LTP and spatial memory in PKMζ-null mice but not in wild-type mice. Thus, whereas PKMζ is essential for wild-type LTP and long-term memory, persistent PKCι/λ activation compensates for PKMζ loss in PKMζ-null mice. DOI: http://dx.doi.org/10.7554/eLife.14846.001 PMID:27187150
NASA Astrophysics Data System (ADS)
Cheng, Maurice M. W.; Gilbert, John K.
2015-01-01
This study investigated students' interpretation of diagrams representing the human circulatory system. We conducted an interview study with three students aged 14-15 (Year 10) who were studying biology in a Hong Kong school. During the interviews, students were asked to interpret diagrams and relationships between diagrams that represented aspects of the circulatory system. All diagrams used in the interviews had been used by their teacher when teaching the topic. Students' interpretations were expressed by their verbal response and their drawing. Dual coding theory was used to interpret students' responses. There was evidence that one student relied on verbal recall as a strategy in interpreting diagrams. It was found that students might have relied unduly on similarities in spatial features, rather than on deeper meanings represented by conventions, of diagrams when they associated diagrams that represented different aspects of the circulatory system. A pattern of students' understanding of structure-behaviour-function relationship of the biological system was observed. This study suggests the importance of a consistent diagrammatic and verbal representation in communicating scientific ideas. Implications for teaching practice that facilitates learning with diagrams and address students' undue focus on spatial features of diagrams are discussed.
Recent advances in scalable non-Gaussian geostatistics: The generalized sub-Gaussian model
NASA Astrophysics Data System (ADS)
Guadagnini, Alberto; Riva, Monica; Neuman, Shlomo P.
2018-07-01
Geostatistical analysis has been introduced over half a century ago to allow quantifying seemingly random spatial variations in earth quantities such as rock mineral content or permeability. The traditional approach has been to view such quantities as multivariate Gaussian random functions characterized by one or a few well-defined spatial correlation scales. There is, however, mounting evidence that many spatially varying quantities exhibit non-Gaussian behavior over a multiplicity of scales. The purpose of this minireview is not to paint a broad picture of the subject and its treatment in the literature. Instead, we focus on very recent advances in the recognition and analysis of this ubiquitous phenomenon, which transcends hydrology and the Earth sciences, brought about largely by our own work. In particular, we use porosity data from a deep borehole to illustrate typical aspects of such scalable non-Gaussian behavior, describe a very recent theoretical model that (for the first time) captures all these behavioral aspects in a comprehensive manner, show how this allows generating random realizations of the quantity conditional on sampled values, point toward ways of incorporating scalable non-Gaussian behavior in hydrologic analysis, highlight the significance of doing so, and list open questions requiring further research.
Leveraging organismal biology to forecast the effects of climate change.
Buckley, Lauren B; Cannistra, Anthony F; John, Aji
2018-04-26
Despite the pressing need for accurate forecasts of ecological and evolutionary responses to environmental change, commonly used modelling approaches exhibit mixed performance because they omit many important aspects of how organisms respond to spatially and temporally variable environments. Integrating models based on organismal phenotypes at the physiological, performance and fitness levels can improve model performance. We summarize current limitations of environmental data and models and discuss potential remedies. The paper reviews emerging techniques for sensing environments at fine spatial and temporal scales, accounting for environmental extremes, and capturing how organisms experience the environment. Intertidal mussel data illustrate biologically important aspects of environmental variability. We then discuss key challenges in translating environmental conditions into organismal performance including accounting for the varied timescales of physiological processes, for responses to environmental fluctuations including the onset of stress and other thresholds, and for how environmental sensitivities vary across lifecycles. We call for the creation of phenotypic databases to parameterize forecasting models and advocate for improved sharing of model code and data for model testing. We conclude with challenges in organismal biology that must be solved to improve forecasts over the next decade.acclimation, biophysical models, ecological forecasting, extremes, microclimate, spatial and temporal variability.
Hesketh, Geoffrey G; Youn, Ji-Young; Samavarchi-Tehrani, Payman; Raught, Brian; Gingras, Anne-Claude
2017-01-01
Complete understanding of cellular function requires knowledge of the composition and dynamics of protein interaction networks, the importance of which spans all molecular cell biology fields. Mass spectrometry-based proteomics approaches are instrumental in this process, with affinity purification coupled to mass spectrometry (AP-MS) now widely used for defining interaction landscapes. Traditional AP-MS methods are well suited to providing information regarding the temporal aspects of soluble protein-protein interactions, but the requirement to maintain protein-protein interactions during cell lysis and AP means that both weak-affinity interactions and spatial information is lost. A more recently developed method called BioID employs the expression of bait proteins fused to a nonspecific biotin ligase, BirA*, that induces in vivo biotinylation of proximal proteins. Coupling this method to biotin affinity enrichment and mass spectrometry negates many of the solubility and interaction strength issues inherent in traditional AP-MS methods, and provides unparalleled spatial context for protein interactions. Here we describe the parallel implementation of both BioID and FLAG AP-MS allowing simultaneous exploration of both spatial and temporal aspects of protein interaction networks.
Hybrid vision activities at NASA Johnson Space Center
NASA Technical Reports Server (NTRS)
Juday, Richard D.
1990-01-01
NASA's Johnson Space Center in Houston, Texas, is active in several aspects of hybrid image processing. (The term hybrid image processing refers to a system that combines digital and photonic processing). The major thrusts are autonomous space operations such as planetary landing, servicing, and rendezvous and docking. By processing images in non-Cartesian geometries to achieve shift invariance to canonical distortions, researchers use certain aspects of the human visual system for machine vision. That technology flow is bidirectional; researchers are investigating the possible utility of video-rate coordinate transformations for human low-vision patients. Man-in-the-loop teleoperations are also supported by the use of video-rate image-coordinate transformations, as researchers plan to use bandwidth compression tailored to the varying spatial acuity of the human operator. Technological elements being developed in the program include upgraded spatial light modulators, real-time coordinate transformations in video imagery, synthetic filters that robustly allow estimation of object pose parameters, convolutionally blurred filters that have continuously selectable invariance to such image changes as magnification and rotation, and optimization of optical correlation done with spatial light modulators that have limited range and couple both phase and amplitude in their response.
The computational worm: spatial orientation and its neuronal basis in C. elegans.
Lockery, Shawn R
2011-10-01
Spatial orientation behaviors in animals are fundamental for survival but poorly understood at the neuronal level. The nematode Caenorhabditis elegans orients to a wide range of stimuli and has a numerically small and well-described nervous system making it advantageous for investigating the mechanisms of spatial orientation. Recent work by the C. elegans research community has identified essential computational elements of the neural circuits underlying two orientation strategies that operate in five different sensory modalities. Analysis of these circuits reveals novel motifs including simple circuits for computing temporal derivatives of sensory input and for integrating sensory input with behavioral state to generate adaptive behavior. These motifs constitute hypotheses concerning the identity and functionality of circuits controlling spatial orientation in higher organisms. Copyright © 2011 Elsevier Ltd. All rights reserved.
Crespo-García, Maité; Zeiller, Monika; Leupold, Claudia; Kreiselmeyer, Gernot; Rampp, Stefan; Hamer, Hajo M; Dalal, Sarang S
2016-11-15
Human hippocampal theta oscillations play a key role in accurate spatial coding. Associative encoding involves similar hippocampal networks but, paradoxically, is also characterized by theta power decreases. Here, we investigated how theta activity relates to associative encoding of place contexts resulting in accurate navigation. Using MEG, we found that slow-theta (2-5Hz) power negatively correlated with subsequent spatial accuracy for virtual contextual locations in posterior hippocampus and other cortical structures involved in spatial cognition. A rare opportunity to simultaneously record MEG and intracranial EEG in an epilepsy patient provided crucial insights: during power decreases, slow-theta in right anterior hippocampus and left inferior frontal gyrus phase-led the left temporal cortex and predicted spatial accuracy. Our findings indicate that decreased slow-theta activity reflects local and long-range neural mechanisms that encode accurate spatial contexts, and strengthens the view that local suppression of low-frequency activity is essential for more efficient processing of detailed information. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Chang, Sin-Chung; Chang, Chau-Lyan; Yen, Joseph C.
2013-01-01
In the multidimensional CESE development, triangles and tetrahedra turn out to be the most natural building blocks for 2D and 3D spatial meshes. As such the CESE method is compatible with the simplest unstructured meshes and thus can be easily applied to solve problems with complex geometries. However, because the method uses space-time staggered stencils, solution decoupling may become a real nuisance in applications involving unstructured meshes. In this paper we will describe a simple and general remedy which, according to numerical experiments, has removed any possibility of solution decoupling. Moreover, in a real-world viscous flow simulation near a solid wall, one often encounters a case where a boundary with high curvature or sharp corner is surrounded by triangular/tetrahedral meshes of extremely high aspect ratio (up to 106). For such an extreme case, the spatial projection of a space-time compounded conservation element constructed using the original CESE design may become highly concave and thus its centroid (referred to as a spatial solution point) may lie far outside of the spatial projection. It could even be embedded beyond a solid wall boundary and causes serious numerical difficulties. In this paper we will also present a new procedure for constructing conservation elements and solution elements which effectively overcomes the difficulties associated with the original design. Another difficulty issue which was addressed more recently is the wellknown fact that accuracy of gradient computations involving triangular/tetrahedral grids deteriorates rapidly as the aspect ratio of grid cells increases. The root cause of this difficulty was clearly identified and several remedies to overcome it were found through a rigorous mathematical analysis. However, because of the length of the current paper and the complexity of mathematics involved, this new work will be presented in another paper.
"Birds of a Feather" Fail Together: Exploring the Nature of Dependency in SME Defaults.
Calabrese, Raffaella; Andreeva, Galina; Ansell, Jake
2017-08-11
This article studies the effects of incorporating the interdependence among London small business defaults into a risk analysis framework using the data just before the financial crisis. We propose an extension from standard scoring models to take into account the spatial dimensions and the demographic characteristics of small and medium-sized enterprises (SMEs), such as legal form, industry sector, and number of employees. We estimate spatial probit models using different distance matrices based only on the spatial location or on an interaction between spatial locations and demographic characteristics. We find that the interdependence or contagion component defined on spatial and demographic characteristics is significant and that it improves the ability to predict defaults of non-start-ups in London. Furthermore, including contagion effects among SMEs alters the parameter estimates of risk determinants. The approach can be extended to other risk analysis applications where spatial risk may incorporate correlation based on other aspects. © 2017 Society for Risk Analysis.
Spatial displacement of numbers on a vertical number line in spatial neglect.
Mihulowicz, Urszula; Klein, Elise; Nuerk, Hans-Christoph; Willmes, Klaus; Karnath, Hans-Otto
2015-01-01
Previous studies that investigated the association of numbers and space in humans came to contradictory conclusions about the spatial character of the mental number magnitude representation and about how it may be influenced by unilateral spatial neglect. The present study aimed to disentangle the debated influence of perceptual vs. representational aspects via explicit mapping of numbers onto space by applying the number line estimation paradigm with vertical orientation of stimulus lines. Thirty-five acute right-brain damaged stroke patients (6 with neglect) were asked to place two-digit numbers on vertically oriented lines with 0 marked at the bottom and 100 at the top. In contrast to the expected, nearly linear mapping in the control patient group, patients with spatial neglect overestimated the position of numbers in the lower middle range. The results corroborate spatial characteristics of the number magnitude representation. In neglect patients, this representation seems to be biased towards the ipsilesional side, independent of the physical orientation of the task stimuli.
Li, Qi; Yu, Hongtao; Wu, Yan; Gao, Ning
2016-08-26
The integration of multiple sensory inputs is essential for perception of the external world. The spatial factor is a fundamental property of multisensory audiovisual integration. Previous studies of the spatial constraints on bimodal audiovisual integration have mainly focused on the spatial congruity of audiovisual information. However, the effect of spatial reliability within audiovisual information on bimodal audiovisual integration remains unclear. In this study, we used event-related potentials (ERPs) to examine the effect of spatial reliability of task-irrelevant sounds on audiovisual integration. Three relevant ERP components emerged: the first at 140-200ms over a wide central area, the second at 280-320ms over the fronto-central area, and a third at 380-440ms over the parieto-occipital area. Our results demonstrate that ERP amplitudes elicited by audiovisual stimuli with reliable spatial relationships are larger than those elicited by stimuli with inconsistent spatial relationships. In addition, we hypothesized that spatial reliability within an audiovisual stimulus enhances feedback projections to the primary visual cortex from multisensory integration regions. Overall, our findings suggest that the spatial linking of visual and auditory information depends on spatial reliability within an audiovisual stimulus and occurs at a relatively late stage of processing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Xian-Xiang; Britter, Rex E.; Norford, Leslie K.; Koh, Tieh-Yong; Entekhabi, Dara
2012-02-01
A validated large-eddy simulation model was employed to study the effect of the aspect ratio and ground heating on the flow and pollutant dispersion in urban street canyons. Three ground-heating intensities (neutral, weak and strong) were imposed in street canyons of aspect ratio 1, 2, and 0.5. The detailed patterns of flow, turbulence, temperature and pollutant transport were analyzed and compared. Significant changes of flow and scalar patterns were caused by ground heating in the street canyon of aspect ratio 2 and 0.5, while only the street canyon of aspect ratio 0.5 showed a change in flow regime (from wake interference flow to skimming flow). The street canyon of aspect ratio 1 does not show any significant change in the flow field. Ground heating generated strong mixing of heat and pollutant; the normalized temperature inside street canyons was approximately spatially uniform and somewhat insensitive to the aspect ratio and heating intensity. This study helps elucidate the combined effects of urban geometry and thermal stratification on the urban canyon flow and pollutant dispersion.
2016-04-01
vegetation arising due to contrasts in incoming solar radiation that is associated with hillslope aspects. At lower elevations, shrubs can be present on North...whereas shrubs are more prevalent on South-facing aspects. At watershed scales, the transition from grasses at lower elevations to coniferous evergreens...Mountain sage communities, adapted to cooler temperatures, are also found at higher elevations in RCEW, with ceanothus shrubs common Mean annual
Practical aspects of monochromators developed for transmission electron microscopy
Kimoto, Koji
2014-01-01
A few practical aspects of monochromators recently developed for transmission electron microscopy are briefly reviewed. The basic structures and properties of four monochromators, a single Wien filter monochromator, a double Wien filter monochromator, an omega-shaped electrostatic monochromator and an alpha-shaped magnetic monochromator, are outlined. The advantages and side effects of these monochromators in spectroscopy and imaging are pointed out. A few properties of the monochromators in imaging, such as spatial or angular chromaticity, are also discussed. PMID:25125333
Thermodynamics, ecology and evolutionary biology: A bridge over troubled water or common ground?
NASA Astrophysics Data System (ADS)
Skene, Keith R.
2017-11-01
This paper addresses a key issue confronting ecological and evolutionary biology, namely the challenge of a cohesive approach to these fields given significant differences in the concepts and foundations of their study. Yet these two areas of scientific research are paramount in terms addressing the spatial and temporal dynamics and distribution of diversity, an understanding of which is needed if we are to resolve the current crisis facing the biosphere. The importance of understanding how nature responds to change is now of essential rather than of metaphysical interest as our planet struggles with increasing anthropogenic damage. Ecology and evolutionary biology can no longer remain disjointed. While some progress has been made in terms of synthetic thinking across these areas, this has often been in terms of bridge building, where thinking in one aspect is extended over to the other side. We review these bridges and the success or otherwise of such efforts. This paper then suggests that in order to move from a descriptive to a mechanistic understanding of the biosphere, we may need to re-evaluate our approach to the studies of ecology and evolutionary biology, finding a common denominator that will enable us to address the critical issues facing us, particularly in terms of understanding what drives change, what determines tempo and how communities function. Common ground, we argue, is essential if we are to comprehend how resilience operates in the natural world and how diversification can counter increasing extinction rates. This paper suggests that thermodynamics may provide a bridge between ecology and evolutionary biology, and that this will enable us to move forward with otherwise intractable problems.
NASA Astrophysics Data System (ADS)
Pilz, Tobias; Francke, Till; Bronstert, Axel
2017-08-01
The characteristics of a landscape pose essential factors for hydrological processes. Therefore, an adequate representation of the landscape of a catchment in hydrological models is vital. However, many of such models exist differing, amongst others, in spatial concept and discretisation. The latter constitutes an essential pre-processing step, for which many different algorithms along with numerous software implementations exist. In that context, existing solutions are often model specific, commercial, or depend on commercial back-end software, and allow only a limited or no workflow automation at all. Consequently, a new package for the scientific software and scripting environment R, called lumpR, was developed. lumpR employs an algorithm for hillslope-based landscape discretisation directed to large-scale application via a hierarchical multi-scale approach. The package addresses existing limitations as it is free and open source, easily extendible to other hydrological models, and the workflow can be fully automated. Moreover, it is user-friendly as the direct coupling to a GIS allows for immediate visual inspection and manual adjustment. Sufficient control is furthermore retained via parameter specification and the option to include expert knowledge. Conversely, completely automatic operation also allows for extensive analysis of aspects related to landscape discretisation. In a case study, the application of the package is presented. A sensitivity analysis of the most important discretisation parameters demonstrates its efficient workflow automation. Considering multiple streamflow metrics, the employed model proved reasonably robust to the discretisation parameters. However, parameters determining the sizes of subbasins and hillslopes proved to be more important than the others, including the number of representative hillslopes, the number of attributes employed for the lumping algorithm, and the number of sub-discretisations of the representative hillslopes.
Mullen, Rachel D; Park, Soyoung; Rhodes, Simon J
2012-02-01
Lin-11, Isl-1, and Mec-3 (LIM)-homeodomain (HD)-class transcription factors are critical for many aspects of mammalian organogenesis. Of these, LHX3 is essential for pituitary gland and nervous system development. Pediatric patients with mutations in coding regions of the LHX3 gene have complex syndromes, including combined pituitary hormone deficiency and nervous system defects resulting in symptoms such as dwarfism, thyroid insufficiency, infertility, and developmental delay. The pathways underlying early pituitary development are poorly understood, and the mechanisms by which the LHX3 gene is regulated in vivo are not known. Using bioinformatic and transgenic mouse approaches, we show that multiple conserved enhancers downstream of the human LHX3 gene direct expression to the developing pituitary and spinal cord in a pattern consistent with endogenous LHX3 expression. Several transferable cis elements can individually guide nervous system expression. However, a single 180-bp minimal enhancer is sufficient to confer specific expression in the developing pituitary. Within this sequence, tandem binding sites recognized by the islet-1 (ISL1) LIM-HD protein are essential for enhancer activity in the pituitary and spine, and a pituitary homeobox 1 (PITX1) bicoid class HD element is required for spatial patterning in the developing pituitary. This study establishes ISL1 as a novel transcriptional regulator of LHX3 and describes a potential mechanism for regulation by PITX1. Moreover, these studies suggest models for analyses of the transcriptional pathways coordinating the expression of other LIM-HD genes and provide tools for the molecular analysis and genetic counseling of pediatric patients with combined pituitary hormone deficiency.
Mullen, Rachel D.; Park, Soyoung
2012-01-01
Lin-11, Isl-1, and Mec-3 (LIM)-homeodomain (HD)-class transcription factors are critical for many aspects of mammalian organogenesis. Of these, LHX3 is essential for pituitary gland and nervous system development. Pediatric patients with mutations in coding regions of the LHX3 gene have complex syndromes, including combined pituitary hormone deficiency and nervous system defects resulting in symptoms such as dwarfism, thyroid insufficiency, infertility, and developmental delay. The pathways underlying early pituitary development are poorly understood, and the mechanisms by which the LHX3 gene is regulated in vivo are not known. Using bioinformatic and transgenic mouse approaches, we show that multiple conserved enhancers downstream of the human LHX3 gene direct expression to the developing pituitary and spinal cord in a pattern consistent with endogenous LHX3 expression. Several transferable cis elements can individually guide nervous system expression. However, a single 180-bp minimal enhancer is sufficient to confer specific expression in the developing pituitary. Within this sequence, tandem binding sites recognized by the islet-1 (ISL1) LIM-HD protein are essential for enhancer activity in the pituitary and spine, and a pituitary homeobox 1 (PITX1) bicoid class HD element is required for spatial patterning in the developing pituitary. This study establishes ISL1 as a novel transcriptional regulator of LHX3 and describes a potential mechanism for regulation by PITX1. Moreover, these studies suggest models for analyses of the transcriptional pathways coordinating the expression of other LIM-HD genes and provide tools for the molecular analysis and genetic counseling of pediatric patients with combined pituitary hormone deficiency. PMID:22194342
Hawe, David; Hernández Fernández, Francisco R; O'Suilleabháin, Liam; Huang, Jian; Wolsztynski, Eric; O'Sullivan, Finbarr
2012-05-01
In dynamic mode, positron emission tomography (PET) can be used to track the evolution of injected radio-labelled molecules in living tissue. This is a powerful diagnostic imaging technique that provides a unique opportunity to probe the status of healthy and pathological tissue by examining how it processes substrates. The spatial aspect of PET is well established in the computational statistics literature. This article focuses on its temporal aspect. The interpretation of PET time-course data is complicated because the measured signal is a combination of vascular delivery and tissue retention effects. If the arterial time-course is known, the tissue time-course can typically be expressed in terms of a linear convolution between the arterial time-course and the tissue residue. In statistical terms, the residue function is essentially a survival function - a familiar life-time data construct. Kinetic analysis of PET data is concerned with estimation of the residue and associated functionals such as flow, flux, volume of distribution and transit time summaries. This review emphasises a nonparametric approach to the estimation of the residue based on a piecewise linear form. Rapid implementation of this by quadratic programming is described. The approach provides a reference for statistical assessment of widely used one- and two-compartmental model forms. We illustrate the method with data from two of the most well-established PET radiotracers, (15)O-H(2)O and (18)F-fluorodeoxyglucose, used for assessment of blood perfusion and glucose metabolism respectively. The presentation illustrates the use of two open-source tools, AMIDE and R, for PET scan manipulation and model inference.
Evolution of thiol protective systems in prokaryotes
NASA Technical Reports Server (NTRS)
Fahey, R. C.; Newton, G. L.
1986-01-01
Biological thiols are essential elements in most aspects of cell function but undergo rapid oxidation to disulfides in the presence of oxygen. The evolution of systems to protect against such oxygen toxicity was essential to the emergence of aerobic life. The protection system used by eukaryotes is based upon glutathione (GSH) and GSH-dependent enzymes but many bacteria lack GSH and apparently use other mechanisms. The objective of this research is to elaborate the thiol protective mechanisms employed by prokaryotes of widely divergent evolutionary origin and to understand why GSH became the central thiol employed in essentially all higher organisms. Thiol-selective fluorescent labeling and HPLC analysis has been used to determine key monothiol components.
ROBOTIC SURGERY: BIOETHICAL ASPECTS
SIQUEIRA-BATISTA, Rodrigo; SOUZA, Camila Ribeiro; MAIA, Polyana Mendes; SIQUEIRA, Sávio Lana
2016-01-01
ABSTRACT Introduction: The use of robots in surgery has been increasingly common today, allowing the emergence of numerous bioethical issues in this area. Objective: To present review of the ethical aspects of robot use in surgery. Method: Search in Pubmed, SciELO and Lilacs crossing the headings "bioethics", "surgery", "ethics", "laparoscopy" and "robotic". Results: Of the citations obtained, were selected 17 articles, which were used for the preparation of the article. It contains brief presentation on robotics, its inclusion in health and bioethical aspects, and the use of robots in surgery. Conclusion: Robotic surgery is a reality today in many hospitals, which makes essential bioethical reflection on the relationship between health professionals, automata and patients. PMID:28076489
Nonlinear hybridization of the fundamental eigenmodes of microscopic ferromagnetic ellipses.
Demidov, V E; Buchmeier, M; Rott, K; Krzysteczko, P; Münchenberger, J; Reiss, G; Demokritov, S O
2010-05-28
We have studied experimentally with high spatial resolution the nonlinear eigenmodes of microscopic Permalloy elliptical elements. We show that the nonlinearity affects the frequencies of the edge and the center modes in an essentially different way. This leads to repulsion of corresponding resonances and to nonlinear mode hybridization resulting in qualitative modifications of the spatial characteristics of the modes. We find that the nonlinear counterparts of the edge and the center modes simultaneously exhibit features specific for both their linear analogues.
Blended Interaction Design: A Spatial Workspace Supporting HCI and Design Practice
NASA Astrophysics Data System (ADS)
Geyer, Florian
This research investigates novel methods and techniques along with tool support that result from a conceptual blend of human-computer interaction with design practice. Using blending theory with material anchors as a theoretical framework, we frame both input spaces and explore emerging structures within technical, cognitive, and social aspects. Based on our results, we will describe a framework of the emerging structures and will design and evaluate tool support within a spatial, studio-like workspace to support collaborative creativity in interaction design.
Sanz de la Torre, J C; Pérez-Ríos, M
1996-06-01
In this paper, an organic personality disorder case by penetrating brain injury, predominantly localized in the right frontal lobe, is presented. Neuropsychological and neuroimaging (CT scan studies) were performed. We assessed the main cognitive aspect: orientation, attention, memory, intelligence, language, visual-spatial functioning, motor functioning, executive functioning and personality. The results obtained, point out disorders in the patient's behavior and in the executive functions. Likewise, other cognitive functions as: attention, memory, language and visual-spatial functioning, show specific deficits.
Can We Use Regression Modeling to Quantify Mean Annual Streamflow at a Global-Scale?
NASA Astrophysics Data System (ADS)
Barbarossa, V.; Huijbregts, M. A. J.; Hendriks, J. A.; Beusen, A.; Clavreul, J.; King, H.; Schipper, A.
2016-12-01
Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF using observations of discharge and catchment characteristics from 1,885 catchments worldwide, ranging from 2 to 106 km2 in size. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB [van Beek et al., 2011] by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area, mean annual precipitation and air temperature, average slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error values were lower (0.29 - 0.38 compared to 0.49 - 0.57) and the modified index of agreement was higher (0.80 - 0.83 compared to 0.72 - 0.75). Our regression model can be applied globally at any point of the river network, provided that the input parameters are within the range of values employed in the calibration of the model. The performance is reduced for water scarce regions and further research should focus on improving such an aspect for regression-based global hydrological models.
NASA Astrophysics Data System (ADS)
Stimmelmayr, R.; Adams, B.; Harcharek, Q.; Pederson, M.; Brower, H., Jr.; Hepa, T.
2017-12-01
Hunter observations and many studies indicate that the Arctic is undergoing major changes in duration of seasonal sea ice extent and thickness, extreme weather patterns, more maritime traffic etc. Coupled to these environmental changes are noted changes in animal distribution, in migration routes and timing, in breeding season start, and arrival of new species to name just a few. The continuation of all these changes could negatively impact the rich marine mammal resources that are essential to Yupik and Iñupiat subsistence communities. The North Slope Borough Department of wildlife management community based marine mammal health research program aims to support the families and communities, as they, as in the past, continue to adapt to changing environmental conditions, changes in wildlife abundance and accessibility. Our program monitors the health of animals so we can detect diseases and contaminants early on that are of concern to people, provide veterinary medicine science based information to hunters regarding "healthy" and "hunter concern" catches, and address individual and "big picture" concerns about native food health and food security. Our collaborative work depends on IK and the sharing of knowledge. IK is an existing source of an integrated object and event-based data knowledge system with culturally rooted quantitative and qualitative aspects. It is characterized by built-in routine and periodic updating and comparison within a given spatial-temporal coverage (traditional use areas). It is the oldest on the ground wildlife health monitoring system of the Arctic. Hunters and communities provide in a meaningful spatial-temporal scale rich wildlife information and data on traditional subsistence resources. The IK based interpretation of ecological, physiological, behavioral, and pathological phenomena advances and expands western science based biological concepts.
Scale problems in assessment of hydrogeological parameters of groundwater flow models
NASA Astrophysics Data System (ADS)
Nawalany, Marek; Sinicyn, Grzegorz
2015-09-01
An overview is presented of scale problems in groundwater flow, with emphasis on upscaling of hydraulic conductivity, being a brief summary of the conventional upscaling approach with some attention paid to recently emerged approaches. The focus is on essential aspects which may be an advantage in comparison to the occasionally extremely extensive summaries presented in the literature. In the present paper the concept of scale is introduced as an indispensable part of system analysis applied to hydrogeology. The concept is illustrated with a simple hydrogeological system for which definitions of four major ingredients of scale are presented: (i) spatial extent and geometry of hydrogeological system, (ii) spatial continuity and granularity of both natural and man-made objects within the system, (iii) duration of the system and (iv) continuity/granularity of natural and man-related variables of groundwater flow system. Scales used in hydrogeology are categorised into five classes: micro-scale - scale of pores, meso-scale - scale of laboratory sample, macro-scale - scale of typical blocks in numerical models of groundwater flow, local-scale - scale of an aquifer/aquitard and regional-scale - scale of series of aquifers and aquitards. Variables, parameters and groundwater flow equations for the three lowest scales, i.e., pore-scale, sample-scale and (numerical) block-scale, are discussed in detail, with the aim to justify physically deterministic procedures of upscaling from finer to coarser scales (stochastic issues of upscaling are not discussed here). Since the procedure of transition from sample-scale to block-scale is physically well based, it is a good candidate for upscaling block-scale models to local-scale models and likewise for upscaling local-scale models to regional-scale models. Also the latest results in downscaling from block-scale to sample scale are briefly referred to.
Diffusion-driven self-assembly of rodlike particles: Monte Carlo simulation on a square lattice
NASA Astrophysics Data System (ADS)
Lebovka, Nikolai I.; Tarasevich, Yuri Yu.; Gigiberiya, Volodymyr A.; Vygornitskii, Nikolai V.
2017-05-01
The diffusion-driven self-assembly of rodlike particles was studied by means of Monte Carlo simulation. The rods were represented as linear k -mers (i.e., particles occupying k adjacent sites). In the initial state, they were deposited onto a two-dimensional square lattice of size L ×L up to the jamming concentration using a random sequential adsorption algorithm. The size of the lattice, L , was varied from 128 to 2048, and periodic boundary conditions were applied along both x and y axes, while the length of the k -mers (determining the aspect ratio) was varied from 2 to 12. The k -mers oriented along the x and y directions (kx-mers and ky-mers, respectively) were deposited equiprobably. In the course of the simulation, the numbers of intraspecific and interspecific contacts between the same sort and between different sorts of k -mers, respectively, were calculated. Both the shift ratio of the actual number of shifts along the longitudinal or transverse axes of the k -mers and the electrical conductivity of the system were also examined. For the initial random configuration, quite different self-organization behavior was observed for short and long k -mers. For long k -mers (k ≥6 ), three main stages of diffusion-driven spatial segregation (self-assembly) were identified: the initial stage, reflecting destruction of the jamming state; the intermediate stage, reflecting continuous cluster coarsening and labyrinth pattern formation; and the final stage, reflecting the formation of diagonal stripe domains. Additional examination of two artificially constructed initial configurations showed that this pattern of diagonal stripe domains is an attractor, i.e., any spatial distribution of k -mers tends to transform into diagonal stripes. Nevertheless, the time for relaxation to the steady state essentially increases as the lattice size growth.
Blind source separation and localization using microphone arrays
NASA Astrophysics Data System (ADS)
Sun, Longji
The blind source separation and localization problem for audio signals is studied using microphone arrays. Pure delay mixtures of source signals typically encountered in outdoor environments are considered. Our proposed approach utilizes the subspace methods, including multiple signal classification (MUSIC) and estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms, to estimate the directions of arrival (DOAs) of the sources from the collected mixtures. Since audio signals are generally considered broadband, the DOA estimates at frequencies with the large sum of squared amplitude values are combined to obtain the final DOA estimates. Using the estimated DOAs, the corresponding mixing and demixing matrices are computed, and the source signals are recovered using the inverse short time Fourier transform. Subspace methods take advantage of the spatial covariance matrix of the collected mixtures to achieve robustness to noise. While the subspace methods have been studied for localizing radio frequency signals, audio signals have their special properties. For instance, they are nonstationary, naturally broadband and analog. All of these make the separation and localization for the audio signals more challenging. Moreover, our algorithm is essentially equivalent to the beamforming technique, which suppresses the signals in unwanted directions and only recovers the signals in the estimated DOAs. Several crucial issues related to our algorithm and their solutions have been discussed, including source number estimation, spatial aliasing, artifact filtering, different ways of mixture generation, and source coordinate estimation using multiple arrays. Additionally, comprehensive simulations and experiments have been conducted to examine various aspects of the algorithm. Unlike the existing blind source separation and localization methods, which are generally time consuming, our algorithm needs signal mixtures of only a short duration and therefore supports real-time implementation.
The geometry of protein hydration
NASA Astrophysics Data System (ADS)
Persson, Filip; Söderhjelm, Pär; Halle, Bertil
2018-06-01
Based on molecular dynamics simulations of four globular proteins in dilute aqueous solution, with three different water models, we examine several, essentially geometrical, aspects of the protein-water interface that remain controversial or incompletely understood. First, we compare different hydration shell definitions, based on spatial or topological proximity criteria. We find that the best method for constructing monolayer shells with nearly complete coverage is to use a 5 Å water-carbon cutoff and a 4 Å water-water cutoff. Using this method, we determine a mean interfacial water area of 11.1 Å2 which appears to be a universal property of the protein-water interface. We then analyze the local coordination and packing density of water molecules in the hydration shells and in subsets of the first shell. The mean polar water coordination number in the first shell remains within 1% of the bulk-water value, and it is 5% lower in the nonpolar part of the first shell. The local packing density is obtained from additively weighted Voronoi tessellation, arguably the most physically realistic method for allocating space between protein and water. We find that water in all parts of the first hydration shell, including the nonpolar part, is more densely packed than in the bulk, with a shell-averaged density excess of 6% for all four proteins. We suggest reasons why this value differs from previous experimental and computational results, emphasizing the importance of a realistic placement of the protein-water dividing surface and the distinction between spatial correlation and packing density. The protein-induced perturbation of water coordination and packing density is found to be short-ranged, with an exponential decay "length" of 0.6 shells. We also compute the protein partial volume, analyze its decomposition, and argue against the relevance of electrostriction.
ULTRAVIOLET DISINFECTION STUDIES WITH CCL LISTED MICROORGANISMS
Resistance to ultraviolet (UV) disinfection is an essential aspect regarding all microbial groups listed on the CCL. The U.S. drinking water industry is interested in including UV light treatment as an amendment to conventional treatment for disinfecting water supplies. UV disi...
Cursive Writing: Are Its Last Days Approaching?
ERIC Educational Resources Information Center
Supon, Vi
2009-01-01
Indicators are that technological advances and state-mandated tests, in addition to other variables, are forcing cursive writing to become a casualty of the American educational landscape. It behooves us to examine the historical, practical, and essential aspects relative to cursive writing.
Digital Ethics: Computers, Photographs, and the Manipulation of Pixels.
ERIC Educational Resources Information Center
Mercedes, Dawn
1996-01-01
Summarizes negative aspects of computer technology and problems inherent in the field of digital imaging. Considers the postmodernist response that borrowing and alteration are essential characteristics of the technology. Discusses the implications of this for education and research. (MJP)
Loth, Eva; Happé, Francesca; Gómez, Juan Carlos
2010-06-01
This study used a novel rating task to investigate whether high-functioning individuals with autism spectrum disorder (ASD) have difficulties distinguishing essential from variable aspects of familiar events. Participants read stories about everyday events and judged how often central, variable, and inappropriate event-components normally occur in this type of situation. The ASD boys made significantly more errors than the typically developing boys in rating the occurrences of variable aspects. In both groups, ratings of variable aspects were age-related, but in the ASD boys, they were also related to theory of mind and weak coherence test scores, and to severity of autistic symptoms. Implications for the understanding of some repetitive behaviours, such as the tendency to adhere to inflexible routines, are discussed.
Walrave, Laura; Vinken, Mathieu; Albertini, Giulia; De Bundel, Dimitri; Leybaert, Luc; Smolders, Ilse J
2016-01-01
Astrocytes are active players in higher brain function as they can release gliotransmitters, which are essential for synaptic plasticity. Various mechanisms have been proposed for gliotransmission, including vesicular mechanisms as well as non-vesicular ones, for example by passive diffusion via connexin hemichannels (HCs). We here investigated whether interfering with connexin43 (Cx43) HCs influenced hippocampal spatial memory. We made use of the peptide Gap19 that blocks HCs but not gap junction channels and is specific for Cx43. To this end, we microinfused transactivator of transcription linked Gap19 (TAT-Gap19) into the brain ventricle of male NMRI mice and assessed spatial memory in a Y maze. We found that the in vivo blockade of Cx43 HCs did not affect the locomotor activity or spatial working memory in a spontaneous alternation Y maze task. Cx43 blockade did however significantly impair the spatial short-term memory in a delayed spontaneous alternation Y maze task. These results indicate that Cx43 HCs play a role in spatial short-term memory.
Arc_Mat: a Matlab-based spatial data analysis toolbox
NASA Astrophysics Data System (ADS)
Liu, Xingjian; Lesage, James
2010-03-01
This article presents an overview of Arc_Mat, a Matlab-based spatial data analysis software package whose source code has been placed in the public domain. An earlier version of the Arc_Mat toolbox was developed to extract map polygon and database information from ESRI shapefiles and provide high quality mapping in the Matlab software environment. We discuss revisions to the toolbox that: utilize enhanced computing and graphing capabilities of more recent versions of Matlab, restructure the toolbox with object-oriented programming features, and provide more comprehensive functions for spatial data analysis. The Arc_Mat toolbox functionality includes basic choropleth mapping; exploratory spatial data analysis that provides exploratory views of spatial data through various graphs, for example, histogram, Moran scatterplot, three-dimensional scatterplot, density distribution plot, and parallel coordinate plots; and more formal spatial data modeling that draws on the extensive Spatial Econometrics Toolbox functions. A brief review of the design aspects of the revised Arc_Mat is described, and we provide some illustrative examples that highlight representative uses of the toolbox. Finally, we discuss programming with and customizing the Arc_Mat toolbox functionalities.
Use of spatial information and search strategies in a water maze analog in Drosophila melanogaster.
Foucaud, Julien; Burns, James G; Mery, Frederic
2010-12-03
Learning the spatial organization of the environment is crucial to fitness in most animal species. Understanding proximate and ultimate factors underpinning spatial memory is thus a major goal in the study of animal behavior. Despite considerable interest in various aspects of its behavior and biology, the model species Drosophila melanogaster lacks a standardized apparatus to investigate spatial learning and memory. We propose here a novel apparatus, the heat maze, conceptually based on the Morris water maze used in rodents. Using the heat maze, we demonstrate that D. melanogaster flies are able to use either proximal or distal visual cues to increase their performance in navigating to a safe zone. We also show that flies are actively using the orientation of distal visual cues when relevant in targeting the safe zone, i.e., Drosophila display spatial learning. Parameter-based classification of search strategies demonstrated the progressive use of spatially precise search strategies during learning. We discuss the opportunity to unravel the mechanistic and evolutionary bases of spatial learning in Drosophila using the heat maze.
NASA Astrophysics Data System (ADS)
Agustina, Vicky
2017-11-01
This study involves revealing the spatial organization typology differences between pre and post disaster houses through core house project in Kasongan, Yogyakarta, Indonesia. The goal is to gain understanding of the way of traditional cultured people re-shaping their space and environment after disaster reconstruction through the core house and find the factors that determine the form. The study has been done by comparing and analyzing the spatial properties and functions between both objects using justified graph technique which is one of the basic methodology that able to identify how people are organized in space. Upon the comparison and analysis of these aspects, it appears that the old house size has impact toward significant changes of the spatial properties also the dwellers put physical factor over culture when evaluating the present house. Through these findings, this study highlights that spatial organization of traditional house has temporal spatial value and the core house concept had influenced the changes of the local spatial behaviour and their perception of their house standard.
Spatial autocorrelation analysis of health care hotspots in Taiwan in 2006
2009-01-01
Background Spatial analytical techniques and models are often used in epidemiology to identify spatial anomalies (hotspots) in disease regions. These analytical approaches can be used to not only identify the location of such hotspots, but also their spatial patterns. Methods In this study, we utilize spatial autocorrelation methodologies, including Global Moran's I and Local Getis-Ord statistics, to describe and map spatial clusters, and areas in which these are situated, for the 20 leading causes of death in Taiwan. In addition, we use the fit to a logistic regression model to test the characteristics of similarity and dissimilarity by gender. Results Gender is compared in efforts to formulate the common spatial risk. The mean found by local spatial autocorrelation analysis is utilized to identify spatial cluster patterns. There is naturally great interest in discovering the relationship between the leading causes of death and well-documented spatial risk factors. For example, in Taiwan, we found the geographical distribution of clusters where there is a prevalence of tuberculosis to closely correspond to the location of aboriginal townships. Conclusions Cluster mapping helps to clarify issues such as the spatial aspects of both internal and external correlations for leading health care events. This is of great aid in assessing spatial risk factors, which in turn facilitates the planning of the most advantageous types of health care policies and implementation of effective health care services. PMID:20003460
Spatially coupled catalytic ignition of CO oxidation on Pt: mesoscopic versus nano-scale
Spiel, C.; Vogel, D.; Schlögl, R.; Rupprechter, G.; Suchorski, Y.
2015-01-01
Spatial coupling during catalytic ignition of CO oxidation on μm-sized Pt(hkl) domains of a polycrystalline Pt foil has been studied in situ by PEEM (photoemission electron microscopy) in the 10−5 mbar pressure range. The same reaction has been examined under similar conditions by FIM (field ion microscopy) on nm-sized Pt(hkl) facets of a Pt nanotip. Proper orthogonal decomposition (POD) of the digitized FIM images has been employed to analyze spatiotemporal dynamics of catalytic ignition. The results show the essential role of the sample size and of the morphology of the domain (facet) boundary in the spatial coupling in CO oxidation. PMID:26021411
Spatial correlation of auroral zone geomagnetic variations
NASA Astrophysics Data System (ADS)
Jackel, B. J.; Davalos, A.
2016-12-01
Magnetic field perturbations in the auroral zone are produced by a combination of distant ionospheric and local ground induced currents. Spatial and temporal structure of these currents is scientifically interesting and can also have a significant influence on critical infrastructure.Ground-based magnetometer networks are an essential tool for studying these phenomena, with the existing complement of instruments in Canada providing extended local time coverage. In this study we examine the spatial correlation between magnetic field observations over a range of scale lengths. Principal component and canonical correlation analysis are used to quantify relationships between multiple sites. Results could be used to optimize network configurations, validate computational models, and improve methods for empirical interpolation.
Framework for ecological monitoring on lands of Alaska National Wildlife Refuges and their partners
Woodward, Andrea; Beever, Erik A.
2010-01-01
National Wildlife Refuges in Alaska and throughout the U.S. have begun developing a spatially comprehensive monitoring program to inform management decisions, and to provide data to broader research projects. In an era of unprecedented rates of climate change, monitoring is essential to detecting, understanding, communicating and mitigating climate-change effects on refuge and other resources under the protection of U.S. Fish and Wildlife Service, and requires monitoring results to address spatial scales broader than individual refuges. This document provides guidance for building a monitoring program for refuges in Alaska that meets refuge-specific management needs while also allowing synthesis and summary of ecological conditions at the ecoregional and statewide spatial scales.
NASA Astrophysics Data System (ADS)
Doskocz, Adam
2016-01-01
All official data are currently integrated and harmonized in a spatial reference system. This paper outlines a national geodetic and cartographic resources in Poland. The national geodetic and cartographic resources are an important part of the spatial information infrastructure in the European Community. They also provide reference data for other resources of Spatial Data Infrastructure (SDI), including: main and detailed geodetic control networks, base maps, land and buildings registries, geodetic registries of utilities and topographic maps. This paper presents methods of producing digital map data and technical standards for field surveys, and in addition paper also presents some aspects of building Global and Regional SDI.
ERIC Educational Resources Information Center
Woodward, Janet
2010-01-01
Reading advocacy is an essential aspect of school librarians' role. Using their knowledge of students, school librarians provide reader's advisory, matching books to individuals based on their interests, aptitudes, and abilities. They know that reading skills are an integral part of academic achievement and work to accelerate this important…
QUALITY ASSURANCE AND QUALITY CONTROL FOR WASTE CONTAINMENT FACILITIES. Project Summary
It is generally agreed that both quality assurance (QA) and quality control (QC) are essential to the proper installation and eventual performance of environmentally safe and secure waste containment systems. Even further, there are both manufacturing and construction aspects to...
ERIC Educational Resources Information Center
Michelsena, Svein
2010-01-01
The compatibility between the Humboldtian principles and the Bologna reform programme is essentially contested. The article traces debates on the Humboldtian university and the Bologna process and explores theoretical, methodological and normative aspects of these debates and the relations between the Bologna process and the Humboldtian ideals.…
THE IRON CYCLE AND OXIDATIVE STRESS IN THE LUNG
While iron is essential for many aspects of cellular function, it can also generate oxygen-based free radicals that result in injury to biological molecules. For this reason, iron acquisition and distribution must be tightly regulated. Constant exposure to the atmosphere, howev...
Four Versatile Metal Reactions.
ERIC Educational Resources Information Center
Hearn, Barbara C.
1988-01-01
Presents several strategies to teach the reactivity of metal elements. Stresses the safety aspects of these demonstrations using an overhead projector and a plexiglass safety shield. Lists some of the essential learnings desired in these activities. Includes a chart of the activity series of metals. (CW)
ERIC Educational Resources Information Center
Kennedy, Nadia Stoyanova
2012-01-01
Students are often encouraged to work on problems "like mathematicians"--to be persistent, to investigate different approaches, and to evaluate solutions. This behavior, regarded as problem solving, is an essential component of mathematical practice. Some crucial aspects of problem solving include defining and interpreting problems, working with…
Assessing the biodiversity of macroinvertebrate faunas in freshwater ecosystems is an essential component of both basic ecological inquiry and applied ecological assessments. Aspects of taxonomic diversity and composition in freshwater communities are widely used to quantify wate...
Spatial memory in foraging games.
Kerster, Bryan E; Rhodes, Theo; Kello, Christopher T
2016-03-01
Foraging and foraging-like processes are found in spatial navigation, memory, visual search, and many other search functions in human cognition and behavior. Foraging is commonly theorized using either random or correlated movements based on Lévy walks, or a series of decisions to remain or leave proximal areas known as "patches". Neither class of model makes use of spatial memory, but search performance may be enhanced when information about searched and unsearched locations is encoded. A video game was developed to test the role of human spatial memory in a canonical foraging task. Analyses of search trajectories from over 2000 human players yielded evidence that foraging movements were inherently clustered, and that clustering was facilitated by spatial memory cues and influenced by memory for spatial locations of targets found. A simple foraging model is presented in which spatial memory is used to integrate aspects of Lévy-based and patch-based foraging theories to perform a kind of area-restricted search, and thereby enhance performance as search unfolds. Using only two free parameters, the model accounts for a variety of findings that individually support competing theories, but together they argue for the integration of spatial memory into theories of foraging. Copyright © 2015 Elsevier B.V. All rights reserved.
Fractionating spatial memory with glutamate receptor subunit-knockout mice.
Bannerman, David M
2009-12-01
In recent years, the contribution that different glutamate receptor subtypes and subunits make to spatial learning and memory has been studied extensively using genetically modified mice in which key proteins are knocked out. This has revealed dissociations between different aspects of spatial memory that were not previously apparent from lesion studies. For example, studies with GluA1 AMPAR [AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor] subunit-knockout mice have revealed the presence of a GluA1-dependent, non-associative short-term memory mechanism that is important for performance on spatial working memory tasks, and a GluA1-independent, long-term associative memory mechanism which underlies performance on spatial reference memory tasks. Within this framework we have also studied the contributions of different GluN2-containing NMDARs [NMDA (N-methyl-D-aspartate) receptors] to spatial memory. Studies with GluN2 NMDAR mutants have revealed different contributions from GluN2A- and GluN2B-containing NMDARs to spatial learning. Furthermore, comparison of forebrain- and hippocampus-specific GluN2B-knockout mice has demonstrated that both hippocampal and extra-hippocampal NMDARs make important contributions to spatial memory performance.
Sheldon, Signy; Chu, Sonja
2017-09-01
Autobiographical memory research has investigated how cueing distinct aspects of a past event can trigger different recollective experiences. This research has stimulated theories about how autobiographical knowledge is accessed and organized. Here, we test the idea that thematic information organizes multiple autobiographical events whereas spatial information organizes individual past episodes by investigating how retrieval guided by these two forms of information differs. We used a novel autobiographical fluency task in which participants accessed multiple memory exemplars to event theme and spatial (location) cues followed by a narrative description task in which they described the memories generated to these cues. Participants recalled significantly more memory exemplars to event theme than to spatial cues; however, spatial cues prompted faster access to past memories. Results from the narrative description task revealed that memories retrieved via event theme cues compared to spatial cues had a higher number of overall details, but those recalled to the spatial cues were recollected with a greater concentration on episodic details than those retrieved via event theme cues. These results provide evidence that thematic information organizes and integrates multiple memories whereas spatial information prompts the retrieval of specific episodic content from a past event.
Pai, Yi-Hao; Lin, Gong-Ru
2011-01-17
By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.
Merschel, Andrew; Heyerdahl, Emily K.; Spies, Thomas A; Loehman, Rachel A.
2018-01-01
Context In the interior Northwest, debate over restoring mixed-conifer forests after a century of fire exclusion is hampered by poor understanding of the pattern and causes of spatial variation in historical fire regimes. Objectives To identify the roles of topography, landscape structure, and forest type in driving spatial variation in historical fire regimes in mixed-conifer forests of central Oregon. Methods We used tree rings to reconstruct multicentury fire and forest histories at 105 plots over 10,393 ha. We classified fire regimes into four types and assessed whether they varied with topography, the location of fuel-limited pumice basins that inhibit fire spread, and an updated classification of forest type. Results We identified four fire-regime types and six forest types. Although surface fires were frequent and often extensive, severe fires were rare in all four types. Fire regimes varied with some aspects of topography (elevation), but not others (slope or aspect) and with the distribution of pumice basins. Fire regimes did not strictly co-vary with mixed-conifer forest types. Conclusions Our work reveals the persistent influence of landscape structure on spatial variation in historical fire regimes and can help inform discussions about appropriate restoration of fire-excluded forests in the interior Northwest. Where the goal is to restore historical fire regimes at landscape scales, managers may want to consider the influence of topoedaphic and vegetation patch types that could affect fire spread and ignition frequency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruss, D. E.; Morel, J. E.; Ragusa, J. C.
2013-07-01
Preconditioners based upon sweeps and diffusion-synthetic acceleration have been constructed and applied to the zeroth and first spatial moments of the 1-D S{sub n} transport equation using a strictly non negative nonlinear spatial closure. Linear and nonlinear preconditioners have been analyzed. The effectiveness of various combinations of these preconditioners are compared. In one dimension, nonlinear sweep preconditioning is shown to be superior to linear sweep preconditioning, and DSA preconditioning using nonlinear sweeps in conjunction with a linear diffusion equation is found to be essentially equivalent to nonlinear sweeps in conjunction with a nonlinear diffusion equation. The ability to use amore » linear diffusion equation has important implications for preconditioning the S{sub n} equations with a strictly non negative spatial discretization in multiple dimensions. (authors)« less
Virtual reality in neurologic rehabilitation of spatial disorientation
2013-01-01
Background Topographical disorientation (TD) is a severe and persistent impairment of spatial orientation and navigation in familiar as well as new environments and a common consequence of brain damage. Virtual reality (VR) provides a new tool for the assessment and rehabilitation of TD. In VR training programs different degrees of active motor control over navigation may be implemented (i.e. more passive spatial navigation vs. more active). Increasing demands of active motor control may overload those visuo-spatial resources necessary for learning spatial orientation and navigation. In the present study we used a VR-based verbally-guided passive navigation training program to improve general spatial abilities in neurologic patients with spatial disorientation. Methods Eleven neurologic patients with focal brain lesions, which showed deficits in spatial orientation, as well as 11 neurologic healthy controls performed a route finding training in a virtual environment. Participants learned and recalled different routes for navigation in a virtual city over five training sessions. Before and after VR training, general spatial abilities were assessed with standardized neuropsychological tests. Results Route finding ability in the VR task increased over the five training sessions. Moreover, both groups improved different aspects of spatial abilities after VR training in comparison to the spatial performance before VR training. Conclusions Verbally-guided passive navigation training in VR enhances general spatial cognition in neurologic patients with spatial disorientation as well as in healthy controls and can therefore be useful in the rehabilitation of spatial deficits associated with TD. PMID:23394289
Self-organizing human cardiac microchambers mediated by geometric confinement
NASA Astrophysics Data System (ADS)
Ma, Zhen; Wang, Jason; Loskill, Peter; Huebsch, Nathaniel; Koo, Sangmo; Svedlund, Felicia L.; Marks, Natalie C.; Hua, Ethan W.; Grigoropoulos, Costas P.; Conklin, Bruce R.; Healy, Kevin E.
2015-07-01
Tissue morphogenesis and organ formation are the consequences of biochemical and biophysical cues that lead to cellular spatial patterning in development. To model such events in vitro, we use PEG-patterned substrates to geometrically confine human pluripotent stem cell colonies and spatially present mechanical stress. Modulation of the WNT/β-catenin pathway promotes spatial patterning via geometric confinement of the cell condensation process during epithelial-mesenchymal transition, forcing cells at the perimeter to express an OCT4+ annulus, which is coincident with a region of higher cell density and E-cadherin expression. The biochemical and biophysical cues synergistically induce self-organizing lineage specification and creation of a beating human cardiac microchamber confined by the pattern geometry. These highly defined human cardiac microchambers can be used to study aspects of embryonic spatial patterning, early cardiac development and drug-induced developmental toxicity.
Violent crime in San Antonio, Texas: an application of spatial epidemiological methods.
Sparks, Corey S
2011-12-01
Violent crimes are rarely considered a public health problem or investigated using epidemiological methods. But patterns of violent crime and other health conditions are often affected by similar characteristics of the built environment. In this paper, methods and perspectives from spatial epidemiology are used in an analysis of violent crimes in San Antonio, TX. Bayesian statistical methods are used to examine the contextual influence of several aspects of the built environment. Additionally, spatial regression models using Bayesian model specifications are used to examine spatial patterns of violent crime risk. Results indicate that the determinants of violent crime depend on the model specification, but are primarily related to the built environment and neighborhood socioeconomic conditions. Results are discussed within the context of a rapidly growing urban area with a diverse population. Copyright © 2011 Elsevier Ltd. All rights reserved.
Theories of Simplification and Scaling of Spatially Distributed Processes. Chapter 12
NASA Technical Reports Server (NTRS)
Levin, Simon A.; Pacala, Stephen W.
1997-01-01
The problem of scaling is at the heart of ecological theory, the essence of understanding and of the development of a predictive capability. The description of any system depends on the spatial, temporal, and organizational perspective chosen; hence it is essential to understand not only how patterns and dynamics vary with scale, but also how patterns at one scale are manifestations of processes operating at other scales. Evolution has shaped the characteristics of species in ways that result in scale displacement: Each species experiences the environment at its own unique set of spatial and temporal scales and interfaces the biota through unique assemblages of phenotypes. In this way, coexistence becomes possible, and biodiversity is enhanced. By averaging over space, time, and biological interactions, a genotype filters variation at fine scales and selects the arena in which it will face the vicissitudes of nature. Variation at finer scales is then noise, of minor importance to the survival and dynamics of the species, and consequently of minor importance in any attempt at description. In attempting to model ecological interactions in space, contributors throughout this book have struggled with a trade-off between simplification and "realistic" complexity and detail. Although the challenge of simplification is widely recognized in ecology, less appreciated is the intertwining of scaling questions and scaling laws with the process of simplification. In the context of this chapter simplification will in general mean the use of spatial or ensemble means and low-order moments to capture more detailed interactions by integrating over given areas. In this way, one can derive descriptions of the system at different spatial scales, which provides the essentials for the extraction of scaling laws by examination of how system properties vary with scale.
An information theory analysis of spatial decisions in cognitive development
Scott, Nicole M.; Sera, Maria D.; Georgopoulos, Apostolos P.
2015-01-01
Performance in a cognitive task can be considered as the outcome of a decision-making process operating across various knowledge domains or aspects of a single domain. Therefore, an analysis of these decisions in various tasks can shed light on the interplay and integration of these domains (or elements within a single domain) as they are associated with specific task characteristics. In this study, we applied an information theoretic approach to assess quantitatively the gain of knowledge across various elements of the cognitive domain of spatial, relational knowledge, as a function of development. Specifically, we examined changing spatial relational knowledge from ages 5 to 10 years. Our analyses consisted of a two-step process. First, we performed a hierarchical clustering analysis on the decisions made in 16 different tasks of spatial relational knowledge to determine which tasks were performed similarly at each age group as well as to discover how the tasks clustered together. We next used two measures of entropy to capture the gradual emergence of order in the development of relational knowledge. These measures of “cognitive entropy” were defined based on two independent aspects of chunking, namely (1) the number of clusters formed at each age group, and (2) the distribution of tasks across the clusters. We found that both measures of entropy decreased with age in a quadratic fashion and were positively and linearly correlated. The decrease in entropy and, therefore, gain of information during development was accompanied by improved performance. These results document, for the first time, the orderly and progressively structured “chunking” of decisions across the development of spatial relational reasoning and quantify this gain within a formal information-theoretic framework. PMID:25698915
Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P; Crewther, Sheila G
2016-01-01
Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network.
Lamp, Gemma; Alexander, Bonnie; Laycock, Robin; Crewther, David P.; Crewther, Sheila G.
2016-01-01
Mapping of the underlying neural mechanisms of visuo-spatial working memory (WM) has been shown to consistently elicit activity in right hemisphere dominant fronto-parietal networks. However to date, the bulk of neuroimaging literature has focused largely on the maintenance aspect of visuo-spatial WM, with a scarcity of research into the aspects of WM involving manipulation of information. Thus, this study aimed to compare maintenance-only with maintenance and manipulation of visuo-spatial stimuli (3D cube shapes) utilizing a 1-back task while functional magnetic resonance imaging (fMRI) scans were acquired. Sixteen healthy participants (9 women, M = 23.94 years, SD = 2.49) were required to perform the 1-back task with or without mentally rotating the shapes 90° on a vertical axis. When no rotation was required (maintenance-only condition), a right hemispheric lateralization was revealed across fronto-parietal areas. However, when the task involved maintaining and manipulating the same stimuli through 90° rotation, activation was primarily seen in the bilateral parietal lobe and left fusiform gyrus. The findings confirm that the well-established right lateralized fronto-parietal networks are likely to underlie simple maintenance of visuo-spatial stimuli. The results also suggest that the added demand of manipulation of information maintained online appears to require further neural recruitment of functionally related areas. In particular mental rotation of visuospatial stimuli required bilateral parietal areas, and the left fusiform gyrus potentially to maintain a categorical or object representation. It can be concluded that WM is a complex neural process involving the interaction of an increasingly large network. PMID:27199694
Some Aspects of Essentially Nonoscillatory (ENO) Formulations for the Euler Equations, Part 3
NASA Technical Reports Server (NTRS)
Chakravarthy, Sukumar R.
1990-01-01
An essentially nonoscillatory (ENO) formulation is described for hyperbolic systems of conservation laws. ENO approaches are based on smart interpolation to avoid spurious numerical oscillations. ENO schemes are a superset of Total Variation Diminishing (TVD) schemes. In the recent past, TVD formulations were used to construct shock capturing finite difference methods. At extremum points of the solution, TVD schemes automatically reduce to being first-order accurate discretizations locally, while away from extrema they can be constructed to be of higher order accuracy. The new framework helps construct essentially non-oscillatory finite difference methods without recourse to local reductions of accuracy to first order. Thus arbitrarily high orders of accuracy can be obtained. The basic general ideas of the new approach can be specialized in several ways and one specific implementation is described based on: (1) the integral form of the conservation laws; (2) reconstruction based on the primitive functions; (3) extension to multiple dimensions in a tensor product fashion; and (4) Runge-Kutta time integration. The resulting method is fourth-order accurate in time and space and is applicable to uniform Cartesian grids. The construction of such schemes for scalar equations and systems in one and two space dimensions is described along with several examples which illustrate interesting aspects of the new approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabaleta, Imanol, E-mail: imanol.zabaleta@eawag.ch; Rodic, Ljiljana, E-mail: ljiljana.rodic@gmail.com
Every year 120–140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system,more » both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively.« less
Hellman, Therese; Jensen, Irene; Bergström, Gunnar; Brämberg, Elisabeth Björk
2016-01-01
ABSTRACT The aim of the study presented in this article was to explore how professionals, without guidelines for implementing interprofessional teamwork, experience the collaboration within team-based rehabilitation for people with back pain and how this collaboration influences their clinical practice. This study employed a mixed methods design. A questionnaire was answered by 383 participants and 17 participants were interviewed. The interviews were analysed using content analysis. The quantitative results showed that the participants were satisfied with their team-based collaboration. Thirty percent reported that staff changes in the past year had influenced their clinical practice, of which 57% reported that these changes had had negative consequences. The qualitative findings revealed that essential features for an effective collaboration were shared basic values and supporting each other. Furthermore, aspects such as having enough time for reflection, staff continuity, and a shared view of the team members’ roles were identified as aspects which influenced the clinical practice. Important clinical implications for nurturing and developing a collaboration in team-based rehabilitation are to create shared basic values and a unified view of all team members’ roles and their contributions to the team. These aspects need to be emphasised on an ongoing basis and not only when the team is formed. PMID:27152534
Medkour, Younes; Dakik, Paméla; McAuley, Mélissa; Mohammad, Karamat; Mitrofanova, Darya
2017-01-01
The functional state of mitochondria is vital to cellular and organismal aging in eukaryotes across phyla. Studies in the yeast Saccharomyces cerevisiae have provided evidence that age-related changes in some aspects of mitochondrial functionality can create certain molecular signals. These signals can then define the rate of cellular aging by altering unidirectional and bidirectional communications between mitochondria and other organelles. Several aspects of mitochondrial functionality are known to impact the replicative and/or chronological modes of yeast aging. They include mitochondrial electron transport, membrane potential, reactive oxygen species, and protein synthesis and proteostasis, as well as mitochondrial synthesis of iron-sulfur clusters, amino acids, and NADPH. Our recent findings have revealed that the composition of mitochondrial membrane lipids is one of the key aspects of mitochondrial functionality affecting yeast chronological aging. We demonstrated that exogenously added lithocholic bile acid can delay chronological aging in yeast because it elicits specific changes in mitochondrial membrane lipids. These changes allow mitochondria to operate as signaling platforms that delay yeast chronological aging by orchestrating an institution and maintenance of a distinct cellular pattern. In this review, we discuss molecular and cellular mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging. PMID:28593023
Zabaleta, Imanol; Rodic, Ljiljana
2015-10-01
Every year 120-140 million tonnes of bio-waste are generated in Europe, most of which is landfilled, incinerated or stabilized and used as covering material in landfill operation. None of these practices enables the recovery of essential nutrients such as phosphorus (P) and nitrogen (N), which are in great demand for agricultural production. Recovery of these nutrients is a matter of international concern considering the non-renewable nature of P sources and the energy intensive production process required for the synthesis of N fertilizers. The objective of this research is to understand the relation between the municipal solid waste management (MSWM) system, both its the physical components and governance aspects, and the recovery of nutrients in Vitoria-Gasteiz (Basque Country) as a benchmark for European medium-size cities. The analysis shows that the existing physical infrastructure and facilities for bio-waste have high potential for nutrient recovery, 49% for N and 83% for P contained in bio-waste. However, governance aspects of the MSWM system such as legislation and user inclusivity play an important role and decrease the actual nutrient recovery to 3.4% and 7.4% for N and P respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Importance of nutritional support in older people.
Sánchez García, E; Montero Errasquín, B; Sánchez Castellano, C; Cruz-Jentoft, A J
2012-01-01
Proper nutrition is an essential part of successful aging and may delay the onset of diseases. Nutrition-related problems in older subjects have been long-time ignored; good nutritional status is an essential component of health and a relevant part of therapeutic plans of most chronic diseases. Moreover, food and nutrition are a relevant aspect of most cultures and are strongly linked with individual lifestyles. Research has proved that nutritional intervention can improve outcomes in many clinical scenarios. This is especially true for older individuals with different acute and chronic conditions and diseases, or with malnutrition. Nutritional intervention can provide sufficient energy, protein and micronutrients, maintain or improve nutritional status, reduce morbidity and increase survival. Evidence is still lacking on the impact of nutritional intervention on physical and mental function, and on quality of life, very relevant outcomes for older individuals. Nutritional screening and assessment should become part of health care of both healthy and sick older people. Nutritional counseling and intervention should be embedded in a general care plan that takes into account all aspects of an aging person. Nutritional programs that aim for high compliance should be individualized, and would have to consider every aspect of old age: beliefs, attitudes, preferences, expectations, and aspirations. Copyright © 2012 S. Karger AG, Basel.
Anorexia in human and experimental animal models: physiological aspects related to neuropeptides.
Yoshimura, Mitsuhiro; Uezono, Yasuhito; Ueta, Yoichi
2015-09-01
Anorexia, a loss of appetite for food, can be caused by various physiological and pathophysiological conditions. In this review, firstly, clinical aspects of anorexia nervosa are summarized in brief. Secondly, hypothalamic neuropeptides responsible for feeding regulation in each hypothalamic nucleus are discussed. Finally, three different types of anorexigenic animal models; dehydration-induced anorexia, cisplatin-induced anorexia and cancer anorexia-cachexia, are introduced. In conclusion, hypothalamic neuropeptides may give us novel insight to understand and find effective therapeutics strategy essential for various kinds of anorexia.
Implementing AORN recommended practices for minimally invasive surgery: part I.
Morton, Paula J
2012-09-01
This article focuses on the patient safety aspects of the revised AORN "Recommended practices for minimally invasive surgery" (MIS). Key considerations include ensuring proper fluid management practices, assessing patients for risk factors related to MIS, implementing precautions for electrosurgery, planning for risks related to MIS, and assessing patients postoperatively for potential complications related to MIS. Collaboration and collegiality among members of the surgical team are essential for ensuring all pertinent aspects of care are recognized and considered. Copyright © 2012 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Feasibility Study Analysis of Establishing Archery Sports Special Place
NASA Astrophysics Data System (ADS)
Tarigan, U. P. P.; Mardhatillah, A.; Budiman, I.; Sembiring, A. C.; Ramadhan, M. S.
2018-04-01
This study essentially discusses the basic concepts related to the decision and process of selecting a sports archery business project in order to provide economic and social benefits over time. Archery sports is a sport that requires special skills, both accuracy, coordination mental training and improves the physical condition of the prime. In Medan, it's still a bit of practice archery, but many people love this sport. From the data collected, there are three locations where archery in the city of the field of the Sunggal Knights is located at Jl Tunggul Hitam no.1A, Kec. Medan Sunggal, Avros Educational Park Aval address at Avros Street No.60 Medan, and the Knights of Johor Archery Club which is located at Jl. The work of Darma Gg. Ujung Family, Medan Johor. Therefore a feasibility study was undertaken in establishing an archery sports place in the field. The aspects to be considered in making feasibility studies are market and marketing aspects, technical and equipment aspects, management aspects, legal aspects, economic and social aspects, and financial aspects. Financial analysis using own capital got Payback Period 3 years 5,8 months, Net Present Value Rp 11.684.026 and obtained Internal Rate of Return of 17%.
Tele-Immersion: Preferred Infrastructure for Anatomy Instruction
ERIC Educational Resources Information Center
Silverstein, Jonathan C.; Ehrenfeld, Jesse M.; Croft, Darin A.; Dech, Fred W.; Small, Stephen; Cook, Sandy
2006-01-01
Understanding spatial relationships among anatomic structures is an essential skill for physicians. Traditional medical education--using books, lectures, physical models, and cadavers--may be insufficient for teaching complex anatomical relationships. This study was designed to measure whether teaching complex anatomy to medical students using…
Spatial Scale in Image Detection and Recognition.
1986-02-01
detail and are important in later visual processing when attention has been focused on a particular aspect of the image. Two experiments investigated the...observers also selected the filter condition to be display on each trial prior to the detection or recognition response.
Models as Feedback: Developing Representational Competence in Chemistry
ERIC Educational Resources Information Center
Padalkar, Shamin; Hegarty, Mary
2015-01-01
Spatial information in science is often expressed through representations such as diagrams and models. Learning the strengths and limitations of these representations and how to relate them are important aspects of developing scientific understanding, referred to as "representational competence." Diagram translation is particularly…
Tracking the Construction of Episodic Future Thoughts
ERIC Educational Resources Information Center
D'Argembeau, Arnaud; Mathy, Arnaud
2011-01-01
The ability to mentally simulate possible futures ("episodic future thinking") is of fundamental importance for various aspects of human cognition and behavior, but precisely how humans construct mental representations of future events is still essentially unknown. We suggest that episodic future thoughts consist of transitory patterns…
Curriculum Mapping to Embed Graduate Capabilities
ERIC Educational Resources Information Center
Spencer, David; Riddle, Matthew; Knewstubb, Bernadette
2012-01-01
Graduate capabilities are an essential aspect of undergraduate development in higher education. Accordingly, La Trobe University's "Design for learning" has identified particular university-wide graduate capabilities and required all faculties to explicitly embed these in their curricula. The Faculty of Law and Management developed an approach to…
Relational Dynamics in Teacher Professional Development
ERIC Educational Resources Information Center
Finkelstein, Carla
2013-01-01
Teacher professional development (PD) is considered essential to improving student achievement toward high standards. I argue that while current notions of high quality PD foreground cognitive aspects of learning, they undertheorize the influence of relational dynamics in teacher learning interactions. That is, current conceptions of high quality…
Influence of Educational Attainment on Consumption
ERIC Educational Resources Information Center
Zhang, Xuemin; He, Youning
2007-01-01
In market economy, man is both the essential productive factor and the consuming subject. Education promotes the two aspects. As shown by investigations on the influence of educational attainment on consumption, education has great influences on people's consumption level, consumption structure, consumption modes and consumption concepts. The…
Software security checklist for the software life cycle
NASA Technical Reports Server (NTRS)
Gilliam, D. P.; Wolfe, T. L.; Sherif, J. S.
2002-01-01
A formal approach to security in the software life cycle is essential to protect corporate resources. However, little thought has been given to this aspect of software development. Due to its criticality, security should be integrated as a formal approach in the software life cycle.
Deformation mechanisms in negative Poisson's ratio materials - Structural aspects
NASA Technical Reports Server (NTRS)
Lakes, R.
1991-01-01
Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.
A Wind-Tunnel Investigation of the Development of Lift on Wings in Accelerated Longitudinal Motion
NASA Technical Reports Server (NTRS)
Turner, Thomas R.
1960-01-01
An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the development of lift on a wing during a simulated constant-acceleration catapult take-off. The investigation included models of a two-dimensional wing, an unswept wing having an aspect ratio of 6, a 35 deg. swept wing having an aspect ratio of 3.05, and a 60 deg. delta wing having an aspect ratio of 2.31. All the wings investigated developed at least 90 percent of their steady-state lift in the first 7 chord lengths of travel. The development of lift was essentially independent of the acceleration when based on chord lengths traveled, and was in qualitative agreement with theory.
Influence of Wiring Cost on the Large-Scale Architecture of Human Cortical Connectivity
Samu, David; Seth, Anil K.; Nowotny, Thomas
2014-01-01
In the past two decades some fundamental properties of cortical connectivity have been discovered: small-world structure, pronounced hierarchical and modular organisation, and strong core and rich-club structures. A common assumption when interpreting results of this kind is that the observed structural properties are present to enable the brain's function. However, the brain is also embedded into the limited space of the skull and its wiring has associated developmental and metabolic costs. These basic physical and economic aspects place separate, often conflicting, constraints on the brain's connectivity, which must be characterized in order to understand the true relationship between brain structure and function. To address this challenge, here we ask which, and to what extent, aspects of the structural organisation of the brain are conserved if we preserve specific spatial and topological properties of the brain but otherwise randomise its connectivity. We perform a comparative analysis of a connectivity map of the cortical connectome both on high- and low-resolutions utilising three different types of surrogate networks: spatially unconstrained (‘random’), connection length preserving (‘spatial’), and connection length optimised (‘reduced’) surrogates. We find that unconstrained randomisation markedly diminishes all investigated architectural properties of cortical connectivity. By contrast, spatial and reduced surrogates largely preserve most properties and, interestingly, often more so in the reduced surrogates. Specifically, our results suggest that the cortical network is less tightly integrated than its spatial constraints would allow, but more strongly segregated than its spatial constraints would necessitate. We additionally find that hierarchical organisation and rich-club structure of the cortical connectivity are largely preserved in spatial and reduced surrogates and hence may be partially attributable to cortical wiring constraints. In contrast, the high modularity and strong s-core of the high-resolution cortical network are significantly stronger than in the surrogates, underlining their potential functional relevance in the brain. PMID:24699277
Nanotechnology applications in hematological malignancies (Review).
Samir, Ahmed; Elgamal, Basma M; Gabr, Hala; Sabaawy, Hatem E
2015-09-01
A major limitation to current cancer therapies is the development of therapy-related side-effects and dose limiting complications. Moreover, a better understanding of the biology of cancer cells and the mechanisms of resistance to therapy is rapidly developing. The translation of advanced knowledge and discoveries achieved at the molecular level must be supported by advanced diagnostic, therapeutic and delivery technologies to translate these discoveries into useful tools that are essential in achieving progress in the war against cancer. Nanotechnology can play an essential role in this aspect providing a transforming technology that can translate the basic and clinical findings into novel diagnostic, therapeutic and preventive tools useful in different types of cancer. Hematological malignancies represent a specific class of cancer, which attracts special attention in the applications of nanotechnology for cancer diagnosis and treatment. The aim of the present review is to elucidate the emerging applications of nanotechnology in cancer management and describe the potentials of nanotechnology in changing the key fundamental aspects of hematological malignancy diagnosis, treatment and follow-up.
NASA Astrophysics Data System (ADS)
Malek, A. K.; Muhammad, H. I.; Rosmaini, A.; Alaa, A. S.; Falah, A. M.
2017-09-01
Development and improvement process are essential to the companies and factories of various kinds and this necessity is related aspects of cost, time and risk that can be avoided, these aspects are available at the nuclear power stations essential demands cannot be ignored. The lean management technique is one of the recent trends in the management system. Where the lean management is stated as the system increases the customer value and reduces the wastage process in an industry or in a power plants. Therefore, there is an urgent necessity to ensure the development and improvement in nuclear power plants in the pre-established in process of being established and stage of the management and production. All of these stages according to the study are closely related to the necessity operationalize and apply lean manufacturing practices that these applications are ineffective and clear contribution to reduce costs and control of production processes and the process of reducing future risks that could be exposed to the station.
Contributions of internationalization to psychology: toward a global and inclusive discipline.
van de Vijver, Fons J R
2013-11-01
In this article I define and describe the current state of internationalization in psychology. Internationalization refers here to the approach in which existing or new psychological theories, methods, procedures, or data across cultures are synthesized so as to create a more culture-informed, inclusive, and globally applicable science and profession. This approach is essential to advance psychology beyond its Euro-American context of development and to achieve a more global applicability of its theories and professional procedures. Internationalization already has led to a better integration of cultural aspects in various psychological theories, to more insight into how to deal with methodological aspects of intact group comparisons (such as bias and equivalence), and to the development of guidelines in areas such as test development, test adaptations, ethics codes, and Internet testing. I review systemic and scientific climate factors in psychology that thwart the progress of internationalization, and conclude by suggesting methods of enhancing internationalization, which is essential for developing a truly universal psychology.
Modulation of cognitive performance and mood by aromas of peppermint and ylang-ylang.
Moss, Mark; Hewitt, Steven; Moss, Lucy; Wesnes, Keith
2008-01-01
This study provides further evidence for the impact of the aromas of plant essential oils on aspects of cognition and mood in healthy participants. One hundred and forty-four volunteers were randomly assigned to conditions of ylang-ylang aroma, peppermint aroma, or no aroma control. Cognitive performance was assessed using the Cognitive Drug Research computerized assessment battery, with mood scales completed before and after cognitive testing. The analysis of the data revealed significant differences between conditions on a number of the factors underpinning the tests that constitute the battery. Peppermint was found to enhance memory whereas ylang-ylang impaired it, and lengthened processing speed. In terms of subjective mood peppermint increased alertness and ylang-ylang decreased it, but significantly increased calmness. These results provide support for the contention that the aromas of essential oils can produce significant and idiosyncratic effects on both subjective and objective assessments of aspects of human behavior. They are discussed with reference to possible pharmacological and psychological modes of influence.
Nanotechnology applications in hematological malignancies (Review)
SAMIR, AHMED; ELGAMAL, BASMA M; GABR, HALA; SABAAWY, HATEM E
2015-01-01
A major limitation to current cancer therapies is the development of therapy-related side-effects and dose limiting complications. Moreover, a better understanding of the biology of cancer cells and the mechanisms of resistance to therapy is rapidly developing. The translation of advanced knowledge and discoveries achieved at the molecular level must be supported by advanced diagnostic, therapeutic and delivery technologies to translate these discoveries into useful tools that are essential in achieving progress in the war against cancer. Nanotechnology can play an essential role in this aspect providing a transforming technology that can translate the basic and clinical findings into novel diagnostic, therapeutic and preventive tools useful in different types of cancer. Hematological malignancies represent a specific class of cancer, which attracts special attention in the applications of nanotechnology for cancer diagnosis and treatment. The aim of the present review is to elucidate the emerging applications of nanotechnology in cancer management and describe the potentials of nanotechnology in changing the key fundamental aspects of hematological malignancy diagnosis, treatment and follow-up. PMID:26134389
Basto, Renata; Lau, Joyce; Vinogradova, Tatiana; Gardiol, Alejandra; Woods, C Geoffrey; Khodjakov, Alexey; Raff, Jordan W
2006-06-30
Centrioles and centrosomes have an important role in animal cell organization, but it is uncertain to what extent they are essential for animal development. The Drosophila protein DSas-4 is related to the human microcephaly protein CenpJ and the C. elegans centriolar protein Sas-4. We show that DSas-4 is essential for centriole replication in flies. DSas-4 mutants start to lose centrioles during embryonic development, and, by third-instar larval stages, no centrioles or centrosomes are detectable. Mitotic spindle assembly is slow in mutant cells, and approximately 30% of the asymmetric divisions of larval neuroblasts are abnormal. Nevertheless, mutant flies develop with near normal timing into morphologically normal adults. These flies, however, have no cilia or flagella and die shortly after birth because their sensory neurons lack cilia. Thus, centrioles are essential for the formation of centrosomes, cilia, and flagella, but, remarkably, they are not essential for most aspects of Drosophila development.
[Liquidation of barriers: realization issues and legislative aspects].
Półchłopek, T
1998-01-01
Designing for the handicapped persons, aiming at the liquidation of the barriers is actually an essential part of the architects activity. It results from the fact that the handicapped persons issue became the interdisciplinary one. The architect, being responsible for the living space and environment creation, is to design the friendly environment for the handicapped persons. The space favourable for the handicapped is favourable for all. There are many aspects of the designing for the handicapped; legislative or execution issues are the examples. The legislative aspect is presented in this paper on the base of the contemporary legal rules of the Polish Republic, whereas the execution aspect is introduced and discussed on the basis of the two projects designed by the Design Bureau in Cracow and being currently in realization. These are: housing & service unit (Boruty-Spiechowicza Str., Cracow) and the Faculty of Philosophy complex at the Jesuits College (Kopernika Str., Cracow).
[Clinical safety and professional liability claims in Orthopaedic Surgery and Traumatology].
Bori, G; Gómez-Durán, E L; Combalia, A; Trilla, A; Prat, A; Bruguera, M; Arimany-Manso, J
2016-01-01
The specialist in orthopaedic and traumatological surgery, like any other doctor, is subject to the current legal provisions while exercising their profession. Mandatory training in the medical-legal aspects of health care is essential. Claims against doctors are a reality, and orthopaedic and traumatological surgery holds first place in terms of frequency of claims according to the data from the General Council of Official Colleges of Doctors of Catalonia. Professionals must be aware of the fundamental aspects of medical professional liability, as well as specific aspects, such as defensive medicine and clinical safety. The understanding of these medical-legal aspects in the routine clinical practice can help to pave the way towards a satisfactory and safe professional career. The aim of this review is to contribute to this training, for the benefit of professionals and patients. Copyright © 2015 SECOT. Published by Elsevier Espana. All rights reserved.
NASA Astrophysics Data System (ADS)
Manstetten, Paul; Filipovic, Lado; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried
2017-02-01
We present a computationally efficient framework to compute the neutral flux in high aspect ratio structures during three-dimensional plasma etching simulations. The framework is based on a one-dimensional radiosity approach and is applicable to simulations of convex rotationally symmetric holes and convex symmetric trenches with a constant cross-section. The framework is intended to replace the full three-dimensional simulation step required to calculate the neutral flux during plasma etching simulations. Especially for high aspect ratio structures, the computational effort, required to perform the full three-dimensional simulation of the neutral flux at the desired spatial resolution, conflicts with practical simulation time constraints. Our results are in agreement with those obtained by three-dimensional Monte Carlo based ray tracing simulations for various aspect ratios and convex geometries. With this framework we present a comprehensive analysis of the influence of the geometrical properties of high aspect ratio structures as well as of the particle sticking probability on the neutral particle flux.
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-01-01
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century. PMID:21444779
Yang, Chaowei; Wu, Huayi; Huang, Qunying; Li, Zhenlong; Li, Jing
2011-04-05
Contemporary physical science studies rely on the effective analyses of geographically dispersed spatial data and simulations of physical phenomena. Single computers and generic high-end computing are not sufficient to process the data for complex physical science analysis and simulations, which can be successfully supported only through distributed computing, best optimized through the application of spatial principles. Spatial computing, the computing aspect of a spatial cyberinfrastructure, refers to a computing paradigm that utilizes spatial principles to optimize distributed computers to catalyze advancements in the physical sciences. Spatial principles govern the interactions between scientific parameters across space and time by providing the spatial connections and constraints to drive the progression of the phenomena. Therefore, spatial computing studies could better position us to leverage spatial principles in simulating physical phenomena and, by extension, advance the physical sciences. Using geospatial science as an example, this paper illustrates through three research examples how spatial computing could (i) enable data intensive science with efficient data/services search, access, and utilization, (ii) facilitate physical science studies with enabling high-performance computing capabilities, and (iii) empower scientists with multidimensional visualization tools to understand observations and simulations. The research examples demonstrate that spatial computing is of critical importance to design computing methods to catalyze physical science studies with better data access, phenomena simulation, and analytical visualization. We envision that spatial computing will become a core technology that drives fundamental physical science advancements in the 21st century.
Alavash, Mohsen; Doebler, Philipp; Holling, Heinz; Thiel, Christiane M; Gießing, Carsten
2015-03-01
Is there one optimal topology of functional brain networks at rest from which our cognitive performance would profit? Previous studies suggest that functional integration of resting state brain networks is an important biomarker for cognitive performance. However, it is still unknown whether higher network integration is an unspecific predictor for good cognitive performance or, alternatively, whether specific network organization during rest predicts only specific cognitive abilities. Here, we investigated the relationship between network integration at rest and cognitive performance using two tasks that measured different aspects of working memory; one task assessed visual-spatial and the other numerical working memory. Network clustering, modularity and efficiency were computed to capture network integration on different levels of network organization, and to statistically compare their correlations with the performance in each working memory test. The results revealed that each working memory aspect profits from a different resting state topology, and the tests showed significantly different correlations with each of the measures of network integration. While higher global network integration and modularity predicted significantly better performance in visual-spatial working memory, both measures showed no significant correlation with numerical working memory performance. In contrast, numerical working memory was superior in subjects with highly clustered brain networks, predominantly in the intraparietal sulcus, a core brain region of the working memory network. Our findings suggest that a specific balance between local and global functional integration of resting state brain networks facilitates special aspects of cognitive performance. In the context of working memory, while visual-spatial performance is facilitated by globally integrated functional resting state brain networks, numerical working memory profits from increased capacities for local processing, especially in brain regions involved in working memory performance. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gallice, A.
2015-12-01
Stream temperature controls important aspects of the riverine habitat, such as the rate of spawning or death of many fish species, or the concentration of numerous dissolved substances. In the current context of accelerating climate change, the future evolution of stream temperature is regarded as uncertain, particularly in the Alps. This uncertainty fostered the development of many prediction models, which are usually classified in two categories: mechanistic models and statistical models. Based on the numerical resolution of physical conservation laws, mechanistic models are generally considered to provide more reliable long-term estimates than regression models. However, despite their physical basis, these models are observed to differ quite significantly in some aspects of their implementation, notably (1) the routing of water in the river channel and (2) the estimation of the temperature of groundwater discharging into the stream. For each one of these two aspects, we considered several of the standard modeling approaches reported in the literature and implemented them in a new modular framework. The latter is based on the spatially-distributed snow model Alpine3D, which is essentially used in the framework to compute the amount of water infiltrating in the upper soil layer. Starting from there, different methods can be selected for the computation of the water and energy fluxes in the hillslopes and in the river network. We relied on this framework to compare the various methodologies for river channel routing and groundwater temperature modeling. We notably assessed the impact of each these approaches on the long-term stream temperature predictions of the model under a typical climate change scenario. The case study was conducted over a high Alpine catchment in Switzerland, whose hydrological and thermal regimes are expected to be markedly affected by climate change. The results show that the various modeling approaches lead to significant differences in the model predictions, and that these differences may be larger than the uncertainties in future air temperature. It is also shown that the temperature of groundwater discharging into the stream has a marked impact on the modeled stream temperature at the catchment outlet.
Sathantriphop, Sunaiyana; Achee, Nicole L; Sanguanpong, Unchalee; Chareonviriyaphap, Theeraphap
2015-12-01
The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock-down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P<0.05) contact irritant escape responses between treatment and control for all tested compound concentrations, except with the minimum dose of picaridin (P>0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes. © 2015 The Society for Vector Ecology.
Defining the site of light perception and initiation of phototropism in Arabidopsis.
Preuten, Tobias; Hohm, Tim; Bergmann, Sven; Fankhauser, Christian
2013-10-07
Phototropism is an adaptive response allowing plants to optimize photosynthetic light capture. This is achieved by asymmetric growth between the shaded and lit sides of the stimulated organ. In grass seedlings, the site of phototropin-mediated light perception is distinct from the site of bending; however, in dicotyledonous plants (e.g., Arabidopsis), spatial aspects of perception remain debatable. We use morphological studies and genetics to show that phototropism can occur in the absence of the root, lower hypocotyl, hypocotyl apex, and cotyledons. Tissue-specific expression of the phototropin1 (phot1) photoreceptor demonstrates that light sensing occurs in the upper hypocotyl and that expression of phot1 in the hypocotyl elongation zone is sufficient to enable a normal phototropic response. Moreover, we show that efficient phototropism occurs when phot1 is expressed from endodermal, cortical, or epidermal cells and that its local activation rapidly leads to a global response throughout the seedling. We propose that spatial aspects in the steps leading from light perception to growth reorientation during phototropism differ between grasses and dicots. These results are important to properly interpret genetic experiments and establish a model connecting light perception to the growth response, including cellular and morphological aspects. Copyright © 2013 Elsevier Ltd. All rights reserved.
On the Accuracy Potential in Underwater/Multimedia Photogrammetry.
Maas, Hans-Gerd
2015-07-24
Underwater applications of photogrammetric measurement techniques usually need to deal with multimedia photogrammetry aspects, which are characterized by the necessity of handling optical rays that are refracted at interfaces between optical media with different refractive indices according to Snell's Law. This so-called multimedia geometry has to be incorporated into geometric models in order to achieve correct measurement results. The paper shows a flexible yet strict geometric model for the handling of refraction effects on the optical path, which can be implemented as a module into photogrammetric standard tools such as spatial resection, spatial intersection, bundle adjustment or epipolar line computation. The module is especially well suited for applications, where an object in water is observed by cameras in air through one or more planar glass interfaces, as it allows for some simplifications here. In the second part of the paper, several aspects, which are relevant for an assessment of the accuracy potential in underwater/multimedia photogrammetry, are discussed. These aspects include network geometry and interface planarity issues as well as effects caused by refractive index variations and dispersion and diffusion under water. All these factors contribute to a rather significant degradation of the geometric accuracy potential in underwater/multimedia photogrammetry. In practical experiments, a degradation of the quality of results by a factor two could be determined under relatively favorable conditions.
Lin, Sen; Sun, Shiyong; Wang, Ke; Shen, Kexuan; Ma, Biaobiao; Ren, Yuquan; Fan, Xiaoyu
2018-02-24
The bioinspired design and construction of enzyme@capsule microreactors with specific cell-like functionality has generated tremendous interest in recent years. Inspired by their fascinating complexity, scientists have endeavored to understand the essential aspects of a natural cell and create biomimicking microreactors so as to immobilize enzymes within the hierarchical structure of a microcapsule. In this study, simultaneous encapsulation of alcohol dehydrogenase (ADH) was achieved during the preparation of microcapsules by the Pickering emulsion method using amphiphilic modified TiO₂ nanoparticles (NPs) as building blocks for assembling the photocatalytic microcapsule membrane. The ADH@TiO₂ NP microreactors exhibited dual catalytic functions, i.e., spatially confined enzymatic catalysis and the membrane-associated photocatalytic oxidation under visible light. The sustainable cycling of nicotinamide adenine dinucleotide (NAD) coenzyme between NADH and NAD⁺ was realized by enzymatic regeneration of NADH from NAD⁺ reduction, and was provided in a form that enabled further photocatalytic oxidation to NAD⁺ under visible light. This bioinspired ADH@TiO₂ NP microreactor allowed the linking of a semiconductor mineral-based inorganic photosystem to enzymatic reactions. This is a first step toward the realization of sustainable biological cycling of NAD⁺/NADH coenzyme in synthetic functional microsystems operating under visible light irradiation.
A New GaAs Laser Radar for Atmospheric Measurements
NASA Technical Reports Server (NTRS)
Brown, R. T.; Stoliar, A. P.
1973-01-01
A special GaAs lidar using fiber coupled diode lasers was constructed for the purpose of measuring the extinction coefficient distribution within a large atmospheric volume at a rate compatible with atmospheric kinematics. The technique is based on taking backscatter signature ratios over spatial increments after the returns are normalized by pulse integration. Essential aspects of the lidar design are beam pulse power, repetition rate, detection system dynamic range and decay linearity. It was necessary to preclude the possibility of eye hazard under any operating conditions, including directly viewing the emitting aperture at close distance with a night-adapted eye. The electronic signal processing and control circuits were built to allow versatile operations. Extinction coefficient measurements were made in fog and clouds using a low-power laboratory version of the lidar, demonstrating feasibility. Data are presented showing range squared corrected backscatter profiles converted to extinction coefficient profiles, temporal signal fluctuations, and solar induced background noise. These results aided in the design of the lidar which is described. Functional tests of this lidar and the implications relevant to the design of a prototype model are discussed. This work was jointly sponsored by Sperry Rand Corporation under its Independent Research and Development program; the Air Force Avionics Laboratory, Wright Field, Dayton, Ohio; and the Naval Ammunition Depot, Crane, Indiana.
A Review of Oil Spill Remote Sensing
Brown, Carl E.
2017-01-01
The technical aspects of oil spill remote sensing are examined and the practical uses and drawbacks of each technology are given with a focus on unfolding technology. The use of visible techniques is ubiquitous, but limited to certain observational conditions and simple applications. Infrared cameras offer some potential as oil spill sensors but have several limitations. Both techniques, although limited in capability, are widely used because of their increasing economy. The laser fluorosensor uniquely detects oil on substrates that include shoreline, water, soil, plants, ice, and snow. New commercial units have come out in the last few years. Radar detects calm areas on water and thus oil on water, because oil will reduce capillary waves on a water surface given moderate winds. Radar provides a unique option for wide area surveillance, all day or night and rainy/cloudy weather. Satellite-carried radars with their frequent overpass and high spatial resolution make these day–night and all-weather sensors essential for delineating both large spills and monitoring ship and platform oil discharges. Most strategic oil spill mapping is now being carried out using radar. Slick thickness measurements have been sought for many years. The operative technique at this time is the passive microwave. New techniques for calibration and verification have made these instruments more reliable. PMID:29301212
Visual receptive field properties of cells in the optic tectum of the archer fish.
Ben-Tov, Mor; Kopilevich, Ivgeny; Donchin, Opher; Ben-Shahar, Ohad; Giladi, Chen; Segev, Ronen
2013-08-01
The archer fish is well known for its extreme visual behavior in shooting water jets at prey hanging on vegetation above water. This fish is a promising model in the study of visual system function because it can be trained to respond to artificial targets and thus to provide valuable psychophysical data. Although much behavioral data have indeed been collected over the past two decades, little is known about the functional organization of the main visual area supporting this visual behavior, namely, the fish optic tectum. In this article we focus on a fundamental aspect of this functional organization and provide a detailed analysis of receptive field properties of cells in the archer fish optic tectum. Using extracellular measurements to record activities of single cells, we first measure their retinotectal mapping. We then determine their receptive field properties such as size, selectivity for stimulus direction and orientation, tuning for spatial frequency, and tuning for temporal frequency. Finally, on the basis of all these measurements, we demonstrate that optic tectum cells can be classified into three categories: orientation-tuned cells, direction-tuned cells, and direction-agnostic cells. Our results provide an essential basis for future investigations of information processing in the archer fish visual system.
Hu, Enyuan; Wang, Xuelong; Yu, Xiqian; ...
2018-01-19
The rechargeable lithium-ion battery (LIB) is the most promising energy storage system to power electric vehicles with high energy density and long cycling life. However, in order to meet customers’ demands for fast charging, the power performances of current LIBs need to be improved. From the cathode aspect, layer-structured cathode materials are widely used in today’s market and will continue to play important roles in the near future. The high rate capability of layered cathode materials during charging and discharging is critical to the power performance of the whole cell and the thermal stability is closely related to the safetymore » issues. Therefore, the in-depth understanding of structural changes of layered cathode materials during high rate charging/discharging and the thermal stability during heating are essential in developing new materials and improving current materials. Since structural changes take place from the atomic level to the whole electrode level, combination of characterization techniques covering multilength scales is quite important. Finally, in many cases, this means using comprehensive tools involving diffraction, spectroscopy, and imaging to differentiate the surface from the bulk and to obtain structural/chemical information with different levels of spatial resolution.« less
Open source tools for fluorescent imaging.
Hamilton, Nicholas A
2012-01-01
As microscopy becomes increasingly automated and imaging expands in the spatial and time dimensions, quantitative analysis tools for fluorescent imaging are becoming critical to remove both bottlenecks in throughput as well as fully extract and exploit the information contained in the imaging. In recent years there has been a flurry of activity in the development of bio-image analysis tools and methods with the result that there are now many high-quality, well-documented, and well-supported open source bio-image analysis projects with large user bases that cover essentially every aspect from image capture to publication. These open source solutions are now providing a viable alternative to commercial solutions. More importantly, they are forming an interoperable and interconnected network of tools that allow data and analysis methods to be shared between many of the major projects. Just as researchers build on, transmit, and verify knowledge through publication, open source analysis methods and software are creating a foundation that can be built upon, transmitted, and verified. Here we describe many of the major projects, their capabilities, and features. We also give an overview of the current state of open source software for fluorescent microscopy analysis and the many reasons to use and develop open source methods. Copyright © 2012 Elsevier Inc. All rights reserved.
A geometric rationale for invariance, covariance and constitutive relations
NASA Astrophysics Data System (ADS)
Romano, Giovanni; Barretta, Raffaele; Diaco, Marina
2018-01-01
There are, in each branch of science, statements which, expressed in ambiguous or even incorrect but seemingly friendly manner, were repeated for a long time and eventually became diffusely accepted. Objectivity of physical fields and of their time rates and frame indifference of constitutive relations are among such notions. A geometric reflection on the description of frame changes as spacetime automorphisms, on induced push-pull transformations and on proper physico-mathematical definitions of material, spatial and spacetime tensor fields and of their time-derivatives along the motion, is here carried out with the aim of pointing out essential notions and of unveiling false claims. Theoretical and computational aspects of nonlinear continuum mechanics, and especially those pertaining to constitutive relations, involving material fields and their time rates, gain decisive conceptual and operative improvement from a proper geometric treatment. Outcomes of the geometric analysis are frame covariance of spacetime velocity, material stretching and material spin. A univocal and frame-covariant tool for evaluation of time rates of material fields is provided by the Lie derivative along the motion. The postulate of frame covariance of material fields is assessed to be a natural physical requirement which cannot interfere with the formulation of constitutive laws, with claims of the contrary stemming from an improper imposition of equality in place of equivalence.
A Review of Oil Spill Remote Sensing.
Fingas, Merv; Brown, Carl E
2017-12-30
The technical aspects of oil spill remote sensing are examined and the practical uses and drawbacks of each technology are given with a focus on unfolding technology. The use of visible techniques is ubiquitous, but limited to certain observational conditions and simple applications. Infrared cameras offer some potential as oil spill sensors but have several limitations. Both techniques, although limited in capability, are widely used because of their increasing economy. The laser fluorosensor uniquely detects oil on substrates that include shoreline, water, soil, plants, ice, and snow. New commercial units have come out in the last few years. Radar detects calm areas on water and thus oil on water, because oil will reduce capillary waves on a water surface given moderate winds. Radar provides a unique option for wide area surveillance, all day or night and rainy/cloudy weather. Satellite-carried radars with their frequent overpass and high spatial resolution make these day-night and all-weather sensors essential for delineating both large spills and monitoring ship and platform oil discharges. Most strategic oil spill mapping is now being carried out using radar. Slick thickness measurements have been sought for many years. The operative technique at this time is the passive microwave. New techniques for calibration and verification have made these instruments more reliable.
Advances in LADAR Components and Subsystems at Raytheon
NASA Technical Reports Server (NTRS)
Jack, Michael; Chapman, George; Edwards, John; McKeag, William; Veeder, Tricia; Wehner, Justin; Roberts, Tom; Robinson, Tom; Neisz, James; Andressen, Cliff;
2012-01-01
Raytheon is developing NIR sensor chip assemblies (SCAs) for scanning and staring 3D LADAR systems. High sensitivity is obtained by integrating high performance detectors with gain, i.e., APDs with very low noise Readout Integrated Circuits (ROICs). Unique aspects of these designs include: independent acquisition (non-gated) of pulse returns, multiple pulse returns with both time and intensity reported to enable full 3D reconstruction of the image. Recent breakthrough in device design has resulted in HgCdTe APDs operating at 300K with essentially no excess noise to gains in excess of 100, low NEP <1nW and GHz bandwidths and have demonstrated linear mode photon counting. SCAs utilizing these high performance APDs have been integrated and demonstrated excellent spatial and range resolution enabling detailed 3D imagery both at short range and long ranges. In the following we will review progress in real-time 3D LADAR imaging receiver products in three areas: (1) scanning 256 x 4 configuration for the Multi-Mode Sensor Seeker (MMSS) program and (2) staring 256 x 256 configuration for the Autonomous Landing and Hazard Avoidance Technology (ALHAT) lunar landing mission and (3) Photon-Counting SCAs which have demonstrated a dramatic reduction in dark count rate due to improved design, operation and processing.
Peacock, Shelley; Duggleby, Wendy; Koop, Priscilla
2014-04-01
Dementia is a terminal illness, and family caregivers play a vital role in providing end-of-life care to their relative. The present study begins to address the paucity of research regarding end-of-life caregiving experience with dementia. This study utilized Munhall's methodology for interpretive phenomenology. Seven women and four men were interviewed two to three times within a year of their relative's death; interviews were transcribed verbatim and hermeneutically analyzed. Findings reveal two essential aspects of end-of-life dementia caregiving: being-with and being-there. Further findings are organized according to the existential life worlds. Examination of the life worlds demonstrates that 1) spatiality provided a sense or lack of feeling welcome to provide end-of-life care; 2) temporality was an eternity or time melting away quickly, or the right or wrong time to die; 3) corporeality revealed feelings of exhaustion; and 4) relationality was felt as a closeness to others or in tension-filled relationships. An understanding from bereaved caregivers' perspectives will help healthcare practitioners better support and empathize with family caregivers. Further research is warranted that focuses on other places of death and differences in experience based on gender or relationship to the care receiver.
NASA Astrophysics Data System (ADS)
Mahmud, Ahmad Rodzi; Setiawan, Iwan; Mansor, Shattri; Shariff, Abdul Rashid Mohamed; Pradhan, Biswajeet; Nuruddin, Ahmed
2009-12-01
A study in modeling fire hazard assessment will be essential in establishing an effective forest fire management system especially in controlling and preventing peat fire. In this paper, we have used geographic information system (GIS), in combination with other geoinformation technologies such as remote sensing and computer modeling, for all aspects of wild land fire management. Identifying areas that have a high probability of burning is an important component of fire management planning. The development of spatially explicit GIS models has greatly facilitated this process by allowing managers to map and analyze variables contributing to fire occurrence across large, unique geographic units. Using the model and its associated software engine, the fire hazard map was produced. Extensive avenue programming scripts were written to provide additional capabilities in the development of these interfaces to meet the full complement of operational software considering various users requirements. The system developed not only possesses user friendly step by step operations to deliver the fire vulnerability mapping but also allows authorized users to edit, add or modify parameters whenever necessary. Results from the model can support fire hazard mapping in the forest and enhance alert system function by simulating and visualizing forest fire and helps for contingency planning.
The RanGTP Pathway: From Nucleo-Cytoplasmic Transport to Spindle Assembly and Beyond
Cavazza, Tommaso; Vernos, Isabelle
2016-01-01
The small GTPase Ran regulates the interaction of transport receptors with a number of cellular cargo proteins. The high affinity binding of the GTP-bound form of Ran to import receptors promotes cargo release, whereas its binding to export receptors stabilizes their interaction with the cargo. This basic mechanism linked to the asymmetric distribution of the two nucleotide-bound forms of Ran between the nucleus and the cytoplasm generates a switch like mechanism controlling nucleo-cytoplasmic transport. Since 1999, we have known that after nuclear envelope breakdown (NEBD) Ran and the above transport receptors also provide a local control over the activity of factors driving spindle assembly and regulating other aspects of cell division. The identification and functional characterization of RanGTP mitotic targets is providing novel insights into mechanisms essential for cell division. Here we review our current knowledge on the RanGTP system and its regulation and we focus on the recent advances made through the characterization of its mitotic targets. We then briefly review the novel functions of the pathway that were recently described. Altogether, the RanGTP system has moonlighting functions exerting a spatial control over protein interactions that drive specific functions depending on the cellular context. PMID:26793706
Restricted gene flow and fine-scale population structuring in tool using New Caledonian crows
NASA Astrophysics Data System (ADS)
Rutz, C.; Ryder, T. B.; Fleischer, R. C.
2012-04-01
New Caledonian crows Corvus moneduloides are the most prolific avian tool users. It has been suggested that some aspects of their complex tool use behaviour are under the influence of cultural processes, involving the social transmission—and perhaps even progressive refinement—of tool designs. Using microsatellite and mt-haplotype profiling of crows from three distinct habitats (dry forest, farmland and beachside habitat), we show that New Caledonian crow populations can exhibit significant fine-scale genetic structuring. Our finding that some sites of <10 km apart were highly differentiated demonstrates considerable potential for genetic and/or cultural isolation of crow groups. Restricted movement of birds between local populations at such small spatial scales, especially across habitat boundaries, illustrates how specific tool designs could be preserved over time, and how tool technologies of different crow groups could diverge due to drift and local selection pressures. Young New Caledonian crows have an unusually long juvenile dependency period, during which they acquire complex tool-related foraging skills. We suggest that the resulting delayed natal dispersal drives population-divergence patterns in this species. Our work provides essential context for future studies that examine the genetic makeup of crow populations across larger geographic areas, including localities with suspected cultural differences in crow tool technologies.
Spatial and temporal aspects of exposure for insurance risk management
NASA Astrophysics Data System (ADS)
Slingsby, A.; Foote, M.; Dykes, J.; Gunasekera, R.; Wood, J.
2009-04-01
Catastrophe (CAT) models estimate financial loss from damage to exposure (buildings) by large catastrophic hazards (events) of different natural perils (e.g. floods, hurricanes or earthquakes) from an event catalogue. CAT models employ vulnerability functions to compute impacts of events on exposure to estimate average annual loss. Since the relationship between hazards and exposure is inherently spatial, CAT models model space explicitly, but with a spatial granularity that is typically low. Whilst this is improving, models are often limited by input (exposure) data. Temporal aspects of hazards are encoded in CAT model event catalogues where appropriate (e.g. the changing shape, size and intensity of a hurricane along its path) but events are treated as temporally independent of each other. Temporal aspects of hazards are the subject of other research: intense events tend to cluster in time (Vitolo et al, 2008) and this also has implications for the poorly understood phenomenon of demand surge (Olsen and Porter, 2008) - inflated prices due to increased demand. This paper concerns temporal aspects of exposure, currently not considered by CAT models. Although often not applicable, where exposure is spatially-variant (e.g. cars or caravans) or temporally-variant (e.g. where use changes over time, such as holiday lets), the relationship of these aspects with spatially and temporally variant hazards becomes important. Our case study uses hailstorms in South Africa as the hazard and motor vehicles as the spatially- and temporally-variant exposure. This is a significant problem in South Africa and other territories (Hohl et al, 2002). Admirat et al's (1985) summary of historical records between 1962 and 1981 (for the Transvaal Highveld region) show an average of 69 hailstorms per year, 3 of which have hailstones that exceed 3cm in diameter. Storms occur in swaths 10-19km in length and 5-9km in width, lasting 6 minutes. They found that hailstorms most frequently occur November to December (summer) at around 1700. This is consistent with Pyle's (2006) analysis of storms, which are caused by the same well-understood physical processes and which are affected by similar factors such as humidity, temperature and topography. Historical records such as these and an understanding of the physical processes involved can be used to create of event sets. In urban areas, damage to motor vehicles can be over 50% of insured losses (Hohl et al, 2002) with the most intense storms damaging vehicle bodywork and windscreens. The amount of damage is dependent on the number and characteristics of vehicles within the hailstorm swath that are unprotected by shelters (Leigh, 1998). Since the majority of hailstorms occur in the late afternoon, it is likely that many vehicles will be on heavily congested roads during the rush hour is high. As such these vehicles will be unprotected by shelters and exposed to the risk. To take into account temporal aspects of exposure a model of the likely whereabouts of vehicles at different times of day is needed. Most transport authorities routinely collect traffic flow data using sensors under the road or at the roadside. These point locations are interpolated onto the road network to produce average traffic flows for road segments by time of day and week. For aggregate modelling, this can be used to redistribute the proportion of vehicular exposure that is likely to be in transit (unprotected by shelters) for each event. For detailed modelling, a sample of vehicles can be tracked using GPS, journeys characterised, clustered and then profiles of vehicle journeys can be made. By correlating journey profiles to other characteristics of the vehicles and of those that drive them, a better understanding of the spatiotemporal aspects of vehicular exposure can be derived. In this paper, we demonstrate how traffic flow data can be used to characterise spatial and temporal aspects of traffic vehicle exposure and the potential implications for evaluating hailstorm risk. We use novel interactive visualisation techniques in order to elicit feedback from insurers about their attitudes towards the relationships between hazards and spatially- and temporally-variant exposure and opportunities for their visualization as they evaluate risk and develop portfolios. References Admirat, P., Goyer, G.G., Wojtiw, L., Carte, E.A. and Roos, D. 1985. A comparative study of hailstorms in Switzerland, Canada and South Africa. International Journal of Climatology, 5, 35-51. Hohl, R., Schiesser, H. & Knepper, I., 2002. The use of weather radars to estimate hail damage to automobiles: an exploratory study in Switzerland. Atmospheric Research, 61(3), 215-238. Leigh, R., 1998. Hail damage to motor vehicles: an examination of the economic costs. In Disaster Management, Crisis and Opportunity - hazard management and disaster preparedness in Australasia and the Pacific Region. pp. 194-203. Olsen, A, and Porter, K. 2008. A Review of Demand Surge Knowledge and Modelling Practice. Willis Research Network White Paper [available from http://www.willisresearchnetwork.com] Pyle, D., 2006. Severe convection storm risk in the Eastern Cape of South Africa. PhD Thesis. Rhodes Univeristy, South Africa. Vitolo, R., Stephenson, D.B, Cook, I.M., Mitchell-Wallace, K. 2008. Serial clustering of intense European Storms. Willis Research Network White Paper [available from http://www.willisresearchnetwork.com
Concentration and biochemical gradients of seston in Lake Ontario
Kelly, Patrick T.; Weidel, Brian C.; Paufve, Matthew R.; O'Malley, Brian P.; Watkins, James M.; Rudstam, Lars G.; Jones, Stuart E.
2017-01-01
Spatial variability in resource quantity and quality may have important implications for the distribution and productivity of primary consumers. In Lake Ontario, ecosystem characteristics suggest the potential for significant spatial heterogeneity in seston quantity and quality, particularly due to the potential for nearshore-offshore gradients in allochthonous nutrient supply, and the formation of a deep chlorophyll layer (DCL) in July. We assessed total and zooplankton food particle size-fractionated chlorophyll a concentrations, as well as carbon-to-phosphorus stoichiometry and essential fatty acid composition of seston across a distance-from-shore and depth transect. We observed time, sampling depth, and distance from shore to be the best predictors of chlorophyll a concentration. Resource quality was much more homogenous in space, but there were strong patterns through time, as both stoichiometric and fatty acid qualities in general were greatest in May, and lowest in July/August. We did observe a peak in essential fatty acid concentration near the DCL in during time of formation, possibly due to differences in phytoplankton community composition between the DCL and epilimnion. These results suggest the potential for a spatially and temporally dynamic resource base for consumers in Lake Ontario, which may be important in developing a broader understanding of variable consumer productivity.
Campos, Roseane; Santos, Márcio; Tunon, Gabriel; Cunha, Luana; Magalhães, Lucas; Moraes, Juliana; Ramalho, Danielle; Lima, Sanmy; Pacheco, José Antônio; Lipscomb, Michael; Ribeiro de Jesus, Amélia; Pacheco de Almeida, Roque
2017-05-11
Visceral leishmaniasis (VL) is a systemic disease endemic in tropical countries and transmitted through sand flies. In particular, Canis familiaris (or domesticated dogs) are believed to be a major urban reservoir for the parasite causing the disease Leishmania. The average number of human VL cases was 58 per year in the state of Sergipe. The city of Aracaju, capital of Sergipe in Northeastern Brazil, had 159 cases of VL in humans. Correlatively, the percentage of serologically positive dogs for leishmaniasis increased from 4.73% in 2008 to 12.69% in 2014. Thus, these studies aimed to delineate the spatial distribution and epidemiological aspects of human and canine VL as mutually supportive for increased incidence. The number of human cases of VL and the frequency of canine positive serology for VL both increased between 2008 and 2014. Spatial distribution analyses mapped areas of the city with the highest concentration of human and canine VL cases. The neighbourhoods that showed the highest disease frequency were located on the outskirts of the city and in urbanised areas or subjected to development. Exponential increase in VL-positive dogs further suggests that the disease is expanding in urban areas, where it can serve as a reservoir for transmission of dogs to humans via the sand fly vector.
Rossato, Janine I; Köhler, Cristiano A; Radiske, Andressa; Bevilaqua, Lia R M; Cammarota, Martín
2015-11-01
Active memories can incorporate new information through reconsolidation. However, the notion that memory retrieval is necessary for reconsolidation has been recently challenged. Non-reinforced retrieval induces hippocampus and medial prefrontal cortex (mPFC)-dependent reconsolidation of spatial memory in the Morris water maze (MWM). We found that the effect of protein synthesis inhibition on this process is abolished when retrieval of the learned spatial preference is hindered through mPFC inactivation but not when it is blocked by deactivation of dorsal CA1. Our results do not fully agree with the hypothesis that retrieval is unneeded for reconsolidation. Instead, they support the idea that a hierarchic interaction between the hippocampus and the mPFC controls spatial memory in the MWM, and indicate that this cortex is sufficient to retrieve the information essential to reconsolidate the spatial memory trace, even when the hippocampus is inactivated. Copyright © 2015 Elsevier Inc. All rights reserved.
Scaling field data to calibrate and validate moderate spatial resolution remote sensing models
Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Zhu, Z.
2007-01-01
Validation and calibration are essential components of nearly all remote sensing-based studies. In both cases, ground measurements are collected and then related to the remote sensing observations or model results. In many situations, and particularly in studies that use moderate resolution remote sensing, a mismatch exists between the sensor's field of view and the scale at which in situ measurements are collected. The use of in situ measurements for model calibration and validation, therefore, requires a robust and defensible method to spatially aggregate ground measurements to the scale at which the remotely sensed data are acquired. This paper examines this challenge and specifically considers two different approaches for aggregating field measurements to match the spatial resolution of moderate spatial resolution remote sensing data: (a) landscape stratification; and (b) averaging of fine spatial resolution maps. The results show that an empirically estimated stratification based on a regression tree method provides a statistically defensible and operational basis for performing this type of procedure.
Geographic information systems, remote sensing, and spatial analysis activities in Texas, 2002-07
Pearson, D.K.; Gary, R.H.; Wilson, Z.D.
2007-01-01
Geographic information system (GIS) technology has become an important tool for scientific investigation, resource management, and environmental planning. A GIS is a computer-aided system capable of collecting, storing, analyzing, and displaying spatially referenced digital data. GIS technology is particularly useful when analyzing a wide variety of spatial data such as with remote sensing and spatial analysis. Remote sensing involves collecting remotely sensed data, such as satellite imagery, aerial photography, or radar images, and analyzing the data to gather information or investigate trends about the environment or the Earth's surface. Spatial analysis combines remotely sensed, thematic, statistical, quantitative, and geographical data through overlay, modeling, and other analytical techniques to investigate specific research questions. It is the combination of data formats and analysis techniques that has made GIS an essential tool in scientific investigations. This document presents information about the technical capabilities and project activities of the U.S. Geological Survey (USGS) Texas Water Science Center (TWSC) GIS Workgroup from 2002 through 2007.
NASA Astrophysics Data System (ADS)
Cristiano, Elena; ten Veldhuis, Marie-claire; van de Giesen, Nick
2017-07-01
In urban areas, hydrological processes are characterized by high variability in space and time, making them sensitive to small-scale temporal and spatial rainfall variability. In the last decades new instruments, techniques, and methods have been developed to capture rainfall and hydrological processes at high resolution. Weather radars have been introduced to estimate high spatial and temporal rainfall variability. At the same time, new models have been proposed to reproduce hydrological response, based on small-scale representation of urban catchment spatial variability. Despite these efforts, interactions between rainfall variability, catchment heterogeneity, and hydrological response remain poorly understood. This paper presents a review of our current understanding of hydrological processes in urban environments as reported in the literature, focusing on their spatial and temporal variability aspects. We review recent findings on the effects of rainfall variability on hydrological response and identify gaps where knowledge needs to be further developed to improve our understanding of and capability to predict urban hydrological response.
NASA Astrophysics Data System (ADS)
Wang, Yuan; Wu, Rongsheng
2001-12-01
Theoretical argumentation for so-called suitable spatial condition is conducted by the aid of homotopy framework to demonstrate that the proposed boundary condition does guarantee that the over-specification boundary condition resulting from an adjoint model on a limited-area is no longer an issue, and yet preserve its well-poseness and optimal character in the boundary setting. The ill-poseness of over-specified spatial boundary condition is in a sense, inevitable from an adjoint model since data assimilation processes have to adapt prescribed observations that used to be over-specified at the spatial boundaries of the modeling domain. In the view of pragmatic implement, the theoretical framework of our proposed condition for spatial boundaries indeed can be reduced to the hybrid formulation of nudging filter, radiation condition taking account of ambient forcing, together with Dirichlet kind of compatible boundary condition to the observations prescribed in data assimilation procedure. All of these treatments, no doubt, are very familiar to mesoscale modelers.
Anelli, Filomena; Ciaramelli, Elisa; Arzy, Shahar; Frassinetti, Francesca
2016-11-01
Accumulating evidence suggests that humans process time and space in similar veins. Humans represent time along a spatial continuum, and perception of temporal durations can be altered through manipulations of spatial attention by prismatic adaptation (PA). Here, we investigated whether PA-induced manipulations of spatial attention can also influence more conceptual aspects of time, such as humans' ability to travel mentally back and forward in time (mental time travel, MTT). Before and after leftward- and rightward-PA, participants projected themselves in the past, present or future time (i.e., self-projection), and, for each condition, determined whether a series of events were located in the past or the future with respect to that specific self-location in time (i.e., self-reference). The results demonstrated that leftward and rightward shifts of spatial attention facilitated recognition of past and future events, respectively. These findings suggest that spatial attention affects the temporal processing of the human self. Copyright © 2016 Elsevier B.V. All rights reserved.
Keys and seats: Spatial response coding underlying the joint spatial compatibility effect.
Dittrich, Kerstin; Dolk, Thomas; Rothe-Wulf, Annelie; Klauer, Karl Christoph; Prinz, Wolfgang
2013-11-01
Spatial compatibility effects (SCEs) are typically observed when participants have to execute spatially defined responses to nonspatial stimulus features (e.g., the color red or green) that randomly appear to the left and the right. Whereas a spatial correspondence of stimulus and response features facilitates response execution, a noncorrespondence impairs task performance. Interestingly, the SCE is drastically reduced when a single participant responds to one stimulus feature (e.g., green) by operating only one response key (individual go/no-go task), whereas a full-blown SCE is observed when the task is distributed between two participants (joint go/no-go task). This joint SCE (a.k.a. the social Simon effect) has previously been explained by action/task co-representation, whereas alternative accounts ascribe joint SCEs to spatial components inherent in joint go/no-go tasks that allow participants to code their responses spatially. Although increasing evidence supports the idea that spatial rather than social aspects are responsible for joint SCEs emerging, it is still unclear to which component(s) the spatial coding refers to: the spatial orientation of response keys, the spatial orientation of responding agents, or both. By varying the spatial orientation of the responding agents (Exp. 1) and of the response keys (Exp. 2), independent of the spatial orientation of the stimuli, in the present study we found joint SCEs only when both the seating and the response key alignment matched the stimulus alignment. These results provide evidence that spatial response coding refers not only to the response key arrangement, but also to the-often neglected-spatial orientation of the responding agents.
NASA Astrophysics Data System (ADS)
Orphan, V. J.; McGlynn, S.; Chadwick, G.; Dekas, A.; Green-Saxena, A.
2013-12-01
Sulfate-coupled anaerobic oxidation of methane is catalysed through symbiotic associations between archaea and sulphate-reducing bacteria and represents the dominant sink for methane in the oceans. These methane-oxidizing symbiotic consortia form well-structured multi-celled aggregations in marine methane seeps, where close spatial proximity is believed to be essential for efficient exchange of substrates between syntrophic partners. The nature of this interspecies metabolic relationship is still unknown however there are a number of hypotheses regarding the electron carrying intermediate and ecophysiology of the partners, each of which should be affected by, and influence, the spatial arrangement of archaeal and bacterial cells within aggregates. To advance our understanding of the role of spatial structure within naturally occurring environmental consortia, we are using spatial statistical methods combined with fluorescence in situ hybridization and high-resolution nanoscale secondary ion mass spectrometry (FISH-nanoSIMS) to quantify the effect of spatial organization and intra- and inter-species interactions on cell-specific microbial activity within these diverse archaeal-bacterial partnerships.
Assessing the role of spatial correlations during collective cell spreading
Treloar, Katrina K.; Simpson, Matthew J.; Binder, Benjamin J.; McElwain, D. L. Sean; Baker, Ruth E.
2014-01-01
Spreading cell fronts are essential features of development, repair and disease processes. Many mathematical models used to describe the motion of cell fronts, such as Fisher's equation, invoke a mean–field assumption which implies that there is no spatial structure, such as cell clustering, present. Here, we examine the presence of spatial structure using a combination of in vitro circular barrier assays, discrete random walk simulations and pair correlation functions. In particular, we analyse discrete simulation data using pair correlation functions to show that spatial structure can form in a spreading population of cells either through sufficiently strong cell–to–cell adhesion or sufficiently rapid cell proliferation. We analyse images from a circular barrier assay describing the spreading of a population of MM127 melanoma cells using the same pair correlation functions. Our results indicate that the spreading melanoma cell populations remain very close to spatially uniform, suggesting that the strength of cell–to–cell adhesion and the rate of cell proliferation are both sufficiently small so as not to induce any spatial patterning in the spreading populations. PMID:25026987
The parietal cortex in sensemaking: the dissociation of multiple types of spatial information.
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction.
The Parietal Cortex in Sensemaking: The Dissociation of Multiple Types of Spatial Information
Sun, Yanlong; Wang, Hongbin
2013-01-01
According to the data-frame theory, sensemaking is a macrocognitive process in which people try to make sense of or explain their observations by processing a number of explanatory structures called frames until the observations and frames become congruent. During the sensemaking process, the parietal cortex has been implicated in various cognitive tasks for the functions related to spatial and temporal information processing, mathematical thinking, and spatial attention. In particular, the parietal cortex plays important roles by extracting multiple representations of magnitudes at the early stages of perceptual analysis. By a series of neural network simulations, we demonstrate that the dissociation of different types of spatial information can start early with a rather similar structure (i.e., sensitivity on a common metric), but accurate representations require specific goal-directed top-down controls due to the interference in selective attention. Our results suggest that the roles of the parietal cortex rely on the hierarchical organization of multiple spatial representations and their interactions. The dissociation and interference between different types of spatial information are essentially the result of the competition at different levels of abstraction. PMID:23710165
General constraints on sampling wildlife on FIA plots
Bailey, L.L.; Sauer, J.R.; Nichols, J.D.; Geissler, P.H.; McRoberts, Ronald E.; Reams, Gregory A.; Van Deusen, Paul C.; McWilliams, William H.; Cieszewski, Chris J.
2005-01-01
This paper reviews the constraints to sampling wildlife populations at FIA points. Wildlife sampling programs must have well-defined goals and provide information adequate to meet those goals. Investigators should choose a State variable based on information needs and the spatial sampling scale. We discuss estimation-based methods for three State variables: species richness, abundance, and patch occupancy. All methods incorporate two essential sources of variation: detectability estimation and spatial variation. FIA sampling imposes specific space and time criteria that may need to be adjusted to meet local wildlife objectives.
Updating the Standard Spatial Observer for Contrast Detection
NASA Technical Reports Server (NTRS)
Ahumada, Albert J.; Watson, Andrew B.
2011-01-01
Watson and Ahmuada (2005) constructed a Standard Spatial Observer (SSO) model for foveal luminance contrast signal detection based on the Medelfest data (Watson, 1999). Here we propose two changes to the model, dropping the oblique effect from the CSF and using the cone density data of Curcio et al. (1990) to estimate the variation of sensitivity with eccentricity. Dropping the complex images, and using medians to exclude outlier data points, the SSO model now accounts for essentially all the predictable variance in the data, with an RMS prediction error of only 0.67 dB.
Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?
Aggleton, John P.; Nelson, Andrew J.D.
2015-01-01
Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discriminations, as well as aspects of nonspatial learning, e.g., temporal discriminations. Working memory tasks, such as T-maze alternation, appear particularly sensitive as they combine an array of these spatial and nonspatial demands. This sensitivity partly reflects the different functions supported by individual anterior thalamic nuclei, though it is argued that anterior thalamic lesion effects also arise from covert pathology in sites distal to the thalamus, most critically in the retrosplenial cortex and hippocampus. This two-level account, involving both local and distal lesion effects, explains the range and severity of the spatial deficits following anterior thalamic lesions. These findings highlight how the anterior thalamic nuclei form a key component in a series of interdependent systems that support multiple spatial functions. PMID:25195980
Technical aspects of a demonstration tape for three-dimensional sound displays
NASA Technical Reports Server (NTRS)
Begault, Durand R.; Wenzel, Elizabeth M.
1990-01-01
This document was developed to accompany an audio cassette that demonstrates work in three-dimensional auditory displays, developed at the Ames Research Center Aerospace Human Factors Division. It provides a text version of the audio material, and covers the theoretical and technical issues of spatial auditory displays in greater depth than on the cassette. The technical procedures used in the production of the audio demonstration are documented, including the methods for simulating rotorcraft radio communication, synthesizing auditory icons, and using the Convolvotron, a real-time spatialization device.
Assessing Wetland Anthropogenic Stress using GIS; a Multi-scale Watershed Approach
Watersheds are widely recognized as essential summary units for ecosystem research and management, particularly in aquatic systems. As the drainage basin in which surface water drains toward a lake, stream, river, or wetland at a lower elevation, watersheds represent spatially e...
USDA-ARS?s Scientific Manuscript database
Successful management of riverine ecosystems often requires mitigation of alien plant invasions. Understanding how environmental variation within watersheds influences distribution and spread of invasive plants is essential to restoring impacted ecological functions and conserving native plant commu...
Seasonal sediment and nutrients transport patterns
USDA-ARS?s Scientific Manuscript database
It is essential to understand sediment and nutrient sources and their spatial and temporal patterns in order to design effective mitigation strategies. However, long-term data sets to determine sediment and nutrient loadings are scarce and expensive to collect. The goal of this study was to determin...
Simulating natural selection in landscape genetics
E. L. Landguth; S. A. Cushman; N. Johnson
2012-01-01
Linking landscape effects to key evolutionary processes through individual organism movement and natural selection is essential to provide a foundation for evolutionary landscape genetics. Of particular importance is determining how spatially- explicit, individual-based models differ from classic population genetics and evolutionary ecology models based on ideal...
Variation in predator foraging behavior changes predator-prey spatio-temporal dynamics
USDA-ARS?s Scientific Manuscript database
1. Foraging underlies the ability of all animals to acquire essential resources and, thus, provides a critical link to understanding population dynamics. A key issue is how variation in foraging behavior affects foraging efficiency and predator-prey interactions in spatially-heterogeneous environmen...
Visualizing Clonal Evolution in Cancer.
Krzywinski, Martin
2016-06-02
Rapid and inexpensive single-cell sequencing is driving new visualizations of cancer instability and evolution. Krzywinski discusses how to present clone evolution plots in order to visualize temporal, phylogenetic, and spatial aspects of a tumor in a single static image. Copyright © 2016 Elsevier Inc. All rights reserved.
Inroduction: diverse perspectives on community
Pamela J. Jakes; Dorothy Anderson
2000-01-01
A glance through the table of contents of any social science journal illustrates that social science disciplines define community quite differently. For example, geographers emphasize spatial aspects, economists emphasize work and markets, and sociologists emphasize social interactions and networks in their definitions of communities. As a scientific concept,...
Introduction: Diverse Perspectives on Community
Jakes J. Pamela; Dorothy Anderson
2000-01-01
A glance through the table of contents of any social science journal illustrates that social science disciplines define community quite differently. For example, geographers emphasize spatial aspects, economists emphasize work and markets, and sociologists emphasize social interactions and networks in their definitions of communities. As a scientific concept,...