Sample records for essential viral functions

  1. Autographa californica multiple nucleopolyhedrovirus PK-1 is essential for nucleocapsid assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Changyong, E-mail: cyliang@yzu.edu.cn; Li, Min; Dai, Xuejuan

    2013-09-01

    PK-1 (Ac10) is a baculovirus-encoded serine/threonine kinase and its function is unclear. Our results showed that a pk-1 knockout AcMNPV failed to produce infectious progeny, while the pk-1 repair virus could rescue this defect. qPCR analysis demonstrated that pk-1 deletion did not affect viral DNA replication. Analysis of the repaired recombinants with truncated pk-1 mutants demonstrated that the catalytic domain of protein kinases of PK-1 was essential to viral infectivity. Moreover, those PK-1 mutants that could rescue the infectious BV production defect exhibited kinase activity in vitro. Therefore, it is suggested that the kinase activity of PK-1 is essential inmore » regulating viral propagation. Electron microscopy revealed that pk-1 deletion affected the formation of normal nucleocapsids. Masses of electron-lucent tubular structures were present in cell transfected with pk-1 knockout bacmid. Therefore, PK-1 appears to phosphorylate some viral or cellular proteins that are essential for DNA packaging to regulate nucleocapsid assembly. - Highlights: • A pk-1 knockout AcMNPV failed to produce infectious progeny. • The pk-1 deletion did not affect viral DNA replication. • The catalytic domain of protein kinases (PKc) of PK-1 was essential to viral infectivity. • The kinase activity of PK-1 is essential in regulating viral propagation. • PK-1 appears to phosphorylate some viral proteins that are essential for DNA packaging to regulate nucleocapsid assembly.« less

  2. Identification of the Essential Role of Viral Bcl-2 for Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication

    PubMed Central

    Liang, Qiming; Chang, Brian; Lee, Patrick; Brulois, Kevin F.; Ge, Jianning; Shi, Mude; Rodgers, Mary A.; Feng, Pinghui; Oh, Byung-Ha; Liang, Chengyu

    2015-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) evades host defenses through tight suppression of autophagy by targeting each step of its signal transduction: by viral Bcl-2 (vBcl-2) in vesicle nucleation, by viral FLIP (vFLIP) in vesicle elongation, and by K7 in vesicle maturation. By exploring the roles of KSHV autophagy-modulating genes, we found, surprisingly, that vBcl-2 is essential for KSHV lytic replication, whereas vFLIP and K7 are dispensable. Knocking out vBcl-2 from the KSHV genome resulted in decreased lytic gene expression at the mRNA and protein levels, a lower viral DNA copy number, and, consequently, a dramatic reduction in the amount of progeny infectious viruses, as also described in the accompanying article (A. Gelgor, I. Kalt, S. Bergson, K. F. Brulois, J. U. Jung, and R. Sarid, J Virol 89:5298–5307, 2015). More importantly, the antiapoptotic and antiautophagic functions of vBcl-2 were not required for KSHV lytic replication. Using a comprehensive mutagenesis analysis, we identified that glutamic acid 14 (E14) of vBcl-2 is critical for KSHV lytic replication. Mutating E14 to alanine totally blocked KSHV lytic replication but showed little or no effect on the antiapoptotic and antiautophagic functions of vBcl-2. Our study indicates that vBcl-2 harbors at least three important and genetically separable functions to modulate both cellular signaling and the virus life cycle. IMPORTANCE The present study shows for the first time that vBcl-2 is essential for KSHV lytic replication. Removal of the vBcl-2 gene results in a lower level of KSHV lytic gene expression, impaired viral DNA replication, and consequently, a dramatic reduction in the level of progeny production. More importantly, the role of vBcl-2 in KSHV lytic replication is genetically separated from its antiapoptotic and antiautophagic functions, suggesting that the KSHV Bcl-2 carries a novel function in viral lytic replication. PMID:25740994

  3. Chemical Composition of Essential Oils from Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis, and Their Effects on the HIV-1 Tat Protein Function.

    PubMed

    Feriotto, Giordana; Marchetti, Nicola; Costa, Valentina; Beninati, Simone; Tagliati, Federico; Mischiati, Carlo

    2018-02-01

    New drugs would be beneficial to fight resistant HIV strains, in particular those capable of interfering with essential viral functions other than those targeted by highly active antiretroviral therapy drugs. Despite the central role played by Tat protein in HIV transcription, a search for vegetable extracts able to hamper this important viral function was never carried out. In this work, we evaluated the chemical composition and possible interference of essential oil from Thymus vulgaris, Cananga odorata, Cymbopogon citratus, and Rosmarinus officinalis with the Tat/TAR-RNA interaction and with Tat-induced HIV-1 LTR transcription. GC/MS Analysis demonstrated the biodiversity of herbal species translated into essential oils composed of different blends of terpenes. In all of them, 4 - 6 constituents represent from 81.63% to 95.19% of the total terpenes. Essential oils of Thymus vulgaris, Cymbopogon citratus, and Rosmarinus officinalis were active in interfering with Tat functions, encouraging further studies to identify single terpenes responsible for the antiviral activity. In view of the quite different composition of these essential oils, we concluded that their interference on Tat function depends on specific terpene or a characteristic blend. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  4. Determination of the protease cleavage site repertoire—The RNase H but not the RT domain is essential for foamy viral protease activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spannaus, Ralf; Bodem, Jochen, E-mail: Jochen.Bodem@vim.uni-wuerzburg.de

    2014-04-15

    In contrast to orthoretroviruses, the foamy virus protease is only active as a protease-reverse transcriptase fusion protein and requires viral RNA for activation. Maturation of foamy viral proteins seems to be restricted to a single cleavage site in Gag and Pol. We provide evidence that unprocessed Gag is required for optimal infectivity, which is unique among retroviruses. Analyses of the cleavage site sequences of the Gag and Pol cleavage sites revealed a high similarity compared to those of Lentiviruses. We show that positions P2' and P2 are invariant and that Gag and Pol cleavage sites are processed with similar efficiencies.more » The RNase H domain is essential for protease activity, but can functionally be substituted by RNase H domains of other retroviruses. Thus, the RNase H domain might be involved in the stabilization of the protease dimer, while the RT domain is essential for RNA dependent protease activation. - Highlights: • Unprocessed Gag is required for optimal infectivity of foamy viruses. • Positions P2 and P2' are invariant in the foamy viral cleavage sites. • The RNaseH domain is essential for protease activity. • The RNaseH domains of other retroviruses support foamy viral protease activity.« less

  5. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication.

    PubMed

    Herod, Morgan R; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C; Verdaguer, Nuria; Rowlands, David J; Stonehouse, Nicola J

    2016-08-01

    The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen. Copyright © 2016 Herod et al.

  6. Both cis and trans Activities of Foot-and-Mouth Disease Virus 3D Polymerase Are Essential for Viral RNA Replication

    PubMed Central

    Herod, Morgan R.; Ferrer-Orta, Cristina; Loundras, Eleni-Anna; Ward, Joseph C.; Verdaguer, Nuria; Rowlands, David J.

    2016-01-01

    ABSTRACT The Picornaviridae is a large family of positive-sense RNA viruses that contains numerous human and animal pathogens, including foot-and-mouth disease virus (FMDV). The picornavirus replication complex comprises a coordinated network of protein-protein and protein-RNA interactions involving multiple viral and host-cellular factors. Many of the proteins within the complex possess multiple roles in viral RNA replication, some of which can be provided in trans (i.e., via expression from a separate RNA molecule), while others are required in cis (i.e., expressed from the template RNA molecule). In vitro studies have suggested that multiple copies of the RNA-dependent RNA polymerase (RdRp) 3D are involved in the viral replication complex. However, it is not clear whether all these molecules are catalytically active or what other function(s) they provide. In this study, we aimed to distinguish between catalytically active 3D molecules and those that build a replication complex. We report a novel nonenzymatic cis-acting function of 3D that is essential for viral-genome replication. Using an FMDV replicon in complementation experiments, our data demonstrate that this cis-acting role of 3D is distinct from the catalytic activity, which is predominantly trans acting. Immunofluorescence studies suggest that both cis- and trans-acting 3D molecules localize to the same cellular compartment. However, our genetic and structural data suggest that 3D interacts in cis with RNA stem-loops that are essential for viral RNA replication. This study identifies a previously undescribed aspect of picornavirus replication complex structure-function and an important methodology for probing such interactions further. IMPORTANCE Foot-and-mouth disease virus (FMDV) is an important animal pathogen responsible for foot-and-mouth disease. The disease is endemic in many parts of the world with outbreaks within livestock resulting in major economic losses. Propagation of the viral genome occurs within replication complexes, and understanding this process can facilitate the development of novel therapeutic strategies. Many of the nonstructural proteins involved in replication possess multiple functions in the viral life cycle, some of which can be supplied to the replication complex from a separate genome (i.e., in trans) while others must originate from the template (i.e., in cis). Here, we present an analysis of cis and trans activities of the RNA-dependent RNA polymerase 3D. We demonstrate a novel cis-acting role of 3D in replication. Our data suggest that this role is distinct from its enzymatic functions and requires interaction with the viral genome. Our data further the understanding of genome replication of this important pathogen. PMID:27194768

  7. When the human viral infectome and diseasome networks collide: towards a systems biology platform for the aetiology of human diseases

    PubMed Central

    2011-01-01

    Background Comprehensive understanding of molecular mechanisms underlying viral infection is a major challenge towards the discovery of new antiviral drugs and susceptibility factors of human diseases. New advances in the field are expected from systems-level modelling and integration of the incessant torrent of high-throughput "-omics" data. Results Here, we describe the Human Infectome protein interaction Network, a novel systems virology model of a virtual virus-infected human cell concerning 110 viruses. This in silico model was applied to comprehensively explore the molecular relationships between viruses and their associated diseases. This was done by merging virus-host and host-host physical protein-protein interactomes with the set of genes essential for viral replication and involved in human genetic diseases. This systems-level approach provides strong evidence that viral proteomes target a wide range of functional and inter-connected modules of proteins as well as highly central and bridging proteins within the human interactome. The high centrality of targeted proteins was correlated to their essentiality for viruses' lifecycle, using functional genomic RNAi data. A stealth-attack of viruses on proteins bridging cellular functions was demonstrated by simulation of cellular network perturbations, a property that could be essential in the molecular aetiology of some human diseases. Networking the Human Infectome and Diseasome unravels the connectivity of viruses to a wide range of diseases and profiled molecular basis of Hepatitis C Virus-induced diseases as well as 38 new candidate genetic predisposition factors involved in type 1 diabetes mellitus. Conclusions The Human Infectome and Diseasome Networks described here provide a unique gateway towards the comprehensive modelling and analysis of the systems level properties associated to viral infection as well as candidate genes potentially involved in the molecular aetiology of human diseases. PMID:21255393

  8. The Extracellular δ-Domain is Essential for the Formation of CD81 Tetraspanin Webs

    PubMed Central

    Homsi, Yahya; Schloetel, Jan-Gero; Scheffer, Konstanze D.; Schmidt, Thomas H.; Destainville, Nicolas; Florin, Luise; Lang, Thorsten

    2014-01-01

    CD81 is a ubiquitously expressed member of the tetraspanin family. It forms large molecular platforms, so-called tetraspanin webs that play physiological roles in a variety of cellular functions and are involved in viral and parasite infections. We have investigated which part of the CD81 molecule is required for the formation of domains in the cell membranes of T-cells and hepatocytes. Surprisingly, we find that large CD81 platforms assemble via the short extracellular δ-domain, independent from a strong primary partner binding and from weak interactions mediated by palmitoylation. The δ-domain is also essential for the platforms to function during viral entry. We propose that, instead of stable binary interactions, CD81 interactions via the small δ-domain, possibly involving a dimerization step, play the key role in organizing CD81 into large tetraspanin webs and controlling its function. PMID:24988345

  9. Polyamines and Hypusination Are Required for Ebolavirus Gene Expression and Replication

    PubMed Central

    Olsen, Michelle E.; Filone, Claire Marie; Rozelle, Dan; Mire, Chad E.; Agans, Krystle N.; Hensley, Lisa

    2016-01-01

    ABSTRACT Ebolavirus (EBOV) is an RNA virus that is known to cause severe hemorrhagic fever in humans and other primates. EBOV successfully enters and replicates in many cell types. This replication is dependent on the virus successfully coopting a number of cellular factors. Many of these factors are currently unidentified but represent potential targets for antiviral therapeutics. Here we show that cellular polyamines are critical for EBOV replication. We found that small-molecule inhibitors of polyamine synthesis block gene expression driven by the viral RNA-dependent RNA polymerase. Short hairpin RNA (shRNA) knockdown of the polyamine pathway enzyme spermidine synthase also resulted in reduced EBOV replication. These findings led us to further investigate spermidine, a polyamine that is essential for the hypusination of eukaryotic initiation factor 5A (eIF5A). Blocking the hypusination of eIF5A (and thereby inhibiting its function) inhibited both EBOV gene expression and viral replication. The mechanism appears to be due to the importance of hypusinated eIF5A for the accumulation of VP30, an essential component of the viral polymerase. The same reduction in hypusinated eIF5A did not alter the accumulation of other viral polymerase components. This action makes eIF5A function an important gate for proper EBOV polymerase assembly and function through the control of a single virus protein. PMID:27460797

  10. Flavivirus RNA Replication: Essential Viral Functions as Targets for Antiviral Therapeutics

    DTIC Science & Technology

    1991-12-31

    We established yellow fever virus ( YFV ) as our study system and assembled all the necessary virologic, molecular biologic, and immunologic reagents for...the detailed study of viral RNA replication. Methodologies for detection, identification, and analysis of YFV polypeptides and RNA species were in...place. Several YFV protesn coding regions were engineered into various surrogate expression systems, and the recombinant proteins thereby produced would

  11. Friendly fire: redirecting herpes simplex virus-1 for therapeutic applications.

    PubMed

    Advani, S J; Weichselbaum, R R; Whitley, R J; Roizman, B

    2002-09-01

    Herpes simplex virus-1 (HSV-1) is a relatively large double-stranded DNA virus encoding at least 89 proteins with well characterized disease pathology. An understanding of the functions of viral proteins together with the ability to genetically engineer specific viral mutants has led to the development of attenuated HSV-1 for gene therapy. This review highlights the progress in creating attenuated genetically engineered HSV-1 mutants that are either replication competent (viral non-essential gene deleted) or replication defective (viral essential gene deleted). The choice between a replication-competent or -defective virus is based on the end-goal of the therapeutic intervention. Replication-competent HSV-1 mutants have primarily been employed as antitumor oncolytic viruses, with the lytic nature of the virus harnessed to destroy tumor cells selectively. In replacement gene therapy, replication-defective viruses have been utilized as delivery vectors. The advantages of HSV-1 vectors are that they infect quiescent and dividing cells efficiently and can encode for relatively large transgenes.

  12. Reverse Genetics System Demonstrates that Rotavirus Nonstructural Protein NSP6 Is Not Essential for Viral Replication in Cell Culture.

    PubMed

    Komoto, Satoshi; Kanai, Yuta; Fukuda, Saori; Kugita, Masanori; Kawagishi, Takahiro; Ito, Naoto; Sugiyama, Makoto; Matsuura, Yoshiharu; Kobayashi, Takeshi; Taniguchi, Koki

    2017-11-01

    The use of overlapping open reading frames (ORFs) to synthesize more than one unique protein from a single mRNA has been described for several viruses. Segment 11 of the rotavirus genome encodes two nonstructural proteins, NSP5 and NSP6. The NSP6 ORF is present in the vast majority of rotavirus strains, and therefore the NSP6 protein would be expected to have a function in viral replication. However, there is no direct evidence of its function or requirement in the viral replication cycle yet. Here, taking advantage of a recently established plasmid-only-based reverse genetics system that allows rescue of recombinant rotaviruses entirely from cloned cDNAs, we generated NSP6-deficient viruses to directly address its significance in the viral replication cycle. Viable recombinant NSP6-deficient viruses could be engineered. Single-step growth curves and plaque formation of the NSP6-deficient viruses confirmed that NSP6 expression is of limited significance for RVA replication in cell culture, although the NSP6 protein seemed to promote efficient virus growth. IMPORTANCE Rotavirus is one of the most important pathogens of severe diarrhea in young children worldwide. The rotavirus genome, consisting of 11 segments of double-stranded RNA, encodes six structural proteins (VP1 to VP4, VP6, and VP7) and six nonstructural proteins (NSP1 to NSP6). Although specific functions have been ascribed to each of the 12 viral proteins, the role of NSP6 in the viral replication cycle remains unknown. In this study, we demonstrated that the NSP6 protein is not essential for viral replication in cell culture by using a recently developed plasmid-only-based reverse genetics system. This reverse genetics approach will be successfully applied to answer questions of great interest regarding the roles of rotaviral proteins in replication and pathogenicity, which can hardly be addressed by conventional approaches. Copyright © 2017 American Society for Microbiology.

  13. Inhibition of herpesvirus and influenza virus replication by blocking polymerase subunit interactions.

    PubMed

    Palù, Giorgio; Loregian, Arianna

    2013-09-01

    Protein-protein interactions (PPIs) play a key role in many biological processes, including virus replication in the host cell. Since most of the PPIs are functionally essential, a possible strategy to inhibit virus replication is based on the disruption of viral protein complexes by peptides or small molecules that interfere with subunit interactions. In particular, an attractive target for antiviral drugs is the binding between the subunits of essential viral enzymes. This review describes the development of new antiviral compounds that inhibit herpesvirus and influenza virus replication by blocking interactions between subunit proteins of their polymerase complexes. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Bm59 is an early gene, but is unessential for the propagation and assembly of Bombyx mori nucleopolyhedrovirus.

    PubMed

    Hu, Xiaolong; Shen, Yunwang; Zheng, Qin; Wang, Guobao; Wu, Xiaofeng; Gong, Chengliang

    2016-02-01

    Bombyx mori nucleopolyhedrovirus (BmNPV) is a major pathogen that specifically infects the domestic silkworm and causes serious economic loss to sericulture around the world. The function of BmNPV Bm59 gene in the viral life cycle is inconclusive. To investigate the role of Bm59 during viral infection, the transcription initiation site and temporal expression of Bm59 were analyzed, and Bm59-knockout virus was generated through homologous recombination in Escherichia coli. The results showed that Bm59 is an early transcription gene with an atypia early transcriptional start motif. Budded virion (BV) production and DNA replication in the BmN cells transfected with the Bm59-knockout virus bacmid were similar to those in the cells transfected with the wild-type virus. Electron microscopy revealed that the occlusion-derived virus can be produced in cells infected with the Bm59-knockout virus. These results indicated that Bm59 is an early gene and is not essential for viral replication or assembly of BmNPV. These findings suggested that non-essential gene (Bm59) remained in the viral genome, which may interact with other viral/host genes in a certain situation.

  15. Biological roles and functional mechanisms of arenavirus Z protein in viral replication.

    PubMed

    Wang, Jialong; Danzy, Shamika; Kumar, Naveen; Ly, Hinh; Liang, Yuying

    2012-09-01

    Arenaviruses can cause severe hemorrhagic fever diseases in humans, with limited prophylactic or therapeutic measures. A small RING-domain viral protein Z has been shown to mediate the formation of virus-like particles and to inhibit viral RNA synthesis, although its biological roles in an infectious viral life cycle have not been directly addressed. By taking advantage of the available reverse genetics system for a model arenavirus, Pichinde virus (PICV), we provide the direct evidence for the essential biological roles of the Z protein's conserved residues, including the G2 myristylation site, the conserved C and H residues of RING domain, and the poorly characterized C-terminal L79 and P80 residues. Dicodon substitutions within the late (L) domain (PSAPPYEP) of the PICV Z protein, although producing viable mutant viruses, have significantly reduced virus growth, a finding suggestive of an important role for the intact L domain in viral replication. Further structure-function analyses of both PICV and Lassa fever virus Z proteins suggest that arenavirus Z proteins have similar molecular mechanisms in mediating their multiple functions, with some interesting variations, such as the role of the G2 residue in blocking viral RNA synthesis. In summary, our studies have characterized the biological roles of the Z protein in an infectious arenavirus system and have shed important light on the distinct functions of its domains in virus budding and viral RNA regulation, the knowledge of which may lead to the development of novel antiviral drugs.

  16. Identification of acidic and aromatic residues in the Zta activation domain essential for Epstein-Barr virus reactivation.

    PubMed

    Deng, Z; Chen, C J; Zerby, D; Delecluse, H J; Lieberman, P M

    2001-11-01

    Epstein-Barr virus (EBV) lytic cycle transcription and DNA replication require the transcriptional activation function of the viral immediate-early protein Zta. We describe a series of alanine substitution mutations in the Zta activation domain that reveal two functional motifs based on amino acid composition. Alanine substitution of single or paired hydrophobic aromatic amino acid residues resulted in modest transcription activation defects, while combining four substitutions of aromatic residues (F22/F26/W74/F75) led to more severe transcription defects. Substitution of acidic amino acid residue E27, D35, or E54 caused severe transcription defects on most viral promoters. Promoter- and cell-specific defects were observed for some substitution mutants. Aromatic residues were required for Zta interaction with TFIIA-TFIID and the CREB-binding protein (CBP) and for stimulation of CBP histone acetyltransferase activity in vitro. In contrast, acidic amino acid substitution mutants interacted with TFIIA-TFIID and CBP indistinguishably from the wild type. The nuclear domain 10 (ND10) protein SP100 was dispersed by most Zta mutants, but acidic residue mutations led to reduced, while aromatic substitution mutants led to increased SP100 nuclear staining. Acidic residue substitution mutants had more pronounced defects in transcription activation of endogenous viral genes in latently infected cells and for viral replication, as measured by the production of infectious virus. One mutant, K12/F13, was incapable of stimulating EBV lytic replication but had only modest transcription defects. These results indicate that Zta stimulates viral reactivation through two nonredundant structural motifs, one of which interacts with general transcription factors and coactivators, and the other has an essential but as yet not understood function in lytic transcription.

  17. Non-coding RNAs in virology: an RNA genomics approach.

    PubMed

    Isaac, Christopher; Patel, Trushar R; Zovoilis, Athanasios

    2018-04-01

    Advances in sequencing technologies and bioinformatic analysis techniques have greatly improved our understanding of various classes of RNAs and their functions. Despite not coding for proteins, non-coding RNAs (ncRNAs) are emerging as essential biomolecules fundamental for cellular functions and cell survival. Interestingly, ncRNAs produced by viruses not only control the expression of viral genes, but also influence host cell regulation and circumvent host innate immune response. Correspondingly, ncRNAs produced by the host genome can play a key role in host-virus interactions. In this article, we will first discuss a number of types of viral and mammalian ncRNAs associated with viral infections. Subsequently, we also describe the new possibilities and opportunities that RNA genomics and next-generation sequencing technologies provide for studying ncRNAs in virology.

  18. Structure and Function of the N-Terminal Domain of the Vesicular Stomatitis Virus RNA Polymerase

    PubMed Central

    Qiu, Shihong; Ogino, Minako; Luo, Ming

    2015-01-01

    ABSTRACT Viruses have various mechanisms to duplicate their genomes and produce virus-specific mRNAs. Negative-strand RNA viruses encode their own polymerases to perform each of these processes. For the nonsegmented negative-strand RNA viruses, the polymerase is comprised of the large polymerase subunit (L) and the phosphoprotein (P). L proteins from members of the Rhabdoviridae, Paramyxoviridae, and Filoviridae share sequence and predicted secondary structure homology. Here, we present the structure of the N-terminal domain (conserved region I) of the L protein from a rhabdovirus, vesicular stomatitis virus, at 1.8-Å resolution. The strictly and strongly conserved residues in this domain cluster in a single area of the protein. Serial mutation of these residues shows that many of the amino acids are essential for viral transcription but not for mRNA capping. Three-dimensional alignments show that this domain shares structural homology with polymerases from other viral families, including segmented negative-strand RNA and double-stranded RNA (dsRNA) viruses. IMPORTANCE Negative-strand RNA viruses include a diverse set of viral families that infect animals and plants, causing serious illness and economic impact. The members of this group of viruses share a set of functionally conserved proteins that are essential to their replication cycle. Among this set of proteins is the viral polymerase, which performs a unique set of reactions to produce genome- and subgenome-length RNA transcripts. In this article, we study the polymerase of vesicular stomatitis virus, a member of the rhabdoviruses, which has served in the past as a model to study negative-strand RNA virus replication. We have identified a site in the N-terminal domain of the polymerase that is essential to viral transcription and that shares sequence homology with members of the paramyxoviruses and the filoviruses. Newly identified sites such as that described here could prove to be useful targets in the design of new therapeutics against negative-strand RNA viruses. PMID:26512087

  19. Identification of two novel functional p53 responsive elements in the Herpes Simplex Virus-1 genome

    PubMed Central

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R.; Boehmer, Paul E.

    2014-01-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. PMID:25010269

  20. A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity

    PubMed Central

    Chenon, Mélanie; Camborde, Laurent; Cheminant, Soizic; Jupin, Isabelle

    2012-01-01

    Selective protein degradation via the ubiquitin-proteasome system (UPS) plays an essential role in many major cellular processes, including host–pathogen interactions. We previously reported that the tightly regulated viral RNA-dependent RNA polymerase (RdRp) of the positive-strand RNA virus Turnip yellow mosaic virus (TYMV) is degraded by the UPS in infected cells, a process that affects viral infectivity. Here, we show that the TYMV 98K replication protein can counteract this degradation process thanks to its proteinase domain. In-vitro assays revealed that the recombinant proteinase domain is a functional ovarian tumour (OTU)-like deubiquitylating enzyme (DUB), as is the 98K produced during viral infection. We also demonstrate that 98K mediates in-vivo deubiquitylation of TYMV RdRp protein—its binding partner within replication complexes—leading to its stabilization. Finally, we show that this DUB activity contributes to viral infectivity in plant cells. The identification of viral RdRp as a specific substrate of the viral DUB enzyme thus reveals the intricate interplay between ubiquitylation, deubiquitylation and the interaction between viral proteins in controlling levels of RdRp and viral infectivity. PMID:22117220

  1. TRIM proteins: another class of viral victims.

    PubMed

    Munir, Muhammad

    2010-04-20

    TRIM (tripartite motif) proteins are a family of RING (really interesting new gene) domain-containing proteins comprising more than 70 human members, with new members still being described. In addition to their involvement in cell proliferation, differentiation, development, morphogenesis, and apoptosis, roles in immune signaling and antiviral functions are emerging. In response to viral infection, TRIM25 ubiquitinates the N terminus of the viral RNA receptor retinoic acid-inducible gene-I (RIG-I), and this modification is essential for RIG-I to interact with its downstream partner mitochondrial antiviral signaling (MAVS). TRIM25 activity thus leads to activation of the RIG-I signaling pathway, which results in type I interferon production to limit viral replication. Recently, it has been demonstrated that influenza A viruses target TRIM25 and disable its antiviral function, thereby suppressing the host interferon response. This Journal Club article highlights the emerging roles of TRIM proteins in antiviral defense mechanisms and an immune evasion strategy in which influenza viruses target a member of the TRIM family.

  2. Identification of influenza A nucleoprotein body domain residues essential for viral RNA expression expose antiviral target.

    PubMed

    Davis, Alicia M; Ramirez, Jose; Newcomb, Laura L

    2017-02-07

    Influenza A virus is controlled with yearly vaccination while emerging global pandemics are kept at bay with antiviral medications. Unfortunately, influenza A viruses have emerged resistance to approved influenza antivirals. Accordingly, there is an urgent need for novel antivirals to combat emerging influenza A viruses resistant to current treatments. Conserved viral proteins are ideal targets because conserved protein domains are present in most, if not all, influenza subtypes, and are presumed less prone to evolve viable resistant versions. The threat of an antiviral resistant influenza pandemic justifies our study to identify and characterize antiviral targets within influenza proteins that are highly conserved. Influenza A nucleoprotein (NP) is highly conserved and plays essential roles throughout the viral lifecycle, including viral RNA synthesis. Using NP crystal structure, we targeted accessible amino acids for substitution. To characterize the NP proteins, reconstituted viral ribonucleoproteins (vRNPs) were expressed in 293 T cells, RNA was isolated, and reverse transcription - quantitative PCR (RT-qPCR) was employed to assess viral RNA expressed from reconstituted vRNPs. Location was confirmed using cellular fractionation and western blot, along with observation of NP-GFP fusion proteins. Nucleic acid binding, oligomerization, and vRNP formation, were each assessed with native gel electrophoresis. Here we report characterization of an accessible and conserved five amino acid region within the NP body domain that plays a redundant but essential role in viral RNA synthesis. Our data demonstrate substitutions in this domain did not alter NP localization, oligomerization, or ability to bind nucleic acids, yet resulted in a defect in viral RNA expression. To define this region further, single and double amino acid substitutions were constructed and investigated. All NP single substitutions were functional, suggesting redundancy, yet different combinations of two amino acid substitutions resulted in a significant defect in RNA expression, confirming these accessible amino acids in the NP body domain play an important role in viral RNA synthesis. The identified conserved and accessible NP body domain represents a viable antiviral target to counter influenza replication and this research will contribute to the well-informed design of novel therapies to combat emerging influenza viruses.

  3. Roles of Arenavirus Z Protein in Mediating Virion Budding, Viral Transcription-Inhibition and Interferon-Beta Suppression.

    PubMed

    Shao, Junjie; Liang, Yuying; Ly, Hinh

    2018-01-01

    The smallest arenaviral protein is the zinc-finger protein (Z) that belongs to the RING finger protein family. Z serves as a main component required for virus budding from the membrane of the infected cells through self-oligomerization, a process that can be aided by the viral nucleoprotein (NP) to form the viral matrix of progeny virus particles. Z has also been shown to be essential for mediating viral transcriptional repression activity by locking the L polymerase onto the viral promoter in a catalytically inactive state, thus limiting viral replication. The Z protein has also recently been shown to inhibit the type I interferon-induction pathway by directly binding to the intracellular pathogen-sensor proteins RIG-I and MDA5, and thus inhibiting their normal functions. This chapter describes several assays used to examine the important roles of the arenaviral Z protein in mediating virus budding (i.e., either Z self-budding or NP-Z budding activities), viral transcriptional inhibition in a viral minigenome (MG) assay, and type I IFN suppression in an IFN-β promoter-mediated luciferase reporter assay.

  4. Viral membrane fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Stephen C., E-mail: harrison@crystal.harvard.edu

    2015-05-15

    Membrane fusion is an essential step when enveloped viruses enter cells. Lipid bilayer fusion requires catalysis to overcome a high kinetic barrier; viral fusion proteins are the agents that fulfill this catalytic function. Despite a variety of molecular architectures, these proteins facilitate fusion by essentially the same generic mechanism. Stimulated by a signal associated with arrival at the cell to be infected (e.g., receptor or co-receptor binding, proton binding in an endosome), they undergo a series of conformational changes. A hydrophobic segment (a “fusion loop” or “fusion peptide”) engages the target-cell membrane and collapse of the bridging intermediate thus formedmore » draws the two membranes (virus and cell) together. We know of three structural classes for viral fusion proteins. Structures for both pre- and postfusion conformations of illustrate the beginning and end points of a process that can be probed by single-virion measurements of fusion kinetics. - Highlights: • Viral fusion proteins overcome the high energy barrier to lipid bilayer merger. • Different molecular structures but the same catalytic mechanism. • Review describes properties of three known fusion-protein structural classes. • Single-virion fusion experiments elucidate mechanism.« less

  5. P‐TEFb goes viral

    PubMed Central

    Zaborowska, Justyna; Isa, Nur F.

    2015-01-01

    Positive transcription elongation factor b (P‐TEFb), which comprises cyclin‐dependent kinase 9 (CDK9) kinase and cyclin T subunits, is an essential kinase complex in human cells. Phosphorylation of the negative elongation factors by P‐TEFb is required for productive elongation of transcription of protein‐coding genes by RNA polymerase II (pol II). In addition, P‐TEFb‐mediated phosphorylation of the carboxyl‐terminal domain (CTD) of the largest subunit of pol II mediates the recruitment of transcription and RNA processing factors during the transcription cycle. CDK9 also phosphorylates p53, a tumor suppressor that plays a central role in cellular responses to a range of stress factors. Many viral factors affect transcription by recruiting or modulating the activity of CDK9. In this review, we will focus on how the function of CDK9 is regulated by viral gene products. The central role of CDK9 in viral life cycles suggests that drugs targeting the interaction between viral products and P‐TEFb could be effective anti‐viral agents. PMID:27398404

  6. Characterization of a baculovirus lacking the DBP (DNA-binding protein) gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanarsdall, Adam L.; Mikhailov, Victor S.; N.K. Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 117808

    2007-08-01

    Autographa californica multiple nucleopolyhedrovirus (AcMNPV) encodes two proteins that possess properties typical of single-stranded DNA-binding proteins (SSBs), late expression factor-3 (LEF-3), and a protein referred to as DNA-binding protein (DBP). Whereas LEF-3 is a multi-functional protein essential for viral DNA replication, transporting helicase into the nucleus, and forms a stable complex with the baculovirus alkaline nuclease, the role for DBP in baculovirus replication remains unclear. Therefore, to better understand the functional role of DBP in viral replication, a DBP knockout virus was generated from an AcMNPV bacmid and analyzed. The results of a growth curve analysis indicated that the dbpmore » knockout construct was unable to produce budded virus indicating that dbp is essential. The lack of DBP does not cause a general shutdown of the expression of viral genes, as was revealed by accumulation of early (LEF-3), late (VP39), and very late (P10) proteins in cells transfected with the dbp knockout construct. To investigate the role of DBP in DNA replication, a real-time PCR-based assay was employed and showed that, although viral DNA synthesis occurred in cells transfected with the dbp knockout, the levels were less than that of the control virus suggesting that DBP is required for normal levels of DNA synthesis or for stability of nascent viral DNA. In addition, analysis of the viral DNA replicated by the dbp knockout by using field inversion gel electrophoresis failed to detect the presence of genome-length DNA. Furthermore, analysis of DBP from infected cells indicated that similar to LEF-3, DBP was tightly bound to viral chromatin. Assessment of the cellular localization of DBP relative to replicated viral DNA by immunoelectron microscopy indicated that, at 24 h post-infection, DBP co-localized with nascent DNA at distinct electron-dense regions within the nucleus. Finally, immunoelectron microscopic analysis of cells transfected with the dbp knockout revealed that DBP is required for the production of normal-appearing nucleocapsids and for the generation of the virogenic stroma.« less

  7. E1B-55K mediated regulation of RNF4 STUbL promotes HAdV gene expression.

    PubMed

    Müncheberg, Sarah; Hay, Ron T; Ip, Wing H; Meyer, Tina; Weiß, Christina; Brenke, Jara; Masser, Sawinee; Hadian, Kamyar; Dobner, Thomas; Schreiner, Sabrina

    2018-04-25

    HAdV E1B-55K is a multifunctional regulator of productive viral replication and oncogenic transformation in non-permissive mammalian cells. These functions depend on E1B-55K's posttranslational modification with the SUMO protein and its binding to HAdV E4orf6. Both early viral proteins recruit specific host factors to form an E3 Ubiquitin ligase complex that targets antiviral host substrates for proteasomal degradation. Recently, we reported that the PML-NB-associated factor Daxx represses efficient HAdV productive infection and is proteasomally degraded via a SUMO-E1B-55K-dependent, E4orf6-independent pathway, the details of which remained to be established.RNF4, a cellular SUMO-targeted Ubiquitin ligase (STUbL), induces ubiquitinylation of specific SUMOylated proteins and plays an essential role during DNA repair. Here, we show that E1B-55K recruits RNF4 to the insoluble nuclear matrix fraction of the infected cell to support RNF4/Daxx association, promoting Daxx PTM, and thus inhibiting this antiviral factor. Removing RNF4 from infected cells using RNAi resulted in blocking the proper establishment of viral replication centers and significantly diminished viral gene expression. These results provide a model for how HAdV antagonize the antiviral host responses by exploiting the functional capacity of cellular STUbLs. Thus, RNF4 and its STUbL function represent a positive factor during lytic infection and a novel candidate for future therapeutic antiviral intervention strategies. IMPORTANCE Daxx is a PML-NB-associated transcription factor, which was recently shown to repress efficient HAdV productive infection. To counteract this antiviral measurement during infection, Daxx is degraded via a novel pathway including viral E1B-55K and host proteasomes. This virus-mediated degradation is independent of the classical HAdV E3 Ubiquitin ligase complex, which is essential during viral infection to target other host antiviral substrates. To maintain productive viral life cycle, HAdV E1B-55K early viral protein inhibits the chromatin-remodeling factor Daxx in a SUMO-dependent manner. In addition viral E1B-55K protein recruits the STUbL RNF4 and sequesters it into the insoluble fraction of the infected cell. E1B-55K promotes complex formation between RNF4 and E1B-55K targeted Daxx protein, supporting Daxx posttranslational modification prior to functional inhibition. Hence, RNF4 represents a novel host factor, which is beneficial for HAdV gene expression by supporting Daxx counteraction. In this regard, RNF4 and other STUbL proteins might represent novel targets for therapeutic intervention. Copyright © 2018 American Society for Microbiology.

  8. Rename the family Ophioviridae and its constituent species

    USDA-ARS?s Scientific Manuscript database

    A transparent and functional system for virus classification is essential to allow scientists to correctly identify and report on viruses detected in different hosts or locations without ambiguity. This is a taxonomic proposal from the Ophioviridae Study Group of the International Committee on Viral...

  9. A Surface Groove Essential for Viral Bcl-2 Function During Chronic Infection In Vivo

    PubMed Central

    Petros, Andrew M; Nettesheim, David; van Dyk, Linda F.; Labrada, Lucia; Speck, Samuel H; Levine, Beth

    2005-01-01

    Antiapoptotic Bcl-2 family proteins inhibit apoptosis in cultured cells by binding BH3 domains of proapoptotic Bcl-2 family members via a hydrophobic BH3 binding groove on the protein surface. We investigated the physiological importance of the BH3 binding groove of an antiapoptotic Bcl-2 protein in mammals in vivo by analyzing a viral Bcl-2 family protein. We show that the γ-herpesvirus 68 (γHV68) Bcl-2 family protein (γHV68 v-Bcl-2), which is known to inhibit apoptosis in cultured cells, inhibits both apoptosis in primary lymphocytes and Bax toxicity in yeast. Nuclear magnetic resonance determination of the γHV68 v-Bcl-2 structure revealed a BH3 binding groove that binds BH3 domain peptides from proapoptotic Bcl-2 family members Bax and Bak via a molecular mechanism shared with host Bcl-2 family proteins, involving a conserved arginine in the BH3 peptide binding groove. Mutations of this conserved arginine and two adjacent amino acids to alanine (SGR to AAA) within the BH3 binding groove resulted in a properly folded protein that lacked the capacity of the wild-type γHV68 v-Bcl-2 to bind Bax BH3 peptide and to block Bax toxicity in yeast. We tested the physiological importance of this v-Bcl-2 domain during viral infection by engineering viral mutants encoding a v-Bcl-2 containing the SGR to AAA mutation. This mutation resulted in a virus defective for both efficient reactivation of γHV68 from latency and efficient persistent γHV68 replication. These studies demonstrate an essential functional role for amino acids in the BH3 peptide binding groove of a viral Bcl-2 family member during chronic infection. PMID:16201011

  10. Essential function of VCP/p97 in infection cycle of the nucleopolyhedrovirus AcMNPV in Spodoptera frugiperda Sf9 cells.

    PubMed

    Lyupina, Yulia V; Erokhov, Pavel A; Kravchuk, Oksana I; Finoshin, Alexander D; Abaturova, Svetlana B; Orlova, Olga V; Beljelarskaya, Svetlana N; Kostyuchenko, Margarita V; Mikhailov, Victor S

    2018-06-08

    The protein VCP/p97 (also named CDC48 and TER94) belongs to a type II subfamily of the AAA+ATPases and controls cellular proteostasis by acting upstream of proteasomes in the ubiquitin-proteasome protein degradation pathway. The function of VCP/p97 in the baculovirus infection cycle in insect cells remains unknown. Here, we identified VCP/p97 in the fall armyworm Spodoptera frugiperda (Sf9) cells and analyzed the replication of the Autographa californica multiple nucleopolyhedrovirus, AcMNPV, in Sf9 cells in which the VCP/p97 function was inhibited. The specific allosteric inhibitor of the VCP/p97 ATPase activity, NMS-873, did not deplete VCP/p97 in infected cells but caused a dose-dependent inhibition of viral DNA synthesis and efficiently suppressed expression of viral proteins and production of budded virions. NMS-873 caused accumulation of ubiquitinated proteins in a manner similar to the inhibitor of proteasome activity, Bortezomib. This suggests the essential function of VCP/p97 in the baculovirus infection cycle might be associated, at least in part, with the ubiquitin-proteasome system. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Identification of two novel functional p53 responsive elements in the herpes simplex virus-1 genome.

    PubMed

    Hsieh, Jui-Cheng; Kuta, Ryan; Armour, Courtney R; Boehmer, Paul E

    2014-07-01

    Analysis of the herpes simplex virus-1 (HSV-1) genome reveals two candidate p53 responsive elements (p53RE), located in proximity to the replication origins oriL and oriS, referred to as p53RE-L and p53RE-S, respectively. The sequences of p53RE-L and p53RE-S conform to the p53 consensus site and are present in HSV-1 strains KOS, 17, and F. p53 binds to both elements in vitro and in virus-infected cells. Both p53RE-L and p53RE-S are capable of conferring p53-dependent transcriptional activation onto a heterologous reporter gene. Importantly, expression of the essential immediate early viral transactivator ICP4 and the essential DNA replication protein ICP8, that are adjacent to p53RE-S and p53RE-L, are repressed in a p53-dependent manner. Taken together, this study identifies two novel functional p53RE in the HSV-1 genome and suggests a complex mechanism of viral gene regulation by p53 which may determine progression of the lytic viral replication cycle or the establishment of latency. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs.

    PubMed

    Lim, Chun Shen; Brown, Chris M

    2017-01-01

    Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community.

  13. Know Your Enemy: Successful Bioinformatic Approaches to Predict Functional RNA Structures in Viral RNAs

    PubMed Central

    Lim, Chun Shen; Brown, Chris M.

    2018-01-01

    Structured RNA elements may control virus replication, transcription and translation, and their distinct features are being exploited by novel antiviral strategies. Viral RNA elements continue to be discovered using combinations of experimental and computational analyses. However, the wealth of sequence data, notably from deep viral RNA sequencing, viromes, and metagenomes, necessitates computational approaches being used as an essential discovery tool. In this review, we describe practical approaches being used to discover functional RNA elements in viral genomes. In addition to success stories in new and emerging viruses, these approaches have revealed some surprising new features of well-studied viruses e.g., human immunodeficiency virus, hepatitis C virus, influenza, and dengue viruses. Some notable discoveries were facilitated by new comparative analyses of diverse viral genome alignments. Importantly, comparative approaches for finding RNA elements embedded in coding and non-coding regions differ. With the exponential growth of computer power we have progressed from stem-loop prediction on single sequences to cutting edge 3D prediction, and from command line to user friendly web interfaces. Despite these advances, many powerful, user friendly prediction tools and resources are underutilized by the virology community. PMID:29354101

  14. In vitro comparison of three common essential oils mosquito repellents as inhibitors of the Ross River virus

    PubMed Central

    Ralambondrainy, Miora; Belarbi, Essia; Viranaicken, Wildriss; Baranauskienė, Renata; Venskutonis, Petras Rimantas; Desprès, Philippe; El Kalamouni, Chaker; Sélambarom, Jimmy

    2018-01-01

    Background The essential oils of Cymbopogon citratus (CC), Pelargonium graveolens (PG) and Vetiveria zizanioides (VZ) are commonly used topically to prevent mosquito bites and thus the risk of infection by their vectored pathogens such as arboviruses. However, since mosquito bites are not fully prevented, the effect of these products on the level of viral infection remains unknown. Objectives To evaluate in vitro the essentials oils from Reunion Island against one archetypal arbovirus, the Ross River virus (RRV), and investigate the viral cycle step that was impaired by these oils. Methods The essential oils were extracted by hydrodistillation and analyzed by a combination of GC-FID and GC×GC-TOF MS techniques. In vitro studies were performed on HEK293T cells to determine their cytotoxicity, their cytoprotective and virucidal capacities on RRV-T48 strain, and the level of their inhibitory effect on the viral replication and residual infectivity prior, during or following viral adsorption using the reporter virus RRV-renLuc. Results Each essential oil was characterized by an accurate quantification of their terpenoid content. PG yielded the least-toxic extract (CC50 > 1000 μg.mL-1). For the RRV-T48 strain, the monoterpene-rich CC and PG essential oils reduced the cytopathic effect but did not display virucidal activity. The time-of-addition assay using the gene reporter RRV-renLuc showed that the CC and PG essential oils significantly reduced viral replication and infectivity when applied prior, during and early after viral adsorption. Overall, no significant effect was observed for the low monoterpene-containing VZ essential oil. Conclusion The inhibitory profiles of the three essential oils suggest the high value of the monoterpene-rich essential oils from CC and PG against RRV infection. Combined with their repellent activity, the antiviral activity of the essential oils of CC and PG may provide a new option to control arboviral infection. PMID:29771946

  15. Antiviral Type I and Type III Interferon Responses in the Central Nervous System

    PubMed Central

    Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas

    2013-01-01

    The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway. PMID:23503326

  16. Antiviral type I and type III interferon responses in the central nervous system.

    PubMed

    Sorgeloos, Frédéric; Kreit, Marguerite; Hermant, Pascale; Lardinois, Cécile; Michiels, Thomas

    2013-03-15

    The central nervous system (CNS) harbors highly differentiated cells, such as neurons that are essential to coordinate the functions of complex organisms. This organ is partly protected by the blood-brain barrier (BBB) from toxic substances and pathogens carried in the bloodstream. Yet, neurotropic viruses can reach the CNS either by crossing the BBB after viremia, or by exploiting motile infected cells as Trojan horses, or by using axonal transport. Type I and type III interferons (IFNs) are cytokines that are critical to control early steps of viral infections. Deficiencies in the IFN pathway have been associated with fatal viral encephalitis both in humans and mice. Therefore, the IFN system provides an essential protection of the CNS against viral infections. Yet, basal activity of the IFN system appears to be low within the CNS, likely owing to the toxicity of IFN to this organ. Moreover, after viral infection, neurons and oligodendrocytes were reported to be relatively poor IFN producers and appear to keep some susceptibility to neurotropic viruses, even in the presence of IFN. This review addresses some trends and recent developments concerning the role of type I and type III IFNs in: i) preventing neuroinvasion and infection of CNS cells; ii) the identity of IFN-producing cells in the CNS; iii) the antiviral activity of ISGs; and iv) the activity of viral proteins of neurotropic viruses that target the IFN pathway.

  17. Redox Imbalance and Viral Infections in Neurodegenerative Diseases.

    PubMed

    Limongi, Dolores; Baldelli, Sara

    2016-01-01

    Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS).

  18. Redox Imbalance and Viral Infections in Neurodegenerative Diseases

    PubMed Central

    Limongi, Dolores

    2016-01-01

    Reactive oxygen species (ROS) are essential molecules for many physiological functions and act as second messengers in a large variety of tissues. An imbalance in the production and elimination of ROS is associated with human diseases including neurodegenerative disorders. In the last years the notion that neurodegenerative diseases are accompanied by chronic viral infections, which may result in an increase of neurodegenerative diseases progression, emerged. It is known in literature that enhanced viral infection risk, observed during neurodegeneration, is partly due to the increase of ROS accumulation in brain cells. However, the molecular mechanisms of viral infection, occurring during the progression of neurodegeneration, remain unclear. In this review, we discuss the recent knowledge regarding the role of influenza, herpes simplex virus type-1, and retroviruses infection in ROS/RNS-mediated Parkinson's disease (PD), Alzheimer's disease (AD), and amyotrophic lateral sclerosis (ALS). PMID:27110325

  19. HTLV-1 Rex is required for viral spread and persistence in vivo but is dispensable for cellular immortalization in vitro

    PubMed Central

    Ye, Jianxin; Silverman, Lee; Lairmore, Michael D.; Green, Patrick L.

    2010-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is associated with leukemia/lymphoma and neurologic disorders. Although the viral transcriptional activator Tax is the critical viral oncoprotein, Rex, which regulates the expression of the viral structural and enzymatic genes, is essential for efficient viral replication. Herein, we investigate the contribution of Rex in HTLV-1 immortalization of primary T cells in vitro and viral survival in an infectious rabbit animal model. A Rex-deficient HTLV-1 (HTLVRex−) was constructed and characterized for viral gene expression, protein production, and immortalization capacity. Cells transiently transfected with the HTLVRex− proviral clone produced low detectable levels of p19 Gag. 729HTLVRex− stable transfectants produced functional Tax, but undetectable levels of Rex or p19 Gag. Coculture of irradiated 729HTLVRex− cells with peripheral blood mononuclear cells (PBMCs) resulted in sustained interleukin-2 (IL-2)–dependent growth of primary T lymphocytes. These cells carried the HTLVRex− genome and expressed tax/rex mRNA but produced no detectable Rex or p19 Gag. Rabbits inoculated with irradiated 729HTLVRex− cells or 729HTLVRex− cells transiently transfected with a Rex cDNA expression plasmid failed to become persistently infected or mount a detectable antibody response to the viral gene products. Together, our results provide the first direct evidence that Rex and its function to modulate viral gene expression and virion production is not required for in vitro immortalization by HTLV-1. However, Rex is critical for efficient infection of cells and persistence in vivo. PMID:12907436

  20. Functional interplay among the flavivirus NS3 protease, helicase, and cofactors.

    PubMed

    Li, Kuohan; Phoo, Wint Wint; Luo, Dahai

    2014-04-01

    Flaviviruses are positive-sense RNA viruses, and many are important human pathogens. Nonstructural protein 2B and 3 of the flaviviruses (NS2BNS3) form an endoplasmic reticulum (ER) membrane-associated hetero-dimeric complex through the NS2B transmembrane region. The NS2BNS3 complex is multifunctional. The N-terminal region of NS3, and its cofactor NS2B fold into a protease that is responsible for viral polyprotein processing, and the C-terminal domain of NS3 possesses NTPase/RNA helicase activities and is involved in viral RNA replication and virus particle formation. In addition, NS2BNS3 complex has also been shown to modulate viral pathogenesis and the host immune response. Because of the essential functions that the NS2BNS3 complex plays in the flavivirus life cycle, it is an attractive target for antiviral development. This review focuses on the recent biochemical and structural advances of NS2BNS3 and provides a brief update on the current status of drug development targeting this viral protein complex.

  1. Therapeutic potential of selenium and tellurium compounds: opportunities yet unrealised.

    PubMed

    Tiekink, Edward R T

    2012-06-07

    Despite being disparaged for their malodorous and toxic demeanour, compounds of selenium, a bio-essential element, and tellurium, offer possibilities as therapeutic agents. Herein, their potential use as drugs, for example, as anti-viral, anti-microbial, anti-inflammatory agents, etc., will be surveyed along with a summary of the established biological functions of selenium. The natural biological functions of tellurium remain to be discovered.

  2. Bombyx mori nucleopolyhedrovirus (BmNPV) Bm64 is required for BV production and per os infection.

    PubMed

    Chen, Lin; Shen, Yunwang; Yang, Rui; Wu, Xiaofeng; Hu, Wenjun; Shen, Guoxin

    2015-10-24

    Bombyx mori nucleopolyhedrovirus (BmNPV) orf64 (Bm64, a homologue of ac78) is a core baculovirus gene. Recently, Li et al. reported that Ac78 was not essential for budded viruses (BVs) production and occlusion-derived viruses (ODVs) formation (Virus Res 191:70-82, 2014). Conversely, Tao et al. demonstrated that Ac78 was localized to the BV and ODV envelopes and was required for BV production and ODV formation (J Virol 87:8441-50, 2013). In this study, the function of Bm64 was characterized to determine the role of Bm64 in the BmNPV infection cycle. The temporal expression of Bm64 was examined using total RNA extracted from BmNPV-infected BmN cells at different time points by reverse-transcription PCR (RT-PCR) and 5' RACE analysis. To determine the functions of Bm64 in viral replication and the viral phenotype throughout the viral life cycle, a deletion virus (vBm(64KO)) was generated via homologous recombination in Escherichia coli. Viral replication and BV production were determined by real-time PCR. Electron microscopy was used to detect virion morphogenesis. The subcellular localization of Bm64 was determined by microscopy, and per os infectivity was used to determine its role in the baculovirus oral infection cycle. Viral plaque and titer assay results showed that a few infectious BVs were produced by vBm(64KO), suggesting that deletion of Bm64 affected BV production. Viral DNA replication was detected and polyhedra were observed in vBm(64KO)-transfected cells. Microscopy analysis revealed that Bm64 was predominantly localized to the ring zone of the nuclei during the infection cycle. Electron microscopy showed that Bm64 was not essential for the formation of ODVs or the subsequent occlusion of ODV into polyhedra. The per os infectivity results showed that the polyhedra of vBm(64KO) were unable to infect silkworm larvae. In conclusion, our results suggest that Bm64 plays an important role in BV production and per os infection, but is not required for viral DNA replication or ODV maturation.

  3. Characterization of the host factors required for hepadnavirus covalently closed circular (ccc) DNA formation.

    PubMed

    Guo, Haitao; Xu, Chunxiao; Zhou, Tianlun; Block, Timothy M; Guo, Ju-Tao

    2012-01-01

    Synthesis of the covalently closed circular (ccc) DNA is a critical, but not well-understood step in the life cycle of hepadnaviruses. Our previous studies favor a model that removal of genome-linked viral DNA polymerase occurs in the cytoplasm and the resulting deproteinized relaxed circular DNA (DP-rcDNA) is subsequently transported into the nucleus and converted into cccDNA. In support of this model, our current study showed that deproteinization of viral double-stranded linear (dsl) DNA also took place in the cytoplasm. Furthermore, we demonstrated that Ku80, a component of non-homologous end joining DNA repair pathway, was essential for synthesis of cccDNA from dslDNA, but not rcDNA. In an attempt to identify additional host factors regulating cccDNA biosynthesis, we found that the DP-rcDNA was produced in all tested cell lines that supported DHBV DNA replication, but cccDNA was only synthesized in the cell lines that accumulated high levels of DP-rcDNA, except for NCI-H322M and MDBK cells, which failed to synthesize cccDNA despite of the existence of nuclear DP-rcDNA. The results thus imply that while removal of the genome-linked viral DNA polymerase is most likely catalyzed by viral or ubiquitous host function(s), nuclear factors required for the conversion of DP-rcDNA into cccDNA and/or its maintenance are deficient in the above two cell lines, which could be useful tools for identification of the elusive host factors essential for cccDNA biosynthesis or maintenance.

  4. Contributions of individual domains to function of the HIV-1 Rev response element.

    PubMed

    O'Carroll, Ina P; Thappeta, Yashna; Fan, Lixin; Ramirez-Valdez, Edric A; Smith, Sean; Wang, Yun-Xing; Rein, Alan

    2017-08-16

    The HIV-1 Rev response element (RRE) is a 351-base element in unspliced and partially spliced viral RNA; binding of the RRE by the viral Rev protein induces nuclear export of RRE-containing RNAs, as required for virus replication. It contains one long, imperfect double helix (domain I), one branched domain (domain II) containing a high-affinity Rev-binding site, and two or three additional domains. We previously reported that the RRE assumes an "A" shape in solution and suggested that the location of the Rev binding sites in domains I and II, opposite each other on the two legs of the A, is optimal for Rev binding and explains Rev's specificity for RRE-containing RNAs. Using SAXS and a quantitative functional assay, we have now analyzed a panel of RRE mutants. All the results support the essential role of the A shape for RRE function. Moreover, they suggest that the distal portion of domain I and the three crowning domains all contribute to the maintenance of the A shape. Domains I and II are necessary and sufficient for substantial RRE function, provided they are joined by a flexible linker that allows the two domains to face each other. IMPORTANCE Retroviral replication requires that some of the viral RNAs transcribed in the cell nucleus be exported to the cytoplasm without being spliced. To achieve this, HIV-1 encodes a protein, Rev, which binds to a complex, highly structured element within viral RNA, the Rev Response Element (RRE), and escorts RRE-containing RNAs from the nucleus. We previously reported that the RRE is "A"-shaped and suggested that this architecture, with the 2 legs opposite one another, can explain the specificity of Rev for the RRE. We have analyzed the functional contributions of individual RRE domains, and now report that several domains contribute, with some redundancy, to maintenance of the overall RRE shape. The data strongly support the hypothesis that the opposed placement of the 2 legs is essential for RRE function. Copyright © 2017 American Society for Microbiology.

  5. Contributions of Individual Domains to Function of the HIV-1 Rev Response Element

    PubMed Central

    O'Carroll, Ina P.; Thappeta, Yashna; Fan, Lixin; Ramirez-Valdez, Edric A.; Smith, Sean; Wang, Yun-Xing

    2017-01-01

    ABSTRACT The HIV-1 Rev response element (RRE) is a 351-base element in unspliced and partially spliced viral RNA; binding of the RRE by the viral Rev protein induces nuclear export of RRE-containing RNAs, as required for virus replication. It contains one long, imperfect double helix (domain I), one branched domain (domain II) containing a high-affinity Rev-binding site, and two or three additional domains. We previously reported that the RRE assumes an “A” shape in solution and suggested that the location of the Rev binding sites in domains I and II, opposite each other on the two legs of the A, is optimal for Rev binding and explains Rev's specificity for RRE-containing RNAs. Using small-angle X-ray scattering (SAXS) and a quantitative functional assay, we have now analyzed a panel of RRE mutants. All the results support the essential role of the A shape for RRE function. Moreover, they suggest that the distal portion of domain I and the three crowning domains all contribute to the maintenance of the A shape. Domains I and II are necessary and sufficient for substantial RRE function, provided they are joined by a flexible linker that allows the two domains to face each other. IMPORTANCE Retroviral replication requires that some of the viral RNAs transcribed in the cell nucleus be exported to the cytoplasm without being spliced. To achieve this, HIV-1 encodes a protein, Rev, which binds to a complex, highly structured element within viral RNA, the Rev response element (RRE), and escorts RRE-containing RNAs from the nucleus. We previously reported that the RRE is “A” shaped and suggested that this architecture, with the 2 legs opposite one another, can explain the specificity of Rev for the RRE. We have analyzed the functional contributions of individual RRE domains and now report that several domains contribute, with some redundancy, to maintenance of the overall RRE shape. The data strongly support the hypothesis that the opposed placement of the 2 legs is essential for RRE function. PMID:28814520

  6. Tracking interspecies transmission and long-term evolution of an ancient retrovirus using the genomes of modern mammals

    PubMed Central

    Diehl, William E; Patel, Nirali; Halm, Kate; Johnson, Welkin E

    2016-01-01

    Mammalian genomes typically contain hundreds of thousands of endogenous retroviruses (ERVs), derived from ancient retroviral infections. Using this molecular 'fossil' record, we reconstructed the natural history of a specific retrovirus lineage (ERV-Fc) that disseminated widely between ~33 and ~15 million years ago, corresponding to the Oligocene and early Miocene epochs. Intercontinental viral spread, numerous instances of interspecies transmission and emergence in hosts representing at least 11 mammalian orders, and a significant role for recombination in diversification of this viral lineage were also revealed. By reconstructing the canonical retroviral genes, we identified patterns of adaptation consistent with selection to maintain essential viral protein functions. Our results demonstrate the unique potential of the ERV fossil record for studying the processes of viral spread and emergence as they play out across macro-evolutionary timescales, such that looking back in time may prove insightful for predicting the long-term consequences of newly emerging viral infections. DOI: http://dx.doi.org/10.7554/eLife.12704.001 PMID:26952212

  7. Tracking interspecies transmission and long-term evolution of an ancient retrovirus using the genomes of modern mammals.

    PubMed

    Diehl, William E; Patel, Nirali; Halm, Kate; Johnson, Welkin E

    2016-03-08

    Mammalian genomes typically contain hundreds of thousands of endogenous retroviruses (ERVs), derived from ancient retroviral infections. Using this molecular 'fossil' record, we reconstructed the natural history of a specific retrovirus lineage (ERV-Fc) that disseminated widely between ~33 and ~15 million years ago, corresponding to the Oligocene and early Miocene epochs. Intercontinental viral spread, numerous instances of interspecies transmission and emergence in hosts representing at least 11 mammalian orders, and a significant role for recombination in diversification of this viral lineage were also revealed. By reconstructing the canonical retroviral genes, we identified patterns of adaptation consistent with selection to maintain essential viral protein functions. Our results demonstrate the unique potential of the ERV fossil record for studying the processes of viral spread and emergence as they play out across macro-evolutionary timescales, such that looking back in time may prove insightful for predicting the long-term consequences of newly emerging viral infections.

  8. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    DOE PAGES

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; ...

    2016-02-03

    Here, current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. Wemore » correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.« less

  9. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burstein, David; Sun, Christine L.; Brown, Christopher T.

    Here, current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. Wemore » correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.« less

  10. [Innate immune response to RNA virus infection].

    PubMed

    Oshiumi, Hiroyuki; Matsumoto, Misako; Seya, Tsukasa

    2011-12-01

    Viral RNA is recognized by RIG-I-like receptors and Toll-like receptors. RIG-I is a cytoplasmic viral RNA sensor. High Mobility Group Box (HMGB) proteins and DExD/H box RNA helicases, such as DDX3 and 60, associate with viral RNA. Those proteins promotes the RIG-I binding to viral RNA. RIG-I triggers the signal via IPS-1 adaptor molecule to induce type I IFN. RIG-I harbors Lys63-linked polyubiquitination by Riplet and TRIM25 ubiquitin ligases. The polyubiquitination is essential for RIG-I-mediated signaling. Toll-like receptors are located in endosome. TLR3 recognizes viral double-stranded RNA, and TLR7 and 8 recognize single-strand RNA. Virus has the ability to suppress these innate immune response. For example, to inhibit RIG-I-mediated signaling, HCV core protein suppresses the function of DDX3. In addition, HCV NS3-4A protein cleaves IPS-1 to inhibit the signal. Molecular mechanism of how viral RNA is recognized by innate immune system will make great progress on our understanding of how virus escapes from host immune system.

  11. Mutational analysis reveals a noncontractile but interactive role of actin and profilin in viral RNA-dependent RNA synthesis.

    PubMed

    Harpen, Mary; Barik, Tiasha; Musiyenko, Alla; Barik, Sailen

    2009-11-01

    As obligatory parasites, viruses co-opt a variety of cellular functions for robust replication. The expression of the nonsegmented negative-strand RNA genome of respiratory syncytial virus (RSV), a significant pediatric pathogen, absolutely requires actin and is stimulated by the actin-regulatory protein profilin. As actin is a major contractile protein, it was important to determine whether the known functional domains of actin and profilin were important for their ability to activate RSV transcription. Analyses of recombinant mutants in a reconstituted RSV transcription system suggested that the divalent-cation-binding domain of actin is critically needed for binding to the RSV genome template and for the activation of viral RNA synthesis. In contrast, the nucleotide-binding domain and the N-terminal acidic domain were needed neither for template binding nor for transcription. Specific surface residues of actin, required for actin-actin contact during filamentation, were also nonessential for viral transcription. Unlike actin, profilin did not directly bind to the viral template but was recruited by actin. Mutation of the interactive residues of actin or profilin, resulting in the loss of actin-profilin binding, also abolished profilin's ability to stimulate viral transcription. Together, these results suggest that actin acts as a classical transcription factor for the virus by divalent-cation-dependent binding to the viral template and that profilin acts as a transcriptional cofactor, in part by associating with actin. This essential viral role of actin is independent of its contractile cellular role.

  12. Synaptogyrin-2 Promotes Replication of a Novel Tick-borne Bunyavirus through Interacting with Viral Nonstructural Protein NSs*

    PubMed Central

    Sun, Qiyu; Qi, Xian; Zhang, Yan; Wu, Xiaodong; Liang, Mifang; Li, Chuan; Li, Dexin; Cardona, Carol J.; Xing, Zheng

    2016-01-01

    Synaptogyrin-2 is a non-neuronal member of the synaptogyrin family involved in synaptic vesicle biogenesis and trafficking. Little is known about the function of synaptogyrin-2. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, and leukocytopenia with high mortality, caused by a novel tick-borne phlebovirus in the family Bunyaviridae. Our previous studies have shown that the viral nonstructural protein NSs forms inclusion bodies (IBs) that are involved in viral immune evasion, as well as viral RNA replication. In this study, we sought to elucidate the mechanism by which NSs formed the IBs, a lipid droplet-based structure confirmed by NSs co-localization with perilipin A and adipose differentiation-related protein (ADRP). Through a high throughput screening, we identified synaptogyrin-2 to be highly up-regulated in response to SFTS bunyavirus (SFTSV) infection and to be a promoter of viral replication. We demonstrated that synaptogyrin-2 interacted with NSs and was translocated into the IBs, which were reconstructed from lipid droplets into large structures in infection. Viral RNA replication decreased, and infectious virus titers were lowered significantly when synaptogyrin-2 was silenced in specific shRNA-expressing cells, which correlated with the reduced number of the large IBs restructured from regular lipid droplets. We hypothesize that synaptogyrin-2 is essential to promoting the formation of the IBs to become virus factories for viral RNA replication through its interaction with NSs. These findings unveil the function of synaptogyrin-2 as an enhancer in viral infection. PMID:27226560

  13. A New Strategy to Reduce Influenza Escape: Detecting Therapeutic Targets Constituted of Invariance Groups

    PubMed Central

    Lao, Julie; Vanet, Anne

    2017-01-01

    The pathogenicity of the different flu species is a real public health problem worldwide. To combat this scourge, we established a method to detect drug targets, reducing the possibility of escape. Besides being able to attach a drug candidate, these targets should have the main characteristic of being part of an essential viral function. The invariance groups that are sets of residues bearing an essential function can be detected genetically. They consist of invariant and synthetic lethal residues (interdependent residues not varying or slightly varying when together). We analyzed an alignment of more than 10,000 hemagglutinin sequences of influenza to detect six invariance groups, close in space, and on the protein surface. In parallel we identified five potential pockets on the surface of hemagglutinin. By combining these results, three potential binding sites were determined that are composed of invariance groups located respectively in the vestigial esterase domain, in the bottom of the stem and in the fusion area. The latter target is constituted of residues involved in the spring-loaded mechanism, an essential step in the fusion process. We propose a model describing how this potential target could block the reorganization of the hemagglutinin HA2 secondary structure and prevent viral entry into the host cell. PMID:28257108

  14. A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication.

    PubMed

    Herzig, Eytan; Voronin, Nickolay; Kucherenko, Nataly; Hizi, Amnon

    2015-08-01

    The process of reverse transcription (RTN) in retroviruses is essential to the viral life cycle. This key process is catalyzed exclusively by the viral reverse transcriptase (RT) that copies the viral RNA into DNA by its DNA polymerase activity, while concomitantly removing the original RNA template by its RNase H activity. During RTN, the combination between DNA synthesis and RNA hydrolysis leads to strand transfers (or template switches) that are critical for the completion of RTN. The balance between these RT-driven activities was considered to be the sole reason for strand transfers. Nevertheless, we show here that a specific mutation in HIV-1 RT (L92P) that does not affect the DNA polymerase and RNase H activities abolishes strand transfer. There is also a good correlation between this complete loss of the RT's strand transfer to the loss of the DNA clamp activity of the RT, discovered recently by us. This finding indicates a mechanistic linkage between these two functions and that they are both direct and unique functions of the RT (apart from DNA synthesis and RNA degradation). Furthermore, when the RT's L92P mutant was introduced into an infectious HIV-1 clone, it lost viral replication, due to inefficient intracellular strand transfers during RTN, thus supporting the in vitro data. As far as we know, this is the first report on RT mutants that specifically and directly impair RT-associated strand transfers. Therefore, targeting residue Leu92 may be helpful in selectively blocking this RT activity and consequently HIV-1 infectivity and pathogenesis. Reverse transcription in retroviruses is essential for the viral life cycle. This multistep process is catalyzed by viral reverse transcriptase, which copies the viral RNA into DNA by its DNA polymerase activity (while concomitantly removing the RNA template by its RNase H activity). The combination and balance between synthesis and hydrolysis lead to strand transfers that are critical for reverse transcription completion. We show here for the first time that a single mutation in HIV-1 reverse transcriptase (L92P) selectively abolishes strand transfers without affecting the enzyme's DNA polymerase and RNase H functions. When this mutation was introduced into an infectious HIV-1 clone, viral replication was lost due to an impaired intracellular strand transfer, thus supporting the in vitro data. Therefore, finding novel drugs that target HIV-1 reverse transcriptase Leu92 may be beneficial for developing new potent and selective inhibitors of retroviral reverse transcription that will obstruct HIV-1 infectivity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. A peptide targeted against phosphoprotein and leader RNA interaction inhibits growth of Chandipura virus -- an emerging rhabdovirus.

    PubMed

    Roy, Arunava; Chakraborty, Prasenjit; Polley, Smarajit; Chattopadhyay, Dhrubajyoti; Roy, Siddhartha

    2013-11-01

    The fatal illness caused by Chandipura virus (CHPV), an emerging pathogen, presently lacks any therapeutic option. Previous research suggested that interaction between the virally encoded phosphoprotein (P) and the positive sense leader RNA (le-RNA) may play an important role in the viral lifecycle. In this report, we have identified a β-sheet/loop motif in the C-terminal domain of the CHPV P protein as essential for this interaction. A synthetic peptide encompassing this motif and spanning a continuous stretch of 36 amino acids (Pep208-243) was found to bind the le-RNA in vitro and inhibit CHPV growth in infected cells. Furthermore, a stretch of three amino acid residues at position 217-219 was identified as essential for this interaction, both in vitro and in infected cells. siRNA knockdown-rescue experiments demonstrated that these three amino acid residues are crucial for the leader RNA binding function of P protein in the CHPV life cycle. Mutations of these three amino acid residues render the peptide completely ineffective against CHPV. Effect of inhibition of phosphoprotein-leader RNA interaction on viral replication was assayed. Peptide Pep208-243 tagged with a cell penetrating peptide was found to inhibit CHPV replication as ascertained by real time RT-PCR. The specific inhibition of viral growth observed using this peptide suggests a new possibility for designing of anti-viral agents against Mononegavirale group of human viruses. Copyright © 2013. Published by Elsevier B.V.

  16. CRYPTOCHROME 2 and PHOTOTROPIN 2 regulate resistance protein mediated viral 2 defense by negatively regulating a E3 ubiquitin ligase

    USDA-ARS?s Scientific Manuscript database

    Light harvested by plants is essential for the survival of most life forms. This light perception ability requires the activities of proteins termed photoreceptors. We report a function for photoreceptors in mediating resistance (R) protein-derived plant defense. The blue-light photoreceptors, crypt...

  17. Inhibitor-Based Therapeutics for Treatment of Viral Hepatitis.

    PubMed

    Dey, Debajit; Banerjee, Manidipa

    2016-09-28

    Viral hepatitis remains a significant worldwide threat, in spite of the availability of several successful therapeutic and vaccination strategies. Complications associated with acute and chronic infections, such as liver failure, cirrhosis and hepatocellular carcinoma, are the cause of considerable morbidity and mortality. Given the significant burden on the healthcare system caused by viral hepatitis, it is essential that novel, more effective therapeutics be developed. The present review attempts to summarize the current treatments against viral hepatitis, and provides an outline for upcoming, promising new therapeutics. Development of novel therapeutics requires an understanding of the viral life cycles and viral effectors in molecular detail. As such, this review also discusses virally-encoded effectors, found to be essential for virus survival and replication in the host milieu, which may be utilized as potential candidates for development of alternative therapies in the future.

  18. Genome Cyclization as Strategy for Flavivirus RNA Replication

    PubMed Central

    Villordo, Sergio M.; Gamarnik, Andrea V.

    2017-01-01

    Long-range and local RNA-RNA contacts in viral RNA genomes result in tertiary structures that modulate the function of enhancers, promoters, and silencers during translation, RNA replication, and encapsidation. In the case of flaviviruses, the presence of inverted complementary sequences at the 5′ and 3′ ends of the genome mediate long-range RNA interactions and RNA cyclization. The circular conformation of flavivirus genomes was demonstrated to be essential for RNA amplification. New ideas about the mechanisms by which circular genomes participate in flavivirus replication have emerged in the last few years. Here, we will describe the latest information about cis-acting elements involved in flavivirus genome cyclization, RNA promoter elements required for viral polymerase recognition, and how these elements together coordinate viral RNA synthesis. PMID:18703097

  19. Trafficking of Hepatitis C Virus Core Protein during Virus Particle Assembly

    PubMed Central

    Counihan, Natalie A.; Rawlinson, Stephen M.; Lindenbach, Brett D.

    2011-01-01

    Hepatitis C virus (HCV) core protein is directed to the surface of lipid droplets (LD), a step that is essential for infectious virus production. However, the process by which core is recruited from LD into nascent virus particles is not well understood. To investigate the kinetics of core trafficking, we developed methods to image functional core protein in live, virus-producing cells. During the peak of virus assembly, core formed polarized caps on large, immotile LDs, adjacent to putative sites of assembly. In addition, LD-independent, motile puncta of core were found to traffic along microtubules. Importantly, core was recruited from LDs into these puncta, and interaction between the viral NS2 and NS3-4A proteins was essential for this recruitment process. These data reveal new aspects of core trafficking and identify a novel role for viral nonstructural proteins in virus particle assembly. PMID:22028650

  20. Quantitative Proteomic Analysis of the Influenza A Virus Nonstructural Proteins NS1 and NS2 during Natural Cell Infection Identifies PACT as an NS1 Target Protein and Antiviral Host Factor

    PubMed Central

    Tawaratsumida, Kazuki; Phan, Van; Hrincius, Eike R.; High, Anthony A.; Webby, Richard; Redecke, Vanessa

    2014-01-01

    ABSTRACT Influenza A virus (IAV) replication depends on the interaction of virus proteins with host factors. The viral nonstructural protein 1 (NS1) is essential in this process by targeting diverse cellular functions, including mRNA splicing and translation, cell survival, and immune defense, in particular the type I interferon (IFN-I) response. In order to identify host proteins targeted by NS1, we established a replication-competent recombinant IAV that expresses epitope-tagged forms of NS1 and NS2, which are encoded by the same gene segment, allowing purification of NS proteins during natural cell infection and analysis of interacting proteins by quantitative mass spectrometry. We identified known NS1- and NS2-interacting proteins but also uncharacterized proteins, including PACT, an important cofactor for the IFN-I response triggered by the viral RNA-sensor RIG-I. We show here that NS1 binds PACT during virus replication and blocks PACT/RIG-I-mediated activation of IFN-I, which represents a critical event for the host defense. Protein interaction and interference with IFN-I activation depended on the functional integrity of the highly conserved RNA binding domain of NS1. A mutant virus with deletion of NS1 induced high levels of IFN-I in control cells, as expected; in contrast, shRNA-mediated knockdown of PACT compromised IFN-I activation by the mutant virus, but not wild-type virus, a finding consistent with the interpretation that PACT (i) is essential for IAV recognition and (ii) is functionally compromised by NS1. Together, our data describe a novel approach to identify virus-host protein interactions and demonstrate that NS1 interferes with PACT, whose function is critical for robust IFN-I production. IMPORTANCE Influenza A virus (IAV) is an important human pathogen that is responsible for annual epidemics and occasional devastating pandemics. Viral replication and pathogenicity depends on the interference of viral factors with components of the host defense system, particularly the type I interferon (IFN-I) response. The viral NS1 protein is known to counteract virus recognition and IFN-I production, but the molecular mechanism is only partially defined. We used a novel proteomic approach to identify host proteins that are bound by NS1 during virus replication and identified the protein PACT, which had previously been shown to be involved in virus-mediated IFN-I activation. We find that NS1 prevents PACT from interacting with an essential component of the virus recognition pathway, RIG-I, thereby disabling efficient IFN-I production. These observations provide an important piece of information on how IAV efficiently counteracts the host immune defense. PMID:24899174

  1. [Innate immune responses against viral infection and its suppression by viral proteins].

    PubMed

    Oshiumi, Hiroyuki; Matsumoto, Misako; Seya, Tsukasa

    2013-01-01

    Retinoic acid-inducible gene-I(RIG-I) is a cytoplasmic RNA helicase and a viral RNA sensor. RIG-I recognizes 5' triphosphate double-stranded RNA (dsRNA) and activates the IPS-1 adaptor molecule. The association of IPS-1 with RIG-I causes the formation of the prion-like structure of IPS-1. This structure is essential for activation of the signaling required for the induction of type I interferon (IFN), which possesses strong antiviral activity. Recent studies have revealed the novel factors involved in the RIG-I-dependent pathway. DDX3 and DDX60 RNA helicases associate with RIG-I and promote its binding to viral RNA. Riplet and TRIM25 ubiquitin ligase deliver Lys63-linked polyubiquitin moiety to RIG-I and result in signal activation. Several pathogenic viruses have evolved excellent systems to suppress type I IFN production. For example, NS3-4A of hepatitis C virus (HCV) cleaves IPS-1, which is the adaptor molecule of RIG-I, while the HCV core protein abrogates DDX3 function to suppress RIG-I-dependent IPS-1 activation, and the NS-1 of flu inhibits TRIM25 function to suppress RIG-I activation.

  2. Strand transfer inhibitors of HIV-1 integrase: bringing IN a new era of antiretroviral therapy.

    PubMed

    McColl, Damian J; Chen, Xiaowu

    2010-01-01

    HIV-1 integrase (IN) is one of three essential enzymes (along with reverse transcriptase and protease) encoded by the viral pol gene. IN mediates two critical reactions during viral replication; firstly 3'-end processing (3'EP) of the double-stranded viral DNA ends and then strand transfer (STF) which joins the viral DNA to the host chromosomal DNA forming a functional integrated proviral DNA. IN is a 288 amino acid protein containing three functional domains, the N-terminal domain (NTD), catalytic core domain (CCD) and the C-terminal domain (CTD). The CCD contains three conserved catalytic residues, Asp64, Asp116 and Glu152, which coordinate divalent metal ions essential for the STF reaction. Intensive research over the last two decades has led to the discovery and development of small molecule inhibitors of the IN STF reaction (INSTIs). INSTIs are catalytic inhibitors of IN, and act to chelate the divalent metal ions in the CCD. One INSTI, raltegravir (RAL, Merck Inc.) was approved in late 2007 for the treatment of HIV-1 infection in patients with prior antiretroviral (ARV) treatment experience and was recently approved also for first line therapy. A second INSTI, elvitegravir (EVG, Gilead Sciences, Inc.) is currently undergoing phase 3 studies in ARV treatment-experienced patients and phase 2 studies in ARV naïve patients as part of a novel fixed dose combination. Several additional INSTIs are in early stage clinical development. This review will discuss the discovery and development of this novel class of antiretrovirals. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol 85, issue 1, 2010. Copyright 2009. Published by Elsevier B.V.

  3. Enhancing the antiviral potency of ER α-glucosidase inhibitor IHVR-19029 against hemorrhagic fever viruses in vitro and in vivo.

    PubMed

    Ma, Julia; Zhang, Xuexiang; Soloveva, Veronica; Warren, Travis; Guo, Fang; Wu, Shuo; Lu, Huagang; Guo, Jia; Su, Qing; Shen, Helen; Solon, Eric; Comunale, Mary Ann; Mehta, Anand; Guo, Ju-Tao; Bavari, Sina; Du, Yanming; Block, Timothy M; Chang, Jinhong

    2018-02-01

    Targeting host functions essential for viral replication has been considered as a broad spectrum and resistance-refractory antiviral approach. However, only a few host functions have, thus far, been validated as broad-spectrum antiviral targets in vivo. ER α-glucosidases I and II have been demonstrated to be essential for the morphogenesis of many enveloped viruses, including members from four families of viruses causing hemorrhagic fever. In vivo antiviral efficacy of various iminosugar-based ER α-glucosidase inhibitors has been reported in animals infected with Dengue, Japanese encephalitis, Ebola, Marburg and influenza viruses. Herein, we established Huh7.5-derived cell lines with ER α-glucosidase I or II knockout using CRISPR/Cas9 and demonstrated that the replication of Dengue, Yellow fever and Zika viruses was reduced by only 1-2 logs in the knockout cell lines. The results clearly indicate that only a partial suppression of viral replication can possibly be achieved with a complete inhibition of ER-α-glucosidases I or II by their inhibitors. We therefore explore to improve the antiviral efficacy of a lead iminosugar IHVR-19029 through combination with another broad-spectrum antiviral agent, favipiravir (T-705). Indeed, combination of IHVR-19029 and T-705 synergistically inhibited the replication of Yellow fever and Ebola viruses in cultured cells. Moreover, in a mouse model of Ebola virus infection, combination of sub-optimal doses of IHVR-19029 and T-705 significantly increased the survival rate of infected animals. We have thus proved the concept of combinational therapeutic strategy for the treatment of viral hemorrhagic fevers with broad spectrum host- and viral- targeting antiviral agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synaptogyrin-2 Promotes Replication of a Novel Tick-borne Bunyavirus through Interacting with Viral Nonstructural Protein NSs.

    PubMed

    Sun, Qiyu; Qi, Xian; Zhang, Yan; Wu, Xiaodong; Liang, Mifang; Li, Chuan; Li, Dexin; Cardona, Carol J; Xing, Zheng

    2016-07-29

    Synaptogyrin-2 is a non-neuronal member of the synaptogyrin family involved in synaptic vesicle biogenesis and trafficking. Little is known about the function of synaptogyrin-2. Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease characterized by high fever, thrombocytopenia, and leukocytopenia with high mortality, caused by a novel tick-borne phlebovirus in the family Bunyaviridae. Our previous studies have shown that the viral nonstructural protein NSs forms inclusion bodies (IBs) that are involved in viral immune evasion, as well as viral RNA replication. In this study, we sought to elucidate the mechanism by which NSs formed the IBs, a lipid droplet-based structure confirmed by NSs co-localization with perilipin A and adipose differentiation-related protein (ADRP). Through a high throughput screening, we identified synaptogyrin-2 to be highly up-regulated in response to SFTS bunyavirus (SFTSV) infection and to be a promoter of viral replication. We demonstrated that synaptogyrin-2 interacted with NSs and was translocated into the IBs, which were reconstructed from lipid droplets into large structures in infection. Viral RNA replication decreased, and infectious virus titers were lowered significantly when synaptogyrin-2 was silenced in specific shRNA-expressing cells, which correlated with the reduced number of the large IBs restructured from regular lipid droplets. We hypothesize that synaptogyrin-2 is essential to promoting the formation of the IBs to become virus factories for viral RNA replication through its interaction with NSs. These findings unveil the function of synaptogyrin-2 as an enhancer in viral infection. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Viral precursor protein P3 and its processed products perform discrete and essential functions in the poliovirus RNA replication complex

    USDA-ARS?s Scientific Manuscript database

    The differential use of protein precursors and their products is a key strategy used during poliovirus replication. To characterize the role of protein precursors during replication, we examined the complementation profiles of mutants that inhibited 3D polymerase or 3C-RNA binding activity. We showe...

  6. Rewiring Host Lipid Metabolism by Large Viruses Determines the Fate of Emiliania huxleyi, a Bloom-Forming Alga in the Ocean[C][W][OPEN

    PubMed Central

    Rosenwasser, Shilo; Mausz, Michaela A.; Schatz, Daniella; Sheyn, Uri; Malitsky, Sergey; Aharoni, Asaph; Weinstock, Eyal; Tzfadia, Oren; Ben-Dor, Shifra; Feldmesser, Ester; Pohnert, Georg; Vardi, Assaf

    2014-01-01

    Marine viruses are major ecological and evolutionary drivers of microbial food webs regulating the fate of carbon in the ocean. We combined transcriptomic and metabolomic analyses to explore the cellular pathways mediating the interaction between the bloom-forming coccolithophore Emiliania huxleyi and its specific coccolithoviruses (E. huxleyi virus [EhV]). We show that EhV induces profound transcriptome remodeling targeted toward fatty acid synthesis to support viral assembly. A metabolic shift toward production of viral-derived sphingolipids was detected during infection and coincided with downregulation of host de novo sphingolipid genes and induction of the viral-encoded homologous pathway. The depletion of host-specific sterols during lytic infection and their detection in purified virions revealed their novel role in viral life cycle. We identify an essential function of the mevalonate-isoprenoid branch of sterol biosynthesis during infection and propose its downregulation as an antiviral mechanism. We demonstrate how viral replication depends on the hijacking of host lipid metabolism during the chemical “arms race” in the ocean. PMID:24920329

  7. Viral Epitranscriptomics

    PubMed Central

    Kennedy, Edward M.; Courtney, David G.; Tsai, Kevin

    2017-01-01

    ABSTRACT Although it has been known for over 40 years that eukaryotic mRNAs bear internal base modifications, it is only in the last 5 years that the importance of these modifications has begun to come into focus. The most common mRNA modification, the addition of a methyl group to the N6 position of adenosine (m6A), has been shown to affect splicing, translation, and stability, and m6A is also essential for embryonic development in organisms ranging from plants to mice. While all viral transcripts examined so far have been found to be extensively m6A modified, the role, if any, of m6A in regulating viral gene expression and replication was previously unknown. However, recent data generated using HIV-1 as a model system strongly suggest that sites of m6A addition not only are evolutionarily conserved but also enhance virus replication. It is therefore likely that the field of viral epitranscriptomics, which can be defined as the study of functionally relevant posttranscriptional modifications of viral RNA transcripts that do not change the nucleotide sequence of that RNA, is poised for a major expansion in scientific interest and may well fundamentally change our understanding of how viral replication is regulated. PMID:28250115

  8. Distinct families of cis-acting RNA replication elements epsilon from hepatitis B viruses

    PubMed Central

    Chen, Augustine; Brown, Chris

    2012-01-01

    The hepadnavirus encapsidation signal, epsilon (ε), is an RNA structure located at the 5′ end of the viral pregenomic RNA. It is essential for viral replication and functions in polymerase protein binding and priming. This structure could also have potential regulatory roles in controlling the expression of viral replicative proteins. In addition to its structure, the primary sequence of this RNA element has crucial functional roles in the viral lifecycle. Although the ε elements in hepadnaviruses share common critical functions, there are some significant differences in mammalian and avian hepadnaviruses, which include both sequence and structural variations.   Here we present several covariance models for ε elements from the Hepadnaviridae. The model building included experimentally determined data from previous studies using chemical probing and NMR analysis. These models have sufficient similarity to comprise a clan. The clan has in common a highly conserved overall structure consisting of a lower-stem, bulge, upper-stem and apical-loop. The models differ in functionally critical regions—notably the two types of avian ε elements have a tetra-loop (UGUU) including a non-canonical UU base pair, while the hepatitis B virus (HBV) epsilon has a tri-loop (UGU). The avian epsilon elements have a less stable dynamic structure in the upper stem. Comparisons between these models and all other Rfam models, and searches of genomes, showed these structures are specific to the Hepadnaviridae. Two family models and the clan are available from the Rfam database. PMID:22418844

  9. Influence of viral infection on essential oil composition of Ocimum basilicum (Lamiaceae).

    PubMed

    Nagai, Alice; Duarte, Ligia M L; Santos, Déborah Y A C

    2011-08-01

    Ocimum basilicum L., popularly known as sweet basil, is a Lamiaceae species whose essential oil is mainly composed of monoterpenes, sesquiterpenes and phenylpropanoids. The contents of these compounds can be affected by abiotic and biotic factors such as infections caused by viruses. The main goal of this research was an investigation of the effects of viral infection on the essential oil profile of common basil. Seeds of O. basilicum L. cv. Genovese were sowed and kept in a greenhouse. Plants presenting two pairs of leaves above the cotyledons were inoculated with an unidentified virus isolated from a field plant showing chlorotic yellow spots and foliar deformation. Essential oils of healthy and infected plants were extracted by hydrodistillation and analyzed by GCMS. Changes in essential oil composition due to viral infection were observed. Methyleugenol and p-cresol,2,6-di-tert-butyl were the main constituents. However, methyleugenol contents were significantly decreased in infected plants.

  10. Hsp70 Isoforms Are Essential for the Formation of Kaposi’s Sarcoma-Associated Herpesvirus Replication and Transcription Compartments

    PubMed Central

    Baquero-Pérez, Belinda; Whitehouse, Adrian

    2015-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic herpesvirus associated with various AIDS-related malignancies. Like other herpesviruses, multiple processes required for KSHV lytic replication, including viral transcription, viral DNA synthesis and capsid assembly occur in virus-induced intranuclear structures, termed replication and transcription compartments (RTCs). Here we utilised a novel methodology, combining subcellular fractionation and quantitative proteomics, to identify cellular proteins which are recruited to KSHV-induced RTCs and thus play a key role in KSHV lytic replication. We show that several isoforms of the HSP70 chaperone family, Hsc70 and iHsp70, are redistributed from the cytoplasm into the nucleus coinciding with the initial formation of KSHV-induced RTCs. We demonstrate that nuclear chaperone foci are dynamic, initially forming adjacent to newly formed KSHV RTCs, however during later time points the chaperones move within KSHV RTCs and completely co-localise with actively replicating viral DNA. The functional significance of Hsp70 isoforms recruitment into KSHV RTCs was also examined using the specific Hsp70 isoform small molecule inhibitor, VER-155008. Intriguingly, results highlight an essential role of Hsp70 isoforms in the KSHV replication cycle independent of protein stability and maturation. Notably, inhibition of Hsp70 isoforms precluded KSHV RTC formation and RNA polymerase II (RNAPII) relocalisation to the viral genome leading to the abolishment of global KSHV transcription and subsequent viral protein synthesis and DNA replication. These new findings have revealed novel mechanisms that regulate KSHV lytic replication and highlight the potential of HSP70 inhibitors as novel antiviral agents. PMID:26587836

  11. Essential components in developing public policy to control viral hepatitis: lessons from Taiwan.

    PubMed

    Wallace, Jack; Pitts, Marian; Locarnini, Stephen; Ellard, Jeanne; Carman, Marina; Chen, Ding-Shinn

    2016-03-01

    Over 500 million people are estimated to be infected with chronic viral hepatitis with an increasing burden resulting from the infections. In 2010, the World Health Organization recommended national governments develop effective strategies to reduce the global impact of viral hepatitis. Taiwan, to support the implementation of the world's first national vaccination program, developed the first of a series of 5-year national strategies in 1982. Our study sought to identify the essential constituents of the strategic response to chronic viral hepatitis in Taiwan, which could then be used by other governments to inform best practice in strategy development. Semistructured qualitative interviews were conducted with key participants involved in the national response to viral hepatitis in Taiwan (n = 26) and a review of the literature. The development of a national strategic response is one of several factors in reducing the burden of viral hepatitis in Taiwan. Other critical factors are effective health services, a prioritization of disease prevention, government funding of science and technology, and sustained advocacy informed by a rigorous evidence base. While there has been significant policy, structural and financial commitment to reduce the burden of related to viral hepatitis, essential challenges remain. Taiwan's viral hepatitis policy response focuses on clinical interventions and would be strengthened by a broader involvement of interdisciplinary stakeholders, including people with viral hepatitis, and stronger coordination between the policy and government agencies responsible for their implementation.

  12. The structure of the nucleoprotein binding domain of lyssavirus phosphoprotein reveals a structural relationship between the N-RNA binding domains of Rhabdoviridae and Paramyxoviridae.

    PubMed

    Delmas, Olivier; Assenberg, Rene; Grimes, Jonathan M; Bourhy, Hervé

    2010-01-01

    The phosphoprotein P of non-segmented negative-sense RNA viruses is an essential component of the replication and transcription complex and acts as a co-factor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. We have obtained the structure of the C-terminal domain of P of Mokola virus (MOKV), a lyssavirus that belongs to the Rhabdoviridae family and mapped at the amino acid level the crucial positions involved in interaction with N and in the formation of the viral replication complex. Comparison of the N-RNA binding domains of P solved to date suggests that the N-RNA binding domains are structurally conserved among paramyxoviruses and rhabdoviruses in spite of low sequence conservation. We also review the numerous other functions of this domain and more generally of the phosphoprotein.

  13. What Really Rigs Up RIG-I?

    PubMed

    Barik, Sailen

    2016-01-01

    RIG-I (retinoic acid-inducible gene 1) is an archetypal member of the cytoplasmic DEAD-box dsRNA helicase family (RIG-I-like receptors or RLRs), the members of which play essential roles in the innate immune response of the metazoan cell. RIG-I functions as a pattern recognition receptor that detects nonself RNA as a pathogen-associated molecular pattern (PAMP). However, the exact molecular nature of the viral RNAs that act as a RIG-I ligand has remained a mystery and a matter of debate. In this article, we offer a critical review of the actual viral RNAs that act as PAMPs to activate RIG-I, as seen from the perspective of a virologist, including a recent report that the viral Leader-read-through transcript is a novel and effective RIG-I ligand. © 2016 S. Karger AG, Basel.

  14. Reovirus Nonstructural Protein σNS Acts as an RNA-Stability Factor Promoting Viral Genome Replication.

    PubMed

    Zamora, Paula F; Hu, Liya; Knowlton, Jonathan J; Lahr, Roni M; Moreno, Rodolfo A; Berman, Andrea J; Prasad, B V Venkataram; Dermody, Terence S

    2018-05-16

    Viral nonstructural proteins, which are not packaged into virions, are essential for replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. Reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered that σNS increases RNA half-life using in vitro and cell-based RNA degradation experiments. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication. IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the Reoviridae family encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different Reoviridae family viruses are diverged in primary sequence, these proteins are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell-culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new knowledge about basic mechanisms of dsRNA virus replication and provides a foundation for future studies to determine how viruses in the Reoviridae family assort and replicate their genomes. Copyright © 2018 American Society for Microbiology.

  15. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication

    PubMed Central

    Kim, Seong K.; Kim, Seongman; Dai, Gan; Zhang, Yunfei; Ahn, Byung C.; O'Callaghan, Dennis J.

    2012-01-01

    The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1,487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% of control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. PMID:21794889

  16. Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication.

    PubMed

    Hartman, Amy L; Dover, Jason E; Towner, Jonathan S; Nichol, Stuart T

    2006-07-01

    The VP35 protein of Zaire Ebola virus is an essential component of the viral RNA polymerase complex and also functions to antagonize the cellular type I interferon (IFN) response by blocking activation of the transcription factor IRF-3. We previously mapped the IRF-3 inhibitory domain within the C terminus of VP35. In the present study, we show that mutations that disrupt the IRF-3 inhibitory function of VP35 do not disrupt viral transcription/replication, suggesting that the two functions of VP35 are separable. Second, using reverse genetics, we successfully recovered recombinant Ebola viruses containing mutations within the IRF-3 inhibitory domain. Importantly, we show that the recombinant viruses were attenuated for growth in cell culture and that they activated IRF-3 and IRF-3-inducible gene expression at levels higher than that for Ebola virus containing wild-type VP35. In the context of Ebola virus pathogenesis, VP35 may function to limit early IFN-beta production and other antiviral signals generated from cells at the primary site of infection, thereby slowing down the host's ability to curb virus replication and induce adaptive immunity.

  17. Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host's Transcriptome: The Tobacco Etch Potyvirus-Tobacco Case Study.

    PubMed

    Cervera, Héctor; Ambrós, Silvia; Bernet, Guillermo P; Rodrigo, Guillermo; Elena, Santiago F

    2018-07-01

    Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts.

  18. Viral Fitness Correlates with the Magnitude and Direction of the Perturbation Induced in the Host’s Transcriptome: The Tobacco Etch Potyvirus—Tobacco Case Study

    PubMed Central

    Cervera, Héctor; Ambrós, Silvia; Bernet, Guillermo P; Rodrigo, Guillermo; Elena, Santiago F

    2018-01-01

    Abstract Determining the fitness of viral genotypes has become a standard practice in virology as it is essential to evaluate their evolutionary potential. Darwinian fitness, defined as the advantage of a given genotype with respect to a reference one, is a complex property that captures, in a single figure, differences in performance at every stage of viral infection. To what extent does viral fitness result from specific molecular interactions with host factors and regulatory networks during infection? Can we identify host genes in functional classes whose expression depends on viral fitness? Here, we compared the transcriptomes of tobacco plants infected with seven genotypes of tobacco etch potyvirus that differ in fitness. We found that the larger the fitness differences among genotypes, the more dissimilar the transcriptomic profiles are. Consistently, two different mutations, one in the viral RNA polymerase and another in the viral suppressor of RNA silencing, resulted in significantly similar gene expression profiles. Moreover, we identified host genes whose expression showed a significant correlation, positive or negative, with the virus' fitness. Differentially expressed genes which were positively correlated with viral fitness activate hormone- and RNA silencing-mediated pathways of plant defense. In contrast, those that were negatively correlated with fitness affect metabolism, reducing growth, and development. Overall, these results reveal the high information content of viral fitness and suggest its potential use to predict differences in genomic profiles of infected hosts. PMID:29562354

  19. Serine 192 in the tiny RS repeat of the adenoviral L4-33K splicing enhancer protein is essential for function and reorganization of the protein to the periphery of viral replication centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oestberg, Sara, E-mail: sara.ostberg@imbim.uu.se; Toermaenen Persson, Heidi, E-mail: heidi.tormanen.persson@imbim.uu.se; Akusjaervi, Goeran, E-mail: goran.akusjarvi@imbim.uu.se

    2012-11-25

    The adenovirus L4-33K protein is a key regulator involved in the temporal shift from early to late pattern of mRNA expression from the adenovirus major late transcription unit. L4-33K is a virus-encoded alternative splicing factor, which enhances processing of 3 Prime splice sites with a weak sequence context. Here we show that L4-33K expressed from a plasmid is localized at the nuclear margin of uninfected cells. During an infection L4-33K is relocalized to the periphery of E2A-72K containing viral replication centers. We also show that serine 192 in the tiny RS repeat of the conserved carboxy-terminus of L4-33K, which ismore » critical for the splicing enhancer function of L4-33K, is necessary for the nuclear localization and redistribution of the protein to viral replication sites. Collectively, our results show a good correlation between the activity of L4-33K as a splicing enhancer protein and its localization to the periphery of viral replication centers.« less

  20. Functional Characterization of the Serine-Rich Tract of Varicella-Zoster Virus IE62.

    PubMed

    Kim, Seong K; Shakya, Akhalesh K; Kim, Seongman; O'Callaghan, Dennis J

    2016-01-15

    The immediate early 62 protein (IE62) of varicella-zoster virus (VZV), a major viral trans-activator, initiates the virus life cycle and is a key component of pathogenesis. The IE62 possesses several domains essential for trans-activation, including an acidic trans-activation domain (TAD), a serine-rich tract (SRT), and binding domains for USF, TFIIB, and TATA box binding protein (TBP). Transient-transfection assays showed that the VZV IE62 lacking the SRT trans-activated the early VZV ORF61 promoter at only 16% of the level of the full-length IE62. When the SRT of IE62 was replaced with the SRT of equine herpesvirus 1 (EHV-1) IEP, its trans-activation activity was completely restored. Herpes simplex virus 1 (HSV-1) ICP4 that lacks a TAD very weakly (1.5-fold) trans-activated the ORF61 promoter. An IE62 TAD-ICP4 chimeric protein exhibited trans-activation ability (10.2-fold), indicating that the IE62 TAD functions with the SRT of HSV-1 ICP4 to trans-activate viral promoters. When the serine and acidic residues of the SRT were replaced with Ala, Leu, and Gly, trans-activation activities of the modified IE62 proteins IE62-SRTΔSe and IE62-SRTΔAc were reduced to 46% and 29% of wild-type activity, respectively. Bimolecular complementation assays showed that the TAD of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with Mediator 25 in human melanoma MeWo cells. The SRT of IE62 interacted with the nucleolar-ribosomal protein EAP, which resulted in the formation of globular structures within the nucleus. These results suggest that the SRT plays an important role in VZV viral gene expression and replication. The immediate early 62 protein (IE62) of varicella-zoster virus (VZV) is a major viral trans-activator and is essential for viral growth. Our data show that the serine-rich tract (SRT) of VZV IE62, which is well conserved within the alphaherpesviruses, is needed for trans-activation mediated by the acidic trans-activation domain (TAD). The TADs of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with cellular Mediator 25 in bimolecular complementation assays. The interaction of the IE62 SRT with nucleolar-ribosomal protein EAP resulted in the formation of globular structures within the nucleus. Understanding the mechanisms by which the TAD and SRT of IE62 contribute to the function of this essential regulatory protein is important in understanding the gene program of this human pathogen. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Functional Characterization of the Serine-Rich Tract of Varicella-Zoster Virus IE62

    PubMed Central

    Shakya, Akhalesh K.; Kim, Seongman; O'Callaghan, Dennis J.

    2015-01-01

    ABSTRACT The immediate early 62 protein (IE62) of varicella-zoster virus (VZV), a major viral trans-activator, initiates the virus life cycle and is a key component of pathogenesis. The IE62 possesses several domains essential for trans-activation, including an acidic trans-activation domain (TAD), a serine-rich tract (SRT), and binding domains for USF, TFIIB, and TATA box binding protein (TBP). Transient-transfection assays showed that the VZV IE62 lacking the SRT trans-activated the early VZV ORF61 promoter at only 16% of the level of the full-length IE62. When the SRT of IE62 was replaced with the SRT of equine herpesvirus 1 (EHV-1) IEP, its trans-activation activity was completely restored. Herpes simplex virus 1 (HSV-1) ICP4 that lacks a TAD very weakly (1.5-fold) trans-activated the ORF61 promoter. An IE62 TAD-ICP4 chimeric protein exhibited trans-activation ability (10.2-fold), indicating that the IE62 TAD functions with the SRT of HSV-1 ICP4 to trans-activate viral promoters. When the serine and acidic residues of the SRT were replaced with Ala, Leu, and Gly, trans-activation activities of the modified IE62 proteins IE62-SRTΔSe and IE62-SRTΔAc were reduced to 46% and 29% of wild-type activity, respectively. Bimolecular complementation assays showed that the TAD of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with Mediator 25 in human melanoma MeWo cells. The SRT of IE62 interacted with the nucleolar-ribosomal protein EAP, which resulted in the formation of globular structures within the nucleus. These results suggest that the SRT plays an important role in VZV viral gene expression and replication. IMPORTANCE The immediate early 62 protein (IE62) of varicella-zoster virus (VZV) is a major viral trans-activator and is essential for viral growth. Our data show that the serine-rich tract (SRT) of VZV IE62, which is well conserved within the alphaherpesviruses, is needed for trans-activation mediated by the acidic trans-activation domain (TAD). The TADs of IE62, EHV-1 IEP, and HSV-1 VP16 interacted with cellular Mediator 25 in bimolecular complementation assays. The interaction of the IE62 SRT with nucleolar-ribosomal protein EAP resulted in the formation of globular structures within the nucleus. Understanding the mechanisms by which the TAD and SRT of IE62 contribute to the function of this essential regulatory protein is important in understanding the gene program of this human pathogen. PMID:26537679

  2. Cytoplasmic Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and Egress.

    PubMed

    Johnston, Gunner P; Contreras, Erik M; Dabundo, Jeffrey; Henderson, Bryce A; Matz, Keesha M; Ortega, Victoria; Ramirez, Alfredo; Park, Arnold; Aguilar, Hector C

    2017-05-15

    Nipah virus (NiV), a paramyxovirus in the genus Henipavirus , has a mortality rate in humans of approximately 75%. While several studies have begun our understanding of NiV particle formation, the mechanism of this process remains to be fully elucidated. For many paramyxoviruses, M proteins drive viral assembly and egress; however, some paramyxoviral glycoproteins have been reported as important or essential in budding. For NiV the matrix protein (M), the fusion glycoprotein (F) and, to a much lesser extent, the attachment glycoprotein (G) autonomously induce the formation of virus-like particles (VLPs). However, functional interactions between these proteins during assembly and egress remain to be fully understood. Moreover, if the F-driven formation of VLPs occurs through interactions with host cell machinery, the cytoplasmic tail (CT) of F is a likely interactive domain. Therefore, we analyzed NiV F CT deletion and alanine mutants and report that several but not all regions of the F CT are necessary for efficient VLP formation. Two of these regions contain YXXØ or dityrosine motifs previously shown to interact with cellular machinery involved in F endocytosis and transport. Importantly, our results showed that F-driven, M-driven, and M/F-driven viral particle formation enhanced the recruitment of G into VLPs. By identifying key motifs, specific residues, and functional viral protein interactions important for VLP formation, we improve our understanding of the viral assembly/egress process and point to potential interactions with host cell machinery. IMPORTANCE Henipaviruses can cause deadly infections of medical, veterinary, and agricultural importance. With recent discoveries of new henipa-like viruses, understanding the mechanisms by which these viruses reproduce is paramount. We have focused this study on identifying the functional interactions of three Nipah virus proteins during viral assembly and particularly on the role of one of these proteins, the fusion glycoprotein, in the incorporation of other viral proteins into viral particles. By identifying several regions in the fusion glycoprotein that drive viral assembly, we further our understanding of how these viruses assemble and egress from infected cells. The results presented will likely be useful toward designing treatments targeting this aspect of the viral life cycle and for the production of new viral particle-based vaccines. Copyright © 2017 American Society for Microbiology.

  3. Retroviral proteases and their roles in virion maturation.

    PubMed

    Konvalinka, Jan; Kräusslich, Hans-Georg; Müller, Barbara

    2015-05-01

    Proteolytic processing of viral polyproteins is essential for retrovirus infectivity. Retroviral proteases (PR) become activated during or after assembly of the immature, non-infectious virion. They cleave viral polyproteins at specific sites, inducing major structural rearrangements termed maturation. Maturation converts retroviral enzymes into their functional form, transforms the immature shell into a metastable state primed for early replication events, and enhances viral entry competence. Not only cleavage at all PR recognition sites, but also an ordered sequence of cleavages is crucial. Proteolysis is tightly regulated, but the triggering mechanisms and kinetics and pathway of morphological transitions remain enigmatic. Here, we outline PR structures and substrate specificities focusing on HIV PR as a therapeutic target. We discuss design and clinical success of HIV PR inhibitors, as well as resistance development towards these drugs. Finally, we summarize data elucidating the role of proteolysis in maturation and highlight unsolved questions regarding retroviral maturation. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Different effects of the TAR structure on HIV-1 and HIV-2 genomic RNA translation

    PubMed Central

    Soto-Rifo, Ricardo; Limousin, Taran; Rubilar, Paulina S.; Ricci, Emiliano P.; Décimo, Didier; Moncorgé, Olivier; Trabaud, Mary-Anne; André, Patrice; Cimarelli, Andrea; Ohlmann, Théophile

    2012-01-01

    The 5′-untranslated region (5′-UTR) of the genomic RNA of human immunodeficiency viruses type-1 (HIV-1) and type-2 (HIV-2) is composed of highly structured RNA motifs essential for viral replication that are expected to interfere with Gag and Gag-Pol translation. Here, we have analyzed and compared the properties by which the viral 5′-UTR drives translation from the genomic RNA of both human immunodeficiency viruses. Our results showed that translation from the HIV-2 gRNA was very poor compared to that of HIV-1. This was rather due to the intrinsic structural motifs in their respective 5′-UTR without involvement of any viral protein. Further investigation pointed to a different role of TAR RNA, which was much inhibitory for HIV-2 translation. Altogether, these data highlight important structural and functional differences between these two human pathogens. PMID:22121214

  5. Diverse mechanisms evolved by DNA viruses to inhibit early host defenses

    PubMed Central

    Sheng, Xinlei; Song, Bokai; Cristea, Ileana M.

    2016-01-01

    In mammalian cells, early defenses against infection by pathogens are mounted through a complex network of signaling pathways shepherded by immune-modulatory pattern-recognition receptors. As obligate parasites, the survival of viruses is dependent upon the evolutionary acquisition of mechanisms that tactfully dismantle and subvert the cellular intrinsic and innate immune responses. Here, we review the diverse mechanisms by which viruses that accommodate DNA genomes are able to circumvent activation of cellular immunity. We start by discussing viral manipulation of host defense protein levels by either transcriptional regulation or protein degradation. We next review viral strategies used to repurpose or inhibit these cellular immune factors by molecular hijacking or by regulating their post-translational modification status. Additionally, we explore the infection-induced temporal modulation of apoptosis to facilitate viral replication and spread. Lastly, the co-evolution of viruses with their hosts is highlighted by the acquisition of elegant mechanisms for suppressing host defenses via viral mimicry of host factors. In closing, we present a perspective on how characterizing these viral evasion tactics both broadens the understanding of virus-host interactions and reveals essential functions of the immune system at the molecular level. This knowledge is critical in understanding the sources of viral pathogenesis, as well as for the design of antiviral therapeutics and autoimmunity treatments. PMID:27650455

  6. CRM1 Inhibitors for Antiviral Therapy

    PubMed Central

    Mathew, Cynthia; Ghildyal, Reena

    2017-01-01

    Infectious diseases are a major global concern and despite major advancements in medical research, still cause significant morbidity and mortality. Progress in antiviral therapy is particularly hindered by appearance of mutants capable of overcoming the effects of drugs targeting viral components. Alternatively, development of drugs targeting host proteins essential for completion of viral lifecycle holds potential as a viable strategy for antiviral therapy. Nucleocytoplasmic trafficking pathways in particular are involved in several pathological conditions including cancer and viral infections, where hijacking or alteration of function of key transporter proteins, such as Chromosome Region Maintenance1 (CRM1) is observed. Overexpression of CRM1-mediated nuclear export is evident in several solid and hematological malignancies. Interestingly, CRM1-mediated nuclear export of viral components is crucial in various stages of the viral lifecycle and assembly. This review summarizes the role of CRM1 in cancer and selected viruses. Leptomycin B (LMB) is the prototypical inhibitor of CRM1 potent against various cancer cell lines overexpressing CRM1 and in limiting viral infections at nanomolar concentrations in vitro. However, the irreversible shutdown of nuclear export results in high cytotoxicity and limited efficacy in vivo. This has prompted search for synthetic and natural CRM1 inhibitors that can potentially be developed as broadly active antivirals, some of which are summarized in this review. PMID:28702009

  7. Antimicrobial Properties of Plant Essential Oils against Human Pathogens and Their Mode of Action: An Updated Review

    PubMed Central

    2016-01-01

    A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes. PMID:28090211

  8. Enzymes and Enzyme Activity Encoded by Nonenveloped Viruses.

    PubMed

    Azad, Kimi; Banerjee, Manidipa; Johnson, John E

    2017-09-29

    Viruses are obligate intracellular parasites that rely on host cell machineries for their replication and survival. Although viruses tend to make optimal use of the host cell protein repertoire, they need to encode essential enzymatic or effector functions that may not be available or accessible in the host cellular milieu. The enzymes encoded by nonenveloped viruses-a group of viruses that lack any lipid coating or envelope-play vital roles in all the stages of the viral life cycle. This review summarizes the structural, biochemical, and mechanistic information available for several classes of enzymes and autocatalytic activity encoded by nonenveloped viruses. Advances in research and development of antiviral inhibitors targeting specific viral enzymes are also highlighted.

  9. Flavivirus RNA Replication: Essential Viral Functions as Targets for Antiviral Therapeutics

    DTIC Science & Technology

    1991-04-30

    therapeutics 5 S2P• SONAI . aUTl4Of4S) Marc S. Collett and JoAnn A. Suzich 138. TYPE OF REPORr 𔃽m, TME COVERED 14 DATE OF REPoRT IYfm ,oW,.Oav,-iy PAGE COUNT...H O N E ( A w h p o A m &• iC g a 2 2 c. O WF C E S Y M B O L Mrs. Virginia M. Miller 301,-663-7325 ..,) ....•• Z,. OOFom 1473, JUI NSE oet,, are tv...supernatant fraction, a particulate fraction (P20) was isolated by centrifugation at 20,000 x g . The P20 fraction contained nearly all of the viral RDRP

  10. Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus.

    PubMed

    Bradel-Tretheway, Birgit G; Liu, Qian; Stone, Jacquelyn A; McInally, Samantha; Aguilar, Hector C

    2015-07-01

    Hendra virus (HeV) and Nipah virus (NiV) are reportedly the most deadly pathogens within the Paramyxoviridae family. These two viruses bind the cellular entry receptors ephrin B2 and/or ephrin B3 via the viral attachment glycoprotein G, and the concerted efforts of G and the viral fusion glycoprotein F result in membrane fusion. Membrane fusion is essential for viral entry into host cells and for cell-cell fusion, a hallmark of the disease pathobiology. HeV G is heavily N-glycosylated, but the functions of the N-glycans remain unknown. We disrupted eight predicted N-glycosylation sites in HeV G by conservative mutations (Asn to Gln) and found that six out of eight sites were actually glycosylated (G2 to G7); one in the stalk (G2) and five in the globular head domain (G3 to G7). We then tested the roles of individual and combined HeV G N-glycan mutants and found functions in the modulation of shielding against neutralizing antibodies, intracellular transport, G-F interactions, cell-cell fusion, and viral entry. Between the highly conserved HeV and NiV G glycoproteins, similar trends in the effects of N-glycans on protein functions were observed, with differences in the levels at which some N-glycan mutants affected such functions. While the N-glycan in the stalk domain (G2) had roles that were highly conserved between HeV and NiV G, individual N-glycans in the head affected the levels of several protein functions differently. Our findings are discussed in the context of their contributions to our understanding of HeV and NiV pathogenesis and immune responses. Viral envelope glycoproteins are important for viral pathogenicity and immune evasion. N-glycan shielding is one mechanism by which immune evasion can be achieved. In paramyxoviruses, viral attachment and membrane fusion are governed by the close interaction of the attachment proteins H/HN/G and the fusion protein F. In this study, we show that the attachment glycoprotein G of Hendra virus (HeV), a deadly paramyxovirus, is N-glycosylated at six sites (G2 to G7) and that most of these sites have important roles in viral entry, cell-cell fusion, G-F interactions, G oligomerization, and immune evasion. Overall, we found that the N-glycan in the stalk domain (G2) had roles that were very conserved between HeV G and the closely related Nipah virus G, whereas individual N-glycans in the head quantitatively modulated several protein functions differently between the two viruses. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. The RNA Exosome Syncs IAV-RNAPII Transcription to Promote Viral Ribogenesis and Infectivity.

    PubMed

    Rialdi, Alexander; Hultquist, Judd; Jimenez-Morales, David; Peralta, Zuleyma; Campisi, Laura; Fenouil, Romain; Moshkina, Natasha; Wang, Zhen Zhen; Laffleur, Brice; Kaake, Robyn M; McGregor, Michael J; Haas, Kelsey; Pefanis, Evangelos; Albrecht, Randy A; Pache, Lars; Chanda, Sumit; Jen, Joanna; Ochando, Jordi; Byun, Minji; Basu, Uttiya; García-Sastre, Adolfo; Krogan, Nevan; van Bakel, Harm; Marazzi, Ivan

    2017-05-04

    The nuclear RNA exosome is an essential multi-subunit complex that controls RNA homeostasis. Congenital mutations in RNA exosome genes are associated with neurodegenerative diseases. Little is known about the role of the RNA exosome in the cellular response to pathogens. Here, using NGS and human and mouse genetics, we show that influenza A virus (IAV) ribogenesis and growth are suppressed by impaired RNA exosome activity. Mechanistically, the nuclear RNA exosome coordinates the initial steps of viral transcription with RNAPII at host promoters. The viral polymerase complex co-opts the nuclear RNA exosome complex and cellular RNAs en route to 3' end degradation. Exosome deficiency uncouples chromatin targeting of the viral polymerase complex and the formation of cellular:viral RNA hybrids, which are essential RNA intermediates that license transcription of antisense genomic viral RNAs. Our results suggest that evolutionary arms races have shaped the cellular RNA quality control machinery. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity.

    PubMed

    Chopin, Michaël; Preston, Simon P; Lun, Aaron T L; Tellier, Julie; Smyth, Gordon K; Pellegrini, Marc; Belz, Gabrielle T; Corcoran, Lynn M; Visvader, Jane E; Wu, Li; Nutt, Stephen L

    2016-04-26

    Plasmacytoid dendritic cells (pDCs) represent a unique immune cell type that responds to viral nucleic acids through the rapid production of type I interferons. Within the hematopoietic system, the transcription factor RUNX2 is exclusively expressed in pDCs and is required for their peripheral homeostasis. Here, we show that RUNX2 plays an essential role in promoting pDC localization and function. RUNX2 is required for the appropriate expression of the integrin-mediated adhesion machinery, as well as for the down-modulation of the chemokine receptor CXCR4, which allows pDC egress into the circulation. RUNX2 also facilitates the robust response to viral infection through the control of IRF7, the major regulator of type I interferon production. Mice lacking one copy of Runx2 have reduced numbers of peripheral pDCs and IFN-α expression, which might contribute to the reported difficulties of individuals with cleidocranial dysplasia, who are haploinsufficient for RUNX2, to clear viral infections. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The M33 G Protein-Coupled Receptor Encoded by Murine Cytomegalovirus Is Dispensable for Hematogenous Dissemination but Is Required for Growth within the Salivary Gland

    PubMed Central

    Bittencourt, Fabiola M.; Wu, Shu-En; Bridges, James P.

    2014-01-01

    ABSTRACT Human cytomegalovirus (HCMV) is a pathogen found worldwide and is a serious threat to immunocompromised individuals and developing fetuses. Due to the species specificity of cytomegaloviruses, murine cytomegalovirus (MCMV) has been used as a model for in vivo studies of HCMV pathogenesis. The MCMV genome, like the genomes of other beta- and gammaherpesviruses, encodes G protein-coupled receptors (GPCRs) that modulate host signaling pathways presumably to facilitate viral replication and dissemination. Among these viral receptors, the M33 GPCR carried by MCMV is an activator of CREB, NF-κB, and phospholipase C-β signaling pathways and has been implicated in aspects of pathogenesis in vivo, including persistence in the salivary glands of BALB/c mice. In this study, we used immunocompetent nonobese diabetic (NOD) and immunocompromised NOD-scid-gamma (NSG) mice to further investigate the salivary gland defect exhibited by M33 deficiency. Interestingly, we demonstrate that virus with an M33 deletion (ΔM33) can replicate in the salivary gland of immunocompromised animals, albeit with a 400-fold growth defect compared with the growth of wild-type virus. Moreover, we determined that M33 does not have a role in cell-associated hematogenous dissemination but is required for viral amplification once the virus reaches the salivary gland. We conclude that the reduced replicative capacity of the ΔM33 virus is due to a specific defect occurring within the localized environment of the salivary gland. Importantly, since the salivary gland represents a site essential for persistence and horizontal transmission, an understanding of the mechanisms of viral replication within this site could lead to the generation of novel therapeutics useful for the prevention of HCMV spread. IMPORTANCE Human cytomegalovirus infects the majority of the American people and can reside silently in infected individuals for the duration of their lives. Under a number of circumstances, the virus can reactivate, leading to a variety of diseases in both adults and developing babies, and therefore, identifying the function of viral proteins is essential to understand how the virus spreads and causes disease. We aim to utilize animal models to study the function of an important class of viral proteins termed G protein-coupled receptors with the ultimate goal of developing inhibitors to these proteins that could one day be used to prevent viral spread. PMID:25100846

  14. The facts and controversies about selenium.

    PubMed

    Dodig, Slavica; Cepelak, Ivana

    2004-12-01

    Selenium is a trace element, essential in small amounts, but it can be toxic in larger amounts. Levels in the body are mainly dependent on the amount of selenium in the diet, which is a function of the selenium content of the soil. Humans and animals require selenium for normal functioning of more than about 30 known selenoproteins, of which approximately 15 have been purified to allow characterisation of their biological functions. Selenoproteins are comprised of four glutathione peroxidases, three iodothyronine deiodinases, three thioredoxin reductases, selenoprotein P, selenoprotein W and selenophosphate synthetase. Selenium is essential for normal functioning of the immune system and thyroid gland, making selenium an essential element for normal development, growth, metabolism, and defense of the body. Supportive function of selenium in health and disease (male infertility, viral infections, including HIV, cancer, cardiovascular and autoimmune diseases) is documented in great number of clinical examinations. A great number of studies confirm that selenium supplementation plays a preventive and therapeutical role in different diseases. Definitive evidence regarding the preventive and therapeutical role of selenium as well as the exact mechanism of its action should be investigated in further studies. Investigations in Croatia indicate a possibility of inadequate selenium status of people in the area.

  15. Identification of a Conserved Non-Protein-Coding Genomic Element that Plays an Essential Role in Alphabaculovirus Pathogenesis

    PubMed Central

    Kikhno, Irina

    2014-01-01

    Highly homologous sequences 154–157 bp in length grouped under the name of “conserved non-protein-coding element” (CNE) were revealed in all of the sequenced genomes of baculoviruses belonging to the genus Alphabaculovirus. A CNE alignment led to the detection of a set of highly conserved nucleotide clusters that occupy strictly conserved positions in the CNE sequence. The significant length of the CNE and conservation of both its length and cluster architecture were identified as a combination of characteristics that make this CNE different from known viral non-coding functional sequences. The essential role of the CNE in the Alphabaculovirus life cycle was demonstrated through the use of a CNE-knockout Autographa californica multiple nucleopolyhedrovirus (AcMNPV) bacmid. It was shown that the essential function of the CNE was not mediated by the presumed expression activities of the protein- and non-protein-coding genes that overlap the AcMNPV CNE. On the basis of the presented data, the AcMNPV CNE was categorized as a complex-structured, polyfunctional genomic element involved in an essential DNA transaction that is associated with an undefined function of the baculovirus genome. PMID:24740153

  16. Expression and in vitro functional analyses of recombinant Gam1 protein

    PubMed Central

    Avila, Gustavo A.; Ramirez, Daniel H.; Hildenbrand, Zacariah L.; Jacquez, Pedro; Chiocca, Susanna; Sun, Jianjun; Rosas-Acosta, German; Xiao, Chuan

    2014-01-01

    Gam1, an early gene product of an avian adenovirus, is essential for viral replication. Gam1 is the first viral protein found to globally inhibit cellular SUMOylation, a critical posttranslational modification that alters the function and cellular localization of proteins. The interaction details at the interface between Gam1 and its cellular targets remain unclear due to the lack of structural information. Although Gam1 has been previously characterized, the purity of the protein was not suitable for structural investigations. In the present study, the gene of Gam1 was cloned and expressed in various bacterial expression systems to obtain pure and soluble recombinant Gam1 protein for in vitro functional and structural studies. While Gam1 was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that both low temperature induction and the chaperone function of TF play critical roles in increasing Gam1 solubility. Soluble Gam1 was purified to homogeneity through sequential chromatography techniques. Monomeric Gam1 was obtained via size exclusion chromatography and analyzed by dynamic light scattering. The SUMOylation inhibitory function of the purified Gam1 was confirmed in an in vitro assay. These results have built the foundation for further structural investigations that will broaden our understanding of Gam1’s roles in viral replication. PMID:25450237

  17. Expression and in vitro functional analyses of recombinant Gam1 protein.

    PubMed

    Avila, Gustavo A; Ramirez, Daniel H; Hildenbrand, Zacariah L; Jacquez, Pedro; Chiocca, Susanna; Sun, Jianjun; Rosas-Acosta, German; Xiao, Chuan

    2015-01-01

    Gam1, an early gene product of an avian adenovirus, is essential for viral replication. Gam1 is the first viral protein found to globally inhibit cellular SUMOylation, a critical posttranslational modification that alters the function and cellular localization of proteins. The interaction details at the interface between Gam1 and its cellular targets remain unclear due to the lack of structural information. Although Gam1 has been previously characterized, the purity of the protein was not suitable for structural investigations. In the present study, the gene of Gam1 was cloned and expressed in various bacterial expression systems to obtain pure and soluble recombinant Gam1 protein for in vitro functional and structural studies. While Gam1 was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that both low temperature induction and the chaperone function of TF play critical roles in increasing Gam1 solubility. Soluble Gam1 was purified to homogeneity through sequential chromatography techniques. Monomeric Gam1 was obtained via size exclusion chromatography and analyzed by dynamic light scattering. The SUMOylation inhibitory function of the purified Gam1 was confirmed in an in vitro assay. These results have built the foundation for further structural investigations that will broaden our understanding of Gam1's roles in viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. 77 FR 47848 - Proposed Data Collections Submitted for Public Comment and Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ..., Expiration 01/31/2013)-Revision- National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention... national system provides essential data to estimate HIV incidence and monitor patterns in viral resistance... incidence, to better describe the extent of HIV viral resistance and quantify HIV subtypes among persons...

  19. Viruses in the Mammalian Male Genital Tract and Their Effects on the Reproductive System

    PubMed Central

    Dejucq, Nathalie; Jégou, Bernard

    2001-01-01

    This review describes the various viruses identified in the semen and reproductive tracts of mammals (including humans), their distribution in tissues and fluids, their possible cell targets, and the functional consequences of their infectivity on the reproductive and endocrine systems. The consequences of these viral infections on the reproductive tract and semen can be extremely serious in terms of organ integrity, development of pathological and cancerous processes, and transmission of diseases. Furthermore, of essential importance is the fact that viral infection of the testicular cells may result not only in changes in testicular function, a serious risk for the fertility and general health of the individual (such as a fall in testosteronemia leading to cachexia), but also in the possible transmission of virus-induced mutations to subsequent generations. In addition to providing an exhaustive account of the data available in these domains, this review focuses attention on the fact that the interface between endocrinology and virology has so far been poorly explored, particularly when major health, social and economical problems are posed. Our conclusions highlight the research strategies that need to be developed. Progress in all these domains is essential for the development of new treatment strategies to eradicate viruses and to correct the virus-induced dysfunction of the endocrine system. PMID:11381100

  20. Protein kinases responsible for the phosphorylation of the nuclear egress core complex of human cytomegalovirus.

    PubMed

    Sonntag, Eric; Milbradt, Jens; Svrlanska, Adriana; Strojan, Hanife; Häge, Sigrun; Kraut, Alexandra; Hesse, Anne-Marie; Amin, Bushra; Sonnewald, Uwe; Couté, Yohann; Marschall, Manfred

    2017-10-01

    Nuclear egress of herpesvirus capsids is mediated by a multi-component nuclear egress complex (NEC) assembled by a heterodimer of two essential viral core egress proteins. In the case of human cytomegalovirus (HCMV), this core NEC is defined by the interaction between the membrane-anchored pUL50 and its nuclear cofactor, pUL53. NEC protein phosphorylation is considered to be an important regulatory step, so this study focused on the respective role of viral and cellular protein kinases. Multiply phosphorylated pUL50 varieties were detected by Western blot and Phos-tag analyses as resulting from both viral and cellular kinase activities. In vitro kinase analyses demonstrated that pUL50 is a substrate of both PKCα and CDK1, while pUL53 can also be moderately phosphorylated by CDK1. The use of kinase inhibitors further illustrated the importance of distinct kinases for core NEC phosphorylation. Importantly, mass spectrometry-based proteomic analyses identified five major and nine minor sites of pUL50 phosphorylation. The functional relevance of core NEC phosphorylation was confirmed by various experimental settings, including kinase knock-down/knock-out and confocal imaging, in which it was found that (i) HCMV core NEC proteins are not phosphorylated solely by viral pUL97, but also by cellular kinases; (ii) both PKC and CDK1 phosphorylation are detectable for pUL50; (iii) no impact of PKC phosphorylation on NEC functionality has been identified so far; (iv) nonetheless, CDK1-specific phosphorylation appears to be required for functional core NEC interaction. In summary, our findings provide the first evidence that the HCMV core NEC is phosphorylated by cellular kinases, and that the complex pattern of NEC phosphorylation has functional relevance.

  1. Nuclear import of CaMV P6 is required for infection and suppression of the RNA silencing factor DRB4

    PubMed Central

    Haas, Gabrielle; Azevedo, Jacinthe; Moissiard, Guillaume; Geldreich, Angèle; Himber, Christophe; Bureau, Marina; Fukuhara, Toshiyuki; Keller, Mario; Voinnet, Olivier

    2008-01-01

    Replication of Cauliflower mosaic virus (CaMV), a plant double-stranded DNA virus, requires the viral translational transactivator protein P6. Although P6 is known to form cytoplasmic inclusion bodies (viroplasms) so far considered essential for virus biology, a fraction of the protein is also present in the nucleus. Here, we report that monomeric P6 is imported into the nucleus through two importin-α-dependent nuclear localization signals, and show that this process is mandatory for CaMV infectivity and is independent of translational transactivation and viroplasm formation. One nuclear function of P6 is to suppress RNA silencing, a gene regulation mechanism with antiviral roles, commonly counteracted by dedicated viral suppressor proteins (viral silencing suppressors; VSRs). Transgenic P6 expression in Arabidopsis is genetically equivalent to inactivating the nuclear protein DRB4 that facilitates the activity of the major plant antiviral silencing factor DCL4. We further show that a fraction of P6 immunoprecipitates with DRB4 in CaMV-infected cells. This study identifies both genetic and physical interactions between a VSR to a host RNA silencing component, and highlights the importance of subcellular compartmentalization in VSR function. PMID:18615098

  2. Novel Broad Spectrum Inhibitors Targeting the Flavivirus Methyltransferase

    PubMed Central

    Liu, Binbin; Banavali, Nilesh K.; Jones, Susan A.; Zhang, Jing; Li, Zhong; Kramer, Laura D.; Li, Hongmin

    2015-01-01

    The flavivirus methyltransferase (MTase) is an essential enzyme that sequentially methylates the N7 and 2’-O positions of the viral RNA cap, using S-adenosyl-L-methionine (SAM) as a methyl donor. We report here that small molecule compounds, which putatively bind to the SAM-binding site of flavivirus MTase and inhibit its function, were identified by using virtual screening. In vitro methylation experiments demonstrated significant MTase inhibition by 13 of these compounds, with the most potent compound displaying sub-micromolar inhibitory activity. The most active compounds showed broad spectrum activity against the MTase proteins of multiple flaviviruses. Two of these compounds also exhibited low cytotoxicity and effectively inhibited viral replication in cell-based assays, providing further structural insight into flavivirus MTase inhibition. PMID:26098995

  3. HSPA5 is an essential host factor for Ebola virus infection.

    PubMed

    Reid, St Patrick; Shurtleff, Amy C; Costantino, Julie A; Tritsch, Sarah R; Retterer, Cary; Spurgers, Kevin B; Bavari, Sina

    2014-09-01

    Development of novel strategies targeting the highly virulent ebolaviruses is urgently required. A proteomic study identified the ER chaperone HSPA5 as an ebolavirus-associated host protein. Here, we show using the HSPA5 inhibitor (-)- epigallocatechin gallate (EGCG) that the chaperone is essential for virus infection, thereby demonstrating a functional significance for the association. Furthermore, in vitro and in vivo gene targeting impaired viral replication and protected animals in a lethal infection model. These findings demonstrate that HSPA5 is vital for replication and can serve as a viable target for the design of host-based countermeasures. Published by Elsevier B.V.

  4. HIV Genome-Wide Protein Associations: a Review of 30 Years of Research

    PubMed Central

    2016-01-01

    SUMMARY The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle. PMID:27357278

  5. Quantitative interactome reveals that porcine reproductive and respiratory syndrome virus nonstructural protein 2 forms a complex with viral nucleocapsid protein and cellular vimentin.

    PubMed

    Song, Tao; Fang, Liurong; Wang, Dang; Zhang, Ruoxi; Zeng, Songlin; An, Kang; Chen, Huanchun; Xiao, Shaobo

    2016-06-16

    Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has heavily impacted the global swine industry. The PRRSV nonstructural protein 2 (nsp2) plays crucial roles in viral replication and host immune regulation, most likely by interacting with viral or cellular proteins that have not yet been identified. In this study, a quantitative interactome approach based on immunoprecipitation and stable isotope labeling with amino acids in cell culture (SILAC) was performed to identify nsp2-interacting proteins in PRRSV-infected cells with an nsp2-specific monoclonal antibody. Nine viral proteins and 62 cellular proteins were identified as potential nsp2-interacting partners. Our data demonstrate that the PRRSV nsp1α, nsp1β, and nucleocapsid proteins all interact directly with nsp2. Nsp2-interacting cellular proteins were classified into different functional groups and an interactome network of nsp2 was generated. Interestingly, cellular vimentin, a known receptor for PRRSV, forms a complex with nsp2 by using viral nucleocapsid protein as an intermediate. Taken together, the nsp2 interactome under the condition of virus infection clarifies a role of nsp2 in PRRSV replication and immune evasion. Viral proteins must interact with other virus-encoded proteins and/or host cellular proteins to function, and interactome analysis is an ideal approach for identifying such interacting proteins. In this study, we used the quantitative interactome methodology to identify the viral and cellular proteins that potentially interact with the nonstructural protein 2 (nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) under virus infection conditions, thus providing a rich source of potential viral and cellular interaction partners for PRRSV nsp2. Based on the interactome data, we further demonstrated that PRRSV nsp2 and nucleocapsid protein together with cellular vimentin, form a complex that may be essential for viral attachment and replication, which partly explains the role of nsp2 in PRRSV replication and immune evasion. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Putative endogenous filovirus VP35-like protein potentially functions as an IFN antagonist but not a polymerase cofactor

    PubMed Central

    Kondoh, Tatsunari; Manzoor, Rashid; Nao, Naganori; Maruyama, Junki; Furuyama, Wakako; Miyamoto, Hiroko; Shigeno, Asako; Kuroda, Makoto; Matsuno, Keita; Fujikura, Daisuke; Kajihara, Masahiro; Yoshida, Reiko; Igarashi, Manabu

    2017-01-01

    It has been proposed that some non-retroviral RNA virus genes are integrated into vertebrate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus) genome. Putative mlEFL35-derived protein (mlEFL35p) contains nearly full-length amino acid sequences corresponding to ebolavirus VP35. Ebola virus VP35 has been shown to bind double-stranded RNA, leading to inhibition of type I interferon (IFN) production, and is also known as a viral polymerase cofactor that is essential for viral RNA transcription/replication. In this study, we transiently expressed mlEFL35p in human kidney cells and investigated its biological functions. We first found that mlEFL35p was coimmunoprecipitated with itself and ebolavirus VP35s but not with the viral nucleoprotein. Then the biological functions of mlEFL35p were analyzed by comparing it to ebolavirus VP35s. We found that the expression of mlEFL35p significantly inhibited human IFN-β promoter activity as well as VP35s. By contrast, expression of mlEFL35p did not support viral RNA transcription/replication and indeed slightly decrease the reporter gene expression in a minigenome assay. These results suggest that mlEFL35p potentially acts as an IFN antagonist but not a polymerase cofactor. PMID:29040311

  7. Putative endogenous filovirus VP35-like protein potentially functions as an IFN antagonist but not a polymerase cofactor.

    PubMed

    Kondoh, Tatsunari; Manzoor, Rashid; Nao, Naganori; Maruyama, Junki; Furuyama, Wakako; Miyamoto, Hiroko; Shigeno, Asako; Kuroda, Makoto; Matsuno, Keita; Fujikura, Daisuke; Kajihara, Masahiro; Yoshida, Reiko; Igarashi, Manabu; Takada, Ayato

    2017-01-01

    It has been proposed that some non-retroviral RNA virus genes are integrated into vertebrate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus) genome. Putative mlEFL35-derived protein (mlEFL35p) contains nearly full-length amino acid sequences corresponding to ebolavirus VP35. Ebola virus VP35 has been shown to bind double-stranded RNA, leading to inhibition of type I interferon (IFN) production, and is also known as a viral polymerase cofactor that is essential for viral RNA transcription/replication. In this study, we transiently expressed mlEFL35p in human kidney cells and investigated its biological functions. We first found that mlEFL35p was coimmunoprecipitated with itself and ebolavirus VP35s but not with the viral nucleoprotein. Then the biological functions of mlEFL35p were analyzed by comparing it to ebolavirus VP35s. We found that the expression of mlEFL35p significantly inhibited human IFN-β promoter activity as well as VP35s. By contrast, expression of mlEFL35p did not support viral RNA transcription/replication and indeed slightly decrease the reporter gene expression in a minigenome assay. These results suggest that mlEFL35p potentially acts as an IFN antagonist but not a polymerase cofactor.

  8. WDR5 Facilitates Human Cytomegalovirus Replication by Promoting Capsid Nuclear Egress.

    PubMed

    Yang, Bo; Liu, Xi-Juan; Yao, Yongxuan; Jiang, Xuan; Wang, Xian-Zhang; Yang, Hong; Sun, Jin-Yan; Miao, Yun; Wang, Wei; Huang, Zhen-Li; Wang, Yanyi; Tang, Qiyi; Rayner, Simon; Britt, William J; McVoy, Michael A; Luo, Min-Hua; Zhao, Fei

    2018-05-01

    WD repeat-containing protein 5 (WDR5) is essential for assembling the VISA-associated complex to induce a type I interferon antiviral response to Sendai virus infection. However, the roles of WDR5 in DNA virus infections are not well described. Here, we report that human cytomegalovirus exploits WDR5 to facilitate capsid nuclear egress. Overexpression of WDR5 in fibroblasts slightly enhanced the infectious virus yield. However, WDR5 knockdown dramatically reduced infectious virus titers with only a small decrease in viral genome replication or gene expression. Further investigation of late steps of viral replication found that WDR5 knockdown significantly impaired formation of the viral nuclear egress complex and induced substantially fewer infoldings of the inner nuclear membrane. In addition, fewer capsids were associated with these infoldings, and there were fewer capsids in the cytoplasm. Restoration of WDR5 partially reversed these effects. These results suggest that WDR5 knockdown impairs the nuclear egress of capsids, which in turn decreases virus titers. These findings reveal an important role for a host factor whose function(s) is usurped by a viral pathogen to promote efficient replication. Thus, WDR5 represents an interesting regulatory mechanism and a potential antiviral target. IMPORTANCE Human cytomegalovirus (HCMV) has a large (∼235-kb) genome with over 170 open reading frames and exploits numerous cellular factors to facilitate its replication. HCMV infection increases protein levels of WD repeat-containing protein 5 (WDR5) during infection, overexpression of WDR5 enhances viral replication, and knockdown of WDR5 dramatically attenuates viral replication. Our results indicate that WDR5 promotes the nuclear egress of viral capsids, the depletion of WDR5 resulting in a significant decrease in production of infectious virions. This is the first report that WDR5 favors HCMV, a DNA virus, replication and highlights a novel target for antiviral therapy. Copyright © 2018 American Society for Microbiology.

  9. Virus-specific antibodies allow viral replication in the marginal zone, thereby promoting CD8+ T-cell priming and viral control

    PubMed Central

    Duhan, Vikas; Khairnar, Vishal; Friedrich, Sarah-Kim; Zhou, Fan; Gassa, Asmae; Honke, Nadine; Shaabani, Namir; Gailus, Nicole; Botezatu, Lacramioara; Khandanpour, Cyrus; Dittmer, Ulf; Häussinger, Dieter; Recher, Mike; Hardt, Cornelia; Lang, Philipp A.; Lang, Karl S.

    2016-01-01

    Clinically used human vaccination aims to induce specific antibodies that can guarantee long-term protection against a pathogen. The reasons that other immune components often fail to induce protective immunity are still debated. Recently we found that enforced viral replication in secondary lymphoid organs is essential for immune activation. In this study we used the lymphocytic choriomeningitis virus (LCMV) to determine whether enforced virus replication occurs in the presence of virus-specific antibodies or virus-specific CD8+ T cells. We found that after systemic recall infection with LCMV-WE the presence of virus-specific antibodies allowed intracellular replication of virus in the marginal zone of spleen. In contrast, specific antibodies limited viral replication in liver, lung, and kidney. Upon recall infection with the persistent virus strain LCMV-Docile, viral replication in spleen was essential for the priming of CD8+ T cells and for viral control. In contrast to specific antibodies, memory CD8+ T cells inhibited viral replication in marginal zone but failed to protect mice from persistent viral infection. We conclude that virus-specific antibodies limit viral infection in peripheral organs but still allow replication of LCMV in the marginal zone, a mechanism that allows immune boosting during recall infection and thereby guarantees control of persistent virus. PMID:26805453

  10. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field.

    PubMed

    Wines, Bruce D; Billings, Hugh; Mclean, Milla R; Kent, Stephen J; Hogarth, P Mark

    2017-01-01

    There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fcdependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. This brief review highlights the importance of Fc properties for immunity to HIV, particularly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ectodomains to detect functionally relevant viral antigen-specific antibodies. The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the essential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reliably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. We propose the assay has broader implications for the evaluation of the quality of antibody responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Antibody Functional Assays as Measures of Fc Receptor-Mediated Immunity to HIV - New Technologies and their Impact on the HIV Vaccine Field

    PubMed Central

    Wines, Bruce D.; Billings, Hugh; Mclean, Milla R.; Kent, Stephen J.; Hogarth, P. Mark

    2017-01-01

    Background: There is now intense interest in the role of HIV-specific antibodies and the engagement of FcγR functions in the control and prevention of HIV infection. The analyses of the RV144 vaccine trial, natural progression cohorts, and macaque models all point to a role for Fc-dependent effector functions, such as cytotoxicity (ADCC) or phagocytosis (ADCP), in the control of HIV. However, reliable assays that can be reproducibly used across different laboratories to measure Fc-dependent functions, such as antibody dependent cellular cytotoxicity (ADCC) are limited. Method: This brief review highlights the importance of Fc properties for immunity to HIV, particular-ly via FcγR diversity and function. We discuss assays used to study FcR mediated functions of HIV-specific Ab, including our recently developed novel cell-free ELISA using homo-dimeric FcγR ecto-domains to detect functionally relevant viral antigen-specific antibodies. Results: The binding of these dimeric FcγR ectodomains, to closely spaced pairs of IgG Fc, mimics the engagement and cross-linking of Fc receptors by IgG opsonized virions or infected cells as the es-sential prerequisite to the induction of Ab-dependent effector functions. The dimeric FcγR ELISA reli-ably correlates with ADCC in patient responses to influenza. The assay is amenable to high throughput and could be standardized across laboratories. Conclusion: We propose the assay has broader implications for the evaluation of the quality of anti-body responses in viral infections and for the rapid evaluation of responses in vaccine development campaigns for HIV and other viral infections. PMID:28322167

  12. Identification of Poxvirus Genome Uncoating and DNA Replication Factors with Mutually Redundant Roles.

    PubMed

    Liu, Baoming; Panda, Debasis; Mendez-Rios, Jorge D; Ganesan, Sundar; Wyatt, Linda S; Moss, Bernard

    2018-04-01

    Genome uncoating is essential for replication of most viruses. For poxviruses, the process is divided into two stages: removal of the envelope, allowing early gene expression, and breaching of the core wall, allowing DNA release, replication, and late gene expression. Subsequent studies showed that the host proteasome and the viral D5 protein, which has an essential role in DNA replication, are required for vaccinia virus (VACV) genome uncoating. In a search for additional VACV uncoating proteins, we noted a report that described a defect in DNA replication and late expression when the gene encoding a 68-kDa ankyrin repeat/F-box protein (68k-ank), associated with the cellular SCF (Skp1, cullin1, F-box-containing complex) ubiquitin ligase complex, was deleted from the attenuated modified vaccinia virus Ankara (MVA). Here we showed that the 68k-ank deletion mutant exhibited diminished genome uncoating, formation of DNA prereplication sites, and degradation of viral cores as well as an additional, independent defect in DNA synthesis. Deletion of the 68k-ank homolog of VACV strain WR, however, was without effect, suggesting the existence of compensating genes. By inserting VACV genes into an MVA 68k-ank deletion mutant, we discovered that M2, a member of the poxvirus immune evasion (PIE) domain superfamily and a regulator of NF-κB, and C5, a member of the BTB/Kelch superfamily associated with cullin-3-based ligase complexes, independently rescued the 68k-ank deletion phenotype. Thus, poxvirus uncoating and DNA replication are intertwined processes involving at least three viral proteins with mutually redundant functions in addition to D5. IMPORTANCE Poxviruses comprise a family of large DNA viruses that infect vertebrates and invertebrates and cause diseases of medical and zoological importance. Poxviruses, unlike most other DNA viruses, replicate in the cytoplasm, and their large genomes usually encode 200 or more proteins with diverse functions. About 90 genes may be essential for chordopoxvirus replication based either on their conservation or individual gene deletion studies. However, this number may underestimate the true number of essential functions because of redundancy. Here we show that any one of three seemingly unrelated and individually nonessential proteins is required for the incompletely understood processes of genome uncoating and DNA replication, an example of synthetic lethality. Thus, poxviruses appear to have a complex genetic interaction network that has not been fully appreciated and which will require multifactor deletion screens to assess. Copyright © 2018 American Society for Microbiology.

  13. Transmembrane Domains of NS2B Contribute to both Viral RNA Replication and Particle Formation in Japanese Encephalitis Virus.

    PubMed

    Li, Xiao-Dan; Deng, Cheng-Lin; Ye, Han-Qing; Zhang, Hong-Lei; Zhang, Qiu-Yan; Chen, Dong-Dong; Zhang, Pan-Tao; Shi, Pei-Yong; Yuan, Zhi-Ming; Zhang, Bo

    2016-06-15

    Flavivirus nonstructural protein 2B (NS2B) is a transmembrane protein that functions as a cofactor for viral NS3 protease. The cytoplasmic region (amino acids 51 to 95) alone of NS2B is sufficient for NS3 protease activity, whereas the role of transmembrane domains (TMDs) remains obscure. Here, we demonstrate for the first time that flavivirus NS2B plays a critical role in virion assembly. Using Japanese encephalitis virus (JEV) as a model, we performed a systematic mutagenesis at the flavivirus conserved residues within the TMDs of NS2B. As expected, some mutations severely attenuated (L38A and R101A) or completely destroyed (G12L) viral RNA synthesis. Interestingly, two mutations (G37L and P112A) reduced viral RNA synthesis and blocked virion assembly. None of the mutations affected NS2B-NS3 protease activity. Because mutations G37L and P112A affected virion assembly, we selected revertant viruses for these two mutants. For mutant G37L, replacement with G37F, G37H, G37T, or G37S restored virion assembly. For mutant P112A, insertion of K at position K127 (leading to K127KK) of NS2B rescued virion assembly. A biomolecular fluorescent complementation (BiFC) analysis demonstrated that (i) mutation P112A selectively weakened NS2B-NS2A interaction and (ii) the adaptive mutation K127KK restored NS2B-NS2A interaction. Collectively, our results demonstrate that, in addition to being a cofactor for NS3 protease, flavivirus NS2B also functions in viral RNA replication, as well as virion assembly. Many flaviviruses are important human pathogens. Understanding the molecular mechanisms of the viral infection cycle is essential for vaccine and antiviral development. In this study, we demonstrate that the TMDs of JEV NS2B participate in both viral RNA replication and virion assembly. A viral genetic study and a BiFC assay demonstrated that interaction between NS2B and NS2A may participate in modulating viral assembly in the flavivirus life cycle. Compensatory-mutation analysis confirmed that there was a correlation between viral assembly and NS2B-NS2A interaction. TMDs of NS2B may serve as novel antiviral targets to prevent flavivirus infection, and the structure determination of NS2B will help us to understand the functional mechanism of NS2B in viral RNA replication and assembly. The results have uncovered a new function of flavivirus NS2B in virion assembly, possibly through interaction with the NS2A protein. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. THE E1 PROTEINS

    PubMed Central

    Bergvall, Monika; Melendy, Thomas; Archambault, Jacques

    2013-01-01

    E1, an ATP-dependent DNA helicase, is the only enzyme encoded by papillomaviruses (PVs). It is essential for replication and amplification of the viral episome in the nucleus of infected cells. To do so, E1 assembles into a double-hexamer at the viral origin, unwinds DNA at the origin and ahead of the replication fork and interacts with cellular DNA replication factors. Biochemical and structural studies have revealed the assembly pathway of E1 at the origin and how the enzyme unwinds DNA using a spiral escalator mechanism. E1 is tightly regulated in vivo, in particular by post-translational modifications that restrict its accumulation in the nucleus. Here we review how different functional domains of E1 orchestrate viral DNA replication, with an emphasis on their interactions with substrate DNA, host DNA replication factors and modifying enzymes. These studies have made E1 one of the best characterized helicases and provided unique insights on how PVs usurp different host-cell machineries to replicate and amplify their genome in a tightly controlled manner. PMID:24029589

  15. Single-round selection yields a unique retroviral envelope utilizing GPR172A as its host receptor.

    PubMed

    Mazari, Peter M; Linder-Basso, Daniela; Sarangi, Anindita; Chang, Yehchung; Roth, Monica J

    2009-04-07

    The recognition by a viral envelope of its cognate host-cell receptor is the initial critical step in defining the viral host-range and tissue specificity. This study combines a single-round of selection of a random envelope library with a parallel cDNA screen for receptor function to identify a distinct retroviral envelope/receptor pair. The 11-aa targeting domain of the modified feline leukemia virus envelope consists of a constrained peptide. Critical to the binding of the constrained peptide envelope to its cellular receptor are a pair of internal cysteines and an essential Trp required for maintenance of titers >10(5) lacZ staining units per milliliter. The receptor used for viral entry is the human GPR172A protein, a G-protein-coupled receptor isolated from osteosarcoma cells. The ability to generate unique envelopes capable of using tissue- or disease-specific receptors marks an advance in the development of efficient gene-therapy vectors.

  16. Optimized P2A for reporter gene insertion into Nipah virus results in efficient ribosomal skipping and wild-type lethality.

    PubMed

    Park, Arnold; Yun, Tatyana; Hill, Terence E; Ikegami, Tetsuro; Juelich, Terry L; Smith, Jennifer K; Zhang, Lihong; Freiberg, Alexander N; Lee, Benhur

    2016-04-01

    Incorporation of reporter genes within virus genomes is an indispensable tool for interrogation of virus biology and pathogenesis. In previous work, we incorporated a fluorophore into a viral ORF by attaching it to the viral gene via a P2A ribosomal skipping sequence. This recombinant Nipah virus, however, was attenuated in vitro relative to WT virus. In this work, we determined that inefficient ribosomal skipping was a major contributing factor to this attenuation. Inserting a GSG linker before the P2A sequence resulted in essentially complete skipping, significantly improved growth in vitro, and WT lethality in vivo. To the best of our knowledge, this represents the first time a recombinant virus of Mononegavirales with integration of a reporter into a viral ORF has been compared with the WT virus in vivo. Incorporating the GSG linker for improved skipping efficiency whenever functionally important is a critical consideration for recombinant virus design.

  17. Small terminase couples viral DNA-binding to genome-packaging ATPase activity

    PubMed Central

    Roy, Ankoor; Bhardwaj, Anshul; Datta, Pinaki; Lander, Gabriel C.; Cingolani, Gino

    2012-01-01

    SUMMARY Packaging of viral genomes into empty procapsids is powered by a large DNA-packaging motor. In most viruses, this machine is composed of a large (L) and a small (S) terminase subunit complexed with a dodecamer of portal protein. Here, we describe the 1.75 Å crystal structure of the bacteriophage P22 S-terminase in a nonameric conformation. The structure presents a central channel ~23 Å in diameter, sufficiently large to accommodate hydrated B-DNA. The last 23 residues of S-terminase are essential for binding to DNA and assembly to L-terminase. Upon binding to its own DNA, S-terminase functions as a specific activator of L-terminase ATPase activity. The DNA-dependent stimulation of ATPase activity thus rationalizes the exclusive specificity of genome-packaging motors for viral DNA in the crowd of host DNA, ensuring fidelity of packaging and avoiding wasteful ATP hydrolysis. This posits a model for DNA-dependent activation of genome-packaging motors of general interest in virology. PMID:22771211

  18. Virtual ligand screening of the National Cancer Institute (NCI) compound library leads to the allosteric inhibitory scaffolds of the West Nile Virus NS3 proteinase.

    PubMed

    Shiryaev, Sergey A; Cheltsov, Anton V; Gawlik, Katarzyna; Ratnikov, Boris I; Strongin, Alex Y

    2011-02-01

    Viruses of the genus Flavivirus are responsible for significant human disease and mortality. The N-terminal domain of the flaviviral nonstructural (NS)3 protein codes for the serine, chymotrypsin-fold proteinase (NS3pro). The presence of the nonstructural (NS)2B cofactor, which is encoded by the upstream gene in the flaviviral genome, is necessary for NS3pro to exhibit its proteolytic activity. The two-component NS2B-NS3pro functional activity is essential for the viral polyprotein processing and replication. Both the structure and the function of NS2B-NS3pro are conserved in the Flavivirus family. Because of its essential function in the posttranslational processing of the viral polyprotein precursor, NS2B-NS3pro is a promising target for anti-flavivirus drugs. To identify selective inhibitors with the reduced cross-reactivity and off-target effects, we focused our strategy on the allosteric inhibitors capable of targeting the NS2B-NS3pro interface rather than the NS3pro active site. Using virtual ligand screening of the diverse, ∼275,000-compound library and the catalytic domain of the two-component West Nile virus (WNV) NS2B-NS3pro as a receptor, we identified a limited subset of the novel inhibitory scaffolds. Several of the discovered compounds performed as allosteric inhibitors and exhibited a nanomolar range potency in the in vitro cleavage assays. The inhibitors were also potent in cell-based assays employing the sub-genomic, luciferase-tagged WNV and Dengue viral replicons. The selectivity of the inhibitors was confirmed using the in vitro cleavage assays with furin, a human serine proteinase, the substrate preferences of which are similar to those of WNV NS2B-NS3pro. Conceptually, the similar in silico drug discovery strategy may be readily employed for the identification of inhibitors of other flaviviruses.

  19. Functional genomics reveals an essential and specific role for Stat1 in protection of the central nervous system following herpes simplex virus corneal infection.

    PubMed

    Pasieka, Tracy Jo; Cilloniz, Cristian; Carter, Victoria S; Rosato, Pamela; Katze, Michael G; Leib, David A

    2011-12-01

    Innate immune deficiencies result in a spectrum of severe clinical outcomes following infection. In particular, there is a strong association between loss of the signal transducer and activator of transcription (Stat) pathway, breach of the blood-brain barrier (BBB), and virus-induced neuropathology. The gene signatures that characterize resistance, disease, and mortality in the virus-infected nervous system have not been defined. Herpes simplex virus type 1 (HSV-1) is commonly associated with encephalitis in humans, and humans and mice lacking Stat1 display increased susceptibility to HSV central nervous system (CNS) infections. In this study, two HSV-1 strains were used, KOS (wild type [WT]), and Δvhs, an avirulent recombinant lacking the virion host shutoff (vhs) function. In addition, two mouse strains were used: strain 129 (control) and a Stat1-deficient (Stat1(-/-)) strain. Using combinations of these virus and mouse strains, we established a model of infection resulting in three different outcomes: viral clearance without neurological disease (Δvhs infection of control mice), neurological disease followed by viral clearance (Δvhs infection of Stat1(-/-) mice and WT infection of control mice), or neurological disease followed by death (WT infection of Stat1(-/-) mice). Through the use of functional genomics on the infected brain stems, we determined gene signatures that were representative of the three infection outcomes. We demonstrated a pathological signature in the brain stem of Stat1-deficient mice characterized by upregulation of transcripts encoding chemokine receptors, inflammatory markers, neutrophil chemoattractants, leukocyte adhesion proteins, and matrix metalloproteases. Additionally, there was a greater than 100-fold increase in the inflammatory markers interleukin 1β (IL-1β) and IL-6. Consistent with this gene signature, we demonstrated profound CNS inflammation with a concomitant lethal breach of the BBB. Taken together, our results indicated an essential role for normal Stat1-dependent signaling in mediating a nonpathological immune response to viral CNS infection.

  20. The Design of New HIV-IN Tethered Bifunctional Inhibitors using Multiple Microdomain Targeted Docking.

    PubMed

    Ciubotaru, Mihai; Musat, Mihaela Georgiana; Surleac, Marius; Ionita, Elena; Petrescu, Andrei Jose; Abele, Edgars; Abele, Ramona

    2018-04-05

    Currently used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes, changes these viral enzymes which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex [1] onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Identification of functional domains of the IR2 protein of equine herpesvirus 1 required for inhibition of viral gene expression and replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Seong K., E-mail: skim1@lsuhsc.edu; Kim, Seongman; Dai Gan

    2011-09-01

    The equine herpesvirus 1 (EHV-1) negative regulatory IR2 protein (IR2P), an early 1,165-amino acid (aa) truncated form of the 1487-aa immediate-early protein (IEP), lacks the trans-activation domain essential for IEP activation functions but retains domains for binding DNA, TFIIB, and TBP and the nuclear localization signal. IR2P mutants of the N-terminal region which lack either DNA-binding activity or TFIIB-binding activity were unable to down-regulate EHV-1 promoters. In EHV-1-infected cells expressing full-length IR2P, transcription and protein expression of viral regulatory IE, early EICP0, IR4, and UL5, and late ETIF genes were dramatically inhibited. Viral DNA levels were reduced to 2.1% ofmore » control infected cells, but were vey weakly affected in cells that express the N-terminal 706 residues of IR2P. These results suggest that IR2P function requires the two N-terminal domains for binding DNA and TFIIB as well as the C-terminal residues 707 to 1116 containing the TBP-binding domain. - Highlights: > We examine the functional domains of IR2P that mediates negative regulation. > IR2P inhibits at the transcriptional level. > DNA-binding mutant or TFIIB-binding mutant fails to inhibit. > C-terminal aa 707 to 1116 are required for full inhibition. > Inhibition requires the DNA-binding domain, TFIIB-binding domain, and C-terminus.« less

  2. Screening for Antiviral Activities of Isolated Compounds from Essential Oils

    PubMed Central

    Astani, Akram; Reichling, Jürgen; Schnitzler, Paul

    2011-01-01

    Essential oil of star anise as well as phenylpropanoids and sesquiterpenes, for example, trans-anethole, eugenol, β-eudesmol, farnesol, β-caryophyllene and β-caryophyllene oxide, which are present in many essential oils, were examined for their antiviral activity against herpes simplex virus type 1 (HSV-1) in vitro. Antiviral activity was analyzed by plaque reduction assays and mode of antiviral action was determined by addition of the drugs to uninfected cells, to the virus prior to infection or to herpesvirus-infected cells. Star anise oil reduced viral infectivity by >99%, phenylpropanoids inhibited HSV infectivity by about 60–80% and sesquiterpenes suppressed herpes virus infection by 40–98%. Both, star anise essential oil and all isolated compounds exhibited anti-HSV-1 activity by direct inactivation of free virus particles in viral suspension assays. All tested drugs interacted in a dose-dependent manner with herpesvirus particles, thereby inactivating viral infectivity. Star anise oil, rich in trans-anethole, revealed a high selectivity index of 160 against HSV, whereas among the isolated compounds only β-caryophyllene displayed a high selectivity index of 140. The presence of β-caryophyllene in many essential oils might contribute strongly to their antiviral ability. These results indicate that phenylpropanoids and sesquiterpenes present in essential oils contribute to their antiviral activity against HSV. PMID:20008902

  3. Synergy of two low-affinity NLSs determines the high avidity of influenza A virus nucleoprotein NP for human importin α isoforms.

    PubMed

    Wu, Wei; Sankhala, Rajeshwer S; Florio, Tyler J; Zhou, Lixin; Nguyen, Nhan L T; Lokareddy, Ravi K; Cingolani, Gino; Panté, Nelly

    2017-09-12

    The influenza A virus nucleoprotein (NP) is an essential multifunctional protein that encapsidates the viral genome and functions as an adapter between the virus and the host cell machinery. NPs from all strains of influenza A viruses contain two nuclear localization signals (NLSs): a well-studied monopartite NLS1 and a less-characterized NLS2, thought to be bipartite. Through site-directed mutagenesis and functional analysis, we found that NLS2 is also monopartite and is indispensable for viral infection. Atomic structures of importin α bound to two variants of NLS2 revealed NLS2 primarily binds the major-NLS binding site of importin α, unlike NLS1 that associates with the minor NLS-pocket. Though peptides corresponding to NLS1 and NLS2 bind weakly to importin α, the two NLSs synergize in the context of the full length NP to confer high avidity for importin α7, explaining why the virus efficiently replicates in the respiratory tract that exhibits high levels of this isoform. This study, the first to functionally characterize NLS2, demonstrates NLS2 plays an important and unexpected role in influenza A virus infection. We propose NLS1 and NLS2 form a bipartite NLS in trans, which ensures high avidity for importin α7 while preventing non-specific binding to viral RNA.

  4. Medroxyprogesterone acetate inhibits CD8+ T cell viral specific effector function and induces herpes simplex virus type 1 reactivation

    PubMed Central

    Cherpes, Thomas L.; Busch, James L.; Sheridan, Brian S.; Harvey, Stephen A. K.; Hendricks, Robert L.

    2008-01-01

    Clinical research suggests hormonal contraceptive use is associated with increased frequencies of herpes simplex virus (HSV) reactivation and shedding. We examined the effects of medroxyprogesterone acetate (MPA), the compound most commonly used for injectable hormonal contraception, on HSV-1 reactivation and CD8+ T cell function in murine trigeminal ganglia (TG). In ex vivo TG cultures, MPA dramatically inhibited canonical CD8+ T cell effector functions, including IFN-γ production and lytic granule release, and increased HSV-1 reactivation from latency. In vivo, MPA treatment of latently infected ovariectomized mice inhibited IFN-γ production and lytic granule release by TG resident CD8+ T cells stimulated directly ex vivo. RNA specific for the essential immediate early viral gene ICP4 as well as viral genome DNA copy number were increased in mice that received MPA during latency, suggesting that treatment increased in vivo reactivation. The increase in HSV-1 copy number appeared to be the result of a two-tine effect, as MPA induced higher reactivation frequencies from latently infected explanted TG neurons in the presence or absence of CD45+ cells. Our data suggest hormonal contraceptives that contain MPA may promote increased frequency of HSV reactivation from latency through the combinatory effects of inhibiting protective CD8+ T cell responses and by a leukocyte-independent effect on infected neurons. PMID:18606648

  5. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis.

    PubMed

    Du, Yushen; Wu, Nicholas C; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting; Sun, Ren

    2016-11-01

    Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. To fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual residues. Current methods are highly dependent on evolutionary sequence conservation, which is usually limited by sampling size. Sequence conservation-based methods are further confounded by structural constraints and multifunctionality of proteins. Here we present a method that can systematically identify and annotate functional residues of a given protein. We used a high-throughput functional profiling platform to identify essential residues. Coupling it with homologous-structure comparison, we were able to annotate multiple functions of proteins. We demonstrated the method with the PB1 protein of influenza A virus and identified novel functional residues in addition to its canonical function as an RNA-dependent RNA polymerase. Not limited to virology, this method is generally applicable to other proteins that can be functionally selected and about which homologous-structure information is available. Copyright © 2016 Du et al.

  6. Primate Lentiviruses Modulate NF-κB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression

    PubMed Central

    Heusinger, Elena; Kirchhoff, Frank

    2017-01-01

    The transcription factor nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) plays a complex role during the replication of primate lentiviruses. On the one hand, NF-κB is essential for induction of efficient proviral gene expression. On the other hand, this transcription factor contributes to the innate immune response and induces expression of numerous cellular antiviral genes. Recent data suggest that primate lentiviruses cope with this challenge by boosting NF-κB activity early during the replication cycle to initiate Tat-driven viral transcription and suppressing it at later stages to minimize antiviral gene expression. Human and simian immunodeficiency viruses (HIV and SIV, respectively) initially exploit their accessory Nef protein to increase the responsiveness of infected CD4+ T cells to stimulation. Increased NF-κB activity initiates Tat expression and productive replication. These events happen quickly after infection since Nef is rapidly expressed at high levels. Later during infection, Nef proteins of HIV-2 and most SIVs exert a very different effect: by down-modulating the CD3 receptor, an essential factor for T cell receptor (TCR) signaling, they prevent stimulation of CD4+ T cells via antigen-presenting cells and hence suppress further induction of NF-κB and an effective antiviral immune response. Efficient LTR-driven viral transcription is maintained because it is largely independent of NF-κB in the presence of Tat. In contrast, human immunodeficiency virus type 1 (HIV-1) and its simian precursors have lost the CD3 down-modulation function of Nef and use the late viral protein U (Vpu) to inhibit NF-κB activity by suppressing its nuclear translocation. In this review, we discuss how HIV-1 and other primate lentiviruses might balance viral and antiviral gene expression through a tight temporal regulation of NF-κB activity throughout their replication cycle. PMID:28261165

  7. Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export.

    PubMed

    Behrens, Ryan T; Aligeti, Mounavya; Pocock, Ginger M; Higgins, Christina A; Sherer, Nathan M

    2017-02-01

    HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place. Copyright © 2017 American Society for Microbiology.

  8. Nuclear Export Signal Masking Regulates HIV-1 Rev Trafficking and Viral RNA Nuclear Export

    PubMed Central

    Behrens, Ryan T.; Aligeti, Mounavya; Pocock, Ginger M.; Higgins, Christina A.

    2016-01-01

    ABSTRACT HIV-1's Rev protein forms a homo-oligomeric adaptor complex linking viral RNAs to the cellular CRM1/Ran-GTP nuclear export machinery through the activity of Rev's prototypical leucine-rich nuclear export signal (NES). In this study, we used a functional fluorescently tagged Rev fusion protein as a platform to study the effects of modulating Rev NES identity, number, position, or strength on Rev subcellular trafficking, viral RNA nuclear export, and infectious virion production. We found that Rev activity was remarkably tolerant of diverse NES sequences, including supraphysiological NES (SNES) peptides that otherwise arrest CRM1 transport complexes at nuclear pores. Rev's ability to tolerate a SNES was both position and multimerization dependent, an observation consistent with a model wherein Rev self-association acts to transiently mask the NES peptide(s), thereby biasing Rev's trafficking into the nucleus. Combined imaging and functional assays also indicated that NES masking underpins Rev's well-known tendency to accumulate at the nucleolus, as well as Rev's capacity to activate optimal levels of late viral gene expression. We propose that Rev multimerization and NES masking regulates Rev's trafficking to and retention within the nucleus even prior to RNA binding. IMPORTANCE HIV-1 infects more than 34 million people worldwide causing >1 million deaths per year. Infectious virion production is activated by the essential viral Rev protein that mediates nuclear export of intron-bearing late-stage viral mRNAs. Rev's shuttling into and out of the nucleus is regulated by the antagonistic activities of both a peptide-encoded N-terminal nuclear localization signal and C-terminal nuclear export signal (NES). How Rev and related viral proteins balance strong import and export activities in order to achieve optimal levels of viral gene expression is incompletely understood. We provide evidence that multimerization provides a mechanism by which Rev transiently masks its NES peptide, thereby biasing its trafficking to and retention within the nucleus. Targeted pharmacological disruption of Rev-Rev interactions should perturb multiple Rev activities, both Rev-RNA binding and Rev's trafficking to the nucleus in the first place. PMID:27852860

  9. Paramyxovirus Glycoproteins and the Membrane Fusion Process.

    PubMed

    Aguilar, Hector C; Henderson, Bryce A; Zamora, J Lizbeth; Johnston, Gunner P

    2016-09-01

    The family Paramyxoviridae includes many viruses that significantly affect human and animal health. An essential step in the paramyxovirus life cycle is viral entry into host cells, mediated by virus-cell membrane fusion. Upon viral entry, infection results in expression of the paramyxoviral glycoproteins on the infected cell surface. This can lead to cell-cell fusion (syncytia formation), often linked to pathogenesis. Thus membrane fusion is essential for both viral entry and cell-cell fusion and an attractive target for therapeutic development. While there are important differences between viral-cell and cell-cell membrane fusion, many aspects are conserved. The paramyxoviruses generally utilize two envelope glycoproteins to orchestrate membrane fusion. Here, we discuss the roles of these glycoproteins in distinct steps of the membrane fusion process. These findings can offer insights into evolutionary relationships among Paramyxoviridae genera and offer future targets for prophylactic and therapeutic development.

  10. Paramyxovirus Glycoproteins and the Membrane Fusion Process

    PubMed Central

    Aguilar, Hector C.; Henderson, Bryce A.; Zamora, J. Lizbeth; Johnston, Gunner P.

    2016-01-01

    The family Paramyxoviridae includes many viruses that significantly affect human and animal health. An essential step in the paramyxovirus life cycle is viral entry into host cells, mediated by virus-cell membrane fusion. Upon viral entry, infection results in expression of the paramyxoviral glycoproteins on the infected cell surface. This can lead to cell-cell fusion (syncytia formation), often linked to pathogenesis. Thus membrane fusion is essential for both viral entry and cell-cell fusion and an attractive target for therapeutic development. While there are important differences between viral-cell and cell-cell membrane fusion, many aspects are conserved. The paramyxoviruses generally utilize two envelope glycoproteins to orchestrate membrane fusion. Here, we discuss the roles of these glycoproteins in distinct steps of the membrane fusion process. These findings can offer insights into evolutionary relationships among Paramyxoviridae genera and offer future targets for prophylactic and therapeutic development. PMID:28138419

  11. Most Influenza A Virions Fail To Express at Least One Essential Viral Protein

    PubMed Central

    Brooke, Christopher B.; Ince, William L.; Wrammert, Jens; Ahmed, Rafi; Wilson, Patrick C.; Bennink, Jack R.

    2013-01-01

    Segmentation of the influenza A virus (IAV) genome enables rapid gene reassortment at the cost of complicating the task of assembling the full viral genome. By simultaneously probing for the expression of multiple viral proteins in MDCK cells infected at a low multiplicity with IAV, we observe that the majority of infected cells lack detectable expression of one or more essential viral proteins. Consistent with this observation, up to 90% of IAV-infected cells fail to release infectious progeny, indicating that many IAV virions scored as noninfectious by traditional infectivity assays are capable of single-round infection. This fraction was not significantly affected by target or producer cell type but varied widely between different IAV strains. These data indicate that IAV exists primarily as a swarm of complementation-dependent semi-infectious virions, and thus traditional, propagation-dependent assays of infectivity may drastically misrepresent the true infectious potential of a virus population. PMID:23283949

  12. Chromatin Immunoprecipitation and Microarray Analysis Suggest Functional Cooperation between Kaposi's Sarcoma-Associated Herpesvirus ORF57 and K-bZIP

    PubMed Central

    Hunter, Olga V.; Sei, Emi; Richardson, R. Blake

    2013-01-01

    The Kaposi's sarcoma-associated herpesvirus (KSHV) open reading frame 57 (ORF57)-encoded protein (Mta) is a multifunctional regulator of viral gene expression. ORF57 is essential for viral replication, so elucidation of its molecular mechanisms is important for understanding KSHV infection. ORF57 has been implicated in nearly every aspect of viral gene expression, including transcription, RNA stability, splicing, export, and translation. Here we demonstrate that ORF57 interacts with the KSHV K-bZIP protein in vitro and in cell extracts from lytically reactivated infected cells. To further test the biological relevance of the interaction, we performed a chromatin immunoprecipitation and microarray (ChIP-chip) analysis using anti-ORF57 antibodies and a KSHV tiling array. The results revealed four specific areas of enrichment, including the ORF4 and K8 (K-bZIP) promoters, as well as oriLyt, all of which interact with K-bZIP. In addition, ORF57 associated with DNA corresponding to the PAN RNA transcribed region, a known posttranscriptional target of ORF57. All of the peaks were RNase insensitive, demonstrating that ORF57 association with the viral genome is unlikely to be mediated exclusively by an RNA tether. Our data demonstrate that ORF57 associates with the viral genome by using at least two modes of recruitment, and they suggest that ORF57 and K-bZIP coregulate viral gene expression during lytic infection. PMID:23365430

  13. Methamphetamine mediates immune dysregulation in a murine model of chronic viral infection

    PubMed Central

    Sriram, Uma; Haldar, Bijayesh; Cenna, Jonathan M.; Gofman, Larisa; Potula, Raghava

    2015-01-01

    Methamphetamine (METH) is a highly addictive psychostimulant that not only affects the brain and cognitive functions but also greatly impacts the host immune system, rendering the body susceptible to infections and exacerbating the severity of disease. Although there is gathering evidence about METH abuse and increased incidence of HIV and other viral infections, not much is known about the effects on the immune system in a chronic viral infection setting. We have used the lymphocytic choriomeningitis virus (LCMV) chronic mouse model of viral infection in a chronic METH environment and demonstrate that METH significantly increases CD3 marker on splenocytes and programmed death-1 (PD-1) expression on T cells, a cell surface signaling molecule known to inhibit T cell function and cause exhaustion in a lymphoid organ. Many of these METH effects were more pronounced during early stage of infection, which are gradually attenuated during later stages of infection. An essential cytokine for T-lymphocyte homeostasis, Interleukin-2 (IL-2) in serum was prominently reduced in METH-exposed infected mice. In addition, the serum pro-inflammatory (TNF, IL12 p70, IL1β, IL-6, and KC-GRO) and Th2 (IL-2, IL-10, and IL-4) cytokine profiles were also altered in the presence of METH. Interestingly CXCR3, an inflammatory chemokine receptor, showed significant increase in the METH treated LCMV infected mice. Similarly, compared to only infected mice, epidermal growth factor receptor (EGFR) in METH exposed LCMV infected mice were up regulated. Collectively, our data suggest that METH alters systemic, peripheral immune responses and modulates key markers on T cells involved in pathogenesis of chronic viral infection. PMID:26322025

  14. SWI/SNF Chromatin-remodeling Factors: Multiscale Analyses and Diverse Functions*

    PubMed Central

    Euskirchen, Ghia; Auerbach, Raymond K.; Snyder, Michael

    2012-01-01

    Chromatin-remodeling enzymes play essential roles in many biological processes, including gene expression, DNA replication and repair, and cell division. Although one such complex, SWI/SNF, has been extensively studied, new discoveries are still being made. Here, we review SWI/SNF biochemistry; highlight recent genomic and proteomic advances; and address the role of SWI/SNF in human diseases, including cancer and viral infections. These studies have greatly increased our understanding of complex nuclear processes. PMID:22952240

  15. cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption

    PubMed Central

    Harford, Terri J.; Linfield, Debra T.; Altawallbeh, Ghaith; Midura, Ronald J.; Ivanov, Andrei I.; Piedimonte, Giovanni

    2017-01-01

    Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches. PMID:28759570

  16. Virus-host interactions: insights from the replication cycle of the large Paramecium bursaria chlorella virus.

    PubMed

    Milrot, Elad; Mutsafi, Yael; Fridmann-Sirkis, Yael; Shimoni, Eyal; Rechav, Katya; Gurnon, James R; Van Etten, James L; Minsky, Abraham

    2016-01-01

    The increasing interest in cytoplasmic factories generated by eukaryotic-infecting viruses stems from the realization that these highly ordered assemblies may contribute fundamental novel insights to the functional significance of order in cellular biology. Here, we report the formation process and structural features of the cytoplasmic factories of the large dsDNA virus Paramecium bursaria chlorella virus 1 (PBCV-1). By combining diverse imaging techniques, including scanning transmission electron microscopy tomography and focused ion beam technologies, we show that the architecture and mode of formation of PBCV-1 factories are significantly different from those generated by their evolutionary relatives Vaccinia and Mimivirus. Specifically, PBCV-1 factories consist of a network of single membrane bilayers acting as capsid templates in the central region, and viral genomes spread throughout the host cytoplasm but excluded from the membrane-containing sites. In sharp contrast, factories generated by Mimivirus have viral genomes in their core, with membrane biogenesis region located at their periphery. Yet, all viral factories appear to share structural features that are essential for their function. In addition, our studies support the notion that PBCV-1 infection, which was recently reported to result in significant pathological outcomes in humans and mice, proceeds through a bacteriophage-like infection pathway. © 2015 John Wiley & Sons Ltd.

  17. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.

    PubMed

    Freitas, Ferdinando B; Frouco, Gonçalo; Martins, Carlos; Leitão, Alexandre; Ferreira, Fernando

    2016-10-01

    African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic impact in affected countries. To date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment of African swine fever (ASF), emphasizing the need for more detailed studies at the role of ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with transcripts being detected as early as 2 hpi and reaching a maximum peak concentration around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication and gene expression, with transfected cells presenting lower viral transcripts (up to 89% decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, a significant decrease in the number of both infected cells (75.5%) and viral factories per cell and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the late phase of infection (from 15 to 1 hpi) induces fragmentation of viral genomes, whereas no viral genomes were detected when enrofloxacin was added from the early phase of infection (from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome replication and transcription, emphasizing the idea that this enzyme can be a potential target for drug and vaccine development against ASF. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A Different Perspective for Management of Diabetes Mellitus: Controlling Viral Liver Diseases.

    PubMed

    Zhao, Yingying; Xing, Huichun

    2017-01-01

    Knowing how to prevent and treat diabetes mellitus (DM) earlier is essential to improving outcomes. Through participating in synthesis and catabolism of glycogen, the liver helps to regulate glucose homeostasis. Viral related liver diseases are associated with glycometabolism disorders, which means effective management of viral liver diseases may be a therapeutic strategy for DM. The present article reviews the correlation between DM and liver diseases to give an update of the management of DM rooted by viral liver diseases.

  19. APOBEC3G Inhibits HIV-1 RNA Elongation by Inactivating the Viral Trans-Activation Response Element

    PubMed Central

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-01-01

    Deamination of cytidine residues in viral DNA (vDNA) is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient HIV-1 replication. dC to dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here we demonstrate that A3G provides an additional layer of defence against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. Finally, we show that free ssDNA termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3′+5′ ends is sufficient for A3G deamination, identifying A3G as an efficient mutator, and that deamination of (−)SSDNA results in an early block of HIV-1 transcription. PMID:24859335

  20. APOBEC3G inhibits HIV-1 RNA elongation by inactivating the viral trans-activation response element.

    PubMed

    Nowarski, Roni; Prabhu, Ponnandy; Kenig, Edan; Smith, Yoav; Britan-Rosich, Elena; Kotler, Moshe

    2014-07-29

    Deamination of cytidine residues in viral DNA is a major mechanism by which APOBEC3G (A3G) inhibits vif-deficient human immunodeficiency virus type 1 (HIV-1) replication. dC-to-dU transition following RNase-H activity leads to viral cDNA degradation, production of non-functional proteins, formation of undesired stop codons and decreased viral protein synthesis. Here, we demonstrate that A3G provides an additional layer of defense against HIV-1 infection dependent on inhibition of proviral transcription. HIV-1 transcription elongation is regulated by the trans-activation response (TAR) element, a short stem-loop RNA structure required for elongation factors binding. Vif-deficient HIV-1-infected cells accumulate short viral transcripts and produce lower amounts of full-length HIV-1 transcripts due to A3G deamination of the TAR apical loop cytidine, highlighting the requirement for TAR loop integrity in HIV-1 transcription. We further show that free single-stranded DNA (ssDNA) termini are not essential for A3G activity and a gap of CCC motif blocked with juxtaposed DNA or RNA on either or 3'+5' ends is sufficient for A3G deamination. These results identify A3G as an efficient mutator and that deamination of (-)SSDNA results in an early block of HIV-1 transcription. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Selection of recombinant MVA by rescue of the essential D4R gene.

    PubMed

    Ricci, Patricia S; Schäfer, Birgit; Kreil, Thomas R; Falkner, Falko G; Holzer, Georg W

    2011-12-12

    Modified vaccinia virus Ankara (MVA) has become a promising vaccine vector due to its immunogenicity and its proven safety in humans. As a general approach for stringent and rapid selection of recombinant MVA, we assessed marker rescue of the essential viral D4R gene in an engineered deletion mutant that is fully replication defective in wild-type cells. Recombinant, replicating virus was obtained by re-introduction of the deleted viral gene as a dominant selection marker into the deletion mutant.

  2. Bovine viral diarrhea virus NS3 serine proteinase: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication.

    PubMed Central

    Xu, J; Mendez, E; Caron, P R; Lin, C; Murcko, M A; Collett, M S; Rice, C M

    1997-01-01

    Members of the Flaviviridae encode a serine proteinase termed NS3 that is responsible for processing at several sites in the viral polyproteins. In this report, we show that the NS3 proteinase of the pestivirus bovine viral diarrhea virus (BVDV) (NADL strain) is required for processing at nonstructural (NS) protein sites 3/4A, 4A/4B, 4B/5A, and 5A/5B but not for cleavage at the junction between NS2 and NS3. Cleavage sites of the proteinase were determined by amino-terminal sequence analysis of the NS4A, NS4B, NS5A, and NS5B proteins. A conserved leucine residue is found at the P1 position of all four cleavage sites, followed by either serine (3/4A, 4B/5A, and 5A/5B sites) or alanine (4A/4B site) at the P1' position. Consistent with this cleavage site preference, a structural model of the pestivirus NS3 proteinase predicts a highly hydrophobic P1 specificity pocket. trans-Processing experiments implicate the 64-residue NS4A protein as an NS3 proteinase cofactor required for cleavage at the 4B/5A and 5A/5B sites. Finally, using a full-length functional BVDV cDNA clone, we demonstrate that a catalytically active NS3 serine proteinase is essential for pestivirus replication. PMID:9188600

  3. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Mohamed I., E-mail: mkhalil2@stanford.edu; Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo; Che, Xibing

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This studymore » mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.« less

  4. Mechanism of protection from primary bovine viral diarrhea virus infection. I. The effects of dexamethasone.

    PubMed Central

    Shope, R E; Muscoplat, C C; Chen, A W; Johnson, D W

    1976-01-01

    A series of investigations was designed to study the role of cellular immunity and passive antibody in protecting neonatal calves from primary bovine viral diarrhea virus infection. Administration of corticosteroids (dexamethasone) in doses capable of suppressing cellular immunity markedly potentiated systemic bovine viral diarrhea virus infection in calves which lacked bovine viral diarrhea passive neutralizing antibody. Immunosuppressed calves did not form neutralizing antibody to bovine viral diarrhea virus and developed a fatal viremia. Calves with high levels of passive bovine viral diarrhea neutralizing antibodies were protected from the effect of corticosteroids. The results suggest an essential role for humoral passive antibody, but not for cellular immunity, in protection from primary systemic bovine viral diarrhea virus infection in calves. PMID:187303

  5. The Canonical Immediate Early 3 Gene Product pIE611 of Mouse Cytomegalovirus Is Dispensable for Viral Replication but Mediates Transcriptional and Posttranscriptional Regulation of Viral Gene Products.

    PubMed

    Rattay, Stephanie; Trilling, Mirko; Megger, Dominik A; Sitek, Barbara; Meyer, Helmut E; Hengel, Hartmut; Le-Trilling, Vu Thuy Khanh

    2015-08-01

    Transcription of mouse cytomegalovirus (MCMV) immediate early ie1 and ie3 is controlled by the major immediate early promoter/enhancer (MIEP) and requires differential splicing. Based on complete loss of genome replication of an MCMV mutant carrying a deletion of the ie3-specific exon 5, the multifunctional IE3 protein (611 amino acids; pIE611) is considered essential for viral replication. Our analysis of ie3 transcription resulted in the identification of novel ie3 isoforms derived from alternatively spliced ie3 transcripts. Construction of an IE3-hemagglutinin (IE3-HA) virus by insertion of an in-frame HA epitope sequence allowed detection of the IE3 isoforms in infected cells, verifying that the newly identified transcripts code for proteins. This prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication. To determine the role of pIE611 for viral gene expression during MCMV infection in an unbiased global approach, we used label-free quantitative mass spectrometry to delineate pIE611-dependent changes of the MCMV proteome. Interestingly, further analysis revealed transcriptional as well as posttranscriptional regulation of MCMV gene products by pIE611. Cytomegaloviruses are pathogenic betaherpesviruses persisting in a lifelong latency from which reactivation can occur under conditions of immunosuppression, immunoimmaturity, or inflammation. The switch from latency to reactivation requires expression of immediate early genes. Therefore, understanding of immediate early gene regulation might add insights into viral pathogenesis. The mouse cytomegalovirus (MCMV) immediate early 3 protein (611 amino acids; pIE611) is considered essential for viral replication. The identification of novel protein isoforms derived from alternatively spliced ie3 transcripts prompted the construction of an MCMV mutant lacking ie611 but retaining the coding capacity for the newly identified isoforms ie453 and ie310. Using Δie611 MCMV, we demonstrated the dispensability of the canonical ie3 gene product pIE611 for viral replication and delineated pIE611-dependent changes of the MCMV proteome. Our findings have fundamental implications for the interpretation of earlier studies on pIE3 functions and highlight the complex orchestration of MCMV gene regulation. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Crystal structure of a novel conformational state of the flavivirus NS3 protein: implications for polyprotein processing and viral replication.

    PubMed

    Assenberg, René; Mastrangelo, Eloise; Walter, Thomas S; Verma, Anil; Milani, Mario; Owens, Raymond J; Stuart, David I; Grimes, Jonathan M; Mancini, Erika J

    2009-12-01

    The flavivirus genome comprises a single strand of positive-sense RNA, which is translated into a polyprotein and cleaved by a combination of viral and host proteases to yield functional proteins. One of these, nonstructural protein 3 (NS3), is an enzyme with both serine protease and NTPase/helicase activities. NS3 plays a central role in the flavivirus life cycle: the NS3 N-terminal serine protease together with its essential cofactor NS2B is involved in the processing of the polyprotein, whereas the NS3 C-terminal NTPase/helicase is responsible for ATP-dependent RNA strand separation during replication. An unresolved question remains regarding why NS3 appears to encode two apparently disconnected functionalities within one protein. Here we report the 2.75-A-resolution crystal structure of full-length Murray Valley encephalitis virus NS3 fused with the protease activation peptide of NS2B. The biochemical characterization of this construct suggests that the protease has little influence on the helicase activity and vice versa. This finding is in agreement with the structural data, revealing a single protein with two essentially segregated globular domains. Comparison of the structure with that of dengue virus type 4 NS2B-NS3 reveals a relative orientation of the two domains that is radically different between the two structures. Our analysis suggests that the relative domain-domain orientation in NS3 is highly variable and dictated by a flexible interdomain linker. The possible implications of this conformational flexibility for the function of NS3 are discussed.

  7. Novel functions of prototype foamy virus Gag glycine- arginine-rich boxes in reverse transcription and particle morphogenesis.

    PubMed

    Müllers, Erik; Uhlig, Tobias; Stirnnagel, Kristin; Fiebig, Uwe; Zentgraf, Hanswalter; Lindemann, Dirk

    2011-02-01

    Prototype foamy virus (PFV) Gag lacks the characteristic orthoretroviral Cys-His motifs that are essential for various steps of the orthoretroviral replication cycle, such as RNA packaging, reverse transcription, infectivity, integration, and viral assembly. Instead, it contains three glycine-arginine-rich boxes (GR boxes) in its C terminus that putatively represent a functional equivalent. We used a four-plasmid replication-deficient PFV vector system, with uncoupled RNA genome packaging and structural protein translation, to analyze the effects of deletion and various substitution mutations within each GR box on particle release, particle-associated protein composition, RNA packaging, DNA content, infectivity, particle morphology, and intracellular localization. The degree of viral particle release by all mutants was similar to that of the wild type. Only minimal effects on Pol encapsidation, exogenous reverse transcriptase (RT) activity, and genomic viral RNA packaging were observed. In contrast, particle-associated DNA content and infectivity were drastically reduced for all deletion mutants and were undetectable for all alanine substitution mutants. Furthermore, GR box I mutants had significant changes in particle morphology, and GR box II mutants lacked the typical nuclear localization pattern of PFV Gag. Finally, it could be shown that GR boxes I and III, but not GR box II, can functionally complement each other. It therefore appears that, similar to the orthoretroviral Cys-His motifs, the PFV Gag GR boxes are important for RNA encapsidation, genome reverse transcription, and virion infectivity as well as for particle morphogenesis.

  8. Posttranslational Modifications of Baculovirus Protamine-Like Protein P6.9 and the Significance of Its Hyperphosphorylation for Viral Very Late Gene Hyperexpression

    PubMed Central

    Li, Ao; Zhao, Haizhou; Lai, Qingying; Huang, Zhihong; Yuan, Meijin

    2015-01-01

    ABSTRACT Many viruses utilize viral or cellular chromatin machinery for efficient infection. Baculoviruses encode a conserved protamine-like protein, P6.9. This protein plays essential roles in various viral physiological processes during infection. However, the mechanism by which P6.9 regulates transcription remains unknown. In this study, 7 phosphorylated species of P6.9 were resolved in Sf9 cells infected with the baculovirus type species Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Mass spectrometry identified 22 phosphorylation and 10 methylation sites but no acetylation sites in P6.9. Immunofluorescence demonstrated that the P6.9 and virus-encoded serine/threonine kinase PK1 exhibited similar distribution patterns in infected cells, and coimmunoprecipitation confirmed the interaction between them. Upon pk1 deletion, nucleocapsid assembly and polyhedron formation were interrupted and the transcription of viral very late genes was downregulated. Interestingly, we found that the 3 most phosphorylated P6.9 species vanished from Sf9 cells transfected with the pk1 deletion mutant, suggesting that PK1 is involved in the hyperphosphorylation of P6.9. Mass spectrometry suggested that the phosphorylation of the 7 Ser/Thr and 5 Arg residues in P6.9 was PK1 dependent. Replacement of the 7 Ser/Thr residues with Ala resulted in a P6.9 phosphorylation pattern similar to that of the pk1 deletion mutant. Importantly, the decreases in the transcription level of viral very late genes and viral infectivity were consistent. Our findings reveal that P6.9 hyperphosphorylation is a precondition for the maximal hyperexpression of baculovirus very late genes and provide the first experimental insights into the function of the baculovirus protamine-like protein and the related protein kinase in epigenetics. IMPORTANCE Diverse posttranslational modifications (PTMs) of histones constitute a code that creates binding platforms that recruit transcription factors to regulate gene expression. Many viruses also utilize host- or virus-induced chromatin machinery to promote efficient infections. Baculoviruses encode a protamine-like protein, P6.9, which is required for a variety of processes in the infection cycle. Currently, P6.9's PTM sites and its regulating factors remain unknown. Here, we found that P6.9 could be categorized as unphosphorylated, hypophosphorylated, and hyperphosphorylated species and that a virus-encoded serine/threonine kinase, PK1, was essential for P6.9 hyperphosphorylation. Abundant PTM sites on P6.9 were identified, among which 7 Ser/Thr phosphorylated sites were PK1 dependent. Mutation of these Ser/Thr sites reduced very late viral gene transcription and viral infectivity, indicating that the PK1-mediated P6.9 hyperphosphorylation contributes to viral proliferation. These data suggest that a code exists in the sophisticated PTM of viral protamine-like proteins and participates in viral gene transcription. PMID:25972542

  9. Picornaviruses and nuclear functions: targeting a cellular compartment distinct from the replication site of a positive-strand RNA virus

    PubMed Central

    Flather, Dylan; Semler, Bert L.

    2015-01-01

    The compartmentalization of DNA replication and gene transcription in the nucleus and protein production in the cytoplasm is a defining feature of eukaryotic cells. The nucleus functions to maintain the integrity of the nuclear genome of the cell and to control gene expression based on intracellular and environmental signals received through the cytoplasm. The spatial separation of the major processes that lead to the expression of protein-coding genes establishes the necessity of a transport network to allow biomolecules to translocate between these two regions of the cell. The nucleocytoplasmic transport network is therefore essential for regulating normal cellular functioning. The Picornaviridae virus family is one of many viral families that disrupt the nucleocytoplasmic trafficking of cells to promote viral replication. Picornaviruses contain positive-sense, single-stranded RNA genomes and replicate in the cytoplasm of infected cells. As a result of the limited coding capacity of these viruses, cellular proteins are required by these intracellular parasites for both translation and genomic RNA replication. Being of messenger RNA polarity, a picornavirus genome can immediately be translated upon entering the cell cytoplasm. However, the replication of viral RNA requires the activity of RNA-binding proteins, many of which function in host gene expression, and are consequently localized to the nucleus. As a result, picornaviruses disrupt nucleocytoplasmic trafficking to exploit protein functions normally localized to a different cellular compartment from which they translate their genome to facilitate efficient replication. Furthermore, picornavirus proteins are also known to enter the nucleus of infected cells to limit host-cell transcription and down-regulate innate antiviral responses. The interactions of picornavirus proteins and host-cell nuclei are extensive, required for a productive infection, and are the focus of this review. PMID:26150805

  10. Comprehensive evaluation of poly(I:C) induced inflammatory response in an airway epithelial model

    PubMed Central

    Lever, Amanda R; Park, Hyoungshin; Mulhern, Thomas J; Jackson, George R; Comolli, James C; Borenstein, Jeffrey T; Hayden, Patrick J; Prantil-Baun, Rachelle

    2015-01-01

    Respiratory viruses invade the upper airway of the lung, triggering a potent immune response that often exacerbates preexisting conditions such as asthma and COPD. Poly(I:C) is a synthetic analog of viral dsRNA that induces the characteristic inflammatory response associated with viral infection, such as loss of epithelial integrity, and increased production of mucus and inflammatory cytokines. Here, we explore the mechanistic responses to poly(I:C) in a well-defined primary normal human bronchial epithelial (NHBE) model that recapitulates in vivo functions and responses. We developed functional and quantifiable methods to evaluate the physiology of our model in both healthy and inflamed states. Through gene and protein expression, we validated the differentiation state and population of essential cell subtypes (i.e., ciliated, goblet, club, and basal cells) as compared to the human lung. Assays for total mucus production, cytokine secretion, and barrier function were used to evaluate in vitro physiology and response to viral insult. Cells were treated apically with poly(I:C) and evaluated 48 h after induction. Results revealed a dose-dependent increase in goblet cell differentiation, as well as, an increase in mucus production relative to controls. There was also a dose-dependent increase in secretion of IL-6, IL-8, TNF-α, and RANTES. Epithelial barrier function, as measured by TEER, was maintained at 1501 ± 355 Ω*cm² postdifferentiation, but dropped significantly when challenged with poly(I:C). This study provides first steps toward a well-characterized model with defined functional methods for understanding dsRNA stimulated inflammatory responses in a physiologically relevant manner. PMID:25847914

  11. Function of ubiquitin (Ub) specific protease 15 (USP15) in HIV-1 replication and viral protein degradation.

    PubMed

    Pyeon, Dohun; Timani, Khalid Amine; Gulraiz, Fahad; He, Johnny J; Park, In-Woo

    2016-09-02

    HIV-1 Nef is necessary and may be sufficient for HIV-1-associated AIDS pathogenicity, in that knockout of Nef alone can protect HIV-infected patients from AIDS. We therefore investigated the feasibility of physical knockout of Nef, using the host ubiquitin proteasome system in HIV-1-infected cells. Our co-immunoprecipitation analysis demonstrated that Nef interacted with ubiquitin specific protease 15 (USP15), and that USP15, which is known to stabilize cellular proteins, degraded Nef. Nef could also cause decay of USP15, although Nef-mediated degradation of USP15 was weaker than USP15-mediated Nef degradation. Direct interaction between Nef and USP15 was essential for the observed reciprocal decay of the proteins. Further, USP15 degraded not only Nef but also HIV-1 structural protein, Gag, thereby substantially inhibiting HIV-1 replication. However, Gag did not degrade USP15, indicating that the Nef and USP15 complex, in distinction to other viral proteins, play an integral role in coordinating viral protein degradation and hence HIV-1 replication. Moreover, Nef and USP15 globally suppressed ubiquitylation of cellular proteins, indicating that these proteins are major determinants for the stability of cellular as well as viral proteins. Taken together, these data indicate that Nef and USP15 are vital in regulating degradation of viral and cellular proteins and thus HIV-1 replication, and specific degradation of viral, not cellular proteins, by USP15 points to USP15 as a candidate therapeutic agent to combat AIDS by eliminating viral proteins from the infected cells via USP15-mediated proteosomal degradation. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses

    PubMed Central

    Navarro-Sanchez, Erika; Altmeyer, Ralf; Amara, Ali; Schwartz, Olivier; Fieschi, Franck; Virelizier, Jean-Louis; Arenzana-Seisdedos, Fernando; Desprès, Philippe

    2003-01-01

    Dengue virus (DV) is a mosquito-borne flavivirus that causes haemorrhagic fever in humans. DV primarily targets immature dendritic cells (DCs) after a bite by an infected mosquito vector. Here, we analysed the interactions between DV and human-monocyte-derived DCs at the level of virus entry. We show that the DC-specific ICAM3-grabbing non-integrin (DC-SIGN) molecule, a cell-surface, mannose-specific, C-type lectin, binds mosquito-cell-derived DVs and allows viral replication. Conclusive evidence for the involvement of DC-SIGN in DV infection was obtained by the inhibition of viral infection by anti-DC-SIGN antibodies and by the soluble tetrameric ectodomain of DC-SIGN. Our data show that DC-SIGN functions as a DV-binding lectin by interacting with the DV envelope glycoprotein. Mosquito-cell-derived DVs may have differential infectivity for DC-SIGN-expressing cells. We suggest that the differential use of DC-SIGN by viral envelope glycoproteins may account for the immunopathogenesis of DVs. PMID:12783086

  13. A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus.

    PubMed

    Grasso, Simone; Lico, Chiara; Imperatori, Francesca; Santi, Luca

    2013-06-01

    Structure, size, physicochemical properties and production strategies make many plant viruses ideal protein based nanoscaffolds, nanocontainers and nano-building blocks expected to deliver a multitude of applications in different fields such as biomedicine, pharmaceutical chemistry, separation science, catalytic chemistry, crop pest control and biomaterials science. Functionalization of viral nanoparticles through modification by design of their external and internal surfaces is essential to fully exploit the potentiality of these objects. In the present paper we describe the development of a plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. We demonstrate the ability of this system to remarkably sustain genetic modifications and in vitro chemical derivatizations of its outer surface, which resulted in the successful display of large chimeric peptides fusions and small chemical molecules, respectively. Moreover, we have defined physicochemical conditions for viral swelling and reversible viral pore gating that we have successfully employed for foreign molecules loading and retention in the inner cavity of this plant virus nanoparticles system. Finally, a production and purification strategy from Nicotiana benthamiana plants has been addressed and optimized.

  14. HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA

    PubMed Central

    Ajamian, Lara; Abel, Karen; Rao, Shringar; Vyboh, Kishanda; García-de-Gracia, Francisco; Soto-Rifo, Ricardo; Kulozik, Andreas E.; Gehring, Niels H.; Mouland, Andrew J.

    2015-01-01

    Unspliced, genomic HIV-1 RNA (vRNA) is a component of several ribonucleoprotein complexes (RNP) during the viral replication cycle. In earlier work, we demonstrated that the host upframeshift protein 1 (UPF1), a key factor in nonsense-mediated mRNA decay (NMD), colocalized and associated to the viral structural protein Gag during viral egress. In this work, we demonstrate a new function for UPF1 in the regulation of vRNA nuclear export. We establish that the nucleocytoplasmic shuttling of UPF1 is required for this function and demonstrate that UPF1 exists in two essential viral RNPs during the late phase of HIV-1 replication: the first, in a nuclear export RNP that contains Rev, CRM1, DDX3 and the nucleoporin p62, and the second, which excludes these nuclear export markers but contains Gag in the cytoplasm. Interestingly, we observed that both UPF2 and the long isoform of UPF3a, UPF3aL, but not the shorter isoforms UPF3aS and UPF3b, are excluded from the UPF1-Rev-CRM1-DDX3 complex as they are negative regulators of vRNA nuclear export. In silico protein-protein docking analyses suggest that Rev binds UPF1 in a region that overlaps the UPF2 binding site, thus explaining the exclusion of this negative regulatory factor by HIV-1 that is necessary for vRNA trafficking. This work uncovers a novel and unique regulatory circuit involving several UPF proteins that ultimately regulate vRNA nuclear export and trafficking. PMID:26492277

  15. Influenza A Virus Polymerase Recruits the RNA Helicase DDX19 to Promote the Nuclear Export of Viral mRNAs

    PubMed Central

    Diot, Cédric; Fournier, Guillaume; Dos Santos, Mélanie; Magnus, Julie; Komarova, Anastasia; van der Werf, Sylvie; Munier, Sandie; Naffakh, Nadia

    2016-01-01

    Enhancing the knowledge of host factors that are required for efficient influenza A virus (IAV) replication is essential to address questions related to pathogenicity and to identify targets for antiviral drug development. Here we focused on the interplay between IAV and DExD-box RNA helicases (DDX), which play a key role in cellular RNA metabolism by remodeling RNA-RNA or RNA-protein complexes. We performed a targeted RNAi screen on 35 human DDX proteins to identify those involved in IAV life cycle. DDX19 was a major hit. In DDX19-depleted cells the accumulation of viral RNAs and proteins was delayed, and the production of infectious IAV particles was strongly reduced. We show that DDX19 associates with intronless, unspliced and spliced IAV mRNAs and promotes their nuclear export. In addition, we demonstrate an RNA-independent association between DDX19 and the viral polymerase, that is modulated by the ATPase activity of DDX19. Our results provide a model in which DDX19 is recruited to viral mRNAs in the nucleus of infected cells to enhance their nuclear export. Information gained from this virus-host interaction improves the understanding of both the IAV replication cycle and the cellular function of DDX19. PMID:27653209

  16. Insights into the nuclear export of murine leukemia virus intron-containing RNA.

    PubMed

    Pessel-Vivares, Lucie; Houzet, Laurent; Lainé, Sébastien; Mougel, Marylène

    2015-01-01

    The retroviral genome consists of an intron-containing transcript that has essential cytoplasmic functions in the infected cell. This viral transcript can escape splicing, circumvent the nuclear checkpoint mechanisms and be transported to the cytoplasm by hijacking the host machinery. Once in the cytoplasm, viral unspliced RNA acts as mRNA to be translated and as genomic RNA to be packaged into nascent viruses. The murine leukemia virus (MLV) is among the first retroviruses discovered and is classified as simple Retroviridae due to its minimal encoding capacity. The oncogenic and transduction abilities of MLV are extensively studied, whereas surprisingly the crucial step of its nuclear export has remained unsolved until 2014. Recent work has revealed the recruitment by MLV of the cellular NXF1/Tap-dependent pathway for export. Unconventionally, MLV uses of Tap to export both spliced and unspliced viral RNAs. Unlike other retroviruses, MLV does not harbor a unique RNA signal for export. Indeed, multiple sequences throughout the MLV genome appear to promote export of the unspliced MLV RNA. We review here the current understanding of the export mechanism and highlight the determinants that influence MLV export. As the molecular mechanism of MLV export is elucidated, we will gain insight into the contribution of the export pathway to the cytoplasmic fate of the viral RNA.

  17. Defining the roles for Vpr in HIV-1-associated neuropathogenesis

    PubMed Central

    James, Tony; Nonnemacher, Michael R.; Wigdahl, Brian; Krebs, Fred C.

    2016-01-01

    It is increasingly evident that the human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) has a unique role in neuropathogenesis. Its ability to induce G2/M arrest coupled with its capacity to increase viral gene transcription gives it a unique role in sustaining viral replication and aiding in the establishment and maintenance of a systemic infection. The requirement of Vpr for HIV-1 infection and replication in cells of monocytic origin (a key lineage of cells involved in HIV-1 neuroinvasion) suggests an important role in establishing and sustaining infection in the central nervous system (CNS). Contributions of Vpr to neuropathogenesis can be expanded further through (i) naturally occurring HIV-1 sequence variation that results in functionally divergent Vpr variants; (ii) the dual activities of Vpr as a intracellular protein delivered and expressed during HIV-1 infection and as an extracellular protein that can act on neighboring, uninfected cells; (iii) cell type-dependent consequences of Vpr expression and exposure, including cell cycle arrest, metabolic dysregulation, and cytotoxicity; and (iv) the effects of Vpr on exosome-based intercellular communication in the CNS. Revealing the effects of this pleiotropic viral protein is an essential part of a greater understanding of HIV-1-associated pathogenesis and potential approaches to treating and preventing disease caused by HIV-1 infection. PMID:27056720

  18. The Choice of Alternative 5' Splice Sites in Influenza Virus M1 mRNA is Regulated by the Viral Polymerase Complex

    NASA Astrophysics Data System (ADS)

    Shih, Shin-Ru; Nemeroff, Martin E.; Krug, Robert M.

    1995-07-01

    The influenza virus M1 mRNA has two alternative 5' splice sites: a distal 5' splice site producing mRNA_3 that has the coding potential for 9 amino acids and a proximal 5' splice site producing M2 mRNA encoding the essential M2 ion-channel protein. Only mRNA_3 was made in uninfected cells transfected with DNA expressing M1 mRNA. Similarly, using nuclear extracts from uninfected cells, in vitro splicing of M1 mRNA yielded only mRNA_3. Only when the mRNA_3 5' splice site was inactivated by mutation was M2 mRNA made in uninfected cells and in uninfected cell extracts. In influenza virus-infected cells, M2 mRNA was made, but only after a delay, suggesting that newly synthesized viral gene product(s) were needed to activate the M2 5' splice site. We present strong evidence that these gene products are the complex of the three polymerase proteins, the same complex that functions in the transcription and replication of the viral genome. Gel shift experiments showed that the viral polymerase complex bound to the 5' end of the viral M1 mRNA in a sequence-specific and cap-dependent manner. During in vitro splicing catalyzed by uninfected cell extracts, the binding of the viral polymerase complex blocked the mRNA_3 5' splice site, resulting in the switch to the M2 mRNA 5' splice site and the production of M2 mRNA.

  19. Small molecules targeting viral RNA.

    PubMed

    Hermann, Thomas

    2016-11-01

    Highly conserved noncoding RNA (ncRNA) elements in viral genomes and transcripts offer new opportunities to expand the repertoire of drug targets for the development of antiinfective therapy. Ligands binding to ncRNA architectures are able to affect interactions, structural stability or conformational changes and thereby block processes essential for viral replication. Proof of concept for targeting functional RNA by small molecule inhibitors has been demonstrated for multiple viruses with RNA genomes. Strategies to identify antiviral compounds as inhibitors of ncRNA are increasingly emphasizing consideration of drug-like properties of candidate molecules emerging from screening and ligand design. Recent efforts of antiviral lead discovery for RNA targets have provided drug-like small molecules that inhibit viral replication and include inhibitors of human immunodeficiency virus (HIV), hepatitis C virus (HCV), severe respiratory syndrome coronavirus (SARS CoV), and influenza A virus. While target selectivity remains a challenge for the discovery of useful RNA-binding compounds, a better understanding is emerging of properties that define RNA targets amenable for inhibition by small molecule ligands. Insight from successful approaches of targeting viral ncRNA in HIV, HCV, SARS CoV, and influenza A will provide a basis for the future exploration of RNA targets for therapeutic intervention in other viral pathogens which create urgent, unmet medical needs. Viruses for which targeting ncRNA components in the genome or transcripts may be promising include insect-borne flaviviruses (Dengue, Zika, and West Nile) and filoviruses (Ebola and Marburg). WIREs RNA 2016, 7:726-743. doi: 10.1002/wrna.1373 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  20. Mapping and Engineering Functional Domains of the Assembly Activating Protein of Adeno-Associated Viruses.

    PubMed

    Tse, Longping V; Moller-Tank, Sven; Meganck, Rita M; Asokan, Aravind

    2018-04-25

    Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Studies to date have focused on establishing the role of AAP as a chaperone that mediates stability, nucleolar transport, and assembly of AAV capsid proteins. Here, we map structure-function correlates of AAP using secondary structure analysis followed by deletion and substitutional mutagenesis of specific domains, namely, the hydrophobic N-terminal domain (HR), conserved core (CC), proline-rich region (PRR), threonine/serine rich region (T/S) and basic region (BR). First, we establish that the centrally located PRR and T/S regions are flexible linker domains that can either be deleted completely or replaced by heterologous functional domains that enable ancillary functions such as fluorescent imaging or increased AAP stability. We also demonstrate that the C-terminal BR domains can be substituted with heterologous nuclear or nucleolar localization sequences that display varying ability to support AAV capsid assembly. Further, by replacing the BR domain with immunoglobulin (IgG) Fc domains, we assessed AAP complexation with AAV capsid subunits and demonstrate that the hydrophobic region (HR) and the conserved core (CC) in the AAP N-terminus are the sole determinants for viral protein (VP) recognition. However, VP recognition alone is not sufficient for capsid assembly. Our study sheds light on the modular structure-function correlates of AAP and provides multiple approaches to engineer AAP that might prove useful towards understanding and controlling AAV capsid assembly. Importance: Adeno-associated viruses (AAV) encode a unique assembly activating protein (AAP) within their genome that is essential for capsid assembly. Understanding how AAP acts as a chaperone for viral assembly could help improve efficiency and potentially control this process. Our studies reveal that AAP has a modular architecture, with each module playing a distinct role and can be engineered for carrying out new functions. Copyright © 2018 American Society for Microbiology.

  1. A Proline-Rich N-Terminal Region of the Dengue Virus NS3 Is Crucial for Infectious Particle Production.

    PubMed

    Gebhard, Leopoldo G; Iglesias, Néstor G; Byk, Laura A; Filomatori, Claudia V; De Maio, Federico A; Gamarnik, Andrea V

    2016-06-01

    Dengue virus is currently the most important insect-borne viral human pathogen. Viral nonstructural protein 3 (NS3) is a key component of the viral replication machinery that performs multiple functions during viral replication and participates in antiviral evasion. Using dengue virus infectious clones and reporter systems to dissect each step of the viral life cycle, we examined the requirements of different domains of NS3 on viral particle assembly. A thorough site-directed mutagenesis study based on solvent-accessible surface areas of NS3 revealed that, in addition to being essential for RNA replication, different domains of dengue virus NS3 are critically required for production of infectious viral particles. Unexpectedly, point mutations in the protease, interdomain linker, or helicase domain were sufficient to abolish infectious particle formation without affecting translation, polyprotein processing, or RNA replication. In particular, we identified a novel proline-rich N-terminal unstructured region of NS3 that contains several amino acid residues involved in infectious particle formation. We also showed a new role for the interdomain linker of NS3 in virion assembly. In conclusion, we present a comprehensive genetic map of novel NS3 determinants for viral particle assembly. Importantly, our results provide evidence of a central role of NS3 in the coordination of both dengue virus RNA replication and particle formation. Dengue virus is an important human pathogen, and its prominence is expanding globally; however, basic aspects of its biology are still unclear, hindering the development of effective therapeutic and prophylactic treatments. Little is known about the initial steps of dengue and other flavivirus particle assembly. This process involves a complex interplay between viral and cellular components, making it an attractive antiviral target. Unpredictably, we identified spatially separated regions of the large NS3 viral protein as determinants for dengue virus particle assembly. NS3 is a multifunctional enzyme that participates in different steps of the viral life cycle. Using reporter systems to dissect different viral processes, we identified a novel N-terminal unstructured region of the NS3 protein as crucial for production of viral particles. Based on our findings, we propose new ideas that include NS3 as a possible scaffold for the viral assembly process. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Genetic analysis of the major homology region of the Rous sarcoma virus Gag protein.

    PubMed Central

    Craven, R C; Leure-duPree, A E; Weldon, R A; Wills, J W

    1995-01-01

    The mature cores of all retroviruses contain a major structural protein known as the CA (capsid) protein. Although it appears to form a shell around the ribonucleoprotein complex that contains the viral RNA, its function in viral replication is largely unknown. Little sequence similarity exists between the CA proteins of different retroviruses, except for a region of about 20 amino acids termed the major homology region (MHR). To examine the role of the CA protein in particle assembly and release, mutants of Rous sarcoma virus were created in which segments of CA were deleted or single conserved residues in the MHR were altered. The ability of the deletion mutants to release particles at rates similar to the wild-type protein demonstrated that the CA domain of Gag is not an essential component of the minimal budding machinery. Certain point mutations in the MHR region did block assembly and release in certain cell types, presumably by perturbing the global structure of the Gag precursor. Another group of MHR substitutions produced noninfectious or poorly infectious particles that were normal in their content of gag and pol gene products and viral RNA. The mutants were capable of initiating reverse transcription in vitro; however, the association of CA protein with the core was compromised, as indicated by its sensitivity to extraction with nonionic detergent. Prominent blebs on the virion envelope also indicated a disturbance at the membrane. Finally, an anti-peptide serum directed against MHR was found to react with the uncleaved Gag protein but not with mature CA, suggesting that MHR undergoes a dynamic rearrangement upon liberation from the polyprotein. We conclude that the MHR is involved in the very late steps in maturation of the virion (i.e., ones that occur after budding is initiated) and is essential for proper function of the core upon entry into a new host cell. PMID:7769681

  3. The Autographa californica Multiple Nucleopolyhedrovirus ac83 Gene Contains a cis-Acting Element That Is Essential for Nucleocapsid Assembly.

    PubMed

    Huang, Zhihong; Pan, Mengjia; Zhu, Silei; Zhang, Hao; Wu, Wenbi; Yuan, Meijin; Yang, Kai

    2017-03-01

    Baculoviridae is a family of insect-specific viruses that have a circular double-stranded DNA genome packaged within a rod-shaped capsid. The mechanism of baculovirus nucleocapsid assembly remains unclear. Previous studies have shown that deletion of the ac83 gene of Autographa californica multiple nucleopolyhedrovirus (AcMNPV) blocks viral nucleocapsid assembly. Interestingly, the ac83 -encoded protein Ac83 is not a component of the nucleocapsid, implying a particular role for ac83 in nucleocapsid assembly that may be independent of its protein product. To examine this possibility, Ac83 synthesis was disrupted by insertion of a chloramphenicol resistance gene into its coding sequence or by deleting its promoter and translation start codon. Both mutants produced progeny viruses normally, indicating that the Ac83 protein is not required for nucleocapsid assembly. Subsequently, complementation assays showed that the production of progeny viruses required the presence of ac83 in the AcMNPV genome instead of its presence in trans Therefore, we reasoned that ac83 is involved in nucleocapsid assembly via an internal cis -acting element, which we named the nucleocapsid assembly-essential element (NAE). The NAE was identified to lie within nucleotides 1651 to 1850 of ac83 and had 8 conserved A/T-rich regions. Sequences homologous to the NAE were found only in alphabaculoviruses and have a conserved positional relationship with another essential cis -acting element that was recently identified. The identification of the NAE may help to connect the data of viral cis -acting elements and related proteins in the baculovirus nucleocapsid assembly, which is important for elucidating DNA-protein interaction events during this process. IMPORTANCE Virus nucleocapsid assembly usually requires specific cis -acting elements in the viral genome for various processes, such as the selection of the viral genome from the cellular nucleic acids, the cleavage of concatemeric viral genome replication intermediates, and the encapsidation of the viral genome into procapsids. In linear DNA viruses, such elements generally locate at the ends of the viral genome; however, most of these elements remain unidentified in circular DNA viruses (including baculovirus) due to their circular genomic conformation. Here, we identified a nucleocapsid assembly-essential element in the AcMNPV (the archetype of baculovirus) genome. This finding provides an important reference for studies of nucleocapsid assembly-related elements in baculoviruses and other circular DNA viruses. Moreover, as most of the previous studies of baculovirus nucleocapsid assembly have been focused on viral proteins, our study provides a novel entry point to investigate this mechanism via cis -acting elements in the viral genome. Copyright © 2017 American Society for Microbiology.

  4. Solid-to-fluid – like DNA transition in viruses facilitates infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Ting; Sae-Ueng, Udom; Li, Dong

    2014-10-14

    Releasing the packaged viral DNA into the host cell is an essential process to initiate viral infection. In many double-stranded DNA bacterial viruses and herpesviruses, the tightly packaged genome is hexagonally ordered and stressed in the protein shell, called the capsid. DNA condensed in this state inside viral capsids has been shown to be trapped in a glassy state, with restricted molecular motion in vitro. This limited intracapsid DNA mobility is caused by the sliding friction between closely packaged DNA strands, as a result of the repulsive interactions between the negative charges on the DNA helices. It had been unclearmore » how this rigid crystalline structure of the viral genome rapidly ejects from the capsid, reaching rates of 60,000 bp/s. Through a combination of single- molecule and bulk techniques, we determined how the structure and energy of the encapsidated DNA in phage λ regulates the mobility required for its ejection. Our data show that packaged λ -DNA undergoes a solid-to-fluid – like disordering transition as a function of temperature, resultin g locally in less densely packed DNA, reducing DNA – DNA repulsions. This p rocess leads to a sig- nificant increase in genome mobility or fluidity, which facilitates genome release at temperatures close to that of viral infection (37 °C), suggesting a remarkab le physical adaptation of bac- terial viruses to the environment of Escherichia coli cells in a human host.« less

  5. Dietary selenium in adjuvant therapy of viral and bacterial infections.

    PubMed

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. © 2015 American Society for Nutrition.

  6. Dietary Selenium in Adjuvant Therapy of Viral and Bacterial Infections12

    PubMed Central

    Steinbrenner, Holger; Al-Quraishy, Saleh; Dkhil, Mohamed A; Wunderlich, Frank; Sies, Helmut

    2015-01-01

    Viral and bacterial infections are often associated with deficiencies in macronutrients and micronutrients, including the essential trace element selenium. In selenium deficiency, benign strains of Coxsackie and influenza viruses can mutate to highly pathogenic strains. Dietary supplementation to provide adequate or supranutritional selenium supply has been proposed to confer health benefits for patients suffering from some viral diseases, most notably with respect to HIV and influenza A virus (IAV) infections. In addition, selenium-containing multimicronutrient supplements improved several clinical and lifestyle variables in patients coinfected with HIV and Mycobacterium tuberculosis. Selenium status may affect the function of cells of both adaptive and innate immunity. Supranutritional selenium promotes proliferation and favors differentiation of naive CD4-positive T lymphocytes toward T helper 1 cells, thus supporting the acute cellular immune response, whereas excessive activation of the immune system and ensuing host tissue damage are counteracted through directing macrophages toward the M2 phenotype. This review provides an up-to-date overview on selenium in infectious diseases caused by viruses (e.g., HIV, IAV, hepatitis C virus, poliovirus, West Nile virus) and bacteria (e.g., M. tuberculosis, Helicobacter pylori). Data from epidemiologic studies and intervention trials, with selenium alone or in combination with other micronutrients, and animal experiments are discussed against the background of dietary selenium requirements to alter immune functions. PMID:25593145

  7. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants.

    PubMed

    Xu, Kai; Nagy, Peter D

    2017-04-01

    Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication. IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are heterogeneous and highly dynamic nanoscale structures usurped by various viruses. Here, we demonstrate that TBSV p33 and p92 replication proteins can bind to sterol in vitro Mutagenesis analysis of p33 within the CRAC and CARC sequences involved in sterol binding shows the important connection between the abilities of p33 to bind to sterol and to support TBSV replication in yeast and plant cells. Together, the results further strengthen the model that cellular sterols are essential as proviral lipids during viral replication. Copyright © 2017 American Society for Microbiology.

  8. Transcriptional and translational dual-regulated oncolytic herpes simplex virus type 1 for targeting prostate tumors.

    PubMed

    Lee, Cleo Y F; Bu, Luke X X; DeBenedetti, Arrigo; Williams, B Jill; Rennie, Paul S; Jia, William W G

    2010-05-01

    The aim of this project was to demonstrate that an oncolytic herpes simplex virus type 1 (HSV-1) can replicate in a tissue- and tumor-specific fashion through both transcriptional (prostate-specific promoter, ARR(2)PB) and translational (5'-untranslated regions (5'UTRs) of rFGF-2) regulation of an essential viral gene, ICP27. We generated two recombinant viruses, ARR(2)PB-ICP27 (A27) and ARR(2)PB-5'UTR-ICP27 (AU27) and tested their efficacy and toxicity both in vitro and in vivo. The ARR(2)PB promoter caused overexpression of ICP27 gene in the presence of activated androgen receptors (ARs) and increased viral replication in prostate cells. However, this transcriptional upregulation was effectively constrained by the 5'UTR-mediated translational regulation. Mice bearing human prostate LNCaP tumors, treated with a single intravenous injection of 5 x 10(7) plaque-forming units (pfu) of AU27 virus exhibited a >85% reduction in tumor size at day 28 after viral injection. Although active viral replication was readily evident in the tumors, no viral DNA was detectable in normal organs as measured by real-time PCR analyses. In conclusion, a transcriptional and translational dual-regulated (TTDR) viral essential gene expression can increase both viral lytic activity and tumor specificity, and this provides a basis for the development of a novel tumor-specific oncolytic virus for systemic treatment of locally advanced and metastatic prostate cancers.

  9. Myristoylation of the Arenavirus Envelope Glycoprotein Stable Signal Peptide Is Critical for Membrane Fusion but Dispensable for Virion Morphogenesis.

    PubMed

    York, Joanne; Nunberg, Jack H

    2016-09-15

    Arenaviruses are responsible for severe and often fatal hemorrhagic disease. In the absence of effective antiviral therapies and vaccines, these viruses pose serious threats to public health and biodefense. Arenaviruses enter the host cell by fusion of the viral and endosomal membranes, a process mediated by the virus envelope glycoprotein GPC. Unlike other class I viral fusion proteins, GPC retains its stable signal peptide (SSP) as an essential third subunit in the mature complex. SSP spans the membrane twice and is myristoylated at its cytoplasmic N terminus. Mutations that abolish SSP myristoylation have been shown to reduce pH-induced cell-cell fusion activity of ectopically expressed GPC to ∼20% of wild-type levels. In order to examine the role of SSP myristoylation in the context of the intact virus, we used reverse genetics to generate Junín viruses (Candid #1 isolate) in which the critical glycine-2 residue in SSP was either replaced by alanine (G2A) or deleted (ΔG2). These mutant viruses produced smaller foci of infection in Vero cells and showed an ∼5-fold reduction in specific infectivity, commensurate with the defect in cell-cell fusion. However, virus assembly and GPC incorporation into budded virions were unaffected. Our findings suggest that the myristate moiety is cryptically disposed in the prefusion GPC complex and may function late in the fusion process to promote merging of the viral and cellular membranes. Hemorrhagic fever arenaviruses pose significant threats to public health and biodefense. Arenavirus entry into the host cell is promoted by the virus envelope glycoprotein GPC. Unlike other viral envelope glycoproteins, GPC contains a myristoylated stable signal peptide (SSP) as an essential third subunit. Myristoylation has been shown to be important for the membrane fusion activity of recombinantly expressed GPC. Here, we use reverse genetics to study the role of SSP myristoylation in the context of the intact virion. We find that nonmyristoylated GPC mutants of the Candid #1 strain of Junín virus display a commensurate deficiency in their infectivity, albeit without additional defects in virion assembly and budding. These results suggest that SSP myristoylation may function late in the fusion process to facilitate merging of the viral and cellular membranes. Antiviral agents that target this novel aspect of GPC membrane fusion may be useful in the treatment of arenavirus hemorrhagic fevers. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. A bacterial type III secretion-based protein delivery tool for broad applications in cell biology.

    PubMed

    Ittig, Simon J; Schmutz, Christoph; Kasper, Christoph A; Amstutz, Marlise; Schmidt, Alexander; Sauteur, Loïc; Vigano, M Alessandra; Low, Shyan Huey; Affolter, Markus; Cornelis, Guy R; Nigg, Erich A; Arrieumerlou, Cécile

    2015-11-23

    Methods enabling the delivery of proteins into eukaryotic cells are essential to address protein functions. Here we propose broad applications to cell biology for a protein delivery tool based on bacterial type III secretion (T3S). We show that bacterial, viral, and human proteins, fused to the N-terminal fragment of the Yersinia enterocolitica T3S substrate YopE, are effectively delivered into target cells in a fast and controllable manner via the injectisome of extracellular bacteria. This method enables functional interaction studies by the simultaneous injection of multiple proteins and allows the targeting of proteins to different subcellular locations by use of nanobody-fusion proteins. After delivery, proteins can be freed from the YopE fragment by a T3S-translocated viral protease or fusion to ubiquitin and cleavage by endogenous ubiquitin proteases. Finally, we show that this delivery tool is suitable to inject proteins in living animals and combine it with phosphoproteomics to characterize the systems-level impact of proapoptotic human truncated BID on the cellular network. © 2015 Ittig et al.

  11. Cytoplasmic tail domain of glycoprotein B is essential for HHV-6 infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmoud, Nora F.; Faculty of Pharmacy, Suez Canal University, Ismailia; Jasirwan, Chyntia

    2016-03-15

    Human herpesvirus 6 (HHV-6) glycoprotein B (gB) is an abundantly expressed viral glycoprotein required for viral entry and cell fusion, and is highly conserved among herpesviruses. The present study examined the function of HHV-6 gB cytoplasmic tail domain (CTD). A gB CTD deletion mutant was constructed which, in contrast to its revertant, could not be reconstituted. Moreover, deletion of gB cytoplasmic tail impaired the intracellular transport of gB protein to the trans-Golgi network (TGN). Taken together, these results suggest that gB CTD is critical for HHV-6 propagation and important for intracellular transportation. - Highlights: • Glycoprotein B (gB) is highlymore » conserved among herpesviruses. • HHV-6 gB is also abundantly expressed in virions. • In the present study, we showed the function of HHV-6 gB cytoplasmic tail domain (CTD). • We found that deletion of gB CTD impairs the intracellular transport of gB protein to the trans-Golgi network (TGN), and CTD of gB is critical for HHV-6 propagation.« less

  12. An Adenovirus DNA Replication Factor, but Not Incoming Genome Complexes, Targets PML Nuclear Bodies.

    PubMed

    Komatsu, Tetsuro; Nagata, Kyosuke; Wodrich, Harald

    2016-02-01

    Promyelocytic leukemia protein nuclear bodies (PML-NBs) are subnuclear domains implicated in cellular antiviral responses. Despite the antiviral activity, several nuclear replicating DNA viruses use the domains as deposition sites for the incoming viral genomes and/or as sites for viral DNA replication, suggesting that PML-NBs are functionally relevant during early viral infection to establish productive replication. Although PML-NBs and their components have also been implicated in the adenoviral life cycle, it remains unclear whether incoming adenoviral genome complexes target PML-NBs. Here we show using immunofluorescence and live-cell imaging analyses that incoming adenovirus genome complexes neither localize at nor recruit components of PML-NBs during early phases of infection. We further show that the viral DNA binding protein (DBP), an early expressed viral gene and essential DNA replication factor, independently targets PML-NBs. We show that DBP oligomerization is required to selectively recruit the PML-NB components Sp100 and USP7. Depletion experiments suggest that the absence of one PML-NB component might not affect the recruitment of other components toward DBP oligomers. Thus, our findings suggest a model in which an adenoviral DNA replication factor, but not incoming viral genome complexes, targets and modulates PML-NBs to support a conducive state for viral DNA replication and argue against a generalized concept that PML-NBs target incoming viral genomes. The immediate fate upon nuclear delivery of genomes of incoming DNA viruses is largely unclear. Early reports suggested that incoming genomes of herpesviruses are targeted and repressed by PML-NBs immediately upon nuclear import. Genome localization and/or viral DNA replication has also been observed at PML-NBs for other DNA viruses. Thus, it was suggested that PML-NBs may immediately sense and target nuclear viral genomes and hence serve as sites for deposition of incoming viral genomes and/or subsequent viral DNA replication. Here we performed a detailed analyses of the spatiotemporal distribution of incoming adenoviral genome complexes and found, in contrast to the expectation, that an adenoviral DNA replication factor, but not incoming genomes, targets PML-NBs. Thus, our findings may explain why adenoviral genomes could be observed at PML-NBs in earlier reports but argue against a generalized role for PML-NBs in targeting invading viral genomes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malouli, Daniel; Hansen, Scott G.; Nakayasu, Ernesto S.

    The tegument phosphoprotein pp65 (UL83) is the most abundant virion protein in human cytomegalovirus (HCMV). Since pp65 is immunodominant in persistently infected individuals, subunit vaccines against HCMV often include pp65 as T cell stimulatory component. Although HCMV pp65 is non-essential for viral growth in vitro it is thought to have an important role in primary and persistent infection since pp65 displays multiple immunomodulatory functions. To determine whether pp65 is required for infection and to evaluate its role in natural and vaccination-induced immunity we generated a rhesus CMV lacking both homologues, pp65a (Rh111) and pp65b (Rh112). Lack of pp65 resulted inmore » a slight growth defect in vitro and an increase of defective particle formation. However, most pp65-deleted virions in the supernatant were phenotypically normal and proteomics analysis revealed that the ratios of the remaining viral proteins were largely unchanged. RhCMV Δpp65ab was able to persistently infect CMV-negative rhesus macaques (RM) and to super-infect RM previously infected with CMV. To determine whether T cells against pp65 are essential for protection against CMV, we challenged Δpp65ab-infected animals with RhCMV ΔUS2-11, a viral recombinant that lacks inhibitors of MHC-I antigen presentation and is thus unable to overcome CMV-specific T cell immunity. Despite a complete lack of pp65-specific T cells, Δpp65ab protected against ΔUS2-11 challenge suggesting that pp65-specific T cells are not essential for T cell immunity against CMV. Using the same approach we further demonstrate that pp65b-specific T cells, induced by heterologous prime/boost vaccination, are not sufficient to protect against ΔUS2-11 challenge. Our data provides a new approach to test the efficacy of subunit vaccine candidates and suggest that pp65 vaccines are insufficient to induce a T cell response that recapitulates the protective effect of natural infection.« less

  14. Suppression of AcMNPV replication by adf and thymosin protein up-regulation in a new testis cell line, Ha-shl-t

    USDA-ARS?s Scientific Manuscript database

    Host cytoskeletons facilitate the entry, replication and egress of viruses; because cytoskeletons are essential for viral survival, one mechanism of resisting viral infections involves regulating cytoskeletal polymerization/depolymerization. However, the molecular mechanisms of regulating these chan...

  15. Viral fitness: definitions, measurement, and current insights

    USGS Publications Warehouse

    Wargo, Andrew R.; Kurath, Gael

    2012-01-01

    Viral fitness is an active area of research, with recent work involving an expanded number of human, non-human vertebrate, invertebrate, plant, and bacterial viruses. Many publications deal with RNA viruses associated with major disease emergence events, such as HIV-1, influenza virus, and Dengue virus. Study topics include drug resistance, immune escape, viral emergence, host jumps, mutation effects, quasispecies diversity, and mathematical models of viral fitness. Important recent trends include increasing use of in vivo systems to assess vertebrate virus fitness, and a broadening of research beyond replicative fitness to also investigate transmission fitness and epidemiologic fitness. This is essential for a more integrated understanding of overall viral fitness, with implications for disease management in the future.

  16. Die Another Day: Inhibition of Cell Death Pathways by Cytomegalovirus.

    PubMed

    Brune, Wolfram; Andoniou, Christopher E

    2017-09-02

    Multicellular organisms have evolved multiple genetically programmed cell death pathways that are essential for homeostasis. The finding that many viruses encode cell death inhibitors suggested that cellular suicide also functions as a first line of defence against invading pathogens. This theory was confirmed by studying viral mutants that lack certain cell death inhibitors. Cytomegaloviruses, a family of species-specific viruses, have proved particularly useful in this respect. Cytomegaloviruses are known to encode multiple death inhibitors that are required for efficient viral replication. Here, we outline the mechanisms used by the host cell to detect cytomegalovirus infection and discuss the methods employed by the cytomegalovirus family to prevent death of the host cell. In addition to enhancing our understanding of cytomegalovirus pathogenesis we detail how this research has provided significant insights into the cross-talk that exists between the various cell death pathways.

  17. Structural dissection of human metapneumovirus phosphoprotein using small angle x-ray scattering.

    PubMed

    Renner, Max; Paesen, Guido C; Grison, Claire M; Granier, Sébastien; Grimes, Jonathan M; Leyrat, Cédric

    2017-11-01

    The phosphoprotein (P) is the main and essential cofactor of the RNA polymerase (L) of non-segmented, negative-strand RNA viruses. P positions the viral polymerase onto its nucleoprotein-RNA template and acts as a chaperone of the nucleoprotein (N), thereby preventing nonspecific encapsidation of cellular RNAs. The phosphoprotein of human metapneumovirus (HMPV) forms homotetramers composed of a stable oligomerization domain (P core ) flanked by large intrinsically disordered regions (IDRs). Here we combined x-ray crystallography of P core with small angle x-ray scattering (SAXS)-based ensemble modeling of the full-length P protein and several of its fragments to provide a structural description of P that captures its dynamic character, and highlights the presence of varyingly stable structural elements within the IDRs. We discuss the implications of the structural properties of HMPV P for the assembly and functioning of the viral transcription/replication machinery.

  18. Induced maturation of human immunodeficiency virus.

    PubMed

    Mattei, Simone; Anders, Maria; Konvalinka, Jan; Kräusslich, Hans-Georg; Briggs, John A G; Müller, Barbara

    2014-12-01

    HIV-1 assembles at the plasma membrane of virus-producing cells as an immature, noninfectious particle. Processing of the Gag and Gag-Pol polyproteins by the viral protease (PR) activates the viral enzymes and results in dramatic structural rearrangements within the virion--termed maturation--that are a prerequisite for infectivity. Despite its fundamental importance for viral replication, little is currently known about the regulation of proteolysis and about the dynamics and structural intermediates of maturation. This is due mainly to the fact that HIV-1 release and maturation occur asynchronously both at the level of individual cells and at the level of particle release from a single cell. Here, we report a method to synchronize HIV-1 proteolysis in vitro based on protease inhibitor (PI) washout from purified immature virions, thereby temporally uncoupling virus assembly and maturation. Drug washout resulted in the induction of proteolysis with cleavage efficiencies correlating with the off-rate of the respective PR-PI complex. Proteolysis of Gag was nearly complete and yielded the correct products with an optimal half-life (t(1/2)) of ~5 h, but viral infectivity was not recovered. Failure to gain infectivity following PI washout may be explained by the observed formation of aberrant viral capsids and/or by pronounced defects in processing of the reverse transcriptase (RT) heterodimer associated with a lack of RT activity. Based on our results, we hypothesize that both the polyprotein processing dynamics and the tight temporal coupling of immature particle assembly and PR activation are essential for correct polyprotein processing and morphological maturation and thus for HIV-1 infectivity. Cleavage of the Gag and Gag-Pol HIV-1 polyproteins into their functional subunits by the viral protease activates the viral enzymes and causes major structural rearrangements essential for HIV-1 infectivity. This proteolytic maturation occurs concomitant with virus release, and investigation of its dynamics is hampered by the fact that virus populations in tissue culture contain particles at all stages of assembly and maturation. Here, we developed an inhibitor washout strategy to synchronize activation of protease in wild-type virus. We demonstrated that nearly complete Gag processing and resolution of the immature virus architecture are accomplished under optimized conditions. Nevertheless, most of the resulting particles displayed irregular morphologies, Gag-Pol processing was not faithfully reconstituted, and infectivity was not recovered. These data show that HIV-1 maturation is sensitive to the dynamics of processing and also that a tight temporal link between virus assembly and PR activation is required for correct polyprotein processing. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  19. Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5

    PubMed Central

    Yang, Yang; Zengel, James; Sun, Minghao; Sleeman, Katrina; Timani, Khalid Amine; Aligo, Jason; Rota, Paul

    2015-01-01

    ABSTRACT Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the rational design of vaccines and potential antiviral drugs. PMID:26378167

  20. Inactivation of Norovirus by Lemongrass Essential Oil Using a Norovirus Surrogate System.

    PubMed

    Kim, Ye Won; You, Hyun Ju; Lee, Soyoung; Kim, Bomi; Kim, Do Kyung; Choi, Joo-Bong; Kim, Ji-Ah; Lee, Hee Jung; Joo, In Sun; Lee, Jeong Su; Kang, Dong Hyun; Lee, Giljae; Ko, Gwang Pyo; Lee, Sung-Joon

    2017-08-01

    This study investigated the effect of lemongrass essential oil (LGEO) on the infectivity and viral replication of norovirus. Murine norovirus 1 (MNV-1), a surrogate of human norovirus, was preincubated with LGEO and then used to infect RAW 264.7 cells in a plaque reduction assay. LGEO exhibited a significant reduction in MNV-1 plaque formation in both time- and dose-dependent manners. The quantification of viral genome by quantitative real-time PCR showed similar results in line with those of the plaque reduction assay. It was revealed that citral, a single compound in LGEO, showed dramatic reduction in MNV-1 infectivity (-73.09% when using a treatment of 0.02%, v/v). The inhibitory activity of LGEO on viral replication was further investigated in HG23 cells that harbored a human norovirus replicon. LGEO treatment significantly reduced viral replication in HG23 cells, which suggests that LGEO may have dual inhibitory activities that inactivate viral coat proteins required for viral infection and suppress norovirus genome replication in host cells. In animal experiments, oral administration of murine norovirus preincubated with LGEO significantly suppressed virus infectivity in vivo. Collectively, these results suggest that LGEO, in particular the LGEO component citral, inactivates the norovirus and its subsequent replication in host cells. Thus, LGEO shows promise as a method of inhibiting norovirus within the food industry.

  1. Human Adenovirus Core Protein V Is Targeted by the Host SUMOylation Machinery To Limit Essential Viral Functions.

    PubMed

    Freudenberger, Nora; Meyer, Tina; Groitl, Peter; Dobner, Thomas; Schreiner, Sabrina

    2018-02-15

    Human adenoviruses (HAdV) are nonenveloped viruses containing a linear, double-stranded DNA genome surrounded by an icosahedral capsid. To allow proper viral replication, the genome is imported through the nuclear pore complex associated with viral core proteins. Until now, the role of these incoming virion proteins during the early phase of infection was poorly understood. The core protein V is speculated to bridge the core and the surrounding capsid. It binds the genome in a sequence-independent manner and localizes in the nucleus of infected cells, accumulating at nucleoli. Here, we show that protein V contains conserved SUMO conjugation motifs (SCMs). Mutation of these consensus motifs resulted in reduced SUMOylation of the protein; thus, protein V represents a novel target of the host SUMOylation machinery. To understand the role of protein V SUMO posttranslational modification during productive HAdV infection, we generated a replication-competent HAdV with SCM mutations within the protein V coding sequence. Phenotypic analyses revealed that these SCM mutations are beneficial for adenoviral replication. Blocking protein V SUMOylation at specific sites shifts the onset of viral DNA replication to earlier time points during infection and promotes viral gene expression. Simultaneously, the altered kinetics within the viral life cycle are accompanied by more efficient proteasomal degradation of host determinants and increased virus progeny production than that observed during wild-type infection. Taken together, our studies show that protein V SUMOylation reduces virus growth; hence, protein V SUMOylation represents an important novel aspect of the host antiviral strategy to limit virus replication and thereby points to potential intervention strategies. IMPORTANCE Many decades of research have revealed that HAdV structural proteins promote viral entry and mainly physical stability of the viral genome in the capsid. Our work over the last years showed that this concept needs expansion as the functions are more diverse. We showed that capsid protein VI regulates the antiviral response by modulation of the transcription factor Daxx during infection. Moreover, core protein VII interacts with SPOC1 restriction factor, which is beneficial for efficient viral gene expression. Here, we were able to show that core protein V also represents a novel substrate of the host SUMOylation machinery and contains several conserved SCMs; mutation of these consensus motifs reduced SUMOylation of the protein. Unexpectedly, we observed that introducing these mutations into HAdV promotes adenoviral replication. In conclusion, we offer novel insights into adenovirus core proteins and provide evidence that SUMOylation of HAdV factors regulates replication efficiency. Copyright © 2018 American Society for Microbiology.

  2. Novel cis-acting element within the capsid-coding region enhances flavivirus viral-RNA replication by regulating genome cyclization.

    PubMed

    Liu, Zhong-Yu; Li, Xiao-Feng; Jiang, Tao; Deng, Yong-Qiang; Zhao, Hui; Wang, Hong-Jiang; Ye, Qing; Zhu, Shun-Ya; Qiu, Yang; Zhou, Xi; Qin, E-De; Qin, Cheng-Feng

    2013-06-01

    cis-Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis-acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The downstream of 5' cyclization sequence (5'CS) pseudoknot (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5'CS, and the presence of DCS-PK facilitates the formation of 5'-3' RNA complexes. Taken together, our results reveal that the cis-acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis-acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution.

  3. Novel cis-Acting Element within the Capsid-Coding Region Enhances Flavivirus Viral-RNA Replication by Regulating Genome Cyclization

    PubMed Central

    Liu, Zhong-Yu; Li, Xiao-Feng; Jiang, Tao; Deng, Yong-Qiang; Zhao, Hui; Wang, Hong-Jiang; Ye, Qing; Zhu, Shun-Ya; Qiu, Yang; Zhou, Xi; Qin, E-De

    2013-01-01

    cis-Acting elements in the viral genome RNA (vRNA) are essential for the translation, replication, and/or encapsidation of RNA viruses. In this study, a novel conserved cis-acting element was identified in the capsid-coding region of mosquito-borne flavivirus. The downstream of 5′ cyclization sequence (5′CS) pseudoknot (DCS-PK) element has a three-stem pseudoknot structure, as demonstrated by structure prediction and biochemical analysis. Using dengue virus as a model, we show that DCS-PK enhances vRNA replication and that its function depends on its secondary structure and specific primary sequence. Mutagenesis revealed that the highly conserved stem 1 and loop 2, which are involved in potential loop-helix interactions, are crucial for DCS-PK function. A predicted loop 1-stem 3 base triple interaction is important for the structural stability and function of DCS-PK. Moreover, the function of DCS-PK depends on its position relative to the 5′CS, and the presence of DCS-PK facilitates the formation of 5′-3′ RNA complexes. Taken together, our results reveal that the cis-acting element DCS-PK enhances vRNA replication by regulating genome cyclization, and DCS-PK might interplay with other cis-acting elements to form a functional vRNA cyclization domain, thus playing critical roles during the flavivirus life cycle and evolution. PMID:23576500

  4. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis

    PubMed Central

    Du, Yushen; Wu, Nicholas C.; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting

    2016-01-01

    ABSTRACT Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. PMID:27803181

  5. HIV-1 Protease in the Fission Yeast Schizosaccharomyces pombe.

    PubMed

    Benko, Zsigmond; Elder, Robert T; Li, Ge; Liang, Dong; Zhao, Richard Y

    2016-01-01

    HIV-1 protease (PR) is an essential viral enzyme. Its primary function is to proteolyze the viral Gag-Pol polyprotein for production of viral enzymes and structural proteins and for maturation of infectious viral particles. Increasing evidence suggests that PR cleaves host cellular proteins. However, the nature of PR-host cellular protein interactions is elusive. This study aimed to develop a fission yeast (Schizosaccharomyces pombe) model system and to examine the possible interaction of HIV-1 PR with cellular proteins and its potential impact on cell proliferation and viability. A fission yeast strain RE294 was created that carried a single integrated copy of the PR gene in its chromosome. The PR gene was expressed using an inducible nmt1 promoter so that PR-specific effects could be measured. HIV-1 PR from this system cleaved the same indigenous viral p6/MA protein substrate as it does in natural HIV-1 infections. HIV-1 PR expression in fission yeast cells prevented cell proliferation and induced cellular oxidative stress and changes in mitochondrial morphology that led to cell death. Both these PR activities can be prevented by a PR-specific enzymatic inhibitor, indinavir, suggesting that PR-mediated proteolytic activities and cytotoxic effects resulted from enzymatic activities of HIV-1 PR. Through genome-wide screening, a serine/threonine kinase, Hhp2, was identified that suppresses HIV-1 PR-induced protease cleavage and cell death in fission yeast and in mammalian cells, where it prevented PR-induced apoptosis and cleavage of caspase-3 and caspase-8. This is the first report to show that HIV-1 protease is functional as an enzyme in fission yeast, and that it behaves in a similar manner as it does in HIV-1 infection. HIV-1 PR-induced cell death in fission yeast could potentially be used as an endpoint for mechanistic studies, and this system could be used for developing a high-throughput system for drug screenings.

  6. Tomato golden mosaic virus open reading frame AL4 is genetically distinct from its C4 analogue in monopartite geminiviruses.

    PubMed

    Pooma, W; Petty, I T

    1996-08-01

    Tomato golden mosaic virus (TGMV) is a bipartite geminivirus with six well-characterized genes. An additional open reading frame (ORF), AL4, lies within the essential AL1 gene. Recent studies of monopartite, dicot-infecting geminiviruses have revealed that mutations in their analogous C4 ORFs have host-specific effects on infectivity, symptomatology, virus movement and/or viral DNA accumulation. We have investigated whether TGMV has a similar host-specific requirement for AL4. The phenotypes of three TGMV al4 mutants were determined in a range of hosts, which included species that revealed c4 mutant phenotypes for monopartite geminiviruses. Each TGMV al4 mutant was indistinguishable from wild-type TGMV in all hosts tested. Additional analyses of double mutants revealed no evidence for functional redundancy between AL4 and the AL3, or AR1 genes. In contrast to the putative C4 proteins of monpartite geminiviruses, TGMV AL4, if it is expressed, is either non-functional, or functionally redundant with an essential TGMV gene product.

  7. Ac102 Participates in Nuclear Actin Polymerization by Modulating BV/ODV-C42 Ubiquitination during Autographa californica Multiple Nucleopolyhedrovirus Infection.

    PubMed

    Zhang, Yongli; Hu, Xue; Mu, Jingfang; Hu, Yangyang; Zhou, Yuan; Zhao, He; Wu, Chunchen; Pei, Rongjuan; Chen, Jizheng; Chen, Xinwen; Wang, Yun

    2018-06-15

    As a virus-encoded actin nucleation promoting factor (NPF), P78/83 induces actin polymerization to assist in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) propagation. According to our previous study, although P78/83 actively undergoes ubiquitin-independent proteasomal degradation, AcMNPV encodes budded virus/occlusion derived virus (BV/ODV)-C42 (C42), which allows P78/83 to function as a stable NPF by inhibiting its degradation during viral infection. However, whether there are other viral proteins involved in regulating P78/83-induced actin polymerization has yet to be determined. In this study, we found that Ac102, an essential viral gene product previously reported to play a key role in mediating the nuclear accumulation of actin during AcMNPV infection, is a novel regulator of P78/83-induced actin polymerization. By characterizing an ac102 knockout bacmid, we demonstrated that Ac102 participates in regulating nuclear actin polymerization as well as the morphogenesis and distribution of capsid structures in the nucleus. These regulatory effects are heavily dependent on an interaction between Ac102 and C42. Further investigation revealed that Ac102 binds to C42 to suppress K48-linked ubiquitination of C42, which decreases C42 proteasomal degradation and consequently allows P78/83 to function as a stable NPF to induce actin polymerization. Thus, Ac102 and C42 form a regulatory cascade to control viral NPF activity, representing a sophisticated mechanism for AcMNPV to orchestrate actin polymerization in both a ubiquitin-dependent and ubiquitin-independent manner. IMPORTANCE Actin is one of the most functionally important proteins in eukaryotic cells. Morphologically, actin can be found in two forms: a monomeric form called globular actin (G-actin) and a polymeric form called filamentous actin (F-actin). G-actin can polymerize to form F-actin, and nucleation promoting factor (NPF) is the initiator of this process. Many viral pathogens harness the host actin polymerization machinery to assist in virus propagation. Autographa californica multiple nucleopolyhedrovirus (AcMNPV) induces actin polymerization in host cells. P78/83, a viral NPF, is responsible for this process. Previously, we identified that BV/ODV-C42 (C42) binds to P78/83 and protects it from degradation. In this report, we determined that another viral protein, Ac102, is involved in modulating C42 ubiquitination and, consequently, ensures P78/83 activity as an NPF to initiate actin polymerization. This regulatory cascade represents a novel mechanism by which a virus can harness the cellular actin cytoskeleton to assist in viral propagation. Copyright © 2018 American Society for Microbiology.

  8. Functional characterization of Bombyx mori nucleopolyhedrovirus mutant lacking late expression factor 9.

    PubMed

    Zhang, Y; Shi, Y; Yu, H; Li, J; Quan, Y; Shu, T; Nie, Z; Zhang, Y; Yu, W

    Baculoviridae is a family of invertebrate viruses with large double-stranded DNA genomes. Proteins encoded by some late expression factor (lef ) genes are involved in the regulation of viral gene expression. Lef-9 is one of four transcription-specific Lefs, which are components of the virus-encoded RNA polymerase, and can initiate and transcribe late and very late genes. As a multifunctional protein encoded by the Bombyx mori nucleopolyhedrovirus (BmNPV), Lef-9 may be involved in the regulation of viral propagation. However, the underlying mechanism remains unclear. To determine the role of lef-9 in baculovirus infection, lef-9-knockout virus (lef-9-KO-Bacmid virus) was constructed using the Red recombination system, and the Bac-to-Bac system was used to prepare lef-9-repaired virus (lef-9-Re-Bacmid virus). The lef-9-KO virus did not produce infectious viruses or show infection activity, while the lef-9-repaired virus recovered both. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis of the transcription levels in wild-type-Bacmid, lef-9-KO-Bacmid, and lef-9-Re-Bacmid viruses showed that the lef-9-KO bacmid had little effect on viral genome replication. However, the transcription levels of the early and late viral genes, lef-3, ie-1, vp39, and p10, were significantly lower in BmN cells transfected with lef-9-KO-Bacmids than in the controls. Electron microscopy showed no visible enveloped virions in cells transfected with lef-9-KO-Bacmids, while many mature virions in cells transfected with lef-9-Re-Bacmid and wt-Bacmid were present. Thus, lef-9 was not essential for viral genome replication, but significantly affected viral gene transcription and expression in all periods of cell life cycle.

  9. Identification and Molecular Characterization of the Chloroplast Targeting Domain of Turnip yellow mosaic virus Replication Proteins

    PubMed Central

    Moriceau, Lucille; Jomat, Lucile; Bressanelli, Stéphane; Alcaide-Loridan, Catherine; Jupin, Isabelle

    2017-01-01

    Turnip yellow mosaic virus (TYMV) is a positive-strand RNA virus infecting plants. The TYMV 140K replication protein is a key organizer of viral replication complex (VRC) assembly, being responsible for recruitment of the viral polymerase and for targeting the VRCs to the chloroplast envelope where viral replication takes place. However, the structural requirements determining the subcellular localization and membrane association of this essential viral protein have not yet been defined. In this study, we investigated determinants for the in vivo chloroplast targeting of the TYMV 140K replication protein. Subcellular localization studies of deletion mutants identified a 41-residue internal sequence as the chloroplast targeting domain (CTD) of TYMV 140K; this sequence is sufficient to target GFP to the chloroplast envelope. The CTD appears to be located in the C-terminal extension of the methyltransferase domain—a region shared by 140K and its mature cleavage product 98K, which behaves as an integral membrane protein during infection. We predicted the CTD to fold into two amphipathic α-helices—a folding that was confirmed in vitro by circular dichroism spectroscopy analyses of a synthetic peptide. The importance for subcellular localization of the integrity of these amphipathic helices, and the function of 140K/98K, was demonstrated by performing amino acid substitutions that affected chloroplast targeting, membrane association and viral replication. These results establish a short internal α-helical peptide as an unusual signal for targeting proteins to the chloroplast envelope membrane, and provide new insights into membrane targeting of viral replication proteins—a universal feature of positive-strand RNA viruses. PMID:29312393

  10. Characterizing Functional Domains for TIM-Mediated Enveloped Virus Entry

    PubMed Central

    Moller-Tank, Sven; Albritton, Lorraine M.; Rennert, Paul D.

    2014-01-01

    ABSTRACT T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members were recently identified as phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance entry of Ebola virus (EBOV) and other viruses by binding PtdSer on the viral envelope, concentrating virus on the cell surface, and promoting subsequent internalization. The PtdSer-binding activity of the immunoglobulin-like variable (IgV) domain is essential for both virus binding and internalization by TIM-1. However, TIM-3, whose IgV domain also binds PtdSer, does not effectively enhance virus entry, indicating that other domains of TIM proteins are functionally important. Here, we investigate the domains supporting enhancement of enveloped virus entry, thereby defining the features necessary for a functional PVEER. Using a variety of chimeras and deletion mutants, we found that in addition to a functional PtdSer-binding domain PVEERs require a stalk domain of sufficient length, containing sequences that promote an extended structure. Neither the cytoplasmic nor the transmembrane domain of TIM-1 is essential for enhancing virus entry, provided the protein is still plasma membrane bound. Based on these defined characteristics, we generated a mimic lacking TIM sequences and composed of annexin V, the mucin-like domain of α-dystroglycan, and a glycophosphatidylinositol anchor that functioned as a PVEER to enhance transduction of virions displaying Ebola, Chikungunya, Ross River, or Sindbis virus glycoproteins. This identification of the key features necessary for PtdSer-mediated enhancement of virus entry provides a basis for more effective recognition of unknown PVEERs. IMPORTANCE T-cell immunoglobulin and mucin domain 1 (TIM-1) and other TIM family members are recently identified phosphatidylserine (PtdSer)-mediated virus entry-enhancing receptors (PVEERs). These proteins enhance virus entry by binding the phospholipid, PtdSer, present on the viral membrane. While it is known that the PtdSer binding is essential for the PVEER function of TIM-1, TIM-3 shares this binding activity but does not enhance virus entry. No comprehensive studies have been done to characterize the other domains of TIM-1. In this study, using a variety of chimeric proteins and deletion mutants, we define the features necessary for a functional PVEER. With these features in mind, we generated a TIM-1 mimic using functionally similar domains from other proteins. This mimic, like TIM-1, effectively enhanced transduction. These studies provide insight into the key features necessary for PVEERs and will allow for more effective identification of unknown PVEERs. PMID:24696470

  11. Carboxy-terminal cleavage of the human foamy virus Gag precursor molecule is an essential step in the viral life cycle.

    PubMed Central

    Enssle, J; Fischer, N; Moebes, A; Mauer, B; Smola, U; Rethwilm, A

    1997-01-01

    Foamy viruses (FVs) express the Gag protein as a precursor with a molecular mass of 74 kDa (pr74) from which a 70-kDa protein (p70) is cleaved by the viral protease. To gain a better understanding of FV Gag protein processing and function, we have generated and analyzed mutants in the C-terminal gag region of an infectious molecular clone. Our results show that p70 is an N-terminal cleavage product of pr74. However, we were unable to identify a p4 molecule. A virus mutant expressing p70 only was found to be replication competent, albeit at very low titers compared to those of wild-type virus. A strong tendency to synthesize and cleave a pr74 molecule was deduced from the occurrence of revertants upon transfection of this mutant. Substitution of the p6gag domain of human immunodeficiency virus type 1 for the p4 domain of FV resulted in a stable chimeric virus which replicated to titers 10 times lower than those of wild-type virus. FV Gag protein was found to be phosphorylated at serine residues. Mutagenesis of serines conserved in the p4 domain had no influence on viral replication in cell culture. The p70/p74 Gag cleavage was found to be required for viral infectivity, since mutagenesis of the putative cleavage site led to replication-incompetent virus. Interestingly, the cleavage site mutants were defective in the intracellular cDNA synthesis of virion DNA, which indicates that correct FV particle formation and the generation of virion DNA are functionally linked. PMID:9311808

  12. Phosphorylation-mediated negative regulation of RIG-I antiviral activity.

    PubMed

    Gack, Michaela U; Nistal-Villán, Estanislao; Inn, Kyung-Soo; García-Sastre, Adolfo; Jung, Jae U

    2010-04-01

    Recognition of invading viruses by the host is elicited by cellular sensors which trigger signaling cascades that lead to type I interferon (IFN) gene expression. Retinoic acid-inducible gene I (RIG-I) has emerged as a key receptor for the detection of viral RNA in the cytosol, inducing IFN-mediated innate immune responses to limit viral replication through its interaction with MAVS (also called IPS-1, CARDIF, or VISA). Upon the recognition of viral RNA, the Lys-172 residue of RIG-I undergoes ubiquitination induced by tripartite motif protein 25 (TRIM25), an essential protein for antiviral signal transduction. Here we demonstrate that phosphorylation represents another regulatory mechanism for RIG-I-mediated antiviral activity. Using protein purification and mass spectrometry analysis, we identified three phosphorylation sites in the amino-terminal caspase recruitment domains (CARDs) of RIG-I. One of these residues, Thr-170, is located in close proximity to Lys-172, and we speculated that its phosphorylation may affect Lys-172 ubiquitination and functional activation of RIG-I. Indeed, a RIG-I mutant carrying a phosphomimetic Glu residue in place of Thr-170 loses TRIM25 binding, Lys-172 ubiquitination, MAVS binding, and downstream signaling ability. This suggests that phosphorylation of RIG-I at Thr-170 inhibits RIG-I-mediated antiviral signal transduction. Immunoblot analysis with a phospho-specific antibody showed that the phosphorylation of the RIG-I Thr-170 residue is present under normal conditions but rapidly declines upon viral infection. Our results indicate that Thr-170 phosphorylation and TRIM25-mediated Lys-172 ubiquitination of RIG-I functionally antagonize each other. While Thr-170 phosphorylation keeps RIG-I latent, Lys-172 ubiquitination enables RIG-I to form a stable complex with MAVS, thereby inducing IFN signal transduction.

  13. HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA.

    PubMed

    Ajamian, Lara; Abel, Karen; Rao, Shringar; Vyboh, Kishanda; García-de-Gracia, Francisco; Soto-Rifo, Ricardo; Kulozik, Andreas E; Gehring, Niels H; Mouland, Andrew J

    2015-10-20

    Unspliced, genomic HIV-1 RNA (vRNA) is a component of several ribonucleoprotein complexes (RNP) during the viral replication cycle. In earlier work, we demonstrated that the host upframeshift protein 1 (UPF1), a key factor in nonsense-mediated mRNA decay (NMD), colocalized and associated to the viral structural protein Gag during viral egress. In this work, we demonstrate a new function for UPF1 in the regulation of vRNA nuclear export. OPEN ACCESS Biomolecules 2015, 5 2809 We establish that the nucleocytoplasmic shuttling of UPF1 is required for this function and demonstrate that UPF1 exists in two essential viral RNPs during the late phase of HIV-1 replication: the first, in a nuclear export RNP that contains Rev, CRM1, DDX3 and the nucleoporin p62, and the second, which excludes these nuclear export markers but contains Gag in the cytoplasm. Interestingly, we observed that both UPF2 and the long isoform of UPF3a, UPF3aL, but not the shorter isoforms UPF3aS and UPF3b, are excluded from the UPF1-Rev-CRM1-DDX3 complex as they are negative regulators of vRNA nuclear export. In silico protein-protein docking analyses suggest that Rev binds UPF1 in a region that overlaps the UPF2 binding site, thus explaining the exclusion of this negative regulatory factor by HIV-1 that is necessary for vRNA trafficking. This work uncovers a novel and unique regulatory circuit involving several UPF proteins that ultimately regulate vRNA nuclear export and trafficking.

  14. Antigenic properties of the human immunodeficiency virus envelope glycoprotein gp120 on virions bound to target cells.

    PubMed

    Mengistu, Meron; Ray, Krishanu; Lewis, George K; DeVico, Anthony L

    2015-03-01

    The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo.

  15. The Murine Norovirus Core Subgenomic RNA Promoter Consists of a Stable Stem-Loop That Can Direct Accurate Initiation of RNA Synthesis

    PubMed Central

    Yunus, Muhammad Amir; Lin, Xiaoyan; Bailey, Dalan; Karakasiliotis, Ioannis; Chaudhry, Yasmin; Vashist, Surender; Zhang, Guo; Thorne, Lucy; Kao, C. Cheng

    2014-01-01

    ABSTRACT All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3′ of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. IMPORTANCE Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase. PMID:25392209

  16. The murine norovirus core subgenomic RNA promoter consists of a stable stem-loop that can direct accurate initiation of RNA synthesis.

    PubMed

    Yunus, Muhammad Amir; Lin, Xiaoyan; Bailey, Dalan; Karakasiliotis, Ioannis; Chaudhry, Yasmin; Vashist, Surender; Zhang, Guo; Thorne, Lucy; Kao, C Cheng; Goodfellow, Ian

    2015-01-15

    All members of the Caliciviridae family of viruses produce a subgenomic RNA during infection. The subgenomic RNA typically encodes only the major and minor capsid proteins, but in murine norovirus (MNV), the subgenomic RNA also encodes the VF1 protein, which functions to suppress host innate immune responses. To date, the mechanism of norovirus subgenomic RNA synthesis has not been characterized. We have previously described the presence of an evolutionarily conserved RNA stem-loop structure on the negative-sense RNA, the complementary sequence of which codes for the viral RNA-dependent RNA polymerase (NS7). The conserved stem-loop is positioned 6 nucleotides 3' of the start site of the subgenomic RNA in all caliciviruses. We demonstrate that the conserved stem-loop is essential for MNV viability. Mutant MNV RNAs with substitutions in the stem-loop replicated poorly until they accumulated mutations that revert to restore the stem-loop sequence and/or structure. The stem-loop sequence functions in a noncoding context, as it was possible to restore the replication of an MNV mutant by introducing an additional copy of the stem-loop between the NS7- and VP1-coding regions. Finally, in vitro biochemical data suggest that the stem-loop sequence is sufficient for the initiation of viral RNA synthesis by the recombinant MNV RNA-dependent RNA polymerase, confirming that the stem-loop forms the core of the norovirus subgenomic promoter. Noroviruses are a significant cause of viral gastroenteritis, and it is important to understand the mechanism of norovirus RNA synthesis. Here we describe the identification of an RNA stem-loop structure that functions as the core of the norovirus subgenomic RNA promoter in cells and in vitro. This work provides new insights into the molecular mechanisms of norovirus RNA synthesis and the sequences that determine the recognition of viral RNA by the RNA-dependent RNA polymerase. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. HIV-1 Activates T Cell Signaling Independently of Antigen to Drive Viral Spread.

    PubMed

    Len, Alice C L; Starling, Shimona; Shivkumar, Maitreyi; Jolly, Clare

    2017-01-24

    HIV-1 spreads between CD4 T cells most efficiently through virus-induced cell-cell contacts. To test whether this process potentiates viral spread by activating signaling pathways, we developed an approach to analyze the phosphoproteome in infected and uninfected mixed-population T cells using differential metabolic labeling and mass spectrometry. We discovered HIV-1-induced activation of signaling networks during viral spread encompassing over 200 cellular proteins. Strikingly, pathways downstream of the T cell receptor were the most significantly activated, despite the absence of canonical antigen-dependent stimulation. The importance of this pathway was demonstrated by the depletion of proteins, and we show that HIV-1 Env-mediated cell-cell contact, the T cell receptor, and the Src kinase Lck were essential for signaling-dependent enhancement of viral dissemination. This study demonstrates that manipulation of signaling at immune cell contacts by HIV-1 is essential for promoting virus replication and defines a paradigm for antigen-independent T cell signaling. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Sukun; University of Chinese Academy of Sciences, Beijing 100049; Hu, Kai

    HSV-2 is the major cause of genital herpes and its infection increases the risk of HIV-1 acquisition and transmission. HSV-2 glycoprotein B together with glycoproteins D, H and L are indispensable for viral entry, of which gB, as a class III fusogen, plays an essential role. HSV-2 gB has seven potential N-linked glycosylation (N-CHO) sites, but their significance has yet to be determined. For the first time, we systematically analyzed the contributions of N-linked glycans on gB to cell–cell fusion and viral entry. Our results demonstrated that, of the seven potential N-CHO sites on gB, mutation at N390, N483 ormore » N668 decreased cell–cell fusion and viral entry, while mutation at N133 mainly affected protein expression and the production of infectious virus particles by blocking the transport of gB from the endoplasmic reticulum to Golgi. Our findings highlight the significance of N-linked glycans on HSV-2 gB expression and function. - Highlights: • N-linked glycan at N133 is important for gB intracellular trafficking and maturation. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal cell–cell fusion. • N-linked glycans at N390, N483 and N668 on gB are necessary for optimal viral entry.« less

  19. Maraba MG1 Virus Enhances Natural Killer Cell Function via Conventional Dendritic Cells to Reduce Postoperative Metastatic Disease

    PubMed Central

    Zhang, Jiqing; Tai, Lee-Hwa; Ilkow, Carolina S; Alkayyal, Almohanad A; Ananth, Abhirami A; de Souza, Christiano Tanese; Wang, Jiahu; Sahi, Shalini; Ly, Lundi; Lefebvre, Charles; Falls, Theresa J; Stephenson, Kyle B; Mahmoud, Ahmad B; Makrigiannis, Andrew P; Lichty, Brian D; Bell, John C; Stojdl, David F; Auer, Rebecca C

    2014-01-01

    This study characterizes the ability of novel oncolytic rhabdoviruses (Maraba MG1) to boost natural killer (NK) cell activity. Our results demonstrate that MG1 activates NK cells via direct infection and maturation of conventional dendritic cells. Using NK depletion and conventional dendritic cells ablation studies in vivo, we established that both are required for MG1 efficacy. We further explored the efficacy of attenuated MG1 (nonreplicating MG1-UV2min and single-cycle replicating MG1-Gless) and demonstrated that these viruses activate conventional dendritic cells, although to a lesser extent than live MG1. This translates to equivalent abilities to remove tumor metastases only at the highest viral doses of attenuated MG1. In tandem, we characterized the antitumor ability of NK cells following preoperative administration of live and attenuated MG1. Our results demonstrates that a similar level of NK activation and reduction in postoperative tumor metastases was achieved with equivalent high viral doses concluding that viral replication is important, but not necessary for NK activation. Biochemical characterization of a panel of UV-inactivated MG1 (2–120 minutes) revealed that intact viral particle and target cell recognition are essential for NK cell–mediated antitumor responses. These findings provide mechanistic insight and preclinical rationale for safe perioperative virotherapy to effectively reduce metastatic disease following cancer surgery. PMID:24695102

  20. A Single-Amino-Acid Change in Murine Norovirus NS1/2 Is Sufficient for Colonic Tropism and Persistence

    PubMed Central

    Nice, Timothy J.; Strong, David W.; McCune, Broc T.; Pohl, Calvin S.

    2013-01-01

    Human norovirus (HuNoV) is the major cause of acute nonbacterial gastroenteritis worldwide but has no clear animal reservoir. HuNoV can persist after the resolution of symptoms, and this persistence may be essential for viral maintenance within the population. Many strains of the related murine norovirus (MNV) also persist, providing a tractable animal model for studying norovirus (NoV) persistence. We have used recombinant cDNA clones of representative persistent (CR6) and nonpersistent (CW3) strains to identify a domain within the nonstructural gene NS1/2 that is necessary and sufficient for persistence. Furthermore, we found that a single change of aspartic acid to glutamic acid in CW3 NS1/2 was sufficient for persistence. This same conservative change also caused increased growth of CW3 in the proximal colon, which we found to be a major tissue reservoir of MNV persistence, suggesting that NS1/2 determines viral tropism that is necessary for persistence. These findings represent the first identified function for NoV NS1/2 during infection and establish a novel model system for the study of enteric viral persistence. PMID:23077309

  1. Stereophysicochemical variability plots highlight conserved antigenic areas in Flaviviruses

    PubMed Central

    Schein, Catherine H; Zhou, Bin; Braun, Werner

    2005-01-01

    Background Flaviviruses, which include Dengue (DV) and West Nile (WN), mutate in response to immune system pressure. Identifying escape mutants, variant progeny that replicate in the presence of neutralizing antibodies, is a common way to identify functionally important residues of viral proteins. However, the mutations typically occur at variable positions on the viral surface that are not essential for viral replication. Methods are needed to determine the true targets of the neutralizing antibodies. Results Stereophysicochemical variability plots (SVPs), 3-D images of protein structures colored according to variability, as determined by our PCPMer program, were used to visualize residues conserved in their physical chemical properties (PCPs) near escape mutant positions. The analysis showed 1) that escape mutations in the flavivirus envelope protein are variable residues by our criteria and 2) two escape mutants found at the same position in many flaviviruses sit above clusters of conserved residues from different regions of the linear sequence. Conservation patterns in T-cell epitopes in the NS3- protease suggest a similar mechanism of immune system evasion. Conclusion The SVPs add another dimension to structurally defining the binding sites of neutralizing antibodies. They provide a useful aid for determining antigenically important regions and designing vaccines. PMID:15845145

  2. The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hornig, Julia; Choi, K. Yeon; McGregor, Alistair,

    Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codonsmore » 234–474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection.« less

  3. The essential role of guinea pig cytomegalovirus (GPCMV) IE1 and IE2 homologs in viral replication and IE1-mediated ND10 targeting

    PubMed Central

    Hornig, Julia; Choi, K. Yeon; McGregor, Alistair

    2017-01-01

    Guinea pig cytomegalovirus (GPCMV) immediate early proteins, IE1 and IE2, demonstrated structural and functional homologies with human cytomegalovirus (HCMV). GPCMV IE1 and IE2 co-localized in the nucleus with each other, the viral polymerase and guinea pig ND10 components (gpPML, gpDaxx, gpSp100, gpATRX). IE1 showed direct interaction with ND10 components by immunoprecipitation unlike IE2. Additionally, IE1 protein disrupted ND10 bodies. IE1 mutagenesis mapped the nuclear localization signal to the C-terminus and identified the core domain for gpPML interaction. Individual knockout of GPCMV GP122 or GP123 (IE2 and IE1 unique exons respectively) was lethal to the virus. However, an IE1 mutant (codons 234–474 deleted), was viable with attenuated viral growth kinetics and increased susceptibility to type I interferon (IFN-I). In HCMV, the IE proteins are important T cell target antigens. Consequently, characterization of the homologs in GPCMV provides a basis for their evaluation in candidate vaccines against congenital infection. PMID:28189970

  4. Host Range Factor 1 from Lymantria dispar Nucleopolyhedrovirus (NPV) Is an Essential Viral Factor Required for Productive Infection of NPVs in IPLB-Ld652Y Cells Derived from L. dispar

    PubMed Central

    Ishikawa, Hiroki; Ikeda, Motoko; Felipe Alves, Cristiano A.; Thiem, Suzanne M.; Kobayashi, Michihiro

    2004-01-01

    Host range factor 1 (HRF-1) of Lymantria dispar multinucleocapsid nucleopolyhedrovirus promotes Autographa californica MNPV replication in nonpermissive Ld652Y cells derived from L. dispar. Here we demonstrate that restricted Hyphantria cunea NPV replication in Ld652Y cells was not due to apoptosis but was likely due to global protein synthesis arrest that could be restored by HRF-1. Our data also showed that HRF-1 promoted the production of progeny virions for two other baculoviruses, Bombyx mori NPV and Spodoptera exigua MNPV, whose replication in Ld652Y cells is limited to replication of viral DNA without successful production of infectious progeny virions. Thus, HRF-1 is an essential viral factor required for productive infection of NPVs in Ld652Y cells. PMID:15507661

  5. Host range factor 1 from Lymantria dispar Nucleopolyhedrovirus (NPV) is an essential viral factor required for productive infection of NPVs in IPLB-Ld652Y cells derived from L. dispar.

    PubMed

    Ishikawa, Hiroki; Ikeda, Motoko; Alves, Cristiano A Felipe; Thiem, Suzanne M; Kobayashi, Michihiro

    2004-11-01

    Host range factor 1 (HRF-1) of Lymantria dispar multinucleocapsid nucleopolyhedrovirus promotes Autographa californica MNPV replication in nonpermissive Ld652Y cells derived from L. dispar. Here we demonstrate that restricted Hyphantria cunea NPV replication in Ld652Y cells was not due to apoptosis but was likely due to global protein synthesis arrest that could be restored by HRF-1. Our data also showed that HRF-1 promoted the production of progeny virions for two other baculoviruses, Bombyx mori NPV and Spodoptera exigua MNPV, whose replication in Ld652Y cells is limited to replication of viral DNA without successful production of infectious progeny virions. Thus, HRF-1 is an essential viral factor required for productive infection of NPVs in Ld652Y cells.

  6. Transmissible Gastroenteritis Coronavirus Genome Packaging Signal Is Located at the 5′ End of the Genome and Promotes Viral RNA Incorporation into Virions in a Replication-Independent Process

    PubMed Central

    Morales, Lucia; Mateos-Gomez, Pedro A.; Capiscol, Carmen; del Palacio, Lorena; Sola, Isabel

    2013-01-01

    Preferential RNA packaging in coronaviruses involves the recognition of viral genomic RNA, a crucial process for viral particle morphogenesis mediated by RNA-specific sequences, known as packaging signals. An essential packaging signal component of transmissible gastroenteritis coronavirus (TGEV) has been further delimited to the first 598 nucleotides (nt) from the 5′ end of its RNA genome, by using recombinant viruses transcribing subgenomic mRNA that included potential packaging signals. The integrity of the entire sequence domain was necessary because deletion of any of the five structural motifs defined within this region abrogated specific packaging of this viral RNA. One of these RNA motifs was the stem-loop SL5, a highly conserved motif in coronaviruses located at nucleotide positions 106 to 136. Partial deletion or point mutations within this motif also abrogated packaging. Using TGEV-derived defective minigenomes replicated in trans by a helper virus, we have shown that TGEV RNA packaging is a replication-independent process. Furthermore, the last 494 nt of the genomic 3′ end were not essential for packaging, although this region increased packaging efficiency. TGEV RNA sequences identified as necessary for viral genome packaging were not sufficient to direct packaging of a heterologous sequence derived from the green fluorescent protein gene. These results indicated that TGEV genome packaging is a complex process involving many factors in addition to the identified RNA packaging signal. The identification of well-defined RNA motifs within the TGEV RNA genome that are essential for packaging will be useful for designing packaging-deficient biosafe coronavirus-derived vectors and providing new targets for antiviral therapies. PMID:23966403

  7. The role of TREX in gene expression and disease

    PubMed Central

    Heath, Catherine G.; Viphakone, Nicolas; Wilson, Stuart A.

    2016-01-01

    TRanscription and EXport (TREX) is a conserved multisubunit complex essential for embryogenesis, organogenesis and cellular differentiation throughout life. By linking transcription, mRNA processing and export together, it exerts a physiologically vital role in the gene expression pathway. In addition, this complex prevents DNA damage and regulates the cell cycle by ensuring optimal gene expression. As the extent of TREX activity in viral infections, amyotrophic lateral sclerosis and cancer emerges, the need for a greater understanding of TREX function becomes evident. A complete elucidation of the composition, function and interactions of the complex will provide the framework for understanding the molecular basis for a variety of diseases. This review details the known composition of TREX, how it is regulated and its cellular functions with an emphasis on mammalian systems. PMID:27679854

  8. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex.

    PubMed

    Ganaie, Safder S; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve; Qiu, Jianming

    2017-05-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases.

  9. Early intranuclear replication of African swine fever virus genome modifies the landscape of the host cell nucleus.

    PubMed

    Simões, Margarida; Martins, Carlos; Ferreira, Fernando

    2015-12-02

    Although African swine fever virus (ASFV) replicates in viral cytoplasmic factories, the presence of viral DNA within the host cell nucleus has been previously reported to be essential for productive infection. Herein, we described, for the first time, the intranuclear distribution patterns of viral DNA replication events, preceding those that occur in the cytoplasmic compartment. Using BrdU pulse-labelling experiments, newly synthesized ASFV genomes were exclusively detected inside the host cell nucleus at the early phase of infection, both in swine monocyte-derived macrophages (MDMs) and Vero cells. From 8hpi onwards, BrdU labelling was only observed in ASFV cytoplasmic factories. Our results also show that ASFV specifically activates the Ataxia Telangiectasia Mutated Rad-3 related (ATR) pathway in ASFV-infected swine MDMs from the early phase of infection, most probably because ASFV genome is recognized as foreign DNA. Morphological changes of promyelocytic leukaemia nuclear bodies (PML-NBs), nuclear speckles and Cajal bodies were also found in ASFV-infected swine MDMs, strongly suggesting the viral modulation of cellular antiviral responses and cellular transcription, respectively. As described for other viral infections, the nuclear reorganization that takes place during ASFV infection may also provide an environment that favours its intranuclear replication events. Altogether, our results contribute for a better understanding of ASFV replication strategies, starting with an essential intranuclear DNA replication phase which induces host nucleus changes towards a successful viral infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mutational analysis of polyomavirus small-T-antigen functions in productive infection and in transformation.

    PubMed Central

    Martens, I; Nilsson, S A; Linder, S; Magnusson, G

    1989-01-01

    The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions. Images PMID:2704075

  11. Mutational analysis of polyomavirus small-T-antigen functions in productive infection and in transformation.

    PubMed

    Martens, I; Nilsson, S A; Linder, S; Magnusson, G

    1989-05-01

    The function of polyomavirus small T antigen in productive infection and in transformation was studied. Transfection of permissive mouse cells with mixtures of mutants that express only one type of T antigen showed that small T antigen increased large-T-antigen-dependent viral DNA synthesis approximately 10-fold. Under the same conditions, small T antigen was also essential for the formation of infectious virus particles. To analyze these activities of small T antigen, mutants producing protein with single amino acid replacements were constructed. Two mutants, bc1073 and bc1075, were characterized. Although both mutations led to the substitution of amino acid residues of more than one T antigen, the phenotype of both mutants was associated with alterations of the small T antigen. Both mutant proteins had lost their activity in the maturation of infectious virus particles. The bc1075 but not the bc1073 small T antigen had also lost its ability to stimulate viral DNA synthesis in mouse 3T6 cells. Finally, both mutants retained a third activity of small T antigen: to confer on rat cells also expressing middle T antigen the ability to grow efficiently in semisolid medium. The phenotypes of the mutants in these three assays suggest that small T antigen has at least three separate functions.

  12. Novel ATPase activity of the polyprotein intermediate, Viral Protein genome-linked-Nuclear Inclusion-a protease, of Pepper vein banding potyvirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathur, Chhavi; Savithri, Handanahal S., E-mail: bchss@biochem.iisc.ernet.in

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer Pepper vein banding potyvirus VPg harbors Walker motifs. Black-Right-Pointing-Pointer VPg exhibits ATPase activity in the presence of NIa-Pro. Black-Right-Pointing-Pointer Plausible structural and functional interplay between VPg and NIa-Pro. Black-Right-Pointing-Pointer Functional relevance of prolonged presence of VPg-Pro during infection. -- Abstract: Potyviruses temporally regulate their protein function by polyprotein processing. Previous studies have shown that VPg (Viral Protein genome-linked) of Pepper vein banding virus interacts with the NIa-Pro (Nuclear Inclusion-a protease) domain, and modulates the kinetics of the protease. In the present study, we report for the first time that VPg harbors the Walker motifs A and B, andmore » the presence of NIa-Pro, especially in cis (cleavage site (E191A) VPg-Pro mutant), is essential for manifestation of the ATPase activity. Mutation of Lys47 (Walker motif A) and Asp88:Glu89 (Walker motif B) to alanine in E191A VPg-Pro lead to reduced ATPase activity, confirming that this activity was inherent to VPg. We propose that potyviral VPg, established as an intrinsically disordered domain, undergoes plausible structural alterations upon interaction with globular NIa-Pro which induces the ATPase activity.« less

  13. Hepatitis B virus pathogenesis: Fresh insights into hepatitis B virus RNA.

    PubMed

    Sekiba, Kazuma; Otsuka, Motoyuki; Ohno, Motoko; Yamagami, Mari; Kishikawa, Takahiro; Suzuki, Tatsunori; Ishibashi, Rei; Seimiya, Takahiro; Tanaka, Eri; Koike, Kazuhiko

    2018-06-07

    Hepatitis B virus (HBV) is still a worldwide health concern. While divergent factors are involved in its pathogenesis, it is now clear that HBV RNAs, principally templates for viral proteins and viral DNAs, have diverse biological functions involved in HBV pathogenesis. These functions include viral replication, hepatic fibrosis and hepatocarcinogenesis. Depending on the sequence similarities, HBV RNAs may act as sponges for host miRNAs and may deregulate miRNA functions, possibly leading to pathological consequences. Some parts of the HBV RNA molecule may function as viral-derived miRNA, which regulates viral replication. HBV DNA can integrate into the host genomic DNA and produce novel viral-host fusion RNA, which may have pathological functions. To date, elimination of HBV-derived covalently closed circular DNA has not been achieved. However, RNA transcription silencing may be an alternative practical approach to treat HBV-induced pathogenesis. A full understanding of HBV RNA transcription and the biological functions of HBV RNA may open a new avenue for the development of novel HBV therapeutics.

  14. HIV neuropathogenesis: a tight rope walk of innate immunity.

    PubMed

    Yao, Honghong; Bethel-Brown, Crystal; Li, Cicy Zidong; Buch, Shilpa J

    2010-12-01

    During the course of HIV-1 disease, virus neuroinvasion occurs as an early event, within weeks following infection. Intriguingly, subsequent central nervous system (CNS) complications manifest only decades after the initial virus exposure. Although CNS is commonly regarded as an immune-privileged site, emerging evidence indicates that innate immunity elicited by the CNS glial cells is a critical determinant for the establishment of protective immunity. Sustained expression of these protective immune responses, however, can be a double-edged sword. As protective immune mediators, cytokines have the ability to function in networks and co-operate with other host/viral mediators to tip the balance from a protective to toxic state in the CNS. Herein, we present an overview of some of the essential elements of the cerebral innate immunity in HIV neuropathogenesis including the key immune cell types of the CNS with their respective soluble immune mediators: (1) cooperative interaction of IFN-γ with the host/virus factor (platelet-derived host factor (PDGF)/viral Tat) in the induction of neurotoxic chemokine CXCL10 by macrophages, (2) response of astrocytes to viral infection, and (3) protective role of PDGF and MCP-1 in neuronal survival against HIV Tat toxicity. These components of the cerebral innate immunity do not act separately from each other but form a functional immunity network. The ultimate outcome of HIV infection in the CNS will thus be dependent on the regulation of the net balance of cell-specific protective versus detrimental responses.

  15. Crystal Structure of the Marburg Virus VP35 Oligomerization Domain.

    PubMed

    Bruhn, Jessica F; Kirchdoerfer, Robert N; Urata, Sarah M; Li, Sheng; Tickle, Ian J; Bricogne, Gérard; Saphire, Erica Ollmann

    2017-01-15

    Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (genera Marburgvirus and Ebolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOV VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV. Marburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the mechanisms governing VP35's functions and inform the design of therapeutics. Copyright © 2017 American Society for Microbiology.

  16. Crystal Structure of the Marburg Virus VP35 Oligomerization Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruhn, Jessica F.; Kirchdoerfer, Robert N.; Urata, Sarah M.

    ABSTRACT Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (generaMarburgvirusandEbolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOVmore » VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV. IMPORTANCEMarburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the mechanisms governing VP35's functions and inform the design of therapeutics.« less

  17. Identification of Putative ORF5 Protein of Porcine Circovirus Type 2 and Functional Analysis of GFP-Fused ORF5 Protein

    PubMed Central

    Xu, Han; Wang, Tao; Zhang, Yanming

    2015-01-01

    Porcine circovirus type 2 (PCV2) is the essential infectious agent responsible for causing porcine circovirus-associated diseases in pigs. To date, eleven RNAs and five viral proteins of PCV2 have been detected. Here, we identified a novel viral gene within the PCV2 genome, termed ORF5, that exists at both the transcriptional and translational level during productive infection of PCV2 in porcine alveolar macrophages 3D4/2 (PAMs). Northern blot analysis was used to demonstrate that the ORF5 gene measures 180 bp in length and overlaps completely with ORF1 when read in the same direction. Site-directed mutagenesis was used to show that the ORF5 protein is not essential for PCV2 replication. To investigate the biological functions of the novel protein, we constructed a recombinant eukaryotic expression plasmid capable of expressing PCV2 ORF5. The results show that the GFP-tagged PCV2 ORF5 protein localizes to the endoplasmic reticulum (ER), is degraded via the proteasome, inhibits PAM growth and prolongs the S-phase of the cell cycle. Further studies show that the GFP-tagged PCV2 ORF5 protein induces ER stress and activates NF-κB, which was further confirmed by a significant upregulation in IL-6, IL-8 and COX-2 expression. In addition, five cellular proteins (GPNMB, CYP1A1, YWHAB, ZNF511 and SRSF3) were found to interact with ORF5 via yeast two-hybrid assay. These findings provide novel information on the identification and functional analysis of the PCV2 ORF5 protein and are likely to be of benefit in elucidating the molecular mechanisms of PCV2 pathogenicity. However, additional experiments are needed to validate the expression and function of the ORF5 protein during PCV2 infection in vitro before any definitive conclusion can be drawn. PMID:26035722

  18. Extreme Mutation Tolerance: Nearly Half of the Archaeal Fusellovirus Sulfolobus Spindle-Shaped Virus 1 Genes Are Not Required for Virus Function, Including the Minor Capsid Protein Gene vp3

    PubMed Central

    Iverson, Eric A.; Goodman, David A.; Gorchels, Madeline E.

    2017-01-01

    ABSTRACT Viruses infecting the Archaea harbor a tremendous amount of genetic diversity. This is especially true for the spindle-shaped viruses of the family Fuselloviridae, where >90% of the viral genes do not have detectable homologs in public databases. This significantly limits our ability to elucidate the role of viral proteins in the infection cycle. To address this, we have developed genetic techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1), which infects Sulfolobus solfataricus in volcanic hot springs at 80°C and pH 3. Here, we present a new comparative genome analysis and a thorough genetic analysis of SSV1 using both specific and random mutagenesis and thereby generate mutations in all open reading frames. We demonstrate that almost half of the SSV1 genes are not essential for infectivity, and the requirement for a particular gene correlates well with its degree of conservation within the Fuselloviridae. The major capsid gene vp1 is essential for SSV1 infectivity. However, the universally conserved minor capsid gene vp3 could be deleted without a loss in infectivity and results in virions with abnormal morphology. IMPORTANCE Most of the putative genes in the spindle-shaped archaeal hyperthermophile fuselloviruses have no sequences that are clearly similar to characterized genes. In order to determine which of these SSV genes are important for function, we disrupted all of the putative genes in the prototypical fusellovirus, SSV1. Surprisingly, about half of the genes could be disrupted without destroying virus function. Even deletions of one of the known structural protein genes that is present in all known fuselloviruses, vp3, allows the production of infectious viruses. However, viruses lacking vp3 have abnormal shapes, indicating that the vp3 gene is important for virus structure. Identification of essential genes will allow focused research on minimal SSV genomes and further understanding of the structure of these unique, ubiquitous, and extremely stable archaeal viruses. PMID:28148789

  19. Extreme Mutation Tolerance: Nearly Half of the Archaeal Fusellovirus Sulfolobus Spindle-Shaped Virus 1 Genes Are Not Required for Virus Function, Including the Minor Capsid Protein Gene vp3.

    PubMed

    Iverson, Eric A; Goodman, David A; Gorchels, Madeline E; Stedman, Kenneth M

    2017-05-15

    Viruses infecting the Archaea harbor a tremendous amount of genetic diversity. This is especially true for the spindle-shaped viruses of the family Fuselloviridae , where >90% of the viral genes do not have detectable homologs in public databases. This significantly limits our ability to elucidate the role of viral proteins in the infection cycle. To address this, we have developed genetic techniques to study the well-characterized fusellovirus Sulfolobus spindle-shaped virus 1 (SSV1), which infects Sulfolobus solfataricus in volcanic hot springs at 80°C and pH 3. Here, we present a new comparative genome analysis and a thorough genetic analysis of SSV1 using both specific and random mutagenesis and thereby generate mutations in all open reading frames. We demonstrate that almost half of the SSV1 genes are not essential for infectivity, and the requirement for a particular gene correlates well with its degree of conservation within the Fuselloviridae The major capsid gene vp1 is essential for SSV1 infectivity. However, the universally conserved minor capsid gene vp3 could be deleted without a loss in infectivity and results in virions with abnormal morphology. IMPORTANCE Most of the putative genes in the spindle-shaped archaeal hyperthermophile fuselloviruses have no sequences that are clearly similar to characterized genes. In order to determine which of these SSV genes are important for function, we disrupted all of the putative genes in the prototypical fusellovirus, SSV1. Surprisingly, about half of the genes could be disrupted without destroying virus function. Even deletions of one of the known structural protein genes that is present in all known fuselloviruses, vp3 , allows the production of infectious viruses. However, viruses lacking vp3 have abnormal shapes, indicating that the vp3 gene is important for virus structure. Identification of essential genes will allow focused research on minimal SSV genomes and further understanding of the structure of these unique, ubiquitous, and extremely stable archaeal viruses. Copyright © 2017 American Society for Microbiology.

  20. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanitchang, Asawin; Wongthida, Phonphimon; Jongkae

    The M2 protein (AM2 and BM2) of influenza A and B viruses function as a proton channel essential for viral replication. They also carry a cytoplasmic tail whose functions are not fully delineated. It is currently unknown whether these proteins could be replaced functionally in a viral context. Here, we generated single-cycle influenza A viruses (scIAV-ΔHA) carrying various M2-2A-mCherry constructs in the segment 4 (HA) and evaluated their growth in complementing cells. Intriguingly, the scIAV-ΔHA carrying AM2 and that bearing BM2 grew comparably well in MDCK-HA cells. Furthermore, while the virus carrying chimeric B-AM2 in which the BM2 transmembrane fusedmore » with the AM2 cytoplasmic tail produced robust infection, the one bearing the AM2 transmembrane fused with the BM2 cytoplasmic tail (A-BM2) exhibited severely impaired growth. Altogether, we demonstrate that AM2 and BM2 are functionally interchangeable and underscore the role of compatibility between transmembrane and cytoplasmic tail of the M2 protein. -- Highlights: •Flu A M2 protein (AM2) can be functionally replaced by that of Flu B (BM2). •Both AM2 and BM2 with extended cytoplasmic tail are functional. •Compatibility between the ion channel and the cytoplasmic tail is critical for M2 function. •M2 with higher ion channel activity may augment influenza virus replication.« less

  1. Interaction of the Coronavirus Infectious Bronchitis Virus Membrane Protein with β-Actin and Its Implication in Virion Assembly and Budding

    PubMed Central

    Wang, Jibin; Fang, Shouguo; Xiao, Han; Chen, Bo; Tam, James P.; Liu, Ding Xiang

    2009-01-01

    Coronavirus M protein is an essential component of virion and plays pivotal roles in virion assembly, budding and maturation. The M protein is integrated into the viral envelope with three transmembrane domains flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. In this study, we showed co-purification of the M protein from coronavirus infectious bronchitis virus (IBV) with actin. To understand the cellular factors that may be involved in virion assembly, budding and maturation processes, IBV M was used as the bait in a yeast two-hybrid screen, resulting in the identification of β-actin as a potentially interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation and immunofluorescence microscopy in mammalian cells, and mutation of amino acids A159 and K160 on the M protein abolished the interaction. Introduction of the A159-K160 mutation into an infectious IBV clone system blocks the infectivity of the clone, although viral RNA replication and subgenomic mRNA transcription were actively detected. Disruption of actin filaments with cell-permeable agent cytochalasin D at early stages of the infection cycle led to the detection of viral protein synthesis in infected cells but not release of virus particles to the cultured media. However, the same treatment at late stages of the infection cycle did not affect the release of virus particles to the media, suggesting that disruption of the actin filaments might block virion assembly and budding, but not release of the virus particles. This study reveals an essential function of actin in the replication cycle of coronavirus. PMID:19287488

  2. The smallest capsid protein mediates binding of the essential tegument protein pp150 to stabilize DNA-containing capsids in human cytomegalovirus.

    PubMed

    Dai, Xinghong; Yu, Xuekui; Gong, Hao; Jiang, Xiaohong; Abenes, Gerrado; Liu, Hongrong; Shivakoti, Sakar; Britt, William J; Zhu, Hua; Liu, Fenyong; Zhou, Z Hong

    2013-08-01

    Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus that causes birth defects in newborns and life-threatening complications in immunocompromised individuals. Among all human herpesviruses, HCMV contains a much larger dsDNA genome within a similarly-sized capsid compared to the others, and it was proposed to require pp150, a tegument protein only found in cytomegaloviruses, to stabilize its genome-containing capsid. However, little is known about how pp150 interacts with the underlying capsid. Moreover, the smallest capsid protein (SCP), while dispensable in herpes simplex virus type 1, was shown to play essential, yet undefined, role in HCMV infection. Here, by cryo electron microscopy (cryoEM), we determine three-dimensional structures of HCMV capsid (no pp150) and virion (with pp150) at sub-nanometer resolution. Comparison of these two structures reveals that each pp150 tegument density is composed of two helix bundles connected by a long central helix. Correlation between the resolved helices and sequence-based secondary structure prediction maps the tegument density to the N-terminal half of pp150. The structures also show that SCP mediates interactions between the capsid and pp150 at the upper helix bundle of pp150. Consistent with this structural observation, ribozyme inhibition of SCP expression in HCMV-infected cells impairs the formation of DNA-containing viral particles and reduces viral yield by 10,000 fold. By cryoEM reconstruction of the resulting "SCP-deficient" viral particles, we further demonstrate that SCP is required for pp150 functionally binding to the capsid. Together, our structural and biochemical results point to a mechanism whereby SCP recruits pp150 to stabilize genome-containing capsid for the production of infectious HCMV virion.

  3. A Functional Link between RNA Replication and Virion Assembly in the Potyvirus Plum Pox Virus.

    PubMed

    Gallo, Araiz; Valli, Adrian; Calvo, María; García, Juan Antonio

    2018-05-01

    Accurate assembly of viral particles in the potyvirus Plum pox virus (PPV) has been shown to depend on the contribution of the multifunctional viral protein HCPro. In this study, we show that other viral factors, in addition to the capsid protein (CP) and HCPro, are necessary for the formation of stable PPV virions. The CP produced in Nicotiana benthamiana leaves from a subviral RNA termed LONG, which expresses a truncated polyprotein that lacks P1 and HCPro, together with HCPro supplied in trans , was assembled into virus-like particles and remained stable after in vitro incubation. In contrast, deletions in multiple regions of the LONG coding sequence prevented the CP stabilization mediated by HCPro. In particular, we demonstrated that the first 178 amino acids of P3, but not a specific nucleotide sequence coding for them, are required for CP stability and proper assembly of PPV particles. Using a sequential coagroinfiltration assay, we observed that the subviral LONG RNA replicates and locally spreads in N. benthamiana leaves expressing an RNA silencing suppressor. The analysis of the effect of both point and deletion mutations affecting RNA replication in LONG and full-length PPV demonstrated that this process is essential for the assembly of stable viral particles. Interestingly, in spite of this requirement, the CP produced by a nonreplicating viral RNA can be stably assembled into virions as long as it is coexpressed with a replication-proficient RNA. Altogether, these results highlight the importance of coupling encapsidation to other viral processes to secure a successful infection. IMPORTANCE Viruses of the family Potyviridae are among the most dangerous threats for basically every important crop, and such socioeconomical relevance has made them a subject of many research studies. In spite of this, very little is currently known about proteins and processes controlling viral genome encapsidation by the coat protein. In the case of Plum pox virus (genus Potyvirus ), for instance, we have previously shown that the multitasking viral factor HCPro plays a role in the production of stable virions. Here, by using this potyvirus as a model, we move further to show that additional factors are also necessary for the efficient production of potyviral particles. More importantly, a comprehensive screening for such factors led us to the identification of a functional link between virus replication and packaging, unraveling a previously unknown connection of these two key events of the potyviral infection cycle. Copyright © 2018 American Society for Microbiology.

  4. Nuclear Envelope Protein SUN2 Promotes Cyclophilin-A-Dependent Steps of HIV Replication

    PubMed Central

    Lahaye, Xavier; Satoh, Takeshi; Gentili, Matteo; Cerboni, Silvia; Silvin, Aymeric; Conrad, Cécile; Ahmed-Belkacem, Abdelhakim; Rodriguez, Elisa C.; Guichou, Jean-François; Bosquet, Nathalie; Piel, Matthieu; Le Grand, Roger; King, Megan C.; Pawlotsky, Jean-Michel; Manel, Nicolas

    2016-01-01

    Summary During the early phase of replication, HIV reverse transcribes its RNA and crosses the nuclear envelope while escaping host antiviral defenses. The host factor Cyclophilin A (CypA) is essential for these steps and binds the HIV capsid; however, the mechanism underlying this effect remains elusive. Here, we identify related capsid mutants in HIV-1, HIV-2, and SIVmac that are restricted by CypA. This antiviral restriction of mutated viruses is conserved across species and prevents nuclear import of the viral cDNA. Importantly, the inner nuclear envelope protein SUN2 is required for the antiviral activity of CypA. We show that wild-type HIV exploits SUN2 in primary CD4+ T cells as an essential host factor that is required for the positive effects of CypA on reverse transcription and infection. Altogether, these results establish essential CypA-dependent functions of SUN2 in HIV infection at the nuclear envelope. PMID:27149839

  5. Inflammation-Induced, STING-Dependent Autophagy Restricts Zika Virus Infection in the Drosophila Brain.

    PubMed

    Liu, Yuan; Gordesky-Gold, Beth; Leney-Greene, Michael; Weinbren, Nathan L; Tudor, Matthew; Cherry, Sara

    2018-06-09

    The emerging arthropod-borne flavivirus Zika virus (ZIKV) is associated with neurological complications. Innate immunity is essential for the control of virus infection, but the innate immune mechanisms that impact viral infection of neurons remain poorly defined. Using the genetically tractable Drosophila system, we show that ZIKV infection of the adult fly brain leads to NF-kB-dependent inflammatory signaling, which serves to limit infection. ZIKV-dependent NF-kB activation induces the expression of Drosophila stimulator of interferon genes (dSTING) in the brain. dSTING protects against ZIKV by inducing autophagy in the brain. Loss of autophagy leads to increased ZIKV infection of the brain and death of the infected fly, while pharmacological activation of autophagy is protective. These data suggest an essential role for an inflammation-dependent STING pathway in the control of neuronal infection and a conserved role for STING in antimicrobial autophagy, which may represent an ancestral function for this essential innate immune sensor. Copyright © 2018. Published by Elsevier Inc.

  6. iRhom2 is essential for innate immunity to RNA virus by antagonizing ER- and mitochondria-associated degradation of VISA.

    PubMed

    Luo, Wei-Wei; Li, Shu; Li, Chen; Zheng, Zhou-Qin; Cao, Pan; Tong, Zhen; Lian, Huan; Wang, Su-Yun; Shu, Hong-Bing; Wang, Yan-Yi

    2017-11-01

    VISA (also known as MAVS, IPS-1 and Cardif) is an essential adaptor protein in innate immune response to RNA virus. The protein level of VISA is delicately regulated before and after viral infection to ensure the optimal activation and timely termination of innate antiviral response. It has been reported that several E3 ubiquitin ligases can mediate the degradation of VISA, but how the stability of VISA is maintained before and after viral infection remains enigmatic. In this study, we found that the ER-associated inactive rhomboid protein 2 (iRhom2) plays an essential role in mounting an efficient innate immune response to RNA virus by maintaining the stability of VISA through distinct mechanisms. In un-infected and early infected cells, iRhom2 mediates auto-ubiquitination and degradation of the E3 ubiquitin ligase RNF5 and impairs the assembly of VISA-RNF5-GP78 complexes, thereby antagonizes ER-associated degradation (ERAD) of VISA. In the late phase of viral infection, iRhom2 mediates proteasome-dependent degradation of the E3 ubiquitin ligase MARCH5 and impairs mitochondria-associated degradation (MAD) of VISA. Maintenance of VISA stability by iRhom2 ensures efficient innate antiviral response at the early phase of viral infection and ready for next round of response. Our findings suggest that iRhom2 acts as a checkpoint for the ERAD/MAD of VISA, which ensures proper innate immune response to RNA virus.

  7. iRhom2 is essential for innate immunity to RNA virus by antagonizing ER- and mitochondria-associated degradation of VISA

    PubMed Central

    Luo, Wei-Wei; Li, Shu; Cao, Pan; Tong, Zhen; Lian, Huan; Wang, Su-Yun; Shu, Hong-Bing

    2017-01-01

    VISA (also known as MAVS, IPS-1 and Cardif) is an essential adaptor protein in innate immune response to RNA virus. The protein level of VISA is delicately regulated before and after viral infection to ensure the optimal activation and timely termination of innate antiviral response. It has been reported that several E3 ubiquitin ligases can mediate the degradation of VISA, but how the stability of VISA is maintained before and after viral infection remains enigmatic. In this study, we found that the ER-associated inactive rhomboid protein 2 (iRhom2) plays an essential role in mounting an efficient innate immune response to RNA virus by maintaining the stability of VISA through distinct mechanisms. In un-infected and early infected cells, iRhom2 mediates auto-ubiquitination and degradation of the E3 ubiquitin ligase RNF5 and impairs the assembly of VISA-RNF5-GP78 complexes, thereby antagonizes ER-associated degradation (ERAD) of VISA. In the late phase of viral infection, iRhom2 mediates proteasome-dependent degradation of the E3 ubiquitin ligase MARCH5 and impairs mitochondria-associated degradation (MAD) of VISA. Maintenance of VISA stability by iRhom2 ensures efficient innate antiviral response at the early phase of viral infection and ready for next round of response. Our findings suggest that iRhom2 acts as a checkpoint for the ERAD/MAD of VISA, which ensures proper innate immune response to RNA virus. PMID:29155878

  8. Paramyxovirus fusion and entry: multiple paths to a common end.

    PubMed

    Chang, Andres; Dutch, Rebecca E

    2012-04-01

    The paramyxovirus family contains many common human pathogenic viruses, including measles, mumps, the parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the zoonotic henipaviruses, Hendra and Nipah. While the expression of a type 1 fusion protein and a type 2 attachment protein is common to all paramyxoviruses, there is considerable variation in viral attachment, the activation and triggering of the fusion protein, and the process of viral entry. In this review, we discuss recent advances in the understanding of paramyxovirus F protein-mediated membrane fusion, an essential process in viral infectivity. We also review the role of the other surface glycoproteins in receptor binding and viral entry, and the implications for viral infection. Throughout, we concentrate on the commonalities and differences in fusion triggering and viral entry among the members of the family. Finally, we highlight key unanswered questions and how further studies can identify novel targets for the development of therapeutic treatments against these human pathogens.

  9. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro.

    PubMed

    Ocazionez, Raquel Elvira; Meneses, Rocio; Torres, Flor Angela; Stashenko, Elena

    2010-05-01

    The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.

  10. Setting Up Shop: The Formation and Function of the Viral Factories of Cauliflower mosaic virus.

    PubMed

    Schoelz, James E; Leisner, Scott

    2017-01-01

    Similar to cells, viruses often compartmentalize specific functions such as genome replication or particle assembly. Viral compartments may contain host organelle membranes or they may be mainly composed of viral proteins. These compartments are often termed: inclusion bodies (IBs), viroplasms or viral factories. The same virus may form more than one type of IB, each with different functions, as illustrated by the plant pararetrovirus, Cauliflower mosaic virus (CaMV). CaMV forms two distinct types of IBs in infected plant cells, those composed mainly of the viral proteins P2 (which are responsible for transmission of CaMV by insect vectors) and P6 (required for viral intra-and inter-cellular infection), respectively. P6 IBs are the major focus of this review. Much of our understanding of the formation and function of P6 IBs comes from the analyses of their major protein component, P6. Over time, the interactions and functions of P6 have been gradually elucidated. Coupled with new technologies, such as fluorescence microscopy with fluorophore-tagged viral proteins, these data complement earlier work and provide a clearer picture of P6 IB formation. As the activities and interactions of the viral proteins have gradually been determined, the functions of P6 IBs have become clearer. This review integrates the current state of knowledge on the formation and function of P6 IBs to produce a coherent model for the activities mediated by these sophisticated virus-manufacturing machines.

  11. Insights into Structural and Mechanistic Features of Viral IRES Elements

    PubMed Central

    Martinez-Salas, Encarnacion; Francisco-Velilla, Rosario; Fernandez-Chamorro, Javier; Embarek, Azman M.

    2018-01-01

    Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA–protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements. PMID:29354113

  12. “Multi-Omics” Analyses of the Development and Function of Natural Killer Cells

    PubMed Central

    Zhou, Yonggang; Xu, Xiuxiu; Tian, Zhigang; Wei, Haiming

    2017-01-01

    For over four decades, our understanding of natural killer (NK) cells has evolved from the original description of cluster of differentiation (CD)56+CD3− to establishing NK cells as an important subset of innate lymphocytes in the host’s surveillance against viral infections and malignancy. The progress of research on the fundamental properties and therapeutic prospects for translational medicine using NK cells excites immunologists and clinicians. Over the past decade, numerous advances in “-omics”-scale methods and new technological approaches have addressed many essential questions in the biology of NK cells. We now have further understanding of the overall molecular mechanisms of action that determine the development, function, plasticity, diversity, and immune reactivity of NK cells. These findings are summarized here, and our view on how to study NK cells using “multi-omics” is highlighted. We also describe “-omics” analyses of the relationships between NK cells and viral infection, tumorigenesis, and autoimmune diseases. Ultimately, a deeper and more comprehensive understanding of NK cells in multiple conditions will provide more effective strategies to manipulate NK cells for the treatment of human disease. PMID:28928751

  13. HoloVir: A Workflow for Investigating the Diversity and Function of Viruses in Invertebrate Holobionts

    PubMed Central

    Laffy, Patrick W.; Wood-Charlson, Elisha M.; Turaev, Dmitrij; Weynberg, Karen D.; Botté, Emmanuelle S.; van Oppen, Madeleine J. H.; Webster, Nicole S.; Rattei, Thomas

    2016-01-01

    Abundant bioinformatics resources are available for the study of complex microbial metagenomes, however their utility in viral metagenomics is limited. HoloVir is a robust and flexible data analysis pipeline that provides an optimized and validated workflow for taxonomic and functional characterization of viral metagenomes derived from invertebrate holobionts. Simulated viral metagenomes comprising varying levels of viral diversity and abundance were used to determine the optimal assembly and gene prediction strategy, and multiple sequence assembly methods and gene prediction tools were tested in order to optimize our analysis workflow. HoloVir performs pairwise comparisons of single read and predicted gene datasets against the viral RefSeq database to assign taxonomy and additional comparison to phage-specific and cellular markers is undertaken to support the taxonomic assignments and identify potential cellular contamination. Broad functional classification of the predicted genes is provided by assignment of COG microbial functional category classifications using EggNOG and higher resolution functional analysis is achieved by searching for enrichment of specific Swiss-Prot keywords within the viral metagenome. Application of HoloVir to viral metagenomes from the coral Pocillopora damicornis and the sponge Rhopaloeides odorabile demonstrated that HoloVir provides a valuable tool to characterize holobiont viral communities across species, environments, or experiments. PMID:27375564

  14. Rapid, ultrasensitive detection of microorganisms based on interferometry and lab-on-a-chip nanotechnology

    NASA Astrophysics Data System (ADS)

    Ymeti, Aurel; Nederkoorn, Paul H. J.; Dudia, Alma; Subramaniam, Vinod; Kanger, Johannes S.

    2009-05-01

    Future viral outbreaks are a major threat to societal and economic development throughout the world. A rapid, sensitive, and easy-to-use test for viral infections is essential to prevent and to control such viral pandemics. Furthermore, a compact, portable device is potentially very useful in remote or developing regions without easy access to sophisticated laboratory facilities. We have developed a rapid, ultrasensitive sensor that could be used in a handheld device to detect various viruses and measure their concentration. The essential innovation in this technique is the combination of an integrated optical interferometric sensor with antibody-antigen recognition approaches to yield a very sensitive, very rapid test for virus detection. The sensor is able to spot the herpes virus at concentrations of just 850 particles per milliliter under physiological conditions. The sensitivity of the sensor approaches detection of a single virus particle, yielding a sensor of unprecedented sensitivity with wide applications for viral diagnostics. The sensor's detection principle can be extended to any biological target such as bacteria, cells and proteins and for which there are specific antibodies. The nature of the sensor enables multiplexed detection of several analytes at the same time.

  15. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor

    PubMed Central

    Zhao, Wei; Jardine, Paul J.

    2015-01-01

    ABSTRACT During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. IMPORTANCE During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful molecular motor that translocates the viral DNA into a preformed viral shell. A key event in DNA packaging is recognition of the viral DNA among other nucleic acids in the host cell. Commonly, a DNA-binding protein mediates the interaction of viral DNA with the motor/head shell. Here we show that for the bacteriophage ϕ29, this essential step of genome recognition is mediated by a viral genome-encoded RNA rather than a protein. A domain of the prohead RNA (pRNA) imparts specificity and stringency to the motor by ensuring the correct orientation of DNA packaging and restricting initiation to a single event. Since this assembly step is unique to the virus, DNA packaging is a novel target for the development of antiviral drugs. PMID:26423956

  16. An RNA Domain Imparts Specificity and Selectivity to a Viral DNA Packaging Motor.

    PubMed

    Zhao, Wei; Jardine, Paul J; Grimes, Shelley

    2015-12-01

    During assembly, double-stranded DNA viruses, including bacteriophages and herpesviruses, utilize a powerful molecular motor to package their genomic DNA into a preformed viral capsid. An integral component of the packaging motor in the Bacillus subtilis bacteriophage ϕ29 is a viral genome-encoded pentameric ring of RNA (prohead RNA [pRNA]). pRNA is a 174-base transcript comprised of two domains, domains I and II. Early studies initially isolated a 120-base form (domain I only) that retains high biological activity in vitro; hence, no function could be assigned to domain II. Here we define a role for this domain in the packaging process. DNA packaging using restriction digests of ϕ29 DNA showed that motors with the 174-base pRNA supported the correct polarity of DNA packaging, selectively packaging the DNA left end. In contrast, motors containing the 120-base pRNA had compromised specificity, packaging both left- and right-end fragments. The presence of domain II also provides selectivity in competition assays with genomes from related phages. Furthermore, motors with the 174-base pRNA were restrictive, in that they packaged only one DNA fragment into the head, whereas motors with the 120-base pRNA packaged several fragments into the head, indicating multiple initiation events. These results show that domain II imparts specificity and stringency to the motor during the packaging initiation events that precede DNA translocation. Heteromeric rings of pRNA demonstrated that one or two copies of domain II were sufficient to impart this selectivity/stringency. Although ϕ29 differs from other double-stranded DNA phages in having an RNA motor component, the function provided by pRNA is carried on the motor protein components in other phages. During virus assembly, genome packaging involves the delivery of newly synthesized viral nucleic acid into a protein shell. In the double-stranded DNA phages and herpesviruses, this is accomplished by a powerful molecular motor that translocates the viral DNA into a preformed viral shell. A key event in DNA packaging is recognition of the viral DNA among other nucleic acids in the host cell. Commonly, a DNA-binding protein mediates the interaction of viral DNA with the motor/head shell. Here we show that for the bacteriophage ϕ29, this essential step of genome recognition is mediated by a viral genome-encoded RNA rather than a protein. A domain of the prohead RNA (pRNA) imparts specificity and stringency to the motor by ensuring the correct orientation of DNA packaging and restricting initiation to a single event. Since this assembly step is unique to the virus, DNA packaging is a novel target for the development of antiviral drugs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. The Herpes Simplex Virus Virion Host Shutoff Protein Enhances Translation of Viral True Late mRNAs Independently of Suppressing Protein Kinase R and Stress Granule Formation.

    PubMed

    Dauber, Bianca; Poon, David; Dos Santos, Theodore; Duguay, Brett A; Mehta, Ninad; Saffran, Holly A; Smiley, James R

    2016-07-01

    The herpes simplex virus (HSV) virion host shutoff (vhs) RNase destabilizes cellular and viral mRNAs, suppresses host protein synthesis, dampens antiviral responses, and stimulates translation of viral mRNAs. vhs mutants display a host range phenotype: translation of viral true late mRNAs is severely impaired and stress granules accumulate in HeLa cells, while translation proceeds normally in Vero cells. We found that vhs-deficient virus activates the double-stranded RNA-activated protein kinase R (PKR) much more strongly than the wild-type virus does in HeLa cells, while PKR is not activated in Vero cells, raising the possibility that PKR might play roles in stress granule induction and/or inhibiting translation in restrictive cells. We tested this possibility by evaluating the effects of inactivating PKR. Eliminating PKR in HeLa cells abolished stress granule formation but had only minor effects on viral true late protein levels. These results document an essential role for PKR in stress granule formation by a nuclear DNA virus, indicate that induction of stress granules is the consequence rather than the cause of the translational defect, and are consistent with our previous suggestion that vhs promotes translation of viral true late mRNAs by preventing mRNA overload rather than by suppressing eIF2α phosphorylation. The herpes simplex virus vhs RNase plays multiple roles during infection, including suppressing PKR activation, inhibiting the formation of stress granules, and promoting translation of viral late mRNAs. A key question is the extent to which these activities are mechanistically connected. Our results demonstrate that PKR is essential for stress granule formation in the absence of vhs, but at best, it plays a secondary role in suppressing translation of viral mRNAs. Thus, the ability of vhs to promote translation of viral mRNAs can be largely uncoupled from PKR suppression, demonstrating that this viral RNase modulates at least two distinct aspects of RNA metabolism. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Zhiqi; Shi, Ke; Banerjee, Surajit

    Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase–DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNAmore » remained elusive. In this paper, we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein–DNA and protein–protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Finally, our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.« less

  19. Baculovirus AC102 Is a Nucleocapsid Protein That Is Crucial for Nuclear Actin Polymerization and Nucleocapsid Morphogenesis.

    PubMed

    Hepp, Susan E; Borgo, Gina M; Ticau, Simina; Ohkawa, Taro; Welch, Matthew D

    2018-06-01

    The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the type species of alphabaculoviruses, is an enveloped DNA virus that infects lepidopteran insects and is commonly known as a vector for protein expression and cell transduction. AcMNPV belongs to a diverse group of viral and bacterial pathogens that target the host cell actin cytoskeleton during infection. AcMNPV is unusual, however, in that it absolutely requires actin translocation into the nucleus early in infection and actin polymerization within the nucleus late in infection coincident with viral replication. Of the six viral factors that are sufficient, when coexpressed, to induce the nuclear localization of actin, only AC102 is essential for viral replication and the nuclear accumulation of actin. We therefore sought to better understand the role of AC102 in actin mobilization in the nucleus early and late in infection. Although AC102 was proposed to function early in infection, we found that AC102 is predominantly expressed as a late protein. In addition, we observed that AC102 is required for F-actin assembly in the nucleus during late infection, as well as for proper formation of viral replication structures and nucleocapsid morphogenesis. Finally, we found that AC102 is a nucleocapsid protein and a newly recognized member of a complex consisting of the viral proteins EC27, C42, and the actin polymerization protein P78/83. Taken together, our findings suggest that AC102 is necessary for nucleocapsid morphogenesis and actin assembly during late infection through its role as a component of the P78/83-C42-EC27-AC102 protein complex. IMPORTANCE The baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is an important biotechnological tool for protein expression and cell transduction, and related nucleopolyhedroviruses are also used as environmentally benign insecticides. One impact of our work is to better understand the fundamental mechanisms through which AcMNPV exploits the cellular machinery of the host for replication, which may aid in the development of improved baculovirus-based research and industrial tools. Moreover, AcMNPV's ability to mobilize the host actin cytoskeleton within the cell's nucleus during infection makes it a powerful cell biological tool. It is becoming increasingly clear that actin plays important roles in the cell's nucleus, and yet the regulation and function of nuclear actin is poorly understood. Our work to better understand how AcMNPV relocalizes and polymerizes actin within the nucleus may reveal fundamental mechanisms that govern nuclear actin regulation and function, even in the absence of viral infection. Copyright © 2018 American Society for Microbiology.

  20. Virus-encoded microRNAs

    PubMed Central

    Grundhoff, Adam; Sullivan, Christopher S.

    2011-01-01

    microRNAs (miRNAs) are the subject of enormous interest. They are small non-coding RNAs that play a regulatory role in numerous and diverse cellular processes such as immune function, apoptosis and tumorigenesis. Several virus families have been shown to encode miRNAs, and an appreciation for their roles in the viral infectious cycle continues to grow. Despite the identification of numerous (>225) viral miRNAs, an in depth functional understanding of most virus-encoded miRNAs is lacking. Here we focus on a few viral miRNAs with well-defined functions. We use these examples to extrapolate general themes of viral miRNA activities including autoregulation of gene expression, avoidance of host defenses, and a likely important role in maintaining latent and persistent infections. We hypothesize that although the molecular mechanisms and machinery are similar, the majority of viral miRNAs may utilize a target strategy that differs from host miRNAs. That is, many viral miRNAs may have evolved to regulate viral-encoded transcripts or networks of host genes that are unique to viral miRNAs. Included in this latter category are a likely abundant class of viral miRNAs that may regulate only one or a few principal host genes. Key steps forward for the field are discussed, including the need for additional functional studies that utilize surgical viral miRNA mutants combined with relevant models of infection. PMID:21277611

  1. Nucleic Acid Binding by Mason-Pfizer Monkey Virus CA Promotes Virus Assembly and Genome Packaging

    PubMed Central

    Füzik, Tibor; Píchalová, Růžena; Schur, Florian K. M.; Strohalmová, Karolína; Křížová, Ivana; Hadravová, Romana; Rumlová, Michaela; Briggs, John A. G.

    2016-01-01

    ABSTRACT The Gag polyprotein of retroviruses drives immature virus assembly by forming hexameric protein lattices. The assembly is primarily mediated by protein-protein interactions between capsid (CA) domains and by interactions between nucleocapsid (NC) domains and RNA. Specific interactions between NC and the viral RNA are required for genome packaging. Previously reported cryoelectron microscopy analysis of immature Mason-Pfizer monkey virus (M-PMV) particles suggested that a basic region (residues RKK) in CA may serve as an additional binding site for nucleic acids. Here, we have introduced mutations into the RKK region in both bacterial and proviral M-PMV vectors and have assessed their impact on M-PMV assembly, structure, RNA binding, budding/release, nuclear trafficking, and infectivity using in vitro and in vivo systems. Our data indicate that the RKK region binds and structures nucleic acid that serves to promote virus particle assembly in the cytoplasm. Moreover, the RKK region appears to be important for recruitment of viral genomic RNA into Gag particles, and this function could be linked to changes in nuclear trafficking. Together these observations suggest that in M-PMV, direct interactions between CA and nucleic acid play important functions in the late stages of the viral life cycle. IMPORTANCE Assembly of retrovirus particles is driven by the Gag polyprotein, which can self-assemble to form virus particles and interact with RNA to recruit the viral genome into the particles. Generally, the capsid domains of Gag contribute to essential protein-protein interactions during assembly, while the nucleocapsid domain interacts with RNA. The interactions between the nucleocapsid domain and RNA are important both for identifying the genome and for self-assembly of Gag molecules. Here, we show that a region of basic residues in the capsid protein of the betaretrovirus Mason-Pfizer monkey virus (M-PMV) contributes to interaction of Gag with nucleic acid. This interaction appears to provide a critical scaffolding function that promotes assembly of virus particles in the cytoplasm. It is also crucial for packaging the viral genome and thus for infectivity. These data indicate that, surprisingly, interactions between the capsid domain and RNA play an important role in the assembly of M-PMV. PMID:26912613

  2. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex

    PubMed Central

    Ganaie, Safder S.; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve

    2017-01-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases. PMID:28459842

  3. Levels of the E2 interacting protein TopBP1 modulate papillomavirus maintenance stage replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanginakudru, Sriramana, E-mail: skangina@iu.edu; DeSmet, Marsha, E-mail: mdesmet@iupui.edu; Thomas, Yanique, E-mail: ysthomas@umail.iu.edu

    2015-04-15

    The evolutionarily conserved DNA topoisomerase II beta-binding protein 1 (TopBP1) functions in DNA replication, DNA damage response, and cell survival. We analyzed the role of TopBP1 in human and bovine papillomavirus genome replication. Consistent with prior reports, TopBP1 co-localized in discrete nuclear foci and was in complex with papillomavirus E2 protein. Similar to E2, TopBP1 is recruited to the region of the viral origin of replication during G1/S and early S phase. TopBP1 knockdown increased, while over-expression decreased transient virus replication, without affecting cell cycle. Similarly, using cell lines harboring HPV-16 or HPV-31 genome, TopBP1 knockdown increased while over-expression reducedmore » viral copy number relative to genomic DNA. We propose a model in which TopBP1 serves dual roles in viral replication: it is essential for initiation of replication yet it restricts viral copy number. - Highlights: • Protein interaction study confirmed In-situ interaction between TopBP1 and E2. • TopBP1 present at papillomavirus ori in G1/S and early S phase of cell cycle. • TopBP1 knockdown increased, over-expression reduced virus replication. • TopBP1 protein level change did not influence cell survival or cell cycle. • TopBP1 displaced from papillomavirus ori after initiation of replication.« less

  4. The cellular source for APOBEC3G's incorporation into HIV-1

    PubMed Central

    2011-01-01

    Background Human APOBEC3G (hA3G) has been identified as a cellular inhibitor of HIV-1 infectivity. Viral incorporation of hA3G is an essential step for its antiviral activity. Although the mechanism underlying hA3G virion encapsidation has been investigated extensively, the cellular source of viral hA3G remains unclear. Results Previous studies have shown that hA3G forms low-molecular-mass (LMM) and high-molecular-mass (HMM) complexes. Our work herein provides evidence that the majority of newly-synthesized hA3G interacts with membrane lipid raft domains to form Lipid raft-associated hA3G (RA hA3G), which serve as the precursor of the mature HMM hA3G complex, while a minority of newly-synthesized hA3G remains in the cytoplasm as a soluble LMM form. The distribution of hA3G among the soluble LMM form, the RA LMM form and the mature forms of HMM is regulated by a mechanism involving the N-terminal part of the linker region and the C-terminus of hA3G. Mutagenesis studies reveal a direct correlation between the ability of hA3G to form the RA LMM complex and its viral incorporation. Conclusions Together these data suggest that the Lipid raft-associated LMM A3G complex functions as the cellular source of viral hA3G. PMID:21211018

  5. Tailored delivery of analgesic ziconotide across a blood brain barrier model using viral nanocontainers

    NASA Astrophysics Data System (ADS)

    Anand, Prachi; O'Neil, Alison; Lin, Emily; Douglas, Trevor; Holford, Mandë

    2015-08-01

    The blood brain barrier (BBB) is often an insurmountable obstacle for a large number of candidate drugs, including peptides, antibiotics, and chemotherapeutic agents. Devising an adroit delivery method to cross the BBB is essential to unlocking widespread application of peptide therapeutics. Presented here is an engineered nanocontainer for delivering peptidic drugs across the BBB encapsulating the analgesic marine snail peptide ziconotide (Prialt®). We developed a bi-functional viral nanocontainer based on the Salmonella typhimurium bacteriophage P22 capsid, genetically incorporating ziconotide in the interior cavity, and chemically attaching cell penetrating HIV-Tat peptide on the exterior of the capsid. Virus like particles (VLPs) of P22 containing ziconotide were successfully transported in several BBB models of rat and human brain microvascular endothelial cells (BMVEC) using a recyclable noncytotoxic endocytic pathway. This work demonstrates proof in principle for developing a possible alternative to intrathecal injection of ziconotide using a tunable VLP drug delivery nanocontainer to cross the BBB.

  6. Efficient purification and concentration of viruses from a large body of high turbidity seawater.

    PubMed

    Sun, Guowei; Xiao, Jinzhou; Wang, Hongming; Gong, Chaowen; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2014-01-01

    Marine viruses are the most abundant entities in the ocean and play crucial roles in the marine ecological system. However, understanding of viral diversity on large scale depends on efficient and reliable viral purification and concentration techniques. Here, we report on developing an efficient method to purify and concentrate viruses from large body of high turbidity seawater. The developed method characterizes with high viral recovery efficiency, high concentration factor, high viral particle densities and high-throughput, and is reliable for viral concentration from high turbidity seawater. Recovered viral particles were used directly for subsequent analysis by epifluorescence microscopy, transmission electron microscopy and metagenomic sequencing. Three points are essential for this method:•The sampled seawater (>150 L) was initially divided into two parts, water fraction and settled matter fraction, after natural sedimentation.•Both viruses in the water fraction concentrated by tangential flow filtration (TFF) and viruses isolated from the settled matter fraction were considered as the whole viral community in high turbidity seawater.•The viral concentrates were re-concentrated by using centrifugal filter device in order to obtain high density of viral particles.

  7. Hsp90 is required for the activity of a hepatitis B virus reverse transcriptase.

    PubMed Central

    Hu, J; Seeger, C

    1996-01-01

    The heat shock protein Hsp90 is known as an essential component of several signal transduction pathways and has now been identified as an essential host factor for hepatitis B virus replication. Hsp90 interacts with the viral reverse transcriptase to facilitate the formation of a ribonucleoprotein (RNP) complex between the polymerase and an RNA ligand. This RNP complex is required early in replication for viral assembly and initiation of DNA synthesis through a protein-priming mechanism. These results thus invoke a role for the Hsp90 pathway in the formation of an RNP. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8577714

  8. Non-Structural Proteins of Arthropod-Borne Bunyaviruses: Roles and Functions

    PubMed Central

    Eifan, Saleh; Schnettler, Esther; Dietrich, Isabelle; Kohl, Alain; Blomström, Anne-Lie

    2013-01-01

    Viruses within the Bunyaviridae family are tri-segmented, negative-stranded RNA viruses. The family includes several emerging and re-emerging viruses of humans, animals and plants, such as Rift Valley fever virus, Crimean-Congo hemorrhagic fever virus, La Crosse virus, Schmallenberg virus and tomato spotted wilt virus. Many bunyaviruses are arthropod-borne, so-called arboviruses. Depending on the genus, bunyaviruses encode, in addition to the RNA-dependent RNA polymerase and the different structural proteins, one or several non-structural proteins. These non-structural proteins are not always essential for virus growth and replication but can play an important role in viral pathogenesis through their interaction with the host innate immune system. In this review, we will summarize current knowledge and understanding of insect-borne bunyavirus non-structural protein function(s) in vertebrate, plant and arthropod. PMID:24100888

  9. A new paradigm for transcription factor TFIIB functionality

    PubMed Central

    Gelev, Vladimir; Zabolotny, Janice M.; Lange, Martin; Hiromura, Makoto; Yoo, Sang Wook; Orlando, Joseph S.; Kushnir, Anna; Horikoshi, Nobuo; Paquet, Eric; Bachvarov, Dimcho; Schaffer, Priscilla A.; Usheva, Anny

    2014-01-01

    Experimental and bioinformatic studies of transcription initiation by RNA polymerase II (RNAP2) have revealed a mechanism of RNAP2 transcription initiation less uniform across gene promoters than initially thought. However, the general transcription factor TFIIB is presumed to be universally required for RNAP2 transcription initiation. Based on bioinformatic analysis of data and effects of TFIIB knockdown in primary and transformed cell lines on cellular functionality and global gene expression, we report that TFIIB is dispensable for transcription of many human promoters, but is essential for herpes simplex virus-1 (HSV-1) gene transcription and replication. We report a novel cell cycle TFIIB regulation and localization of the acetylated TFIIB variant on the transcriptionally silent mitotic chromatids. Taken together, these results establish a new paradigm for TFIIB functionality in human gene expression, which when downregulated has potent anti-viral effects. PMID:24441171

  10. Frog virus 3 ORF 53R, a putative myristoylated membrane protein, is essential for virus replication in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitley, Dexter S.; Yu, Kwang; Sample, Robert C.

    2010-09-30

    Although previous work identified 12 complementation groups with possible roles in virus assembly, currently only one frog virus 3 protein, the major capsid protein (MCP), has been linked with virion formation. To identify other proteins required for assembly, we used an antisense morpholino oligonucleotide to target 53R, a putative myristoylated membrane protein, and showed that treatment resulted in marked reductions in 53R levels and a 60% drop in virus titers. Immunofluorescence assays confirmed knock down and showed that 53R was found primarily within viral assembly sites, whereas transmission electron microscopy detected fewer mature virions and, in some cells, dense granularmore » bodies that may represent unencapsidated DNA-protein complexes. Treatment with a myristoylation inhibitor (2-hydroxymyristic acid) resulted in an 80% reduction in viral titers. Collectively, these data indicate that 53R is an essential viral protein that is required for replication in vitro and suggest it plays a critical role in virion formation.« less

  11. Bm65 is essential for the propagation of Bombyx mori nucleopolyhedrovirus.

    PubMed

    Tang, Qi; Li, Guohui; Yao, Qin; Chen, Liang; Feng, Fan; Yuan, Yi; Chen, Keping

    2013-01-01

    Orf65 (Bm65) of Bombyx mori nucleopolyhedrovirus (BmNPV) is a highly conserved gene that encodes an unknown 104-amino acid protein. In the present study, we have shown the role of Bm65 in the baculovirus life cycle. 5'-RACE analysis showed that the transcription start site of Bm65 was 14 nucleotides upstream of the start codon ATG. The transcription profile of Bm65 was detected from 6 to 72 h postinfection (p. i.) by RT-PCR. A Bm65-knockout bacmid was constructed by homologous recombination to characterize the role of Bm65 in viral life cycle. Fluorescence microscopy showed that Bm65-knockout virus was unable to generate infectious budded virus in BmN cells. Furthermore, quantitative real-time PCR analysis demonstrated that Bm65 deletion did not affect the viral DNA replication. To conclude, Bm65 is essential for the propagation of BmNPV, but is unnecessary for the replication of viral DNA.

  12. The role of porcine reproductive and respiratory syndrome (PRRS) virus structural and non-structural proteins in virus pathogenesis.

    PubMed

    Music, Nedzad; Gagnon, Carl A

    2010-12-01

    Porcine reproductive and respiratory syndrome (PRRS) is an economically devastating viral disease affecting the swine industry worldwide. The etiological agent, PRRS virus (PRRSV), possesses a RNA viral genome with nine open reading frames (ORFs). The ORF1a and ORF1b replicase-associated genes encode the polyproteins pp1a and pp1ab, respectively. The pp1a is processed in nine non-structural proteins (nsps): nsp1α, nsp1β, and nsp2 to nsp8. Proteolytic cleavage of pp1ab generates products nsp9 to nsp12. The proteolytic pp1a cleavage products process and cleave pp1a and pp1ab into nsp products. The nsp9 to nsp12 are involved in virus genome transcription and replication. The 3' end of the viral genome encodes four minor and three major structural proteins. The GP(2a), GP₃ and GP₄ (encoded by ORF2a, 3 and 4), are glycosylated membrane associated minor structural proteins. The fourth minor structural protein, the E protein (encoded by ORF2b), is an unglycosylated membrane associated protein. The viral envelope contains two major structural proteins: a glycosylated major envelope protein GP₅ (encoded by ORF5) and an unglycosylated membrane M protein (encoded by ORF6). The third major structural protein is the nucleocapsid N protein (encoded by ORF7). All PRRSV non-structural and structural proteins are essential for virus replication, and PRRSV infectivity is relatively intolerant to subtle changes within the structural proteins. PRRSV virulence is multigenic and resides in both the non-structural and structural viral proteins. This review discusses the molecular characteristics, biological and immunological functions of the PRRSV structural and nsps and their involvement in the virus pathogenesis.

  13. Three distinct suppressors of RNA silencing encoded by a 20-kb viral RNA genome

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Folimonov, Alexey; Shintaku, Michael; Li, Wan-Xiang; Falk, Bryce W.; Dawson, William O.; Ding, Shou-Wei

    2004-11-01

    Viral infection in both plant and invertebrate hosts requires a virus-encoded function to block the RNA silencing antiviral defense. Here, we report the identification and characterization of three distinct suppressors of RNA silencing encoded by the 20-kb plus-strand RNA genome of citrus tristeza virus (CTV). When introduced by genetic crosses into plants carrying a silencing transgene, both p20 and p23, but not coat protein (CP), restored expression of the transgene. Although none of the CTV proteins prevented DNA methylation of the transgene, export of the silencing signal (capable of mediating intercellular silencing spread) was detected only from the F1 plants expressing p23 and not from the CP- or p20-expressing F1 plants, demonstrating suppression of intercellular silencing by CP and p20 but not by p23. Thus, intracellular and intercellular silencing are each targeted by a CTV protein, whereas the third, p20, inhibits silencing at both levels. Notably, CP suppresses intercellular silencing without interfering with intracellular silencing. The novel property of CP suggests a mechanism distinct to p20 and all of the other viral suppressors known to interfere with intercellular silencing and that this class of viral suppressors may not be consistently identified by Agrobacterium coinfiltration because it also induces RNA silencing against the infiltrated suppressor transgene. Our analyses reveal a sophisticated viral counter-defense strategy that targets the silencing antiviral pathway at multiple steps and may be essential for protecting CTV with such a large RNA genome from antiviral silencing in the perennial tree host. RNA interference | citrus tristeza virus | virus synergy | antiviral immunity

  14. Kaposi's Sarcoma-Associated Herpesvirus mRNA Accumulation in Nuclear Foci Is Influenced by Viral DNA Replication and Viral Noncoding Polyadenylated Nuclear RNA.

    PubMed

    Vallery, Tenaya K; Withers, Johanna B; Andoh, Joana A; Steitz, Joan A

    2018-07-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), like other herpesviruses, replicates within the nuclei of its human cell host and hijacks host machinery for expression of its genes. The activities that culminate in viral DNA synthesis and assembly of viral proteins into capsids physically concentrate in nuclear areas termed viral replication compartments. We sought to better understand the spatiotemporal regulation of viral RNAs during the KSHV lytic phase by examining and quantifying the subcellular localization of select viral transcripts. We found that viral mRNAs, as expected, localized to the cytoplasm throughout the lytic phase. However, dependent on active viral DNA replication, viral transcripts also accumulated in the nucleus, often in foci in and around replication compartments, independent of the host shutoff effect. Our data point to involvement of the viral long noncoding polyadenylated nuclear (PAN) RNA in the localization of an early, intronless viral mRNA encoding ORF59-58 to nuclear foci that are associated with replication compartments. IMPORTANCE Late in the lytic phase, mRNAs from Kaposi's sarcoma-associated herpesvirus accumulate in the host cell nucleus near viral replication compartments, centers of viral DNA synthesis and virion production. This work contributes spatiotemporal data on herpesviral mRNAs within the lytic host cell and suggests a mechanism for viral RNA accumulation. Our findings indicate that the mechanism is independent of the host shutoff effect and splicing but dependent on active viral DNA synthesis and in part on the viral noncoding RNA, PAN RNA. PAN RNA is essential for the viral life cycle, and its contribution to the nuclear accumulation of viral messages may facilitate propagation of the virus. Copyright © 2018 American Society for Microbiology.

  15. MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors

    PubMed Central

    2012-01-01

    Background During a viral infection, the intracellular RIG-I-like receptors (RLRs) sense viral RNA and signal through the mitochondrial antiviral signaling adaptor MAVS (also known as IPS-1, Cardif and VISA) whose activation triggers a rapid production of type I interferons (IFN) and of pro-inflammatory cytokines through the transcription factors IRF3/IRF7 and NF-κB, respectively. While MAVS is essential for this signaling and known to operate through the scaffold protein NEMO and the protein kinase TBK1 that phosphorylates IRF3, its mechanism of action and regulation remain unclear. Results We report here that RLR activation triggers MAVS ubiquitination on lysine 7 and 10 by the E3 ubiquitin ligase TRIM25 and marks it for proteasomal degradation concomitantly with downstream signaling. Inhibition of this MAVS degradation with a proteasome inhibitor does not affect NF-κB signaling but it hampers IRF3 activation, and NEMO and TBK1, two essential mediators in type I IFN production, are retained at the mitochondria. Conclusions These results suggest that MAVS functions as a recruitment platform that assembles a signaling complex involving NEMO and TBK1, and that the proteasome-mediated MAVS degradation is required to release the signaling complex into the cytosol, allowing IRF3 phosphorylation by TBK1. PMID:22626058

  16. MAVS ubiquitination by the E3 ligase TRIM25 and degradation by the proteasome is involved in type I interferon production after activation of the antiviral RIG-I-like receptors.

    PubMed

    Castanier, Céline; Zemirli, Naima; Portier, Alain; Garcin, Dominique; Bidère, Nicolas; Vazquez, Aimé; Arnoult, Damien

    2012-05-24

    During a viral infection, the intracellular RIG-I-like receptors (RLRs) sense viral RNA and signal through the mitochondrial antiviral signaling adaptor MAVS (also known as IPS-1, Cardif and VISA) whose activation triggers a rapid production of type I interferons (IFN) and of pro-inflammatory cytokines through the transcription factors IRF3/IRF7 and NF-κB, respectively. While MAVS is essential for this signaling and known to operate through the scaffold protein NEMO and the protein kinase TBK1 that phosphorylates IRF3, its mechanism of action and regulation remain unclear. We report here that RLR activation triggers MAVS ubiquitination on lysine 7 and 10 by the E3 ubiquitin ligase TRIM25 and marks it for proteasomal degradation concomitantly with downstream signaling. Inhibition of this MAVS degradation with a proteasome inhibitor does not affect NF-κB signaling but it hampers IRF3 activation, and NEMO and TBK1, two essential mediators in type I IFN production, are retained at the mitochondria. These results suggest that MAVS functions as a recruitment platform that assembles a signaling complex involving NEMO and TBK1, and that the proteasome-mediated MAVS degradation is required to release the signaling complex into the cytosol, allowing IRF3 phosphorylation by TBK1.

  17. Novel Chemical Ligands to Ebola Virus and Marburg Virus Nucleoproteins Identified by Combining Affinity Mass Spectrometry and Metabolomics Approaches

    PubMed Central

    Fu, Xu; Wang, Zhihua; Li, Lixin; Dong, Shishang; Li, Zhucui; Jiang, Zhenzuo; Wang, Yuefei; Shui, Wenqing

    2016-01-01

    The nucleoprotein (NP) of Ebola virus (EBOV) and Marburg virus (MARV) is an essential component of the viral ribonucleoprotein complex and significantly impacts replication and transcription of the viral RNA genome. Although NP is regarded as a promising antiviral druggable target, no chemical ligands have been reported to interact with EBOV NP or MARV NP. We identified two compounds from a traditional Chinese medicine Gancao (licorice root) that can bind both NPs by combining affinity mass spectrometry and metabolomics approaches. These two ligands, 18β-glycyrrhetinic acid and licochalcone A, were verified by defined compound mixture screens and further characterized with individual ligand binding assays. Accompanying biophysical analyses demonstrate that binding of 18β-glycyrrhetinic acid to EBOV NP significantly reduces protein thermal stability, induces formation of large NP oligomers, and disrupts the critical association of viral ssRNA with NP complexes whereas the compound showed no such activity on MARV NP. Our study has revealed the substantial potential of new analytical techniques in ligand discovery from natural herb resources. In addition, identification of a chemical ligand that influences the oligomeric state and RNA-binding function of EBOV NP sheds new light on antiviral drug development. PMID:27403722

  18. Structure, Receptor Binding, and Antigenicity of Influenza Virus Hemagglutinins from the 1957 H2N2 Pandemic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Rui; McBride, Ryan; Paulson, James C.

    2010-03-04

    The hemagglutinin (HA) envelope protein of influenza viruses mediates essential viral functions, including receptor binding and membrane fusion, and is the major viral antigen for antibody neutralization. The 1957 H2N2 subtype (Asian flu) was one of the three great influenza pandemics of the last century and caused 1 million deaths globally from 1957 to 1968. Three crystal structures of 1957 H2 HAs have been determined at 1.60 to 1.75 {angstrom} resolutions to investigate the structural basis for their antigenicity and evolution from avian to human binding specificity that contributed to its introduction into the human population. These structures, which representmore » the highest resolutions yet recorded for a complete ectodomain of a glycosylated viral surface antigen, along with the results of glycan microarray binding analysis, suggest that a hydrophobicity switch at residue 226 and elongation of receptor-binding sites were both critical for avian H2 HA to acquire human receptor specificity. H2 influenza viruses continue to circulate in birds and pigs and, therefore, remain a substantial threat for transmission to humans. The H2 HA structure also reveals a highly conserved epitope that could be harnessed in the design of a broader and more universal influenza A virus vaccine.« less

  19. Viral phylogenomics using an alignment-free method: A three-step approach to determine optimal length of k-mer

    DOE PAGES

    Zhang, Qian; Jun, Se -Ran; Leuze, Michael; ...

    2017-01-19

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral tree of life . However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conservedmore » proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. Lastly, the resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses.« less

  20. Viral phylogenomics using an alignment-free method: A three-step approach to determine optimal length of k-mer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qian; Jun, Se -Ran; Leuze, Michael

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral tree of life . However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conservedmore » proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. Lastly, the resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses.« less

  1. Viral Phylogenomics Using an Alignment-Free Method: A Three-Step Approach to Determine Optimal Length of k-mer

    PubMed Central

    Zhang, Qian; Jun, Se-Ran; Leuze, Michael; Ussery, David; Nookaew, Intawat

    2017-01-01

    The development of rapid, economical genome sequencing has shed new light on the classification of viruses. As of October 2016, the National Center for Biotechnology Information (NCBI) database contained >2 million viral genome sequences and a reference set of ~4000 viral genome sequences that cover a wide range of known viral families. Whole-genome sequences can be used to improve viral classification and provide insight into the viral “tree of life”. However, due to the lack of evolutionary conservation amongst diverse viruses, it is not feasible to build a viral tree of life using traditional phylogenetic methods based on conserved proteins. In this study, we used an alignment-free method that uses k-mers as genomic features for a large-scale comparison of complete viral genomes available in RefSeq. To determine the optimal feature length, k (an essential step in constructing a meaningful dendrogram), we designed a comprehensive strategy that combines three approaches: (1) cumulative relative entropy, (2) average number of common features among genomes, and (3) the Shannon diversity index. This strategy was used to determine k for all 3,905 complete viral genomes in RefSeq. The resulting dendrogram shows consistency with the viral taxonomy of the ICTV and the Baltimore classification of viruses. PMID:28102365

  2. Suboptimal Doses of Raltegravir Cause Aberrant HIV Integrations | Center for Cancer Research

    Cancer.gov

    When a cell is infected with HIV, a DNA copy of the HIV genome is inserted into that cell’s chromosomal DNA. This insertion reaction is carried out by the viral enzyme integrase (IN) and involves two distinct steps: removal of two nucleotides from each 3’ end of the viral DNA, followed by the strand transfer reaction, in which the viral DNA ends are inserted into the host chromosomal DNA. Integration is essential for viral replication, making it an important target for antiviral therapy. Raltegravir, and the other approved integrase inhibitor, Elvitegravir, are called integrase strand transfer inhibitors (INSTIs), because they bind to the active site of IN and block the strand transfer reaction.      

  3. The nucleolus and herpesviral usurpation.

    PubMed

    Ni, Liwen; Wang, Shuai; Zheng, Chunfu

    2012-12-01

    The nucleolus is a distinct subnuclear compartment known as the site for ribosome biogenesis in eukaryotes. Consequently, the nucleolus is also proposed to function in cell-cycle control, stress sensing and senescence, as well as in viral infection. An increasing number of viral proteins have been found to localize to the nucleolus. In this article, we review the current understanding of the functions of the nucleolus, the molecular mechanism of cellular and viral protein targeting to the nucleolus and the functional roles of the nucleolus during viral infection with a specific focus on the herpesvirus family.

  4. Functional Analysis of Vaccinia Virus B5R Protein: Essential Role in Virus Envelopment Is Independent of a Large Portion of the Extracellular Domain

    PubMed Central

    Herrera, Elizabeth; del Mar Lorenzo, María; Blasco, Rafael; Isaacs, Stuart N.

    1998-01-01

    Vaccinia virus has two forms of infectious virions: the intracellular mature virus and the extracellular enveloped virus (EEV). EEV is critical for cell-to-cell and long-range spread of the virus. The B5R open reading frame (ORF) encodes a membrane protein that is essential for EEV formation. Deletion of the B5R ORF results in a dramatic reduction of EEV, and as a consequence, the virus produces small plaques in vitro and is highly attenuated in vivo. The extracellular portion of B5R is composed mainly of four domains that are similar to the short consensus repeats (SCRs) present in complement regulatory proteins. To determine the contribution of these putative SCR domains to EEV formation, we constructed recombinant vaccinia viruses that replaced the wild-type B5R gene with a mutated gene encoding a B5R protein lacking the SCRs. The resulting recombinant viruses produced large plaques, indicating efficient cell-to-cell spread in vitro, and gradient centrifugation of supernatants from infected cells confirmed that EEV was formed. In contrast, phalloidin staining of infected cells showed that the virus lacking the SCR domains was deficient in the induction of thick actin bundles. Thus, the highly conserved SCR domains present in the extracellular portion of the B5R protein are dispensable for EEV formation. This indicates that the B5R protein is a key viral protein with multiple functions in the process of virus envelopment and release. In addition, given the similarity of the extracellular domain to complement control proteins, the B5R protein may be involved in viral evasion from host immune responses. PMID:9420227

  5. RPLP1 and RPLP2 Are Essential Flavivirus Host Factors That Promote Early Viral Protein Accumulation

    PubMed Central

    Campos, Rafael K.; Wong, Benjamin; Lu, Yi-Fan; Shi, Pei-Yong; Pompon, Julien

    2016-01-01

    ABSTRACT The Flavivirus genus contains several arthropod-borne viruses that pose global health threats, including dengue viruses (DENV), yellow fever virus (YFV), and Zika virus (ZIKV). In order to understand how these viruses replicate in human cells, we previously conducted genome-scale RNA interference screens to identify candidate host factors. In these screens, we identified ribosomal proteins RPLP1 and RPLP2 (RPLP1/2) to be among the most crucial putative host factors required for DENV and YFV infection. RPLP1/2 are phosphoproteins that bind the ribosome through interaction with another ribosomal protein, RPLP0, to form a structure termed the ribosomal stalk. RPLP1/2 were validated as essential host factors for DENV, YFV, and ZIKV infection in two human cell lines: A549 lung adenocarcinoma and HuH-7 hepatoma cells, and for productive DENV infection of Aedes aegypti mosquitoes. Depletion of RPLP1/2 caused moderate cell-line-specific effects on global protein synthesis, as determined by metabolic labeling. In A549 cells, global translation was increased, while in HuH-7 cells it was reduced, albeit both of these effects were modest. In contrast, RPLP1/2 knockdown strongly reduced early DENV protein accumulation, suggesting a requirement for RPLP1/2 in viral translation. Furthermore, knockdown of RPLP1/2 reduced levels of DENV structural proteins expressed from an exogenous transgene. We postulate that these ribosomal proteins are required for efficient translation elongation through the viral open reading frame. In summary, this work identifies RPLP1/2 as critical flaviviral host factors required for translation. IMPORTANCE Flaviviruses cause important diseases in humans. Examples of mosquito-transmitted flaviviruses include dengue, yellow fever and Zika viruses. Viruses require a plethora of cellular factors to infect cells, and the ribosome plays an essential role in all viral infections. The ribosome is a complex macromolecular machine composed of RNA and proteins and it is responsible for protein synthesis. We identified two specific ribosomal proteins that are strictly required for flavivirus infection of human cells and mosquitoes: RPLP1 and RPLP2 (RPLP1/2). These proteins are part of a structure known as the ribosomal stalk and help orchestrate the elongation phase of translation. We show that flaviviruses are particularly dependent on the function of RPLP1/2. Our findings suggest that ribosome composition is an important factor for virus translation and may represent a regulatory layer for translation of specific cellular mRNAs. PMID:27974556

  6. Aciclovir-induced acute kidney injury in patients with 'suspected viral encephalitis' encountered on a liaison neurology service.

    PubMed

    Bogdanova-Mihaylova, Petya; Burke, David; O'Dwyer, John P; Bradley, David; Williams, Jennifer A; Cronin, Simon J; Smyth, Shane; Murphy, Raymond P; Murphy, Sinead M; Wall, Catherine; McCabe, Dominick J H

    2018-01-06

    Patients with 'suspected viral encephalitis' are frequently empirically treated with intravenous aciclovir. Increasing urea and creatinine are 'common', but rapidly progressive renal failure is reported to be 'very rare'. To describe the clinical course and outcome of cases of aciclovir-induced acute kidney injury (AKI) encountered by the Liaison Neurology Service at AMNCH and to highlight the importance of surveillance and urgent treatment of this iatrogenic complication. Retrospectively and prospectively collected data from the Liaison Neurology Service at AMNCH on patients who received IV aciclovir for suspected viral encephalitis and developed AKI were analysed. Aciclovir-induced AKI was defined by a consultant nephrologist in all cases as a rise in serum creatinine of > 26 μmol/L in 48 h or by ≥ 1.5 times the baseline value. Renal function, haematocrit, and fluid balance were monitored following AKI onset. Data from 10 patients were analysed. Median time to AKI onset was 3.5 days (range: 1-6 days). Aciclovir was stopped or the dose adjusted. All patients recovered with IV normal saline, aiming for a urine output > 100-150 ml/h. The interval between first rise in creatinine and return to normal levels varied between 5 and 19 days. Liaison neurologists and general physicians need to be aware that aciclovir may cause AKI attributed to distal intra-tubular crystal nephropathy. Daily fluid balance and renal function monitoring are essential because AKI may arise even with intensive pre-hydration. Prognosis is good if identified early and actively treated.

  7. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses

    PubMed Central

    Lenschow, Deborah J.; Lai, Caroline; Frias-Staheli, Natalia; Giannakopoulos, Nadia V.; Lutz, Andrew; Wolff, Thorsten; Osiak, Anna; Levine, Beth; Schmidt, Robert E.; García-Sastre, Adolfo; Leib, David A.; Pekosz, Andrew; Knobeloch, Klaus-Peter; Horak, Ivan; Virgin, Herbert Whiting

    2007-01-01

    Type I interferons (IFNs) play an essential role in the host response to viral infection through the induction of numerous IFN-stimulated genes (ISGs), including important antiviral molecules such as PKR, RNase L, Mx, and iNOS. Yet, additional antiviral ISGs likely exist. IFN-stimulated gene 15 (ISG15) is a ubiquitin homolog that is rapidly up-regulated after viral infection, and it conjugates to a wide array of host proteins. Although it has been hypothesized that ISG15 functions as an antiviral molecule, the initial evaluation of ISG15-deficient mice revealed no defects in their responses to vesicular stomatitis virus or lymphocytic choriomeningitis virus, leaving open the important question of whether ISG15 is an antiviral molecule in vivo. Here we demonstrate that ISG15 is critical for the host response to viral infection. ISG15−/− mice are more susceptible to influenza A/WSN/33 and influenza B/Lee/40 virus infections. ISG15−/− mice also exhibited increased susceptibility to both herpes simplex virus type 1 and murine gammaherpesvirus 68 infection and to Sindbis virus infection. The increased susceptibility of ISG15−/− mice to Sindbis virus infection was rescued by expressing wild-type ISG15, but not a mutant form of ISG15 that cannot form conjugates, from the Sindbis virus genome. The demonstration of ISG15 as a novel antiviral molecule with activity against both RNA and DNA viruses provides a target for the development of therapies against important human pathogens. PMID:17227866

  8. A Mutation in UL15 of Herpes Simplex Virus 1 That Reduces Packaging of Cleaved Genomes▿

    PubMed Central

    Yang, Kui; Wills, Elizabeth G.; Baines, Joel D.

    2011-01-01

    Herpesvirus genomic DNA is cleaved from concatemers that accumulate in infected cell nuclei. Genomic DNA is inserted into preassembled capsids through a unique portal vertex. Extensive analyses of viral mutants have indicated that intact capsids, the portal vertex, and all components of a tripartite terminase enzyme are required to both cleave and package viral DNA, suggesting that DNA cleavage and packaging are inextricably linked. Because the processes have not been functionally separable, it has been difficult to parse the roles of individual proteins in the DNA cleavage/packaging reaction. In the present study, a virus bearing the deletion of codons 400 to 420 of UL15, encoding a terminase component, was analyzed. This virus, designated vJB27, failed to replicate on noncomplementing cells but cleaved concatemeric DNA to ca. 35 to 98% of wild-type levels. No DNA cleavage was detected in cells infected with a UL15-null virus or a virus lacking UL15 codons 383 to 385, comprising a motif proposed to couple ATP hydrolysis to DNA translocation. The amount of vJB27 DNA protected from DNase I digestion was reduced compared to the wild-type virus by 6.5- to 200-fold, depending on the DNA fragment analyzed, thus indicating a profound defect in DNA packaging. Capsids containing viral DNA were not detected in vJB27-infected cells, as determined by electron microscopy. These data suggest that pUL15 plays an essential role in DNA translocation into the capsid and indicate that this function is separable from its role in DNA cleavage. PMID:21880766

  9. Virus versus Host Plant MicroRNAs: Who Determines the Outcome of the Interaction?

    PubMed Central

    Maghuly, Fatemeh; Ramkat, Rose C.; Laimer, Margit

    2014-01-01

    Considering the importance of microRNAs (miRNAs) in the regulation of essential processes in plant pathogen interactions, it is not surprising that, while plant miRNA sequences counteract viral attack via antiviral RNA silencing, viruses in turn have developed antihost defense mechanisms blocking these RNA silencing pathways and establish a counter-defense. In the current study, computational and stem-loop Reverse Transcription – Polymerase Chain Reaction (RT-PCR) approaches were employed to a) predict and validate virus encoded mature miRNAs (miRs) in 39 DNA-A sequences of the bipartite genomes of African cassava mosaic virus (ACMV) and East African cassava mosaic virus-Uganda (EACMV-UG) isolates, b) determine whether virus encoded miRs/miRs* generated from the 5′/3′ harpin arms have the capacity to bind to genomic sequences of the host plants Jatropha or cassava and c) investigate whether plant encoded miR/miR* sequences have the potential to bind to the viral genomes. Different viral pre-miRNA hairpin sequences and viral miR/miR* length variants occurring as isomiRs were predicted in both viruses. These miRNAs were located in three Open Reading Frames (ORFs) and in the Intergenic Region (IR). Moreover, various target genes for miRNAs from both viruses were predicted and annotated in the host plant genomes indicating that they are involved in biotic response, metabolic pathways and transcription factors. Plant miRs/miRs* from conserved and highly expressed families were identified, which were shown to have potential targets in the genome of both begomoviruses, representing potential plant miRNAs mediating antiviral defense. This is the first assessment of predicted viral miRs/miRs* of ACMV and EACMV-UG and host plant miRNAs, providing a reference point for miRNA identification in pathogens and their hosts. These findings will improve the understanding of host- pathogen interaction pathways and the function of viral miRNAs in Euphorbiaceous crop plants. PMID:24896088

  10. Inducible MicroRNA-3570 Feedback Inhibits the RIG-I-Dependent Innate Immune Response to Rhabdovirus in Teleost Fish by Targeting MAVS/IPS-1.

    PubMed

    Xu, Tianjun; Chu, Qing; Cui, Junxia; Bi, Dekun

    2018-01-15

    Effectively recognizing invading viruses and subsequently inducing innate antiviral immunity are essential for host antiviral defense. Although these processes are closely regulated by the host to maintain immune balance, viruses have evolved the ability to downregulate or upregulate these processes for their survival. MicroRNAs (miRNAs) are a family of small noncoding RNAs that play vital roles in modulating host immune response. Accumulating evidence demonstrates that host miRNAs as mediators are involved in regulating viral replication and host antiviral immunity in mammals. However, the underlying regulatory mechanisms in fish species are still poorly understood. Here, we found that rhabdovirus infection significantly upregulated host miR-3570 expression in miiuy croaker macrophages. Induced miR-3570 negatively modulated RNA virus-triggered type I interferon (IFN) and antiviral gene production, thus facilitating viral replication. Furthermore, miR-3570 was found to target and posttranscriptionally downregulate mitochondrial antiviral signaling protein (MAVS), which functions as a platform for innate antiviral signal transduction. Moreover, we demonstrated that miR-3570 suppressed the expression of MAVS, thereby inhibiting MAVS-mediated NF-κB and IRF3 signaling. The collective results demonstrated a novel regulation mechanism of MAVS-mediated immunity during RNA viral infection by miRNA. IMPORTANCE RNA viral infection could upregulate host miR-3570 expression in miiuy croaker macrophages. Induced miR-3570 negatively modulates RNA virus-triggered type I IFN and antiviral gene production, thus facilitating viral replication. Remarkably, miR-3570 could target and inhibit MAVS expression, which thus modulates MAVS-mediated NF-κB and IRF3 signaling. The collective results of this study suggest a novel regulation mechanism of MAVS-mediated immunity during RNA viral infection by miR-3570. Thus, a novel mechanism for virus evasion in fish is proposed. Copyright © 2018 American Society for Microbiology.

  11. TnBP⁄Triton X-45 Treatment of Plasma for Transfusion Efficiently Inactivates Hepatitis C Virus

    PubMed Central

    Chou, Ming-Li; Burnouf, Thierry; Chang, Shun-Pang; Hung, Ting-Chun; Lin, Chun-Ching; Richardson, Christopher D.; Lin, Liang-Tzung

    2015-01-01

    Risk of transmission of hepatitis C virus (HCV) by clinical plasma remains high in countries with a high prevalence of hepatitis C, justifying the implementation of viral inactivation treatments. In this study, we assessed the extent of inactivation of HCV during minipool solvent/detergent (SD; 1% TnBP / 1% Triton X-45) treatment of human plasma. Luciferase-tagged infectious cell culture-derived HCV (HCVcc) particles were used to spike human plasma prior to treatment by SD at 31 ± 0.5°C for 30 min. Samples were taken before and after SD treatment and filtered on a Sep-Pak Plus C18 cartridge to remove the SD agents. Risk of cytotoxicity was assessed by XTT cell viability assay. Viral infectivity was analyzed based on the luciferase signals, 50% tissue culture infectious dose viral titer, and immunofluorescence staining for HCV NS5A protein. Total protein, cholesterol, and triglyceride contents were determined before and after SD treatment and C18 cartridge filtration. Binding analysis, using patient-derived HCV clinical isolates, was also examined to validate the efficacy of the inactivation by SD. SD treatment effectively inactivated HCVcc within 30 min, as demonstrated by the baseline level of reporter signals, total loss of viral infectivity, and absence of viral protein NS5A. SD specifically targeted HCV particles to render them inactive, with essentially no effect on plasma protein content and hemostatic function. More importantly, the efficacy of the SD inactivation method was confirmed against various genotypes of patient-derived HCV clinical isolates and against HCVcc infection of primary human hepatocytes. Therefore, treatment by 1% TnBP / 1% Triton X-45 at 31°C is highly efficient to inactivate HCV in plasma for transfusion, showing its capacity to enhance the safety of therapeutic plasma products. We propose that the methodology used here to study HCV infectivity can be valuable in the validation of viral inactivation and removal processes of human plasma-derived products. PMID:25658612

  12. Paramyxovirus Fusion and Entry: Multiple Paths to a Common End

    PubMed Central

    Chang, Andres; Dutch, Rebecca E.

    2012-01-01

    The paramyxovirus family contains many common human pathogenic viruses, including measles, mumps, the parainfluenza viruses, respiratory syncytial virus, human metapneumovirus, and the zoonotic henipaviruses, Hendra and Nipah. While the expression of a type 1 fusion protein and a type 2 attachment protein is common to all paramyxoviruses, there is considerable variation in viral attachment, the activation and triggering of the fusion protein, and the process of viral entry. In this review, we discuss recent advances in the understanding of paramyxovirus F protein-mediated membrane fusion, an essential process in viral infectivity. We also review the role of the other surface glycoproteins in receptor binding and viral entry, and the implications for viral infection. Throughout, we concentrate on the commonalities and differences in fusion triggering and viral entry among the members of the family. Finally, we highlight key unanswered questions and how further studies can identify novel targets for the development of therapeutic treatments against these human pathogens. PMID:22590688

  13. Gene Delivery to Adipose Tissue Using Transcriptionally Targeted rAAV8 Vectors

    PubMed Central

    Uhrig-Schmidt, Silke; Geiger, Matthias; Luippold, Gerd; Birk, Gerald; Mennerich, Detlev; Neubauer, Heike; Grimm, Dirk; Wolfrum, Christian; Kreuz, Sebastian

    2014-01-01

    In recent years, the increasing prevalence of obesity and obesity-related co-morbidities fostered intensive research in the field of adipose tissue biology. To further unravel molecular mechanisms of adipose tissue function, genetic tools enabling functional studies in vitro and in vivo are essential. While the use of transgenic animals is well established, attempts using viral and non-viral vectors to genetically modify adipocytes in vivo are rare. Therefore, we here characterized recombinant Adeno-associated virus (rAAV) vectors regarding their potency as gene transfer vehicles for adipose tissue. Our results demonstrate that a single dose of systemically applied rAAV8-CMV-eGFP can give rise to remarkable transgene expression in murine adipose tissues. Upon transcriptional targeting of the rAAV8 vector to adipocytes using a 2.2 kb fragment of the murine adiponectin (mAP2.2) promoter, eGFP expression was significantly decreased in off-target tissues while efficient transduction was maintained in subcutaneous and visceral fat depots. Moreover, rAAV8-mAP2.2-mediated expression of perilipin A – a lipid-droplet-associated protein – resulted in significant changes in metabolic parameters only three weeks post vector administration. Taken together, our findings indicate that rAAV vector technology is applicable as a flexible tool to genetically modify adipocytes for functional proof-of-concept studies and the assessment of putative therapeutic targets in vivo. PMID:25551639

  14. Functional organization of cytoplasmic inclusion bodies in cells infected by respiratory syncytial virus.

    PubMed

    Rincheval, Vincent; Lelek, Mickael; Gault, Elyanne; Bouillier, Camille; Sitterlin, Delphine; Blouquit-Laye, Sabine; Galloux, Marie; Zimmer, Christophe; Eleouet, Jean-François; Rameix-Welti, Marie-Anne

    2017-09-15

    Infection of cells by respiratory syncytial virus induces the formation of cytoplasmic inclusion bodies (IBs) where all the components of the viral RNA polymerase complex are concentrated. However, the exact organization and function of these IBs remain unclear. In this study, we use conventional and super-resolution imaging to dissect the internal structure of IBs. We observe that newly synthetized viral mRNA and the viral transcription anti-terminator M2-1 concentrate in IB sub-compartments, which we term "IB-associated granules" (IBAGs). In contrast, viral genomic RNA, the nucleoprotein, the L polymerase and its cofactor P are excluded from IBAGs. Live imaging reveals that IBAGs are highly dynamic structures. Our data show that IBs are the main site of viral RNA synthesis. They further suggest that shortly after synthesis in IBs, viral mRNAs and M2-1 transiently concentrate in IBAGs before reaching the cytosol and suggest a novel post-transcriptional function for M2-1.Respiratory syncytial virus (RSV) induces formation of inclusion bodies (IBs) sheltering viral RNA synthesis. Here, Rincheval et al. identify highly dynamic IB-associated granules (IBAGs) that accumulate newly synthetized viral mRNA and the viral M2-1 protein but exclude viral genomic RNA and RNA polymerase complexes.

  15. Probing the functional equivalence of otoferlin and synaptotagmin 1 in exocytosis

    PubMed Central

    Reisinger, Ellen; Bresee, Chris; Neef, Jakob; Nair, Ramya; Reuter, Kirsten; Bulankina, Anna; Nouvian, Régis; Koch, Manuel; Bückers, Johanna; Kastrup, Lars; Roux, Isabelle; Petit, Christine; Hell, Stefan W.; Brose, Nils; Rhee, Jeong-Seop; Kügler, Sebastian; Brigande, John; Moser, Tobias

    2011-01-01

    Cochlear inner hair cells (IHCs) use Ca2+-dependent exocytosis of glutamate to signal sound information. Otoferlin, a C2-domain protein essential for IHC exocytosis and hearing, may serve as a Ca2+ sensor in vesicle fusion in IHCs that seem to lack the classical neuronal Ca2+ sensors synaptotagmin 1 (Syt1) and 2. Support for the Ca2+ sensor of fusion hypothesis for otoferlin function comes from biochemical experiments, but additional roles in late exocytosis upstream of fusion have been indicated by physiological studies. Here, we tested the functional equivalence of otoferlin and Syt1 in three neurosecretory model systems: auditory IHCs, adrenal chromaffin cells and hippocampal neurons. Long-term and short-term ectopic expression of Syt1 in IHCs of Otof−/− mice by viral gene transfer in the embryonic inner ear and organotypic culture failed to rescue their Ca2+ influx-triggered exocytosis. On the other hand, virally mediated overexpression of otoferlin did not restore phasic exocytosis in Syt1-deficient chromaffin cells or neurons, but enhanced asynchronous release in the latter. We further tested exocytosis in Otof−/− hippocampal neurons and in Syt1−/− IHCs, but found no deficits in vesicle fusion. Expression analysis of different synaptotagmin isoforms indicated that Syt1 and Syt2 are absent from mature IHCs. Our data argue against a simple functional equivalence of the two C2 domain proteins in exocytosis of IHC ribbon synapses, chromaffin cells and hippocampal synapses. PMID:21451027

  16. The Papillomavirus E2 proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McBride, Alison A., E-mail: amcbride@nih.gov

    2013-10-15

    The papillomavirus E2 proteins are pivotal to the viral life cycle and have well characterized functions in transcriptional regulation, initiation of DNA replication and partitioning the viral genome. The E2 proteins also function in vegetative DNA replication, post-transcriptional processes and possibly packaging. This review describes structural and functional aspects of the E2 proteins and their binding sites on the viral genome. It is intended to be a reference guide to this viral protein. - Highlights: • Overview of E2 protein functions. • Structural domains of the papillomavirus E2 proteins. • Analysis of E2 binding sites in different genera of papillomaviruses.more » • Compilation of E2 associated proteins. • Comparison of key mutations in distinct E2 functions.« less

  17. Modeling Viral Spread

    PubMed Central

    Graw, Frederik; Perelson, Alan S.

    2016-01-01

    The way in which a viral infection spreads within a host is a complex process that is not well understood. Different viruses, such as human immunodeficiency virus type 1 and hepatitis C virus, have evolved different strategies, including direct cell-to-cell transmission and cell-free transmission, to spread within a host. To what extent these two modes of transmission are exploited in vivo is still unknown. Mathematical modeling has been an essential tool to get a better systematic and quantitative understanding of viral processes that are difficult to discern through strictly experimental approaches. In this review, we discuss recent attempts that combine experimental data and mathematical modeling in order to determine and quantify viral transmission modes. We also discuss the current challenges for a systems-level understanding of viral spread, and we highlight the promises and challenges that novel experimental techniques and data will bring to the field. PMID:27618637

  18. RNA Recombination In Vivo in the Absence of Viral Replication

    PubMed Central

    Gallei, Andreas; Pankraz, Alexander; Thiel, Heinz-Jürgen; Becher, Paul

    2004-01-01

    To study fundamental aspects of RNA recombination, an in vivo RNA recombination system was established. This system allowed the efficient generation of recombinant cytopathogenic pestiviruses after transfection of synthetic, nonreplicatable, subgenomic transcripts in cells infected with a replicating noncytopathogenic virus. Studies addressing the interplay between RNA recombination and replication revealed that cotransfection of noninfected cells with various pairs of nonreplicatable RNA derivatives also led to the emergence of recombinant viral genomes. Remarkably, homologous and nonhomologous recombination occurred between two overlapping transcripts, each lacking different essential parts of the viral RNA-dependent RNA polymerase (RdRp) gene. Apart from the generally accepted viral replicative copy choice recombination, our results prove the existence of a viral RdRp-independent mechanism of RNA recombination that occurs in vivo. It appears likely that such a mechanism not only contributes to the evolution of RNA viruses but also leads to the generation of recombinant cellular RNAs. PMID:15163720

  19. Crystal structure of the Rous sarcoma virus intasome

    DOE PAGES

    Yin, Zhiqi; Shi, Ke; Banerjee, Surajit; ...

    2016-02-17

    Integration of the reverse-transcribed viral DNA into the host genome is an essential step in the life cycle of retroviruses. Retrovirus integrase catalyses insertions of both ends of the linear viral DNA into a host chromosome. Integrase from HIV-1 and closely related retroviruses share the three-domain organization, consisting of a catalytic core domain flanked by amino- and carboxy-terminal domains essential for the concerted integration reaction. Although structures of the tetrameric integrase–DNA complexes have been reported for integrase from prototype foamy virus featuring an additional DNA-binding domain and longer interdomain linkers, the architecture of a canonical three-domain integrase bound to DNAmore » remained elusive. In this paper, we report a crystal structure of the three-domain integrase from Rous sarcoma virus in complex with viral and target DNAs. The structure shows an octameric assembly of integrase, in which a pair of integrase dimers engage viral DNA ends for catalysis while another pair of non-catalytic integrase dimers bridge between the two viral DNA molecules and help capture target DNA. The individual domains of the eight integrase molecules play varying roles to hold the complex together, making an extensive network of protein–DNA and protein–protein contacts that show both conserved and distinct features compared with those observed for prototype foamy virus integrase. Finally, our work highlights the diversity of retrovirus intasome assembly and provides insights into the mechanisms of integration by HIV-1 and related retroviruses.« less

  20. Non-essential viral proteins of orbiviruses are essential for vector-borne spread by midges

    USDA-ARS?s Scientific Manuscript database

    Members of the Reoviridae family are non-enveloped multi-layered viruses with a double stranded RNA genome consisting of 9-12 genome segments. The Orbivirus genus contains vector borne virus species with 10 genome segments such as bluetongue virus (BTV) with about 30 serotypes, and African horse sic...

  1. Molecular dynamics calculations suggest a conduction mechanism for the M2 proton channel from influenza A virus

    PubMed Central

    Khurana, Ekta; Peraro, Matteo Dal; DeVane, Russell; Vemparala, Satyavani; DeGrado, William F.; Klein, Michael L.

    2009-01-01

    The M2 protein of the influenza A virus is activated by low endosomal pH and performs the essential function of proton transfer into the viral interior. The resulting decrease in pH within the virion is essential for the uncoating and further replication of the viral genetic material. The x-ray crystal [Stouffer AL, et al. (2008) Nature 451:596–599] and solution NMR [Schnell JR, Chou JJ (2008) Nature 451:591–595] structures of the transmembrane region of the M2 homo-tetrameric bundle both revealed pores with narrow constrictions at one end, leaving a question as to how protons enter the channel. His-37, which is essential for proton-gating and selective conduction of protons, lies in the pore of the crystallographic and NMR structures. Here, we explore the different protonation states of the His-37 residues of the M2 bundle in a bilayer using molecular dynamics (MD) simulations. When the His-37 residues are neutral, the protein prefers an Openout-Closedin conformation in which the channel is open to the environment on the outside of the virus but closed to the interior environment of the virus. Diffusion of protons into the channel from the outside of the virus and protonation of His-37 residues in the tetramer stabilizes an oppositely gated Closedout-Openin conformation. Thus, protons might be conducted through a transporter-like mechanism, in which the protein alternates between Openout-Closedin and Closedout-Openin conformations, and His-37 is protonated/deprotonated during each turnover. The transporter-like mechanism is consistent with the known properties of the M2 bundle, including its relatively low rate of proton flux and its strong rectifying behavior. PMID:19144924

  2. IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses

    DOE PAGES

    Paez-Espino, David; Chen, I. -Min A.; Palaniappan, Krishna; ...

    2016-10-30

    Viruses represent the most abundant life forms on the planet. Recent experimental and computational improvements have led to a dramatic increase in the number of viral genome sequences identified primarily from metagenomic samples. As a result of the expanding catalog of metagenomic viral sequences, there exists a need for a comprehensive computational platform integrating all these sequences with associated metadata and analytical tools. Here we present IMG/VR (https://img.jgi.doe.gov/vr/), the largest publicly available database of 3908 isolate reference DNA viruses with 264 413 computationally identified viral contigs from > 6000 ecologically diverse metagenomic samples. Approximately half of the viral contigs aremore » grouped into genetically distinct quasi-species clusters. Microbial hosts are predicted for 20 000 viral sequences, revealing nine microbial phyla previously unreported to be infected by viruses. Viral sequences can be queried using a variety of associated metadata, including habitat type and geographic location of the samples, or taxonomic classification according to hallmark viral genes. IMG/VR has a user-friendly interface that allows users to interrogate all integrated data and interact by comparingwith external sequences, thus serving as an essential resource in the viral genomics community.« less

  3. IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paez-Espino, David; Chen, I. -Min A.; Palaniappan, Krishna

    Viruses represent the most abundant life forms on the planet. Recent experimental and computational improvements have led to a dramatic increase in the number of viral genome sequences identified primarily from metagenomic samples. As a result of the expanding catalog of metagenomic viral sequences, there exists a need for a comprehensive computational platform integrating all these sequences with associated metadata and analytical tools. Here we present IMG/VR (https://img.jgi.doe.gov/vr/), the largest publicly available database of 3908 isolate reference DNA viruses with 264 413 computationally identified viral contigs from > 6000 ecologically diverse metagenomic samples. Approximately half of the viral contigs aremore » grouped into genetically distinct quasi-species clusters. Microbial hosts are predicted for 20 000 viral sequences, revealing nine microbial phyla previously unreported to be infected by viruses. Viral sequences can be queried using a variety of associated metadata, including habitat type and geographic location of the samples, or taxonomic classification according to hallmark viral genes. IMG/VR has a user-friendly interface that allows users to interrogate all integrated data and interact by comparingwith external sequences, thus serving as an essential resource in the viral genomics community.« less

  4. Conditional mutagenesis in vivo reveals cell type- and infection stage-specific requirements for LANA in chronic MHV68 infection

    PubMed Central

    Salinas, Eduardo; Sifford, Jeffrey M.; Oldenburg, Darby G.

    2018-01-01

    Gammaherpesvirus (GHV) pathogenesis is a complex process that involves productive viral replication, dissemination to tissues that harbor lifelong latent infection, and reactivation from latency back into a productive replication cycle. Traditional loss-of-function mutagenesis approaches in mice using murine gammaherpesvirus 68 (MHV68), a model that allows for examination of GHV pathogenesis in vivo, have been invaluable for defining requirements for specific viral gene products in GHV infection. But these approaches are insufficient to fully reveal how viral gene products contribute when the encoded protein facilitates multiple processes in the infectious cycle and when these functions vary over time and from one host tissue to another. To address this complexity, we developed an MHV68 genetic platform that enables cell-type-specific and inducible viral gene deletion in vivo. We employed this system to re-evaluate functions of the MHV68 latency-associated nuclear antigen (mLANA), a protein with roles in both viral replication and latency. Cre-mediated deletion in mice of loxP-flanked ORF73 demonstrated the necessity of mLANA in B cells for MHV68 latency establishment. Impaired latency during the transition from draining lymph nodes to blood following mLANA deletion also was observed, supporting the hypothesis that B cells are a major conduit for viral dissemination. Ablation of mLANA in infected germinal center (GC) B cells severely impaired viral latency, indicating the importance of viral passage through the GC for latency establishment. Finally, induced ablation of mLANA during latency resulted in complete loss of affected viral genomes, indicating that mLANA is critically important for maintenance of viral genomes during stable latency. Collectively, these experiments provide new insights into LANA homolog functions in GHV colonization of the host and highlight the potential of a new MHV68 genetic platform to foster a more complete understanding of viral gene functions at discrete stages of GHV pathogenesis. PMID:29364981

  5. De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case

    PubMed Central

    Setoh, Yin Xiang; Prow, Natalie A.; Peng, Nias; Hugo, Leon E.; Devine, Gregor; Hazlewood, Jessamine E.

    2017-01-01

    ABSTRACT Zika virus (ZIKV) has recently emerged and is the etiological agent of congenital Zika syndrome (CZS), a spectrum of congenital abnormalities arising from neural tissue infections in utero. Herein, we describe the de novo generation of a new ZIKV isolate, ZIKVNatal, using a modified circular polymerase extension reaction protocol and sequence data obtained from a ZIKV-infected fetus with microcephaly. ZIKVNatal thus has no laboratory passage history and is unequivocally associated with CZS. ZIKVNatal could be used to establish a fetal brain infection model in IFNAR−/− mice (including intrauterine growth restriction) without causing symptomatic infections in dams. ZIKVNatal was also able to be transmitted by Aedes aegypti mosquitoes. ZIKVNatal thus retains key aspects of circulating pathogenic ZIKVs and illustrates a novel methodology for obtaining an authentic functional viral isolate by using data from deep sequencing of infected tissues. IMPORTANCE The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus’s ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses. PMID:28529976

  6. De Novo Generation and Characterization of New Zika Virus Isolate Using Sequence Data from a Microcephaly Case.

    PubMed

    Setoh, Yin Xiang; Prow, Natalie A; Peng, Nias; Hugo, Leon E; Devine, Gregor; Hazlewood, Jessamine E; Suhrbier, Andreas; Khromykh, Alexander A

    2017-01-01

    Zika virus (ZIKV) has recently emerged and is the etiological agent of congenital Zika syndrome (CZS), a spectrum of congenital abnormalities arising from neural tissue infections in utero . Herein, we describe the de novo generation of a new ZIKV isolate, ZIKV Natal , using a modified circular polymerase extension reaction protocol and sequence data obtained from a ZIKV-infected fetus with microcephaly. ZIKV Natal thus has no laboratory passage history and is unequivocally associated with CZS. ZIKV Natal could be used to establish a fetal brain infection model in IFNAR -/- mice (including intrauterine growth restriction) without causing symptomatic infections in dams. ZIKV Natal was also able to be transmitted by Aedes aegypti mosquitoes. ZIKV Natal thus retains key aspects of circulating pathogenic ZIKVs and illustrates a novel methodology for obtaining an authentic functional viral isolate by using data from deep sequencing of infected tissues. IMPORTANCE The major complications of an ongoing Zika virus outbreak in the Americas and Asia are congenital defects caused by the virus's ability to cross the placenta and infect the fetal brain. The ability to generate molecular tools to analyze viral isolates from the current outbreak is essential for furthering our understanding of how these viruses cause congenital defects. The majority of existing viral isolates and infectious cDNA clones generated from them have undergone various numbers of passages in cell culture and/or suckling mice, which is likely to result in the accumulation of adaptive mutations that may affect viral properties. The approach described herein allows rapid generation of new, fully functional Zika virus isolates directly from deep sequencing data from virus-infected tissues without the need for prior virus passaging and for the generation and propagation of full-length cDNA clones. The approach should be applicable to other medically important flaviviruses and perhaps other positive-strand RNA viruses.

  7. Exposure to Ozone Modulates Human Airway Protease/Antiprotease Balance Contributing to Increased Influenza A Infection

    PubMed Central

    Kesic, Matthew J.; Meyer, Megan; Bauer, Rebecca; Jaspers, Ilona

    2012-01-01

    Exposure to oxidant air pollution is associated with increased respiratory morbidities and susceptibility to infections. Ozone is a commonly encountered oxidant air pollutant, yet its effects on influenza infections in humans are not known. The greater Mexico City area was the primary site for the spring 2009 influenza A H1N1 pandemic, which also coincided with high levels of environmental ozone. Proteolytic cleavage of the viral membrane protein hemagglutinin (HA) is essential for influenza virus infectivity. Recent studies suggest that HA cleavage might be cell-associated and facilitated by the type II transmembrane serine proteases (TTSPs) human airway trypsin-like protease (HAT) and transmembrane protease, serine 2 (TMPRSS2), whose activities are regulated by antiproteases, such as secretory leukocyte protease inhibitor (SLPI). Based on these observations, we sought to determine how acute exposure to ozone may modulate cellular protease/antiprotease expression and function, and to define their roles in a viral infection. We utilized our in vitro model of differentiated human nasal epithelial cells (NECs) to determine the effects of ozone on influenza cleavage, entry, and replication. We show that ozone exposure disrupts the protease/antiprotease balance within the airway liquid. We also determined that functional forms of HAT, TMPRSS2, and SLPI are secreted from human airway epithelium, and acute exposure to ozone inversely alters their expression levels. We also show that addition of antioxidants significantly reduces virus replication through the induction of SLPI. In addition, we determined that ozone-induced cleavage of the viral HA protein is not cell-associated and that secreted endogenous proteases are sufficient to activate HA leading to a significant increase in viral replication. Our data indicate that pre-exposure to ozone disrupts the protease/antiprotease balance found in the human airway, leading to increased influenza susceptibility. PMID:22496898

  8. A small molecule fusion inhibitor of dengue virus.

    PubMed

    Poh, Mee Kian; Yip, Andy; Zhang, Summer; Priestle, John P; Ma, Ngai Ling; Smit, Jolanda M; Wilschut, Jan; Shi, Pei-Yong; Wenk, Markus R; Schul, Wouter

    2009-12-01

    The dengue virus envelope protein plays an essential role in viral entry by mediating fusion between the viral and host membranes. The crystal structure of the envelope protein shows a pocket (located at a "hinge" between Domains I and II) that can be occupied by ligand n-octyl-beta-D-glucoside (betaOG). Compounds blocking the betaOG pocket are thought to interfere with conformational changes in the envelope protein that are essential for fusion. Two fusion assays were developed to examine the anti-fusion activities of compounds. The first assay measures the cellular internalization of propidium iodide upon membrane fusion. The second assay measures the protease activity of trypsin upon fusion between dengue virions and trypsin-containing liposomes. We performed an in silico virtual screening for small molecules that can potentially bind to the betaOG pocket and tested these candidate molecules in the two fusion assays. We identified one compound that inhibits dengue fusion in both assays with an IC(50) of 6.8 microM and reduces viral titers with an EC(50) of 9.8 microM. Time-of-addition experiments showed that the compound was only active when present during viral infection but not when added 1h later, in agreement with a mechanism of action through fusion inhibition.

  9. Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle.

    PubMed

    Biedenkopf, Nadine; Lier, Clemens; Becker, Stephan

    2016-05-15

    Ebola virus is the causative agent of a severe fever with high fatality rates in humans and nonhuman primates. The regulation of Ebola virus transcription and replication currently is not well understood. An important factor regulating viral transcription is VP30, an Ebola virus-specific transcription factor associated with the viral nucleocapsid. Previous studies revealed that the phosphorylation status of VP30 impacts viral transcription. Together with NP, L, and the polymerase cofactor VP35, nonphosphorylated VP30 supports viral transcription. Upon VP30 phosphorylation, viral transcription ceases. Phosphorylation weakens the interaction between VP30 and the polymerase cofactor VP35 and/or the viral RNA. VP30 thereby is excluded from the viral transcription complex, simultaneously leading to increased viral replication which is supported by NP, L, and VP35 alone. Here, we use an infectious virus-like particle assay and recombinant viruses to show that the dynamic phosphorylation of VP30 is critical for the cotransport of VP30 with nucleocapsids to the sites of viral RNA synthesis, where VP30 is required to initiate primary viral transcription. We further demonstrate that a single serine residue at amino acid position 29 was sufficient to render VP30 active in primary transcription and to generate a recombinant virus with characteristics comparable to those of wild-type virus. In contrast, the rescue of a recombinant virus with a single serine at position 30 in VP30 was unsuccessful. Our results indicate critical roles for phosphorylated and dephosphorylated VP30 during the viral life cycle. The current Ebola virus outbreak in West Africa has caused more than 28,000 cases and 11,000 fatalities. Very little is known regarding the molecular mechanisms of how the Ebola virus transcribes and replicates its genome. Previous investigations showed that the transcriptional support activity of VP30 is activated upon VP30 dephosphorylation. The current study reveals that the situation is more complex and that primary transcription as well as the rescue of recombinant Ebola virus also requires the transient phosphorylation of VP30. VP30 encodes six N-proximal serine residues that serve as phosphorylation acceptor sites. The present study shows that the dynamic phosphorylation of serine at position 29 alone is sufficient to activate primary viral transcription. Our results indicate a series of phosphorylation/dephosphorylation events that trigger binding to and release from the nucleocapsid and transcription complex to be essential for the full activity of VP30. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Viral ancestors of antiviral systems.

    PubMed

    Villarreal, Luis P

    2011-10-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the 'Big Bang' theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features.

  11. Viral Ancestors of Antiviral Systems

    PubMed Central

    Villarreal, Luis P.

    2011-01-01

    All life must survive their corresponding viruses. Thus antiviral systems are essential in all living organisms. Remnants of virus derived information are also found in all life forms but have historically been considered mostly as junk DNA. However, such virus derived information can strongly affect host susceptibility to viruses. In this review, I evaluate the role viruses have had in the origin and evolution of host antiviral systems. From Archaea through bacteria and from simple to complex eukaryotes I trace the viral components that became essential elements of antiviral immunity. I conclude with a reexamination of the ‘Big Bang’ theory for the emergence of the adaptive immune system in vertebrates by horizontal transfer and note how viruses could have and did provide crucial and coordinated features. PMID:22069523

  12. HIV-1 nucleocapsid protein localizes efficiently to the nucleus and nucleolus.

    PubMed

    Yu, Kyung Lee; Lee, Sun Hee; Lee, Eun Soo; You, Ji Chang

    2016-05-01

    The HIV-1 nucleocapsid (NC) is an essential viral protein containing two highly conserved retroviral-type zinc finger (ZF) motifs, which functions in multiple stages of the HIV-1 life cycle. Although a number of functions for NC either in its mature form or as a domain of Gag have been revealed, little is known about the intracellular localization of NC and, moreover, its role in Gag protein trafficking. Here, we have investigated various forms of HIV-1 NC protein for its cellular localization and found that the NC has a strong nuclear and nucleolar localization activity. The linker region, composed of a stretch of basic amino acids between the two ZF motifs, was necessary and sufficient for the activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Molecular dynamics simulations of viral RNA polymerases link conserved and correlated motions of functional elements to fidelity

    PubMed Central

    Moustafa, Ibrahim M.; Shen, Hujun; Morton, Brandon; Colina, Coray M.; Cameron, Craig E.

    2011-01-01

    The viral RNA-dependent RNA polymerase (RdRp) is essential for multiplication of all RNA viruses. The sequence diversity of an RNA virus population contributes to its ability to infect the host. This diversity emanates from errors made by the RdRp during RNA synthesis. The physical basis for RdRp fidelity is unclear but is linked to conformational changes occurring during the nucleotide-addition cycle. To understand RdRp dynamics that might influence RdRp function, we have analyzed all-atom molecular dynamics (MD) simulations on the nanosecond timescale of four RdRps from the picornavirus family that exhibit 30–74% sequence identity. Principal component analysis showed that the major motions observed during the simulations derived from conserved structural motifs and regions of known function. Dynamics of residues participating in the same biochemical property, for example RNA binding, nucleotide binding or catalysis, were correlated even when spatially distant on the RdRp structure. The conserved and correlated dynamics of functional, structural elements suggest co-evolution of dynamics with structure and function of the RdRp. Crystal structures of all picornavirus RdRps exhibit a template-nascent RNA duplex channel too small to fully accommodate duplex RNA. Simulations revealed opening and closing motions of the RNA and NTP channels, which might be relevant to NTP entry, PPi exit and translocation. A role for nanosecond timescale dynamics in RdRp fidelity is supported by altered dynamics of the high-fidelity G64S derivative of PV RdRp relative to wild-type enzyme. PMID:21575642

  14. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection

    PubMed Central

    Jagdeo, Julienne M.; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M.

    2018-01-01

    ABSTRACT Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed terminal amine isotopic labeling of substrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3Cpros) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3Cpro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3Cpro-targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3Cpro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3Cpro substrates in vivo, we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection. PMID:29437971

  15. Pest control through viral disease: mathematical modeling and analysis.

    PubMed

    Bhattacharyya, S; Bhattacharya, D K

    2006-01-07

    This paper deals with the mathematical modeling of pest management under viral infection (i.e. using viral pesticide) and analysis of its essential mathematical features. As the viral infection induces host lysis which releases more virus into the environment, on the average 'kappa' viruses per host, kappain(1,infinity), the 'virus replication parameter' is chosen as the main parameter on which the dynamics of the infection depends. We prove that there exists a threshold value kappa(0) beyond which the endemic equilibrium bifurcates from the free disease one. Still for increasing kappa values, the endemic equilibrium bifurcates towards a periodic solution. We further analyse the orbital stability of the periodic orbits arising from bifurcation by applying Poor's condition. A concluding discussion with numerical simulation of the model is then presented.

  16. ORF4-protein deficient PCV2 mutants enhance virus-induced apoptosis and show differential expression of mRNAs in vitro.

    PubMed

    Gao, Zhangzhao; Dong, Qinfang; Jiang, Yonghou; Opriessnig, Tanja; Wang, Jingxiu; Quan, Yanping; Yang, Zongqi

    2014-04-01

    Porcine circovirus type 2 (PCV2) is the essential infectious agent of PCV associated disease (PCVAD). During previous in vitro studies, 11 RNAs and four viral proteins have been detected in PCV2-infected cells. Open reading frame (ORF) 4 is 180bp in length and has been identified at the transcription and the translation level. It overlaps completely with ORF3, which has a role in virus-induced apoptosis. In this study, start codon mutations (M1-PCV2) or in-frame termination mutations (M2-PCV2) were utilized to construct two ORF4-protein deficient viruses aiming to investigate its role in viral infection. The abilities of M1-PCV2 and M2-PCV2 to replicate, transcribe, express viral proteins, and to cause cellular apoptosis were evaluated. Viral DNA replication curves supported that the ORF4 protein is not essential for viral replication, but inhibits viral replication in the early stage of infection. Comparison of the expression level of ORF3 mRNA among wild-type and ORF4-deficient viruses in infected PK-15 cell demonstrated enhanced ORF3 transcription of both ORF4 mutants suggesting that the ORF4 protein may play an important role by restricting ORF3 transcription thereby preventing virus-induced apoptosis. This is further confirmed by the significantly higher caspase 3 and 8 activities in M1-PCV2 and M2-PCV2 compared to wild-type PCV2. Furthermore, the role of ORF4 in cell apoptosis and a possible interaction with the ORF1 associated Rep protein could perhaps explain the rapid viral growth in the early stage of infection and the higher expression level of ORF1 mRNA in ORF4 protein deficient PCV2 mutants. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Multiplex CRISPR/Cas9 system impairs HCMV replication by excising an essential viral gene.

    PubMed

    Gergen, Janina; Coulon, Flora; Creneguy, Alison; Elain-Duret, Nathan; Gutierrez, Alejandra; Pinkenburg, Olaf; Verhoeyen, Els; Anegon, Ignacio; Nguyen, Tuan Huy; Halary, Franck Albert; Haspot, Fabienne

    2018-01-01

    Anti-HCMV treatments used in immunosuppressed patients reduce viral replication, but resistant viral strains can emerge. Moreover, these drugs do not target latently infected cells. We designed two anti-viral CRISPR/Cas9 strategies to target the UL122/123 gene, a key regulator of lytic replication and reactivation from latency. The singleplex strategy contains one gRNA to target the start codon. The multiplex strategy contains three gRNAs to excise the complete UL122/123 gene. Primary fibroblasts and U-251 MG cells were transduced with lentiviral vectors encoding Cas9 and one or three gRNAs. Both strategies induced mutations in the target gene and a concomitant reduction of immediate early (IE) protein expression in primary fibroblasts. Further detailed analysis in U-251 MG cells showed that the singleplex strategy induced 50% of indels in the viral genome, leading to a reduction in IE protein expression. The multiplex strategy excised the IE gene in 90% of all viral genomes and thus led to the inhibition of IE protein expression. Consequently, viral genome replication and late protein expression were reduced by 90%. Finally, the production of new viral particles was nearly abrogated. In conclusion, the multiplex anti-UL122/123 CRISPR/Cas9 system can target the viral genome efficiently enough to significantly prevent viral replication.

  18. Multiple Novel Functions of Henipavirus O-glycans: The First O-glycan Functions Identified in the Paramyxovirus Family.

    PubMed

    Stone, Jacquelyn A; Nicola, Anthony V; Baum, Linda G; Aguilar, Hector C

    2016-02-01

    O-linked glycosylation is a ubiquitous protein modification in organisms belonging to several kingdoms. Both microbial and host protein glycans are used by many pathogens for host invasion and immune evasion, yet little is known about the roles of O-glycans in viral pathogenesis. Reportedly, there is no single function attributed to O-glycans for the significant paramyxovirus family. The paramyxovirus family includes many important pathogens, such as measles, mumps, parainfluenza, metapneumo- and the deadly Henipaviruses Nipah (NiV) and Hendra (HeV) viruses. Paramyxoviral cell entry requires the coordinated actions of two viral membrane glycoproteins: the attachment (HN/H/G) and fusion (F) glycoproteins. O-glycan sites in HeV G were recently identified, facilitating use of the attachment protein of this deadly paramyxovirus as a model to study O-glycan functions. We mutated the identified HeV G O-glycosylation sites and found mutants with altered cell-cell fusion, G conformation, G/F association, viral entry in a pseudotyped viral system, and, quite unexpectedly, pseudotyped viral F protein incorporation and processing phenotypes. These are all important functions of viral glycoproteins. These phenotypes were broadly conserved for equivalent NiV mutants. Thus our results identify multiple novel and pathologically important functions of paramyxoviral O-glycans, paving the way to study O-glycan functions in other paramyxoviruses and enveloped viruses.

  19. Functional IRF3 deficiency in a patient with herpes simplex encephalitis.

    PubMed

    Andersen, Line Lykke; Mørk, Nanna; Reinert, Line S; Kofod-Olsen, Emil; Narita, Ryo; Jørgensen, Sofie E; Skipper, Kristian A; Höning, Klara; Gad, Hans Henrik; Østergaard, Lars; Ørntoft, Torben F; Hornung, Veit; Paludan, Søren R; Mikkelsen, Jacob Giehm; Fujita, Takashi; Christiansen, Mette; Hartmann, Rune; Mogensen, Trine H

    2015-08-24

    Herpes simplex encephalitis (HSE) in children has previously been linked to defects in type I interferon (IFN) production downstream of Toll-like receptor 3. Here, we describe a novel genetic etiology of HSE by identifying a heterozygous loss-of-function mutation in the IFN regulatory factor 3 (IRF3) gene, leading to autosomal dominant (AD) IRF3 deficiency by haploinsufficiency, in an adolescent female patient with HSE. IRF3 is activated by most pattern recognition receptors recognizing viral infections and plays an essential role in induction of type I IFN. The identified IRF3 R285Q amino acid substitution results in impaired IFN responses to HSV-1 infection and particularly impairs signaling through the TLR3-TRIF pathway. In addition, the R285Q mutant of IRF3 fails to become phosphorylated at S386 and undergo dimerization, and thus has impaired ability to activate transcription. Finally, transduction with WT IRF3 rescues the ability of patient fibroblasts to express IFN in response to HSV-1 infection. The identification of IRF3 deficiency in HSE provides the first description of a defect in an IFN-regulating transcription factor conferring increased susceptibility to a viral infection in the CNS in humans. © 2015 Andersen et al.

  20. IFP35 Is Involved in the Antiviral Function of Interferon by Association with the Viral Tas Transactivator of Bovine Foamy Virus▿

    PubMed Central

    Tan, Juan; Qiao, Wentao; Wang, Jian; Xu, Fengwen; Li, Yue; Zhou, Jun; Chen, Qimin; Geng, Yunqi

    2008-01-01

    Interferon-induced proteins (IFPs) exert multiple functions corresponding to diverse interferon signals. However, the intracellular functions of many IFPs are not fully characterized. Here, we report that IFP35, a member of the IFP family with a molecular mass of 35 kDa, can interact with the bovine Tas (BTas) regulatory protein of bovine foamy virus (BFV). The interaction involves NID2 (IFP35/Nmi homology domain) of IFP35 and the central domain of BTas. The overexpression of IFP35 disturbs the ability of BTas to activate viral-gene transcription and inhibits viral replication. The depletion of endogenous IFP35 by interfering RNA can promote the activation of BFV, suggesting an inhibitory function of IFP35 in viral-gene expression. In addition, IFP35 can interact with the homologous regulatory protein of prototype FV and arrest viral replication and repress viral transcription. Our study suggests that IFP35 may represent a novel pathway of interferon-mediated antiviral activity in host organisms that plays a role in the maintenance of FV latency. PMID:18305040

  1. Cold argon-oxygen plasma species oxidize and disintegrate capsid protein of feline calicivirus

    PubMed Central

    Mor, Sunil K.; Higgins, LeeAnn; Armien, Anibal; Youssef, Mohammed M.; Bruggeman, Peter J.; Goyal, Sagar M.

    2018-01-01

    Possible mechanisms that lead to inactivation of feline calicivirus (FCV) by cold atmospheric-pressure plasma (CAP) generated in 99% argon-1% O2 admixture were studied. We evaluated the impact of CAP exposure on the FCV viral capsid protein and RNA employing several cultural, molecular, proteomic and morphologic characteristics techniques. In the case of long exposure (2 min) to CAP, the reactive species of CAP strongly oxidized the major domains of the viral capsid protein (VP1) leading to disintegration of a majority of viral capsids. In the case of short exposure (15 s), some of the virus particles retained their capsid structure undamaged but failed to infect the host cells in vitro. In the latter virus particles, CAP exposure led to the oxidation of specific amino acids located in functional peptide residues in the P2 subdomain of the protrusion (P) domain, the dimeric interface region of VP1 dimers, and the movable hinge region linking the S and P domains. These regions of the capsid are known to play an essential role in the attachment and entry of the virus to the host cell. These observations suggest that the oxidative effect of CAP species inactivates the virus by hindering virus attachment and entry into the host cell. Furthermore, we found that the oxidative impact of plasma species led to oxidation and damage of viral RNA once it becomes unpacked due to capsid destruction. The latter effect most likely plays a secondary role in virus inactivation since the intact FCV genome is infectious even after damage to the capsid. PMID:29566061

  2. Adding the Third Dimension to Virus Life Cycles: Three-Dimensional Reconstruction of Icosahedral Viruses from Cryo-Electron Micrographs

    PubMed Central

    Baker, T. S.; Olson, N. H.; Fuller, S. D.

    1999-01-01

    Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-Å) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical. PMID:10585969

  3. Integrated Evaluation of Latent Viral Reactivation During Spaceflight

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L.; Paloski, W. H. (Technical Monitor)

    2000-01-01

    This application proposes a continuation of our current effort, which has provided the first demonstration of viral reactivation during space flight. We have used the herpesvirus EBV as a model for latent viral reactivation and have shown that increased amounts of EBV DNA were shed by astronauts during space flight. Analysis of the Antarctic space flight analog indicated that the frequency of viral shedding may also increase (along with the increased numbers of virus) during long periods of isolation. However, a number of critical questions remain before the findings may be considered a significant health risk during extended space flight. These include: Are other latent viruses (e.g., other herpesviruses and polyornaviruses) in addition to EBV also reactivated and shed more frequently and/or in higher numbers during space flight? Is the viral reactivation observed in space flight and ground-based analogs mediated through the hypothalamus-pituitary-adrenal (HPA) axis resulting in a decreased cell-mediated immune response? How does detection of viral DNA by PCR analysis correlate with infectious virus? How does the amount of virus found during flight compare with viral levels observed in acute/chronic viral illnesses and in control individuals? This expanded study will examine the phenomenon of viral reactivation from the initiating stress through the HPA axis with the accompanying suppression of the immune system resulting in viral reactivation. This information is essential to determine if latent viral reactivation among crewmembers represents a sufficient medical risk to space travel to require the development of suitable countermeasures.

  4. WDR5 is essential for assembly of the VISA-associated signaling complex and virus-triggered IRF3 and NF-kappaB activation.

    PubMed

    Wang, Yan-Yi; Liu, Li-Juan; Zhong, Bo; Liu, Tian-Tian; Li, Ying; Yang, Yan; Ran, Yong; Li, Shu; Tien, Po; Shu, Hong-Bing

    2010-01-12

    Viral infection causes activation of the transcription factors NF-kappaB and IRF3, which collaborate to induce type I interferons (IFNs) and cellular antiviral response. The mitochondrial outer membrane protein VISA acts as a critical adapter for assembling a virus-induced complex that signals NF-kappaB and IRF3 activation. Using a biochemical purification approach, we identified the WD repeat protein WDR5 as a VISA-associated protein. WDR5 was recruited to VISA in a viral infection dependent manner. Viral infection also caused translocation of WDR5 from the nucleus to mitochondria. Knockdown of WDR5 impaired the formation of virus-induced VISA-associated complex. Consistently, knockdown of WDR5 inhibited virus-triggered activation of IRF3 and NF-kappaB as well as transcription of the IFNB1 gene. These findings suggest that WDR5 is essential in assembling a virus-induced VISA-associated complex and plays an important role in virus-triggered induction of type I IFNs.

  5. Terminal structures of West Nile virus genomic RNA and their interactions with viral NS5 protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Hongping; Zhang Bo; Shi Peiyong

    2008-11-10

    Genome cyclization is essential for flavivirus replication. We used RNases to probe the structures formed by the 5'-terminal 190 nucleotides and the 3'-terminal 111 nucleotides of the West Nile virus (WNV) genomic RNA. When analyzed individually, the two RNAs adopt stem-loop structures as predicted by the thermodynamic-folding program. However, when mixed together, the two RNAs form a duplex that is mediated through base-pairings of two sets of RNA elements (5'CS/3'CSI and 5'UAR/3'UAR). Formation of the RNA duplex facilitates a conformational change that leaves the 3'-terminal nucleotides of the genome (position - 8 to - 16) to be single-stranded. Viral NS5more » binds specifically to the 5'-terminal stem-loop (SL1) of the genomic RNA. The 5'SL1 RNA structure is essential for WNV replication. The study has provided further evidence to suggest that flavivirus genome cyclization and NS5/5'SL1 RNA interaction facilitate NS5 binding to the 3' end of the genome for the initiation of viral minus-strand RNA synthesis.« less

  6. Ebola virus host cell entry.

    PubMed

    Sakurai, Yasuteru

    2015-01-01

    Ebola virus is an enveloped virus with filamentous structure and causes a severe hemorrhagic fever in human and nonhuman primates. Host cell entry is the first essential step in the viral life cycle, which has been extensively studied as one of the therapeutic targets. A virus factor of cell entry is a surface glycoprotein (GP), which is an only essential viral protein in the step, as well as the unique particle structure. The virus also interacts with a lot of host factors to successfully enter host cells. Ebola virus at first binds to cell surface proteins and internalizes into cells, followed by trafficking through endosomal vesicles to intracellular acidic compartments. There, host proteases process GPs, which can interact with an intracellular receptor. Then, under an appropriate circumstance, viral and endosomal membranes are fused, which is enhanced by major structural changes of GPs, to complete host cell entry. Recently the basic research of Ebola virus infection mechanism has markedly progressed, largely contributed by identification of host factors and detailed structural analyses of GPs. This article highlights the mechanism of Ebola virus host cell entry, including recent findings.

  7. Coat Protein Regulation by CK2, CPIP, HSP70, and CHIP Is Required for Potato Virus A Replication and Coat Protein Accumulation

    PubMed Central

    Lõhmus, Andres; Hafrén, Anders

    2016-01-01

    ABSTRACT We demonstrate here that both coat protein (CP) phosphorylation by protein kinase CK2 and a chaperone system formed by two heat shock proteins, CP-interacting protein (CPIP) and heat shock protein 70 (HSP70), are essential for potato virus A (PVA; genus Potyvirus) replication and that all these host proteins have the capacity to contribute to the level of PVA CP accumulation. An E3 ubiquitin ligase called carboxyl terminus Hsc70-interacting protein (CHIP), which may participate in the CPIP-HSP70-mediated CP degradation, is also needed for robust PVA gene expression. Residue Thr243 within the CK2 consensus sequence of PVA CP was found to be essential for viral replication and to regulate CP protein stability. Substitution of Thr243 either with a phosphorylation-mimicking Asp (CPADA) or with a phosphorylation-deficient Ala (CPAAA) residue in CP expressed from viral RNA limited PVA gene expression to the level of nonreplicating PVA. We found that both the CPAAA mutant and CK2 silencing inhibited, whereas CPADA mutant and overexpression of CK2 increased, PVA translation. From our previous studies, we know that phosphorylation reduces the RNA binding capacity of PVA CP and an excess of CP fully blocks viral RNA translation. Together, these findings suggest that binding by nonphosphorylated PVA CP represses viral RNA translation, involving further CP phosphorylation and CPIP-HSP70 chaperone activities as prerequisites for PVA replication. We propose that this mechanism contributes to shifting potyvirus RNA from translation to replication. IMPORTANCE Host protein kinase CK2, two host chaperones, CPIP and HSP70, and viral coat protein (CP) phosphorylation at Thr243 are needed for potato virus A (PVA) replication. Our results show that nonphosphorylated CP blocks viral translation, likely via binding to viral RNA. We propose that this translational block is needed to allow time and space for the formation of potyviral replication complex around the 3′ end of viral RNA. Progression into replication involves CP regulation by both CK2 phosphorylation and chaperones CPIP and HSP70. PMID:27852853

  8. A positive-strand RNA virus uses alternative protein-protein interactions within a viral protease/cofactor complex to switch between RNA replication and virion morphogenesis.

    PubMed

    Dubrau, Danilo; Tortorici, M Alejandra; Rey, Félix A; Tautz, Norbert

    2017-02-01

    The viruses of the family Flaviviridae possess a positive-strand RNA genome and express a single polyprotein which is processed into functional proteins. Initially, the nonstructural (NS) proteins, which are not part of the virions, form complexes capable of genome replication. Later on, the NS proteins also play a critical role in virion formation. The molecular basis to understand how the same proteins form different complexes required in both processes is so far unknown. For pestiviruses, uncleaved NS2-3 is essential for virion morphogenesis while NS3 is required for RNA replication but is not functional in viral assembly. Recently, we identified two gain of function mutations, located in the C-terminal region of NS2 and in the serine protease domain of NS3 (NS3 residue 132), which allow NS2 and NS3 to substitute for uncleaved NS2-3 in particle assembly. We report here the crystal structure of pestivirus NS3-4A showing that the NS3 residue 132 maps to a surface patch interacting with the C-terminal region of NS4A (NS4A-kink region) suggesting a critical role of this contact in virion morphogenesis. We show that destabilization of this interaction, either by alanine exchanges at this NS3/4A-kink interface, led to a gain of function of the NS3/4A complex in particle formation. In contrast, RNA replication and thus replicase assembly requires a stable association between NS3 and the NS4A-kink region. Thus, we propose that two variants of NS3/4A complexes exist in pestivirus infected cells each representing a basic building block required for either RNA replication or virion morphogenesis. This could be further corroborated by trans-complementation studies with a replication-defective NS3/4A double mutant that was still functional in viral assembly. Our observations illustrate the presence of alternative overlapping surfaces providing different contacts between the same proteins, allowing the switch from RNA replication to virion formation.

  9. Novel Structure and Unexpected RNA-Binding Ability of the C-Terminal Domain of Herpes Simplex Virus 1 Tegument Protein UL21

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metrick, Claire M.; Heldwein, Ekaterina E.; Sandri-Goldin, R. M.

    Proteins forming the tegument layers of herpesviral virions mediate many essential processes in the viral replication cycle, yet few have been characterized in detail. UL21 is one such multifunctional tegument protein and is conserved among alphaherpesviruses. While UL21 has been implicated in many processes in viral replication, ranging from nuclear egress to virion morphogenesis to cell-cell spread, its precise roles remain unclear. Here we report the 2.7-Å crystal structure of the C-terminal domain of herpes simplex virus 1 (HSV-1) UL21 (UL21C), which has a unique α-helical fold resembling a dragonfly. Analysis of evolutionary conservation patterns and surface electrostatics pinpointed fourmore » regions of potential functional importance on the surface of UL21C to be pursued by mutagenesis. In combination with the previously determined structure of the N-terminal domain of UL21, the structure of UL21C provides a 3-dimensional framework for targeted exploration of the multiple roles of UL21 in the replication and pathogenesis of alphaherpesviruses. Additionally, we describe an unanticipated ability of UL21 to bind RNA, which may hint at a yet unexplored function. IMPORTANCEDue to the limited genomic coding capacity of viruses, viral proteins are often multifunctional, which makes them attractive antiviral targets. Such multifunctionality, however, complicates their study, which often involves constructing and characterizing null mutant viruses. Systematic exploration of these multifunctional proteins requires detailed road maps in the form of 3-dimensional structures. In this work, we determined the crystal structure of the C-terminal domain of UL21, a multifunctional tegument protein that is conserved among alphaherpesviruses. Structural analysis pinpointed surface areas of potential functional importance that provide a starting point for mutagenesis. In addition, the unexpected RNA-binding ability of UL21 may expand its functional repertoire. The structure of UL21C and the observation of its RNA-binding ability are the latest additions to the navigational chart that can guide the exploration of the multiple functions of UL21.« less

  10. Small Ion Channel Linking Molecular Simulations and Electrophysiology

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrzej

    2017-01-01

    Ion channels are pore-forming protein assemblies that mediate the transport of small ions across cell membranes. Otherwise, membrane bilayers would be almost impermeable to ions incapable to traverse the low dielectric constant, hydrophobic membrane core. Ion channels are ubiquitous to all life forms. In humans and other higher organisms they play the central role in conducting nerve impulses, cardiac functions, muscle contraction and apoptosis. On the other extreme of biological complexity, viral ion channels (viroporins) influence many stages of the virus infection cycle either through regulating virus replication, such as entry, assembly and release or modulating the electrochemical balance in the subcellular compartments of host cells. Ion channels were crucial components of protocells. Their emergence facilitated adaptation of nascent life to different environmental conditions. The earliest ion channels must have been much simpler than most of their modern ancestors. Viral channels are among only a few naturally occurring models to study the structure, function and evolution of primordial channels. Experimental studies of these properties are difficult and often unreliable. In principle, computational methods, and molecular dynamics (MD) simulations in particular, can aid in providing information about both the structure and the function of ion channels. However, MD suffers from its own problems, such as inability to access sufficiently long time scales or limited accuracy of force fields. It is, therefore, essential to determine the reliability of MD simulations. We propose to do so on the basis of two criteria. One is channel stability on time scales that extend for several microseconds or longer. The other is the ability to reproduce the measured ionic conductance as a function of applied voltage. If both the stability and the calculated ionic conductance are satisfactory it will greatly increase our confidence that the structure and the function of a channel are described sufficiently accurately. To our knowledge, long time scale stability (approx.10 micro-sec) and the correct electrophysiology have been shown so far for only one channel - the synthetic LS3 hexamer). In this presentation, this approach will be discussed in application to two viral channels - Vpu, encoded by the HIV-1 genome and p7 of hepatitis C.

  11. Inhibitory effect of essential oils against herpes simplex virus type 2.

    PubMed

    Koch, C; Reichling, J; Schneele, J; Schnitzler, P

    2008-01-01

    Essential oils from anise, hyssop, thyme, ginger, camomile and sandalwood were screened for their inhibitory effect against herpes simplex virus type 2 (HSV-2) in vitro on RC-37 cells using a plaque reduction assay. Genital herpes is a chronic, persistent infection spreading efficiently and silently as sexually transmitted disease through the population. Antiviral agents currently applied for the treatment of herpesvirus infections include acyclovir and its derivatives. The inhibitory concentrations (IC50) were determined at 0.016%, 0.0075%, 0.007%, 0.004%, 0.003% and 0.0015% for anise oil, hyssop oil, thyme oil, ginger oil, camomile oil and sandalwood oil, respectively. A clearly dose-dependent virucidal activity against HSV-2 could be demonstrated for all essential oils tested. In order to determine the mode of the inhibitory effect, essential oils were added at different stages during the viral infection cycle. At maximum noncytotoxic concentrations of the essential oils, plaque formation was significantly reduced by more than 90% when HSV-2 was preincubated with hyssop oil, thyme oil or ginger oil. However, no inhibitory effect could be observed when the essential oils were added to the cells prior to infection with HSV-2 or after the adsorption period. These results indicate that essential oils affected HSV-2 mainly before adsorption probably by interacting with the viral envelope. Camomile oil exhibited a high selectivity index and seems to be a promising candidate for topical therapeutic application as virucidal agents for treatment of herpes genitalis.

  12. Viral particles of endogenous betaretroviruses are released in the sheep uterus and infect the conceptus trophectoderm in a transspecies embryo transfer model.

    PubMed

    Black, Sarah G; Arnaud, Frederick; Burghardt, Robert C; Satterfield, M Carey; Fleming, Jo-Ann G W; Long, Charles R; Hanna, Carol; Murphy, Lita; Biek, Roman; Palmarini, Massimo; Spencer, Thomas E

    2010-09-01

    The sheep genome contains multiple copies of endogenous betaretroviruses highly related to the exogenous and oncogenic jaagsiekte sheep retrovirus (JSRV). The endogenous JSRVs (enJSRVs) are abundantly expressed in the uterine luminal and glandular epithelia as well as in the conceptus trophectoderm and are essential for conceptus elongation and trophectoderm growth and development. Of note, enJSRVs are present in sheep and goats but not cattle. At least 5 of the 27 enJSRV loci cloned to date possess an intact genomic organization and are able to produce viral particles in vitro. In this study, we found that enJSRVs form viral particles that are released into the uterine lumen of sheep. In order to test the infectious potential of enJSRV particles in the uterus, we transferred bovine blastocysts into synchronized ovine recipients and allowed them to develop for 13 days. Analysis of microdissected trophectoderm of the bovine conceptuses revealed the presence of enJSRV RNA and, in some cases, DNA. Interestingly, we found that RNAs belonging to only the most recently integrated enJSRV loci were packaged into viral particles and transmitted to the trophectoderm. Collectively, these results support the hypothesis that intact enJSRV loci expressed in the uterine endometrial epithelia are shed into the uterine lumen and could potentially transduce the conceptus trophectoderm. The essential role played by enJSRVs in sheep reproductive biology could also be played by endometrium-derived viral particles that influence development and differentiation of the trophectoderm.

  13. IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses.

    PubMed

    Paez-Espino, David; Chen, I-Min A; Palaniappan, Krishna; Ratner, Anna; Chu, Ken; Szeto, Ernest; Pillay, Manoj; Huang, Jinghua; Markowitz, Victor M; Nielsen, Torben; Huntemann, Marcel; K Reddy, T B; Pavlopoulos, Georgios A; Sullivan, Matthew B; Campbell, Barbara J; Chen, Feng; McMahon, Katherine; Hallam, Steve J; Denef, Vincent; Cavicchioli, Ricardo; Caffrey, Sean M; Streit, Wolfgang R; Webster, John; Handley, Kim M; Salekdeh, Ghasem H; Tsesmetzis, Nicolas; Setubal, Joao C; Pope, Phillip B; Liu, Wen-Tso; Rivers, Adam R; Ivanova, Natalia N; Kyrpides, Nikos C

    2017-01-04

    Viruses represent the most abundant life forms on the planet. Recent experimental and computational improvements have led to a dramatic increase in the number of viral genome sequences identified primarily from metagenomic samples. As a result of the expanding catalog of metagenomic viral sequences, there exists a need for a comprehensive computational platform integrating all these sequences with associated metadata and analytical tools. Here we present IMG/VR (https://img.jgi.doe.gov/vr/), the largest publicly available database of 3908 isolate reference DNA viruses with 264 413 computationally identified viral contigs from >6000 ecologically diverse metagenomic samples. Approximately half of the viral contigs are grouped into genetically distinct quasi-species clusters. Microbial hosts are predicted for 20 000 viral sequences, revealing nine microbial phyla previously unreported to be infected by viruses. Viral sequences can be queried using a variety of associated metadata, including habitat type and geographic location of the samples, or taxonomic classification according to hallmark viral genes. IMG/VR has a user-friendly interface that allows users to interrogate all integrated data and interact by comparing with external sequences, thus serving as an essential resource in the viral genomics community. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses.

    PubMed

    Oshiumi, Hiroyuki; Miyashita, Moeko; Matsumoto, Misako; Seya, Tsukasa

    2013-01-01

    The innate immune system is essential for controlling viral infections, but several viruses have evolved strategies to escape innate immunity. RIG-I is a cytoplasmic viral RNA sensor that triggers the signal to induce type I interferon production in response to viral infection. RIG-I activation is regulated by the K63-linked polyubiquitin chain mediated by Riplet and TRIM25 ubiquitin ligases. TRIM25 is required for RIG-I oligomerization and interaction with the IPS-1 adaptor molecule. A knockout study revealed that Riplet was essential for RIG-I activation. However the molecular mechanism underlying RIG-I activation by Riplet remains unclear, and the functional differences between Riplet and TRIM25 are also unknown. A genetic study and a pull-down assay indicated that Riplet was dispensable for RIG-I RNA binding activity but required for TRIM25 to activate RIG-I. Mutational analysis demonstrated that Lys-788 within the RIG-I repressor domain was critical for Riplet-mediated K63-linked polyubiquitination and that Riplet was required for the release of RIG-I autorepression of its N-terminal CARDs, which leads to the association of RIG-I with TRIM25 ubiquitin ligase and TBK1 protein kinase. Our data indicate that Riplet is a prerequisite for TRIM25 to activate RIG-I signaling. We investigated the biological importance of this mechanism in human cells and found that hepatitis C virus (HCV) abrogated this mechanism. Interestingly, HCV NS3-4A proteases targeted the Riplet protein and abrogated endogenous RIG-I polyubiquitination and association with TRIM25 and TBK1, emphasizing the biological importance of this mechanism in human antiviral innate immunity. In conclusion, our results establish that Riplet-mediated K63-linked polyubiquitination released RIG-I RD autorepression, which allowed the access of positive factors to the RIG-I protein.

  15. A Distinct Role of Riplet-Mediated K63-Linked Polyubiquitination of the RIG-I Repressor Domain in Human Antiviral Innate Immune Responses

    PubMed Central

    Oshiumi, Hiroyuki; Miyashita, Moeko; Matsumoto, Misako; Seya, Tsukasa

    2013-01-01

    The innate immune system is essential for controlling viral infections, but several viruses have evolved strategies to escape innate immunity. RIG-I is a cytoplasmic viral RNA sensor that triggers the signal to induce type I interferon production in response to viral infection. RIG-I activation is regulated by the K63-linked polyubiquitin chain mediated by Riplet and TRIM25 ubiquitin ligases. TRIM25 is required for RIG-I oligomerization and interaction with the IPS-1 adaptor molecule. A knockout study revealed that Riplet was essential for RIG-I activation. However the molecular mechanism underlying RIG-I activation by Riplet remains unclear, and the functional differences between Riplet and TRIM25 are also unknown. A genetic study and a pull-down assay indicated that Riplet was dispensable for RIG-I RNA binding activity but required for TRIM25 to activate RIG-I. Mutational analysis demonstrated that Lys-788 within the RIG-I repressor domain was critical for Riplet-mediated K63-linked polyubiquitination and that Riplet was required for the release of RIG-I autorepression of its N-terminal CARDs, which leads to the association of RIG-I with TRIM25 ubiquitin ligase and TBK1 protein kinase. Our data indicate that Riplet is a prerequisite for TRIM25 to activate RIG-I signaling. We investigated the biological importance of this mechanism in human cells and found that hepatitis C virus (HCV) abrogated this mechanism. Interestingly, HCV NS3-4A proteases targeted the Riplet protein and abrogated endogenous RIG-I polyubiquitination and association with TRIM25 and TBK1, emphasizing the biological importance of this mechanism in human antiviral innate immunity. In conclusion, our results establish that Riplet-mediated K63-linked polyubiquitination released RIG-I RD autorepression, which allowed the access of positive factors to the RIG-I protein. PMID:23950712

  16. De novo Fatty Acid Biosynthesis Contributes Significantly to Establishment of a Bioenergetically Favorable Environment for Vaccinia Virus Infection

    PubMed Central

    Greseth, Matthew D.; Traktman, Paula

    2014-01-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in particular virion assembly, relies on the synthesis and mitochondrial import of fatty acids, where their β-oxidation drives robust ATP production. PMID:24651651

  17. De novo fatty acid biosynthesis contributes significantly to establishment of a bioenergetically favorable environment for vaccinia virus infection.

    PubMed

    Greseth, Matthew D; Traktman, Paula

    2014-03-01

    The poxvirus life cycle, although physically autonomous from the host nucleus, is nevertheless dependent upon cellular functions. A requirement for de novo fatty acid biosynthesis was implied by our previous demonstration that cerulenin, a fatty acid synthase inhibitor, impaired vaccinia virus production. Here we show that additional inhibitors of this pathway, TOFA and C75, reduce viral yield significantly, with partial rescue provided by exogenous palmitate, the pathway's end-product. Palmitate's major role during infection is not for phospholipid synthesis or protein palmitoylation. Instead, the mitochondrial import and β-oxidation of palmitate are essential, as shown by the impact of etomoxir and trimetazidine, which target these two processes respectively. Moreover, the impact of these inhibitors is exacerbated in the absence of exogenous glucose, which is otherwise dispensable for infection. In contrast to glucose, glutamine is essential for productive viral infection, providing intermediates that sustain the TCA cycle (anaplerosis). Cumulatively, these data suggest that productive infection requires the mitochondrial β-oxidation of palmitate which drives the TCA cycle and energy production. Additionally, infection causes a significant rise in the cellular oxygen consumption rate (ATP synthesis) that is ablated by etomoxir. The biochemical progression of the vaccinia life cycle is not impaired in the presence of TOFA, C75, or etomoxir, although the levels of viral DNA and proteins synthesized are somewhat diminished. However, by reversibly arresting infections at the onset of morphogenesis, and then monitoring virus production after release of the block, we determined that virion assembly is highly sensitive to TOFA and C75. Electron microscopic analysis of cells released into C75 revealed fragmented aggregates of viroplasm which failed to be enclosed by developing virion membranes. Taken together, these data indicate that vaccinia infection, and in particular virion assembly, relies on the synthesis and mitochondrial import of fatty acids, where their β-oxidation drives robust ATP production.

  18. The binding of histone deacetylases and the integrity of zinc finger-like motifs of the E7 protein are essential for the life cycle of human papillomavirus type 31.

    PubMed

    Longworth, Michelle S; Laimins, Laimonis A

    2004-04-01

    The E7 oncoprotein of high-risk human papillomaviruses (HPVs) binds to and alters the action of cell cycle regulatory proteins such as members of the retinoblastoma (Rb) family of proteins as well as the histone deacetylases (HDACs). To examine the significance of the binding of E7 to HDACs in the viral life cycle, a mutational analysis of the E7 open reading frame was performed in the context of the complete HPV type 31 (HPV-31) genome. Human foreskin keratinocytes were transfected with wild-type HPV-31 genomes or HPV-31 genomes containing mutations in HDAC binding sequences as well as in the C-terminal zinc finger-like domain, and stable cell lines were isolated. All mutant genomes, except those with E7 mutations in the HDAC binding site, were found to be stably maintained extrachromosomally at an early passage following transfection. Upon further passage in culture, genomes containing mutations to the Rb binding domain as well as the zinc finger-like region quickly lost the ability to maintain episomal genomes. Genomes containing mutations abolishing E7 binding to HDACs or to Rb or mutations to the zinc finger-like motifs failed to extend the life span of transfected keratinocytes and caused cells to arrest at the same time as the untransfected keratinocytes. When induced to differentiate by suspension in methylcellulose, cells maintaining genomes with mutations in the Rb binding domain or the zinc finger-like motifs were impaired in their abilities to activate late viral functions. This study demonstrates that the interaction of E7 with HDACs and the integrity of the zinc finger-like motifs are essential for extending the life span of keratinocytes and for stable maintenance of viral genomes.

  19. Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbier, Vincent; Lang, Diane; Valois, Sierra

    Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associatedmore » with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication. - Highlights: •Mitochondrial length and respiration are increased during DENV infection. •DENV inhibits Drp1-triggered mitochondrial fission. •DENV titers are reduced by mitochondrial fragmentation, Drp1 WT and S616D expression. •Viral proteins NS4b and NS3 are associated with subcellular fractions of mitochondria.« less

  20. Phylogeny of Banana Streak Virus reveals recent and repetitive endogenization in the genome of its banana host (Musa sp.).

    PubMed

    Gayral, Philippe; Iskra-Caruana, Marie-Line

    2009-07-01

    Banana streak virus (BSV) is a plant dsDNA pararetrovirus (family Caulimoviridae, genus badnavirus). Although integration is not an essential step in the BSV replication cycle, the nuclear genome of banana (Musa sp.) contains BSV endogenous pararetrovirus sequences (BSV EPRVs). Some BSV EPRVs are infectious by reconstituting a functional viral genome. Recent studies revealed a large molecular diversity of episomal BSV viruses (i.e., nonintegrated) while others focused on BSV EPRV sequences only. In this study, the evolutionary history of badnavirus integration in banana was inferred from phylogenetic relationships between BSV and BSV EPRVs. The relative evolution rates and selective pressures (d(N)/d(S) ratio) were also compared between endogenous and episomal viral sequences. At least 27 recent independent integration events occurred after the divergence of three banana species, indicating that viral integration is a recent and frequent phenomenon. Relaxation of selective pressure on badnaviral sequences that experienced neutral evolution after integration in the plant genome was recorded. Additionally, a significant decrease (35%) in the EPRV evolution rate was observed compared to BSV, reflecting the difference in the evolution rate between episomal dsDNA viruses and plant genome. The comparison of our results with the evolution rate of the Musa genome and other reverse-transcribing viruses suggests that EPRVs play an active role in episomal BSV diversity and evolution.

  1. Efficient HIV-1 inhibition by a 16 nt-long RNA aptamer designed by combining in vitro selection and in silico optimisation strategies

    PubMed Central

    Sánchez-Luque, Francisco J.; Stich, Michael; Manrubia, Susanna; Briones, Carlos; Berzal-Herranz, Alfredo

    2014-01-01

    The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5′-untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5′-CCCCGGCAAGGAGGGG-3′. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication. PMID:25175101

  2. An ac34 Deletion Mutant of Autographa californica Nucleopolyhedrovirus Exhibits Delayed Late Gene Expression and a Lack of Virulence In Vivo

    PubMed Central

    Cai, Yi; Long, Zhao; Qiu, Jianxiang; Yuan, Meijin; Yang, Kai

    2012-01-01

    Ac34 and its homologs are highly conserved in all sequenced alphabaculoviruses. In this paper, we show that ac34 transcripts were detected from 6 to 48 h postinfection (p.i.) in Autographa californica nucleopolyhedrovirus (AcMNPV)-infected Sf9 cells. Ac34 localized to both the cytoplasm and the nuclei of infected cells but was not a viral structural protein. To determine the function of ac34 in the viral life cycle, an ac34 knockout AcMNPV (vAc34KO) was constructed. Compared with wild-type and repair viruses, vAc34KO exhibited an approximately 100-fold reduction in infectious virus production. Further investigations showed that the ac34 deletion did not affect the replication of viral DNA, polyhedron formation, or nucleocapsid assembly but delayed the expression of late genes, such as vp39, 38k, and p6.9. Bioassays revealed that vAc34KO was unable to establish a fatal infection in Trichoplusia ni larvae via per os inoculation. Few infectious progeny viruses were detected in the hemolymph of the infected larvae, indicating that the replication of vAc34KO was attenuated. These results suggest that Ac34 is an activator protein that promotes late gene expression and is essential for the pathogenicity of AcMNPV. PMID:22787232

  3. Cyclosporin A inhibits the propagation of influenza virus by interfering with a late event in the virus life cycle.

    PubMed

    Hamamoto, Itsuki; Harazaki, Kazuhiro; Inase, Naohiko; Takaku, Hiroshi; Tashiro, Masato; Yamamoto, Norio

    2013-01-01

    Influenza is a global public health problem that causes a serious respiratory disease. Influenza virus frequently undergoes amino acid substitutions, which result in the emergence of drug-resistant viruses. To control influenza viruses that are resistant to currently available drugs, it is essential to develop new antiviral drugs with a novel molecular target. Here, we report that cyclosporin A (CsA) inhibits the propagation of influenza virus in A549 cells by interfering with a late event in the virus life cycle. CsA did not affect adsorption, internalization, viral RNA replication, or synthesis of viral proteins in A549 cells, but inhibited the step(s) after viral protein synthesis, such as assembly or budding. In addition, siRNA-mediated knockdown of the expression of the major CsA targets, namely cyclophilin A (CypA), cyclophilin B (CypB), and P-glycoprotein (Pgp), did not inhibit influenza virus propagation. These results suggest that CsA inhibits virus propagation by mechanism(s) independent of the inhibition of the function of CypA, CypB, and Pgp. CsA may target an unknown molecule that works as a positive regulator in the propagation of influenza virus. Our findings would contribute to the development of a novel anti-influenza virus therapy and clarification of the regulatory mechanism of influenza virus multiplication.

  4. RNA-dependent RNA polymerases from flaviviruses and Picornaviridae.

    PubMed

    Lescar, Julien; Canard, Bruno

    2009-12-01

    Flaviviruses and picornaviruses are positive-strand RNA viruses that encode the RNA-dependent RNA polymerase (RdRp) required for replicating the viral genome in infected cells. Because of their specific and essential role in the virus life cycle, RdRps are prime targets for antiviral drugs. Recent structural data have shed light on the different strategies used by RdRps from flaviviruses and Picornaviridae to initiate RNA polymerization. New details about the catalytic mechanism, the role of metal ions, how these RdRps interact with other nonstructural (NS) viral and host-cell proteins as well as with the viral RNA genome have also been published. These advances contribute to give a more complete picture of the 3D structure and mechanism of a membrane-bound viral replication complex for these two classes of medically important human pathogens.

  5. The Flavivirus Protease As a Target for Drug Discovery

    PubMed Central

    Brecher, Matthew; Zhang, Jing; Li, Hongmin

    2014-01-01

    Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures. PMID:24242363

  6. The flavivirus protease as a target for drug discovery.

    PubMed

    Brecher, Matthew; Zhang, Jing; Li, Hongmin

    2013-12-01

    Many flaviviruses are significant human pathogens causing considerable disease burdens, including encephalitis and hemorrhagic fever, in the regions in which they are endemic. A paucity of treatments for flaviviral infections has driven interest in drug development targeting proteins essential to flavivirus replication, such as the viral protease. During viral replication, the flavivirus genome is translated as a single polyprotein precursor, which must be cleaved into individual proteins by a complex of the viral protease, NS3, and its cofactor, NS2B. Because this cleavage is an obligate step of the viral life-cycle, the flavivirus protease is an attractive target for antiviral drug development. In this review, we will survey recent drug development studies targeting the NS3 active site, as well as studies targeting an NS2B/NS3 interaction site determined from flavivirus protease crystal structures.

  7. Hepatitis C virus and antiviral innate immunity: who wins at tug-of-war?

    PubMed

    Yang, Da-Rong; Zhu, Hai-Zhen

    2015-04-07

    Hepatitis C virus (HCV) is a major human pathogen of chronic hepatitis and related liver diseases. Innate immunity is the first line of defense against invading foreign pathogens, and its activation is dependent on the recognition of these pathogens by several key sensors. The interferon (IFN) system plays an essential role in the restriction of HCV infection via the induction of hundreds of IFN-stimulated genes (ISGs) that inhibit viral replication and spread. However, numerous factors that trigger immune dysregulation, including viral factors and host genetic factors, can help HCV to escape host immune response, facilitating viral persistence. In this review, we aim to summarize recent advances in understanding the innate immune response to HCV infection and the mechanisms of ISGs to suppress viral survival, as well as the immune evasion strategies for chronic HCV infection.

  8. Recombination Promoted by DNA Viruses: Phage λ to Herpes Simplex Virus

    PubMed Central

    Weller, Sandra K.; Sawitzke, James A.

    2015-01-01

    The purpose of this review is to explore recombination strategies in DNA viruses. Homologous recombination is a universal genetic process that plays multiple roles in the biology of all organisms, including viruses. Recombination and DNA replication are interconnected, with recombination being essential for repairing DNA damage and supporting replication of the viral genome. Recombination also creates genetic diversity, and viral recombination mechanisms have important implications for understanding viral origins as well as the dynamic nature of viral-host interactions. Both bacteriophage λ and herpes simplex virus (HSV) display high rates of recombination, both utilizing their own proteins and commandeering cellular proteins to promote recombination reactions. We focus primarily on λ and HSV, as they have proven amenable to both genetic and biochemical analysis and have recently been shown to exhibit some surprising similarities that will guide future studies. PMID:25002096

  9. Parvoviral Left-End Hairpin Ears Are Essential during Infection for Establishing a Functional Intranuclear Transcription Template and for Efficient Progeny Genome Encapsidation

    PubMed Central

    Li, Lei; Cotmore, Susan F.

    2013-01-01

    The 121-nucleotide left-end telomere of Minute Virus of Mice (MVM) can be folded into a Y-shaped hairpin with short axial ears that are highly conserved within genus Parvovirus. To explore their potential role(s) during infection, we constructed infectious plasmid clones that lacked one or other ear. Although these were nonviable when transfected into A9 cells, excision of the viral genome and DNA amplification appeared normal, and viral transcripts and proteins were expressed, but progeny virion production was minimal, supporting the idea of a potential role for the ears in genome packaging. To circumvent the absence of progeny that confounded further analysis of these mutants, plasmids were transfected into 293T cells both with and without an adenovirus helper construct, generating single bursts of progeny. These virions bound to A9 cells and were internalized but failed to initiate viral transcription, protein expression, or DNA replication. No defects in mutant virion stability or function could be detected in vitro. Significantly, mutant capsid gene expression and DNA replication could be rescued by coinfection with wild-type virions carrying a replication-competent, capsid-gene-replacement vector. To pinpoint where such complementation occurred, prior transfection of plasmids expressing only MVM nonstructural proteins was explored. NS1 alone, but not NS2, rescued transcription and protein expression from both P4 and P38 promoters, whereas NS1 molecules deleted for their C-terminal transactivation domain did not. These results suggest that the mutant virions reach the nucleus, uncoat, and are converted to duplex DNA but require an intact left-end hairpin structure to form the initiating transcription complex. PMID:23903839

  10. Identification of Bombyx mori nucleopolyhedrovirus bm58a as an auxiliary gene and its requirement for cell lysis and larval liquefaction.

    PubMed

    Yang, Rui; Zhang, Jianjia; Feng, Min; Wu, Xiaofeng

    2016-11-01

    Bombyx mori nucleopolyhedrovirus orf58a (bm58a) and its homologues are highly conserved in genomes of all sequenced group I alphabaculoviruses and its function is still unknown. Transcriptional analysis revealed that bm58a is a very late gene initiated from a late transcriptional start motif TAAG. To examine its role in the virus, a bm58a knockout virus (vBmbm-58a-KO-PH-GFP) was generated through homologous recombination in Escherichia coli. Analysis of fluorescence microscopy, titration assays and electron microscopy examination showed that the deletion of bm58a did not affect viral replication and occlusion bodies formation in vitro, indicating that bm58a is not required for viral propagation. However, vBmbm-58a-KO-PH-GFP did not result in cell lysis when wild-type virus infected cells began to lyse, and the vBmbm-58a-KO-PH-GFP infected cells remained intact until 2 weeks post-infection. Quantification of polyhedra release from cells confirmed this observation. Accordingly, though deletion of bm58a did not reduce Bombyx mori nucleopolyhedrovirus infectivity in vivo in bioassays, it did significantly disrupt the larval liquefaction, reducing the level of polyhedra release from infected host. Immunofluorescence analysis demonstrated that Bm58a was predominantly localized on the cellular membrane at the late stage of infection, which may contribute to its function of facilitating cell lysis and larval liquefaction. Our results suggest that although bm58a is not essential for viral propagation as an auxiliary gene, it is a key factor of virus-induced cell lysis and larval liquefaction in vitro and in vivo.

  11. Serotype-Specific Structural Differences in the Protease-Cofactor Complexes of the Dengue Virus Family

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandramouli, Sumana; Joseph, Jeremiah S.; Daudenarde, Sophie

    With an estimated 40% of the world population at risk, dengue poses a significant threat to human health, especially in tropical and subtropical regions. Preventative and curative efforts, such as vaccine development and drug discovery, face additional challenges due to the occurrence of four antigenically distinct serotypes of the causative dengue virus (DEN1 to -4). Complex immune responses resulting from repeat assaults by the different serotypes necessitate simultaneous targeting of all forms of the virus. One of the promising targets for drug development is the highly conserved two-component viral protease NS2B-NS3, which plays an essential role in viral replication bymore » processing the viral precursor polyprotein into functional proteins. In this paper, we report the 2.1-{angstrom} crystal structure of the DEN1 NS2B hydrophilic core (residues 49 to 95) in complex with the NS3 protease domain (residues 1 to 186) carrying an internal deletion in the N terminus (residues 11 to 20). While the overall folds within the protease core are similar to those of DEN2 and DEN4 proteases, the conformation of the cofactor NS2B is dramatically different from those of other flaviviral apoprotease structures. The differences are especially apparent within its C-terminal region, implicated in substrate binding. The structure reveals for the first time serotype-specific structural elements in the dengue virus family, with the reported alternate conformation resulting from a unique metal-binding site within the DEN1 sequence. We also report the identification of a 10-residue stretch within NS3pro that separates the substrate-binding function from the catalytic turnover rate of the enzyme. Implications for broad-spectrum drug discovery are discussed.« less

  12. Pseudorabies Virus Infection Alters Neuronal Activity and Connectivity In Vitro

    PubMed Central

    McCarthy, Kelly M.; Tank, David W.; Enquist, Lynn W.

    2009-01-01

    Alpha-herpesviruses, including human herpes simplex virus 1 & 2, varicella zoster virus and the swine pseudorabies virus (PRV), infect the peripheral nervous system of their hosts. Symptoms of infection often include itching, numbness, or pain indicative of altered neurological function. To determine if there is an in vitro electrophysiological correlate to these characteristic in vivo symptoms, we infected cultured rat sympathetic neurons with well-characterized strains of PRV known to produce virulent or attenuated symptoms in animals. Whole-cell patch clamp recordings were made at various times after infection. By 8 hours of infection with virulent PRV, action potential (AP) firing rates increased substantially and were accompanied by hyperpolarized resting membrane potentials and spikelet-like events. Coincident with the increase in AP firing rate, adjacent neurons exhibited coupled firing events, first with AP-spikelets and later with near identical resting membrane potentials and AP firing. Small fusion pores between adjacent cell bodies formed early after infection as demonstrated by transfer of the low molecular weight dye, Lucifer Yellow. Later, larger pores formed as demonstrated by transfer of high molecular weight Texas red-dextran conjugates between infected cells. Further evidence for viral-induced fusion pores was obtained by infecting neurons with a viral mutant defective for glycoprotein B, a component of the viral membrane fusion complex. These infected neurons were essentially identical to mock infected neurons: no increased AP firing, no spikelet-like events, and no electrical or dye transfer. Infection with PRV Bartha, an attenuated circuit-tracing strain delayed, but did not eliminate the increased neuronal activity and coupling events. We suggest that formation of fusion pores between infected neurons results in electrical coupling and elevated firing rates, and that these processes may contribute to the altered neural function seen in PRV-infected animals. PMID:19876391

  13. A virally inactivated functional growth factor preparation from human platelet concentrates.

    PubMed

    Su, C-Y; Kuo, Y P; Lin, Y C; Huang, C-T; Tseng, Y H; Burnouf, T

    2009-08-01

    Human platelet growth factors (HPGF) are essential for tissue regeneration and may replace fetal bovine serum (FBS) in cell therapy. No method for the manufacture of standardized virally inactivated HPGF has been developed yet. Platelet concentrates (PC) were subjected to solvent/detergent (S/D) treatment (1% TnBP/1% Triton X-45), oil extraction, hydrophobic interaction chromatography and sterile filtration. Platelet-derived growth factor (PDGF)-AB, -BB and -AA, transforming growth factor-beta1 (TGF-beta1), epidermal growth factor (EGF), insulin-like growth factor-1 (IGF-1) and vascular endothelium growth factor (VEGF) were measured by ELISA. Composition in proteins and lipids was determined, protein profiles were obtained by SDS-PAGE, and TnBP and Triton X-45 were assessed by gas chromatography and high-performance liquid chromatography, respectively. Cell growth promoting activity of HPGF was evaluated by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay using human embryonic kidney (HEK293A) fibroblast and Statens Seruminstitute rabbit corneal (SIRC) epithelial cell lines. The GF preparation contained a mean of 16.66, 2.04, 1.53, 72.19, 0.33, 48.59 and 0.44 ng/ml of PDGF-AB, -BB, -AA, TGF-beta1, EGF, IGF-1 and VEGF, respectively. The protein profile was typical of platelet releasates and had less than 2 p.p.m. of residual S/D agents. MTS assay of HEK293A and SIRC cultures showed that the GF preparation at 10% and 0.1% (v/v), respectively, could successfully replace 10% FBS for cell proliferation. Cell-stimulating activity of HPGF on HEK293A was over twice that of PC releasates. STANDARDIZED and functional virally inactivated HPGF can be prepared from human PC for possible applications in cell therapy and regenerative medicine.

  14. [Effects of Chinese herbal compound for supplementing qi and activating blood circulation on actin, Cx43 expressions and gap junctional intercellular communication functions of myocardial cells in patients with Coxsackie virus B 3 viral myocarditis].

    PubMed

    Zhang, Ming-xue; He, Wei; Gu, Ping

    2010-08-01

    To observe the effect of Chinese herbal compound for supplementing qi and activating blood circulation (CHC) on the gap junctional intercellular communication (GJIC) function of myocardial cells in patients with Coxsackie virus B 3 (CVB3) viral myocarditis. Expressions of actin and connexin43 (Cx43) in myocardial cells of patients arranged in three groups (the normal control group, the viral infected group and the CHC treated group) were detected by immunohistochemical method; the fluorescence photobleaching recovery rate of cells was detected by laser scanning confocal microscope. As compared with the viral infected group, the expressions of actin and Cx43 were increased and the GJIC function was improved in the CHC treated group. CHC could antagonize viral injury on skeleton protein, and repair the structure of gap junction channel to improve the GJIC function of myocardial cells after being attacked by CVB3.

  15. Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases

    PubMed Central

    Reguera, Juan; Gerlach, Piotr; Rosenthal, Maria; Gaudon, Stephanie; Coscia, Francesca; Günther, Stephan; Cusack, Stephen

    2016-01-01

    Segmented negative strand RNA viruses of the arena-, bunya- and orthomyxovirus families uniquely carry out viral mRNA transcription by the cap-snatching mechanism. This involves cleavage of host mRNAs close to their capped 5′ end by an endonuclease (EN) domain located in the N-terminal region of the viral polymerase. We present the structure of the cap-snatching EN of Hantaan virus, a bunyavirus belonging to hantavirus genus. Hantaan EN has an active site configuration, including a metal co-ordinating histidine, and nuclease activity similar to the previously reported La Crosse virus and Influenza virus ENs (orthobunyavirus and orthomyxovirus respectively), but is more active in cleaving a double stranded RNA substrate. In contrast, Lassa arenavirus EN has only acidic metal co-ordinating residues. We present three high resolution structures of Lassa virus EN with different bound ion configurations and show in comparative biophysical and biochemical experiments with Hantaan, La Crosse and influenza ENs that the isolated Lassa EN is essentially inactive. The results are discussed in the light of EN activation mechanisms revealed by recent structures of full-length influenza virus polymerase. PMID:27304209

  16. Bispecific Anti-HIV-1 Antibodies with Enhanced Breadth and Potency.

    PubMed

    Bournazos, Stylianos; Gazumyan, Anna; Seaman, Michael S; Nussenzweig, Michel C; Ravetch, Jeffrey V

    2016-06-16

    Broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) suppress viremia in animal models of HIV-1 and humans. To achieve potent activity without the emergence of viral escape mutants, co-administration of different bNAbs is necessary to target distinct epitopes essential for viral fitness. Here, we report the development of bispecific anti-Env neutralizing antibodies (biNAbs) with potent activity. Synergistic activity of biNAbs was achieved by combining an engineered hinge domain of IgG3 to increase Fab domain flexibility necessary for hetero-bivalent binding to the Env trimer while retaining the functional properties of the IgG1-Fc. Compared to unmodified biNAbs, hinge domain variants exhibited substantially improved neutralization activity, with particular combinations showing evidence of synergistic neutralization potency in vitro and enhanced in vivo therapeutic activity in HIV-1-infected humanized mice. These findings suggest innovative strategies for generating biNAbs with enhanced neutralization breadth and potency, representing ideal candidate molecules for the control of HIV-1 infection. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Climate Change and the Arboviruses: Lessons from the Evolution of the Dengue and Yellow Fever Viruses.

    PubMed

    Tabachnick, Walter J

    2016-09-29

    The impact of anticipated changes in global climate on the arboviruses and the diseases they cause poses a significant challenge for public health. The past evolution of the dengue and yellow fever viruses provides clues about the influence of changes in climate on their future evolution. The evolution of both viruses has been influenced by virus interactions involving the mosquito species and the primate hosts involved in virus transmission, and by their domestic and sylvatic cycles. Information is needed on how viral genes in general influence phenotypic variance for important viral functions. Changes in global climate will alter the interactions of mosquito species with their primate hosts and with the viruses in domestic cycles, and greater attention should be paid to the sylvatic cycles. There is great danger for the evolution of novel viruses, such as new serotypes, that could compromise vaccination programs and jeopardize public health. It is essential to understand (a) both sylvatic and domestic cycles and (b) the role of virus genetic and environmental variances in shaping virus phenotypic variance to more fully assess the impact of global climate change.

  18. Altered invertase activities of symptomatic tissues on Beet severe curly top virus (BSCTV) infected Arabidopsis thaliana.

    PubMed

    Park, Jungan; Kim, Soyeon; Choi, Eunseok; Auh, Chung-Kyun; Park, Jong-Bum; Kim, Dong-Giun; Chung, Young-Jae; Lee, Taek-Kyun; Lee, Sukchan

    2013-09-01

    Arabidopsis thaliana infected with Beet severe curly top virus (BSCTV) exhibits systemic symptoms such as stunting of plant growth, callus induction on shoot tips, and curling of leaves and shoot tips. The regulation of sucrose metabolism is essential for obtaining the energy required for viral replication and the development of symptoms in BSCTV-infected A. thaliana. We evaluated the changed transcript level and enzyme activity of invertases in the inflorescence stems of BSCTV-infected A. thaliana. These results were consistent with the increased pattern of ribulose-1,5-bisphosphate carboxylase/oxygenase activity and photosynthetic pigment concentration in virus-infected plants to supply more energy for BSCTV multiplication. The altered gene expression of invertases during symptom development was functionally correlated with the differential expression patterns of D-type cyclins, E2F isoforms, and invertase-related genes. Taken together, our results indicate that sucrose sensing by BSCTV infection may regulate the expression of sucrose metabolism and result in the subsequent development of viral symptoms in relation with activation of cell cycle regulation.

  19. A speculated ribozyme site in the herpes simplex virus type 1 latency-associated transcript gene is not essential for a wild-type reactivation phenotype

    PubMed Central

    Carpenter, Dale; Singh, Sukhpreet; Osorio, Nelson; Hsiang, Chinhui; Jiang, Xianzhi; Jin, Ling; Jones, Clinton; Wechsler, Steven L

    2010-01-01

    During herpes simplex virus-1 (HSV-1) latency in sensory neurons, LAT (latency-associated transcript) is the only abundantly expressed viral gene. LAT plays an important role in the HSV-1 latency-reactivation cycle, because LAT deletion mutants have a significantly decreased reactivation phenotype. Based solely on sequence analysis, it was speculated that LAT encodes a ribozyme that plays an important role in how LAT enhances the virus’ reactivation phenotype. Because LAT ribozyme activity has never been reported, we decided to test the converse hypothesis, namely, that this region of LAT does not encode a ribozyme function important for LAT’s ability to enhance the reactivation phenotype. We constructed a viral mutant (LAT-Rz) in which the speculated ribozyme consensus sequence was altered such that no ribozyme was encoded. We report here that LAT-Rz had a wild-type reactivation phenotype in mice, confirming the hypothesis that the speculated LAT ribozyme is not a dominant factor in stimulating the latency-reactivation cycle in mice. PMID:18982533

  20. Enhancing immunogenicity and transmission-blocking activity of malaria vaccines by fusing Pfs25 to IMX313 multimerization technology.

    PubMed

    Li, Yuanyuan; Leneghan, Darren B; Miura, Kazutoyo; Nikolaeva, Daria; Brian, Iona J; Dicks, Matthew D J; Fyfe, Alex J; Zakutansky, Sarah E; de Cassan, Simone; Long, Carole A; Draper, Simon J; Hill, Adrian V S; Hill, Fergal; Biswas, Sumi

    2016-01-08

    Transmission-blocking vaccines (TBV) target the sexual-stages of the malaria parasite in the mosquito midgut and are widely considered to be an essential tool for malaria elimination. High-titer functional antibodies are required against target antigens to achieve effective transmission-blocking activity. We have fused Pfs25, the leading malaria TBV candidate antigen to IMX313, a molecular adjuvant and expressed it both in ChAd63 and MVA viral vectors and as a secreted protein-nanoparticle. Pfs25-IMX313 expressed from viral vectors or as a protein-nanoparticle is significantly more immunogenic and gives significantly better transmission-reducing activity than monomeric Pfs25. In addition, we demonstrate that the Pfs25-IMX313 protein-nanoparticle leads to a qualitatively improved antibody response in comparison to soluble Pfs25, as well as to significantly higher germinal centre (GC) responses. These results demonstrate that antigen multimerization using IMX313 is a very promising strategy to enhance antibody responses against Pfs25, and that Pfs25-IMX313 is a highly promising TBV candidate vaccine.

  1. Nipah virion entry kinetics, composition, and conformational changes determined by enzymatic virus-like particles and new flow virometry tools.

    PubMed

    Landowski, Matthew; Dabundo, Jeffrey; Liu, Qian; Nicola, Anthony V; Aguilar, Hector C

    2014-12-01

    Virus-cell membrane fusion is essential for enveloped virus infections. However, mechanistic viral membrane fusion studies have predominantly focused on cell-cell fusion models, largely due to the low availability of technologies capable of characterizing actual virus-cell membrane fusion. Although cell-cell fusion assays are valuable, they do not fully recapitulate all the variables of virus-cell membrane fusion. Drastic differences between viral and cellular membrane lipid and protein compositions and curvatures exist. For biosafety level 4 (BSL4) pathogens such as the deadly Nipah virus (NiV), virus-cell fusion mechanistic studies are notably cumbersome. To circumvent these limitations, we used enzymatic Nipah virus-like-particles (NiVLPs) and developed new flow virometric tools. NiV's attachment (G) and fusion (F) envelope glycoproteins mediate viral binding to the ephrinB2/ephrinB3 cell receptors and virus-cell membrane fusion, respectively. The NiV matrix protein (M) can autonomously induce NiV assembly and budding. Using a β-lactamase (βLa) reporter/NiV-M chimeric protein, we produced NiVLPs expressing NiV-G and wild-type or mutant NiV-F on their surfaces. By preloading target cells with the βLa fluorescent substrate CCF2-AM, we obtained viral entry kinetic curves that correlated with the NiV-F fusogenic phenotypes, validating NiVLPs as suitable viral entry kinetic tools and suggesting overall relatively slower viral entry than cell-cell fusion kinetics. Additionally, the proportions of F and G on individual NiVLPs and the extent of receptor-induced conformational changes in NiV-G were measured via flow virometry, allowing the proper interpretation of the viral entry kinetic phenotypes. The significance of these findings in the viral entry field extends beyond NiV to other paramyxoviruses and enveloped viruses. Virus-cell membrane fusion is essential for enveloped virus infections. However, mechanistic viral membrane fusion studies have predominantly focused on cell-cell fusion models, largely due to the low availability of technologies capable of characterizing actual virus-cell membrane fusion. Although cell-cell fusion assays are valuable, they do not fully recapitulate all the variables of virus-cell membrane fusion. For example, drastic differences between viral and cellular membrane lipid and protein compositions and curvatures exist. For biosafety level 4 (BSL4) pathogens such as the deadly Nipah virus (NiV), virus-cell fusion mechanistic studies are especially cumbersome. To circumvent these limitations, we used enzymatic Nipah virus-like-particles (NiVLPs) and developed new flow virometric tools. Our new tools allowed us the high-throughput measurement of viral entry kinetics, glycoprotein proportions on individual viral particles, and receptor-induced conformational changes in viral glycoproteins on viral surfaces. The significance of these findings extends beyond NiV to other paramyxoviruses and enveloped viruses. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. In vitro inhibition of the bovine viral diarrhoea virus by the essential oil of Ocimum basilicum (basil) and monoterpenes.

    PubMed

    Kubiça, Thaís F; Alves, Sydney H; Weiblen, Rudi; Lovato, Luciane T

    2014-01-01

    The bovine viral diarrhoea virus (BVDV) is suggested as a model for antiviral studies of the hepatitis C virus (HCV). The antiviral activity of the essential oil of Ocimum basilicum and the monoterpenes camphor, thymol and 1,8-cineole against BVDV was investigated. The cytotoxicities of the compounds were measured by the MTT (3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide) test, and the antiviral activities were tested by the plaque reduction assay. The oil or compounds were added to the assay in three different time points: a) pre-treatment of the virus (virucidal assay); b) pre-treatment of the cells; or c) post-treatment of the cells (after virus inoculation). The percentage of plaques inhibition for each compound was determined based on the number of plaques in the viral control. The results were expressed by CC50 (50% cytotoxic concentration), IC50 (inhibitory concentration for 50% of plaques) and SI (selectivity index = CC50/IC50). Camphor (CC50 = 4420.12 μg mL(-1)) and 1,8-cineole (CC50 = 2996.10 μg mL(-1)) showed the lowest cytotoxicities and the best antiviral activities (camphor SI = 13.88 and 1,8-cineol SI = 9.05) in the virucidal assay. The higher activities achieved by the monoterpenes in the virucidal assay suggest that these compounds act directly on the viral particle.

  3. A rapid and efficient branched DNA hybridization assay to titer lentiviral vectors.

    PubMed

    Nair, Ayyappan; Xie, Jinger; Joshi, Sarasijam; Harden, Paul; Davies, Joan; Hermiston, Terry

    2008-11-01

    A robust assay to titer lentiviral vectors is imperative to qualifying their use in drug discovery, target validation and clinical applications. In this study, a novel branched DNA based hybridization assay was developed to titer lentiviral vectors by quantifying viral RNA genome copy numbers from viral lysates without having to purify viral RNA, and this approach was compared with other non-functional (p24 protein ELISA and viral RT-qPCR) and a functional method (reporter gene expression) used commonly. The RT-qPCR method requires purification of viral RNA and the accuracy of titration therefore depends on the efficiency of purification; this requirement is ameliorated in the hybridization assay as RNA is measured directly in viral lysates. The present study indicates that the hybridization based titration assay performed on viral lysates was more accurate and has additional advantages of being rapid, robust and not dependent on transduction efficiency in different cell types.

  4. SL1 revisited: functional analysis of the structure and conformation of HIV-1 genome RNA.

    PubMed

    Sakuragi, Sayuri; Yokoyama, Masaru; Shioda, Tatsuo; Sato, Hironori; Sakuragi, Jun-Ichi

    2016-11-11

    The dimer initiation site/dimer linkage sequence (DIS/DLS) region of HIV is located on the 5' end of the viral genome and suggested to form complex secondary/tertiary structures. Within this structure, stem-loop 1 (SL1) is believed to be most important and an essential key to dimerization, since the sequence and predicted secondary structure of SL1 are highly stable and conserved among various virus subtypes. In particular, a six-base palindromic sequence is always present at the hairpin loop of SL1 and the formation of kissing-loop structure at this position between the two strands of genomic RNA is suggested to trigger dimerization. Although the higher-order structure model of SL1 is well accepted and perhaps even undoubted lately, there could be stillroom for consideration to depict the functional SL1 structure while in vivo (in virion or cell). In this study, we performed several analyses to identify the nucleotides and/or basepairing within SL1 which are necessary for HIV-1 genome dimerization, encapsidation, recombination and infectivity. We unexpectedly found that some nucleotides that are believed to contribute the formation of the stem do not impact dimerization or infectivity. On the other hand, we found that one G-C basepair involved in stem formation may serve as an alternative dimer interactive site. We also report on our further investigation of the roles of the palindromic sequences on viral replication. Collectively, we aim to assemble a more-comprehensive functional map of SL1 on the HIV-1 viral life cycle. We discovered several possibilities for a novel structure of SL1 in HIV-1 DLS. The newly proposed structure model suggested that the hairpin loop of SL1 appeared larger, and genome dimerization process might consist of more complicated mechanism than previously understood. Further investigations would be still required to fully understand the genome packaging and dimerization of HIV.

  5. Virus vaccines: principles and prospects.

    PubMed Central

    Melnick, J. L.

    1989-01-01

    The present status of vaccination for controlling viral diseases is reviewed, and the needs and directions for future investigations are discussed. A survey of viral vaccines now in use has shown that knowledge about the viral agents and about the hosts' responses to infection was essential for their development. The steps needed to demonstrate the efficacy and safety of a viral vaccine are summarized; the final requirement for a successful vaccine is that it be administered in proper dosage and potency to the target populations. After general remarks on the proper use of current vaccines there follows an overview of various developments in creating new vaccines, along with the predicted time-frames for their coming into general use. Topics considered include vaccines to be administered locally at the portal of entry, subunit vaccines, viruses attenuated by genetic manipulation, use of viral vectors, vaccines developed by means of recombinant DNA, synthetic peptides, and anti-idiotype vaccines, as well as new vaccines being developed by more conventional methods. PMID:2663217

  6. Targeted DNA Mutagenesis for the Cure of Chronic Viral Infections

    PubMed Central

    Schiffer, Joshua T.; Aubert, Martine; Weber, Nicholas D.; Mintzer, Esther; Stone, Daniel

    2012-01-01

    Human immunodeficiency virus type 1 (HIV-1), hepatitis B virus (HBV), and herpes simplex virus (HSV) have been incurable to date because effective antiviral therapies target only replicating viruses and do not eradicate latently integrated or nonreplicating episomal viral genomes. Endonucleases that can target and cleave critical regions within latent viral genomes are currently in development. These enzymes are being engineered with high specificity such that off-target binding of cellular DNA will be absent or minimal. Imprecise nonhomologous-end-joining (NHEJ) DNA repair following repeated cleavage at the same critical site may permanently disrupt translation of essential viral proteins. We discuss the benefits and drawbacks of three types of DNA cleavage enzymes (zinc finger endonucleases, transcription activator-like [TAL] effector nucleases [TALENs], and homing endonucleases [also called meganucleases]), the development of delivery vectors for these enzymes, and potential obstacles for successful treatment of chronic viral infections. We then review issues regarding persistence of HIV-1, HBV, and HSV that are relevant to eradication with genome-altering approaches. PMID:22718830

  7. Neutron diffraction studies of viral fusion peptides

    NASA Astrophysics Data System (ADS)

    Bradshaw, Jeremy P.; J. M. Darkes, Malcolm; Katsaras, John; Epand, Richard M.

    2000-03-01

    Membrane fusion plays a vital role in a large and diverse number of essential biological processes. Despite this fact, the precise molecular events that occur during fusion are still not known. We are currently engaged on a study of membrane fusion as mediated by viral fusion peptides. These peptides are the N-terminal regions of certain viral envelope proteins that mediate the process of fusion between the viral envelope and the membranes of the host cell during the infection process. As part of this study, we have carried out neutron diffraction measurements at the ILL, BeNSC and Chalk River, on a range of viral fusion peptides. The peptides, from simian immunodeficiency virus (SIV), influenza A and feline leukaemia virus (FeLV), were incorporated into stacked phospholipid bilayers. Some of the peptides had been specifically deuterated at key amino acids. Lamellar diffraction data were collected and analysed to yield information on the peptide conformation, location and orientation relative to the bilayer.

  8. Insight into the tumor suppressor function of CBP through the viral oncoprotein tax.

    PubMed

    Van Orden, K; Nyborg, J K

    2000-01-01

    CREB binding protein (CBP) is a cellular coactivator protein that regulates essentially all known pathways of gene expression. The transcriptional coactivator properties of CBP are utilized by at least 25 different transcription factors representing nearly all known classes of DNA binding proteins. Once bound to their target genes, these transcription factors are believed to tether CBP to the promoter, leading to activated transcription. CBP functions to stimulate transcription through direct recruitment of the general transcription machinery as well as acetylation of both histone and transcription factor substrates. Recent observations indicate that a critical dosage of CBP is required for normal development and tumor suppression, and that perturbations in CBP concentrations may disrupt cellular homeostasis. Furthermore, there is accumulating evidence that CBP deregulation plays a direct role in hematopoietic malignancies. However, the molecular events linking CBP deregulation and malignant transformation are unclear. Further insight into the function of CBP, and its role as a tumor suppressor, can be gained through recent studies of the human T-cell leukemia virus, type I (HTLV-I) Tax oncoprotein. Tax is known to utilize CBP to stimulate transcription from the viral promoter. However, recent data suggest that as a consequence of the Tax-CBP interaction, many cellular transcription factor pathways may be deregulated. Tax disruption of CBP function may play a key role in transformation of the HTLV-I-infected cell. Thus, Tax derailment of CBP may lend important information about the tumor suppressor properties of CBP and serve as a model for the role of CBP in hematopoietic malignancies.

  9. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection

    PubMed Central

    Cui, Hongguang

    2016-01-01

    ABSTRACT The potyviral RNA genome encodes two polyproteins that are proteolytically processed by three viral protease domains into 11 mature proteins. Extensive molecular studies have identified functions for the majority of the viral proteins. For example, 6K2, one of the two smallest potyviral proteins, is an integral membrane protein and induces the endoplasmic reticulum (ER)-originated replication vesicles that target the chloroplast for robust viral replication. However, the functional role of 6K1, the other smallest protein, remains uncharacterized. In this study, we developed a series of recombinant full-length viral cDNA clones derived from a Canadian Plum pox virus (PPV) isolate. We found that deletion of any of the short motifs of 6K1 (each of which ranged from 5 to 13 amino acids), most of the 6K1 sequence (but with the conserved sequence of the cleavage sites being retained), or all of the 6K1 sequence in the PPV infectious clone abolished viral replication. The trans expression of 6K1 or the cis expression of a dislocated 6K1 failed to rescue the loss-of-replication phenotype, suggesting the temporal and spatial requirement of 6K1 for viral replication. Disruption of the N- or C-terminal cleavage site of 6K1, which prevented the release of 6K1 from the polyprotein, either partially or completely inhibited viral replication, suggesting the functional importance of the mature 6K1. We further found that green fluorescent protein-tagged 6K1 formed punctate inclusions at the viral early infection stage and colocalized with chloroplast-bound viral replicase elements 6K2 and NIb. Taken together, our results suggest that 6K1 is required for viral replication and is an important viral element of the viral replication complex at the early infection stage. IMPORTANCE Potyviruses account for more than 30% of known plant viruses and consist of many agriculturally important viruses. The genomes of potyviruses encode two polyproteins that are proteolytically processed into 11 mature proteins, with the majority of them having been at least partially functionally characterized. However, the functional role of a small protein named 6K1 remains obscure. In this study, we showed that deletion of 6K1 or a short motif/region of 6K1 in the full-length cDNA clones of plum pox virus abolishes viral replication and that mutation of the N- or C-terminal cleavage sites of 6K1 to prevent its release from the polyprotein greatly attenuates or completely inhibits viral replication, suggesting its important role in potyviral infection. We report that 6K1 forms punctate structures and targets the replication vesicles in PPV-infected plant leaf cells at the early infection stage. Our data reveal that 6K1 is an important viral protein of the potyviral replication complex. PMID:26962227

  10. CRISPR–Cas9 Genetic Analysis of Virus–Host Interactions

    PubMed Central

    Gebre, Makda; Nomburg, Jason L.; Gewurz, Benjamin E.

    2018-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) has greatly expanded the ability to genetically probe virus–host interactions. CRISPR systems enable focused or systematic, genomewide studies of nearly all aspects of a virus lifecycle. Combined with its relative ease of use and high reproducibility, CRISPR is becoming an essential tool in studies of the host factors important for viral pathogenesis. Here, we review the use of CRISPR–Cas9 for the loss-of-function analysis of host dependency factors. We focus on the use of CRISPR-pooled screens for the systematic identification of host dependency factors, particularly in Epstein–Barr virus-transformed B cells. We also discuss the use of CRISPR interference (CRISPRi) and gain-of-function CRISPR activation (CRISPRa) approaches to probe virus–host interactions. Finally, we comment on the future directions enabled by combinatorial CRISPR screens. PMID:29385696

  11. CRISPR-Cas9 Genetic Analysis of Virus-Host Interactions.

    PubMed

    Gebre, Makda; Nomburg, Jason L; Gewurz, Benjamin E

    2018-01-30

    Clustered regularly interspaced short palindromic repeats (CRISPR) has greatly expanded the ability to genetically probe virus-host interactions. CRISPR systems enable focused or systematic, genomewide studies of nearly all aspects of a virus lifecycle. Combined with its relative ease of use and high reproducibility, CRISPR is becoming an essential tool in studies of the host factors important for viral pathogenesis. Here, we review the use of CRISPR-Cas9 for the loss-of-function analysis of host dependency factors. We focus on the use of CRISPR-pooled screens for the systematic identification of host dependency factors, particularly in Epstein-Barr virus-transformed B cells. We also discuss the use of CRISPR interference (CRISPRi) and gain-of-function CRISPR activation (CRISPRa) approaches to probe virus-host interactions. Finally, we comment on the future directions enabled by combinatorial CRISPR screens.

  12. Species difference in ANP32A underlies influenza A virus polymerase host restriction

    PubMed Central

    Long, Jason S.; Giotis, Efstathios S.; Moncorgé, Olivier; Frise, Rebecca; Mistry, Bhakti; James, Joe; Morisson, Mireille; Iqbal, Munir; Vignal, Alain; Skinner, Michael A.; Barclay, Wendy S.

    2015-01-01

    Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans 1. Incompatibilities between avian virus components and the human host limit host range breaches. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells 2. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown 3–6. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the LRR and LCAR domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2 E627K, rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapt the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals. PMID:26738596

  13. The split Renilla luciferase complementation assay is useful for identifying the interaction of Epstein-Barr virus protein kinase BGLF4 and a heat shock protein Hsp90.

    PubMed

    Wang, J; Guo, W; Long, C; Zhou, H; Wang, H; Sun, X

    2016-03-01

    Protein-protein interactions can regulate different cellular processes, such as transcription, translation, and oncogenic transformation. The split Renilla luciferase complementation assay (SRLCA) is one of the techniques that detect protein-protein interactions. The SRLCA is based on the complementation of the LN and LC non-functional halves of Renilla luciferase fused to possibly interacting proteins which after interaction form a functional enzyme and emit luminescence. The BGLF4 of Epstein-Barr virus (EBV) is a viral protein kinase that is expressed during the early and late stages of lytic cycles, which can regulate multiple cellular and viral substrates to optimize the DNA replication environment. The heat shock protein Hsp90 is a molecular chaperone that maintains the integrity of structure and function of various interacting proteins, which can form a complex with BGLF4 and stabilize its expression in cells. The interaction between BGLF4 and Hsp90 could be specifically detected through the SRLCA. The region of aa 250-295 of BGLF4 is essential for the BGLF4/Hsp90 interaction and the mutation of Phe-254, Leu-266, and Leu-267 can disrupt this interaction. These results suggest that the SRLCA can specifically detect the BGLF4/Hsp90 interaction and provide a reference to develop inhibitors that disrupt the BGLF4/Hsp90 interaction.

  14. Simultaneous Mutations in Multi-Viral Proteins Are Required for Soybean mosaic virus to Gain Virulence on Soybean Genotypes Carrying Different R Genes

    PubMed Central

    Chowda-Reddy, R. V.; Sun, Haiyue; Hill, John H.; Poysa, Vaino; Wang, Aiming

    2011-01-01

    Background Genetic resistance is the most effective and sustainable approach to the control of plant pathogens that are a major constraint to agriculture worldwide. In soybean, three dominant R genes, i.e., Rsv1, Rsv3 and Rsv4, have been identified and deployed against Soybean mosaic virus (SMV) with strain-specificities. Molecular identification of virulent determinants of SMV on these resistance genes will provide essential information for the proper utilization of these resistance genes to protect soybean against SMV, and advance knowledge of virus-host interactions in general. Methodology/Principal Findings To study the gain and loss of SMV virulence on all the three resistance loci, SMV strains G7 and two G2 isolates L and LRB were used as parental viruses. SMV chimeras and mutants were created by partial genome swapping and point mutagenesis and then assessed for virulence on soybean cultivars PI96983 (Rsv1), L-29 (Rsv3), V94-5152 (Rsv4) and Williams 82 (rsv). It was found that P3 played an essential role in virulence determination on all three resistance loci and CI was required for virulence on Rsv1- and Rsv3-genotype soybeans. In addition, essential mutations in HC-Pro were also required for the gain of virulence on Rsv1-genotype soybean. To our best knowledge, this is the first report that CI and P3 are involved in virulence on Rsv1- and Rsv3-mediated resistance, respectively. Conclusions/Significance Multiple viral proteins, i.e., HC-Pro, P3 and CI, are involved in virulence on the three resistance loci and simultaneous mutations at essential positions of different viral proteins are required for an avirulent SMV strain to gain virulence on all three resistance loci. The likelihood of such mutations occurring naturally and concurrently on multiple viral proteins is low. Thus, incorporation of all three resistance genes in a soybean cultivar through gene pyramiding may provide durable resistance to SMV. PMID:22140577

  15. Identification and Targeting of an Interaction between a Tyrosine Motif within Hepatitis C Virus Core Protein and AP2M1 Essential for Viral Assembly

    PubMed Central

    Ziv-Av, Amotz; Gerber, Doron; Jacob, Yves; Einav, Shirit

    2012-01-01

    Novel therapies are urgently needed against hepatitis C virus infection (HCV), a major global health problem. The current model of infectious virus production suggests that HCV virions are assembled on or near the surface of lipid droplets, acquire their envelope at the ER, and egress through the secretory pathway. The mechanisms of HCV assembly and particularly the role of viral-host protein-protein interactions in mediating this process are, however, poorly understood. We identified a conserved heretofore unrecognized YXXΦ motif (Φ is a bulky hydrophobic residue) within the core protein. This motif is homologous to sorting signals within host cargo proteins known to mediate binding of AP2M1, the μ subunit of clathrin adaptor protein complex 2 (AP-2), and intracellular trafficking. Using microfluidics affinity analysis, protein-fragment complementation assays, and co-immunoprecipitations in infected cells, we show that this motif mediates core binding to AP2M1. YXXΦ mutations, silencing AP2M1 expression or overexpressing a dominant negative AP2M1 mutant had no effect on HCV RNA replication, however, they dramatically inhibited intra- and extracellular infectivity, consistent with a defect in viral assembly. Quantitative confocal immunofluorescence analysis revealed that core's YXXΦ motif mediates recruitment of AP2M1 to lipid droplets and that the observed defect in HCV assembly following disruption of core-AP2M1 binding correlates with accumulation of core on lipid droplets, reduced core colocalization with E2 and reduced core localization to trans-Golgi network (TGN), the presumed site of viral particles maturation. Furthermore, AAK1 and GAK, serine/threonine kinases known to stimulate binding of AP2M1 to host cargo proteins, regulate core-AP2M1 binding and are essential for HCV assembly. Last, approved anti-cancer drugs that inhibit AAK1 or GAK not only disrupt core-AP2M1 binding, but also significantly inhibit HCV assembly and infectious virus production. These results validate viral-host interactions essential for HCV assembly and yield compounds for pharmaceutical development. PMID:22916011

  16. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors

    PubMed Central

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback–Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors. PMID:22855685

  17. Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors.

    PubMed

    Daiyasu, Hiromi; Nemoto, Wataru; Toh, Hiroyuki

    2012-01-01

    Chemokine receptors (CKRs) function in the inflammatory response and in vertebrate homeostasis. Decoy and viral receptors are two types of CKR homologs with modified functions from those of the typical CKRs. The decoy receptors are able to bind ligands without signaling. On the other hand, the viral receptors show constitutive signaling without ligands. We examined the sites related to the functional difference. At first, the decoy and viral receptors were each classified into five groups, based on the molecular phylogenetic analysis. A multiple amino acid sequence alignment between each group and the CKRs was then constructed. The difference in the amino acid composition between the group and the CKRs was evaluated as the Kullback-Leibler (KL) information value at each alignment site. The KL information value is considered to reflect the difference in the functional constraints at the site. The sites with the top 5% of KL information values were selected and mapped on the structure of a CKR. The comparisons with decoy receptor groups revealed that the detected sites were biased on the intracellular side. In contrast, the sites detected from the comparisons with viral receptor groups were found on both the extracellular and intracellular sides. More sites were found in the ligand binding pocket in the analyses of the viral receptor groups, as compared to the decoy receptor groups. Some of the detected sites were located in the GPCR motifs. For example, the DRY motif of the decoy receptors was often degraded, although the motif of the viral receptors was basically conserved. The observations for the viral receptor groups suggested that the constraints in the pocket region are loose and that the sites on the intracellular side are different from those for the decoy receptors, which may be related to the constitutive signaling activity of the viral receptors.

  18. Role of Cysteines in Stabilizing the Randomized Receptor Binding Domains within Feline Leukemia Virus Envelope Proteins.

    PubMed

    Valdivieso-Torres, Leonardo; Sarangi, Anindita; Whidby, Jillian; Marcotrigiano, Joseph; Roth, Monica J

    2015-12-30

    Retargeting of gammaretroviral envelope proteins has shown promising results in the isolation of novel isolates with therapeutic potential. However, the optimal conditions required to obtain high-affinity retargeted envelope proteins with narrow tropism are not understood. This study highlights the advantage of constrained peptides within receptor binding domains and validates the random library screening technique of obtaining novel retargeted Env proteins. Using a modified vector backbone to screen the envelope libraries on 143B osteosarcoma cells, three novel and unique retargeted envelopes were isolated. The use of complex disulfide bonds within variable regions required for receptor binding is found within natural gammaretroviral envelope isolates. Interestingly, two of the isolates, named AII and BV2, have a pair of cysteines located within the randomized region of 11 amino acids similar to that identified within the CP Env, an isolate identified in a previous Env library screen on the human renal carcinoma Caki-1 cell line. The amino acids within the randomized region of AII and BV2 envelopes that are essential for viral infection have been identified in this study and include these cysteine residues. Through mutagenesis studies, the putative disulfide bond pairs including and beyond the randomized region were examined. In parallel, the disulfide bonds of CP Env were identified using mass spectrometry. The results indicate that this pair of cysteines creates the structural context to position key hydrophobic (F and W) and basic (K and H) residues critical for viral titer and suggest that AII, BV2, and CP internal cysteines bond together in distinct ways. Retargeted gammaretroviral particles have broad applications for therapeutic use. Although great advances have been achieved in identifying new Env-host cell receptor pairs, the rules for designing optimal Env libraries are still unclear. We have found that isolates with an additional pair of cysteines within the randomized region have the highest transduction efficiencies. This emphasizes the importance of considering cysteine pairs in the design of new libraries. Furthermore, our data clearly indicate that these cysteines are essential for viral infectivity by presenting essential residues to the host cell receptor. These studies facilitate the screening of Env libraries for functional entry into target cells, allowing the identification of novel gammaretroviral Envs targeting alternative host cell receptors for gene and protein delivery. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Structure-Based Mutagenesis of Sulfolobus Turreted Icosahedral Virus B204 Reveals Essential Residues in the Virion-Associated DNA-Packaging ATPase.

    PubMed

    Dellas, Nikki; Snyder, Jamie C; Dills, Michael; Nicolay, Sheena J; Kerchner, Keshia M; Brumfield, Susan K; Lawrence, C Martin; Young, Mark J

    2015-12-23

    Sulfolobus turreted icosahedral virus (STIV), an archaeal virus that infects the hyperthermoacidophile Sulfolobus solfataricus, is one of the most well-studied viruses of the domain Archaea. STIV shares structural, morphological, and sequence similarities with viruses from other domains of life, all of which are thought to belong to the same viral lineage. Several of these common features include a conserved coat protein fold, an internal lipid membrane, and a DNA-packaging ATPase. B204 is the ATPase encoded by STIV and is thought to drive packaging of viral DNA during the replication process. Here, we report the crystal structure of B204 along with the biochemical analysis of B204 mutants chosen based on structural information and sequence conservation patterns observed among members of the same viral lineage and the larger FtsK/HerA superfamily to which B204 belongs. Both in vitro ATPase activity assays and transfection assays with mutant forms of B204 confirmed the essentiality of conserved and nonconserved positions. We also have identified two distinct particle morphologies during an STIV infection that differ in the presence or absence of the B204 protein. The biochemical and structural data presented here are not only informative for the STIV replication process but also can be useful in deciphering DNA-packaging mechanisms for other viruses belonging to this lineage. STIV is a virus that infects a host from the domain Archaea that replicates in high-temperature, acidic environments. While STIV has many unique features, there exist several striking similarities between this virus and others that replicate in different environments and infect a broad range of hosts from Bacteria and Eukarya. Aside from structural features shared by viruses from this lineage, there exists a significant level of sequence similarity between the ATPase genes carried by these different viruses; this gene encodes an enzyme thought to provide energy that drives DNA packaging into the virion during infection. The experiments described here highlight the elements of this enzyme that are essential for proper function and also provide supporting evidence that B204 is present in the mature STIV virion. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Drosophila CG3303 is an essential endoribonuclease linked to TDP-43-mediated neurodegeneration

    PubMed Central

    Laneve, Pietro; Piacentini, Lucia; Casale, Assunta Maria; Capauto, Davide; Gioia, Ubaldo; Cappucci, Ugo; Di Carlo, Valerio; Bozzoni, Irene; Di Micco, Patrizio; Morea, Veronica; Di Franco, Carmela Antonia; Caffarelli, Elisa

    2017-01-01

    Endoribonucleases participate in almost every step of eukaryotic RNA metabolism, acting either as degradative or biosynthetic enzymes. We previously identified the founding member of the Eukaryotic EndoU ribonuclease family, whose components display unique biochemical features and are flexibly involved in important biological processes, such as ribosome biogenesis, tumorigenesis and viral replication. Here we report the discovery of the CG3303 gene product, which we named DendoU, as a novel family member in Drosophila. Functional characterisation revealed that DendoU is essential for Drosophila viability and nervous system activity. Pan-neuronal silencing of dendoU resulted in fly immature phenotypes, highly reduced lifespan and dramatic motor performance defects. Neuron-subtype selective silencing showed that DendoU is particularly important in cholinergic circuits. At the molecular level, we unveiled that DendoU is a positive regulator of the neurodegeneration-associated protein dTDP-43, whose downregulation recapitulates the ensemble of dendoU-dependent phenotypes. This interdisciplinary work, which comprehends in silico, in vitro and in vivo studies, unveils a relevant role for DendoU in Drosophila nervous system physio-pathology and highlights that DendoU-mediated neurotoxicity is, at least in part, contributed by dTDP-43 loss-of-function. PMID:28139767

  1. Conservation of mRNA secondary structures may filter out mutations in Escherichia coli evolution

    PubMed Central

    Chursov, Andrey; Frishman, Dmitrij; Shneider, Alexander

    2013-01-01

    Recent reports indicate that mutations in viral genomes tend to preserve RNA secondary structure, and those mutations that disrupt secondary structural elements may reduce gene expression levels, thereby serving as a functional knockout. In this article, we explore the conservation of secondary structures of mRNA coding regions, a previously unknown factor in bacterial evolution, by comparing the structural consequences of mutations in essential and nonessential Escherichia coli genes accumulated over 40 000 generations in the course of the ‘long-term evolution experiment’. We monitored the extent to which mutations influence minimum free energy (MFE) values, assuming that a substantial change in MFE is indicative of structural perturbation. Our principal finding is that purifying selection tends to eliminate those mutations in essential genes that lead to greater changes of MFE values and, therefore, may be more disruptive for the corresponding mRNA secondary structures. This effect implies that synonymous mutations disrupting mRNA secondary structures may directly affect the fitness of the organism. These results demonstrate that the need to maintain intact mRNA structures imposes additional evolutionary constraints on bacterial genomes, which go beyond preservation of structure and function of the encoded proteins. PMID:23783573

  2. The EBNA-2 N-Terminal Transactivation Domain Folds into a Dimeric Structure Required for Target Gene Activation.

    PubMed

    Friberg, Anders; Thumann, Sybille; Hennig, Janosch; Zou, Peijian; Nössner, Elfriede; Ling, Paul D; Sattler, Michael; Kempkes, Bettina

    2015-05-01

    Epstein-Barr virus (EBV) is a γ-herpesvirus that may cause infectious mononucleosis in young adults. In addition, epidemiological and molecular evidence links EBV to the pathogenesis of lymphoid and epithelial malignancies. EBV has the unique ability to transform resting B cells into permanently proliferating, latently infected lymphoblastoid cell lines. Epstein-Barr virus nuclear antigen 2 (EBNA-2) is a key regulator of viral and cellular gene expression for this transformation process. The N-terminal region of EBNA-2 comprising residues 1-58 appears to mediate multiple molecular functions including self-association and transactivation. However, it remains to be determined if the N-terminus of EBNA-2 directly provides these functions or if these activities merely depend on the dimerization involving the N-terminal domain. To address this issue, we determined the three-dimensional structure of the EBNA-2 N-terminal dimerization (END) domain by heteronuclear NMR-spectroscopy. The END domain monomer comprises a small fold of four β-strands and an α-helix which form a parallel dimer by interaction of two β-strands from each protomer. A structure-guided mutational analysis showed that hydrophobic residues in the dimer interface are required for self-association in vitro. Importantly, these interface mutants also displayed severely impaired self-association and transactivation in vivo. Moreover, mutations of solvent-exposed residues or deletion of the α-helix do not impair dimerization but strongly affect the functional activity, suggesting that the EBNA-2 dimer presents a surface that mediates functionally important intra- and/or intermolecular interactions. Our study shows that the END domain is a novel dimerization fold that is essential for functional activity. Since this specific fold is a unique feature of EBNA-2 it might provide a novel target for anti-viral therapeutics.

  3. Proteomic and Functional Analyses of the Virion Transmembrane Proteome of Cyprinid Herpesvirus 3.

    PubMed

    Vancsok, Catherine; Peñaranda, M Michelle D; Raj, V Stalin; Leroy, Baptiste; Jazowiecka-Rakus, Joanna; Boutier, Maxime; Gao, Yuan; Wilkie, Gavin S; Suárez, Nicolás M; Wattiez, Ruddy; Gillet, Laurent; Davison, Andrew J; Vanderplasschen, Alain F C

    2017-11-01

    Virion transmembrane proteins (VTPs) mediate key functions in the herpesvirus infectious cycle. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses. The present study was devoted to CyHV-3 VTPs. Using mass spectrometry approaches, we identified 16 VTPs of the CyHV-3 FL strain. Mutagenesis experiments demonstrated that eight of these proteins are essential for viral growth in vitro (open reading frame 32 [ORF32], ORF59, ORF81, ORF83, ORF99, ORF106, ORF115, and ORF131), and eight are nonessential (ORF25, ORF64, ORF65, ORF108, ORF132, ORF136, ORF148, and ORF149). Among the nonessential proteins, deletion of ORF25, ORF132, ORF136, ORF148, or ORF149 affects viral replication in vitro , and deletion of ORF25, ORF64, ORF108, ORF132, or ORF149 impacts plaque size. Lack of ORF148 or ORF25 causes attenuation in vivo to a minor or major extent, respectively. The safety and efficacy of a virus lacking ORF25 were compared to those of a previously described vaccine candidate deleted for ORF56 and ORF57 (Δ56-57). Using quantitative PCR, we demonstrated that the ORF25 deleted virus infects fish through skin infection and then spreads to internal organs as reported previously for the wild-type parental virus and the Δ56-57 virus. However, compared to the parental wild-type virus, the replication of the ORF25-deleted virus was reduced in intensity and duration to levels similar to those observed for the Δ56-57 virus. Vaccination of fish with a virus lacking ORF25 was safe but had low efficacy at the doses tested. This characterization of the virion transmembrane proteome of CyHV-3 provides a firm basis for further research on alloherpesvirus VTPs. IMPORTANCE Virion transmembrane proteins play key roles in the biology of herpesviruses. Cyprinid herpesvirus 3 (CyHV-3) is the archetype of fish alloherpesviruses and the causative agent of major economic losses in common and koi carp worldwide. In this study of the virion transmembrane proteome of CyHV-3, the major findings were: (i) the FL strain encodes 16 virion transmembrane proteins; (ii) eight of these proteins are essential for viral growth in vitro ; (iii) seven of the nonessential proteins affect viral growth in vitro , and two affect virulence in vivo ; and (iv) a mutant lacking ORF25 is highly attenuated but induces moderate immune protection. This study represents a major breakthrough in understanding the biology of CyHV-3 and will contribute to the development of prophylactic methods. It also provides a firm basis for the further research on alloherpesvirus virion transmembrane proteins. Copyright © 2017 Vancsok et al.

  4. Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus Orf50 Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential

    PubMed Central

    Wakeman, Brian S.; Izumiya, Yoshihiro

    2016-01-01

    ABSTRACT Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50. RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation. IMPORTANCE Gammaherpesviruses are associated with the development of lymphomas and lymphoproliferative diseases, as well as several other types of cancer. The human gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is tightly associated with the development of Kaposi's sarcoma and multicentric Castleman's disease, as well as a rare form of B cell lymphoma (primary effusion lymphoma) primarily observed in HIV-infected individuals. RTA is an essential viral gene product involved in the initiation of gammaherpesvirus replication and is conserved among all known gammaherpesviruses. We show here for KSHV that transcription of the gene encoding RTA is complex and leads to the expression of several isoforms of RTA with distinct functions. This observed complexity in KSHV RTA expression and function likely plays a critical role in the regulation of downstream viral and cellular gene expression, leading to the efficient production of mature virions. PMID:27795414

  5. Cellular RNA binding proteins NS1-BP and hnRNP K regulate influenza A virus RNA splicing.

    PubMed

    Tsai, Pei-Ling; Chiou, Ni-Ting; Kuss, Sharon; García-Sastre, Adolfo; Lynch, Kristen W; Fontoura, Beatriz M A

    2013-01-01

    Influenza A virus is a major human pathogen with a genome comprised of eight single-strand, negative-sense, RNA segments. Two viral RNA segments, NS1 and M, undergo alternative splicing and yield several proteins including NS1, NS2, M1 and M2 proteins. However, the mechanisms or players involved in splicing of these viral RNA segments have not been fully studied. Here, by investigating the interacting partners and function of the cellular protein NS1-binding protein (NS1-BP), we revealed novel players in the splicing of the M1 segment. Using a proteomics approach, we identified a complex of RNA binding proteins containing NS1-BP and heterogeneous nuclear ribonucleoproteins (hnRNPs), among which are hnRNPs involved in host pre-mRNA splicing. We found that low levels of NS1-BP specifically impaired proper alternative splicing of the viral M1 mRNA segment to yield the M2 mRNA without affecting splicing of mRNA3, M4, or the NS mRNA segments. Further biochemical analysis by formaldehyde and UV cross-linking demonstrated that NS1-BP did not interact directly with viral M1 mRNA but its interacting partners, hnRNPs A1, K, L, and M, directly bound M1 mRNA. Among these hnRNPs, we identified hnRNP K as a major mediator of M1 mRNA splicing. The M1 mRNA segment generates the matrix protein M1 and the M2 ion channel, which are essential proteins involved in viral trafficking, release into the cytoplasm, and budding. Thus, reduction of NS1-BP and/or hnRNP K levels altered M2/M1 mRNA and protein ratios, decreasing M2 levels and inhibiting virus replication. Thus, NS1-BP-hnRNPK complex is a key mediator of influenza A virus gene expression.

  6. The Human Cytomegalovirus UL51 Protein Is Essential for Viral Genome Cleavage-Packaging and Interacts with the Terminase Subunits pUL56 and pUL89

    PubMed Central

    Borst, Eva Maria; Kleine-Albers, Jennifer; Gabaev, Ildar; Babić, Marina; Wagner, Karen; Binz, Anne; Degenhardt, Inga; Kalesse, Markus; Jonjić, Stipan; Bauerfeind, Rudolf

    2013-01-01

    Cleavage of human cytomegalovirus (HCMV) genomes as well as their packaging into capsids is an enzymatic process mediated by viral proteins and therefore a promising target for antiviral therapy. The HCMV proteins pUL56 and pUL89 form the terminase and play a central role in cleavage-packaging, but several additional viral proteins, including pUL51, had been suggested to contribute to this process, although they remain largely uncharacterized. To study the function of pUL51 in infected cells, we constructed HCMV mutants encoding epitope-tagged versions of pUL51 and used a conditionally replicating virus (HCMV-UL51-ddFKBP), in which pUL51 levels could be regulated by a synthetic ligand. In cells infected with HCMV-UL51-ddFKBP, viral DNA replication was not affected when pUL51 was knocked down. However, no unit-length genomes and no DNA-filled C capsids were found, indicating that cleavage of concatemeric HCMV DNA and genome packaging into capsids did not occur in the absence of pUL51. pUL51 was expressed mainly with late kinetics and was targeted to nuclear replication compartments, where it colocalized with pUL56 and pUL89. Upon pUL51 knockdown, pUL56 and pUL89 were no longer detectable in replication compartments, suggesting that pUL51 is needed for their correct subnuclear localization. Moreover, pUL51 was found in a complex with the terminase subunits pUL56 and pUL89. Our data provide evidence that pUL51 is crucial for HCMV genome cleavage-packaging and may represent a third component of the viral terminase complex. Interference with the interactions between the terminase subunits by antiviral drugs could be a strategy to disrupt the HCMV replication cycle. PMID:23175377

  7. Plant Viral Proteases: Beyond the Role of Peptide Cutters

    PubMed Central

    Rodamilans, Bernardo; Shan, Hongying; Pasin, Fabio; García, Juan Antonio

    2018-01-01

    Almost half of known plant viral species rely on proteolytic cleavages as key co- and post-translational modifications throughout their infection cycle. Most of these viruses encode their own endopeptidases, proteases with high substrate specificity that internally cleave large polyprotein precursors for the release of functional sub-units. Processing of the polyprotein, however, is not an all-or-nothing process in which endopeptidases act as simple peptide cutters. On the contrary, spatial-temporal modulation of these polyprotein cleavage events is crucial for a successful viral infection. In this way, the processing of the polyprotein coordinates viral replication, assembly and movement, and has significant impact on pathogen fitness and virulence. In this mini-review, we give an overview of plant viral proteases emphasizing their importance during viral infections and the varied functionalities that result from their proteolytic activities.

  8. Expression of virus-encoded proteinases: functional and structural similarities with cellular enzymes.

    PubMed Central

    Dougherty, W G; Semler, B L

    1993-01-01

    Many viruses express their genome, or part of their genome, initially as a polyprotein precursor that undergoes proteolytic processing. Molecular genetic analyses of viral gene expression have revealed that many of these processing events are mediated by virus-encoded proteinases. Biochemical activity studies and structural analyses of these viral enzymes reveal that they have remarkable similarities to cellular proteinases. However, the viral proteinases have evolved unique features that permit them to function in a cellular environment. In this article, the current status of plant and animal virus proteinases is described along with their role in the viral replication cycle. The reactions catalyzed by viral proteinases are not simple enzyme-substrate interactions; rather, the processing steps are highly regulated, are coordinated with other viral processes, and frequently involve the participation of other factors. Images PMID:8302216

  9. TRIM41-Mediated Ubiquitination of Nucleoprotein Limits Influenza A Virus Infection.

    PubMed

    Patil, Girish; Zhao, Mengmeng; Song, Kun; Hao, Wenzhuo; Bouchereau, Daniel; Wang, Lingyan; Li, Shitao

    2018-06-13

    Influenza A virus (IAV) is a highly transmissible respiratory pathogen and a major cause of morbidity and mortality around the world. Nucleoprotein (NP) is an abundant IAV protein essential for multiple steps of viral life cycle. Our recent proteomic study of the IAV-host interaction network found that the tripartite motif containing 41 (TRIM41), a ubiquitin E3 ligase, interacted with NP. However, the role of TRIM41 in IAV infection is unknown. Here, we report that TRIM41 interacts with NP through its SPRY domain. Furthermore, TRIM41 is constitutively expressed in lung epithelial cells and overexpression of TRIM41 inhibits IAV infection. Conversely, RNA interference (RNAi) and knockout of TRIM41 increase host susceptibility to IAV infection. As a ubiquitin E3 ligase, TRIM41 ubiquitinates NP in vitro and in cells. The TRIM41 mutant lacking E3 ligase activity fails to inhibit IAV infection, suggesting that the E3 ligase activity is indispensable for TRIM41 antiviral function. Mechanistic analysis further revealed that the polyubiquitination leads to NP protein degradation and viral inhibition. Taken together, TRIM41 is a constitutively expressed intrinsic IAV restriction factor that targets NP for ubiquitination and protein degradation. IMPORTANCE Influenza control strategies rely on annual immunization and require frequent updates of the vaccine, which are not always a foolproof process. Furthermore, the current antivirals are also losing effectiveness as new viral strains are often refractory to conventional treatments. Thus, there is an urgent need to find new antiviral mechanisms and develop therapeutic drugs based on these mechanisms. Targeting the virus-host interface is an emerging new strategy because host factors controlling viral replication activity will be ideal candidates and cellular proteins are less likely to mutate under drug-mediated selective pressure. Here, we show that the ubiquitin E3 ligase TRIM41 is an intrinsic host restriction factor to IAV. TRIM41 directly binds the viral nucleoprotein and targets it for ubiquitination and proteasomal degradation, thereby limiting viral infection. Exploitation of this natural defense pathway may open new avenues to develop influenza antivirals. Copyright © 2018 American Society for Microbiology.

  10. The C-terminal 50 amino acid residues of dengue NS3 protein are important for NS3-NS5 interaction and viral replication.

    PubMed

    Tay, Moon Y F; Saw, Wuan Geok; Zhao, Yongqian; Chan, Kitti W K; Singh, Daljit; Chong, Yuwen; Forwood, Jade K; Ooi, Eng Eong; Grüber, Gerhard; Lescar, Julien; Luo, Dahai; Vasudevan, Subhash G

    2015-01-23

    Dengue virus multifunctional proteins NS3 protease/helicase and NS5 methyltransferase/RNA-dependent RNA polymerase form part of the viral replication complex and are involved in viral RNA genome synthesis, methylation of the 5'-cap of viral genome, and polyprotein processing among other activities. Previous studies have shown that NS5 residue Lys-330 is required for interaction between NS3 and NS5. Here, we show by competitive NS3-NS5 interaction ELISA that the NS3 peptide spanning residues 566-585 disrupts NS3-NS5 interaction but not the null-peptide bearing the N570A mutation. Small angle x-ray scattering study on NS3(172-618) helicase and covalently linked NS3(172-618)-NS5(320-341) reveals a rigid and compact formation of the latter, indicating that peptide NS5(320-341) engages in specific and discrete interaction with NS3. Significantly, NS3:Asn-570 to alanine mutation introduced into an infectious DENV2 cDNA clone did not yield detectable virus by plaque assay even though intracellular double-stranded RNA was detected by immunofluorescence. Detection of increased negative-strand RNA synthesis by real time RT-PCR for the NS3:N570A mutant suggests that NS3-NS5 interaction plays an important role in the balanced synthesis of positive- and negative-strand RNA for robust viral replication. Dengue virus infection has become a global concern, and the lack of safe vaccines or antiviral treatments urgently needs to be addressed. NS3 and NS5 are highly conserved among the four serotypes, and the protein sequence around the pinpointed amino acids from the NS3 and NS5 regions are also conserved. The identification of the functionally essential interaction between the two proteins by biochemical and reverse genetics methods paves the way for rational drug design efforts to inhibit viral RNA synthesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. The Influenza A Virus Genotype Determines the Antiviral Function of NF-κB

    PubMed Central

    Dam, Sharmistha; Kracht, Michael; Pleschka, Stephan

    2016-01-01

    ABSTRACT The role of NF-κB in influenza A virus (IAV) infection does not reveal a coherent picture, as pro- and also antiviral functions of this transcription factor have been described. To address this issue, we used clustered regularly interspaced short palindromic repeat with Cas9 (CRISPR-Cas9)-mediated genome engineering to generate murine MLE-15 cells lacking two essential components of the NF-κB pathway. Cells devoid of either the central NF-κB essential modulator (NEMO) scaffold protein and thus defective in IκB kinase (IKK) activation or cells not expressing the NF-κB DNA-binding and transactivation subunit p65 were tested for propagation of the SC35 virus, which has an avian host range, and its mouse-adapted variant, SC35M. While NF-κB was not relevant for replication of SC35M, the absence of NF-κB activity increased replication of the nonadapted SC35 virus. This antiviral effect of NF-κB was most prominent upon infection of cells with low virus titers as they usually occur during the initiation phase of IAV infection. The defect in NF-κB signaling resulted in diminished IAV-triggered phosphorylation of interferon regulatory factor 3 (IRF3) and expression of the antiviral beta interferon (IFN-β) gene. To identify the viral proteins responsible for NF-κB dependency, reassortant viruses were generated by reverse genetics. SC35 viruses containing the SC35M segment encoding neuraminidase (NA) were completely inert to the inhibitory effect of NF-κB, emphasizing the importance of the viral genotype for susceptibility to the antiviral functions of NF-κB. IMPORTANCE This study addresses two different issues. First, we investigated the role of the host cell transcription factor NF-κB in IAV replication by genetic manipulation of IAVs by reverse genetics combined with targeted genome engineering of host cells using CRISPR-Cas9. The analysis of these two highly defined genetic systems indicated that the IAV genotype can influence whether NF-κB displays an antiviral function and thus might in part explain incoherent results from the literature. Second, we found that perturbation of NF-κB function greatly improved the growth of a nonadapted IAV, suggesting that NF-κB may contribute to the maintenance of the host species barrier. PMID:27356900

  12. Allosteric integrase inhibitor potency is determined through the inhibition of HIV-1 particle maturation.

    PubMed

    Jurado, Kellie A; Wang, Hao; Slaughter, Alison; Feng, Lei; Kessl, Jacques J; Koh, Yasuhiro; Wang, Weifeng; Ballandras-Colas, Allison; Patel, Pratiq A; Fuchs, James R; Kvaratskhelia, Mamuka; Engelman, Alan

    2013-05-21

    Integration is essential for HIV-1 replication, and the viral integrase (IN) protein is an important therapeutic target. Allosteric IN inhibitors (ALLINIs) that engage the IN dimer interface at the binding site for the host protein lens epithelium-derived growth factor (LEDGF)/transcriptional coactivator p75 are an emerging class of small molecule antagonists. Consistent with the inhibition of a multivalent drug target, ALLINIs display steep antiviral dose-response curves ex vivo. ALLINIs multimerize IN protein and concordantly block its assembly with viral DNA in vitro, indicating that the disruption of two integration-associated functions, IN catalysis and the IN-LEDGF/p75 interaction, determines the multimode mechanism of ALLINI action. We now demonstrate that ALLINI potency is unexpectedly accounted for during the late phase of HIV-1 replication. The compounds promote virion IN multimerization and, reminiscent of class II IN mutations, block the formation of the electron-dense viral core and inhibit reverse transcription and integration in subsequently infected target cells. Mature virions are recalcitrant to ALLINI treatment, and compound potency during virus production is independent of the level of LEDGF/p75 expression. We conclude that cooperative multimerization of IN by ALLINIs together with the inability for LEDGF/p75 to effectively engage the virus during its egress from cells underscores the multimodal mechanism of ALLINI action. Our results highlight the versatile nature of allosteric inhibitors to primarily inhibit viral replication at a step that is distinct from the catalytic requirement for the target enzyme. The vulnerability of IN to small molecules during the late phase of HIV-1 replication unveils a pharmacological Achilles' heel for exploitation in clinical ALLINI development.

  13. KSHV inhibits stress granule formation by viral ORF57 blocking PKR activation

    PubMed Central

    Sharma, Nishi R.; Majerciak, Vladimir; Kruhlak, Michael J.

    2017-01-01

    TIA-1 positive stress granules (SG) represent the storage sites of stalled mRNAs and are often associated with the cellular antiviral response. In this report, we provide evidence that Kaposi’s sarcoma-associated herpesvirus (KSHV) overcomes the host antiviral response by inhibition of SG formation via a viral lytic protein ORF57. By immunofluorescence analysis, we found that B lymphocytes with KSHV lytic infection are refractory to SG induction. KSHV ORF57, an essential post-transcriptional regulator of viral gene expression and the production of new viral progeny, inhibits SG formation induced experimentally by arsenite and poly I:C, but not by heat stress. KSHV ORF37 (vSOX) bearing intrinsic endoribonuclease activity also inhibits arsenite-induced SG formation, but KSHV RTA, vIRF-2, ORF45, ORF59 and LANA exert no such function. ORF57 binds both PKR-activating protein (PACT) and protein kinase R (PKR) through their RNA-binding motifs and prevents PACT-PKR interaction in the PKR pathway which inhibits KSHV production. Consistently, knocking down PKR expression significantly promotes KSHV virion production. ORF57 interacts with PKR to inhibit PKR binding dsRNA and its autophosphorylation, leading to inhibition of eIF2α phosphorylation and SG formation. Homologous protein HSV-1 ICP27, but not EBV EB2, resembles KSHV ORF57 in the ability to block the PKR/eIF2α/SG pathway. In addition, KSHV ORF57 inhibits poly I:C-induced TLR3 phosphorylation. Altogether, our data provide the first evidence that KSHV ORF57 plays a role in modulating PKR/eIF2α/SG axis and enhances virus production during virus lytic infection. PMID:29084250

  14. Host cell interactome of PA protein of H5N1 influenza A virus in chicken cells.

    PubMed

    Wang, Qiao; Li, Qinghe; Liu, Ranran; Zheng, Maiqing; Wen, Jie; Zhao, Guiping

    2016-03-16

    Influenza A virus (IAV) heavily depends on viral-host protein interactions in order to replicate and spread. Identification of host factors that interact with viral proteins plays crucial roles in understanding the mechanism of IAV infection. Here we report the interaction landscape of H5N1 IAV PA protein in chicken cells through the use of affinity purification and mass spectrometry. PA protein was expressed in chicken cells and PA interacting complexes were captured by co-immunoprecipitation and analyzed by mass spectrometry. A total of 134 proteins were identified as PA-host interacting factors. Protein complexes including the minichromosome maintenance complex (MCM), 26S proteasome and the coat protein I (COPI) complex associated with PA in chicken cells, indicating the essential roles of these functional protein complexes during the course of IAV infection. Gene Ontology and pathway enrichment analysis both showed strong enrichment of PA interacting proteins in the category of DNA replication, covering genes such as PCNA, MCM2, MCM3, MCM4, MCM5 and MCM7. This study has uncovered the comprehensive interactome of H5N1 IAV PA protein in its chicken host and helps to establish the foundation for further investigation into the newly identified viral-host interactions. Influenza A virus (IAV) is a great threat to public health and avian production. However, the manner in which avian IAV recruits the host cellular machinery for replication and how the host antagonizes the IAV infection was previously poorly understood. Here we present the viral-host interactome of the H5N1 IAV PA protein and reveal the comprehensive association of host factors with PA. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning

    PubMed Central

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-01-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure. PMID:26633465

  16. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning.

    PubMed

    Tuo, Decai; Shen, Wentao; Yan, Pu; Li, Xiaoying; Zhou, Peng

    2015-12-01

    Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion(®) Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli. In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.

  17. Hepatitis B Virus Capsid Assembly Modulators, but Not Nucleoside Analogs, Inhibit the Production of Extracellular Pregenomic RNA and Spliced RNA Variants

    PubMed Central

    Ren, Suping; Espiritu, Christine; Kelly, Mollie; Lau, Vincent; Zheng, Lingjie; Hartman, George D.; Flores, Osvaldo A.; Klumpp, Klaus

    2017-01-01

    ABSTRACT The hepatitis B virus (HBV) core protein serves multiple essential functions in the viral life cycle, and antiviral agents that target the core protein are being developed. Capsid assembly modulators (CAMs) are compounds that target core and misdirect capsid assembly, resulting in the suppression of HBV replication and virion production. Besides HBV DNA, circulating HBV RNA has been detected in patient serum and can be associated with the treatment response. Here we studied the effect of HBV CAMs on the production of extracellular HBV RNA using infected HepaRG cells and primary human hepatocytes. Representative compounds from the sulfonamide carboxamide and heteroaryldihydropyrimidine series of CAMs were evaluated and compared to nucleos(t)ide analogs as inhibitors of the viral polymerase. The results showed that CAMs blocked extracellular HBV RNA with efficiencies similar to those with which they blocked pregenomic RNA (pgRNA) encapsidation, HBV DNA replication, and Dane particle production. Nucleos(t)ide analogs inhibited viral replication and virion production but not encapsidation or production of extracellular HBV RNA. Profiling of HBV RNA from both culture supernatants and patient serum showed that extracellular viral RNA consisted of pgRNA and spliced pgRNA variants with an internal deletion(s) but still retained the sequences at both the 5′ and 3′ ends. Similar variants were detected in the supernatants of infected cells with and without nucleos(t)ide analog treatment. Overall, our data demonstrate that HBV CAMs represent direct antiviral agents with a profile differentiated from that of nucleos(t)ide analogs, including the inhibition of extracellular pgRNA and spliced pgRNA. PMID:28559265

  18. Autophagy regulates UBC9 levels during viral-mediated tumorigenesis

    PubMed Central

    Mattoscio, Domenico; Casadio, Chiara; Miccolo, Claudia; Maffini, Fausto; Raimondi, Andrea; Tacchetti, Carlo; Gheit, Tarik; Tagliabue, Marta; Galimberti, Viviana E.; De Lorenzi, Francesca; Chiesa, Fausto; Ansarin, Mohssen; Tommasino, Massimo

    2017-01-01

    UBC9, the sole E2-conjugating enzyme required for SUMOylation, is a key regulator of essential cellular functions and, as such, is frequently altered in cancers. Along these lines, we recently reported that its expression gradually increases during early stages of human papillomavirus (HPV)-mediated cervical lesions transformation. However, a better understanding of how UBC9 is exploited by transforming viral oncoproteins is still needed. In the present study, we show that in human samples HPV drives UBC9 up-regulation also in very early steps of head and neck tumorigenesis, pointing to the important role for UBC9 in the HPV-mediated carcinogenic program. Moreover, using HPV-infected pre-cancerous tissues and primary human keratinocytes as the natural host of the virus, we investigate the pathological meaning and the cellular mechanisms responsible for UBC9 de-regulation in an oncoviral context. Our results show that UBC9 overexpression is promoted by transforming viral proteins to increase host cells’ resistance to apoptosis. In addition, ultrastuctural, pharmacological and genetic approaches crucially unveil that UBC9 is physiologically targeted by autophagy in human cells. However, the presence of HPV E6/E7 oncoproteins negatively impacts the autophagic process through selective inhibition of autophagosome-lysosome fusion, finally leading to p53 dependent UBC9 accumulation during viral-induced cellular transformation. Therefore, our study elucidates how UBC9 is manipulated by HPV oncoproteins, details the physiological mechanism by which UBC9 is degraded in cells, and identifies how HPV E6/E7 impact on autophagy. These findings point to UBC9 and autophagy as novel hallmarks of HPV oncogenesis, and open innovative avenues towards the treatment of HPV-related malignancies. PMID:28253371

  19. Marek’s disease virus encoded ribonucleotide reductase large subunit is essential for in vivo replication and plays a critical role in viral pathogenesis.

    USDA-ARS?s Scientific Manuscript database

    Marek’s disease virus encodes a ribonucleotide reductase (RR) that consists of two subunits namely RR1 and RR2, both of which associate to form an active holoenzyme and both subunits are necessary for enzyme activity. It is an essential enzyme for the conversion of ribonucleotides to deoxyribonucleo...

  20. Cas9 specifies functional viral targets during CRISPR-Cas adaptation.

    PubMed

    Heler, Robert; Samai, Poulami; Modell, Joshua W; Weiner, Catherine; Goldberg, Gregory W; Bikard, David; Marraffini, Luciano A

    2015-03-12

    Clustered regularly interspaced short palindromic repeat (CRISPR) loci and their associated (Cas) proteins provide adaptive immunity against viral infection in prokaryotes. Upon infection, short phage sequences known as spacers integrate between CRISPR repeats and are transcribed into small RNA molecules that guide the Cas9 nuclease to the viral targets (protospacers). Streptococcus pyogenes Cas9 cleavage of the viral genome requires the presence of a 5'-NGG-3' protospacer adjacent motif (PAM) sequence immediately downstream of the viral target. It is not known whether and how viral sequences flanked by the correct PAM are chosen as new spacers. Here we show that Cas9 selects functional spacers by recognizing their PAM during spacer acquisition. The replacement of cas9 with alleles that lack the PAM recognition motif or recognize an NGGNG PAM eliminated or changed PAM specificity during spacer acquisition, respectively. Cas9 associates with other proteins of the acquisition machinery (Cas1, Cas2 and Csn2), presumably to provide PAM-specificity to this process. These results establish a new function for Cas9 in the genesis of prokaryotic immunological memory.

  1. RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies.

    PubMed

    Malhotra, Meenakshi; Toulouse, André; Godinho, Bruno M D C; Mc Carthy, David John; Cryan, John F; O'Driscoll, Caitriona M

    2015-10-01

    Malignant primary brain tumors are aggressive cancerous cells that invade the surrounding tissues of the central nervous system. The current treatment options for malignant brain tumors are limited due to the inability to cross the blood-brain barrier. The advancements in current research has identified and characterized certain molecular markers that are essential for tumor survival, progression, metastasis and angiogenesis. These molecular markers have served as therapeutic targets for the RNAi based therapies, which enable site-specific silencing of the gene responsible for tumor proliferation. However, to bring about therapeutic success, an efficient delivery carrier that can cross the blood-brain barrier and reach the targeted site is essential. The current review focuses on the potential of targeted, non-viral and viral particles containing RNAi therapeutic molecules as delivery strategies specifically for brain tumors.

  2. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages

    PubMed Central

    Callaway, Heather M.; Feng, Kurtis H.; Lee, Donald W.; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan

    2016-01-01

    ABSTRACT Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction are mediated by the viral capsid, but the structure-function correlates of the capsids and their constituent proteins are still incompletely understood, especially in relation to identifying capsid processes responsible for infection and release from the cell. Here, we characterize the functional effects of capsid protein mutations that result in the loss of virus infectivity, giving a better understanding of the portions of the capsid that mediate essential steps in successful infection pathways and how they contribute to viral infectivity. PMID:27847360

  3. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages.

    PubMed

    Callaway, Heather M; Feng, Kurtis H; Lee, Donald W; Allison, Andrew B; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan; Parrish, Colin R

    2017-01-15

    Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction are mediated by the viral capsid, but the structure-function correlates of the capsids and their constituent proteins are still incompletely understood, especially in relation to identifying capsid processes responsible for infection and release from the cell. Here, we characterize the functional effects of capsid protein mutations that result in the loss of virus infectivity, giving a better understanding of the portions of the capsid that mediate essential steps in successful infection pathways and how they contribute to viral infectivity. Copyright © 2017 American Society for Microbiology.

  4. Prototype foamy virus envelope glycoprotein leader peptide processing is mediated by a furin-like cellular protease, but cleavage is not essential for viral infectivity.

    PubMed

    Duda, Anja; Stange, Annett; Lüftenegger, Daniel; Stanke, Nicole; Westphal, Dana; Pietschmann, Thomas; Eastman, Scott W; Linial, Maxine L; Rethwilm, Axel; Lindemann, Dirk

    2004-12-01

    Analogous to cellular glycoproteins, viral envelope proteins contain N-terminal signal sequences responsible for targeting them to the secretory pathway. The prototype foamy virus (PFV) envelope (Env) shows a highly unusual biosynthesis. Its precursor protein has a type III membrane topology with both the N and C terminus located in the cytoplasm. Coexpression of FV glycoprotein and interaction of its leader peptide (LP) with the viral capsid is essential for viral particle budding and egress. Processing of PFV Env into the particle-associated LP, surface (SU), and transmembrane (TM) subunits occur posttranslationally during transport to the cell surface by yet-unidentified cellular proteases. Here we provide strong evidence that furin itself or a furin-like protease and not the signal peptidase complex is responsible for both processing events. N-terminal protein sequencing of the SU and TM subunits of purified PFV Env-immunoglobulin G immunoadhesin identified furin consensus sequences upstream of both cleavage sites. Mutagenesis analysis of two overlapping furin consensus sequences at the PFV LP/SU cleavage site in the wild-type protein confirmed the sequencing data and demonstrated utilization of only the first site. Fully processed SU was almost completely absent in viral particles of mutants having conserved arginine residues replaced by alanines in the first furin consensus sequence, but normal processing was observed upon mutation of the second motif. Although these mutants displayed a significant loss in infectivity as a result of reduced particle release, no correlation to processing inhibition was observed, since another mutant having normal LP/SU processing had a similar defect.

  5. Exploration of Panviral Proteome: High-Throughput Cloning and Functional Implications in Virus-host Interactions

    PubMed Central

    Yu, Xiaobo; Bian, Xiaofang; Throop, Andrea; Song, Lusheng; Moral, Lerys Del; Park, Jin; Seiler, Catherine; Fiacco, Michael; Steel, Jason; Hunter, Preston; Saul, Justin; Wang, Jie; Qiu, Ji; Pipas, James M.; LaBaer, Joshua

    2014-01-01

    Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies. PMID:24955142

  6. Exploration of panviral proteome: high-throughput cloning and functional implications in virus-host interactions.

    PubMed

    Yu, Xiaobo; Bian, Xiaofang; Throop, Andrea; Song, Lusheng; Moral, Lerys Del; Park, Jin; Seiler, Catherine; Fiacco, Michael; Steel, Jason; Hunter, Preston; Saul, Justin; Wang, Jie; Qiu, Ji; Pipas, James M; LaBaer, Joshua

    2014-01-01

    Throughout the long history of virus-host co-evolution, viruses have developed delicate strategies to facilitate their invasion and replication of their genome, while silencing the host immune responses through various mechanisms. The systematic characterization of viral protein-host interactions would yield invaluable information in the understanding of viral invasion/evasion, diagnosis and therapeutic treatment of a viral infection, and mechanisms of host biology. With more than 2,000 viral genomes sequenced, only a small percent of them are well investigated. The access of these viral open reading frames (ORFs) in a flexible cloning format would greatly facilitate both in vitro and in vivo virus-host interaction studies. However, the overall progress of viral ORF cloning has been slow. To facilitate viral studies, we are releasing the initiation of our panviral proteome collection of 2,035 ORF clones from 830 viral genes in the Gateway® recombinational cloning system. Here, we demonstrate several uses of our viral collection including highly efficient production of viral proteins using human cell-free expression system in vitro, global identification of host targets for rubella virus using Nucleic Acid Programmable Protein Arrays (NAPPA) containing 10,000 unique human proteins, and detection of host serological responses using micro-fluidic multiplexed immunoassays. The studies presented here begin to elucidate host-viral protein interactions with our systemic utilization of viral ORFs, high-throughput cloning, and proteomic technologies. These valuable plasmid resources will be available to the research community to enable continued viral functional studies.

  7. Ebola Virus VP35 Interaction with Dynein LC8 Regulates Viral RNA Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luthra, Priya; Jordan, David S.; Leung, Daisy W.

    2015-03-04

    Ebola virus VP35 inhibits alpha/beta interferon production and functions as a viral polymerase cofactor. Previously, the 8-kDa cytoplasmic dynein light chain (LC8) was demonstrated to interact with VP35, but the functional consequences were unclear. Here we demonstrate that the interaction is direct and of high affinity and that binding stabilizes the VP35 N-terminal oligomerization domain and enhances viral RNA synthesis. Mutational analysis demonstrates that VP35 interaction is required for the functional effects of LC8.

  8. Plum Pox Virus 6K1 Protein Is Required for Viral Replication and Targets the Viral Replication Complex at the Early Stage of Infection.

    PubMed

    Cui, Hongguang; Wang, Aiming

    2016-05-15

    The potyviral RNA genome encodes two polyproteins that are proteolytically processed by three viral protease domains into 11 mature proteins. Extensive molecular studies have identified functions for the majority of the viral proteins. For example, 6K2, one of the two smallest potyviral proteins, is an integral membrane protein and induces the endoplasmic reticulum (ER)-originated replication vesicles that target the chloroplast for robust viral replication. However, the functional role of 6K1, the other smallest protein, remains uncharacterized. In this study, we developed a series of recombinant full-length viral cDNA clones derived from a Canadian Plum pox virus (PPV) isolate. We found that deletion of any of the short motifs of 6K1 (each of which ranged from 5 to 13 amino acids), most of the 6K1 sequence (but with the conserved sequence of the cleavage sites being retained), or all of the 6K1 sequence in the PPV infectious clone abolished viral replication. The trans expression of 6K1 or the cis expression of a dislocated 6K1 failed to rescue the loss-of-replication phenotype, suggesting the temporal and spatial requirement of 6K1 for viral replication. Disruption of the N- or C-terminal cleavage site of 6K1, which prevented the release of 6K1 from the polyprotein, either partially or completely inhibited viral replication, suggesting the functional importance of the mature 6K1. We further found that green fluorescent protein-tagged 6K1 formed punctate inclusions at the viral early infection stage and colocalized with chloroplast-bound viral replicase elements 6K2 and NIb. Taken together, our results suggest that 6K1 is required for viral replication and is an important viral element of the viral replication complex at the early infection stage. Potyviruses account for more than 30% of known plant viruses and consist of many agriculturally important viruses. The genomes of potyviruses encode two polyproteins that are proteolytically processed into 11 mature proteins, with the majority of them having been at least partially functionally characterized. However, the functional role of a small protein named 6K1 remains obscure. In this study, we showed that deletion of 6K1 or a short motif/region of 6K1 in the full-length cDNA clones of plum pox virus abolishes viral replication and that mutation of the N- or C-terminal cleavage sites of 6K1 to prevent its release from the polyprotein greatly attenuates or completely inhibits viral replication, suggesting its important role in potyviral infection. We report that 6K1 forms punctate structures and targets the replication vesicles in PPV-infected plant leaf cells at the early infection stage. Our data reveal that 6K1 is an important viral protein of the potyviral replication complex. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Metaproteome of the viral concentrates from the deep chlorophyll maximum of the South China Sea

    NASA Astrophysics Data System (ADS)

    Xie, Zhang-Xian; Chen, Feng; Zhang, Shu-Feng; Wang, Ming-Hua; Zhang, Hao; Kong, Ling-Fen; Dai, Min-Han; Hong, Hua-Sheng; Lin, Lin; Wang, Da-Zhi

    2016-04-01

    Viral concentrates (VCs) have been commonly used for studying viral diversity, viral metagenomics and virus-host interactions in the natural ecosystem. However, the protein characteristics of VCs have not been explored. Here, we applied shotgun proteomics to characterize the proteins of VCs collected from the oligotrophic deep chlorophyll maximum of the South China Sea. We found that 34% of the identified proteins were assigned to the viruses, mainly being those of SAR11 related bacteria, cyanobacteria and picophytoeukaryotes. The remaining 66% were non-viral proteins mostly originating from diverse bacteria, such as SAR324, SAR11 and the Alteromonadales, and were functionally dominated by transport, translation, sulfur metabolism and one-carbon metabolism. Among the non-viral proteins, 28% were extracellular proteins and 10% were identified exclusively in the VCs, suggesting that non-viral entities might exist in the VCs. This study demonstrated that metaproteomics provides a valuable avenue to explore not only the diversity and structure of a viral community but also the novel ecological functions affiliated with microbes in the natural environment.

  10. Bidirectional Lipid Droplet Velocities Are Controlled by Differential Binding Strengths of HCV Core DII Protein

    PubMed Central

    Lyn, Rodney K.; Hope, Graham; Sherratt, Allison R.; McLauchlan, John; Pezacki, John Paul

    2013-01-01

    Host cell lipid droplets (LD) are essential in the hepatitis C virus (HCV) life cycle and are targeted by the viral capsid core protein. Core-coated LDs accumulate in the perinuclear region and facilitate viral particle assembly, but it is unclear how mobility of these LDs is directed by core. Herein we used two-photon fluorescence, differential interference contrast imaging, and coherent anti-Stokes Raman scattering microscopies, to reveal novel core-mediated changes to LD dynamics. Expression of core protein’s lipid binding domain II (DII-core) induced slower LD speeds, but did not affect directionality of movement on microtubules. Modulating the LD binding strength of DII-core further impacted LD mobility, revealing the temporal effects of LD-bound DII-core. These results for DII-core coated LDs support a model for core-mediated LD localization that involves core slowing down the rate of movement of LDs until localization at the perinuclear region is accomplished where LD movement ceases. The guided localization of LDs by HCV core protein not only is essential to the viral life cycle but also poses an interesting target for the development of antiviral strategies against HCV. PMID:24223760

  11. New Metrics for Evaluating Viral Respiratory Pathogenesis

    PubMed Central

    Menachery, Vineet D.; Gralinski, Lisa E.; Baric, Ralph S.; Ferris, Martin T.

    2015-01-01

    Viral pathogenesis studies in mice have relied on markers of severe systemic disease, rather than clinically relevant measures, to evaluate respiratory virus infection; thus confounding connections to human disease. Here, whole-body plethysmography was used to directly measure changes in pulmonary function during two respiratory viral infections. This methodology closely tracked with traditional pathogenesis metrics, distinguished both virus- and dose-specific responses, and identified long-term respiratory changes following both SARS-CoV and Influenza A Virus infection. Together, the work highlights the utility of examining respiratory function following infection in order to fully understand viral pathogenesis. PMID:26115403

  12. Autophagy is involved in anti-viral activity of pentagalloylglucose (PGG) against Herpes simplex virus type 1 infection in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Ying, E-mail: peiying-19802@163.com; Chen, Zhen-Ping, E-mail: 530670663@qq.com; Ju, Huai-Qiang, E-mail: 344464448@qq.com

    2011-02-11

    Research highlights: {yields} We showed PGG has anti-viral activity against Herpes simplex virus type 1 (HSV-1) and can induce autophgy. {yields} Autophagy may be a novel and important mechanism mediating PGG anti-viral activities. {yields} Inhibition of mTOR pathway is an important mechanism of induction of autophagy by PGG. -- Abstract: Pentagalloylglucose (PGG) is a natural polyphenolic compound with broad-spectrum anti-viral activity, however, the mechanisms underlying anti-viral activity remain undefined. In this study, we investigated the effects of PGG on anti-viral activity against Herpes simplex virus type 1 (HSV-1) associated with autophagy. We found that the PGG anti-HSV-1 activity was impairedmore » significantly in MEF-atg7{sup -/-} cells (autophagy-defective cells) derived from an atg7{sup -/-} knockout mouse. Transmission electron microscopy revealed that PGG-induced autophagosomes engulfed HSV-1 virions. The mTOR signaling pathway, an essential pathway for the regulation of autophagy, was found to be suppressed following PGG treatment. Data presented in this report demonstrated for the first time that autophagy induced following PGG treatment contributed to its anti-HSV activity in vitro.« less

  13. pUL34 binding near the human cytomegalovirus origin of lytic replication enhances DNA replication and viral growth.

    PubMed

    Slayton, Mark; Hossain, Tanvir; Biegalke, Bonita J

    2018-05-01

    The human cytomegalovirus (HCMV) UL34 gene encodes sequence-specific DNA-binding proteins (pUL34) which are required for viral replication. Interactions of pUL34 with DNA binding sites represses transcription of two viral immune evasion genes, US3 and US9. 12 additional predicted pUL34-binding sites are present in the HCMV genome (strain AD169) with three binding sites concentrated near the HCMV origin of lytic replication (oriLyt). We used ChIP-seq analysis of pUL34-DNA interactions to confirm that pUL34 binds to the oriLyt region during infection. Mutagenesis of the UL34-binding sites in an oriLyt-containing plasmid significantly reduced viral-mediated oriLyt-dependent DNA replication. Mutagenesis of these sites in the HCMV genome reduced the replication efficiencies of the resulting viruses. Protein-protein interaction analyses demonstrated that pUL34 interacts with the viral proteins IE2, UL44, and UL84, that are essential for viral DNA replication, suggesting that pUL34-DNA interactions in the oriLyt region are involved in the DNA replication cascade. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. N-Terminomics TAILS Identifies Host Cell Substrates of Poliovirus and Coxsackievirus B3 3C Proteinases That Modulate Virus Infection.

    PubMed

    Jagdeo, Julienne M; Dufour, Antoine; Klein, Theo; Solis, Nestor; Kleifeld, Oded; Kizhakkedathu, Jayachandran; Luo, Honglin; Overall, Christopher M; Jan, Eric

    2018-04-15

    Enteroviruses encode proteinases that are essential for processing of the translated viral polyprotein. In addition, viral proteinases also target host proteins to manipulate cellular processes and evade innate antiviral responses to promote replication and infection. Although some host protein substrates of enterovirus proteinases have been identified, the full repertoire of targets remains unknown. We used a novel quantitative in vitro proteomics-based approach, termed t erminal a mine i sotopic l abeling of s ubstrates (TAILS), to identify with high confidence 72 and 34 new host protein targets of poliovirus and coxsackievirus B3 (CVB3) 3C proteinases (3C pro s) in HeLa cell and cardiomyocyte HL-1 cell lysates, respectively. We validated a subset of candidate substrates that are targets of poliovirus 3C pro in vitro including three common protein targets, phosphoribosylformylglycinamidine synthetase (PFAS), hnRNP K, and hnRNP M, of both proteinases. 3C pro -targeted substrates were also cleaved in virus-infected cells but not noncleavable mutant proteins designed from the TAILS-identified cleavage sites. Knockdown of TAILS-identified target proteins modulated infection both negatively and positively, suggesting that cleavage by 3C pro promotes infection. Indeed, expression of a cleavage-resistant mutant form of the endoplasmic reticulum (ER)-Golgi vesicle-tethering protein p115 decreased viral replication and yield. As the first comprehensive study to identify and validate functional enterovirus 3C pro substrates in vivo , we conclude that N-terminomics by TAILS is an effective strategy to identify host targets of viral proteinases in a nonbiased manner. IMPORTANCE Enteroviruses are positive-strand RNA viruses that encode proteases that cleave the viral polyprotein into the individual mature viral proteins. In addition, viral proteases target host proteins in order to modulate cellular pathways and block antiviral responses in order to facilitate virus infection. Although several host protein targets have been identified, the entire list of proteins that are targeted is not known. In this study, we used a novel unbiased proteomics approach to identify ∼100 novel host targets of the enterovirus 3C protease, thus providing further insights into the network of cellular pathways that are modulated to promote virus infection. Copyright © 2018 Jagdeo et al.

  15. The Potyviral P3 Protein Targets Eukaryotic Elongation Factor 1A to Promote the Unfolded Protein Response and Viral Pathogenesis1[OPEN

    PubMed Central

    Shine, M.B.; Cui, Xiaoyan; Chen, Xin; Ma, Na; Kachroo, Pradeep; Zhi, Haijan; Kachroo, Aardra

    2016-01-01

    The biochemical function of the potyviral P3 protein is not known, although it is known to regulate virus replication, movement, and pathogenesis. We show that P3, the putative virulence determinant of soybean mosaic virus (SMV), targets a component of the translation elongation complex in soybean. Eukaryotic elongation factor 1A (eEF1A), a well-known host factor in viral pathogenesis, is essential for SMV virulence and the associated unfolded protein response (UPR). Silencing GmEF1A inhibits accumulation of SMV and another ER-associated virus in soybean. Conversely, endoplasmic reticulum (ER) stress-inducing chemicals promote SMV accumulation in wild-type, but not GmEF1A-knockdown, plants. Knockdown of genes encoding the eEF1B isoform, which is important for eEF1A function in translation elongation, has similar effects on UPR and SMV resistance, suggesting a link to translation elongation. P3 and GmEF1A promote each other’s nuclear localization, similar to the nuclear-cytoplasmic transport of eEF1A by the Human immunodeficiency virus 1 Nef protein. Our results suggest that P3 targets host elongation factors resulting in UPR, which in turn facilitates SMV replication and place eEF1A upstream of BiP in the ER stress response during pathogen infection. PMID:27356973

  16. Heterologous RNA-silencing suppressors from both plant- and animal-infecting viruses support plum pox virus infection.

    PubMed

    Maliogka, Varvara I; Calvo, María; Carbonell, Alberto; García, Juan Antonio; Valli, Adrian

    2012-07-01

    HCPro, the RNA-silencing suppressor (RSS) of viruses belonging to the genus Potyvirus in the family Potyviridae, is a multifunctional protein presumably involved in all essential steps of the viral infection cycle. Recent studies have shown that plum pox potyvirus (PPV) HCPro can be replaced successfully by cucumber vein yellowing ipomovirus P1b, a sequence-unrelated RSS from a virus of the same family. In order to gain insight into the requirement of a particular RSS to establish a successful potyviral infection, we tested the ability of different heterologous RSSs from both plant- and animal-infecting viruses to substitute for HCPro. Making use of engineered PPV chimeras, we show that PPV HCPro can be replaced functionally by some, but not all, unrelated RSSs, including the NS1 protein of the mammal-infecting influenza A virus. Interestingly, the capacity of a particular RSS to replace HCPro does not correlate strictly with its RNA silencing-suppression strength. Altogether, our results suggest that not all suppression strategies are equally suitable for efficient escape of PPV from the RNA-silencing machinery. The approach followed here, based on using PPV chimeras in which an under-consideration RSS substitutes for HCPro, could further help to study the function of diverse RSSs in a 'highly sensitive' RNA-silencing context, such as that taking place in plant cells during the process of a viral infection.

  17. Yeast for virus research

    PubMed Central

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  18. Selective recruitment of nuclear factors to productively replicating herpes simplex virus genomes.

    PubMed

    Dembowski, Jill A; DeLuca, Neal A

    2015-05-01

    Much of the HSV-1 life cycle is carried out in the cell nucleus, including the expression, replication, repair, and packaging of viral genomes. Viral proteins, as well as cellular factors, play essential roles in these processes. Isolation of proteins on nascent DNA (iPOND) was developed to label and purify cellular replication forks. We adapted aspects of this method to label viral genomes to both image, and purify replicating HSV-1 genomes for the identification of associated proteins. Many viral and cellular factors were enriched on viral genomes, including factors that mediate DNA replication, repair, chromatin remodeling, transcription, and RNA processing. As infection proceeded, packaging and structural components were enriched to a greater extent. Among the more abundant proteins that copurified with genomes were the viral transcription factor ICP4 and the replication protein ICP8. Furthermore, all seven viral replication proteins were enriched on viral genomes, along with cellular PCNA and topoisomerases, while other cellular replication proteins were not detected. The chromatin-remodeling complexes present on viral genomes included the INO80, SWI/SNF, NURD, and FACT complexes, which may prevent chromatinization of the genome. Consistent with this conclusion, histones were not readily recovered with purified viral genomes, and imaging studies revealed an underrepresentation of histones on viral genomes. RNA polymerase II, the mediator complex, TFIID, TFIIH, and several other transcriptional activators and repressors were also affinity purified with viral DNA. The presence of INO80, NURD, SWI/SNF, mediator, TFIID, and TFIIH components is consistent with previous studies in which these complexes copurified with ICP4. Therefore, ICP4 is likely involved in the recruitment of these key cellular chromatin remodeling and transcription factors to viral genomes. Taken together, iPOND is a valuable method for the study of viral genome dynamics during infection and provides a comprehensive view of how HSV-1 selectively utilizes cellular resources.

  19. Conserved residues in Lassa fever virus Z protein modulate viral infectivity at the level of the ribonucleoprotein.

    PubMed

    Capul, Althea A; de la Torre, Juan Carlos; Buchmeier, Michael J

    2011-04-01

    Arenaviruses are negative-strand RNA viruses that cause human diseases such as lymphocytic choriomeningitis, Bolivian hemorrhagic fever, and Lassa hemorrhagic fever. No licensed vaccines exist, and current treatment is limited to ribavirin. The prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), is a model for dissecting virus-host interactions in persistent and acute disease. The RING finger protein Z has been identified as the driving force of arenaviral budding and acts as the viral matrix protein. While residues in Z required for viral budding have been described, residues that govern the Z matrix function(s) have yet to be fully elucidated. Because this matrix function is integral to viral assembly, we reasoned that this would be reflected in sequence conservation. Using sequence alignment, we identified several conserved residues in Z outside the RING and late domains. Nine residues were each mutated to alanine in Lassa fever virus Z. All of the mutations affected the expression of an LCMV minigenome and the infectivity of virus-like particles, but to greatly varying degrees. Interestingly, no mutations appeared to affect Z-mediated budding or association with viral GP. Our findings provide direct experimental evidence supporting a role for Z in the modulation of the activity of the viral ribonucleoprotein (RNP) complex and its packaging into mature infectious viral particles.

  20. Functional Incompatibility between the Generic NF-κB Motif and a Subtype-Specific Sp1III Element Drives the Formation of the HIV-1 Subtype C Viral Promoter

    PubMed Central

    Verma, Anjali; Rajagopalan, Pavithra; Lotke, Rishikesh; Varghese, Rebu; Selvam, Deepak; Kundu, Tapas K.

    2016-01-01

    ABSTRACT Of the various genetic subtypes of human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2) and simian immunodeficiency virus (SIV), only in subtype C of HIV-1 is a genetically variant NF-κB binding site found at the core of the viral promoter in association with a subtype-specific Sp1III motif. How the subtype-associated variations in the core transcription factor binding sites (TFBS) influence gene expression from the viral promoter has not been examined previously. Using panels of infectious viral molecular clones, we demonstrate that subtype-specific NF-κB and Sp1III motifs have evolved for optimal gene expression, and neither of the motifs can be replaced by a corresponding TFBS variant. The variant NF-κB motif binds NF-κB with an affinity 2-fold higher than that of the generic NF-κB site. Importantly, in the context of an infectious virus, the subtype-specific Sp1III motif demonstrates a profound loss of function in association with the generic NF-κB motif. An additional substitution of the Sp1III motif fully restores viral replication, suggesting that the subtype C-specific Sp1III has evolved to function with the variant, but not generic, NF-κB motif. A change of only two base pairs in the central NF-κB motif completely suppresses viral transcription from the provirus and converts the promoter into heterochromatin refractory to tumor necrosis factor alpha (TNF-α) induction. The present work represents the first demonstration of functional incompatibility between an otherwise functional NF-κB motif and a unique Sp1 site in the context of an HIV-1 promoter. Our work provides important leads as to the evolution of the HIV-1 subtype C viral promoter with relevance for gene expression regulation and viral latency. IMPORTANCE Subtype-specific genetic variations provide a powerful tool to examine how these variations offer a replication advantage to specific viral subtypes, if any. Only in subtype C of HIV-1 are two genetically distinct transcription factor binding sites positioned at the most critical location of the viral promoter. Since a single promoter regulates viral gene expression, the promoter variations can play a critical role in determining the replication fitness of the viral strains. Our work for the first time provides a scientific explanation for the presence of a unique NF-κB binding motif in subtype C, a major HIV-1 genetic family responsible for half of the global HIV-1 infections. The results offer compelling evidence that the subtype C viral promoter not only is stronger but also is endowed with a qualitative gain-of-function advantage. The genetically variant NF-κB and the Sp1III motifs may be respond differently to specific cell signal pathways, and these mechanisms must be examined. PMID:27194770

  1. Mutational analysis of vaccinia virus E3 protein: the biological functions do not correlate with its biochemical capacity to bind double-stranded RNA.

    PubMed

    Dueck, Kevin J; Hu, YuanShen Sandy; Chen, Peter; Deschambault, Yvon; Lee, Jocelyn; Varga, Jessie; Cao, Jingxin

    2015-05-01

    Vaccinia E3 protein has the biochemical capacity of binding to double-stranded RNA (dsRNA). The best characterized biological functions of the E3 protein include its host range function, suppression of cytokine expression, and inhibition of interferon (IFN)-induced antiviral activity. Currently, the role of the dsRNA binding capacity in the biological functions of the E3 protein is not clear. To further understand the mechanism of the E3 protein biological functions, we performed alanine scanning of the entire dsRNA binding domain of the E3 protein to examine the link between its biochemical capacity of dsRNA binding and biological functions. Of the 115 mutants examined, 20 were defective in dsRNA binding. Although the majority of the mutants defective in dsRNA binding also showed defective replication in HeLa cells, nine mutants (I105A, Y125A, E138A, F148A, F159A, K171A, L182A, L183A, and I187/188A) retained the host range function to various degrees. Further examination of a set of representative E3L mutants showed that residues essential for dsRNA binding are not essential for the biological functions of E3 protein, such as inhibition of protein kinase R (PKR) activation, suppression of cytokine expression, and apoptosis. Thus, data described in this communication strongly indicate the E3 protein performs its biological functions via a novel mechanism which does not correlate with its dsRNA binding activity. dsRNAs produced during virus replication are important pathogen-associated molecular patterns (PAMPs) for inducing antiviral immune responses. One of the strategies used by many viruses to counteract such antiviral immune responses is achieved by producing dsRNA binding proteins, such as poxvirus E3 family proteins, influenza virus NS1, and Ebola virus V35 proteins. The most widely accepted model for the biological functions of this class of viral dsRNA binding proteins is that they bind to and sequester viral dsRNA PAMPs; thus, they suppress the related antiviral immune responses. However, no direct experimental data confirm such a model. In this study of vaccinia E3 protein, we found that the biological functions of the E3 protein are not necessarily linked to its biochemical capacity of dsRNA binding. Thus, our data strongly point to a new concept of virus modulation of cellular antiviral responses triggered by dsRNA PAMPs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. An age-structured model of hiv infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells.

    PubMed

    Nelson, Patrick W; Gilchrist, Michael A; Coombs, Daniel; Hyman, James M; Perelson, Alan S

    2004-09-01

    Mathematical models of HIV-1 infection can help interpret drug treatment experiments and improve our understanding of the interplay between HIV-1 and the immune system. We develop and analyze an age- structured model of HIV-1 infection that allows for variations in the death rate of productively infected T cells and the production rate of viral particles as a function of the length of time a T cell has been infected. We show that this model is a generalization of the standard differential equation and of delay models previously used to describe HIV-1 infection, and provides a means for exploring fundamental issues of viral production and death. We show that the model has uninfected and infected steady states, linked by a transcritical bifurcation. We perform a local stability analysis of the nontrivial equilibrium solution and provide a general stability condition for models with age structure. We then use numerical methods to study solutions of our model focusing on the analysis of primary HIV infection. We show that the time to reach peak viral levels in the blood depends not only on initial conditions but also on the way in which viral production ramps up. If viral production ramps up slowly, we find that the time to peak viral load is delayed compared to results obtained using the standard (constant viral production) model of HIV infection. We find that data on viral load changing over time is insufficient to identify the functions specifying the dependence of the viral production rate or infected cell death rate on infected cell age. These functions must be determined through new quantitative experiments.

  3. A generic screening platform for inhibitors of virus induced cell fusion using cellular electrical impedance

    PubMed Central

    Watterson, Daniel; Robinson, Jodie; Chappell, Keith J.; Butler, Mark S.; Edwards, David J.; Fry, Scott R.; Bermingham, Imogen M.; Cooper, Matthew A.; Young, Paul R.

    2016-01-01

    Fusion of the viral envelope with host cell membranes is an essential step in the life cycle of all enveloped viruses. Despite such a clear target for antiviral drug development, few anti-fusion drugs have progressed to market. One significant hurdle is the absence of a generic, high-throughput, reproducible fusion assay. Here we report that real time, label-free measurement of cellular electrical impedance can quantify cell-cell fusion mediated by either individually expressed recombinant viral fusion proteins, or native virus infection. We validated this approach for all three classes of viral fusion and demonstrated utility in quantifying fusion inhibition using antibodies and small molecule inhibitors specific for dengue virus and respiratory syncytial virus. PMID:26976324

  4. The C-type Lectin Langerin Functions as a Receptor for Attachment and Infectious Entry of Influenza A Virus

    PubMed Central

    Ng, Wy Ching; Londrigan, Sarah L.; Nasr, Najla; Cunningham, Anthony L.; Turville, Stuart; Brooks, Andrew G.

    2015-01-01

    ABSTRACT It is well established that influenza A virus (IAV) attachment to and infection of epithelial cells is dependent on sialic acid (SIA) at the cell surface, although the specific receptors that mediate IAV entry have not been defined and multiple receptors may exist. Lec2 Chinese hamster ovary (CHO) cells are SIA deficient and resistant to IAV infection. Here we demonstrate that the expression of the C-type lectin receptor langerin in Lec2 cells (Lec2-Lg) rendered them permissive to IAV infection, as measured by replication of the viral genome, transcription of viral mRNA, and synthesis of viral proteins. Unlike SIA-dependent infection of parental CHO cells, IAV attachment and infection of Lec2-Lg cells was mediated via lectin-mediated recognition of mannose-rich glycans expressed by the viral hemagglutinin glycoprotein. Lec2 cells expressing endocytosis-defective langerin bound IAV efficiently but remained resistant to IAV infection, confirming that internalization via langerin was essential for infectious entry. Langerin-mediated infection of Lec2-Lg cells was pH and dynamin dependent, occurred via clathrin- and caveolin-mediated endocytic pathways, and utilized early (Rab5+) but not late (Rab7+) endosomes. This study is the first to demonstrate that langerin represents an authentic receptor that binds and internalizes IAV to facilitate infection. Moreover, it describes a unique experimental system to probe specific pathways and compartments involved in infectious entry following recognition of IAV by a single cell surface receptor. IMPORTANCE On the surface of host cells, sialic acid (SIA) functions as the major attachment factor for influenza A viruses (IAV). However, few studies have identified specific transmembrane receptors that bind and internalize IAV to facilitate infection. Here we identify human langerin as a transmembrane glycoprotein that can act as an attachment factor and a bone fide endocytic receptor for IAV infection. Expression of langerin by an SIA-deficient cell line resistant to IAV rendered cells permissive to infection. As langerin represented the sole receptor for IAV infection in this system, we have defined the pathways and compartments involved in infectious entry of IAV into cells following recognition by langerin. PMID:26468543

  5. In vitro inhibition of the bovine viral diarrhoea virus by the essential oil of Ocimum basilicum (basil) and monoterpenes

    PubMed Central

    Kubiça, Thaís F.; Alves, Sydney H.; Weiblen, Rudi; Lovato, Luciane T.

    2014-01-01

    The bovine viral diarrhoea virus (BVDV) is suggested as a model for antiviral studies of the hepatitis C virus (HCV). The antiviral activity of the essential oil of Ocimum basilicum and the monoterpenes camphor, thymol and 1,8-cineole against BVDV was investigated. The cytotoxicities of the compounds were measured by the MTT (3-(4.5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide) test, and the antiviral activities were tested by the plaque reduction assay. The oil or compounds were added to the assay in three different time points: a) pre-treatment of the virus (virucidal assay); b) pre-treatment of the cells; or c) post-treatment of the cells (after virus inoculation). The percentage of plaques inhibition for each compound was determined based on the number of plaques in the viral control. The results were expressed by CC50 (50% cytotoxic concentration), IC50 (inhibitory concentration for 50% of plaques) and SI (selectivity index = CC50/IC50). Camphor (CC50 = 4420.12 μg mL−1) and 1,8-cineole (CC50 = 2996.10 μg mL−1) showed the lowest cytotoxicities and the best antiviral activities (camphor SI = 13.88 and 1,8-cineol SI = 9.05) in the virucidal assay. The higher activities achieved by the monoterpenes in the virucidal assay suggest that these compounds act directly on the viral particle. PMID:24948933

  6. Acute Viral Respiratory Infection Rapidly Induces a CD8+ T Cell Exhaustion-like Phenotype.

    PubMed

    Erickson, John J; Lu, Pengcheng; Wen, Sherry; Hastings, Andrew K; Gilchuk, Pavlo; Joyce, Sebastian; Shyr, Yu; Williams, John V

    2015-11-01

    Acute viral infections typically generate functional effector CD8(+) T cells (TCD8) that aid in pathogen clearance. However, during acute viral lower respiratory infection, lung TCD8 are functionally impaired and do not optimally control viral replication. T cells also become unresponsive to Ag during chronic infections and cancer via signaling by inhibitory receptors such as programmed cell death-1 (PD-1). PD-1 also contributes to TCD8 impairment during viral lower respiratory infection, but how it regulates TCD8 impairment and the connection between this state and T cell exhaustion during chronic infections are unknown. In this study, we show that PD-1 operates in a cell-intrinsic manner to impair lung TCD8. In light of this, we compared global gene expression profiles of impaired epitope-specific lung TCD8 to functional spleen TCD8 in the same human metapneumovirus-infected mice. These two populations differentially regulate hundreds of genes, including the upregulation of numerous inhibitory receptors by lung TCD8. We then compared the gene expression of TCD8 during human metapneumovirus infection to those in acute or chronic lymphocytic choriomeningitis virus infection. We find that the immunophenotype of lung TCD8 more closely resembles T cell exhaustion late into chronic infection than do functional effector T cells arising early in acute infection. Finally, we demonstrate that trafficking to the infected lung alone is insufficient for TCD8 impairment or inhibitory receptor upregulation, but that viral Ag-induced TCR signaling is also required. Our results indicate that viral Ag in infected lungs rapidly induces an exhaustion-like state in lung TCD8 characterized by progressive functional impairment and upregulation of numerous inhibitory receptors. Copyright © 2015 by The American Association of Immunologists, Inc.

  7. Distinct functional domains within the acidic cluster of tegument protein pp28 required for trafficking and cytoplasmic envelopment of human cytomegalovirus.

    PubMed

    Seo, Jun-Young; Jeon, Hyejin; Hong, Sookyung; Britt, William J

    2016-10-01

    Human cytomegalovirus UL99-encoded tegument protein pp28 contains a 16 aa acidic cluster that is required for pp28 trafficking to the assembly compartment (AC) and the virus assembly. However, functional signals within the acidic cluster of pp28 remain undefined. Here, we demonstrated that an acidic cluster rather than specific sorting signals was required for trafficking to the AC. Recombinant viruses with chimeric pp28 proteins expressing non-native acidic clusters exhibited delayed viral growth kinetics and decreased production of infectious virus, indicating that the native acidic cluster of pp28 was essential for wild-type virus assembly. These results suggested that the acidic cluster of pp28 has distinct functional domains required for trafficking and for efficient virus assembly. The first half (aa 44-50) of the acidic cluster was sufficient for pp28 trafficking, whereas the native acidic cluster consisting of aa 51-59 was required for the assembly of wild-type levels of infectious virus.

  8. Aminoglycosides: Molecular Insights on the Recognition of RNA and Aminoglycoside Mimics

    PubMed Central

    Chittapragada, Maruthi; Roberts, Sarah; Ham, Young Wan

    2009-01-01

    RNA is increasingly recognized for its significant functions in biological systems and has recently become an important molecular target for therapeutics development. Aminoglycosides, a large class of clinically significant antibiotics, exert their biological functions by binding to prokaryotic ribosomal RNA (rRNA) and interfering with protein translation, resulting in bacterial cell death. They are also known to bind to viral mRNAs such as HIV-1 RRE and TAR. Consequently, aminoglycosides are accepted as the single most important model in understanding the principles that govern small molecule-RNA recognition, which is essential for the development of novel antibacterial, antiviral or even anti-oncogenic agents. This review outlines the chemical structures and mechanisms of molecular recognition and antibacterial activity of aminoglycosides and various aminoglycoside mimics that have recently been devised to improve biological efficacy, binding affinity and selectivity, or to circumvent bacterial resistance. PMID:19812740

  9. Only Five of 10 Strictly Conserved Disulfide Bonds Are Essential for Folding and Eight for Function of the HIV-1 Envelope Glycoprotein

    PubMed Central

    van Anken, Eelco; Sanders, Rogier W.; Liscaljet, I. Marije; Land, Aafke; Bontjer, Ilja; Tillemans, Sonja; Nabatov, Alexey A.; Paxton, William A.; Berkhout, Ben

    2008-01-01

    Protein folding in the endoplasmic reticulum goes hand in hand with disulfide bond formation, and disulfide bonds are considered key structural elements for a protein's folding and function. We used the HIV-1 Envelope glycoprotein to examine in detail the importance of its 10 completely conserved disulfide bonds. We systematically mutated the cysteines in its ectodomain, assayed the mutants for oxidative folding, transport, and incorporation into the virus, and tested fitness of mutant viruses. We found that the protein was remarkably tolerant toward manipulation of its disulfide-bonded structure. Five of 10 disulfide bonds were dispensable for folding. Two of these were even expendable for viral replication in cell culture, indicating that the relevance of these disulfide bonds becomes manifest only during natural infection. Our findings refine old paradigms on the importance of disulfide bonds for proteins. PMID:18653472

  10. Viral infection upregulates myostatin promoter activity in orange-spotted grouper (Epinephelus coioides)

    PubMed Central

    Chen, Yi-Tien; Lin, Chao-Fen; Chen, Young-Mao; Lo, Chih-En; Chen, Wan-Erh

    2017-01-01

    Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection. PMID:29036192

  11. Viral infection upregulates myostatin promoter activity in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Chen, Yi-Tien; Lin, Chao-Fen; Chen, Young-Mao; Lo, Chih-En; Chen, Wan-Erh; Chen, Tzong-Yueh

    2017-01-01

    Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection.

  12. Baculovirus LEF-11 nuclear localization signal is important for viral DNA replication.

    PubMed

    Chen, Tingting; Dong, Zhanqi; Hu, Nan; Hu, Zhigang; Dong, Feifan; Jiang, Yaming; Li, Jun; Chen, Peng; Lu, Cheng; Pan, Minhui

    2017-06-15

    Baculovirus LEF-11 is a small nuclear protein that is involved in viral late gene transcription and DNA replication. However, the characteristics of its nuclear localization signal and its impact on viral DNA replication are unknown. In the present study, systemic bioinformatics analysis showed that the baculovirus LEF-11 contains monopartite and bipartite classical nuclear localization signal sequences (cNLSs), which were also detected in a few alphabaculovirus species. Localization of representative LEF-11 proteins of four baculovirus genera indicated that the nuclear localization characteristics of baculovirus LEF-11 coincided with the predicted results. Moreover, Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 could be transported into the nucleus during viral infection in the absence of a cNLSs. Further investigations demonstrated that the NLS of BmNPV LEF-11 is important for viral DNA replication. The findings of the present study indicate that the characteristics of the baculovirus LEF-11 protein and the NLS is essential to virus DNA replication and nuclear transport mechanisms. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Randomization and In Vivo Selection Reveal a GGRG Motif Essential for Packaging Human Immunodeficiency Virus Type 2 RNA ▿ †

    PubMed Central

    Baig, Tayyba T.; Lanchy, Jean-Marc; Lodmell, J. Stephen

    2009-01-01

    The packaging signal (ψ) of human immunodeficiency virus type 2 (HIV-2) is present in the 5′ noncoding region of RNA and contains a 10-nucleotide palindrome (pal; 5′-392-GGAGUGCUCC) located upstream of the dimerization signal stem-loop 1 (SL1). pal has been shown to be functionally important in vitro and in vivo. We previously showed that the 3′ side of pal (GCUCC-3′) is involved in base-pairing interactions with a sequence downstream of SL1 to make an extended SL1, which is important for replication in vivo and the regulation of dimerization in vitro. However, the role of the 5′ side of pal (5′-GGAGU) was less clear. Here, we characterized this role using an in vivo SELEX approach. We produced a population of HIV-2 DNA genomes with random sequences within the 5′ side of pal and transfected these into COS-7 cells. Viruses from COS-7 cells were used to infect C8166 permissive cells. After several weeks of serial passage in C8166 cells, surviving viruses were sequenced. On the 5′ side of pal there was a striking convergence toward a GGRGN consensus sequence. Individual clones with consensus and nonconsensus sequences were tested in infectivity and packaging assays. Analysis of individuals that diverged from the consensus sequence showed normal viral RNA and protein synthesis but had replication defects and impaired RNA packaging. These findings clearly indicate that the GGRG motif is essential for viral replication and genomic RNA packaging. PMID:18971263

  14. Carboxyl-Terminal Amino Acids 1052 to 1082 of the Latency-Associated Nuclear Antigen (LANA) Interact with RBP-Jκ and Are Responsible for LANA-Mediated RTA Repression

    PubMed Central

    Jin, Yi; He, Zhiheng; Liang, Deguang; Zhang, Quanzhi; Zhang, Hongxing; Deng, Qiang

    2012-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is closely associated with several malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV can establish lifelong latency in the host, but the mechanism is not fully understood. Previous studies have proposed a feedback model in which the viral replication and transcription activator (RTA) can induce the expression of the latency-associated nuclear antigen (LANA) during early infection. LANA, in turn, represses transcription and RTA function to establish and maintain KSHV latency. The interaction between LANA and the recombination signal sequence binding protein Jκ (RBP-Jκ, also called CSL), a major transcriptional repressor of the Notch signaling pathway, is essential for RTA repression. In the present study, we show that the LANA carboxyl-terminal amino acids 1052 to 1082 are responsible for the LANA interaction with RBP-Jκ. The secondary structure of the LANA carboxyl terminus resembles the RBP-Jκ-associated module (RAM) of Notch receptor. Furthermore, deletion of the region of LANA residues 1052 to 1082 resulted in aberrant expression of RTA, leading to elevated viral lytic replication. For the first time, we dissected a conserved RBP-Jκ binding domain in LANA and demonstrated that this domain was indispensable for LANA-mediated repression of KSHV lytic genes, thus helping the virus maintain latency and control viral reactivation. PMID:22379075

  15. Carboxyl-terminal amino acids 1052 to 1082 of the latency-associated nuclear antigen (LANA) interact with RBP-Jκ and are responsible for LANA-mediated RTA repression.

    PubMed

    Jin, Yi; He, Zhiheng; Liang, Deguang; Zhang, Quanzhi; Zhang, Hongxing; Deng, Qiang; Robertson, Erle S; Lan, Ke

    2012-05-01

    Kaposi's sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is closely associated with several malignancies, including Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. KSHV can establish lifelong latency in the host, but the mechanism is not fully understood. Previous studies have proposed a feedback model in which the viral replication and transcription activator (RTA) can induce the expression of the latency-associated nuclear antigen (LANA) during early infection. LANA, in turn, represses transcription and RTA function to establish and maintain KSHV latency. The interaction between LANA and the recombination signal sequence binding protein Jκ (RBP-Jκ, also called CSL), a major transcriptional repressor of the Notch signaling pathway, is essential for RTA repression. In the present study, we show that the LANA carboxyl-terminal amino acids 1052 to 1082 are responsible for the LANA interaction with RBP-Jκ. The secondary structure of the LANA carboxyl terminus resembles the RBP-Jκ-associated module (RAM) of Notch receptor. Furthermore, deletion of the region of LANA residues 1052 to 1082 resulted in aberrant expression of RTA, leading to elevated viral lytic replication. For the first time, we dissected a conserved RBP-Jκ binding domain in LANA and demonstrated that this domain was indispensable for LANA-mediated repression of KSHV lytic genes, thus helping the virus maintain latency and control viral reactivation.

  16. The Immune Response in Measles: Virus Control, Clearance and Protective Immunity.

    PubMed

    Griffin, Diane E

    2016-10-12

    Measles is an acute systemic viral infection with immune system interactions that play essential roles in multiple stages of infection and disease. Measles virus (MeV) infection does not induce type 1 interferons, but leads to production of cytokines and chemokines associated with nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling and activation of the NACHT, LRR and PYD domains-containing protein (NLRP3) inflammasome. This restricted response allows extensive virus replication and spread during a clinically silent latent period of 10-14 days. The first appearance of the disease is a 2-3 day prodrome of fever, runny nose, cough, and conjunctivitis that is followed by a characteristic maculopapular rash that spreads from the face and trunk to the extremities. The rash is a manifestation of the MeV-specific type 1 CD4⁺ and CD8⁺ T cell adaptive immune response with lymphocyte infiltration into tissue sites of MeV replication and coincides with clearance of infectious virus. However, clearance of viral RNA from blood and tissues occurs over weeks to months after resolution of the rash and is associated with a period of immunosuppression. However, during viral RNA clearance, MeV-specific antibody also matures in type and avidity and T cell functions evolve from type 1 to type 2 and 17 responses that promote B cell development. Recovery is associated with sustained levels of neutralizing antibody and life-long protective immunity.

  17. Functional hierarchy of two L domains in porcine endogenous retrovirus (PERV) that influence release and infectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcucci, Katherine T.; Kellogg School of Science and Technology, Scripps Research Institute, La Jolla, CA, 92037; Martina, Yuri

    2008-06-05

    The porcine endogenous retrovirus (PERV) Gag protein contains two late (L) domain motifs, PPPY and P(F/S)AP. Using viral release assays we demonstrate that PPPY is the dominant L domain involved in PERV release. PFAP represents a novel retroviral L domain variant and is defined by abnormal viral assembly phenotypes visualized by electron microscopy and attenuation of early PERV release as measured by viral genomes. PSAP is functionally dominant over PFAP in early PERV release. PSAP virions are 3.5-fold more infectious in vitro by TCID{sub 50} and in vivo results in more RNA positive tissues and higher levels of proviral DNAmore » using our human PERV-A receptor (HuPAR-2) transgenic mouse model [Martina, Y., Marcucci, K.T., Cherqui, S., Szabo, A., Drysdale, T., Srinivisan, U., Wilson, C.A., Patience, C., Salomon, D.R., 2006. Mice transgenic for a human porcine endogenous retrovirus receptor are susceptible to productive viral infection. J. Virol. 80 (7), 3135-3146]. The functional hierarchies displayed by PERV L domains, demonstrates that L domain selection in viral evolution exists to promote efficient viral assembly, release and infectivity in the virus-host context.« less

  18. CD94 is essential for NK cell-mediated resistance to a lethal viral disease

    PubMed Central

    Fang, Min; Orr, Mark T.; Spee, Pieter; Egebjerg, Thomas; Lanier, Lewis L.; Sigal, Luis J.

    2011-01-01

    Summary It is well established that natural killer (NK) cells confer resistance to many viral diseases, but only in a few instances the molecular mechanisms whereby NK cells recognize virus-infected cells are known. Here we show that CD94, a molecule preferentially expressed by NK cells, is essential for the resistance of C57BL/6 mice to mousepox, a disease caused by the Orthopoxvirus ectromelia virus. Ectromelia virus-infected cells expressing the major histocompatibility complex (MHC) class Ib molecule Qa-1b are specifically recognized by the activating receptor formed by CD94 and NKG2E. Because CD94-NKG2 receptors and their ligands are highly conserved in rodents and humans, a similar mechanism may exist during human infections with the smallpox and monkeypox viruses, which are highly homologous to ectromelia virus. PMID:21439856

  19. A Herpesviral Immediate Early Protein Promotes Transcription Elongation of Viral Transcripts.

    PubMed

    Fox, Hannah L; Dembowski, Jill A; DeLuca, Neal A

    2017-06-13

    Herpes simplex virus 1 (HSV-1) genes are transcribed by cellular RNA polymerase II (RNA Pol II). While four viral immediate early proteins (ICP4, ICP0, ICP27, and ICP22) function in some capacity in viral transcription, the mechanism by which ICP22 functions remains unclear. We observed that the FACT complex (comprised of SSRP1 and Spt16) was relocalized in infected cells as a function of ICP22. ICP22 was also required for the association of FACT and the transcription elongation factors SPT5 and SPT6 with viral genomes. We further demonstrated that the FACT complex interacts with ICP22 throughout infection. We therefore hypothesized that ICP22 recruits cellular transcription elongation factors to viral genomes for efficient transcription elongation of viral genes. We reevaluated the phenotype of an ICP22 mutant virus by determining the abundance of all viral mRNAs throughout infection by transcriptome sequencing (RNA-seq). The accumulation of almost all viral mRNAs late in infection was reduced compared to the wild type, regardless of kinetic class. Using chromatin immunoprecipitation sequencing (ChIP-seq), we mapped the location of RNA Pol II on viral genes and found that RNA Pol II levels on the bodies of viral genes were reduced in the ICP22 mutant compared to wild-type virus. In contrast, the association of RNA Pol II with transcription start sites in the mutant was not reduced. Taken together, our results indicate that ICP22 plays a role in recruiting elongation factors like the FACT complex to the HSV-1 genome to allow for efficient viral transcription elongation late in viral infection and ultimately infectious virion production. IMPORTANCE HSV-1 interacts with many cellular proteins throughout productive infection. Here, we demonstrate the interaction of a viral protein, ICP22, with a subset of cellular proteins known to be involved in transcription elongation. We determined that ICP22 is required to recruit the FACT complex and other transcription elongation factors to viral genomes and that in the absence of ICP22 viral transcription is globally reduced late in productive infection, due to an elongation defect. This insight defines a fundamental role of ICP22 in HSV-1 infection and elucidates the involvement of cellular factors in HSV-1 transcription. Copyright © 2017 Fox et al.

  20. In vitro synthesis of oncogenic human papillomaviruses requires episomal genomes for differentiation-dependent late expression.

    PubMed Central

    Frattini, M G; Lim, H B; Laimins, L A

    1996-01-01

    Human papillomavirus (HPV) types 16, 18, 31, and 51 are the etiologic agents of many anogenital cancers including those of the cervix. These "high risk" HPVs specifically target genital squamous epithelia, and their lytic life cycle is closely linked to epithelial differentiation. We have developed a genetic assay for HPV functions during pathogenesis using recircularized cloned HPV 31 genomes that were transfected together with a drug resistance marker into monolayer cultures of normal human foreskin keratinocytes, the natural host cell. After drug selection, cell lines were isolated that stably maintained HPV 31 DNA as episomes and underwent terminal differentiation when grown in organotypic raft cultures. In differentiated rafts, the expression of late viral genes, amplification of viral DNA, and production of viral particles were detected in suprabasal cells. This demonstrated the ability to synthesize HPV 31 virions from transfected DNA templates and allowed an examination of HPV functions during the vegetative viral life cycle. We then used this system to investigate whether an episomal genome was required for the induction of late viral gene expression. When an HPV 31 genome (31E1*) containing a missense mutation in the E1 open reading frame was transfected into normal human keratinocytes, the mutant viral sequences were found to integrate into the host cell chromosomal DNA with both early and late regions intact. While high levels of early viral gene transcription were observed, no late gene expression was detected in rafts of cell lines containing the mutant viral genome despite evidence of terminal differentiation. Therefore, the induction of late viral gene expression required that the viral genomes be maintained as extrachromosomal elements, and terminal differentiation alone was not sufficient. These studies provide the basis for a detailed examination of HPV functions during viral pathogenesis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8610168

  1. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulatingmore » the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.« less

  2. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology.

    PubMed

    Sizemore, Rachel J; Seeger-Armbruster, Sonja; Hughes, Stephanie M; Parr-Brownlie, Louise C

    2016-04-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. Copyright © 2016 the American Physiological Society.

  3. Viral vector-based tools advance knowledge of basal ganglia anatomy and physiology

    PubMed Central

    Sizemore, Rachel J.; Seeger-Armbruster, Sonja; Hughes, Stephanie M.

    2016-01-01

    Viral vectors were originally developed to deliver genes into host cells for therapeutic potential. However, viral vector use in neuroscience research has increased because they enhance interpretation of the anatomy and physiology of brain circuits compared with conventional tract tracing or electrical stimulation techniques. Viral vectors enable neuronal or glial subpopulations to be labeled or stimulated, which can be spatially restricted to a single target nucleus or pathway. Here we review the use of viral vectors to examine the structure and function of motor and limbic basal ganglia (BG) networks in normal and pathological states. We outline the use of viral vectors, particularly lentivirus and adeno-associated virus, in circuit tracing, optogenetic stimulation, and designer drug stimulation experiments. Key studies that have used viral vectors to trace and image pathways and connectivity at gross or ultrastructural levels are reviewed. We explain how optogenetic stimulation and designer drugs used to modulate a distinct pathway and neuronal subpopulation have enhanced our mechanistic understanding of BG function in health and pathophysiology in disease. Finally, we outline how viral vector technology may be applied to neurological and psychiatric conditions to offer new treatments with enhanced outcomes for patients. PMID:26888111

  4. Cellular Selenoprotein mRNA Tethering via Antisense Interactions with Ebola and HIV-1 mRNAs May Impact Host Selenium Biochemistry.

    PubMed

    Taylor, Ethan Will; Ruzicka, Jan A; Premadasa, Lakmini; Zhao, Lijun

    2016-01-01

    Regulation of protein expression by non-coding RNAs typically involves effects on mRNA degradation and/or ribosomal translation. The possibility of virus-host mRNA-mRNA antisense tethering interactions (ATI) as a gain-of-function strategy, via the capture of functional RNA motifs, has not been hitherto considered. We present evidence that ATIs may be exploited by certain RNA viruses in order to tether the mRNAs of host selenoproteins, potentially exploiting the proximity of a captured host selenocysteine insertion sequence (SECIS) element to enable the expression of virally-encoded selenoprotein modules, via translation of in-frame UGA stop codons as selenocysteine. Computational analysis predicts thermodynamically stable ATIs between several widely expressed mammalian selenoprotein mRNAs (e.g., isoforms of thioredoxin reductase) and specific Ebola virus mRNAs, and HIV-1 mRNA, which we demonstrate via DNA gel shift assays. The probable functional significance of these ATIs is further supported by the observation that, in both viruses, they are located in close proximity to highly conserved in-frame UGA stop codons at the 3' end of open reading frames that encode essential viral proteins (the HIV-1 nef protein and the Ebola nucleoprotein). Significantly, in HIV/AIDS patients, an inverse correlation between serum selenium and mortality has been repeatedly documented, and clinical benefits of selenium in the context of multi-micronutrient supplementation have been demonstrated in several well-controlled clinical trials. Hence, in the light of our findings, the possibility of a similar role for selenium in Ebola pathogenesis and treatment merits serious investigation.

  5. Bovine herpesvirus type-1 glycoprotein K (gK) interacts with UL20 and is required for infectious virus production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haque, Muzammel; Stanfield, Brent; Kousoulas, Kons

    We have previously shown that the HSV-1 gK and UL20 proteins interact and function in virion envelopment, membrane fusion, and neuronal entry. Alignment of the predicted secondary structures of gKs encoded by BoHV-1, HSV-1, HSV-2, EHV-1 and VZV indicated a high degree of domain conservation. Two BoHV-1 gK-null mutant viruses were created by either gK gene deletion or stop codon insertion. In addition, a V5 epitope-tag was inserted at the carboxyl terminus of gK gene to detect gK. The engineered gK-null mutant viruses failed to replicate and produce viral plaques. Co-immunoprecipitation of gK and UL20 expressed via different methods revealedmore » that gK and UL20 physically interacted in the presence or absence of other viral proteins. Confocal microscopy showed that gK and UL20 colocalized in infected cells. These results indicate that BoHV-1 gK and UL20 may function in a similar manner to other alphaherpesvirus orthologues specified by HSV-1, PRV and EHV-1. -- Highlights: •Glycoprotein K(gK) is conserved among alphaherpesviruses and serves similar functions. •The bovine herpesvirus-1 gK and UL20 proteins physically interact in a similar manner to herpes simplex virus type 1 and equine herpesvirus-1. •The bovine herpesvirus-1 (BoHV-1) gK interacts with UL20 and is essential for virus replication and spread.« less

  6. Potential roles of microglial cell progranulin in HIV-associated CNS pathologies and neurocognitive impairment

    PubMed Central

    Suh, Hyeon-Sook; Gelman, Benjamin B.; Lee, Sunhee C.

    2013-01-01

    Progranulin (PGRN) is a highly unusual molecule with both neuronal and microglial expression with two seemingly unrelated functions, i.e., as a neuronal growth factor and a modulator of neuroinflammation. Haploinsufficiency due to loss of function mutations lead to a fatal presenile dementing illness (frontotemporal lobar degeneration), indicating that adequate expression of PGRN is essential for successful aging. PGRN might be a particularly relevant factor in the pathogenesis of HIV encephalitis (HIVE) and HIV-associated neurocognitive disorders (HAND). We present emerging data and a review of the literature which show that cells of myeloid lineage such as macrophages and microglia are the primary sources of PGRN and that PGRN expression contributes to pathogenesis of CNS diseases. We also present evidence that PGRN is a macrophage antiviral cytokine. For example, PGRN mRNA and protein expression are significantly upregulated in brain specimens with HIVE, and in HIV-infected microglia in vitro. Paradoxically, our preliminary CHARTER data analyses indicate that lower PGRN levels in CSF trended towards an association with HAND, particularly in those without detectable virus. Based upon these findings, we introduce the hypothesis that PGRN plays dual roles in modulating antiviral immunity and neuronal dysfunction in the context of HIV infection. In the presence of active viral replication, PGRN expression is increased functioning as an anti-viral factor as well as a neuroprotectant. In the absence of active HIV replication, ongoing inflammation or other stressors suppress PGRN production from macrophages/microglia contributing to neurocognitive dysfunction. We propose CSF PGRN as a candidate surrogate marker for HAND. PMID:23959579

  7. A nonstandard finite difference scheme for a basic model of cellular immune response to viral infection

    NASA Astrophysics Data System (ADS)

    Korpusik, Adam

    2017-02-01

    We present a nonstandard finite difference scheme for a basic model of cellular immune response to viral infection. The main advantage of this approach is that it preserves the essential qualitative features of the original continuous model (non-negativity and boundedness of the solution, equilibria and their stability conditions), while being easy to implement. All of the qualitative features are preserved independently of the chosen step-size. Numerical simulations of our approach and comparison with other conventional simulation methods are presented.

  8. Holistic actions are essential to combat the global public health burden of non-viral sexually transmitted infections: challenges and future perspectives.

    PubMed

    Unemo, Magnus

    2014-06-01

    Sexually transmitted infections (STIs) represent a significant international public health burden. These infections result in substantial morbidity, mortality and economic costs globally, and require more attention and resources internationally. This special focus issue of Expert Review of Anti Infective Therapy invited key opinion leaders to review and discuss the challenges associated with the diagnosis and treatment of non-viral STIs. The issue also elucidates the future perspectives, ways forward and holistic actions imperative to effectively combat these STIs.

  9. Fate of the surface protein gp70 during entry of retrovirus into mouse fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, K.B.

    1985-04-15

    The kinetics of the viral surface protein gp70 and the viral core proteins p30 and p15C were followed during retrovirus entry into mouse fibroblasts. All three proteins were internalized, but whereas essentially all the gp70 was degraded, approximately one-third of the core proteins remained stable in the cells. These diverging routes of the different proteins are in agreement with the proposed route, that retrovirus enters the cells by endocytosis followed by a membrane fusion between the virus membrane and the vesicle membrane.

  10. Quantification of AAV particle titers by infrared fluorescence scanning of coomassie-stained sodium dodecyl sulfate-polyacrylamide gels.

    PubMed

    Kohlbrenner, Erik; Henckaerts, Els; Rapti, Kleopatra; Gordon, Ronald E; Linden, R Michael; Hajjar, Roger J; Weber, Thomas

    2012-06-01

    Adeno-associated virus (AAV)-based vectors have gained increasing attention as gene delivery vehicles in basic and preclinical studies as well as in human gene therapy trials. Especially for the latter two-for both safety and therapeutic efficacy reasons-a detailed characterization of all relevant parameters of the vector preparation is essential. Two important parameters that are routinely used to analyze recombinant AAV vectors are (1) the titer of viral particles containing a (recombinant) viral genome and (2) the purity of the vector preparation, most commonly assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) followed by silver staining. An important, third parameter, the titer of total viral particles, that is, the combined titer of both genome-containing and empty viral capsids, is rarely determined. Here, we describe a simple and inexpensive method that allows the simultaneous assessment of both vector purity and the determination of the total viral particle titer. This method, which was validated by comparison with established methods to determine viral particle titers, is based on the fact that Coomassie Brilliant Blue, when bound to proteins, fluoresces in the infrared spectrum. Viral samples are separated by SDS-PAGE followed by Coomassie Brilliant Blue staining and gel analysis with an infrared laser-scanning device. In combination with a protein standard, our method allows the rapid and accurate determination of viral particle titers simultaneously with the assessment of vector purity.

  11. Various plus unique: Viral protein U as a plurifunctional protein for HIV-1 replication.

    PubMed

    Soper, Andrew; Juarez-Fernandez, Guillermo; Aso, Hirofumi; Moriwaki, Miyu; Yamada, Eri; Nakano, Yusuke; Koyanagi, Yoshio; Sato, Kei

    2017-04-01

    Human immunodeficiency virus type 1 (HIV-1), the causative agent of acquired immunodeficiency syndrome, encodes four accessory genes, one of which is viral protein U (Vpu). Recently, the study of Vpu has been of great interest. For instance, various cellular proteins are degraded (e.g. CD4) and down-modulated (e.g. tetherin) by Vpu. Vpu also antagonizes the function of tetherin and inhibits NF-κB. Moreover, Vpu is a viroporin forming ion channels and may represent a promising target for anti-HIV-1 drugs. In this review, we summarize the domains/residues that are responsible for Vpu's functions, describe the current understanding of the role of Vpu in HIV-1-infected cells, and review the effect of Vpu on HIV-1 in replication and pathogenesis. Future investigations that simultaneously assess a combination of Vpu functions are required to clearly delineate the most important functions for viral replication. Impact statement Viral protein U (Vpu) is a unique protein encoded by human immunodeficiency virus type 1 (HIV-1) and related lentiviruses, playing multiple roles in viral replication and pathogenesis. In this review, we briefly summarize the most up-to-date knowledge of HIV-1 Vpu.

  12. Latency Entry of Herpes Simplex Virus 1 Is Determined by the Interaction of Its Genome with the Nuclear Environment

    PubMed Central

    Cohen, Camille; Streichenberger, Nathalie; Texier, Pascale; Takissian, Julie; Rousseau, Antoine; Poccardi, Nolwenn; Welsch, Jérémy; Corpet, Armelle; Schaeffer, Laurent; Labetoulle, Marc; Lomonte, Patrick

    2016-01-01

    Herpes simplex virus 1 (HSV-1) establishes latency in trigeminal ganglia (TG) sensory neurons of infected individuals. The commitment of infected neurons toward the viral lytic or latent transcriptional program is likely to depend on both viral and cellular factors, and to differ among individual neurons. In this study, we used a mouse model of HSV-1 infection to investigate the relationship between viral genomes and the nuclear environment in terms of the establishment of latency. During acute infection, viral genomes show two major patterns: replication compartments or multiple spots distributed in the nucleoplasm (namely “multiple-acute”). Viral genomes in the “multiple-acute” pattern are systematically associated with the promyelocytic leukemia (PML) protein in structures designated viral DNA-containing PML nuclear bodies (vDCP-NBs). To investigate the viral and cellular features that favor the acquisition of the latency-associated viral genome patterns, we infected mouse primary TG neurons from wild type (wt) mice or knock-out mice for type 1 interferon (IFN) receptor with wt or a mutant HSV-1, which is unable to replicate due to the synthesis of a non-functional ICP4, the major virus transactivator. We found that the inability of the virus to initiate the lytic program combined to its inability to synthesize a functional ICP0, are the two viral features leading to the formation of vDCP-NBs. The formation of the “multiple-latency” pattern is favored by the type 1 IFN signaling pathway in the context of neurons infected by a virus able to replicate through the expression of a functional ICP4 but unable to express functional VP16 and ICP0. Analyses of TGs harvested from HSV-1 latently infected humans showed that viral genomes and PML occupy similar nuclear areas in infected neurons, eventually forming vDCP-NB-like structures. Overall our study designates PML protein and PML-NBs to be major cellular components involved in the control of HSV-1 latency, probably during the entire life of an individual. PMID:27618691

  13. Selective inhibition of influenza virus protein synthesis by inhibitors of DNA function. [UV radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minor, P.D.; Dimmock, N.J.

    1977-05-15

    Various known inhibitors of cellular DNA function were shown to inhibit cellular RNA synthesis and influenza (fowl plague) virus multiplication. The drugs were investigated for their effect upon the synthesis of influenza virus proteins. According to this effect they could be classified with previously studied compounds as follows: Group I (ethidium bromide, proflavine, and N-nitroquinoline-N-oxide) inhibited both viral and cellular protein synthesis; Group II (nogalomycin, daunomycin and ..cap alpha..-amanitin) inhibited viral but not cellular protein synthesis, and all viral proteins were inhibited coordinately; Group III (mithramycin, echinomycin, and actinomycin D) inhibited all viral but not cellular protein synthesis at highmore » concentrations, but at a lower critical concentration inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein preferentially; Group IV(uv irradiation and camptothecin) inhibited the synthesis of viral haemagglutinin, neuraminidase, and M protein, but not other viral proteins, even at high doses. The mode of action of these inhibitors is discussed in relation to the mechanism of the nuclear events upon which influenza virus multiplication is dependent.« less

  14. The vaccinia virus E6 protein influences virion protein localization during virus assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Condit, Richard C., E-mail: condit@mgm.ufl.edu; Moussatche, Nissin

    2015-08-15

    Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulatemore » in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a “pre-nucleocapsid”, and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly. - Highlights: • Mutation of E6 disrupts association of viral membranes with viral core proteins • Mutation of E6 does not perturb viral membrane biosynthesis • Mutation of E6 does not perturb localization of viral transcription enzymes • Mutation of E6 causes mis-localization and aggregation of viral core proteins • Vaccinia assembly uses three subassemblies: membranes, viroplasm, prenucleocapsid.« less

  15. Dual function of the nuclear export signal of the Borna disease virus nucleoprotein in nuclear export activity and binding to viral phosphoprotein.

    PubMed

    Yanai, Mako; Sakai, Madoka; Makino, Akiko; Tomonaga, Keizo

    2017-07-11

    Borna disease virus (BoDV), which has a negative-sense, single-stranded RNA genome, causes persistent infection in the cell nucleus. The nuclear export signal (NES) of the viral nucleoprotein (N) consisting of leucine at positions 128 and 131 and isoleucine at positions 133 and 136 overlaps with one of two predicted binding sites for the viral phosphoprotein (P). A previous study demonstrated that higher expression of BoDV-P inhibits nuclear export of N; however, the function of N NES in the interaction with P remains unclear. We examined the subcellular localization, viral polymerase activity, and P-binding ability of BoDV-N NES mutants. We also characterized a recombinant BoDV (rBoDV) harboring an NES mutation of N. BoDV-N with four alanine-substitutions in the leucine and isoleucine residues of the NES impaired its cytoplasmic localization and abolished polymerase activity and P-binding ability. Although an alanine-substitution at position 131 markedly enhanced viral polymerase activity as determined by a minigenome assay, rBoDV harboring this mutation showed expression of viral RNAs and proteins relative to that of wild-type rBoDV. Our results demonstrate that BoDV-N NES has a dual function in BoDV replication, i.e., nuclear export of N and an interaction with P, affecting viral polymerase activity in the nucleus.

  16. Two distinct sets of NS2A molecules are responsible for dengue virus RNA synthesis and virion assembly.

    PubMed

    Xie, Xuping; Zou, Jing; Puttikhunt, Chunya; Yuan, Zhiming; Shi, Pei-Yong

    2015-01-15

    Flavivirus nonstructural protein 2A (NS2A) plays important roles in both viral RNA synthesis and virion assembly. The molecular details of how the NS2A protein modulates the two distinct events have not been defined. To address this question, we have performed a systematic mutagenesis of NS2A using dengue virus (DENV) serotype 2 (DENV-2) as a model. We identified two sets of NS2A mutations with distinct defects during a viral infection cycle. One set of NS2A mutations (D125A and G200A) selectively abolished viral RNA synthesis. Mechanistically, the D125A mutation abolished viral RNA synthesis through blocking the N-terminal cleavage of the NS2A protein, leading to an unprocessed NS1-NS2A protein; this result suggests that amino acid D125 (far downstream of the N terminus of NS2A) may contribute to the recognition of host protease at the NS1-NS2A junction. The other set of NS2A mutations (G11A, E20A, E100A, Q187A, and K188A) specifically impaired virion assembly without significantly affecting viral RNA synthesis. Remarkably, mutants defective in virion assembly could be rescued by supplying in trans wild-type NS2A molecules expressed from a replicative replicon, by wild-type NS2A protein expressed alone, by a mutant NS2A (G200A) that is lethal for viral RNA synthesis, or by a different mutant NS2A that is defective in virion assembly. In contrast, none of the mutants defective in viral RNA synthesis could be rescued by trans-complementation. Collectively, the results indicate that two distinct sets of NS2A molecules are responsible for DENV RNA synthesis and virion assembly. Dengue virus (DENV) represents the most prevalent mosquito-borne human pathogen. Understanding the replication of DENV is essential for development of vaccines and therapeutics. Here we characterized the function of DENV-2 NS2A using a systematic mutagenesis approach. The mutagenesis results revealed two distinct sets of NS2A mutations: one set of mutations that result in defects in viral RNA synthesis and another set of mutations that result in defects in virion assembly. trans-Complementation analysis showed that mutants defective in viral RNA synthesis could not be rescued by wild-type NS2A; in contrast, mutants defective in virion assembly could be successfully rescued by wild-type NS2A or even by a mutant NS2A that is incompetent to support viral RNA synthesis. These results support a model in which two distinct sets of NS2A molecules are responsible for DENV RNA synthesis (located in the viral replication complex) and virion assembly (located in the virion assembly/budding site). The study confirms and extends our understanding of the two critical roles of flavivirus NS2A in viral RNA synthesis and virion assembly. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Characterization of Bombyx mori nucleopolyhedrovirus with a knockout of Bm17.

    PubMed

    Shen, Hongxing; Zhou, Yang; Zhang, Wen; Nin, Bin; Wang, Hua; Wang, Xiaochun; Shao, Shihe; Chen, Huiqing; Guo, Zhongjian; Liu, Xiaoyong; Yao, Qin; Chen, Keping

    2012-12-01

    Open reading frame 17 (Bm17) gene of Bombyx mori nucleopolyhedrovirus is a highly conserved gene in lepidopteran nucleopolyhedroviruses, but its function remains unknown. In this report, transient-expression and superinfection assays indicated that BM17 localized in the nucleus and cytoplasm of infected BmN cells. To determine the role of Bm17 in baculovirus life cycle, we constructed a Bm17 knockout virus and characterized its properties in cells. Analysis of the production and infection of budded virions, the level of viral DNA replication revealed showed that there was no significant difference among the mutant, the control, and the Bm17 repaired virus strains. These results suggest that BM17 is not essential for virus replication in cultured cells.

  18. Targeted Disruption of Mouse Yin Yang 1 Transcription Factor Results in Peri-Implantation Lethality

    PubMed Central

    Donohoe, Mary E.; Zhang, Xiaolin; McGinnis, Lynda; Biggers, John; Li, En; Shi, Yang

    1999-01-01

    Yin Yang 1 (YY1) is a zinc finger-containing transcription factor and a target of viral oncoproteins. To determine the biological role of YY1 in mammalian development, we generated mice deficient for YY1 by gene targeting. Homozygosity for the mutated YY1 allele results in embryonic lethality in the mouse. YY1 mutants undergo implantation and induce uterine decidualization but rapidly degenerate around the time of implantation. A subset of YY1 heterozygote embryos are developmentally retarded and exhibit neurulation defects, suggesting that YY1 may have additional roles during later stages of mouse embryogenesis. Our studies demonstrate an essential function for YY1 in the development of the mouse embryo. PMID:10490658

  19. The non-essential UL50 gene of avian infectious laryngotracheitis virus encodes a functional dUTPase which is not a virulence factor.

    PubMed

    Fuchs, W; Ziemann, K; Teifke, J P; Werner, O; Mettenleiter, T C

    2000-03-01

    The DNA sequence of the infectious laryngotracheitis virus (ILTV) UL50, UL51 and UL52 gene homologues was determined. Although the deduced UL50 protein lacks the first of five conserved domains of the corresponding proteins of mammalian alphaherpesviruses, the ILTV gene product was also shown to possess dUTPase activity. The generation of UL50-negative ILTV mutants was facilitated by recombination plasmids encoding green fluorescent protein (GFP), and expression constructs of predicted transactivator proteins of ILTV (alphaTIF, ICP4) were successfully used to increase the infectivity of viral genomic DNA. A GFP-expressing UL50-deletion mutant of ILTV showed reduced cell-to-cell spread in vitro, and was attenuated in vivo. A similar deletion mutant without the foreign gene, however, propagated like wild-type ILTV in cell culture and was pathogenic in chickens. We conclude that the viral dUTPase is not required for efficient replication of ILTV in the respiratory tract of infected animals. The replication defect of the GFP-expressing ILTV recombinant is most likely caused by toxic effects of the reporter gene product, since spontaneously occurring inactivation mutants exhibited wild-type-like growth.

  20. Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands.

    PubMed

    Zilker, Claudia; Kozlova, Diana; Sokolova, Viktoriya; Yan, Huimin; Epple, Matthias; Überla, Klaus; Temchura, Vladimir

    2017-01-01

    Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases

    PubMed Central

    Canard, Bruno

    2018-01-01

    Viral RNA-dependent RNA polymerases (RdRps) play a central role not only in viral replication, but also in the genetic evolution of viral RNAs. After binding to an RNA template and selecting 5′-triphosphate ribonucleosides, viral RdRps synthesize an RNA copy according to Watson-Crick base-pairing rules. The copy process sometimes deviates from both the base-pairing rules specified by the template and the natural ribose selectivity and, thus, the process is error-prone due to the intrinsic (in)fidelity of viral RdRps. These enzymes share a number of conserved amino-acid sequence strings, called motifs A–G, which can be defined from a structural and functional point-of-view. A co-relation is gradually emerging between mutations in these motifs and viral genome evolution or observed mutation rates. Here, we review our current knowledge on these motifs and their role on the structural and mechanistic basis of the fidelity of nucleotide selection and RNA synthesis by Flavivirus RdRps. PMID:29385764

  2. The flavivirus capsid protein: Structure, function and perspectives towards drug design.

    PubMed

    Oliveira, Edson R A; Mohana-Borges, Ronaldo; de Alencastro, Ricardo B; Horta, Bruno A C

    2017-01-02

    Flaviviruses, such as dengue and zika viruses, are etiologic agents transmitted to humans mainly by arthropods and are of great epidemiological interest. The flavivirus capsid protein is a structural element required for the viral nucleocapsid assembly that presents the classical function of sheltering the viral genome. After decades of research, many reports have shown its different functionalities and influence over cell normal functioning. The subcellular distribution of this protein, which involves accumulation around lipid droplets and nuclear localization, also corroborates with its multi-functional characteristic. As flavivirus diseases are still in need of global control and in view of the possible key functionalities that the capsid protein promotes over flavivirus biology, novel considerations arise towards anti-flavivirus drug research. This review covers the main aspects concerning structural and functional features of the flavivirus C protein, ultimately, highlighting prospects in drug discovery based on this viral target. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The diverse functions of the hepatitis B core/capsid protein (HBc) in the viral life cycle: Implications for the development of HBc-targeting antivirals.

    PubMed

    Diab, Ahmed; Foca, Adrien; Zoulim, Fabien; Durantel, David; Andrisani, Ourania

    2018-01-01

    Virally encoded proteins have evolved to perform multiple functions, and the core protein (HBc) of the hepatitis B virus (HBV) is a perfect example. While HBc is the structural component of the viral nucleocapsid, additional novel functions for the nucleus-localized HBc have recently been described. These results extend for HBc, beyond its structural role, a regulatory function in the viral life cycle and potentially a role in pathogenesis. In this article, we review the diverse roles of HBc in HBV replication and pathogenesis, emphasizing how the unique structure of this protein is key to its various functions. We focus in particular on recent advances in understanding the significance of HBc phosphorylations, its interaction with host proteins and the role of HBc in regulating the transcription of host genes. We also briefly allude to the emerging niche for new direct-acting antivirals targeting HBc, known as Core (protein) Allosteric Modulators (CAMs). Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Accounting for Space—Quantification of Cell-To-Cell Transmission Kinetics Using Virus Dynamics Models.

    PubMed

    Kumberger, Peter; Durso-Cain, Karina; Uprichard, Susan L; Dahari, Harel; Graw, Frederik

    2018-04-17

    Mathematical models based on ordinary differential equations (ODE) that describe the population dynamics of viruses and infected cells have been an essential tool to characterize and quantify viral infection dynamics. Although an important aspect of viral infection is the dynamics of viral spread, which includes transmission by cell-free virions and direct cell-to-cell transmission, models used so far ignored cell-to-cell transmission completely, or accounted for this process by simple mass-action kinetics between infected and uninfected cells. In this study, we show that the simple mass-action approach falls short when describing viral spread in a spatially-defined environment. Using simulated data, we present a model extension that allows correct quantification of cell-to-cell transmission dynamics within a monolayer of cells. By considering the decreasing proportion of cells that can contribute to cell-to-cell spread with progressing infection, our extension accounts for the transmission dynamics on a single cell level while still remaining applicable to standard population-based experimental measurements. While the ability to infer the proportion of cells infected by either of the transmission modes depends on the viral diffusion rate, the improved estimates obtained using our novel approach emphasize the need to correctly account for spatial aspects when analyzing viral spread.

  5. Chemokines cooperate with TNF to provide protective anti-viral immunity and to enhance inflammation.

    PubMed

    Alejo, Alí; Ruiz-Argüello, M Begoña; Pontejo, Sergio M; Fernández de Marco, María Del Mar; Saraiva, Margarida; Hernáez, Bruno; Alcamí, Antonio

    2018-05-03

    The role of cytokines and chemokines in anti-viral defense has been demonstrated, but their relative contribution to protective anti-viral responses in vivo is not fully understood. Cytokine response modifier D (CrmD) is a secreted receptor for TNF and lymphotoxin containing the smallpox virus-encoded chemokine receptor (SECRET) domain and is expressed by ectromelia virus, the causative agent of the smallpox-like disease mousepox. Here we show that CrmD is an essential virulence factor that controls natural killer cell activation and allows progression of fatal mousepox, and demonstrate that both SECRET and TNF binding domains are required for full CrmD activity. Vaccination with recombinant CrmD protects animals from lethal mousepox. These results indicate that a specific set of chemokines enhance the inflammatory and protective anti-viral responses mediated by TNF and lymphotoxin, and illustrate how viruses optimize anti-TNF strategies with the addition of a chemokine binding domain as soluble decoy receptors.

  6. Essential veterinary education in the virology of domestic animals, wild animals and birds: diagnosis and pathogenesis of viral infections.

    PubMed

    Wilks, C R; Fenwick, S G

    2009-08-01

    An education in veterinary virology should establish a basis for life-long learning and enable veterinary graduates to address professionally the control and eradication of viral diseases, both locally and globally. It is therefore more important that the curriculum focuses on a sound understanding of the nature and behaviour of viruses and their interactions with animal hosts, rather than imparting detailed information on an ever-increasing number of individual viral diseases in a widening range of animal species. Graduate veterinarians should be prepared with a comprehensive knowledge of the nature of viruses and their close dependence on the hosts thatthey infect, as well as a good understanding of pathogenesis, immunology, epidemiology, diagnostic approaches and control options. All these are necessary if the profession is successfully to meet familiar and new challenges in viral diseases in a wide range of host species, under different management conditions, in various geographic areas of the world.

  7. Preliminary Evaluation of the Effect of Investigational Ebola Virus Disease Treatments on Viral Genome Sequences.

    PubMed

    Whitmer, Shannon L M; Albariño, César; Shepard, Samuel S; Dudas, Gytis; Sheth, Mili; Brown, Shelley C; Cannon, Deborah; Erickson, Bobbie R; Gibbons, Aridth; Schuh, Amy; Sealy, Tara; Ervin, Elizabeth; Frace, Mike; Uyeki, Timothy M; Nichol, Stuart T; Ströher, Ute

    2016-10-15

     Several patients with Ebola virus disease (EVD) managed in the United States have received ZMapp monoclonal antibodies, TKM-Ebola small interfering RNA, brincidofovir, and/or convalescent plasma as investigational therapeutics.  To investigate whether treatment selected for Ebola virus (EBOV) mutations conferring resistance, viral sequencing was performed on RNA extracted from clinical blood specimens from patients with EVD following treatment, and putative viral targets were analyzed.  We observed no major or minor EBOV mutations within regions targeted by therapeutics.  This small subset of patients and clinical specimens suggests that evolution of resistance is not a direct consequence of antiviral treatment. As EVD antiviral treatments are introduced into wider use, it is essential that continuous viral full-genome surveillance is performed, to monitor for the emergence of escape mutations. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  8. Non-structural protein 1 of influenza viruses inhibits rapid mRNA degradation mediated by double-stranded RNA-binding protein, staufen1.

    PubMed

    Cho, Hana; Ahn, Sang Ho; Kim, Kyoung Mi; Kim, Yoon Ki

    2013-07-11

    Although non-structural protein 1 (NS1) of influenza viruses is not essential for virulence, this protein is involved in host-virus interactions, viral replication, and translation. In particular, NS1 is known to interact with the host protein, staufen1 (Stau1). This interaction is important for efficient viral replication. However, the underlying molecular mechanism by which NS1 influences the viral life cycle remains obscure. Here, we show using immunoprecipitation and artificial tethering that the N-terminus of NS1, NS1(1-73), interacts with Stau1, blocks the Stau1-Upf1 interaction, and consequently inhibits the efficiency of Stau1-mediated mRNA decay (SMD), but not nonsense-mediatedmRNA decay (NMD). The regulation of SMD efficiency by NS1 may contribute to building a more favorable cellular environment for viral replication. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Small molecule inhibitors of ER α-glucosidases are active against multiple hemorrhagic fever viruses.

    PubMed

    Chang, Jinhong; Warren, Travis K; Zhao, Xuesen; Gill, Tina; Guo, Fang; Wang, Lijuan; Comunale, Mary Ann; Du, Yanming; Alonzi, Dominic S; Yu, Wenquan; Ye, Hong; Liu, Fei; Guo, Ju-Tao; Mehta, Anand; Cuconati, Andrea; Butters, Terry D; Bavari, Sina; Xu, Xiaodong; Block, Timothy M

    2013-06-01

    Host cellular endoplasmic reticulum α-glucosidases I and II are essential for the maturation of viral glycosylated envelope proteins that use the calnexin mediated folding pathway. Inhibition of these glycan processing enzymes leads to the misfolding and degradation of these viral glycoproteins and subsequent reduction in virion secretion. We previously reported that, CM-10-18, an imino sugar α-glucosidase inhibitor, efficiently protected the lethality of dengue virus infection of mice. In the current study, through an extensive structure-activity relationship study, we have identified three CM-10-18 derivatives that demonstrated superior in vitro antiviral activity against representative viruses from four viral families causing hemorrhagic fever. Moreover, the three novel imino sugars significantly reduced the mortality of two of the most pathogenic hemorrhagic fever viruses, Marburg virus and Ebola virus, in mice. Our study thus proves the concept that imino sugars are promising drug candidates for the management of viral hemorrhagic fever caused by variety of viruses. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity.

    PubMed

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-05-21

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5'-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5'-triphosphorylated but not 5'-diphosphorylated RABV mRNA-start sequences, 5'-AACA(C/U), with GDP to generate the 5'-terminal cap structure G(5')ppp(5')A. The 5'-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents.

  11. Analysis of BmNPV orf101 disruption: orf101 is essential for mediating budded virus production.

    PubMed

    Chen, Huiqing; Li, Mei; Mai, Weijun; Tang, Qi; Li, Guohui; Chen, Keping; Zhou, Yajing

    2014-12-01

    In our previous study, Orf101 (Bm101) of Bombyx mori nucleopolyhedrovirus (BmNPV) was identified as a component of the budded virions important for viral late gene expression. In this study we demonstrate that Bm101 is actually a previously unrecognized core gene and that it is essential for mediating budded virus production. To determine the role of Bm101 in the baculovirus life cycle, a Bm101 knockout bacmid containing the BmNPV genome was generated through homologous recombination in Escherichia coli. Furthermore, a Bm101 repair bacmid was constructed by transposing the Bm101 open reading frame with its native promoter region into the polyhedrin locus of the Bm101 knockout bacmid. Bacmid DNA transfection assay revealed that the Bm101 knockout bacmid was unable to produce the infectious budded virus, while the Bm101 repair bacmid rescued this defect, allowing budded-virus titers to reach wild-type levels. Real time PCR analysis indicated that the viral DNA genome in the absence of Bm101 was unaffected in the first 24 h p.t. Thus, studies of a Bm101-null BACmid indicate that Bm101 is required for viral DNA replication during the infection cycle.

  12. Viral and Mycoplasma pneumoniae pneumonias in school-age children: three-year follow-up of respiratory function.

    PubMed

    Todisco, T; de Benedictis, F M; Dottorini, M

    1989-01-01

    We studied the evolution of respiratory function during and for 3 years after the acute onset of viral and Mycoplasma pneumoniae pneumonias in 13 school-age children. A mixed type transient ventilatory defect (restrictive and obstructive, but mainly restrictive) with large and small airway involvement was observed during the acute phase of the pneumonias. Residual small airway involvement was found over the next 12 months, but no pulmonary function abnormalities were present after 3 years. At that time, one of the 13 subjects displayed bronchial hyperreactivity to distilled water mist challenge. The authors concluded that viral and Mycoplasma pneumoniae pneumonia in previously healthy school-age children does not cause impaired lung function in later childhood.

  13. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase

    PubMed Central

    Mudhasani, Rajini; Tran, Julie P.; Retterer, Cary; Kota, Krishna P.; Whitehouse, Chris A.; Bavari, Sina

    2016-01-01

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)FBXW11 E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCFFBXW11 E3 ligase. We further show that disrupting the assembly of the SCFFBXW11-NSs E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCFFBXW11-NSs E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCFFBXW11 complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection. PMID:26837067

  14. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase.

    PubMed

    Mudhasani, Rajini; Tran, Julie P; Retterer, Cary; Kota, Krishna P; Whitehouse, Chris A; Bavari, Sina

    2016-02-01

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)(FBXW11) E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCF(FBXW11) E3 ligase. We further show that disrupting the assembly of the SCF(FBXW11-NSs) E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCF(FBXW11-NSs) E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCF(FBXW11) complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.

  15. Analysis of Protein-RNA and Protein-Peptide Interactions in Equine Infectious Anemia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jae-Hyung

    2007-01-01

    Macromolecular interactions are essential for virtually all cellular functions including signal transduction processes, metabolic processes, regulation of gene expression and immune responses. This dissertation focuses on the characterization of two important macromolecular interactions involved in the relationship between Equine Infectious Anemia Virus (EIAV) and its host cell in horse: (1) the interaction between the EIAV Rev protein and its binding site, the Rev-responsive element (RRE) and (2) interactions between equine MHC class I molecules and epitope peptides derived from EIAV proteins. EIAV, one of the most divergent members of the lentivirus family, has a single-stranded RNA genome and carries severalmore » regulatory and structural proteins within its viral particle. Rev is an essential EIAV regulatory encoded protein that interacts with the viral RRE, a specific binding site in the viral mRNA. Using a combination of experimental and computational methods, the interactions between EIAV Rev and RRE were characterized in detail. EIAV Rev was shown to have a bipartite RNA binding domain contain two arginine rich motifs (ARMs). The RRE secondary structure was determined and specific structural motifs that act as cis-regulatory elements for EIAV Rev-RRE interaction were identified. Interestingly, a structural motif located in the high affinity Rev binding site is well conserved in several diverse lentiviral genoes, including HIV-1. Macromolecular interactions involved in the immune response of the horse to EIAV infection were investigated by analyzing complexes between MHC class I proteins and epitope peptides derived from EIAV Rev, Env and Gag proteins. Computational modeling results provided a mechanistic explanation for the experimental finding that a single amino acid change in the peptide binding domain of the quine MHC class I molecule differentially affectes the recognitino of specific epitopes by EIAV-specific CTL. Together, the findings in this dissertation provide novel insights into the strategy used by EIAV to replicate itself, and provide new details about how the host cell responds to and defends against EIAV upon the infection. Moreover, they have contributed to the understanding of the macromolecular recognition events that regulate these processes.« less

  16. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase

    DOE PAGES

    Mudhasani, Rajini; Tran, Julie P.; Retterer, Cary; ...

    2016-02-02

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)FBXW11 E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through anmore » alternate binding site to the SCFFBXW11 E3 ligase. We further show that disrupting the assembly of the SCFFBXW11-NSs E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCFFBXW11-NSs E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCFFBXW11 complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.« less

  17. Protein Kinase R Degradation Is Essential for Rift Valley Fever Virus Infection and Is Regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 Ligase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mudhasani, Rajini; Tran, Julie P.; Retterer, Cary

    Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)FBXW11 E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through anmore » alternate binding site to the SCFFBXW11 E3 ligase. We further show that disrupting the assembly of the SCFFBXW11-NSs E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCFFBXW11-NSs E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the βTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of βTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCFFBXW11 complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.« less

  18. L Particles Transmit Viral Proteins from Herpes Simplex Virus 1-Infected Mature Dendritic Cells to Uninfected Bystander Cells, Inducing CD83 Downmodulation.

    PubMed

    Heilingloh, Christiane S; Kummer, Mirko; Mühl-Zürbes, Petra; Drassner, Christina; Daniel, Christoph; Klewer, Monika; Steinkasserer, Alexander

    2015-11-01

    Mature dendritic cells (mDCs) are known as the most potent antigen-presenting cells (APCs) since they are also able to prime/induce naive T cells. Thus, mDCs play a pivotal role during the induction of antiviral immune responses. Remarkably, the cell surface molecule CD83, which was shown to have costimulatory properties, is targeted by herpes simplex virus 1 (HSV-1) for viral immune escape. Infection of mDCs with HSV-1 results in downmodulation of CD83, resulting in reduced T cell stimulation. In this study, we report that not only infected mDCs but also uninfected bystander cells in an infected culture show a significant CD83 reduction. We demonstrate that this effect is independent of phagocytosis and transmissible from infected to uninfected mDCs. The presence of specific viral proteins found in these uninfected bystander cells led to the hypothesis that viral proteins are transferred from infected to uninfected cells via L particles. These L particles are generated during lytic replication in parallel with full virions, called H particles. L particles contain viral proteins but lack the viral capsid and DNA. Therefore, these particles are not infectious but are able to transfer several viral proteins. Incubation of mDCs with L particles indeed reduced CD83 expression on uninfected bystander DCs, providing for the first time evidence that functional viral proteins are transmitted via L particles from infected mDCs to uninfected bystander cells, thereby inducing CD83 downmodulation. HSV-1 has evolved a number of strategies to evade the host's immune system. Among others, HSV-1 infection of mDCs results in an inhibited T cell activation caused by degradation of CD83. Interestingly, CD83 is lost not only from HSV-1-infected mDCs but also from uninfected bystander cells. The release of so-called L particles, which contain several viral proteins but lack capsid and DNA, during infection is a common phenomenon observed among several viruses, such as human cytomegalovirus (HCMV), Epstein-Barr virus, and HSV-1. However, the detailed function of these particles is poorly understood. Here, we provide for the first time evidence that functional viral proteins can be transferred to uninfected bystander mDCs via L particles, revealing important biological functions of these particles during lytic replication. Therefore, the transfer of viral proteins by L particles to modulate uninfected bystander cells may represent an additional strategy for viral immune escape. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. DDB1 Stimulates Viral Transcription of Hepatitis B Virus via HBx-Independent Mechanisms.

    PubMed

    Kim, Woohyun; Lee, Sooyoung; Son, Yeongnam; Ko, Chunkyu; Ryu, Wang-Shick

    2016-11-01

    HBx, a small regulatory protein of hepatitis B virus (HBV), augments viral DNA replication by stimulating viral transcription. Among numerous reported HBx-binding proteins, DDB1 has drawn attention, because DDB1 acts as a substrate receptor of the Cul4-DDB1 ubiquitin E3 ligase. Previous work reported that the DDB1-HBx interaction is indispensable for HBx-stimulated viral DNA replication, suggesting that the Cul4-DDB1 ubiquitin E3 ligase might target cellular restriction factors for ubiquitination and proteasomal degradation. To gain further insight into the DDB1-HBx interaction, we generated HBx mutants deficient for DDB1 binding (i.e., R96A, L98A, and G99A) and examined whether they support HBx-stimulated viral DNA replication. In contrast to data from previous reports, our results showed that the HBx mutants deficient for DDB1 binding supported viral DNA replication to nearly wild-type levels, revealing that the DDB1-HBx interaction is largely dispensable for HBx-stimulated viral DNA replication. Instead, we found that DDB1 directly stimulates viral transcription regardless of HBx expression. Through an HBV infection study, importantly, we demonstrated that DDB1 stimulates viral transcription from covalently closed circular DNA, a physiological template for viral transcription. Overall, we concluded that DDB1 stimulates viral transcription via a mechanism that does not involve an interaction with HBx. DDB1 constitutes a cullin-based ubiquitin E3 ligase, where DDB1 serves as an adaptor linking the cullin scaffold to the substrate receptor. Previous findings that the DDB1-binding ability of HBx is essential for HBx-stimulated viral DNA replication led to the hypothesis that HBx could downregulate host restriction factors that limit HBV replication through the cullin ubiquitin E3 ligase that requires the DDB1-HBx interaction. Consistent with this hypothesis, recent work identified Smc5/6 as a host restriction factor that is regulated by the viral cullin ubiquitin E3 ligase. In contrast, here we found that the DDB1-HBx interaction is largely dispensable for HBx-stimulated viral DNA replication. Instead, our results clearly showed that DDB1, regardless of HBx expression, enhances viral transcription. Overall, besides its role in the viral cullin ubiquitin E3 ligase, DDB1 itself stimulates viral transcription via HBx-independent mechanisms. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. CD4 T Cell Responses in Latent and Chronic Viral Infections

    PubMed Central

    Walton, Senta; Mandaric, Sanja; Oxenius, Annette

    2013-01-01

    The spectrum of tasks which is fulfilled by CD4 T cells in the setting of viral infections is large, ranging from support of CD8 T cells and humoral immunity to exertion of direct antiviral effector functions. While our knowledge about the differentiation pathways, plasticity, and memory of CD4 T cell responses upon acute infections or immunizations has significantly increased during the past years, much less is still known about CD4 T cell differentiation and their beneficial or pathological functions during persistent viral infections. In this review we summarize current knowledge about the differentiation, direct or indirect antiviral effector functions, and the regulation of virus-specific CD4 T cells in the setting of persistent latent or active chronic viral infections with a particular emphasis on herpes virus infections for the former and chronic lymphocytic choriomeningitis virus infection for the latter. PMID:23717308

  1. Phage and Nucleocytoplasmic Large Viral Sequences Dominate Coral Viromes from the Arabian Gulf.

    PubMed

    Mahmoud, Huda; Jose, Liny

    2017-01-01

    Corals that naturally thrive under extreme conditions are gaining increasing attention due to their importance as living models to understand the impact of global warming on world corals. Here, we present the first metagenomic study of viral communities in corals thriving in a thermally variable water body in which the temperature fluctuates between 11 and 39°C in different seasons. The viral assemblages of two of the most abundant massive ( Porites harrisoni ) and branching ( Acropora downingi ) corals in offshore and inshore reef systems in the northern Arabian Gulf were investigated. Samples were collected from five reef systems during summer, autumn and winter of 2011/2012. The two coral viromes contain 12 viral families, including 10 dsDNA viral families [Siphoviridae, Podoviridae, Myoviridae, Phycodnaviridae, Baculoviridae, Herpesviridae, Adenoviridae, Alloherpesviridae, Mimiviridae and one unclassified family], one-ssDNA viral family (Microviridae) and one RNA viral family (Retroviridae). Overall, sequences significantly similar to Podoviridae were the most abundant in the P. harrisoni and A. downingi viromes. Various morphological types of virus-like particles (VLPs) were confirmed in the healthy coral tissue by transmission electron microscopy, including large tailless VLPs and electron-dense core VLPs. Tailed bacteriophages were isolated from coral tissue using a plaque assay. Higher functional gene diversity was recorded in A. downingi than in P. harrisoni , and comparative metagenomics revealed that the Gulf viral assemblages are functionally distinct from Pacific Ocean coral viral communities.

  2. [The great virus comeback].

    PubMed

    Forterre, Patrick

    2013-01-01

    Viruses have been considered for a long time as by-products of biological evolution. This view is changing now as a result of several recent discoveries. Viral ecologists have shown that viral particles are the most abundant biological entities on our planet, whereas metagenomic analyses have revealed an unexpected abundance and diversity of viral genes in the biosphere. Comparative genomics have highlighted the uniqueness of viral sequences, in contradiction with the traditional view of viruses as pickpockets of cellular genes. On the contrary, cellular genomes, especially eukaryotic ones, turned out to be full of genes derived from viruses or related elements (plasmids, transposons, retroelements and so on). The discovery of unusual viruses infecting archaea has shown that the viral world is much more diverse than previously thought, ruining the traditional dichotomy between bacteriophages and viruses. Finally, the discovery of giant viruses has blurred the traditional image of viruses as small entities. Furthermore, essential clues on virus history have been obtained in the last ten years. In particular, structural analyses of capsid proteins have uncovered deeply rooted homologies between viruses infecting different cellular domains, suggesting that viruses originated before the last universal common ancestor (LUCA). These studies have shown that several lineages of viruses originated independently, i.e., viruses are polyphyletic. From the time of LUCA, viruses have coevolved with their hosts, and viral lineages can be viewed as lianas wrapping around the trunk, branches and leaves of the tree of life. Although viruses are very diverse, with genomes encoding from one to more than one thousand proteins, they can all be simply defined as organisms producing virions. Virions themselves can be defined as infectious particles made of at least one protein associated with the viral nucleic acid, endowed with the capability to protect the viral genome and ensure its delivery to the infected cell. These definitions, which clearly distinguish viruses from plasmids, suggest that infectious RNA molecules that only encode an RNA replicase presently classified among viruses by the ICTV (International Committee for the Taxonomy of Viruses) into families of Endornaviridae and Hypoviridae are in fact RNA plasmids. Since a viral genome should encode for at least one structural protein, these definitions also imply that viruses originated after the emergence of the ribosome in an RNA-protein cellular world. Although virions are the hallmarks of viruses, viruses and virions should not be confused. The infection transforms the ribocell (cell encoding ribosomes and dividing by binary fission) into a virocell (cell producing virions) or ribovirocell (cell that produces virions but can still divide by binary fission). In the ribovirocell, two different organisms, defined by their distinct evolutionary histories, coexist in symbiosis in the same cell. The virocells or ribovirocells are the living forms of the virus, which can be in fine considered to be a living organism. In the virocell, the metabolism is reorganized for the production of virions, while the ability to capture and store free energy is retained, as in other cellular organisms. In the virocell, viral genomes replicate, recombine and evolve, leading to the emergence of new viral proteins and potentially novel functions. Some of these new functions can be later on transferred to the cell, explaining how viruses can play a major (often underestimated) role in the evolution of cellular organisms. The virocell concept thus helps to understand recent hypotheses suggesting that viruses played a critical role in major evolutionary transitions, such as the origin of DNA genomes or else the origin of the eukaryotic nucleus. Finally, it is more and more recognized that viruses are the major source of variation and selection in living organisms (both viruses and cells), the two pillars of darwinism. One can thus conclude that the continuous interaction between viruses and cells, all along the history of life, has been, and still is, a major engine of biological evolution. © Société de Biologie, 2013.

  3. Viral Characteristics Associated with the Clinical Nonprogressor Phenotype Are Inherited by Viruses from a Cluster of HIV-1 Elite Controllers

    PubMed Central

    2018-01-01

    ABSTRACT A small group of HIV-1-infected individuals, called long-term nonprogressors (LTNPs), and in particular a subgroup of LTNPs, elite controllers (LTNP-ECs), display permanent control of viral replication and lack of clinical progression. This control is the result of a complex interaction of host, immune, and viral factors. We identified, by phylogenetic analysis, a cluster of LTNP-ECs infected with very similar low-replication HIV-1 viruses, suggesting the contribution of common viral features to the clinical LTNP-EC phenotype. HIV-1 envelope (Env) glycoprotein mediates signaling and promotes HIV-1 fusion, entry, and infection, being a key factor of viral fitness in vitro, cytopathicity, and infection progression in vivo. Therefore, we isolated full-length env genes from viruses of these patients and from chronically infected control individuals. Functional characterization of the initial events of the viral infection showed that Envs from the LTNP-ECs were ineffective in the binding to CD4 and in the key triggering of actin/tubulin-cytoskeleton modifications compared to Envs from chronic patients. The viral properties of the cluster viruses result in a defective viral fusion, entry, and infection, and these properties were inherited by every virus of the cluster. Therefore, inefficient HIV-1 Env functions and signaling defects may contribute to the low viral replication capacity and transmissibility of the cluster viruses, suggesting a direct role in the LTNP-EC phenotype of these individuals. These results highlight the important role of viral characteristics in the LTNP-EC clinical phenotype. These Env viral properties were common to all the cluster viruses and thus support the heritability of the viral characteristics. PMID:29636433

  4. Morphological, Biochemical, and Functional Study of Viral Replication Compartments Isolated from Adenovirus-Infected Cells

    PubMed Central

    Hidalgo, Paloma; Anzures, Lourdes; Hernández-Mendoza, Armando; Guerrero, Adán; Wood, Christopher D.; Valdés, Margarita; Dobner, Thomas

    2016-01-01

    ABSTRACT Adenovirus (Ad) replication compartments (RC) are nuclear microenvironments where the viral genome is replicated and a coordinated program of late gene expression is established. These virus-induced nuclear sites seem to behave as central hubs for the regulation of virus-host cell interactions, since proteins that promote efficient viral replication as well as factors that participate in the antiviral response are coopted and concentrated there. To gain further insight into the activities of viral RC, here we report, for the first time, the morphology, composition, and activities of RC isolated from Ad-infected cells. Morphological analyses of isolated RC particles by superresolution microscopy showed that they were indistinguishable from RC within infected cells and that they displayed a dynamic compartmentalization. Furthermore, the RC-containing fractions (RCf) proved to be functional, as they directed de novo synthesis of viral DNA and RNA as well as RNA splicing, activities that are associated with RC in vivo. A detailed analysis of the production of viral late mRNA from RCf at different times postinfection revealed that viral mRNA splicing occurs in RC and that the synthesis, posttranscriptional processing, and release from RC to the nucleoplasm of individual viral late transcripts are spatiotemporally separate events. The results presented here demonstrate that RCf are a powerful system for detailed study into RC structure, composition, and activities and, as a result, the determination of the molecular mechanisms that induce the formation of these viral sites of adenoviruses and other nuclear-replicating viruses. IMPORTANCE RC may represent molecular hubs where many aspects of virus-host cell interaction are controlled. Here, we show by superresolution microscopy that RCf have morphologies similar to those of RC within Ad-infected cells and that they appear to be compartmentalized, as nucleolin and DBP display different localization in the periphery of these viral sites. RCf proved to be functional, as they direct de novo synthesis of viral DNA and mRNA, allowing the detailed study of the regulation of viral genome replication and expression. Furthermore, we show that the synthesis and splicing of individual viral late mRNA occurs in RC and that they are subject to different temporal patterns of regulation, from their synthesis to their splicing and release from RC to the nucleoplasm. Hence, RCf represent a novel system to study molecular mechanisms that are orchestrated in viral RC to take control of the infected cell and promote an efficient viral replication cycle. PMID:26764008

  5. Identification of Novel Kaposi's Sarcoma-Associated Herpesvirus Orf50 Transcripts: Discovery of New RTA Isoforms with Variable Transactivation Potential.

    PubMed

    Wakeman, Brian S; Izumiya, Yoshihiro; Speck, Samuel H

    2017-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that has been associated with primary effusion lymphoma and multicentric Castleman's disease, as well as its namesake Kaposi's sarcoma. As a gammaherpesvirus, KSHV is able to acutely replicate, enter latency, and reactivate from this latent state. A key protein involved in both acute replication and reactivation from latency is the replication and transcriptional activator (RTA) encoded by the gene Orf50 RTA is a known transactivator of multiple viral genes, allowing it to control the switch between latency and virus replication. We report here the identification of six alternatively spliced Orf50 transcripts that are generated from four distinct promoters. These newly identified promoters are shown to be transcriptionally active in 293T (embryonic kidney), Vero (African-green monkey kidney epithelial), 3T12 (mouse fibroblast), and RAW 264.7 (mouse macrophage) cell lines. Notably, the newly identified Orf50 transcripts are predicted to encode four different isoforms of the RTA which differ by 6 to 10 residues at the amino terminus of the protein. We show the global viral transactivation potential of all four RTA isoforms and demonstrate that all isoforms can transcriptionally activate an array of KSHV promoters to various levels. The pattern of transcriptional activation appears to support a transcriptional interference model within the Orf50 region, where silencing of previously expressed isoforms by transcription initiation from upstream Orf50 promoters has the potential to modulate the pattern of viral gene activation. Gammaherpesviruses are associated with the development of lymphomas and lymphoproliferative diseases, as well as several other types of cancer. The human gammaherpesvirus, Kaposi's sarcoma-associated herpesvirus (KSHV), is tightly associated with the development of Kaposi's sarcoma and multicentric Castleman's disease, as well as a rare form of B cell lymphoma (primary effusion lymphoma) primarily observed in HIV-infected individuals. RTA is an essential viral gene product involved in the initiation of gammaherpesvirus replication and is conserved among all known gammaherpesviruses. We show here for KSHV that transcription of the gene encoding RTA is complex and leads to the expression of several isoforms of RTA with distinct functions. This observed complexity in KSHV RTA expression and function likely plays a critical role in the regulation of downstream viral and cellular gene expression, leading to the efficient production of mature virions. Copyright © 2016 American Society for Microbiology.

  6. A 3-year prospective study of the epidemiology of acute respiratory viral infections in hospitalized children in Shenzhen, China.

    PubMed

    He, Ying; Lin, Guang-Yu; Wang, Qiong; Cai, Xiao-Ying; Zhang, Yin-Hui; Lin, Chuang-Xing; Lu, Chang-Dong; Lu, Xue-Dong

    2014-07-01

    The epidemiology of local viral etiologies is essential for the management of viral respiratory tract infections. Limited data are available in China to describe the epidemiology of viral respiratory infections, especially in small-medium cities and rural areas. To determine the viral etiology and seasonality of acute respiratory infections in hospitalized children, a 3-year study was conducted in Shenzhen, China. Nasopharyngeal aspirates from eligible children were collected. Influenza and other respiratory viruses were tested by molecular assays simultaneously. Data were analyzed to describe the frequency and seasonality. Of the 2025 children enrolled in the study, 971 (48.0%) were positive for at least one viral pathogen, in which 890 (91.7%) were <4 years of age. The three most prevalent viruses were influenza A (IAV; 35.8%), respiratory syncytial virus (RSV; 30.5%) and human rhinovirus (HRV; 21.5%). Co-infections were found in 302 cases (31.1%), and dual viral infection was dominant. RSV, HRV and IAV were the most frequent viral agents involved in co-infection. On the whole, the obvious seasonal peaks mainly from March to May were observed with peak strength varying from 1 year to another. This study provides a basic profile of the epidemiology of acute respiratory viral infection in hospitalized children in Shenzhen. The spectrum of viruses in the study site is similar to that in other places, but the seasonality is closely related to geographic position, different from that in big cities in northern China and neighboring Hong Kong. © 2014 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  7. Phosphorylation of paramyxovirus phosphoprotein and its role in viral gene expression.

    PubMed

    Fuentes, Sandra M; Sun, Dengyun; Schmitt, Anthony P; He, Biao

    2010-01-01

    Paramyxoviruses include many important human and animal pathogens such as measles virus, mumps virus, human parainfluenza viruses, and respiratory syncytial virus, as well as emerging viruses such as Nipah virus and Hendra virus. The paramyxovirus RNA-dependent RNA polymerase consists of the phosphoprotein (P) and the large protein. Both of these proteins are essential for viral RNA synthesis. The P protein is phosphorylated at multiple sites, probably by more than one host kinase. While it is thought that the phosphorylation of P is important for its role in viral RNA synthesis, the precise role of P protein phosphorylation remains an enigma. For instance, it was demonstrated that the putative CKII phosphorylation sites of the P protein of respiratory syncytial virus play a role in viral RNA synthesis using a minigenome replicon system; however, mutating these putative CKII phosphorylation sites within a viral genome had no effect on viral RNA synthesis, leading to the hypothesis that P protein phosphorylation, at least by CKII, does not play a role in viral RNA synthesis. Recently, it has been reported that the phosphorylation state of the P protein of parainfluenza virus 5, a prototypical paramyxovirus, correlates with the ability of P protein to synthesize viral RNA, indicating that P protein phosphorylation does in fact play a role in viral RNA synthesis. Furthermore, host kinases PLK1, as well as AKT1 have been found to play critical roles in paramyxovirus RNA synthesis through regulation of P protein phosphorylation status. Beyond furthering our understanding of paramyxovirus RNA replication, these recent discoveries may also result in a new paradigm in treating infections caused by these viruses, as host kinases that regulate paramyxovirus replication are investigated as potential targets of therapeutic intervention.

  8. Illuminating structural proteins in viral "dark matter" with metaproteomics

    DOE PAGES

    Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Kim, Eun -Hae; ...

    2016-02-16

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional darkmatter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore,more » four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Altogether, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.« less

  9. Illuminating structural proteins in viral "dark matter" with metaproteomics.

    PubMed

    Brum, Jennifer R; Ignacio-Espinoza, J Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M; Roux, Simon; VerBerkmoes, Nathan C; Rich, Virginia I; Sullivan, Matthew B

    2016-03-01

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional "viral dark matter." Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world's oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter.

  10. Illuminating structural proteins in viral “dark matter” with metaproteomics

    PubMed Central

    Brum, Jennifer R.; Ignacio-Espinoza, J. Cesar; Kim, Eun-Hae; Trubl, Gareth; Jones, Robert M.; Roux, Simon; VerBerkmoes, Nathan C.; Rich, Virginia I.; Sullivan, Matthew B.

    2016-01-01

    Viruses are ecologically important, yet environmental virology is limited by dominance of unannotated genomic sequences representing taxonomic and functional “viral dark matter.” Although recent analytical advances are rapidly improving taxonomic annotations, identifying functional dark matter remains problematic. Here, we apply paired metaproteomics and dsDNA-targeted metagenomics to identify 1,875 virion-associated proteins from the ocean. Over one-half of these proteins were newly functionally annotated and represent abundant and widespread viral metagenome-derived protein clusters (PCs). One primarily unannotated PC dominated the dataset, but structural modeling and genomic context identified this PC as a previously unidentified capsid protein from multiple uncultivated tailed virus families. Furthermore, four of the five most abundant PCs in the metaproteome represent capsid proteins containing the HK97-like protein fold previously found in many viruses that infect all three domains of life. The dominance of these proteins within our dataset, as well as their global distribution throughout the world’s oceans and seas, supports prior hypotheses that this HK97-like protein fold is the most abundant biological structure on Earth. Together, these culture-independent analyses improve virion-associated protein annotations, facilitate the investigation of proteins within natural viral communities, and offer a high-throughput means of illuminating functional viral dark matter. PMID:26884177

  11. Cerebrospinal fluid lactate: a differential biomarker for bacterial and viral meningitis in children.

    PubMed

    Nazir, Mudasir; Wani, Wasim Ahmad; Malik, Muzaffar Ahmad; Mir, Mohd Rafiq; Ashraf, Younis; Kawoosa, Khalid; Ali, Syed Wajid

    To assess the performance of cerebrospinal fluid (CSF) lactate as a biomarker to differentiate bacterial meningitis from viral meningitis in children, and to define an optimal CSF lactate concentration that can be called significant for the differentiation. Children with clinical findings compatible with meningitis were studied. CSF lactate and other conventional CSF parameters were recorded. At a cut-off value of 3mmol/L, CSF lactate had a sensitivity of 0.90, specificity of 1.0, positive predictive value of 1.0, and negative predictive value of 0.963, with an accuracy of 0.972. The positive and negative likelihood ratios were 23.6 and 0.1, respectively. When comparing between bacterial and viral meningitis, the area under the curve for CSF lactate was 0.979. The authors concluded that CSF lactate has high sensitivity and specificity in differentiating bacterial from viral meningitis. While at a cut-off value of 3mmol/L, CSF lactate has high diagnostic accuracy for bacterial meningitis, mean levels in viral meningitis remain essentially below 2mmol/L. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  12. Unusual Features of Vaccinia Virus Extracellular Virion Form Neutralization Resistance Revealed in Human Antibody Responses to the Smallpox Vaccine

    PubMed Central

    Benhnia, Mohammed Rafii-El-Idrissi; Maybeno, Matthew; Blum, David; Aguilar-Sino, Rowena; Matho, Michael; Meng, Xiangzhi; Head, Steven; Felgner, Philip L.; Zajonc, Dirk M.; Koriazova, Lilia; Kato, Shinichiro; Burton, Dennis R.; Xiang, Yan; Crowe, James E.; Peters, Bjoern

    2013-01-01

    The extracellular virion form (EV) of vaccinia virus (VACV) is essential for viral pathogenesis and is difficult to neutralize with antibodies. Why this is the case and how the smallpox vaccine overcomes this challenge remain incompletely understood. We previously showed that high concentrations of anti-B5 antibodies are insufficient to directly neutralize EV (M. R. Benhnia, et al., J. Virol. 83:1201–1215, 2009). This allowed for at least two possible interpretations: covering the EV surface is insufficient for neutralization, or there are insufficient copies of B5 to allow anti-B5 IgG to cover the whole surface of EV and another viral receptor protein remains active. We endeavored to test these possibilities, focusing on the antibody responses elicited by immunization against smallpox. We tested whether human monoclonal antibodies (MAbs) against the three major EV antigens, B5, A33, and A56, could individually or together neutralize EV. While anti-B5 or anti-A33 (but not anti-A56) MAbs of appropriate isotypes were capable of neutralizing EV in the presence of complement, a mixture of anti-B5, anti-A33, and anti-A56 MAbs was incapable of directly neutralizing EV, even at high concentrations. This remained true when neutralizing the IHD-J strain, which lacks a functional version of the fourth and final known EV surface protein, A34. These immunological data are consistent with the possibility that viral proteins may not be the active component of the EV surface for target cell binding and infectivity. We conclude that the protection afforded by the smallpox vaccine anti-EV response is predominantly mediated not by direct neutralization but by isotype-dependent effector functions, such as complement recruitment for antibodies targeting B5 and A33. PMID:23152530

  13. Sugarcane Elongin C is involved in infection by sugarcane mosaic disease pathogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Yushan; Deng, Yuqing; Cheng, Guangyuan

    Sugarcane (Saccharum sp. hybrid) provides the main source of sugar for humans. Sugarcane mosaic disease (SMD) is a major threat to sugarcane production. Currently, control of SMD is mainly dependent on breeding resistant cultivars through hybridization, which is time-consuming. Understanding the mechanism of viral infection may facilitate novel strategies to breed cultivars resistant to SMD and to control the disease. In this study, a wide interaction was detected between the viral VPg protein and host proteins. Several genes were screened from sugarcane cDNA library that could interact with Sugarcane streak mosaic virus VPg, including SceIF4E1 and ScELC. ScELC was predictedmore » to be a cytoplasmic protein, but subcellular localization analysis showed it was distributed both in cytoplasmic and nuclear, and interactions were also detected between ScELC and VPg of SCMV or SrMV that reveal ScELC was widely used in the SMD pathogen infection process. ScELC and VPgs interacted in the nucleus, and may function to enhance the viral transcription rate. ScELC also interacted with SceIF4E2 both in the cytoplasm and nucleus, but not with SceIF4E1 and SceIF4E3. These results suggest that ScELC may be essential for the function of SceIF4E2, an isomer of eIF4E. - Highlights: • We cloned ScELC, SceIF4E1, SceIF4E2 and SceIF4E3 from sugarcane accession Badila. • We examined interactions among VPg, ScELC, SceIF4E1, SceIF4E2 and SceIF4E3. • We proofed that ScELC interacted with VPgs of SCMV, SrMV and SCSMV. • We proofed that ScELC interacted with SceIF4E2 but not SceIF4E1 or SceIF4E3.« less

  14. Human apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is incorporated into HIV-1 virions through interactions with viral and nonviral RNAs.

    PubMed

    Svarovskaia, Evguenia S; Xu, Hongzhan; Mbisa, Jean L; Barr, Rebekah; Gorelick, Robert J; Ono, Akira; Freed, Eric O; Hu, Wei-Shau; Pathak, Vinay K

    2004-08-20

    Apolipoprotein B mRNA-editing enzyme-catalytic polypeptide-like 3G (APOBEC3G) is a host cytidine deaminase that is packaged into virions and confers resistance to retroviral infection. APOBEC3G deaminates deoxycytidines in minus strand DNA to deoxyuridines, resulting in G to A hypermutation and viral inactivation. Human immunodeficiency virus type 1 (HIV-1) virion infectivity factor counteracts the antiviral activity of APOBEC3G by inducing its proteosomal degradation and preventing virion incorporation. To elucidate the mechanism of viral suppression by APOBEC3G, we developed a sensitive cytidine deamination assay and analyzed APOBEC3G virion incorporation in a series of HIV-1 deletion mutants. Virus-like particles derived from constructs in which pol, env, and most of gag were deleted still contained high levels of cytidine deaminase activity; in addition, coimmunoprecipitation of APOBEC3G and HIV-1 Gag in the presence and absence of RNase A indicated that the two proteins do not interact directly but form an RNase-sensitive complex. Viral particles lacking HIV-1 genomic RNA which were generated from the gag-pol expression constructs pC-Help and pSYNGP packaged APOBEC3G at 30-40% of the wild-type level, indicating that interactions with viral RNA are not necessary for incorporation. In addition, viral particles produced from an nucleocapsid zinc finger mutant contained approximately 1% of the viral genomic RNA but approximately 30% of the cytidine deaminase activity. The reduction in APOBEC3G incorporation was equivalent to the reduction in the total RNA present in the nucleocapsid mutant virions. These results indicate that interactions with viral proteins or viral genomic RNA are not essential for APOBEC3G incorporation and suggest that APOBEC3G interactions with viral and nonviral RNAs that are packaged into viral particles are sufficient for APOBEC3G virion incorporation.

  15. Sapovirus Translation Requires an Interaction between VPg and the Cap Binding Protein eIF4E

    PubMed Central

    Hosmillo, Myra; Chaudhry, Yasmin; Kim, Deok-Song

    2014-01-01

    ABSTRACT Sapoviruses of the Caliciviridae family of small RNA viruses are emerging pathogens that cause gastroenteritis in humans and animals. Molecular studies on human sapovirus have been hampered due to the lack of a cell culture system. In contrast, porcine sapovirus (PSaV) can be grown in cell culture, making it a suitable model for understanding the infectious cycle of sapoviruses and the related enteric caliciviruses. Caliciviruses are known to use a novel mechanism of protein synthesis that relies on the interaction of cellular translation initiation factors with the virus genome-encoded viral protein genome (VPg) protein, which is covalently linked to the 5′ end of the viral genome. Using PSaV as a representative member of the Sapovirus genus, we characterized the role of the viral VPg protein in sapovirus translation. As observed for other caliciviruses, the PSaV genome was found to be covalently linked to VPg, and this linkage was required for the translation and the infectivity of viral RNA. The PSaV VPg protein was associated with the 4F subunit of the eukaryotic translation initiation factor (eIF4F) complex in infected cells and bound directly to the eIF4E protein. As has been previously demonstrated for feline calicivirus, a member of the Vesivirus genus, PSaV translation required eIF4E and the interaction between eIF4E and eIF4G. Overall, our study provides new insights into the novel mechanism of sapovirus translation, suggesting that sapovirus VPg can hijack the cellular translation initiation mechanism by recruiting the eIF4F complex through a direct eIF4E interaction. IMPORTANCE Sapoviruses, which are members of the Caliciviridae family, are one of the causative agents of viral gastroenteritis in humans. However, human sapovirus remains noncultivable in cell culture, hampering the ability to characterize the virus infectious cycle. Here, we show that the VPg protein from porcine sapovirus, the only cultivatable sapovirus, is essential for viral translation and functions via a direct interaction with the cellular translation initiation factor eIF4E. This work provides new insights into the novel protein-primed mechanism of calicivirus VPg-dependent translation initiation. PMID:25142584

  16. Sapovirus translation requires an interaction between VPg and the cap binding protein eIF4E.

    PubMed

    Hosmillo, Myra; Chaudhry, Yasmin; Kim, Deok-Song; Goodfellow, Ian; Cho, Kyoung-Oh

    2014-11-01

    Sapoviruses of the Caliciviridae family of small RNA viruses are emerging pathogens that cause gastroenteritis in humans and animals. Molecular studies on human sapovirus have been hampered due to the lack of a cell culture system. In contrast, porcine sapovirus (PSaV) can be grown in cell culture, making it a suitable model for understanding the infectious cycle of sapoviruses and the related enteric caliciviruses. Caliciviruses are known to use a novel mechanism of protein synthesis that relies on the interaction of cellular translation initiation factors with the virus genome-encoded viral protein genome (VPg) protein, which is covalently linked to the 5' end of the viral genome. Using PSaV as a representative member of the Sapovirus genus, we characterized the role of the viral VPg protein in sapovirus translation. As observed for other caliciviruses, the PSaV genome was found to be covalently linked to VPg, and this linkage was required for the translation and the infectivity of viral RNA. The PSaV VPg protein was associated with the 4F subunit of the eukaryotic translation initiation factor (eIF4F) complex in infected cells and bound directly to the eIF4E protein. As has been previously demonstrated for feline calicivirus, a member of the Vesivirus genus, PSaV translation required eIF4E and the interaction between eIF4E and eIF4G. Overall, our study provides new insights into the novel mechanism of sapovirus translation, suggesting that sapovirus VPg can hijack the cellular translation initiation mechanism by recruiting the eIF4F complex through a direct eIF4E interaction. Sapoviruses, which are members of the Caliciviridae family, are one of the causative agents of viral gastroenteritis in humans. However, human sapovirus remains noncultivable in cell culture, hampering the ability to characterize the virus infectious cycle. Here, we show that the VPg protein from porcine sapovirus, the only cultivatable sapovirus, is essential for viral translation and functions via a direct interaction with the cellular translation initiation factor eIF4E. This work provides new insights into the novel protein-primed mechanism of calicivirus VPg-dependent translation initiation. Copyright © 2014 Hosmillo et al.

  17. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bienz, K.; Egger, D.; Troxler, M.

    1990-03-01

    Transcriptionally active replication complexes bound to smooth membrane vesicles were isolated from poliovirus-infected cells. In electron microscopic, negatively stained preparations, the replication complex appeared as an irregularly shaped, oblong structure attached to several virus-induced vesicles of a rosettelike arrangement. Electron microscopic immunocytochemistry of such preparations demonstrated that the poliovirus replication complex contains the proteins coded by the P2 genomic region (P2 proteins) in a membrane-associated form. In addition, the P2 proteins are also associated with viral RNA, and they can be cross-linked to viral RNA by UV irradiation. Guanidine hydrochloride prevented the P2 proteins from becoming membrane bound but didmore » not change their association with viral RNA. The findings allow the conclusion that the protein 2C or 2C-containing precursor(s) is responsible for the attachment of the viral RNA to the vesicular membrane and for the spatial organization of the replication complex necessary for its proper functioning in viral transcription. A model for the structure of the viral replication complex and for the function of the 2C-containing P2 protein(s) and the vesicular membranes is proposed.« less

  18. Ultraviolet-C irradiation for inactivation of viruses in foetal bovine serum.

    PubMed

    Vaidya, Vivek; Dhere, Rajeev; Agnihotri, Snehal; Muley, Ravindra; Patil, Sanjay; Pawar, Amit

    2018-07-05

    Foetal Bovine Serum (FBS) and porcine trypsin are one of the essential raw materials used in the manufacturing of cell culture based viral vaccines. Being from animal origin, these raw materials can potentially contaminate the final product by known or unknown adventitious agents. The issue is more serious in case of live attenuated viral vaccines, where there is no inactivation step which can take care of such adventitious agents. It is essential to design production processes which can offer maximum viral clearance potential for animal origin products. Ultraviolet-C irradiation is known to inactivate various adventitious viral agents; however there are limited studies on ultraviolet inactivation of viruses in liquid media. We obtained a recently developed UVivatec ultraviolet-C (UV-C) irradiation based viral clearance system for evaluating its efficacy to inactivate selected model viruses. This system has a unique design with spiral path of liquid allowing maximum exposure to UV-C light of a short wavelength of 254 nm. Five live attenuated vaccine viruses and four other model viruses were spiked in tissue culture media and exposed to UV-C irradiation. The pre and post UV-C irradiation samples were analyzed for virus content to find out the extent of inactivation of various viruses. These experiments showed substantial log reduction for the majority of the viruses with few exceptions based on the characteristics of these viruses. Having known the effect of UV irradiation on protein structure, we also evaluated the post irradiation samples of culture media for growth promoting properties using one of the most fastidious human diploid cells (MRC-5). UV-C exposure did not show any notable impact on the nutritional properties of culture media. The use of an UV-C irradiation based system is considered to be promising approach to mitigate the risk of adventitious agents in cell culture media arising through animal derived products. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Foot-and-mouth disease virus infection suppresses autophagy and NF-кB antiviral responses via degradation of ATG5-ATG12 by 3Cpro

    PubMed Central

    Fan, Xuxu; Han, Shichong; Yan, Dan; Gao, Yuan; Wei, Yanquan; Liu, Xiangtao; Liao, Ying; Guo, Huichen; Sun, Shiqi

    2017-01-01

    Autophagy-related protein ATG5-ATG12 is an essential complex for the autophagophore elongation in autophagy, which has been reported to be involved in foot-and-mouth disease virus (FMDV) replication. Previous reports show that ATG5-ATG12 positively or negatively regulates type I interferon (IFN-α/β) pathway during virus infection. In this study, we found that FMDV infection rapidly induced LC3 lipidation and GFP-LC3 subcellular redistribution at the early infection stage in PK-15 cells. Along with infection time course to 2–5 h.p.i., the levels of LC3II and ATG5-ATG12 were gradually reduced. Further study showed that ATG5-ATG12 was degraded by viral protein 3Cpro, demonstrating that FMDV suppresses autophagy along with viral protein production. Depletion of ATG5-ATG12 by siRNA knock down significantly increased the FMDV yields, whereas overexpression of ATG5-ATG12 had the opposite effects, suggesting that degradation of ATG5-ATG12 benefits virus growth. Further experiment showed that overexpression of ATG5-ATG12 positively regulated NF-кB pathway during FMDV infection, marked with promotion of IKKα/β phosphorylation and IκBα degradation, inhibition of p65 degradation, and facilitation of p65 nuclear translocation. Meanwhile, ATG5-ATG12 also promoted the phosphorylation of TBK1 and activation of IRF3 via preventing TRAF3 degradation. The positive regulation of NF-кB and IRF3 pathway by ATG5-ATG12 resulted in enhanced expression of IFN-β, chemokines/cytokines, and IFN stimulated genes, including anti-viral protein PKR. Altogether, above findings suggest that ATG5-ATG12 positively regulate anti-viral NF-κB and IRF3 signaling during FMDV infection, thereby limiting FMDV proliferation. FMDV has evolved mechanisms to counteract the antiviral function of ATG5-ATG12, via degradation of them by viral protein 3Cpro. PMID:28102839

  20. Foot-and-mouth disease virus infection suppresses autophagy and NF-кB antiviral responses via degradation of ATG5-ATG12 by 3Cpro.

    PubMed

    Fan, Xuxu; Han, Shichong; Yan, Dan; Gao, Yuan; Wei, Yanquan; Liu, Xiangtao; Liao, Ying; Guo, Huichen; Sun, Shiqi

    2017-01-19

    Autophagy-related protein ATG5-ATG12 is an essential complex for the autophagophore elongation in autophagy, which has been reported to be involved in foot-and-mouth disease virus (FMDV) replication. Previous reports show that ATG5-ATG12 positively or negatively regulates type I interferon (IFN-α/β) pathway during virus infection. In this study, we found that FMDV infection rapidly induced LC3 lipidation and GFP-LC3 subcellular redistribution at the early infection stage in PK-15 cells. Along with infection time course to 2-5 h.p.i., the levels of LC3II and ATG5-ATG12 were gradually reduced. Further study showed that ATG5-ATG12 was degraded by viral protein 3C pro , demonstrating that FMDV suppresses autophagy along with viral protein production. Depletion of ATG5-ATG12 by siRNA knock down significantly increased the FMDV yields, whereas overexpression of ATG5-ATG12 had the opposite effects, suggesting that degradation of ATG5-ATG12 benefits virus growth. Further experiment showed that overexpression of ATG5-ATG12 positively regulated NF-кB pathway during FMDV infection, marked with promotion of IKKα/β phosphorylation and IκBα degradation, inhibition of p65 degradation, and facilitation of p65 nuclear translocation. Meanwhile, ATG5-ATG12 also promoted the phosphorylation of TBK1 and activation of IRF3 via preventing TRAF3 degradation. The positive regulation of NF-кB and IRF3 pathway by ATG5-ATG12 resulted in enhanced expression of IFN-β, chemokines/cytokines, and IFN stimulated genes, including anti-viral protein PKR. Altogether, above findings suggest that ATG5-ATG12 positively regulate anti-viral NF-κB and IRF3 signaling during FMDV infection, thereby limiting FMDV proliferation. FMDV has evolved mechanisms to counteract the antiviral function of ATG5-ATG12, via degradation of them by viral protein 3C pro .

  1. A DNA Binding Protein Is Required for Viral Replication and Transcription in Bombyx mori Nucleopolyhedrovirus.

    PubMed

    Zhao, Cui; Zhang, Chen; Chen, Bin; Shi, Yanghui; Quan, Yanping; Nie, Zuoming; Zhang, Yaozhou; Yu, Wei

    2016-01-01

    A DNA-binding protein (DBP) [GenBank accession number: M63416] of Bombyx mori nuclear polyhedrosis virus (BmNPV) has been reported to be a regulatory factor in BmNPV, but its detailed functions remain unknown. In order to study the regulatory mechanism of DBP on viral proliferation, genome replication, and gene transcription, a BmNPV dbp gene knockout virus dbp-ko-Bacmid was generated by the means of Red recombination system. In addition, dbp-repaired virus dbp-re-Bacmid was constructed by the means of the Bac to Bac system. Then, the Bacmids were transfected into BmN cells. The results of this viral titer experiment revealed that the TCID50 of the dbp-ko-Bacmid was 0; however, the dbp-re-Bacmid was similar to the wtBacmid (p>0.05), indicating that the dbp-deficient would lead to failure in the assembly of virus particles. In the next step, Real-Time PCR was used to analyze the transcriptional phases of dbp gene in BmN cells, which had been infected with BmNPV. The results of the latter experiment revealed that the transcript of dbp gene was first detected at 3 h post-infection. Furthermore, the replication level of virus genome and the transcriptional level of virus early, late, and very late genes in BmN cells, which had been transfected with 3 kinds of Bacmids, were analyzed by Real-Time PCR. The demonstrating that the replication level of genome was lower than that of wtBacmid and dbp-re-Bacmid (p<0.01). The transcriptional level of dbp-ko-Bacmid early gene lef-3, ie-1, dnapol, late gene vp39 and very late gene p10 were statistically significantly lower than dbp-re-Bacmid and wtBacmid (p<0.01). The results presented are based on Western blot analysis, which indicated that the lack of dbp gene would lead to low expressions of lef3, vp39, and p10. In conclusion, dbp was not only essential for early viral replication, but also a viral gene that has a significant impact on transcription and expression during all periods of baculovirus life cycle.

  2. Viral genome structures, charge, and sequences are optimal for capsid assembly

    NASA Astrophysics Data System (ADS)

    Hagan, Michael

    2014-03-01

    For many viruses, the spontaneous assembly of a capsid shell around the nu-cleic acid (NA) genome is an essential step in the viral life cycle. Capsid formation is a multicomponent, out-of-equilibrium assembly process for which kinetic effects and thermodynamic constraints compete to determine the outcome. Understand-ing how viral components drive highly efficient assembly under these constraints could promote biomedical efforts to block viral propagation, and would elucidate the factors controlling assembly in a wide range of systems containing proteins and polyelectrolytes. This talk will describe coarse-grained models of capsid proteins and NAs with which we investigate the dynamics and thermodynamics of virus assembly. In con-trast to recent theoretical models, we find that capsids spontaneously `overcharge' that is, the NA length which is kinetically and thermodynamically optimal possess-es a negative charge greater than the positive charge of the capsid. When applied to specific virus capsids, the calculated optimal NA lengths closely correspond to the natural viral genome lengths. These results suggest that the features included in this model (i.e. electrostatics, excluded volume, and NA tertiary structure) play key roles in determining assembly thermodynamics and consequently exert selec-tive pressure on viral evolution. I will then discuss mechanisms by which se-quence-specific interactions between NAs and capsid proteins promote selective encapsidation of the viral genome. This work was supported by NIH R01GM108021 and the Brandeis MRSEC NSF-MRSEC-0820492.

  3. The Influenza A Virus Genotype Determines the Antiviral Function of NF-κB.

    PubMed

    Dam, Sharmistha; Kracht, Michael; Pleschka, Stephan; Schmitz, M Lienhard

    2016-09-01

    The role of NF-κB in influenza A virus (IAV) infection does not reveal a coherent picture, as pro- and also antiviral functions of this transcription factor have been described. To address this issue, we used clustered regularly interspaced short palindromic repeat with Cas9 (CRISPR-Cas9)-mediated genome engineering to generate murine MLE-15 cells lacking two essential components of the NF-κB pathway. Cells devoid of either the central NF-κB essential modulator (NEMO) scaffold protein and thus defective in IκB kinase (IKK) activation or cells not expressing the NF-κB DNA-binding and transactivation subunit p65 were tested for propagation of the SC35 virus, which has an avian host range, and its mouse-adapted variant, SC35M. While NF-κB was not relevant for replication of SC35M, the absence of NF-κB activity increased replication of the nonadapted SC35 virus. This antiviral effect of NF-κB was most prominent upon infection of cells with low virus titers as they usually occur during the initiation phase of IAV infection. The defect in NF-κB signaling resulted in diminished IAV-triggered phosphorylation of interferon regulatory factor 3 (IRF3) and expression of the antiviral beta interferon (IFN-β) gene. To identify the viral proteins responsible for NF-κB dependency, reassortant viruses were generated by reverse genetics. SC35 viruses containing the SC35M segment encoding neuraminidase (NA) were completely inert to the inhibitory effect of NF-κB, emphasizing the importance of the viral genotype for susceptibility to the antiviral functions of NF-κB. This study addresses two different issues. First, we investigated the role of the host cell transcription factor NF-κB in IAV replication by genetic manipulation of IAVs by reverse genetics combined with targeted genome engineering of host cells using CRISPR-Cas9. The analysis of these two highly defined genetic systems indicated that the IAV genotype can influence whether NF-κB displays an antiviral function and thus might in part explain incoherent results from the literature. Second, we found that perturbation of NF-κB function greatly improved the growth of a nonadapted IAV, suggesting that NF-κB may contribute to the maintenance of the host species barrier. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  4. Engineering Human Immunodeficiency Virus 1 Protease Heterodimers as Macromolecular Inhibitors of Viral Maturation

    NASA Astrophysics Data System (ADS)

    McPhee, Fiona; Good, Andrew C.; Kuntz, Irwin D.; Craik, Charles S.

    1996-10-01

    Dimerization of human immunodeficiency virus type 1 protease (HIV-1 PR) monomers is an essential prerequisite for viral proteolytic activity and the subsequent generation of infectious virus particles. Disruption of the dimer interface inhibits this activity as does formation of heterodimers between wild-type and defective monomers. A structure-based approach was used to identify amino acid substitutions at the dimer interface of HIV-1 PR that facilitate preferential association of heterodimers and inhibit self-association of the defective monomers. Expression of the designed PR monomers inhibits activity of wild-type HIV-1 PR and viral infectivity when assayed in an ex vivo model system. These results show that it is possible to design PR monomers as macromolecular inhibitors that may provide an alternative to small molecule inhibitors for the treatment of HIV infection.

  5. Single molecule fate of HIV-1 envelope reveals late-stage viral lattice incorporation.

    PubMed

    Buttler, Carmen A; Pezeshkian, Nairi; Fernandez, Melissa V; Aaron, Jesse; Norman, Sofya; Freed, Eric O; van Engelenburg, Schuyler B

    2018-05-10

    Human immunodeficiency virus type 1 (HIV-1) assembly occurs on the inner leaflet of the host cell plasma membrane, incorporating the essential viral envelope glycoprotein (Env) within a budding lattice of HIV-1 Gag structural proteins. The mechanism by which Env incorporates into viral particles remains poorly understood. To determine the mechanism of recruitment of Env to assembly sites, we interrogate the subviral angular distribution of Env on cell-associated virus using multicolor, three-dimensional (3D) superresolution microscopy. We demonstrate that, in a manner dependent on cell type and on the long cytoplasmic tail of Env, the distribution of Env is biased toward the necks of cell-associated particles. We postulate that this neck-biased distribution is regulated by vesicular retention and steric complementarity of Env during independent Gag lattice formation.

  6. A core viral protein binds host nucleosomes to sequester immune danger signals

    PubMed Central

    Avgousti, Daphne C.; Herrmann, Christin; Kulej, Katarzyna; Pancholi, Neha J.; Sekulic, Nikolina; Petrescu, Joana; Molden, Rosalynn C.; Blumenthal, Daniel; Paris, Andrew J.; Reyes, Emigdio D.; Ostapchuk, Philomena; Hearing, Patrick; Seeholzer, Steven H.; Worthen, G. Scott; Black, Ben E.; Garcia, Benjamin A.; Weitzman, Matthew D.

    2016-01-01

    Viral proteins mimic host protein structure and function to redirect cellular processes and subvert innate defenses1. Small basic proteins compact and regulate both viral and cellular DNA genomes. Nucleosomes are the repeating units of cellular chromatin and play an important role in innate immune responses2. Viral encoded core basic proteins compact viral genomes but their impact on host chromatin structure and function remains unexplored. Adenoviruses encode a highly basic protein called protein VII that resembles cellular histones3. Although protein VII binds viral DNA and is incorporated with viral genomes into virus particles4,5, it is unknown whether protein VII impacts cellular chromatin. Our observation that protein VII alters cellular chromatin led us to hypothesize that this impacts antiviral responses during adenovirus infection. We found that protein VII forms complexes with nucleosomes and limits DNA accessibility. We identified post-translational modifications on protein VII that are responsible for chromatin localization. Furthermore, proteomic analysis demonstrated that protein VII is sufficient to alter protein composition of host chromatin. We found that protein VII is necessary and sufficient for retention in chromatin of members of the high-mobility group protein B family (HMGB1, HMGB2, and HMGB3). HMGB1 is actively released in response to inflammatory stimuli and functions as a danger signal to activate immune responses6,7. We showed that protein VII can directly bind HMGB1 in vitro and further demonstrated that protein VII expression in mouse lungs is sufficient to decrease inflammation-induced HMGB1 content and neutrophil recruitment in the bronchoalveolar lavage fluid. Together our in vitro and in vivo results show that protein VII sequesters HMGB1 and can prevent its release. This study uncovers a viral strategy in which nucleosome binding is exploited to control extracellular immune signaling. PMID:27362237

  7. The thioredoxin-1 system is essential for fueling DNA synthesis during T-cell metabolic reprogramming and proliferation.

    PubMed

    Muri, Jonathan; Heer, Sebastian; Matsushita, Mai; Pohlmeier, Lea; Tortola, Luigi; Fuhrer, Tobias; Conrad, Marcus; Zamboni, Nicola; Kisielow, Jan; Kopf, Manfred

    2018-05-10

    The thioredoxin-1 (Trx1) system is an important contributor to cellular redox balance and is a sensor of energy and glucose metabolism. Here we show critical c-Myc-dependent activation of the Trx1 system during thymocyte and peripheral T-cell proliferation, but repression during T-cell quiescence. Deletion of thioredoxin reductase-1 (Txnrd1) prevents expansion the CD4 - CD8 - thymocyte population, whereas Txnrd1 deletion in CD4 + CD8 + thymocytes does not affect further maturation and peripheral homeostasis of αβT cells. However, Txnrd1 is critical for expansion of the activated T-cell population during viral and parasite infection. Metabolomics show that TrxR1 is essential for the last step of nucleotide biosynthesis by donating reducing equivalents to ribonucleotide reductase. Impaired availability of 2'-deoxyribonucleotides induces the DNA damage response and cell cycle arrest of Txnrd1-deficient T cells. These results uncover a pivotal function of the Trx1 system in metabolic reprogramming of thymic and peripheral T cells and provide a rationale for targeting Txnrd1 in T-cell leukemia.

  8. Hybrid- and complex-type N-glycans are not essential for Newcastle disease virus infection and fusion of host cells.

    PubMed

    Sun, Qing; Zhao, Lixiang; Song, Qingqing; Wang, Zheng; Qiu, Xusheng; Zhang, Wenjun; Zhao, Mingjun; Zhao, Guo; Liu, Wenbo; Liu, Haiyan; Li, Yunsen; Liu, Xiufan

    2012-03-01

    N-linked glycans are composed of three major types: high-mannose (Man), hybrid or complex. The functional role of hybrid- and complex-type N-glycans in Newcastle disease virus (NDV) infection and fusion was examined in N-acetylglucosaminyltransferase I (GnT I)-deficient Lec1 cells, a mutant Chinese hamster ovary (CHO) cell incapable of synthesizing hybrid- and complex-type N-glycans. We used recombinant NDV expressing green fluorescence protein or red fluorescence protein to monitor NDV infection, syncytium formation and viral yield. Flow cytometry showed that CHO-K1 and Lec1 cells had essentially the same degree of NDV infection. In contrast, Lec2 cells were found to be resistant to NDV infection. Compared with CHO-K1 cells, Lec1 cells were shown to more sensitive to fusion induced by NDV. Viral attachment was found to be comparable in both lines. We found that there were no significant differences in the yield of progeny virus produced by both CHO-K1 and Lec1 cells. Quantitative analysis revealed that NDV infection and fusion in Lec1 cells were also inhibited by treatment with sialidase. Pretreatment of Lec1 cells with Galanthus nivalis agglutinin specific for terminal α1-3-linked Man prior to inoculation with NDV rendered Lec1 cells less sensitive to cell-to-cell fusion compared with mock-treated Lec1 cells. Treatment of CHO-K1 and Lec1 cells with tunicamycin, an inhibitor of N-glycosylation, significantly blocked fusion and infection. In conclusion, our results suggest that hybrid- and complex-type N-glycans are not required for NDV infection and fusion. We propose that high-Man-type N-glycans could play an important role in the cell-to-cell fusion induced by NDV.

  9. The 3'-to-5' exonuclease activity of vaccinia virus DNA polymerase is essential and plays a role in promoting virus genetic recombination.

    PubMed

    Gammon, Don B; Evans, David H

    2009-05-01

    Poxviruses are subjected to extraordinarily high levels of genetic recombination during infection, although the enzymes catalyzing these reactions have never been identified. However, it is clear that virus-encoded DNA polymerases play some unknown yet critical role in virus recombination. Using a novel, antiviral-drug-based strategy to dissect recombination and replication reactions, we now show that the 3'-to-5' proofreading exonuclease activity of the viral DNA polymerase plays a key role in promoting recombination reactions. Linear DNA substrates were prepared containing the dCMP analog cidofovir (CDV) incorporated into the 3' ends of the molecules. The drug blocked the formation of concatemeric recombinant molecules in vitro in a process that was catalyzed by the proofreading activity of vaccinia virus DNA polymerase. Recombinant formation was also blocked when CDV-containing recombination substrates were transfected into cells infected with wild-type vaccinia virus. These inhibitory effects could be overcome if CDV-containing substrates were transfected into cells infected with CDV-resistant (CDV(r)) viruses, but only when resistance was linked to an A314T substitution mutation mapping within the 3'-to-5' exonuclease domain of the viral polymerase. Viruses encoding a CDV(r) mutation in the polymerase domain still exhibited a CDV-induced recombination deficiency. The A314T substitution also enhanced the enzyme's capacity to excise CDV molecules from the 3' ends of duplex DNA and to recombine these DNAs in vitro, as judged from experiments using purified mutant DNA polymerase. The 3'-to-5' exonuclease activity appears to be an essential virus function, and our results suggest that this might be because poxviruses use it to promote genetic exchange.

  10. Hibiscus Chlorotic Ringspot Virus Coat Protein Is Essential for Cell-to-Cell and Long-Distance Movement but Not for Viral RNA Replication

    PubMed Central

    Niu, Shengniao; Gil-Salas, Francisco M.; Tewary, Sunil Kumar; Samales, Ashwin Kuppusamy; Johnson, John; Swaminathan, Kunchithapadam; Wong, Sek-Man

    2014-01-01

    Hibiscus chlorotic ringspot virus (HCRSV) is a member of the genus Carmovirus in the family Tombusviridae. In order to study its coat protein (CP) functions on virus replication and movement in kenaf (Hibiscus cannabinus L.), two HCRSV mutants, designated as p2590 (A to G) in which the first start codon ATG was replaced with GTG and p2776 (C to G) in which proline 63 was replaced with alanine, were constructed. In vitro transcripts of p2590 (A to G) were able to replicate to a similar level as wild type without CP expression in kenaf protoplasts. However, its cell-to-cell movement was not detected in the inoculated kenaf cotyledons. Structurally the proline 63 in subunit C acts as a kink for β-annulus formation during virion assembly. Progeny of transcripts derived from p2776 (C to G) was able to move from cell-to-cell in inoculated cotyledons but its long-distance movement was not detected. Virions were not observed in partially purified mutant virus samples isolated from 2776 (C to G) inoculated cotyledons. Removal of the N-terminal 77 amino acids of HCRSV CP by trypsin digestion of purified wild type HCRSV virions resulted in only T = 1 empty virus-like particles. Taken together, HCRSV CP is dispensable for viral RNA replication but essential for cell-to-cell movement, and virion is required for the virus systemic movement. The proline 63 is crucial for HCRSV virion assembly in kenaf plants and the N-terminal 77 amino acids including the β-annulus domain is required in T = 3 assembly in vitro. PMID:25402344

  11. Contribution of Topology Determinants of a Viral Movement Protein to Its Membrane Association, Intracellular Traffic, and Viral Cell-to-Cell Movement▿†

    PubMed Central

    Genovés, A.; Pallás, V.; Navarro, J. A.

    2011-01-01

    The p7B movement protein (MP) of Melon necrotic spot virus (MNSV) is a single-pass membrane protein associated with the endoplasmic reticulum (ER), the Golgi apparatus (GA), and plasmodesmata (Pd). Experimental data presented here revealed that the p7B transmembrane domain (TMD) was sufficient to target the green fluorescent protein (GFP) to ER membranes. In addition, the short extramembrane regions of p7B were essential for subsequent ER export and transport to the GA and Pd. Microsomal partitioning and bimolecular fluorescence assays supported a type II topology of p7B in planta. Mutations affecting conventional determinants of p7B membrane topology, such as the TMD secondary structure, the overall hydrophobicity profile, the so-called “aromatic belt,” and the net charge distribution on either side of the TMD, were engineered into infectious RNAs to investigate the relationship between the MP structure and MNSV cell-to-cell movement. The results revealed that (i) the overall hydrophobic profile and the α-helix integrity of the TMD were relevant for virus movement, (ii) modification of the net charge balance of the regions flanking both TMD sides drastically reduced cell-to-cell movement, (iii) localization of p7B to the GA was necessary but not sufficient for virus movement, and (iv) membrane insertion was essential for p7B function in virus movement. Our results therefore indicate that MNSV cell-to-cell movement requires sequential transport of p7B from the ER via the GA to Pd, which is modulated by a combination of several signals with different strengths in the extramembrane regions and TMD of the MP. PMID:21593169

  12. Systems Biology-Based Investigation of Cellular Antiviral Drug Targets Identified by Gene-Trap Insertional Mutagenesis.

    PubMed

    Cheng, Feixiong; Murray, James L; Zhao, Junfei; Sheng, Jinsong; Zhao, Zhongming; Rubin, Donald H

    2016-09-01

    Viruses require host cellular factors for successful replication. A comprehensive systems-level investigation of the virus-host interactome is critical for understanding the roles of host factors with the end goal of discovering new druggable antiviral targets. Gene-trap insertional mutagenesis is a high-throughput forward genetics approach to randomly disrupt (trap) host genes and discover host genes that are essential for viral replication, but not for host cell survival. In this study, we used libraries of randomly mutagenized cells to discover cellular genes that are essential for the replication of 10 distinct cytotoxic mammalian viruses, 1 gram-negative bacterium, and 5 toxins. We herein reported 712 candidate cellular genes, characterizing distinct topological network and evolutionary signatures, and occupying central hubs in the human interactome. Cell cycle phase-specific network analysis showed that host cell cycle programs played critical roles during viral replication (e.g. MYC and TAF4 regulating G0/1 phase). Moreover, the viral perturbation of host cellular networks reflected disease etiology in that host genes (e.g. CTCF, RHOA, and CDKN1B) identified were frequently essential and significantly associated with Mendelian and orphan diseases, or somatic mutations in cancer. Computational drug repositioning framework via incorporating drug-gene signatures from the Connectivity Map into the virus-host interactome identified 110 putative druggable antiviral targets and prioritized several existing drugs (e.g. ajmaline) that may be potential for antiviral indication (e.g. anti-Ebola). In summary, this work provides a powerful methodology with a tight integration of gene-trap insertional mutagenesis testing and systems biology to identify new antiviral targets and drugs for the development of broadly acting and targeted clinical antiviral therapeutics.

  13. Capped antigenomic RNA transcript facilitates rescue of a plant rhabdovirus.

    PubMed

    Qian, Shasha; Chen, Xiaolan; Sun, Kai; Zhang, Yang; Li, Zhenghe

    2017-06-13

    Recovery of recombinant negative-stranded RNA viruses from cloned cDNAs is an inefficient process as multiple viral components need to be delivered into cells for reconstitution of infectious entities. Previously studies have shown that authentic viral RNA termini are essential for efficient virus rescue. However, little is known about the activity of viral RNAs processed by different strategies in supporting recovery of plant negative-stranded RNA virus. In this study, we used several versions of hammerhead ribozymes and a truncated cauliflower mosaic virus 35S promoter to generate precise 5' termini of sonchus yellow net rhabdovirus (SYNV) antigenomic RNA (agRNA) derivatives. These agRNAs were co-expressed with the SYNV core proteins in Nicotiana benthamiana leaves to evaluate their efficiency in supporting fluorescent reporter gene expression from an SYNV minireplicon (MR) and rescue of full-length virus. Optimization of hammerhead ribozyme cleavage activities led to improved SYNV MR reporter gene expression. Although the MR agRNA processed by the most active hammerhead variants is comparable to the capped, precisely transcribed agRNA in supporting MR activity, efficient recovery of recombinant SYNV was only achieved with capped agRNA. Further studies showed that the capped SYNV agRNA permitted transient expression of the nucleocapsid (N) protein, and an agRNA derivatives unable to express the N protein in cis exhibited dramatically reduced rescue efficiency. Our study reveals superior activity of precisely transcribed, capped SYNV agRNAs to uncapped, hammerhead ribozyme-processed agRNAs, and suggests a cis-acting function for the N protein expressed from the capped agRNA during recovery of SYNV from plasmids.

  14. Nuclear Export Factor CRM1 Interacts with Nonstructural Proteins NS2 from Parvovirus Minute Virus of Mice

    PubMed Central

    Bodendorf, Ursula; Cziepluch, Celina; Jauniaux, Jean-Claude; Rommelaere, Jean; Salomé, Nathalie

    1999-01-01

    The nonstructural NS2 proteins of autonomous parvoviruses are known to act in a host cell-dependent manner and to play a role in viral DNA replication, efficient translation of viral mRNA, and/or encapsidation. Their exact function during the parvovirus life cycle remains, however, still obscure. We report here the characterization of the interaction with the NS2 proteins from the parvovirus minute virus of mice (MVM) and rat as well as mouse homologues of the human CRM1 protein, a member of the importin-beta family recently identified as an essential nuclear export factor. Using the two-hybrid system, we could detect the interaction between the carboxy-terminal region of rat CRM1 and each of the three isoforms of NS2 (P [or major], Y [or minor], and L [or rare]). NS2 proteins were further shown to interact with the full-length CRM1 by coimmunoprecipitation experiments using extracts from both mouse and rat cell lines. Our data show that CRM1 preferentially binds to the nonphosphorylated isoforms of NS2. Moreover, we observed that the treatment of MVM-infected cells with leptomycin B, a drug that specifically inhibits the CRM1-dependent nuclear export pathway, leads to a drastic accumulation of NS2 proteins in the nucleus. Both NS2 interaction with CRM1 and nuclear accumulation upon leptomycin B treatment strongly suggest that these nonstructural viral proteins are actively exported out of the nuclei of infected cells via a CRM1-mediated nuclear export pathway. PMID:10438867

  15. An Inhibitory Motif on the 5’UTR of Several Rotavirus Genome Segments Affects Protein Expression and Reverse Genetics Strategies

    PubMed Central

    Papa, Guido; Eichwald, Catherine; Burrone, Oscar R.

    2016-01-01

    Rotavirus genome consists of eleven segments of dsRNA, each encoding one single protein. Viral mRNAs contain an open reading frame (ORF) flanked by relatively short untranslated regions (UTRs), whose role in the viral cycle remains elusive. Here we investigated the role of 5’UTRs in T7 polymerase-driven cDNAs expression in uninfected cells. The 5’UTRs of eight genome segments (gs3, gs5-6, gs7-11) of the simian SA11 strain showed a strong inhibitory effect on the expression of viral proteins. Decreased protein expression was due to both compromised transcription and translation and was independent of the ORF and the 3’UTR sequences. Analysis of several mutants of the 21-nucleotide long 5’UTR of gs 11 defined an inhibitory motif (IM) represented by its primary sequence rather than its secondary structure. IM was mapped to the 5’ terminal 6-nucleotide long pyrimidine-rich tract 5’-GGY(U/A)UY-3’. The 5’ terminal position within the mRNA was shown to be essentially required, as inhibitory activity was lost when IM was moved to an internal position. We identified two mutations (insertion of a G upstream the 5’UTR and the U to A mutation of the fifth nucleotide of IM) that render IM non-functional and increase the transcription and translation rate to levels that could considerably improve the efficiency of virus helper-free reverse genetics strategies. PMID:27846320

  16. Molecular Determinants of Hepatitis B and D Virus Entry Restriction in Mouse Sodium Taurocholate Cotransporting Polypeptide

    PubMed Central

    Yan, Huan; Peng, Bo; He, Wenhui; Zhong, Guocai; Qi, Yonghe; Ren, Bijie; Gao, Zhenchao; Jing, Zhiyi; Song, Mei; Xu, Guangwei; Sui, Jianhua

    2013-01-01

    Human hepatitis B virus (HBV) and its satellite virus, hepatitis D virus (HDV), primarily infect humans, chimpanzees, or tree shrews (Tupaia belangeri). Viral infections in other species are known to be mainly restricted at the entry level since viral replication can be achieved in the cells by transfection of the viral genome. Sodium taurocholate cotransporting polypeptide (NTCP) is a functional receptor for HBV and HDV, and amino acids 157 to 165 of NTCP are critical for viral entry and likely limit viral infection of macaques. However, the molecular determinants for viral entry restriction in mouse NTCP (mNTCP) remain unclear. In this study, mNTCP was found to be unable to support either HBV or HDV infection, although it can bind to pre-S1 of HBV L protein and is functional in transporting substrate taurocholate; comprehensive swapping and point mutations of human NTCP (hNTCP) and mNTCP revealed molecular determinants restricting mNTCP for viral entry of HBV and HDV. Remarkably, when mNTCP residues 84 to 87 were substituted by human counterparts, mNTCP can effectively support viral infections. In addition, a number of cell lines, regardless of their species or tissue origin, supported HDV infection when transfected with hNTCP or mNTCP with residues 84 to 87 replaced by human counterparts, highlighting the central role of NTCP for viral infections mediated by HBV envelope proteins. These studies advance our understanding of NTCP-mediated viral entry of HBV and HDV and have important implications for developing the mouse model for their infections. PMID:23678176

  17. Nonneutralizing Functional Antibodies: a New “Old” Paradigm for HIV Vaccines

    PubMed Central

    Ake, Julie; Robb, Merlin L.; Kim, Jerome H.; Plotkin, Stanley A.

    2014-01-01

    Animal and human data from various viral infections and vaccine studies suggest that nonneutralizing antibodies (nNAb) without neutralizing activity in vitro may play an important role in protection against viral infection in vivo. This was illustrated by the recent human immunodeficiency virus (HIV) RV144 vaccine efficacy trial, which demonstrated that HIV-specific IgG-mediated nNAb directed against the V2 loop of HIV type 1 envelope (Env) were inversely correlated with risk for HIV acquisition, while Env-specific plasma IgA-mediated antibodies were directly correlated with risk. However, tier 1 NAb in the subset of responders with a low level of plasma Env-specific IgA correlated with decreased risk. Nonhuman primate simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus (SHIV) challenge studies suggest that Env-mediated antibodies are essential and sufficient for protection. A comparison of immune responses generated in human efficacy trials reveals subtle differences in the fine specificities of the antibody responses, in particular in HIV-specific IgG subclasses. The underlying mechanisms that may have contributed to protection against HIV acquisition in humans, although not fully understood, are possibly mediated by antibody-dependent cell-mediated cytotoxicity (ADCC) and/or other nonneutralizing humoral effector functions, such as antibody-mediated phagocytosis. The presence of such functional nNAb in mucosal tissues and cervico-vaginal and rectal secretions challenges the paradigm that NAb are the predominant immune response conferring protection, although this does not negate the desirability of evoking neutralizing antibodies through vaccination. Instead, NAb and nNAb should be looked upon as complementary or synergistic humoral effector functions. Several HIV vaccine clinical trials to study these antibody responses in various prime-boost modalities in the systemic and mucosal compartments are ongoing. The induction of high-frequency HIV-specific functional nNAb at high titers may represent an attractive hypothesis-testing strategy in future HIV vaccine efficacy trials. PMID:24920599

  18. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knockout Screens

    PubMed Central

    Hart, Traver; Tong, Amy Hin Yan; Chan, Katie; Van Leeuwen, Jolanda; Seetharaman, Ashwin; Aregger, Michael; Chandrashekhar, Megha; Hustedt, Nicole; Seth, Sahil; Noonan, Avery; Habsid, Andrea; Sizova, Olga; Nedyalkova, Lyudmila; Climie, Ryan; Tworzyanski, Leanne; Lawson, Keith; Sartori, Maria Augusta; Alibeh, Sabriyeh; Tieu, David; Masud, Sanna; Mero, Patricia; Weiss, Alexander; Brown, Kevin R.; Usaj, Matej; Billmann, Maximilian; Rahman, Mahfuzur; Costanzo, Michael; Myers, Chad L.; Andrews, Brenda J.; Boone, Charles; Durocher, Daniel; Moffat, Jason

    2017-01-01

    The adaptation of CRISPR/SpCas9 technology to mammalian cell lines is transforming the study of human functional genomics. Pooled libraries of CRISPR guide RNAs (gRNAs) targeting human protein-coding genes and encoded in viral vectors have been used to systematically create gene knockouts in a variety of human cancer and immortalized cell lines, in an effort to identify whether these knockouts cause cellular fitness defects. Previous work has shown that CRISPR screens are more sensitive and specific than pooled-library shRNA screens in similar assays, but currently there exists significant variability across CRISPR library designs and experimental protocols. In this study, we reanalyze 17 genome-scale knockout screens in human cell lines from three research groups, using three different genome-scale gRNA libraries. Using the Bayesian Analysis of Gene Essentiality algorithm to identify essential genes, we refine and expand our previously defined set of human core essential genes from 360 to 684 genes. We use this expanded set of reference core essential genes, CEG2, plus empirical data from six CRISPR knockout screens to guide the design of a sequence-optimized gRNA library, the Toronto KnockOut version 3.0 (TKOv3) library. We then demonstrate the high effectiveness of the library relative to reference sets of essential and nonessential genes, as well as other screens using similar approaches. The optimized TKOv3 library, combined with the CEG2 reference set, provide an efficient, highly optimized platform for performing and assessing gene knockout screens in human cell lines. PMID:28655737

  19. Hepatitis B virus evasion from cGAS sensing in human hepatocytes.

    PubMed

    Verrier, Eloi R; Yim, Seung-Ae; Heydmann, Laura; El Saghire, Houssein; Bach, Charlotte; Turon-Lagot, Vincent; Mailly, Laurent; Durand, Sarah C; Lucifora, Julie; Durantel, David; Pessaux, Patrick; Manel, Nicolas; Hirsch, Ivan; Zeisel, Mirjam B; Pochet, Nathalie; Schuster, Catherine; Baumert, Thomas F

    2018-04-20

    Chronic hepatitis B virus (HBV) infection is a major cause of chronic liver disease and cancer worldwide. The mechanisms of viral genome sensing and the evasion of innate immune responses by HBV infection are still poorly understood. Recently, the cyclic GMP-AMP synthase (cGAS) was identified as a DNA sensor. In this study, we aimed to investigate the functional role of cGAS in sensing of HBV infection and elucidate the mechanisms of viral evasion. We performed functional studies including loss- and gain-of-function experiments combined with cGAS effector gene expression profiling in an infectious cell culture model, primary human hepatocytes and HBV-infected human liver chimeric mice. Here we show that cGAS is expressed in the human liver, primary human hepatocytes and human liver chimeric mice. While naked relaxed-circular HBV DNA is sensed in a cGAS-dependent manner in hepatoma cell lines and primary human hepatocytes, host cell recognition of viral nucleic acids is abolished during HBV infection, suggesting escape from sensing, likely during packaging of the genome into the viral capsid. While the hepatocyte cGAS pathway is functionally active, as shown by reduction of viral cccDNA levels in gain-of-function studies, HBV infection suppressed cGAS expression and function in cell culture models and humanized mice. HBV exploits multiple strategies to evade sensing and antiviral activity of cGAS and its effector pathways. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  20. Intracellular coordination of potyviral RNA functions in infection

    PubMed Central

    Mäkinen, Kristiina; Hafrén, Anders

    2014-01-01

    Establishment of an infection cycle requires mechanisms to allocate the genomes of (+)-stranded RNA viruses in a balanced ratio to translation, replication, encapsidation, and movement, as well as mechanisms to prevent translocation of viral RNA (vRNA) to cellular RNA degradation pathways. The ratio of vRNA allocated to various functions is likely balanced by the availability of regulatory proteins or competition of the interaction sites within regulatory ribonucleoprotein complexes. Due to the transient nature of viral processes and the interdependency between vRNA pathways, it is technically demanding to work out the exact molecular mechanisms underlying vRNA regulation. A substantial number of viral and host proteins have been identified that facilitate the steps that lead to the assembly of a functional potyviral RNA replication complex and their fusion with chloroplasts. Simultaneously with on-going viral replication, part of the replicated potyviral RNA enters movement pathways. Although not much is known about the processes of potyviral RNA release from viral replication complexes, the molecular interactions involved in these processes determine the fate of the replicated vRNA. Some viral and host cell proteins have been described that direct replicated potyviral RNA to translation to enable potyviral gene expression and productive infection. The antiviral defense of the cell causes vRNA degradation by RNA silencing. We hypothesize that also plant pathways involved in mRNA decay may have a role in the coordination of potyviral RNA expression. In this review, we discuss the roles of different potyviral and host proteins in the coordination of various potyviral RNA functions. PMID:24723931

Top