Science.gov

Sample records for establishing exchange bias

  1. Exchange-biased magnetic vortices.

    SciTech Connect

    Hoffmann, A.; Sort, J.; Buchanan, K. S.; Nogues, J.; Inst. Catalana de Recerca i Estudis Avancats; Univ. Autonoma de Barcelona

    2008-07-01

    This paper reviews our work on the interplay between exchange bias due to the coupling of a ferromagnet to an antiferromagnet and the formation of magnetic vortices, which occur due to the patterning of a ferromagnet. Depending on the thermal and magnetic history, a variety of different effects can be observed. Thermal annealing in a saturating magnetic field establishes a spatially homogeneous exchange bias with a uniform unidirectional anisotropy. This results in an angular dependence of the magnetization reversal mode, which can be either via magnetization rotation or vortex nucleation and annihilation. In contrast, thermal annealing in a field smaller than the vortex annihilation field imprints the ferromagnetic vortex configuration in the antiferromagnet with high fidelity resulting in unusual asymmetric hysteresis loops. Furthermore, we discuss how the interfacial nature of the exchange bias can modify the vortex magnetization along the thickness of the ferromagnet.

  2. The Electrically Controlled Exchange Bias

    NASA Astrophysics Data System (ADS)

    Harper, Jacob

    Controlling magnetism via voltage in the virtual absence of electric current is the key to reduce power consumption while enhancing processing speed, integration density and functionality in comparison with present-day information technology. Almost all spintronic devices rely on tailored interface magnetism. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is therefore a key challenge to better spintronics. However, there is no direct interaction between magnetization and electric fields, thus making voltage control of magnetism in general a scientific challenge. The significance of controlled interface magnetism started with the exchange-bias effect. Exchange bias is a coupling phenomenon at magnetic interfaces that manifests itself prominently in the shift of the ferromagnetic hysteresis loop along the magnetic-field axis. Various attempts on controlling exchange bias via voltage utilizing different scientific principles have been intensively studied recently. The majority of present research is emphasizing on various complex oxides. Our approach can be considered as a paradigm shift away from complex oxides. We focus on a magnetoelectric antiferromagnetic simple oxide Cr2O3. From a combination of experimental and theoretical efforts, we show that the (0001) surface of magnetoelectric Cr2O3 has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr2O3 single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This is a significant scientific breakthrough providing a new route towards potentially revolutionizing information technology. In addition, a second path of electrically controlled exchange bias is introduced by exploiting the piezoelectric property of BaTiO3. An exchange-bias Co

  3. Exchange bias mediated by interfacial nanoparticles (invited)

    SciTech Connect

    Berkowitz, A. E.; Sinha, S. K.; Fullerton, E. E.; Smith, D. J.

    2015-05-07

    The objective of this study on the iconic exchange-bias bilayer Permalloy/CoO has been to identify those elements of the interfacial microstructure and accompanying magnetic properties that are responsible for the exchange-bias and hysteretic properties of this bilayer. Both epitaxial and polycrystalline samples were examined. X-ray and neutron reflectometry established that there existed an interfacial region, of width ∼1 nm, whose magnetic properties differed from those of Py or CoO. A model was developed for the interfacial microstructure that predicts all the relevant properties of this system; namely; the temperature and Permalloy thickness dependence of the exchange-bias, H{sub EX}, and coercivity, H{sub C}; the much smaller measured values of H{sub EX} from what was nominally expected; the different behavior of H{sub EX} and H{sub C} in epitaxial and polycrystalline bilayers. A surprising result is that the exchange-bias does not involve direct exchange-coupling between Permalloy and CoO, but rather is mediated by CoFe{sub 2}O{sub 4} nanoparticles in the interfacial region.

  4. New Trends in Magnetic Exchange Bias

    NASA Astrophysics Data System (ADS)

    Mougin, Alexandra; Mangin, Stéphane; Bobo, Jean-Francois; Loidl, Alois

    2005-05-01

    -of-plane exchange bias, depending on the field cooling direction. This is of particular interest since it allows probing of the three-dimensional spin structure of the AF layer. The interface magnetic configuration is extremely important in the perpendicular geometry, as the short-range exchange coupling competes with a long-range dipolar interaction; the induced uniaxial anisotropy must overcome the demagnetization energy to establish perpendicular anisotropy films. Those new studies are of primary importance for the magnetic media industry as perpendicular recording exhibits potential for strongly increased storage densities. 3. Parameters tuning exchange bias in polycrystalline samples and magnetic configurations: Different parameters can be used to tune the exchange bias coupling in polycrystalline samples similar to those used in devices. Particularly fascinating aspects are the questions of the appearance of exchange bias or coercivity in ferromagnet/antiferromagnet heterostructures, and its relation to magnetic configurations formed on either side of the interface. Several papers report on either growth choices or post preparation treatments that enable tuning of the exchange bias in bilayers. The additional complexity and novel features of the exchange coupled interface make the problem particularly rich. 4. Dynamics and magnetization reversal: Linear response experiments, such as ferromagnetic resonance, have been used with great success to identify interface, surface anisotropies and interlayer exchange in multilayer systems. The exchange bias structure is particularly well suited to study because interface driven changes in the spin wave frequencies in the ferromagnet can be readily related to interlayer exchange and anisotropy parameters associated with the antiferromagnet. Because the exchange bias is intimately connected with details of the magnetization process during reversal and the subsequent formation of hysteresis, considerations of time dependence and

  5. Study on the occurrence of spontaneously established perpendicular exchange bias in Co{sub 49}Pt{sub 51}/IrMn bilayers

    SciTech Connect

    Tsai, C. Y.; Lin, K. F.; Hsu, Jen-Hwa; Saravanan, P.

    2014-05-07

    In this study, perpendicular exchange bias (PEB) effect in the as-grown Co{sub 49}Pt{sub 51}/IrMn bilayers was demonstrated at room temperature using single-layered Co{sub 49}Pt{sub 51} alloy thin film as ferromagnetic (FM) layer. Several unusual features were observed in this system, viz.,: (i) the PEB was spontaneously established without any external magnetic field treatments, (ii) single-shifted loops were obtained rather than double-shifted ones, and (iii) the spontaneous PEB effect was accompanied by a reduction in perpendicular coercivity, H{sub c⊥} from 1024 to 632 Oe. The results of x–ray diffraction revealed the formation of IrMn (111) texture. Training effect studies indicate that the PEB effect is stable in this system with less than 5% variation in PEB value within 15 repetitive scans. Significant reduction in the PEB effect was found for the CoPt/IrMn films either grown or subjected to post-annealing under external magnetic field (H{sub ind}). The thickness dependence of PEB effect with respect to the FM and antiferromagnetic layers were also investigated and a largest PEB value of 533 Oe was obtained for the sample grown with 3-nm thick CoPt and 10-nm thick IrMn layers. The results of present study thus establish an opportunity to realize PEB effect in the absence of external field during fabrication.

  6. Electric Control of Exchange Bias Training

    NASA Astrophysics Data System (ADS)

    Echtenkamp, W.; Binek, Ch.

    2013-11-01

    Voltage-controlled exchange bias training and tunability are introduced. Isothermal voltage pulses are used to reverse the antiferromagnetic order parameter of magnetoelectric Cr2O3, and thus continuously tune the exchange bias of an adjacent CoPd film. Voltage-controlled exchange bias training is initialized by tuning the antiferromagnetic interface into a nonequilibrium state incommensurate with the underlying bulk. Interpretation of these hitherto unreported effects contributes to new understanding in electrically controlled magnetism.

  7. Summary of relationships between exchangeability, biasing paths and bias.

    PubMed

    Flanders, William Dana; Eldridge, Ronald Curtis

    2015-10-01

    Definitions and conceptualizations of confounding and selection bias have evolved over the past several decades. An important advance occurred with development of the concept of exchangeability. For example, if exchangeability holds, risks of disease in an unexposed group can be compared with risks in an exposed group to estimate causal effects. Another advance occurred with the use of causal graphs to summarize causal relationships and facilitate identification of causal patterns that likely indicate bias, including confounding and selection bias. While closely related, exchangeability is defined in the counterfactual-model framework and confounding paths in the causal-graph framework. Moreover, the precise relationships between these concepts have not been fully described. Here, we summarize definitions and current views of these concepts. We show how bias, exchangeability and biasing paths interrelate and provide justification for key results. For example, we show that absence of a biasing path implies exchangeability but that the reverse implication need not hold without an additional assumption, such as faithfulness. The close links shown are expected. However confounding, selection bias and exchangeability are basic concepts, so comprehensive summarization and definitive demonstration of links between them is important. Thus, this work facilitates and adds to our understanding of these important biases.

  8. Full Electric Control of Exchange Bias

    NASA Astrophysics Data System (ADS)

    Wu, S. M.; Cybart, Shane A.; Yi, D.; Parker, James M.; Ramesh, R.; Dynes, R. C.

    2013-02-01

    We report the creation of a multiferroic field effect device with a BiFeO3 (BFO) (antiferromagnetic-ferroelectric) gate dielectric and a La0.7Sr0.3MnO3 (LSMO) (ferromagnetic) conducting channel that exhibits direct, bipolar electrical control of exchange bias. We show that exchange bias is reversibly switched between two stable states with opposite exchange bias polarities upon ferroelectric poling of the BFO. No field cooling, temperature cycling, or additional applied magnetic or electric field beyond the initial BFO polarization is needed for this bipolar modulation effect. Based on these results and the current understanding of exchange bias, we propose a model to explain the control of exchange bias. In this model the coupled antiferromagnetic-ferroelectric order in BFO along with the modulation of interfacial exchange interactions due to ionic displacement of Fe3+ in BFO relative to Mn3+/4+ in LSMO cause bipolar modulation.

  9. Full Electric Field Control of Exchange Bias

    NASA Astrophysics Data System (ADS)

    Wu, Stephen

    2014-03-01

    Exchange bias is the shift of a magnetic hysteresis curve due to interfacial magnetic coupling between a ferromagnet (FM) and an antiferromagnet (AFM). This ubiquitous effect has long been used in the electronics industry to bias the magnetization of FM layers in magnetic devices. Its continued understanding is of critical importance to advance the development of future high-density magnetic storage media and other novel magnetic devices. However, due to the technological limitations of manipulating and observing an atomically thin interface, exchange bias is not well understood. In this talk we present a multiferroic field effect device with BiFeO3 (BFO) (antiferromagnetic-ferroelectric) as the gate dielectric and La0.7Sr0.3MnO3 (LSMO) (ferromagnetic) as the conducting channel, which exhibits the direct, bipolar electric control of exchange bias. Here the magnetic states at the AFM/FM interface can be directly manipulated with electric fields and the results can be observed as a change in exchange bias polarity and magnitude. Control of exchange bias at this level has significant implications because it represents a form of electric field control of magnetism and may potentially offer a route toward the eventual full electric field control of magnetization. In this device, exchange bias is reversibly switched between two stable states with opposite exchange bias polarities upon ferroelectric poling of the BFO. No field cooling, temperature cycling, or additional applied magnetic or electric field beyond BFO poling is needed for this bipolar modulation effect. Detailed temperature dependent measurements and a model will be presented which will attribute this effect to the coupled antiferromagnetic-ferroelectric order in BFO along with the modulation of interfacial exchange interactions due to ionic displacement of Fe3+ in BFO relative to Mn3 + / 4 + in LSMO.

  10. Antiferromagnetic spin flop and exchange bias

    NASA Astrophysics Data System (ADS)

    Nogués, J.; Morellon, L.; Leighton, C.; Ibarra, M. R.; Schuller, Ivan K.

    2000-03-01

    The effect of the antiferromagnetic spin flop on exchange bias has been investigated in antiferromagnetic (MnF2)-ferromagnetic (Fe) bilayers. Cooling and measuring in fields larger than the antiferromagnetic spin-flop field, HSF, causes an irreversible reduction of the magnitude of the exchange bias field, HE. This indicates that, contrary to what is normally assumed, the interface spin structure does not remain ``frozen in'' below TN if large enough fields are applied.

  11. Exchange bias studied with polarized neutron reflectivity

    SciTech Connect

    te Velthuis, S. G. E.

    2000-01-05

    The role of Polarized Neutron Reflectivity (PNR) for studying natural and synthetic exchange biased systems is illustrated. For a partially oxidized thin film of Co, cycling of the magnetic field causes a considerable reduction of the bias, which the onset of diffuse neutron scattering shows to be due to the loosening of the ferromagnetic domains. On the other hand, PNR measurements of a model exchange bias junction consisting of an n-layered Fe/Cr antiferromagnetic (AF) superlattice coupled with an m-layered Fe/Cr ferromagnetic (F) superlattice confirm the predicted collinear magnetization in the two superlattices. The two magnetized states of the F (along or opposite to the bias field) differ only in the relative orientation of the F and adjacent AF layer. The possibility of reading clearly the magnetic state at the interface pinpoints the commanding role that PNR is having in solving this intriguing problem.

  12. Pseudo exchange bias due to rotational anisotropy

    NASA Astrophysics Data System (ADS)

    Ehrmann, A.; Komraus, S.; Blachowicz, T.; Domino, K.; Nees, M. K.; Jakobs, P. J.; Leiste, H.; Mathes, M.; Schaarschmidt, M.

    2016-08-01

    Ferromagnetic nanostructure arrays with particle dimensions between 160 nm and 400 nm were created by electron-beam lithography. The permalloy structures consist of rectangular-shaped walls around a square open space. While measuring their magnetic properties using the Magneto-Optical Kerr Effect (MOKE), in some angular regions an exchange bias (EB) seemed to appear. This paper gives an overview of possible reasons for this "pseudo exchange bias" and shows experimentally and by means of micromagnetic simulations that this effect can be attributed to unintentionally measuring minor loops.

  13. Growth of oxide exchange bias layers

    DOEpatents

    Chaiken, A.; Michel, R.P.

    1998-07-21

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bias layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200 C, the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 {angstrom}/sec. The resulting NiO film was amorphous. 4 figs.

  14. Exchange bias in nano-ferrihydrite

    NASA Astrophysics Data System (ADS)

    Balaev, D. A.; Krasikov, A. A.; Dubrovskiy, A. A.; Popkov, S. I.; Stolyar, S. V.; Iskhakov, R. S.; Ladygina, V. P.; Yaroslavtsev, R. N.

    2016-11-01

    We report the results of investigations of the effect of cooling in an external magnetic field starting from the temperature over superparamagnetic blocking temperature TB on the shift of magnetic hysteresis loops in systems of ferrihydrite nanoparticles from ˜2.5 to ˜5 nm in size with different TB values. In virtue of high anisotropy fields of ferrihydrite nanoparticles and open hysteresis loops in the range of experimentally attainable magnetic fields, the shape of hysteresis loops of such objects in the field-cooling mode is influenced by the minor hysteresis loop effect. A technique is proposed for distinguishing the exchange bias effect among the effects related to the minor hysteresis loops caused by high anisotropy fields of ferrihydrite particles. The exchange bias in ferrihydrite is stably observed for particles not less than 3 nm in size or with TB over 40 K, and its characteristic value increases with the particle size.

  15. HAMR media based on exchange bias

    NASA Astrophysics Data System (ADS)

    Elphick, K.; Vallejo-Fernandez, G.; Klemmer, T. J.; Thiele, J.-U.; O'Grady, K.

    2016-08-01

    In this work, we describe an alternative strategy for the development of heat assisted magnetic recording media. In our approach, the need for a storage material with a temperature dependent anisotropy and to provide a read out signal is separated so that each function can be optimised independently. This is achieved by the use of an exchange bias structure where a conventional CoCrPt-SiO2 recording layer is exchange biased to an underlayer of IrMn such that heating and cooling in the exchange field from the recording layer results in a shifted loop. This strategy requires the reorientation of the IrMn layer to allow coupling to the recording layer. This has been achieved by the use of an ultrathin (0.8 nm) layer of Co deposited beneath the IrMn layer. In this system, the information is in effect stored in the antiferromagnetic layer, and hence, there is no demagnetising field generated by the stored bits. A loop shift of 688 Oe has been achieved where both values of coercivity lie to one side of the origin and the information cannot be erased by a magnetic field.

  16. Experimental comparison of exchange bias measurement methodologies

    SciTech Connect

    Hovorka, Ondrej; Berger, Andreas; Friedman, Gary

    2007-05-01

    Measurements performed on all-ferromagnetic bilayer systems and supported by model calculation results are used to compare different exchange bias characterization methods. We demonstrate that the accuracy of the conventional two-point technique based on measuring the sum of the coercive fields depends on the symmetry properties of hysteresis loops. On the other hand, the recently proposed center of mass method yields results independent of the hysteresis loop type and coincides with the two-point measurement only if the loops are symmetric. Our experimental and simulation results clearly demonstrate a strong correlation between loop asymmetry and the difference between these methods.

  17. Growth of oxide exchange bias layers

    DOEpatents

    Chaiken, Alison; Michel, Richard P.

    1998-01-01

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bia layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200.degree. C., the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 .ANG./sec. The resulting NiO film was amorphous.

  18. Double exchange bias in ferrimagnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Hebler, B.; Reinhardt, P.; Katona, G. L.; Hellwig, O.; Albrecht, M.

    2017-03-01

    We report on the magnetic reversal characteristics of exchange coupled ferrimagnetic (FI) T b19F e81/T b36F e64 heterostructures. Both layers are amorphous and exhibit strong perpendicular magnetic anisotropy. The investigated heterostructures consist of a Tb-dominated and a Fe-dominated FI layer. Thus, in the magnetic ground state the net moments of the individual layers are oppositely aligned due to antiferromagnetic coupling of Fe and Tb moments. By cooling the system below 160 K, a large positive and negative exchange bias (EB) effect appears for the Tb- and Fe-dominated layers, respectively. The biasing depends only on the initial magnetization state and is neither affected by a cooling field nor by loop cycling. The phenomenon can be explained by the presence of a hard magnetic Fe-dominated interfacial layer, which forms during the sputter deposition process due to interface mixing and resputtering effects. This interfacial layer acts as a pinning layer below a certain temperature, where its coercivity increases to values larger than the accessible magnetic field range. This assumption is further supported by introducing a 0.9-nm-thick Ru spacer layer, which causes the EB effect to vanish. The EB effect was further investigated for a sample series, where the thickness ratio of the two Tb-Fe layers was varied, while keeping the total thickness of the bilayers constant. Only samples where the individual layers are sufficiently thick reveal double shifted loops, indicating the high sensitivity of the observed bias effect with respect to the magnetic properties of the individual layers and their interfacial area.

  19. Longitudinal and perpendicular exchange bias in FeMn/(FeNi/FeMn)n multilayers

    NASA Astrophysics Data System (ADS)

    Sun, L.; Zhou, S. M.; Searson, P. C.; Chien, C. L.

    2003-05-01

    Exchange bias in ferromagnetic (FM)/antiferromagnetic (AF) bilayers is usually investigated in the longitudinal configuration with the exchange coupling established in the film plane. In this work, we report on the perpendicular exchange bias in FeMn(8 nm)/[FeNi(2 nm)/FeMn(8 nm)]n multilayers induced by perpendicular field cooling. The thin FeNi layers give rise to large values of the exchange field and coercivity, and n=15 allows a sufficiently large magnetization for the measurements. Even though the soft FeNi layers have an intrinsic in-plane anisotropy, perpendicular exchange bias has been observed after cooling in a perpendicular external field. The exchange field in the perpendicular configuration is about 0.85 that of the longitudinal case. In both the longitudinal and perpendicular configurations, the exchange field decreases quasilinearly with temperature. The squareness of perpendicular hysteresis loops decreases with increasing temperature.

  20. Tailoring the magnetization reversal of elliptical dots using exchange bias.

    SciTech Connect

    Sort, J.; Buchanan, K. S.; Pearson, J. E.; Hoffmann, A.; Menendez, E.; Salazar-Alvarez, G.; Baro, M. D.; Miron, M.; Rodamcq, B.; Dieny, B.; ICREA; Univ. Autonoma of Barcelona; Insti. Catala de Nanotecnologia; SPINTEC

    2008-01-01

    Exchange bias effects have been studied in elliptical dots composed of ferromagnetic Ni{sub 80}Fe{sub 20}-antiferromagnetic Ir{sub 20}Mn{sub 80} bilayers. The magnetization reversal mechanisms and magnetic configurations have been investigated by magneto-optic Kerr effect and magnetic force microscopy. Although the obtained bias fields in these dots are relatively small, the magnetization reversal is found to be influenced by the ferromagnetic-antiferromagnetic coupling. Namely, for some off-axis angles of measurement, the magnetization reversal mechanism of the Ni{sub 80}Fe{sub 20}-Ir{sub 20}Mn{sub 80} ellipses depends on whether exchange bias is induced along the minor or major axis of the ellipses. Hence, exchange bias is shown to be an effective means for tailoring the magnetization reversal of elliptical dots after sample fabrication.

  1. Ferromagnetic behavior and exchange bias effect in akaganeite nanorods

    SciTech Connect

    Tadic, Marin; Milosevic, Irena; Motte, Laurence; Kralj, Slavko; Saboungi, Marie-Louise

    2015-05-04

    We report ferromagnetic-like properties and exchange bias effect in akaganeite (β-FeOOH) nanorods. They exhibit a Néel temperature T{sub N} = 259 K and ferromagnetic-like hysteresis behavior both below and above T{sub N}. An exchange bias effect is observed below T{sub N} and represents an interesting behavior for akaganeite nanorods. These results are explained on the basis of a core-shell structure in which the core has bulk akaganeite magnetic properties (i.e., antiferromagnetic ordering) while the shell exhibits a disordered spin state. Thus, the nanorods show ferromagnetic properties and an exchange bias effect at the same time, increasing their potential for use in practical applications.

  2. Perpendicularly magnetized exchange-biased magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    Ney, Andreas; van Dijken, Sebastiaan; Parkin, Stuart

    2005-03-01

    Exchange biased magnetic tunnel junctions (MTJs) with perpendicular magnetic anisotropy (PMA) have been studied. The ferromagnetic electrodes were fabricated from either Co/Pt or Co/Pd multilayers and the tunnel barriers were formed from Al2O3. In some cases one of the electrodes was exchange biased with either PtMn or IrMn. We discuss the dependence of the PMA and the exchange bias on the thickness of the Co, Pt and Pd layers. The properties of the MTJs are strongly influenced by the structural morphology of the Co/Pt and the Co/Pd multilayer electrodes, which appear to give rise to rough tunnel barriers with low resistance.

  3. Interfacial spin cluster effects in exchange bias systems

    SciTech Connect

    Carpenter, R. Vallejo-Fernandez, G.; O'Grady, K.

    2014-05-07

    In this work, the effect of exchange bias on the hysteresis loop of CoFe is observed. The evolution of the coercivities and the shift of the hysteresis loop during the annealing process has been measured for films deposited on NiCr and Cu seed layers. Through comparison of the as deposited and field annealed loops, it is clear that for an exchange biased material, the two coercivities are due to different reversal processes. This behaviour is attributed to spin clusters at the ferromagnet/antiferromagnet interface, which behave in a similar manner to a fine particle system.

  4. Dynamic Response of Exchange Bias in Graphene Nanoribbons

    DTIC Science & Technology

    2012-01-01

    1 Dynamic response of exchange bias in graphene nanoribbons S. Narayana Jammalamadaka a, b* , S. S. Rao c, d, e* , J. Vanacken a , V. V...investigated in exchange-coupled potassium split graphene nanoribbons (GNRs). We find that, at low field sweep rate, the pronounced absolute training... graphene nanoribbons 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT

  5. Competing anisotropies in exchange-biased nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Goncalves, F. J. T.; Paterson, G. W.; Stamps, R. L.; O'Reilly, S.; Bowman, R.; Gubbiotti, G.; Schmool, D. S.

    2016-08-01

    The magnetic anisotropies of a patterned, exchange biased Fe50Mn50/Ni80Fe20 system are studied using ferromagnetic resonance, supplemented by Brillouin light scattering experiments and Kerr magnetometry. The exchange biased bilayer is partially etched into an antidot geometry so that the system approximates a Ni80Fe20 layer in contact with antidot structured Fe50Mn50 . Brillouin light scattering measurements of the spin wave frequency dependence on the wave vector reveal a magnonic band gap as expected for a periodic modulation of the magnetic properties. Analysis of the ferromagnetic resonance spectra reveals eightfold and fourfold contributions to the magnetic anisotropy. Additionally, the antidot patterning decreases the magnitude of the exchange bias and modifies strongly its angular dependence. Softening of all resonance modes is most pronounced for the applied magnetic field aligned within 10∘ of the antidot axis, in the direction of the bias. Given the degree to which one can tailor the ground state, the resulting asymmetry at low frequencies could make this an interesting candidate for applications such as selective/directional microwave filtering and multistate magnetic logic.

  6. Ultrafast Optical Magnetization Modulation in Exchange Biased Ferromagnetic Layers

    NASA Astrophysics Data System (ADS)

    Ju, Ganping; Nurmikko, Arto; Farrow, R. F. C.

    1998-03-01

    We have recently shown how the use of femtosecond laser pulses can be employed to study the spin dynamics and magnetization kinetics associated with hot electrons in ferromagnetic thin films on a psec timescale. (G. Ju et al, Phys. Rev. B (Jan. 1998)) Briefly, energetic electrons are promoted by interband excitation and the relaxation process in the nonequilibrium spin system are probed via transient Kerr effect. Here we report our first observations in the MnPt/FeNi antiferromagnetic/ferromagnetic bilayer system by such an experimental approach. The exchange biasing AF layer is selective optically excited with femtosecond laser pulses, while the induced changes in the magnetic properties of the FM layer are probed in real time. We have identified two types of effects: those ( ~300ps) intermediated by ultrafast lattice heating (unpinning of the exchange bias), and those ( ~10ps)which originate from ballistic electron transport within the bilayer. The preliminary results offer some insight for the dynamics of the exchange coupling and open up possibilities for ultrafast optical switching of the exchange biased system. Research supported by NSF.

  7. Control of quantum magnets by atomic exchange bias.

    PubMed

    Yan, Shichao; Choi, Deung-Jang; Burgess, Jacob A J; Rolf-Pissarczyk, Steffen; Loth, Sebastian

    2015-01-01

    Mixing of discretized states in quantum magnets has a radical impact on their properties. Managing this effect is key for spintronics in the quantum limit. Magnetic fields can modify state mixing and, for example, mitigate destabilizing effects in single-molecule magnets. The exchange bias field has been proposed as a mechanism for localized control of individual nanomagnets. Here, we demonstrate that exchange coupling with the magnetic tip of a scanning tunnelling microscope provides continuous tuning of spin state mixing in an individual nanomagnet. By directly measuring spin relaxation time with electronic pump-probe spectroscopy, we find that the exchange interaction acts analogously to a local magnetic field that can be applied to a specific atom. It can be tuned in strength by up to several tesla and cancel external magnetic fields, thereby demonstrating the feasibility of complete control over individual quantum magnets with atomically localized exchange coupling.

  8. Control of quantum magnets by atomic exchange bias

    NASA Astrophysics Data System (ADS)

    Yan, Shichao; Choi, Deung-Jang; Burgess, Jacob A. J.; Rolf-Pissarczyk, Steffen; Loth, Sebastian

    2015-01-01

    Mixing of discretized states in quantum magnets has a radical impact on their properties. Managing this effect is key for spintronics in the quantum limit. Magnetic fields can modify state mixing and, for example, mitigate destabilizing effects in single-molecule magnets. The exchange bias field has been proposed as a mechanism for localized control of individual nanomagnets. Here, we demonstrate that exchange coupling with the magnetic tip of a scanning tunnelling microscope provides continuous tuning of spin state mixing in an individual nanomagnet. By directly measuring spin relaxation time with electronic pump-probe spectroscopy, we find that the exchange interaction acts analogously to a local magnetic field that can be applied to a specific atom. It can be tuned in strength by up to several tesla and cancel external magnetic fields, thereby demonstrating the feasibility of complete control over individual quantum magnets with atomically localized exchange coupling.

  9. Role of the antiferromagnetic bulk spins in exchange bias

    NASA Astrophysics Data System (ADS)

    Schuller, Ivan K.; Morales, Rafael; Batlle, Xavier; Nowak, Ulrich; Güntherodt, Gernot

    2016-10-01

    This "Critical Focused Issue" presents a brief review of experiments and models which describe the origin of exchange bias in epitaxial or textured ferromagnetic/antiferromagnetic bilayers. Evidence is presented which clearly indicates that inner, uncompensated, pinned moments in the bulk of the antiferromagnet (AFM) play a very important role in setting the magnitude of the exchange bias. A critical evaluation of the extensive literature in the field indicates that it is useful to think of this bulk, pinned uncompensated moments as a new type of a ferromagnet which has a low total moment, an ordering temperature given by the AFM Néel temperature, with parallel aligned moments randomly distributed on the regular AFM lattice.

  10. Vortex chirality in exchange-biased elliptical magnetic rings.

    PubMed

    Jung, W; Castaño, F J; Ross, C A

    2006-12-15

    The flux-closed or "vortex" state in thin-film magnetic rings has been proposed as a data storage token, but it has proven difficult to control the vortex chirality in a simple manner. Here, a model is described that predicts the vortex chirality of an elliptical magnetic ring as a function of the direction of the applied field and of the exchange bias, based on the change in energy of the system as the domain walls move. Experimental measurements of chirality in Co and Co/IrMn magnetic rings with 3.2 microm major axis are in excellent agreement with the model. The vortex circulation direction can therefore be tailored with an appropriate combination of applied field direction and exchange bias direction with respect to the major axis.

  11. Interface mixing and its impact on exchange coupling in exchange biased systems

    NASA Astrophysics Data System (ADS)

    Manna, P. K.; Skoropata, E.; Ting, Y.-W.; Lin, K.-W.; Freeland, J. W.; van Lierop, J.

    2016-12-01

    Exchange bias and interlayer exchange coupling are interface driven phenomena. Since an ideal interface is very challenging to achieve, a clear understanding of the chemical and magnetic natures of interfaces is pivotal to identify their influence on the magnetism. We have chosen Ni80Fe20/CoO(t CoO)/Co trilayers as a model system, and identified non-stoichiometric Ni-ferrite and Co-ferrite at the surface and interface, respectively. These ferrites, being ferrimagnets typically, should influence the exchange coupling. However, in our trilayers the interface ferrites were found not to be ferro- or ferri-magnetic; thus having no observable influence on the exchange coupling. Our analysis also revealed that (i) interlayer exchange coupling was present between Ni80Fe20 and Co even though the interlayer thickness was significantly larger than expected for this phenomenon to happen, and (ii) the majority of the CoO layer (except some portion near the interface) did not contribute to the observed exchange bias. We also identified that the interlayer exchange coupling and the exchange bias properties were not interdependent.

  12. Interface mixing and its impact on exchange coupling in exchange biased systems.

    PubMed

    Manna, P K; Skoropata, E; Ting, Y-W; Lin, K-W; Freeland, J W; van Lierop, J

    2016-12-07

    Exchange bias and interlayer exchange coupling are interface driven phenomena. Since an ideal interface is very challenging to achieve, a clear understanding of the chemical and magnetic natures of interfaces is pivotal to identify their influence on the magnetism. We have chosen Ni80Fe20/CoO(t CoO)/Co trilayers as a model system, and identified non-stoichiometric Ni-ferrite and Co-ferrite at the surface and interface, respectively. These ferrites, being ferrimagnets typically, should influence the exchange coupling. However, in our trilayers the interface ferrites were found not to be ferro- or ferri-magnetic; thus having no observable influence on the exchange coupling. Our analysis also revealed that (i) interlayer exchange coupling was present between Ni80Fe20 and Co even though the interlayer thickness was significantly larger than expected for this phenomenon to happen, and (ii) the majority of the CoO layer (except some portion near the interface) did not contribute to the observed exchange bias. We also identified that the interlayer exchange coupling and the exchange bias properties were not interdependent.

  13. Role of anisotropy configuration in exchange-biased systems.

    SciTech Connect

    Jimenez, E.; Camarero, J.; Perna, P.; Mikuszeit, N.; Teran, F. J.; Sort, J.; Nogues, J.; Garcia-Martin, J. M.; Hoffmann, A.; Dieny, B.; Miranda, R.

    2011-01-01

    We present a systematic study of the anisotropy configuration effects on the magnetic properties of exchange-biased ferromagnetic/antiferromagnetic (FM/AFM) Co/IrMn bilayers. The interfacial unidirectional anisotropy is set extrinsically via a field cooling procedure with the magnetic field misaligned by an angle {beta}{sub FC} with respect to the intrinsic FM uniaxial anisotropy. High resolution angular dependence in-plane resolved Kerr magnetometry measurements have been performed for three different anisotropy arrangements, including collinear {beta}{sub FC} = 0 and two opposite noncollinear cases. The symmetry breaking of the induced noncollinear configurations results in a peculiar nonsymmetric magnetic behavior of the angular dependence of magnetization reversal, coercivity, and exchange bias. The experimental results are well reproduced without any fitting parameter by using a simple model including the induced anisotropy configuration. Our finding highlights the importance of the relative angle between anisotropies in order to properly account for the magnetic properties of exchange-biased FM/AFM systems.

  14. Ferromagnetic resonance studies of exchange-biased Permalloy thin films

    NASA Astrophysics Data System (ADS)

    Stoecklein, W.; Parkin, S. S. P.; Scott, J. C.

    1988-10-01

    Ferromagnetic resonance (FMR) spectra of Permalloy thin films exchange-coupled to iron-manganese films are analyzed. Studies were made on bilayer, ferromagnetic-antiferromagnetic (FA) and trilayer (AFA) structures, as a function of both F and A layer thicknesses in the range 20-800 Å. Data are presented at a frequency of 9.3 GHz for both in-plane and perpendicular directions of the applied field, and at 34.1 GHz, in-plane. Analysis of these data enables extraction of the magnetization, gyromagnetic ratio, and an exchange shift due to spin-wave stiffness and perpendicular-surface anisotropy, as a function of layer thickness. The azimuthal dependence of the in-plane resonance is used to determine the magnitude of the exchange anisotropy (bias field). The magnetization and gyromagnetic ratio show little dependence on the thickness of either the F or A layer down to 50 Å, implying that the interfaces are sharp on a scale of a few lattice constants. Within this interfacial region the magnetization is reduced as a result of interaction with the antiferromagnet. We suggest that the perpendicular-surface anisotropy is created by exchange coupling to the antiferromagnet whose easy axes are not in the plane of the interface. Finally, we suggest a model for exchange anisotropy in which the antiferromagnetic domain pattern is not totally locked, but adjusts in response to the ferromagnetization. Such a model qualitatively explains the bias field exerted by the antiferromagnetic layer deposited before the ferromagnet, the field-training effect, the FMR linewidth, and the magnitude of the bias field.

  15. Robust isothermal electric control of exchange bias at room temperature

    NASA Astrophysics Data System (ADS)

    Binek, Christian

    2011-03-01

    Voltage-controlled spintronics is of particular importance to continue progress in information technology through reduced power consumption, enhanced processing speed, integration density, and functionality in comparison with present day CMOS electronics. Almost all existing and prototypical solid-state spintronic devices rely on tailored interface magnetism, enabling spin-selective transmission or scattering of electrons. Controlling magnetism at thin-film interfaces, preferably by purely electrical means, is a key challenge to better spintronics. Currently, most attempts to electrically control magnetism focus on potentially large magnetoelectric effects of multiferroics. We report on our interest in magnetoelectric Cr 2 O3 (chromia). Robust isothermal electric control of exchange bias is achieved at room temperature in perpendicular anisotropic Cr 2 O3 (0001)/CoPd exchange bias heterostructures. This discovery promises significant implications for potential spintronics. From the perspective of basic science, our finding serves as macroscopic evidence for roughness-insensitive and electrically controllable equilibrium boundary magnetization in magnetoelectric antiferromagnets. The latter evolves at chromia (0001) surfaces and interfaces when chromia is in one of its two degenerate antiferromagnetic single domain states selected via magnetoelectric annealing. Theoretical insight into the boundary magnetization and its role in electrically controlled exchange bias is gained from first-principles calculations and general symmetry arguments. Measurements of spin-resolved ultraviolet photoemission, magnetometry at Cr 2 O3 (0001) surfaces, and detailed investigations of the unique exchange bias properties of Cr 2 O3 (0001)/CoPd including its electric controllability provide macroscopically averaged information about the boundary magnetization of chromia. Laterally resolved X-ray PEEM and temperature dependent MFM reveal detailed microscopic information of the chromia

  16. Influence of magnetic annealing and interdiffusion on the exchange bias of CoFe/IrMn

    NASA Astrophysics Data System (ADS)

    Macedo, Waldemar; Fernandez-Outon, Luis; Araujo Filho, Mario; Araujo, Raphael; Ardisson, Jose

    2013-03-01

    Magnetic annealing is broadly used to set exchange bias (EB). The EB field depends on the magnetic field and the temperature at which the F/AF exchange interaction is set. Atomic interdiffusion is also expected to have strong influence on EB. For systems containing IrMn, different results have been reported regarding the effect of setting EB between 200 and 400 °C. We study the effect of atomic interdiffusion on the exchange bias of polycrystalline IrMn/(57Fe +CoFe) multilayers due to the magnetic annealing between 225 and 500 °C. The samples have been prepared by magnetron sputtering, and 57Fe probe layers (10 Å thick) were grown at the F/AF interface, and 1 nm and 2 nm above it, inside the CoFe layer. Depth-resolved 57Fe conversion electron Mössbauer spectroscopy (CEMS) was used to quantify atomic interdiffusion, and vibrating sample magnetometry was used to monitor the variation of exchange bias and magnetisation. We found that interface sharpness is only affected above ~350 °C. Three different stages for the setting of exchange bias can be inferred from our results. At temperatures < 350 °C, no interdiffusion is observed and the F/AF exchange coupling establishes partial spin alignment of interfacial and bulk AF spins. At intermediate setting temperatures (350-450 °C) interfacial spin order is dominant over chemical intermixing effects, and both exchange field and coercivity increase up to 450 °C. Above 450 °C, severe chemical intermixing reduces significantly (~50%) the F/AF coupling. Work supported by CAPES/PNPD, FAPEMIG, and CNPq

  17. Design of compensated ferrimagnetic Heusler alloys for giant tunable exchange bias

    NASA Astrophysics Data System (ADS)

    Nayak, Ajaya K.; Nicklas, Michael; Chadov, Stanislav; Khuntia, Panchanana; Shekhar, Chandra; Kalache, Adel; Baenitz, Michael; Skourski, Yurii; Guduru, Veerendra K.; Puri, Alessandro; Zeitler, Uli; Coey, J. M. D.; Felser, Claudia

    2015-07-01

    Rational material design can accelerate the discovery of materials with improved functionalities. This approach can be implemented in Heusler compounds with tunable magnetic sublattices to demonstrate unprecedented magnetic properties. Here, we have designed a family of Heusler alloys with a compensated ferrimagnetic state. In the vicinity of the compensation composition in Mn-Pt-Ga, a giant exchange bias (EB) of more than 3 T and a large coercivity are established. The large exchange anisotropy originates from the exchange interaction between the compensated host and ferrimagnetic clusters that arise from intrinsic anti-site disorder. Our design approach is also demonstrated on a second material with a magnetic transition above room temperature, Mn-Fe-Ga, exemplifying the universality of the concept and the feasibility of room-temperature applications. These findings may lead to the development of magneto-electronic devices and rare-earth-free exchange-biased hard magnets, where the second quadrant magnetization can be stabilized by the exchange bias.

  18. Exchange bias phenomenology and models of core/shell nanoparticles.

    PubMed

    Iglesias, Oscar; Labarta, Amílcar; Batlle, Xavier

    2008-06-01

    Some of the main experimental observations related to the occurrence of exchange bias in magnetic systems are reviewed, focusing the attention on the peculiar phenomenology associated to nanoparticles with core/shell structure as compared to thin film bilayers. The main open questions posed by the experimental observations are presented and contrasted to existing theories and models for exchange bias formulated up to date. We also present results of simulations based on a simple model of a core/shell nanoparticle in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and at the interfacial regions, offering new insight on the microscopic origin of the experimental phenomenology. A detailed study of the magnetic order of the interfacial spins shows compelling evidence that most of the experimentally observed effects can be qualitatively accounted within the context of this model and allows also to quantify the magnitude of the loop shifts in striking agreement with the macroscopic observed values.

  19. Controllable positive exchange bias via redox-driven oxygen migration

    PubMed Central

    Gilbert, Dustin A.; Olamit, Justin; Dumas, Randy K.; Kirby, B. J.; Grutter, Alexander J.; Maranville, Brian B.; Arenholz, Elke; Borchers, Julie A.; Liu, Kai

    2016-01-01

    Ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1−x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, a few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. These results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures. PMID:26996674

  20. Controllable positive exchange bias via redox-driven oxygen migration

    SciTech Connect

    Gilbert, Dustin A.; Olamit, Justin; Dumas, Randy K.; Kirby, B. J.; Grutter, Alexander J.; Maranville, Brian B.; Arenholz, Elke; Borchers, Julie A.; Liu, Kai

    2016-03-21

    We report that ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, a few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. Ultimately, these results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.

  1. Controllable positive exchange bias via redox-driven oxygen migration

    DOE PAGES

    Gilbert, Dustin A.; Olamit, Justin; Dumas, Randy K.; ...

    2016-03-21

    We report that ionic transport in metal/oxide heterostructures offers a highly effective means to tailor material properties via modification of the interfacial characteristics. However, direct observation of ionic motion under buried interfaces and demonstration of its correlation with physical properties has been challenging. Using the strong oxygen affinity of gadolinium, we design a model system of GdxFe1-x/NiCoO bilayer films, where the oxygen migration is observed and manifested in a controlled positive exchange bias over a relatively small cooling field range. The exchange bias characteristics are shown to be the result of an interfacial layer of elemental nickel and cobalt, amore » few nanometres in thickness, whose moments are larger than expected from uncompensated NiCoO moments. This interface layer is attributed to a redox-driven oxygen migration from NiCoO to the gadolinium, during growth or soon after. Ultimately, these results demonstrate an effective path to tailoring the interfacial characteristics and interlayer exchange coupling in metal/oxide heterostructures.« less

  2. Exchange Bias Effects in Iron Oxide-Based Nanoparticle Systems

    PubMed Central

    Phan, Manh-Huong; Alonso, Javier; Khurshid, Hafsa; Lampen-Kelley, Paula; Chandra, Sayan; Stojak Repa, Kristen; Nemati, Zohreh; Das, Raja; Iglesias, Óscar; Srikanth, Hariharan

    2016-01-01

    The exploration of exchange bias (EB) on the nanoscale provides a novel approach to improving the anisotropic properties of magnetic nanoparticles for prospective applications in nanospintronics and nanomedicine. However, the physical origin of EB is not fully understood. Recent advances in chemical synthesis provide a unique opportunity to explore EB in a variety of iron oxide-based nanostructures ranging from core/shell to hollow and hybrid composite nanoparticles. Experimental and atomistic Monte Carlo studies have shed light on the roles of interface and surface spins in these nanosystems. This review paper aims to provide a thorough understanding of the EB and related phenomena in iron oxide-based nanoparticle systems, knowledge of which is essential to tune the anisotropic magnetic properties of exchange-coupled nanoparticle systems for potential applications. PMID:28335349

  3. Robust isothermal electric control of exchange bias at room temperature.

    PubMed

    He, Xi; Wang, Yi; Wu, Ning; Caruso, Anthony N; Vescovo, Elio; Belashchenko, Kirill D; Dowben, Peter A; Binek, Christian

    2010-07-01

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr(2)O(3) has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr(2)O(3) single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Néel temperature.

  4. Robust isothermal electric control of exchange bias at room temperature

    SciTech Connect

    He, X.; Vescovo, E.; Wang, Y.; Caruso, A.N.; Belashchenko, K.D.; Dowben, P.A.; Binek, C.

    2010-06-20

    Voltage-controlled spin electronics is crucial for continued progress in information technology. It aims at reduced power consumption, increased integration density and enhanced functionality where non-volatile memory is combined with high-speed logical processing. Promising spintronic device concepts use the electric control of interface and surface magnetization. From the combination of magnetometry, spin-polarized photoemission spectroscopy, symmetry arguments and first-principles calculations, we show that the (0001) surface of magnetoelectric Cr{sub 2}O{sub 3} has a roughness-insensitive, electrically switchable magnetization. Using a ferromagnetic Pd/Co multilayer deposited on the (0001) surface of a Cr{sub 2}O{sub 3} single crystal, we achieve reversible, room-temperature isothermal switching of the exchange-bias field between positive and negative values by reversing the electric field while maintaining a permanent magnetic field. This effect reflects the switching of the bulk antiferromagnetic domain state and the interface magnetization coupled to it. The switchable exchange bias sets in exactly at the bulk Neel temperature.

  5. Exchange bias properties of [Co/CoO]n multilayers

    NASA Astrophysics Data System (ADS)

    Öztürk, M.; Sınır, E.; Demirci, E.; Erkovan, M.; Öztürk, O.; Akdoǧan, N.

    2012-11-01

    In this study, the exchange bias properties of four polycrystalline multilayer stack samples of antiferromagnetic (AF) CoO and ferromagnetic (FM) Co in the form of [CoO/Co]n with n = 1, 2, 3, and 5 are reported. The samples were grown on top of Si (001) substrates by using magnetron sputtering method. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were used to determine the structural properties of the samples. XPS measurements of cobalt oxide layer revealed the coexistence of different phases in cobalt oxide as CoO and Co3O4, the latter of which lowers the blocking temperature. The blocking temperature is also affected by the finite size scaling effects observed in AF layers. In-plane ferromagnetic resonance (FMR) measurements revealed uniaxial in-plane magnetic anisotropy for the samples. Low temperature vibrating sample magnetometer measurements provided exchange bias with a stepwise character. Observed steps are believed to be due to magnetization reversals of individual FM layers with varying thicknesses, each of which is pinned through two interfaces from above and below with two AFM layers, except the uppermost FM Co layer with a single AFM neighbor.

  6. Memory effect versus exchange bias for maghemite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nadeem, K.; Krenn, H.; Szabó, D. V.

    2015-11-01

    We studied the temperature dependence of memory and exchange bias effects and their dependence on each other in maghemite (γ-Fe2O3) nanoparticles by using magnetization studies. Memory effect in zero field cooled process in nanoparticles is a fingerprint of spin-glass behavior which can be due to i) surface disordered spins (surface spin-glass) and/or ii) randomly frozen and interacting nanoparticles core spins (super spin-glass). Temperature region (25-70 K) for measurements has been chosen just below the average blocking temperature (TB=75 K) of the nanoparticles. Memory effect (ME) shows a non-monotonous behavior with temperature. It shows a decreasing trend with decreasing temperature and nearly vanishes below 30 K. However it also decreased again near the blocking temperature of the nanoparticles e.g., 70 K. Exchange bias (EB) in these nanoparticles arises due to core/shell interface interactions. The EB increases sharply below 30 K due to increase in core/shell interactions, while ME starts vanishing below 30 K. We conclude that the core/shell interface interactions or EB have not enhanced the ME but may reduce it in these nanoparticles.

  7. Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures

    NASA Astrophysics Data System (ADS)

    Yang, Q.; Zhou, Z.; Sun, N. X.; Liu, M.

    2017-04-01

    Exchange bias, as an internal magnetic bias induced by a ferromagnetic-antiferromagnetic exchange coupling, is extremely important in many magnetic applications such as memories, sensors and other devices. Voltage control of exchange bias in multiferroics provides an energy-efficient way to achieve a rapidly 180° deterministic switching of magnetization, which has been considered as a key challenge in realizing next generation of fast, compact and ultra-low power magnetoelectric memories and sensors. Additionally, exchange bias can enhance dynamic magnetoelectric coupling strength in an external-field-free manner. In this paper, we provide a perspective on voltage control of exchange bias in different multiferroic heterostructures. Brief mechanization and related experiments are discussed as well as future trend and challenges that can be overcome by electrically tuning of exchange bias in state-of-the-art magnetoelectric devices.

  8. Emergence of noncollinear anisotropies from interfacial magnetic frustration in exchange-bias systems.

    SciTech Connect

    Jimenez, E.; Camarero, J.; Sort, J.; Nogues, J.; Mikuszeit, N.; Garcia-Martin, J. M.; Hoffmann, A.; Dieny, B.; Miranda, R.; Univ. Autonoma de Madrid; Univ. Autonoma de Barcelona; Inst. de Microelectronica de Madrid; SPINTEC

    2009-01-01

    Exchange bias, referred to the interaction between a ferromagnet (FM) and an antiferromagnet (AFM), is a fundamental interfacial magnetic phenomenon, which is key to current and future applications. The effect was discovered half a century ago, and it is well established that the spin structures at the FM/AFM interface play an essential role. However, currently, ad hoc phenomenological anisotropies are often postulated without microscopic justification or sufficient experimental evidence to address magnetization-reversal behavior in exchange-bias systems. We advance toward a detailed microscopic understanding of the magnetic anisotropies in exchange-bias FM/AFM systems by showing that symmetry-breaking anisotropies leave a distinct fingerprint in the asymmetry of the magnetization reversal and we demonstrate how these emerging anisotropies are correlated with the intrinsic anisotropy. Angular and vectorial resolved Kerr hysteresis loops from FM/AFM bilayers with varying degree of ferromagnetic anisotropy reveal a noncollinear anisotropy, which becomes important for ferromagnets with vanishing intrinsic anisotropy. Numerical simulations show that this anisotropy naturally arises from the inevitable spin frustration at an atomically rough FM/AFM interface. As a consequence, we show in detail how the differences observed for different materials during magnetization reversal can be understood in general terms as originating from the interplay between interfacial frustration and intrinsic anisotropies. This understanding will certainly open additional avenues to tailor future advanced magnetic materials.

  9. Modification of the saturation magnetization of exchange bias thin film systems upon light-ion bombardment

    NASA Astrophysics Data System (ADS)

    Huckfeldt, Henning; Gaul, Alexander; Müglich, Nicolas David; Holzinger, Dennis; Nissen, Dennis; Albrecht, Manfred; Emmrich, Daniel; Beyer, André; Gölzhäuser, Armin; Ehresmann, Arno

    2017-03-01

    The magnetic modification of exchange bias materials by ‘ion bombardment induced magnetic patterning’ has been established more than a decade ago. To understand these experimental findings several theoretical models were introduced. Few investigations, however, did focus on magnetic property modifications caused by effects of ion bombardment in the ferromagnetic layer. In the present study, the structural changes occurring under ion bombardment were investigated by Monte-Carlo simulations and in experiments. A strong reduction of the saturation magnetization scaling linearly with increasing ion doses is observed and our findings suggest that it is correlated to the swelling of the layer material based on helium implantation and vacancy creation.

  10. Strain-mediated multiferroic control of spontaneous exchange bias in Ni-NiO heterostructures

    NASA Astrophysics Data System (ADS)

    Domann, John P.; Sun, Wei-Yang; Schelhas, Laura T.; Carman, Greg P.

    2016-10-01

    This paper presents the measurement of strain-mediated multiferroic control of spontaneous exchange bias (SEB) in magnetostrictive nickel/nickel oxide (Ni/NiO) bilayers on ferroelectric lead magnesium niobate-lead titanate (PMN-PT). Electric field control of a positive to negative exchange bias shift was measured, with an overall shift of 40.5 Oe, corresponding to a 325% change. Observed changes in coercivity are also reported and provide insight into the role of competing anisotropies in these structures. The findings in this paper provide evidence that magnetoelastic anisotropy can be utilized to control spontaneous exchange bias (SEB). This control of SEB is accomplished by modifying a bulk anisotropy (magnetoelasticity) that adjusts the mobility of interfacial anti-ferromagnetic spins and, therefore, the magnitude of the exchange bias. The demonstrated magnetoelastic control of exchange bias provides a useful tool in the creation of future magnetoelectric devices.

  11. Exotic exchange bias at epitaxial ferroelectric-ferromagnetic interfaces

    NASA Astrophysics Data System (ADS)

    Paul, Amitesh; Reitinger, Christoph; Autieri, Carmine; Sanyal, Biplab; Kreuzpaintner, Wolfgang; Jutimoosik, Jaru; Yimnirun, Rattikorn; Bern, Francis; Esquinazi, Pablo; Korelis, Panagiotis; Böni, Peter

    2014-07-01

    Multiferroics in spintronics have opened up opportunities for future technological developments, particularly in the field of ferroelectric (FE)-ferromagnetic (FM) oxide interfaces with functionalities. We find strong exchange bias shifts (up to 84 Oe) upon field cooling in metal-oxide (Fe/BaTiO3) films combining FM and FE layers. The saturation magnetic moment of the FM layer is also significantly higher than in bulk (3.0 ± 0.2 μB/atom) and the reversal mechanism occurs via a domain nucleation process. X-ray absorption spectroscopy at the Fe K-edge and Ba L3-edge indicate presence of few monolayers of antiferromagnetic FeO at the interface without the formation of any BaFeO3 layer. Polarized neutron reflectometry corroborates with our magnetization data as we perform depth profiling of the magnetic and structural densities in these bilayers. Our first principles density functional calculations support the formation of antiferromagnetic FeO layers at the interface along with an enhancement of Fe magnetic moments in the inner ferromagnetic layers.

  12. Exotic exchange bias at epitaxial ferroelectric-ferromagnetic interfaces

    SciTech Connect

    Paul, Amitesh Reitinger, Christoph; Kreuzpaintner, Wolfgang; Böni, Peter; Autieri, Carmine; Sanyal, Biplab; Jutimoosik, Jaru; Yimnirun, Rattikorn; Bern, Francis; Esquinazi, Pablo; Korelis, Panagiotis

    2014-07-14

    Multiferroics in spintronics have opened up opportunities for future technological developments, particularly in the field of ferroelectric (FE)-ferromagnetic (FM) oxide interfaces with functionalities. We find strong exchange bias shifts (up to 84 Oe) upon field cooling in metal-oxide (Fe/BaTiO{sub 3}) films combining FM and FE layers. The saturation magnetic moment of the FM layer is also significantly higher than in bulk (3.0 ± 0.2 μ{sub B}/atom) and the reversal mechanism occurs via a domain nucleation process. X-ray absorption spectroscopy at the Fe K-edge and Ba L3-edge indicate presence of few monolayers of antiferromagnetic FeO at the interface without the formation of any BaFeO{sub 3} layer. Polarized neutron reflectometry corroborates with our magnetization data as we perform depth profiling of the magnetic and structural densities in these bilayers. Our first principles density functional calculations support the formation of antiferromagnetic FeO layers at the interface along with an enhancement of Fe magnetic moments in the inner ferromagnetic layers.

  13. Engineered magnetic domain textures in exchange bias bilayer systems

    NASA Astrophysics Data System (ADS)

    Gaul, Alexander; Hankemeier, Sebastian; Holzinger, Dennis; Müglich, Nicolas David; Staeck, Philipp; Frömter, Robert; Oepen, Hans Peter; Ehresmann, Arno

    2016-07-01

    A magnetic domain texture has been deterministically engineered in a topographically flat exchange-biased (EB) thin film system. The texture consists of long-range periodically arranged unit cells of four individual domains, characterized by individual anisotropies, individual geometry, and with non-collinear remanent magnetizations. The texture has been engineered by a sequence of light-ion bombardment induced magnetic patterning of the EB layer system. The magnetic texture's in-plane spatial magnetization distribution and the corresponding domain walls have been characterized by scanning electron microscopy with polarization analysis (SEMPA). The influence of magnetic stray fields emerging from neighboring domain walls and the influence of the different anisotropies of the adjacent domains on the Néel type domain wall core's magnetization rotation sense and widths were investigated. It is shown that the usual energy degeneracy of clockwise and counterclockwise rotating magnetization through the walls is revoked, suppressing Bloch lines along the domain wall. Estimates of the domain wall widths for different domain configurations based on material parameters determined by vibrating sample magnetometry were quantitatively compared to the SEMPA data.

  14. Angular dependence of exchange bias and magnetization reversal controlled by electric-field-induced competing anisotropies

    NASA Astrophysics Data System (ADS)

    Zhao, Yonggang; Chen, Aitian; Li, Peisen; Zhang, Xu; Peng, Renci; Huang, Haoliang; Zou, Lvkuan; Zheng, Xiaoli; Zhang, Sen; Miao, Peixian; Lu, Yalin; Cai, Jian; Nan, Ce-Wen

    Combination of exchange-biased systems and FE materials gives a new avenue to study angular dependence of exchange bias and achieve reversible electric-field-controlled magnetization reversal. We study the angular dependence of electric-field-controlled exchange bias and magnetization reversal in CoFeB/IrMn/Pb(Mg1/3Nb2/3)0.7 Ti0.3O3. It is demonstrated that the ratio of the exchange-coupled unidirectional anisotropy and the uniaxial anisotropy of the FM layer, as well as their relative orientation can be dramatically and continuously tuned via electric fields. Simulations confirm that the electric-field-controlled exchange bias originates from the competition between the uniaxial anisotropy induced by the piezostrain and the exchange-coupled unidirectional anisotropy. Moreover, electric-field-controlled magnetization reversal was realized at zero magnetic field.

  15. Microscopic nature of ferro- and antiferromagnetic interface coupling of uncompensated magnetic moments in exchange bias systems.

    PubMed

    Gruyters, M; Schmitz, D

    2008-02-22

    Exchange bias in layered CoO/Fe structures is investigated by x-ray resonant magnetic reflectivity (XRMR) measurements. Element-specific hysteresis loops are obtained from x-ray magnetic circular dichroism effects in the XRMR spectra. Evidence is provided for the existence of different types of uncompensated moments in the antiferromagnetic material. Explanations are given for the microscopic nature of these moments and the complex exchange interactions that determine the magnetization reversal in exchange bias systems.

  16. Influence of growth conditions on exchange bias of NiMn-based spin valves

    SciTech Connect

    Wienecke, Anja; Kruppe, Rahel; Rissing, Lutz

    2015-05-07

    As shown in previous investigations, a correlation between a NiMn-based spin valve's thermal stability and its inherent exchange bias exists, even if the blocking temperature of the antiferromagnet is clearly above the heating temperature and the reason for thermal degradation is mainly diffusion and not the loss of exchange bias. Samples with high exchange bias are thermally more stable than samples with low exchange bias. Those structures promoting a high exchange bias are seemingly the same suppressing thermally induced diffusion processes (A. Wienecke and L. Rissing, “Relationship between thermal stability and layer-stack/structure of NiMn-based GMR systems,” in IEEE Transaction on Magnetic Conference (EMSA 2014)). Many investigations were carried out on the influence of the sputtering parameters as well as the layer thickness on the magnetoresistive effect. The influence of these parameters on the exchange bias and the sample's thermal stability, respectively, was hardly taken into account. The investigation described here concentrates on the last named issue. The focus lies on the influence of the sputtering parameters and layer thickness of the “starting layers” in the stack and the layers forming the (synthetic) antiferromagnet. This paper includes a guideline for the evaluated sputtering conditions and layer thicknesses to realize a high exchange bias and presumably good thermal stability for NiMn-based spin valves with a synthetic antiferromagnet.

  17. Controllable exchange bias in Fe/metamagnetic FeRh bilayers

    SciTech Connect

    Suzuki, Ippei; Hamasaki, Yosuke; Itoh, Mitsuru; Taniyama, Tomoyasu

    2014-10-27

    We report the studies of tuning the exchange bias at ferromagnetic Fe/metamagnetic FeRh bilayer interfaces. Fe/FeRh(111) bilayers show exchange bias in the antiferromagnetic state of FeRh while no exchange bias occurs at Fe/FeRh(001) interface. The contrasting results are attributed to the spin configurations of FeRh at the interface, i.e., the uncompensated ferromagnetic spin configuration of FeRh appears exclusively for (111) orientation. The exchange bias disappears as the bilayers are warmed above the antiferromagnetic-ferromagnetic transition temperature. The direction of the exchange bias for Fe/FeRh(111) is also found to be perpendicular to the cooling-field direction, in contrast to the commonly observed direction of exchange bias for ferromagnetic/antiferromagnetic interfaces. In view of these results, the exchange bias in Fe/FeRh bilayers with the (111) crystallographic orientation should be useful for the design of rapid writing technology for magnetic information devices.

  18. Thickness dependent exchange bias in martensitic epitaxial Ni-Mn-Sn thin films

    SciTech Connect

    Behler, Anna; Teichert, Niclas; Auge, Alexander; Hütten, Andreas; Dutta, Biswanath; Hickel, Tilmann; Waske, Anja; Eckert, Jürgen

    2013-12-15

    A thickness dependent exchange bias in the low temperature martensitic state of epitaxial Ni-Mn-Sn thin films is found. The effect can be retained down to very small thicknesses. For a Ni{sub 50}Mn{sub 32}Sn{sub 18} thin film, which does not undergo a martensitic transformation, no exchange bias is observed. Our results suggest that a significant interplay between ferromagnetic and antiferromagnetic regions, which is the origin for exchange bias, is only present in the martensite. The finding is supported by ab initio calculations showing that the antiferromagnetic order is stabilized in the phase.

  19. Exchange bias and anisotropy analysis of nano-composite Co84Zr16N thin films

    NASA Astrophysics Data System (ADS)

    Singh, Jitendra; Taube, William Ringal; Ansari, Akhtar Saleem; Gupta, Sanjeev Kumar; Kulriya, Pawan Kumar; Akhtar, Jamil

    2015-03-01

    Nano-composite Co84Zr16N (CZN) films were prepared by reactive co-sputter deposition. As-deposited CZN films have not shown any exchange bias effect. But annealed (390 K) and field cooled samples have shown exchange bias phenomena. The observed exchange bias is attributed to inter-cluster exchange coupling between ferromagnetic and antiferromagnetic nano-composite phase. High resolution transmission electron microscope study reveals that, the CZN films are composed of ordered and crystalline ferromagnetic Cobalt nano-clusters embedded in an antiferromagnetic matrix. X-ray diffraction confirms the poly-crystalline growth of the CZN films with a preferred fcc (622) phase formation. In-plane anisotropy of the exchange biased films was investigated by rotational magnetization curve, and the analysis shows that the magnetization reversal behaves according to the coherent rotation of the magnetic moment vector. Effectively, exchange bias effect in such single layer films could be attributed to co-existing antiferromagnetic and ferromagnetic phase within the single layer. Such single layer nano-composite films can be a possible alternative to the bilayer combination of antiferromagnetic/ferromagnetic exchange biased films and are ideally suited for spintronics and tunnel junction applications.

  20. Study of exchange bias in NiCr2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Singh, H.; Chakraborty, T.; Srikanth, K.; Chandra, R.; Mitra, C.; Kumar, U.

    2014-09-01

    We investigated exchange bias as a function of temperature in nanoparticles of ferrimagnetic normal spinel NiCr2O4. The studied bulk compound exhibits ferrimagnetic and canted antiferromagnetic ordering at 68 K and 30 K respectively. Sample characterization was carried out using X-Ray, Field Emission Scanning Electron Microscope (FE-SEM) and Transmission Electron Microscope (TEM) measurements. Magnetization measurements as a function of temperature has revealed interesting features. Magnetic isotherms of bulk and nanoparticle sample were also investigated at different temperatures. It was found that in nanoparticles, with decrease in temperature, exchange bias first increases, attains maximum value and then subsequently decreases. We argue that in nanoparticles, the higher exchange bias at 68 K is because of coexistence of ferrimagnetic and surface spin effect. However, the presence of glassy spin state may be the reason for decreasing exchange bias effect below Tc down to 5 K.

  1. Exchange Bias Realignment Using a Laser-based Direct-write Technique

    NASA Astrophysics Data System (ADS)

    Berthold, I.; Löschner, U.; Schille, J.; Ebert, R.; Exner, H.

    We report on selective realignment of the exchange biased magnetization direction in spintronic layer stacks using rapidly deflected focused laser radiation in a direct-write technique. Laser-based magnetic field cooling by applying either pulsed or continuous wave laser radiation was investigated. The magnetic properties of laser-based field cooled layer stacks were investigated by using magneto optical Kerr effect (MOKE) measurements. The dependencies of the processing parameters peak intensity and external magnetic field strength on the resulting exchange bias field strength were evaluated. In addition, temperature field simulations gain deeper insights into the mechanisms of laser-based field cooling. Our results show significant influence of the laser processing regime. Field cooling induced by continuous laser radiation caused higher exchange bias field strengths, compared to pulsed laser radiation. Moreover, the external magnetic field strength affected the resulting exchange bias field strength only by irradiating low-intensity laser beams.

  2. Antiferromagnetic exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal

    SciTech Connect

    Olejnik, K.; Wadley, P.; Haigh, J.; Edmonds, K. W.; Campion, R. P.; Rushforth, A. W.; Gallagher, B. L.; Foxon, C. T.; Jungwirth, T.; Wunderlich, J.; Dhesi, S. S.; Cavill, S.; van der Laan, G.; Arenholz, E.

    2009-11-05

    We demonstrate an exchange bias in (Ga,Mn)As induced by antiferromagnetic coupling to a thin overlayer of Fe. Bias fields of up to 240 Oe are observed. Using element-specific x-ray magnetic circular dichroism measurements, we distinguish an interface layer that is strongly pinned antiferromagnetically to the Fe. The interface layer remains polarized at room temperature.

  3. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    NASA Astrophysics Data System (ADS)

    R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2015-06-01

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  4. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    SciTech Connect

    R, Lisha; P, Geetha; B, Aravind P.; Anantharaman, M. R.; T, Hysen; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  5. Voltage Control of Exchange Bias in a Chromium Oxide Based Thin Film Heterostructure

    NASA Astrophysics Data System (ADS)

    Echtenkamp, Will; Street, Mike; Mahmood, Ather; Binek, Christian

    Controlling magnetism by electrical means is a key challenge in the field of spintronics, and electric control of exchange bias is one of the most promising routes to address this challenge. Isothermal electric control of exchange bias has been achieved near room temperature using bulk, single crystal, magnetoelectric Cr2O3. In this study the electrically-controlled exchange bias is investigated in an all thin film Cr2O3/PdCo exchange bias heterosystem where an MBE grown ferromagnetic and perpendicular anisotropic Pd/Co multilayer has been deposited on a PLD grown (0001) Cr2O3 thin film. Prototype devices are fabricated using lithography techniques. Using a process of magnetoelectric annealing, voltage control of exchange bias in Cr2O3 heterostructures is demonstrated with significant implications for scalability of ultra-low power memory and logical devices. In addition, the dependence of the exchange bias on the applied electric and magnetic fields are independently studied at 300K and isothermal voltage-controlled switching is investigated. This project was supported by SRC through CNFD, an SRC-NRI Center, by C-SPIN, part of STARnet, and by the NSF through MRSEC DMR-0820521.

  6. Tailoring the magnetization reversal of elliptical dots using exchange bias (invited)

    NASA Astrophysics Data System (ADS)

    Sort, J.; Buchanan, K. S.; Pearson, J. E.; Hoffmann, A.; Menéndez, E.; Salazar-Alvarez, G.; Baró, M. D.; Miron, M.; Rodmacq, B.; Dieny, B.; Nogués, J.

    2008-04-01

    Exchange bias effects have been studied in elliptical dots composed of ferromagnetic Ni80Fe20-antiferromagnetic Ir20Mn80 bilayers. The magnetization reversal mechanisms and magnetic configurations have been investigated by magneto-optic Kerr effect and magnetic force microscopy. Although the obtained bias fields in these dots are relatively small, the magnetization reversal is found to be influenced by the ferromagnetic-antiferromagnetic coupling. Namely, for some off-axis angles of measurement, the magnetization reversal mechanism of the Ni80Fe20-Ir20Mn80 ellipses depends on whether exchange bias is induced along the minor or major axis of the ellipses. Hence, exchange bias is shown to be an effective means for tailoring the magnetization reversal of elliptical dots after sample fabrication.

  7. Origin of the asymmetric magnetization reversal behavior in exchange-biased systems: competing anisotropies.

    PubMed

    Camarero, Julio; Sort, Jordi; Hoffmann, Axel; García-Martín, Jose Miguel; Dieny, Bernard; Miranda, Rodolfo; Nogués, Josep

    2005-07-29

    The magnetization reversal in exchange-biased ferromagnetic-antiferromagnetic (FM-AFM) bilayers is investigated. Different reversal pathways on each branch of the hysteresis loop, i.e., asymmetry, are obtained both experimentally and theoretically when the magnetic field is applied at certain angles from the anisotropy direction. The range of angles and the magnitude of this asymmetry are determined by the ratio between the FM anisotropy and the interfacial FM-AFM exchange anisotropy. The occurrence of asymmetry is linked with the appearance of irreversibility, i.e., finite coercivity, as well as with the maximum of exchange bias, increasing for larger anisotropy ratios. Our results indicate that asymmetric hysteresis loops are intrinsic to exchange-biased systems and the competition between anisotropies determines the asymmetric behavior of the magnetization reversal.

  8. Exchange biasing single molecule magnets: coupling of TbPc2 to antiferromagnetic layers.

    PubMed

    Lodi Rizzini, A; Krull, C; Balashov, T; Mugarza, A; Nistor, C; Yakhou, F; Sessi, V; Klyatskaya, S; Ruben, M; Stepanow, S; Gambardella, P

    2012-11-14

    We investigate the possibility to induce exchange bias between single molecule magnets (SMM) and metallic or oxide antiferromagnetic substrates. Element-resolved X-ray magnetic circular dichroism measurements reveal, respectively, the presence and absence of unidirectional exchange anisotropy for TbPc(2) SMM deposited on antiferromagnetic Mn and CoO layers. TbPc(2) deposited on Mn thin films present magnetic hysteresis and a negative horizontal shift of the Tb magnetization loop after field cooling, consistent with the observation of pinned spins in the Mn layer coupled parallel to the Tb magnetic moment. Conversely, molecules deposited on CoO substrates present paramagnetic magnetization loops with no indication of exchange bias. These experiments demonstrate the ability of SMM to polarize the pinned uncompensated spins of an antiferromagnet during field-cooling and realize metal-organic exchange-biased heterostructures using antiferromagnetic pinning layers.

  9. Evidence of exchange bias effect originating from the interaction between antiferromagnetic core and spin glass shell

    SciTech Connect

    Zhang, X. K. Yuan, J. J.; Yu, H. J.; Zhu, X. R.; Xie, Y. M.; Tang, S. L.; Xu, L. Q.

    2014-07-14

    Spin glass behavior and exchange bias effect have been observed in antiferromagnetic SrMn{sub 3}O{sub 6−x} nanoribbons synthesized via a self-sacrificing template process. The magnetic field dependence of thermoremanent magnetization and isothermal remanent magnetization shows that the sample is good correspondence to spin glass and diluted antiferromagnetic system for the applied field H < 2 T and H > 2 T, respectively. By detailed analysis of training effect using Binek's model, we argue that the observed exchange bias effect in SrMn{sub 3}O{sub 6−x} nanoribbons arises entirely from an interface exchange coupling between the antiferromagnetic core and spin glass shell. The present study is useful for understanding the nature of shell layer and the origin of exchange bias effect in other antiferromagnetic nanosystems as well.

  10. Tuning structure and roughness in exchange biased NiO/permalloy bilayers

    NASA Astrophysics Data System (ADS)

    Thomas, Luc; Negulescu, Béatrice; Dumont, Yves; Tessier, Michel; Keller, Niels; Wack, André; Guyot, Marcel

    2003-05-01

    Polycrystalline NiO thin films have been grown by pulsed laser deposition on quartz substrates. These films exhibit a strong texture, which can be tuned by changing deposition parameters such as substrate temperature or oxygen partial pressure. By varying the deposition temperature from room temperature up to 900 °C, (220), (111), and (200) textured films are prepared. In the temperature zones separating these orientations, competition between different growth directions leads to smaller crystallites, characterized by broader diffraction lines. Surface roughness measured by atomic force microscopy is strongly correlated with these structural features. Roughness is minimum for highly textured samples (about 7Å for 500 Å thick films), and it exhibits two peaks in the intermediate zones, with maximum values of about 40 Å. In order to correlate exchange bias with these structural features, 100 Å thick FeNi layers were deposited by rf sputtering on top of the 500 Å thick NiO films. Hysteresis loops were measured at 10 K by superconducting quantum interference device magnetometry after the samples were cooled in a 100 Oe magnetic field. Exchange bias is maximum for (111) oriented samples. No clear correlation between exchange bias and surface roughness is observed at low temperature. Exchange bias temperature dependence strongly depends upon NiO films deposition temperature. The blocking temperature, for which the exchange bias vanishes, varies between 150 K for (220) oriented samples and 250 K for (111) textured samples, and it exceeds room temperature for (200) films.

  11. Sign change of exchange bias in [Pt/Co]{sub 3}/IrMn multilayer

    SciTech Connect

    Yoon, Seungha; Kwon, Joonhyun; Cho, B. K.

    2014-05-07

    The properties of exchange bias in a multilayer of [Pt(1.0 nm)/Co(1.0 nm)]{sub 2}/Pt(t{sub Pt} nm)/Co(1.0 nm)/ IrMn(12.0 nm) were investigated with a variation of Pt layer thickness, t{sub Pt}. For t{sub Pt} ≤ 1.6 nm, it was typically observed that Co layers were ferromagnetically coupled while IrMn layer exhibited negative exchange bias. With increasing Pt thickness, antiferromagnetic (AF) interlayer coupling strength increased and caused AF spin configuration between the Co layers. With further increasing of Pt thickness (t{sub Pt} = 2.5 nm), the exchange bias between Co and IrMn layers was changed from negative to positive. Therefore, a large enhancement of AF interlayer coupling induced the sign change of exchange bias from negative to positive and resulted in a drastic change of switching behavior in a magnetization reversal. Both extraordinary Hall-effect and magnetoresistance were measured to verify the exchange bias direction and spin configurations upon magnetization reversal.

  12. Modelling exchange bias in core/shell nanoparticles.

    PubMed

    Iglesias, Oscar; Batlle, Xavier; Labarta, Amílcar

    2007-10-10

    We present an atomistic model of a single nanoparticle with core/shell structure that takes into account its lattice structure and spherical geometry, and in which the values of microscopic parameters such as anisotropy and exchange constants can be tuned in the core, shell and interfacial regions. By means of Monte Carlo simulations of the hysteresis loops based on this model, we have determined the range of microscopic parameters for which loop shifts after field cooling can be observed. The study of the magnetic order of the interfacial spins for different particle sizes and values of the interfacial exchange coupling have allowed us to correlate the appearance of loop asymmetries and vertical displacements to the existence of a fraction of uncompensated spins at the shell interface that remain pinned during field cycling, offering new insight on the microscopic origin of the experimental phenomenology.

  13. Wealth concentration in a biased asset-exchange model

    NASA Astrophysics Data System (ADS)

    Devitt-Lee, Adrian

    Economic inequality is a significant and dynamic problem throughout the world. Asset-exchange models have been used to model macroeconomic systems based on microeconomic assumptions about how agents exchange wealth in an economy. Previous studies of a certain asset-exchange model, called the Yard-Sale model, have found that trade alone promotes the condensation of wealth to a single individual in an economy [Chakraborti, 2002, Moukarzel et al., 2007, Boghosian, 2014b]. A later study found that a slight modification of the Yard-Sale model seems to allow for the coexistence of both "condensed wealth" and a normal population in an economy [Boghosian et al., 2016a]. This work formalizes the notion of wealth condensation in a macroeconomic system. This can be done by extending Schwartz's theory of distributions to allow for objects which increase at most linearly at infinity, or by considering condensed wealth to be a nonstandard phenomenon, and describing it as such. Numerical simulations indicate that this continuous description of wealth concentration is a valid approximation of wealth concentration in discrete systems with as few as 256 agents. We then study the properties of the steady-state distribution of wealth in such a system, and mention the fit of our system to the distribution of wealth in the United States in 2016.

  14. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-03-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices.

  15. Antisite disorder-induced exchange bias effect in multiferroic Y2CoMnO6

    NASA Astrophysics Data System (ADS)

    Nair, Harikrishnan S.; Chatterji, Tapan; Strydom, André M.

    2015-01-01

    Exchange bias effect in the ferromagnetic double perovskite compound Y2CoMnO6, which is also a multiferroic, is reported. The exchange bias, observed below 8 K, is explained as arising due to the interface effect between the ferromagnetic and antiferromagnetic clusters created by antisite disorder in this material. Below 8 K, prominent ferromagnetic hysteresis with metamagnetic "steps" and significant coercive field, Hc ≈ 10 kOe are observed in this compound which has a Tc ≈ 75 K. A model based on growth of ferromagnetic domains overcoming the elastic energy of structurally pinned magnetic interfaces, which closely resembles martensitic-like transitions, is adapted to explain the observed effects. The role of antisite disorder in creating the domain structure leading to exchange bias effect is highlighted in the present work.

  16. Mapping motion of antiferromagnetic interfacial uncompensated magnetic moment in exchange-biased bilayers

    PubMed Central

    Zhou, X.; Ma, L.; Shi, Z.; Fan, W. J.; Evans, R. F. L.; Zheng, Jian-Guo; Chantrell, R. W.; Mangin, S.; Zhang, H. W.; Zhou, S. M.

    2015-01-01

    In this work, disordered-IrMn3/insulating-Y3Fe5O12 exchange-biased bilayers are studied. The behavior of the net magnetic moment ΔmAFM in the antiferromagnet is directly probed by anomalous and planar Hall effects, and anisotropic magnetoresistance. The ΔmAFM is proved to come from the interfacial uncompensated magnetic moment. We demonstrate that the exchange bias and rotational hysteresis loss are induced by partial rotation and irreversible switching of the ΔmAFM. In the athermal training effect, the state of the ΔmAFM cannot be recovered after one cycle of hysteresis loop. This work highlights the fundamental role of the ΔmAFM in the exchange bias and facilitates the manipulation of antiferromagnetic spintronic devices. PMID:25777540

  17. Exchange Bias Optimization by Controlled Oxidation of Cobalt Nanoparticle Films Prepared by Sputter Gas Aggregation.

    PubMed

    Antón, Ricardo López; González, Juan A; Andrés, Juan P; Normile, Peter S; Canales-Vázquez, Jesús; Muñiz, Pablo; Riveiro, José M; De Toro, José A

    2017-03-11

    Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h). The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased) and soft (unbiased) components; however, the precise origin of the soft phase is as yet unresolved.

  18. Exchange Bias Optimization by Controlled Oxidation of Cobalt Nanoparticle Films Prepared by Sputter Gas Aggregation

    PubMed Central

    Antón, Ricardo López; González, Juan A.; Andrés, Juan P.; Normile, Peter S.; Canales-Vázquez, Jesús; Muñiz, Pablo; Riveiro, José M.; De Toro, José A.

    2017-01-01

    Porous films of cobalt nanoparticles have been obtained by sputter gas aggregation and controllably oxidized by air annealing at 100 °C for progressively longer times (up to more than 1400 h). The magnetic properties of the samples were monitored during the process, with a focus on the exchange bias field. Air annealing proves to be a convenient way to control the Co/CoO ratio in the samples, allowing the optimization of the exchange bias field to a value above 6 kOe at 5 K. The occurrence of the maximum in the exchange bias field is understood in terms of the density of CoO uncompensated spins and their degree of pinning, with the former reducing and the latter increasing upon the growth of a progressively thicker CoO shell. Vertical shifts exhibited in the magnetization loops are found to correlate qualitatively with the peak in the exchange bias field, while an increase in vertical shift observed for longer oxidation times may be explained by a growing fraction of almost completely oxidized particles. The presence of a hummingbird-like form in magnetization loops can be understood in terms of a combination of hard (biased) and soft (unbiased) components; however, the precise origin of the soft phase is as yet unresolved. PMID:28336895

  19. Setting temperature effect in polycrystalline exchange-biased IrMn/CoFe bilayers

    SciTech Connect

    Fernandez-Outon, L. E.; Araujo Filho, M. S.; Araujo, R. E.; Ardisson, J. D.; Macedo, W. A. A.

    2013-05-07

    We study the effect of atomic interdiffusion on the exchange bias of polycrystalline IrMn/({sup 57}Fe + CoFe) multilayers due to the thermal setting process of exchange coupling during field annealing. Depth-resolved {sup 57}Fe conversion electron Moessbauer spectroscopy was used to quantify atomic interdiffusion. Vibrating sample magnetometry was used to monitor the variation of exchange bias and magnetisation. It was found that interface sharpness is only affected above {approx}350 Degree-Sign C. Three different stages for the setting of exchange bias can be inferred from our results. At the lower setting temperatures (up to 350 Degree-Sign C), the effect of field annealing involves alignment of spins and interfacial coupling due to the setting of both antiferromagnetic (AF) bulk and interface without significant interdiffusion. At a second stage (350-450 Degree-Sign C), where AF ordering dominates over diffusion effects, atomic migration and increased setting of AF spins co-exist to produce a peak in exchange bias field and coercivity. On a third stage (>450 Degree-Sign C), severe chemical intermixing reduces significantly the F/AF coupling.

  20. Exchange bias effect in BiFeO{sub 3}-NiO nanocomposite

    SciTech Connect

    Chakrabarti, Kaushik; Sarkar, Babusona; Dev Ashok, Vishal; Das, Kajari; De, S. K.; Sinha Chaudhuri, Sheli; Mitra, Amitava

    2014-01-07

    Ferromagnetic BiFeO{sub 3} nanocrystals of average size 11 nm were used to form nanocomposites (x)BiFeO{sub 3}/(100 − x)NiO, x = 0, 20, 40, 50, 60, 80, and 100 by simple solvothermal process. The ferromagnetic BiFeO{sub 3} nanocrystals embedded in antiferromagnetic NiO nanostructures were confirmed from X-ray diffraction and transmission electron microscope studies. The modification of cycloidal spin structure of bulk BiFeO{sub 3} owing to reduction in particle size compared to its spin spiral wavelength (62 nm) results in ferromagnetic ordering in pure BiFeO{sub 3} nanocrystals. High Neel temperature (T{sub N}) of NiO leads to significant exchange bias effect across the BiFeO{sub 3}/NiO interface at room temperature. A maximum exchange bias field of 123.5 Oe at 300 K for x = 50 after field cooling at 7 kOe has been observed. The exchange bias coupling causes an enhancement of coercivity up to 235 Oe at 300 K. The observed exchange bias effect originates from the exchange coupling between the surface uncompensated spins of BiFeO{sub 3} nanocrystals and NiO nanostructures.

  1. Setting temperature effect in polycrystalline exchange-biased IrMn/CoFe bilayers

    NASA Astrophysics Data System (ADS)

    Fernandez-Outon, L. E.; Araújo Filho, M. S.; Araújo, R. E.; Ardisson, J. D.; Macedo, W. A. A.

    2013-05-01

    We study the effect of atomic interdiffusion on the exchange bias of polycrystalline IrMn/(57Fe + CoFe) multilayers due to the thermal setting process of exchange coupling during field annealing. Depth-resolved 57Fe conversion electron Mössbauer spectroscopy was used to quantify atomic interdiffusion. Vibrating sample magnetometry was used to monitor the variation of exchange bias and magnetisation. It was found that interface sharpness is only affected above ˜350 °C. Three different stages for the setting of exchange bias can be inferred from our results. At the lower setting temperatures (up to 350 °C), the effect of field annealing involves alignment of spins and interfacial coupling due to the setting of both antiferromagnetic (AF) bulk and interface without significant interdiffusion. At a second stage (350-450 °C), where AF ordering dominates over diffusion effects, atomic migration and increased setting of AF spins co-exist to produce a peak in exchange bias field and coercivity. On a third stage (>450 °C), severe chemical intermixing reduces significantly the F/AF coupling.

  2. Exchange bias of the interface spin system at the Fe/MgO interface.

    PubMed

    Fan, Y; Smith, K J; Lüpke, G; Hanbicki, A T; Goswami, R; Li, C H; Zhao, H B; Jonker, B T

    2013-06-01

    The ferromagnet/oxide interface is key to developing emerging multiferroic and spintronic technologies with new functionality. Here we probe the Fe/MgO interface magnetization, and identify a new exchange bias phenomenon manifested only in the interface spin system, and not in the bulk. The interface magnetization exhibits a pronounced exchange bias, and the hysteresis loop is shifted entirely to one side of the zero field axis. However, the bulk magnetization does not, in marked contrast to typical systems where exchange bias is manifested in the net magnetization. This reveals the existence of an antiferromagnetic exchange pinning layer at the interface, identified here as FeO patches that exist even for a nominally 'clean' interface. These results demonstrate that atomic moments at the interface are non-collinear with the bulk magnetization, and therefore may affect the net anisotropy or serve as spin scattering sites. We control the exchange bias magnitude by varying the interface oxygen concentration and Fe-O bonding.

  3. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    NASA Astrophysics Data System (ADS)

    Li, Xiaopu; Ma, Chung T.; Lu, Jiwei; Devaraj, Arun; Spurgeon, Steven R.; Comes, Ryan B.; Poon, S. Joseph

    2016-01-01

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  4. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    SciTech Connect

    Li, Xiaopu Ma, Chung T.; Poon, S. Joseph; Lu, Jiwei; Devaraj, Arun; Spurgeon, Steven R.; Comes, Ryan B.

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  5. Influence of ion bombardment induced patterning of exchange bias in pinned artificial ferrimagnets on the interlayer exchange coupling

    SciTech Connect

    Hoeink, V.; Schmalhorst, J.; Reiss, G.; Weis, T.; Lengemann, D.; Engel, D.; Ehresmann, A.

    2008-06-15

    Artificial ferrimagnets have many applications as, e.g., pinned reference electrodes in magnetic tunnel junctions. It is known that the application of ion bombardment (IB) induced patterning of the exchange bias coupling of a single layer reference electrode in magnetic tunnel junctions with He ions is possible. For applications as, e.g., special types of magnetic logic, a combination of the IB induced patterning of the exchange bias coupling and the implementation of an artificial ferrimagnet as reference electrode is desirable. Here, investigations for a pinned artificial ferrimagnet with a Ru interlayer, which is frequently used in magnetic tunnel junctions, are presented. It is shown that in this kind of samples the exchange bias can be increased or rotated by IB induced magnetic patterning with 10 keV He ions without a destruction of the antiferromagnetic interlayer exchange coupling. An IrMn/Py/Co/Cu/Co stack turned out to be more sensitive to the influence of IB than the Ru based artificial ferrimagnet.

  6. Exchange bias effect in CoCr2O4/NiO system prepared by two-step method

    NASA Astrophysics Data System (ADS)

    Wang, L. G.; Zhu, C. M.; Chen, L.; Yuan, S. L.

    2017-02-01

    CoCr2O4/NiO has been successfully synthesized through two-step method. X-ray diffraction results present the coexistence of CoCr2O4 and NiO with pure formation. Micrographs measured with scanning electron microscope and transmission electron microscope display the homogeneous and dense morphology with two kinds of nanoparticles. Exchange bias effect is observed in the sample. The exchange bias field is about 872 Oe at 10 K. As measuring temperature increases, exchange bias effect is weakened with decreasing coercive field. In addition, exchange bias field and the shift of magnetization show the linear relationship with increasing cooling field. The exchange bias behavior can be attributed to the exchange coupling at the disordered interfaces in the sample.

  7. Ultrathin Limit of Exchange Bias Coupling at Oxide Multiferroic/Ferromagnetic Interfaces

    DTIC Science & Technology

    2013-07-12

    control of exchange bias was also shown for an all oxide heterostructure consisting of BFO and La 0.7 Sr 0.3 MnO 3 (LSMO), [ 22 , 23 ] where epitaxial...drastically. This is generally interpreted by considering a strain-induced distortion of MnO 6 octahedra based on the Jahn-Teller distortion theory. [ 39

  8. Epitaxial exchange-bias systems: From fundamentals to future spin-orbitronics

    SciTech Connect

    Zhang, Wei; Krishnan, Kannan M.

    2016-07-01

    Exchange bias has been investigated for more than half a century and several insightful reviews, published around the year 2000, have already summarized many key experimental and theoretical aspects related to this phenomenon. Since then, due to developments in thin-film fabrication and sophisticated characterization methods, exchange bias continues to show substantial advances; in particular, recent studies on epitaxial systems, which is the focus of this review, allow many long-standing mysteries of exchange bias to be unambiguously resolved. The advantage of epitaxial samples lies in the well-defined interface structures, larger coherence lengths, and competing magnetic anisotropies, which are often negligible in polycrystalline samples. Beginning with a discussion of the microscopic spin properties at the ferromagnetic/antiferromagnetic interface, we correlate the details of spin lattices with phenomenological anisotropies, and finally connect the two by introducing realistic measurement approaches and models. We conclude by providing a brief perspective on the future of exchange bias and related studies in the context of the rapidly evolving interest in antiferromagnetic spintronics.

  9. Size-dependent exchange bias in single phase Mn3O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Song-Wei; Zhang, Xin; Yao, Rong; Rao, Guang-Hui

    2016-11-01

    Glassy magnetic behavior and exchange bias phenomena are observed in single phase Mn3O4 nanoparticles. Dynamics scaling analysis of the ac susceptibility and the Henkel plot indicate that the observed glassy behavior at low temperature can be understood by taking into account the intrinsic behavior of the individual particles consisting of a ferrimagnetic (FIM) core and a spin-glass surface layer. Field-cooled magnetization hysteresis loops display both horizontal and vertical shifts. Dependence of the exchange bias field (H E) on the cooling field shows an almost undamped feature up to 70 kOe, indicating the stable exchange bias state in Mn3O4. H E increases as the particle size decreases due to the higher surface/volume ratio. The occurrence of the exchange bias can be attributed to the pinning effect of the frozen spin-glass surface layer upon the FIM core. Project supported by the National Natural Science Foundation of China (Grant No. 11464007), the Natural Science Foundation of Guangxi, China (Grant Nos. 2012GXNSFGA060002 and 2014GXNSFBA118241), the Guangxi Key Laboratory of Information Material Foundation, China (Grant No. 131021-Z), and the Guangxi Department of Education Foundation, China (Grant Nos. YB2014120 and KY2015YB104).

  10. Field dependence of switching currents in an exchange biased spin valve.

    PubMed

    Nguyen, Hoang Yen Thi; Joo, Sung-Jung; Jung, Kuyoul; Shin, Kyung-Ho

    2007-01-01

    Current induced magnetic reversal due to spin transfer torque is a promising candidate in advanced information storage technology. It has been intensively studied. This work reports the field-dependence of switching-currents for current induced magnetization switching in a uncoupled nano-sized cobalt-based spin valve of exchange biased type. The dependency is investigated in hysteretic regime at room temperature, in comparison with that of a trilayer simple spin valve. In the simple spin valve, the switching currents behave to the positive and the negative applied magnetic field symmetrically. In the exchange biased type, in contrast, the switching currents respond to the negative field in a quite unusual and different manner than to the positive field. A negative magnetic field then can shift the switching-currents into either negative or positive current range, dependently on whether a parallel or an antiparallel state of the spin valve was produced by that field. This different character of switching currents in the negative field range can be explained by the effect of the exchange bias pinning field on the spin-polarizer (the fixed Co layer) of the exchange biased spin valve. That unidirectional pinning filed could suppress the thermal magnetization fluctuation in the spin-polarizer, leading to a higher spin polarization of the current, and hence a lower switching current density than in the simple spin valve.

  11. Role of interface coupling inhomogeneity in domain evolution in exchange bias

    PubMed Central

    Benassi, Andrea; Marioni, Miguel A.; Passerone, Daniele; Hug, Hans J.

    2014-01-01

    Models of exchange-bias in thin films have been able to describe various aspects of this technologically relevant effect. Through appropriate choices of free parameters the modelled hysteresis loops adequately match experiment, and typical domain structures can be simulated. However, the use of these parameters, notably the coupling strength between the systems' ferromagnetic (F) and antiferromagnetic (AF) layers, obscures conclusions about their influence on the magnetization reversal processes. Here we develop a 2D phase-field model of the magnetization process in exchange-biased CoO/(Co/Pt)×n that incorporates the 10 nm-resolved measured local biasing characteristics of the antiferromagnet. Just three interrelated parameters set to measured physical quantities of the ferromagnet and the measured density of uncompensated spins thus suffice to match the experiment in microscopic and macroscopic detail. We use the model to study changes in bias and coercivity caused by different distributions of pinned uncompensated spins of the antiferromagnet, in application-relevant situations where domain wall motion dominates the ferromagnetic reversal. We show the excess coercivity can arise solely from inhomogeneity in the density of biasing- and anti-biasing pinned uncompensated spins in the antiferromagnet. Counter to conventional wisdom, irreversible processes in the latter are not essential. PMID:24676050

  12. Determination of rotatable and frozen CoO spins and their relationship to exchange bias in CoO/Fe/Ag(001)

    SciTech Connect

    Wu, J.; Park, J.; Kim, W.; Arenholz, E.; Liberati, M.; Scholl, A.; Wu, Y.; Hwang, C.; Qiu, Z.

    2010-02-10

    The exchange bias of epitaxially grown CoO/Fe/Ag(001) was investigated using X-ray Magnetic Circular Dichroism (XMCD) and X-ray Magnetic Linear Dichroism (XMLD) techniques. A direct XMLD measurement on the CoO layer during the Fe magnetization reversal shows that the CoO compensated spins are rotatable at thinner thickness and frozen, i.e. fixed in direction to the lattice, at larger thickness. By a quantitative determination of the rotatable and frozen CoO spins as a function of the CoO film thickness, we find the remarkable result that the exchange bias is well established before frozen spins are detectable in the CoO film, contrary to the common assumption that the majority of antiferromagnetic spins need to be frozen to generate the exchange bias. We further show that the rotatable/frozen CoO spins are uniformly distributed in the CoO film.

  13. Observation of an atomic exchange bias effect in DyCo4 film

    PubMed Central

    Chen, Kai; Lott, Dieter; Radu, Florin; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe

    2015-01-01

    The fundamental important and technologically widely employed exchange bias effect occurs in general in bilayers of magnetic thin films consisting of antiferromagnetic and ferromagnetic layers where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the magnetization curve of a soft ferromagnetic film. The minimization of the single magnetic grain size to increase the storage density and the subsequent demand for magnetic materials with very high magnetic anisotropy requires a system with high HEB. Here we report an extremely high HEB of 4 Tesla observed in a single amorphous DyCo4 film close to room temperature. The origin of the exchange bias can be associated with the variation of the magnetic behavior from the surface towards the bulk part of the film revealed by X-ray absorption spectroscopy and X-ray magnetic circular dichroism techniques utilizing the bulk sensitive transmission and the surface sensitive total electron yield modes. The competition between the atomic exchange coupling in the single film and the Zeeman interaction lead to an intrinsic exchanged coupled system and the so far highest exchange bias effect HEB = 4 Tesla reported in a single film, which is accommodated by a partial domain wall formation. PMID:26675537

  14. Observation of an atomic exchange bias effect in DyCo4 film.

    PubMed

    Chen, Kai; Lott, Dieter; Radu, Florin; Choueikani, Fadi; Otero, Edwige; Ohresser, Philippe

    2015-12-17

    The fundamental important and technologically widely employed exchange bias effect occurs in general in bilayers of magnetic thin films consisting of antiferromagnetic and ferromagnetic layers where the hard magnetization behavior of an antiferromagnetic thin film causes a shift in the magnetization curve of a soft ferromagnetic film. The minimization of the single magnetic grain size to increase the storage density and the subsequent demand for magnetic materials with very high magnetic anisotropy requires a system with high HEB. Here we report an extremely high HEB of 4 Tesla observed in a single amorphous DyCo4 film close to room temperature. The origin of the exchange bias can be associated with the variation of the magnetic behavior from the surface towards the bulk part of the film revealed by X-ray absorption spectroscopy and X-ray magnetic circular dichroism techniques utilizing the bulk sensitive transmission and the surface sensitive total electron yield modes. The competition between the atomic exchange coupling in the single film and the Zeeman interaction lead to an intrinsic exchanged coupled system and the so far highest exchange bias effect HEB = 4 Tesla reported in a single film, which is accommodated by a partial domain wall formation.

  15. Exchange bias effect in Ti doped nanocrystalline SrFeO{sub 3-δ}

    SciTech Connect

    Sendil Kumar, A. Srinath, S.

    2014-08-15

    Materials of Ti doped nanocrystalline SrFeO{sub 3-δ} were synthesized through solid state reaction. Detailed magnetization measurements were carried out in zero field cooled (ZFC) and field cooled (FC) conditions. Compounds of SrFe{sub 1-x}Ti{sub x}O{sub 3-δ} (x = 0.1 to 0.3) are found to be spin glass and parent compound is a helical antiferromagnet. Non magnetic Ti{sup 4+} reduces the strength of exchange interactions and the curvature of hysteresis is changed towards concave nature. Exchange bias is observed below the peak temperature (irreversibility in magnetization (T{sub Irr})) in ZFC-FC of SrFe{sub 1-x}Ti{sub x}O{sub 3-δ} (x = 0 to 0.3). The coercivity and exchange bias field values are found to be decreases with increase in temperature. Observed exchange bias effect is attributed to competition between antiferromagnetic superexchange and ferromagnetic double exchange interactions.

  16. Study of exchange bias and training effect in NiCr2O4

    NASA Astrophysics Data System (ADS)

    Barman, Junmoni; Bora, Tribedi; Ravi, S.

    2015-07-01

    Single phase sample of NiCr2O4 crystallized in a tetragonal structure of I41/amd space group was prepared. Ferrimagnetic transition at TC=73 K along with a large irreversibility has been observed from the magnetization measurement. The sample exhibits exchange bias phenomenon and it is explained by considering the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic moment. Presence of training effect is also observed. The exchange bias field (HEB) is found to decay exponentially with increase in temperature and however, the coercive field (HCeff) follows the empirical relation HCeff = HCeff [ 1 - T/TC']2 . The maximum experimental values of HEB and HCeff are found to be 313 Oe and 4839 Oe respectively.

  17. Giant exchange bias in Mn2FeGa with hexagonal structure

    NASA Astrophysics Data System (ADS)

    Liu, Z. H.; Zhang, Y. J.; Zhang, H. G.; Zhang, X. J.; Ma, X. Q.

    2016-07-01

    In this study, we present the experimental observation that polycrystalline Mn2+xFe1-xGa (x = -0.2, 0, 0.2, 0.4) compounds can be synthesized to be D019-type (Ni3Sn-type) hexagonal structure with space group P63/mmc. A giant exchange bias field up to 1.32 kOe was achieved in hexagonal Mn2FeGa alloy at 5 K. A cluster glass state is confirmed by ac susceptibility measurement under different driving frequencies. Interestingly, robust horizontal and vertical shifts in magnetic hysteresis loop were simultaneously observed at 5 K under high cooling field up to 90 kOe. The large exchange bias is originated from the large exchange anisotropy between cluster glass phase and ferrimagnetic matrix. The vertical shift is thought to be attributed to the incomplete reversal of frozen cluster spins.

  18. Spin-Hall Switching of In-plane Exchange Biased Heterostructures

    NASA Astrophysics Data System (ADS)

    Mann, Maxwell; Beach, Geoffrey

    The spin Hall effect (SHE) in heavy-metal/ferromagnet bilayers generates a pure transverse spin current from in-plane charge current, allowing for efficient switching of spintronic devices with perpendicular magnetic anisotropy. Here, we demonstrate that an AFM deposited adjacent to the FM establishes a large in-plane exchange bias field, allowing operation at zero HIP. We sputtered Pt(3nm)/Co(0.9nm)/Ni80Co20O(tAF) stacks at room-temperature in an in-plane magnetic field of 3 kOe. The current-induced effective field was estimated in Hall cross devices by measuring the variation of the out-of-plane switching field as a function of JIP and HIP. The spin torque efficiency, dHSL/dJIP, is measured versus HIP for a sample with tAF =30 nm, and for a control in which NiCoO is replaced by TaOx. In the latter, dHSL/dJIP varied linearly with HIP. In the former, dHSL/dJIP varied nonlinearly with HIP and exhibited an offset indicating nonzero spin torque efficiency with zero HIP. The magnitude of HEB was 600 Oe in-plane.

  19. Shape-dependent exchange bias effect in magnetic nanoparticles with core-shell morphology

    NASA Astrophysics Data System (ADS)

    Dimitriadis, V.; Kechrakos, D.; Chubykalo-Fesenko, O.; Tsiantos, V.

    2015-08-01

    We study the low-temperature isothermal magnetic hysteresis of cubical and spherical nanoparticles with ferromagnetic-core/antiferromagnetic-shell morphology, in order to elucidate the sensitivity of the exchange bias effect to the shape of the particles and the structural imperfections at the core-shell interface. We model the magnetic structure using a classical Heisenberg Hamiltonian with uniaxial anisotropy and simulate the hysteresis loop using the metropolis Monte Carlo algorithm. For nanoparticles with geometrically sharp interfaces, we find that cubes exhibit a higher coercivity and lower exchange bias field than spheres of the same size. With increasing interface roughness, the shape dependence of the characteristic fields gradually decays, and eventually, the distinction between cubical and spherical particles is lost for moderately rough interfaces. The sensitivity of the exchange bias field to the microstructural details of the interface is quantified by a scaling factor (b ) relating the bias field to the net moment of the antiferromagnetic shell (Heb=b MAF+Ho) . Cubical particles exhibit a lower sensitivity to the dispersed values of the net interfacial moment.

  20. Exchange-biased spin valves with perpendicular magnetic anisotropy based on (Co/Pt) multilayers

    NASA Astrophysics Data System (ADS)

    Garcia, F.; Fettar, F.; Auffret, S.; Rodmacq, B.; Dieny, B.

    2003-05-01

    We have prepared spin valves exhibiting perpendicular magnetic anisotropy [perpendicular spin valves (PSVs)] by sputtering. These PSVs associate a "free" (Co/Pt) multilayer with a "pinned" (Co/Pt)/FeMn multilayer separated by various spacer materials (Pt, Cu, Al2O3). We carried out a comprehensive study of the magnetic and magnetotransport properties of the biased multilayers and of the complete spin valves. When the number of repeats in the (Co/Pt) exchange-biased multilayer is larger than 3, the samples present 100% remnant magnetization in the perpendicular configuration. The major hysteresis cycles exhibit two well-separated loops associated with the free and the exchange-biased (Pt/Co) multilayers. When optimized, the exchange-bias field can be larger than the coercivity of the pinned layer. Metallic PSVs with Cu spacers exhibit giant magnetoresistance but the amplitude is only of the order of 1% due to significant current shunting. In contrast, perpendicularly magnetized tunnel junctions are very promising.

  1. Exchange bias in bulk layered hydroxylammonium fluorocobaltate (NH₃OH)₂CoF₄.

    PubMed

    Jagličić, Z; Zentková, M; Mihalik, M; Arnold, Z; Drofenik, M; Kristl, M; Dojer, B; Kasunič, M; Golobič, A; Jagodič, M

    2012-02-08

    The magnetic properties of layered hydroxylammonium fluorocobaltate (NH(3)OH)(2)CoF(4) were investigated by measuring its dc magnetic susceptibility in zero-field-cooled (ZFC) and field-cooled (FC) regimes, its frequency dependent ac susceptibility, its isothermal magnetization curves after ZFC and FC regimes, and its heat capacity. Effects of pressure and magnetic field on magnetic phase transitions were studied by susceptibility and heat capacity measurements, respectively. The system undergoes a magnetic phase transition from a paramagnetic state to a canted antiferromagnetic state exhibiting a weak ferromagnetic behavior at T(C) = 46.5 K and an antiferromagnetic transition at T(N) = 2.9 K. The most spectacular manifestation of the complex magnetic behavior in this system is a shift of the isothermal magnetization hysteresis loop in a temperature range below 20 K after the FC regime-an exchange bias phenomenon. We investigated the exchange bias as a function of the magnetic field during cooling and as a function of temperature. The observed exchange bias was attributed to the large exchange anisotropy which exists due to the quasi-2D structure of the layered (NH(3)OH)(2)CoF(4) material.

  2. Exchange bias magnetism in films of NiFe/(Ni,Fe)O nanocrystallite dispersions

    SciTech Connect

    Hsiao, C.-H.; Chi, C.-C.; Wang, S.; Ouyang, H.; Desautels, R. D.; Lierop, J. van; Lin, K.-W.; Lin, T.-L.

    2014-05-07

    Ni{sub 3}Fe/(Ni,Fe)O thin films having a nanocrystallite dispersion morphology were prepared by a reactive ion beam-assisted deposition technique. The crystallite sizes of these dispersion-based films were observed to decrease from 8.4 ± 0.3 nm to 3.4 ± 0.3 nm as the deposition flow-rate increased from 2.78% to 7.89% O{sub 2}/Ar. Thin film composition was determined using selective area electron diffraction images and Multislice simulations. Through a detailed analysis of high resolution transmission electron microscopy images, the nanocrystallites were determined to be Ni{sub 3}Fe (a ferromagnet), NiO, and FeO (both antiferromagnets). It was determined that the interfacial molar Ni{sub 3}Fe ratio in the nanocrystallite dispersions increased slightly at first, then decreased as the oxygen content was increased; at 7.89% O{sub 2}/Ar, the interfacial molar ratio was essentially zero (only NiO and FeO remained). For nanocrystallite dispersion films grown with O{sub 2}/Ar flow-rate greater than 7.89%, no interfacial (intermixed) Ni{sub 3}Fe phase was detected, which resulted in no measurable exchange bias. Comparing the exchange bias field between the nanocrystallite dispersion films at 5 K, we observed a decrease in the magnitude of the exchange bias field as the nanocrystallite size decreased. The exchange bias coupling for all samples measured set in at essentially the same temperature (i.e., the exchange bias blocking temperature). Since the ferromagnetic/anti-ferromagnetic (FM/AFM) contact area in the nanocrystallite dispersion films increased as the nanocrystallite size decreased, the increase in the magnitude of the exchange bias could be attributed to larger regions of defects (vacancies and bond distortions) which occupied a significant portion of the FM/AFM interfaces in the nanocrystallite dispersion films.

  3. Exchange Bias Tuning for Magnetoresistive Sensors by Inclusion of Non-Magnetic Impurities

    PubMed Central

    Sharma, Parikshit Pratim; Albisetti, Edoardo; Monticelli, Marco; Bertacco, Riccardo; Petti, Daniela

    2016-01-01

    The fine control of the exchange coupling strength and blocking temperature ofexchange bias systems is an important requirement for the development of magnetoresistive sensors with two pinned electrodes. In this paper, we successfully tune these parameters in top- and bottom-pinned systems, comprising 5 nm thick Co40Fe40B20 and 6.5 nm thick Ir22Mn78 films. By inserting Ru impurities at different concentrations in the Ir22Mn78 layer, blocking temperatures ranging from 220 °C to 100 °C and exchange bias fields from 200 Oe to 60 Oe are obtained. This method is then applied to the fabrication of sensors based on magnetic tunneling junctions consisting of a pinned synthetic antiferromagnet reference layer and a top-pinned sensing layer. This work paves the way towards the development of new sensors with finely tuned magnetic anisotropies. PMID:27384565

  4. Effect of misaligned unidirectional and uniaxial anisotropies on angular dependence of exchange bias

    NASA Astrophysics Data System (ADS)

    Hu, Yong; Wang, Xiaoling; Jia, Ning; Liu, Yan; Du, An

    2015-01-01

    We report a numerical study of the angular dependences of low-temperature exchange bias field (ADEB) and coercivity in the ferromagnetic/antiferromagnetic bilayers with misaligned unidirectional and uniaxial anisotropies. Through choosing a proper antiferromagnet the conventional symmetry in the ADEB may be broken, while the novel behaviors are also dependent on the angle between induced unidirectional and intrinsic uniaxial anisotropies. Finally, we draw conclusions that the two anisotropies with a small misalignment together determine the asymmetric ADEB properties around the easy axis. In contrast, after the magnetically hysteretic measurement rotating through the hard axis, a large misalignment between the anisotropies may change the magnetization reversal mode at the decreasing branch of loop, besides weakening the positive loop shift. Thus the strength of exchange bias field is suppressed while the coercivity is enhanced.

  5. Exchange Bias Tuning for Magnetoresistive Sensors by Inclusion of Non-Magnetic Impurities.

    PubMed

    Sharma, Parikshit Pratim; Albisetti, Edoardo; Monticelli, Marco; Bertacco, Riccardo; Petti, Daniela

    2016-07-04

    The fine control of the exchange coupling strength and blocking temperature ofexchange bias systems is an important requirement for the development of magnetoresistive sensors with two pinned electrodes. In this paper, we successfully tune these parameters in top- and bottom-pinned systems, comprising 5 nm thick Co40Fe40B20 and 6.5 nm thick Ir22Mn78 films. By inserting Ru impurities at different concentrations in the Ir22Mn78 layer, blocking temperatures ranging from 220 °C to 100 °C and exchange bias fields from 200 Oe to 60 Oe are obtained. This method is then applied to the fabrication of sensors based on magnetic tunneling junctions consisting of a pinned synthetic antiferromagnet reference layer and a top-pinned sensing layer. This work paves the way towards the development of new sensors with finely tuned magnetic anisotropies.

  6. Large exchange-bias in Ni55Mn19Al24Si2 polycrystalline ribbons

    NASA Astrophysics Data System (ADS)

    Singh, Rohit; Ingale, Babita; Varga, Lajos K.; Khovaylo, Vladimir V.; Chatterjee, Ratnamala

    2014-09-01

    The crystal structure, phase transition and exchange bias effect in induction melted polycrystalline ribbons of Ni55Mn19Al24Si2 have been studied using room temperature x-ray diffraction (XRD), differential scanning calorimetry (DSC) and magnetic measurements. The sample was found to show structural transformation temperatures such as austenite start (As)=306 K, austenite finish (Af)=316 K, martensite start (Ms)=305 K and martensite finish (Mf)=294 K all above room temperature. The room temperature structure evaluated as orthorhombic 14 M with lattice parameters a=4.14 Å, b=29.84 Å, and c=5.72 Å. Importantly at 2 K, the sample showed a large exchange bias field of about 2520 Oe, which is the maximum value ever reported among the Heusler alloy samples.

  7. Synthesis and tuning the exchange bias in Ni-NiO nanoparticulate systems

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Vargas, J. M.; Knobel, M.; Pirota, K. R.; Meneses, C. T.; Kumar, Shalendra; Lee, C. G.; Pagliuso, P. G.; Rettori, Carlos

    2010-05-01

    We report studies on exchange bias effects in Ni-NiO nanoparticles with different particle diameters/distributions and concentration of metallic nickel, which vary from 0% to 32%. The exchange bias field, Hex, depends strongly upon both particle size and the concentration of metallic Ni, being maximum (˜2.2 kOe) at 5 K for the sample with almost negligible concentration of metallic Ni, whereas the corresponding value for the sample with highest concentration of metallic Ni (˜32±5.0%) is about 0.07 kOe. The structural features of the samples have been investigated thoroughly by using the Reitveld refinement of x-ray diffraction data and high resolution transmission electron microscopy, where as the magnetic properties using superconducting quantum interference device magnetometer.

  8. Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition

    SciTech Connect

    Kaur, Maninder; Jiang, Weilin; Qiang, You; Burks, Edward; Liu, Kai; Namavar, Fereydoon; Mccloy, John S.

    2014-11-03

    Iron oxide films were deposited onto Si substrates using ion-beam-assisted deposition. The films were ~300 nm thick polycrystalline magnetite with an average crystallite size of ~6 nm. Additionally, incorporation of significant fractions of argon in the films from ion bombardment is evident from chemical analysis, and Fe/O ratios are lower than expected from pure magnetite. However, Raman spectroscopy and x-ray diffraction both indicate that the films are single-phase magnetite. Since no direct evidence of a second phase could be found, exchange bias likely arises due to defects at grain boundaries, possibly amorphous, creating frustrated spins. Since these samples have such small grains, a large fraction of the material consists of grain boundaries, where spins are highly disordered and reverse independently with external field. The high energy deposition process results in an oxygen-rich, argon-containing magnetite film with low temperature exchange bias due to defects at the high concentration of grain boundaries.

  9. Observation of tunable exchange bias in Sr2YbRuO6

    NASA Astrophysics Data System (ADS)

    Singh, R. P.; Tomy, C. V.; Grover, A. K.

    2010-11-01

    The double perovskite compound, Sr2YbRuO6, displays reversal in the orientation of magnetic moments along with negative magnetization due to an underlying magnetic compensation phenomenon. The exchange bias (EB) field below the compensation temperature could be the usual negative or the positive depending on the initial cooling field. This EB attribute has the potential of getting tuned in a preselected manner, as the positive EB field is seen to crossover from positive to negative value above Tcomp.

  10. Temperature evolution of nickel sulphide phases from thiourea complex and their exchange bias effect

    SciTech Connect

    Kumar, Nitesh; Raman, N.; Sundaresan, A.

    2013-12-15

    Considering the very complex phase diagram of nickel sulphide, it is quite challenging to stabilize pure phases from a single precursor. Here, we obtain nanoparticles of various phases of nickel sulphide by decomposing nickel–thiourea complex at different temperatures. The first phase in the evolution is the one with the maximum sulphur content, namely, NiS{sub 2} nanoparticles obtained at 400 °C. As the temperature is increased, nanoparticles of phases with lesser sulphur content, NiS (600 °C) and Ni{sub 3}S{sub 2} (800 °C) are formed. NiS{sub 2} nanoparticles exhibit weak ferromagnetic transition at 30 K and show a large exchange bias at 2 K. NiS nanoparticles are antiferromagnetic and show relatively smaller exchange bias effect. On the other hand, Ni{sub 3}S{sub 2} nanoparticles exhibit very weak temperature dependent magnetization. Electrical measurements show that both NiS{sub 2} and NiS are semiconductors whereas Ni{sub 3}S{sub 2} is a metal. - Graphical abstract: Pure phases of NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} have been obtained by thermal decomposition of nickel–thiourea complex wherein, NiS{sub 2} nanoparticles exhibit remarkable exchange bias effect at 2 K. - Highlights: • NiS{sub 2}, NiS and Ni{sub 3}S{sub 2} nanoparticles are obtained by thermal decomposition of nickel–thiourea complex at different temperatures. • As the temperature is increased, nickel sulphide phase with lesser sulphur content is obtained. • NiS{sub 2} nanoparticles show good exchange bias property which can be explained by antiferromagnetic core and ferromagnetic shell model. • NiS{sub 2} and NiS are semiconducting while Ni{sub 3}S{sub 2} shows metallic behavior.

  11. Voltage Controlled Exchange Bias in a Cr2O3 based heterostructure

    NASA Astrophysics Data System (ADS)

    Echtenkamp, Will; Street, Mike; Binek, Christian

    2015-03-01

    Controlling magnetism by electrical means is a key challenge in the field of spintronics, and electric control of exchange bias is one of the most promising routes to address this challenge. Isothermal electric control of exchange bias has been achieved near room temperature using bulk, single crystal, magnetoelectric Cr2O3, which has a voltage controlled net magnetization at the (0001) surface. Voltage control of magnetism in a Cr2O3 thin film system has presented significant challenges. In this study we explore the electric control of exchange bias in an all-thin-film system of decreasing chromia film thickness with significant implications for scalability of ultra-low power memory and logical devices. Cross-sectional HRTEM indicates that grain boundaries in the metallic bottom electrode propagate into the Cr2O3 thin film with detrimental effects on leakage currents. We address this issue via a three-step growth method for the deposition of epitaxial Pd on sapphire. The resulting microstructure of the films is analyzed by reflection high-energy electron diffraction, tunneling electron microscopy and x-ray diffraction. This project was supported by SRC through CNFD, an SRC-NRI Center, by C-SPIN, part of STARnet, and by the NSF through MRSEC DMR-0820521.

  12. Enhancement of exchange bias and ferromagnetic resonance frequency by using multilayer antidot arrays

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Lim, S. L.; Xu, F.; Ma, Y. G.; Ong, C. K.

    2008-11-01

    A systematic investigation of the dependences of the exchange bias and the ferromagnetic resonance frequency on the pore size of the antidot arrays fabricated by depositing Permalloy-FeMn multilayer thin films onto self-organized porous anodic aluminum oxide membranes was carried out. The magnetic and microwave properties of the antidot arrays with different pore sizes ranging from 30 to 80 nm are characterized and compared with that of the continuous thin films. It was found that the exchange bias field and the ferromagnetic resonance frequency are increased with the increase of the pore size, which may tentatively be interpreted in the framework of the random field model. It was also found that by using the antidot arrays in the best condition (the FeNi thickness is 20 nm and the pore size is 80 nm), one can enhance the exchange bias field from 65 to 135 Oe and the ferromagnetic resonance frequency from 3.1 to 4.1 GHz accordingly.

  13. The fabrication of ordered arrays of exchange biased Ni/FeF2 nanostructures.

    PubMed

    Kovylina, M; Erekhinsky, M; Morales, R; Schuller, I K; Labarta, A; Batlle, X

    2010-04-30

    The fabrication of ordered arrays of exchange biased Ni/FeF(2) nanostructures by focused ion beam lithography is reported. High quality nano-elements, with controlled removal depth and no significant re-deposition, were carved using small ion beam currents (30 pA), moderate dwell times (1 micros) and repeated passages over the same area. Two types of nanostructures were fabricated: square arrays of circular dots with diameters from 125 +/- 8 to 500 +/- 12 nm and periodicities ranging from 200 +/- 8 to 1000 +/- 12 nm, and square arrays of square antidots (207 +/- 8 nm in edge length) with periodicities ranging from 300 +/- 8 to 1200 +/- 12 nm. The arrays were characterized using scanning ion and electron microscopy, and atomic force microscopy. The effect of the patterning on the exchange bias field (i.e., the shift in the hysteresis loop of ferromagnetic Ni due to proximity to antiferromagnetic FeF(2)) was studied using magneto-transport measurements. These high quality nanostructures offer a unique method to address some of the open questions regarding the microscopic origin of exchange bias. This is not only of major relevance in the fabrication and miniaturization of magnetic devices but it is also one of the important proximity phenomena in nanoscience and materials science.

  14. Exchange-bias-like coupling in a ferrimagnetic Fe/Tb multilayer

    NASA Astrophysics Data System (ADS)

    Paul, Amitesh; Mukherjee, Saumya; Kreuzpaintner, Wolfgang; Böni, Peter

    2014-04-01

    Field cooling of a transition metal-rare earth (TM-RE) Fe/Tb-multilayer system is shown to form a double hysteresis loop with exchange-bias-like shifts along and opposite to the field cooling axis below the ordering temperature of the RE. The measurement of the polarized neutron reflectivity at various applied fields confirms an antiferromagnetic alignment between the individual layers of Fe and Tb associated with a significant value of the magnetic moment for the Tb layers, even at room temperature. We attribute the shifts of the hysteresis loops to the formation of 2π-domain walls by the interface moments that are pinned by the magnetically hard Tb layers forming bidomainlike states in this layered artificial ferrimagnetic system. We conclude that the exchange bias in Fe/Tb-multilayers, the RE layers being on either sides of the TM layers, is caused by the formation of 2π-domain walls in the Fe layers thus excluding an explanation in terms of π-domain walls, which are believed to be responsible for the exchange bias in other RE-TM bilayer systems.

  15. Exchange-bias-like coupling in a Cu-diluted-Fe/Tb multilayer

    NASA Astrophysics Data System (ADS)

    Mukherjee, Saumya; Kreuzpaintner, Wolfgang; Stahn, Jochen; Zheng, Jian-Guo; Bauer, Andreas; Böni, Peter; Paul, Amitesh

    2015-03-01

    Transition metal-rare earth (TM-RE) Fe/Tb-multilayer systems have been known to show exchange-bias-like shifts in the form of double hysteresis loop (DHL) along and opposite to the field cooling axis. Planar domain walls, with opposite handedness at the interfaces, are held responsible for such DHL. Here, we report on the formation of nanoparticulated Fe layers in the Cu-matrix within a Fe-Cu/Tb multilayer and their eventual low-temperature characteristics. AC susceptibility measurements indicate that these diluted magnetic clusters have a superspin-glass-type of freezing behavior. Eventually, this Fe-cluster/Tb interlayer interaction, which is conjectured to be mediated by the pinned moments within the individual clusters, has helped in increasing the exchange bias field in the system to a high value of ≈1.3 kOe, which gradually vanishes around 50 K. Polarized neutron reflectivity confirms a very strong antiferromagnetic (AF) coupling between the individual layers. The magnitude of the magnetic moment of each of the individual Tb or Fe-Cu layer remains similar, but due to the strong AF-coupling at the interfaces, the entire ferrimagnetic Fe-Cu/Tb entity flips its direction at a compensation field of around 3.7 kOe. This study shows that magnetic dilution can be an effective way to manipulate the possible domain walls or the clusters in TM and thereby the exchange bias in TM-RE systems.

  16. Exchange bias of Ni nanoparticles embedded in an antiferromagnetic IrMn matrix.

    PubMed

    Kuerbanjiang, Balati; Wiedwald, Ulf; Haering, Felix; Biskupek, Johannes; Kaiser, Ute; Ziemann, Paul; Herr, Ulrich

    2013-11-15

    The magnetic properties of Ni nanoparticles (Ni-NPs) embedded in an antiferromagnetic IrMn matrix were investigated. The Ni-NPs of 8.4 nm mean diameter were synthesized by inert gas aggregation. In a second processing step, the Ni-NPs were in situ embedded in IrMn films or SiOx films under ultrahigh vacuum (UHV) conditions. Findings showed that Ni-NPs embedded in IrMn have an exchange bias field HEB = 821 Oe at 10 K, and 50 Oe at 300 K. The extracted value of the exchange energy density is 0.06 mJ m(-2) at 10 K, which is in good accordance with the results from multilayered thin film systems. The Ni-NPs embedded in SiOx did not show exchange bias. As expected for this particle size, they are superparamagnetic at T = 300 K. A direct comparison of the Ni-NPs embedded in IrMn or SiOx reveals an increase of the blocking temperature from 210 K to around 400 K. The coercivity of the Ni-NPs exchange coupled to the IrMn matrix at 10 K is 8 times larger than the value for Ni-NPs embedded in SiOx. We studied time-dependent remanent magnetization at different temperatures. The relaxation behavior is described by a magnetic viscosity model which reflects a rather flat distribution of energy barriers. Furthermore, we investigated the effects of different field cooling processes on the magnetic properties of the embedded Ni-NPs. Exchange bias values fit to model calculations which correlate the contribution of the antiferromagnetic IrMn matrix to its grain size.

  17. Tuning the Effective Anisotropy in a Voltage-Susceptible Exchange-Bias Heterosystem

    NASA Astrophysics Data System (ADS)

    Echtenkamp, Will; Street, Mike; Mahmood, Ather; Binek, Christian

    2017-03-01

    Voltage- and temperature-tuned ferromagnetic hysteresis is investigated by a superconducting quantum-interference device and Kerr magnetometry in a thin-film heterostructure of a perpendicular anisotropic Co/Pd ferromagnet exchange coupled to the magnetoelectric antiferromagnet Cr2O3 . An abrupt disappearance of exchange bias with a simultaneous more than twofold increase in coercivity is observed and interpreted as a competition between the effective anisotropy of Cr2O3 and the exchange-coupling energy between boundary magnetization and the adjacent ferromagnet. The effective anisotropy energy is given by the intrinsic anisotropy energy density multiplied by the effective volume separated from the bulk through a horizontal antiferromagnetic domain boundary. Kerr measurements show that the anisotropy of the interfacial Cr2O3 can be tuned isothermally and in the absence of an external magnetic field by application of an electric field. A generalized Meiklejohn-Bean model accounts for the change in exchange bias and coercivity as well as the asymmetric evolution of the hysteresis loop. In support of this model, the reversal of the boundary magnetization is experimentally confirmed as a contribution to the magnetic hysteresis loop.

  18. Establishing Data-Exchange Networks Through Data Management & Telecommunications.

    ERIC Educational Resources Information Center

    Evans, Evan C., III

    This paper describes several pilot systems of data management using telecommunications links, which have been tested by the Navy during an 8-year period in which emphasis has been on the development of relational database management systems, exchange protocols, and man-machine interface. An introduction discusses the background of the project,…

  19. The effects of exchange bias on Fe-Co/MgO magnetic nanoparticles with core/shell morphology.

    PubMed

    Martinez-Boubeta, C; Balcells, Ll; Monty, C; Martínez, B

    2010-01-20

    The effects of exchange bias on core/shell structured nanoparticles are analyzed. Nanoparticles are integrated with high moment Fe-Co crystallites covered epitaxially with MgO shells. It is observed that the coercive field H(C)(FeCo)>H(C)(Co)>H(C)(Fe); however, the exchange bias field H(E) of the Co sample is higher than that of the FeCo one, while H(E)=0 for the Fe sample. It is suggested that the exchange bias is induced by the formation of a (Co, Mg)O solid solution. In fact, we show that it is possible to modify the exchange bias properties by manipulating the level of Mg dusting at the interface, as recently reported for thin films.

  20. Effect of mechanical strain on magnetic properties of flexible exchange biased FeGa/IrMn heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoshan; Zhan, Qingfeng; Dai, Guohong; Liu, Yiwei; Zuo, Zhenghu; Yang, Huali; Chen, Bin; Li, Run-Wei

    2013-01-01

    We have fabricated flexible exchange biased heterostructures with magnetostrictive Fe81Ga19 alloy as the ferromagnetic layer and Ir20Mn80 as the antiferromagnetic layer on polyethylene terephthalate substrates. The mechanical strain can modify both the strength and the orientation of the uniaxial anisotropy, giving rise to the switching between the easy and hard magnetization directions. Different from the previously reported works on rigid exchange biased systems, a drastic decrease in exchange bias field was observed under a compressive strain with magnetic field parallel to the pinning direction, but only a slightly decrease was shown under a tensile strain. Based on a Stoner-Wohlfarth model calculation, we suggested that the distributions of both ferromagnetic and antiferromagnetic anisotropies be the key to induce the mechanically tunable exchange bias.

  1. Joule Heating Effect on Field-Free Magnetization Switching by Spin-Orbit Torque in Exchange-Biased Systems

    NASA Astrophysics Data System (ADS)

    Razavi, Seyed Armin; Wu, Di; Yu, Guoqiang; Lau, Yong-Chang; Wong, Kin L.; Zhu, Weihua; He, Congli; Zhang, Zongzhi; Coey, J. M. D.; Stamenov, Plamen; Khalili Amiri, Pedram; Wang, Kang L.

    2017-02-01

    Switching of magnetization via spin-orbit torque provides an efficient alternative for nonvolatile memory and logic devices. However, to achieve deterministic switching of perpendicular magnetization, an external magnetic field collinear with the current is usually required, which makes these devices inappropriate for practical applications. In this work, we examine the current-induced magnetization switching in a perpendicularly magnetized exchange-biased Pt /CoFe /IrMn system. A magnetic field annealing technique is used to introduce in-plane exchange biases, which are quantitatively characterized. Under proper conditions, field-free current-driven switching is achieved. We study the Joule heating effect, and we show how it can decrease the in-plane exchange bias and degrade the field-free switching. Furthermore, we discuss that the exchange-bias training effect can have similar effects.

  2. Simultaneous achievement of high perpendicular exchange bias and low coercivity by controlling ferromagnetic/antiferromagnetic interfacial magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Shiratsuchi, Yu; Kuroda, Wataru; Nguyen, Thi Van Anh; Kotani, Yoshinori; Toyoki, Kentaro; Nakamura, Tetsuya; Suzuki, Motohiro; Nakamura, Kohji; Nakatani, Ryoichi

    2017-02-01

    This study investigates the influence of Pt and Au spacer layers on the perpendicular exchange bias field and coercivity of Pt/Co/(Pt or Au)/Cr2O3/Pt films. When using a Pt-spacer, the perpendicular exchange bias was highly degraded to less than 0.1 erg/cm2, which was about half that of the Au-spacer system. The Au spacer also suppressed the enhancement in coercivity that usually occurs at around room temperature when using Pt. It is suggested that this difference in exchange bias field is due to in-plane interfacial magnetic anisotropy at the Pt/Cr2O3 interface, which cants the interfacial Cr spin from the surface normal and results in degradation in the perpendicular exchange bias.

  3. Fingerprints of surface magnetism in Cr2O3 based exchange bias heterostructures

    NASA Astrophysics Data System (ADS)

    He, Xi; Wang, Yi; Binek, Ch.

    2009-03-01

    Magnetoelectric materials experienced a recent revival as promising components of novel spintronic devices [1, 2, 3]. Since the magnetoelectric (ME) effect is relativistically small in traditional antiferromagnetic (AF) compounds like Cr2O3 (max. αzz 4ps/m) and also cross-coupling between ferroic order parameters is typically small in the modern multiferroics, it is a challenge to electrically induce sufficient magnetization required for the envisioned device applications. In exchange bias systems the bias field depends critically on the AF interface magnetization. Hence, a strong relation between the latter and the surface magnetization of the free Cr2O3 pinning layer can be expected. Our recent research indicates that there are surface magnetic phase transitions in free Cr2O3 (111) films accompanying surface structural phase transitions. Well defined AF interface magnetization is initialized through ME annealing to T=20K. Subsequently, the interface magnetization is thermally driven through phase transitions at T=120 and 210K. Their effects on the exchange bias are studied in Cr2O3 (111)/CoPt films with the help of polar Kerr and SQUID magnetometry. [1] P. Borisov et al. Phys. Rev. Lett. 94, 117203 (2005). [2] Ch. Binek, B.Doudin, J. Phys. Condens. Matter 17, L39 (2005). [3] R. Ramesh et al. 2007 Nature Materials 6 21. Financial support by NSF through Career DMR-0547887, MRSEC DMR-0820521 and the NRI.

  4. Positive exchange bias observed in Pt-inserted Cr{sub 2}O{sub 3}/Co exchange coupled bilayers

    SciTech Connect

    Nozaki, T. Oida, M.; Ashida, T.; Shimomura, N.; Sahashi, M.; Shibata, T.

    2014-11-24

    We investigated the effect of Pt insertion on a Cr{sub 2}O{sub 3}/Co exchange coupling system. The perpendicular exchange bias μ{sub 0}H{sub ex} decreased with increasing Pt insertion layer thickness, and we observed positive μ{sub 0}H{sub ex} for samples with relatively thick Pt insertion layers. We also examined the cooling field μ{sub 0}H{sub fc} dependence of μ{sub 0}H{sub ex} for the samples. At small μ{sub 0}H{sub fc}, all samples exhibited negative μ{sub 0}H{sub ex}. With increasing μ{sub 0}H{sub fc}, a shift of μ{sub 0}H{sub ex} from negative to positive was observed. In the past, similar behaviors were observed for FeF{sub 2}/Fe systems exhibiting positive μ{sub 0}H{sub ex}. In addition, the μ{sub 0}H{sub fc} dependence of μ{sub 0}H{sub ex} was well fitted by an equation taking into account the Zeeman energy at the surface of an antiferromagnet as well as an antiferromagnetic exchange coupling. The results strongly suggest that (1) Cr{sub 2}O{sub 3} surface spin is affected by the external magnetic field and (2) the coupling at the Cr{sub 2}O{sub 3}/Pt/Co interface is antiferromagnetic.

  5. Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates

    DOE PAGES

    Xue, Xu; Zhou, Ziyao; Peng, Bin; ...

    2015-11-18

    E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shiftedmore » by up to |ΔHex|/Hex=8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |ΔHex|/Hc=67.5~125% in NiFe/FeMn/glass/PZN-PT and 30~38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Lastly, electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies.« less

  6. Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates.

    PubMed

    Xue, Xu; Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Zhang, Yijun; Ren, Wei; Ren, Tao; Yang, Xi; Nan, Tianxiang; Sun, Nian X; Liu, Ming

    2015-11-18

    E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shifted by up to |∆Hex|/Hex = 8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |∆Hex|/Hc = 67.5 ~ 125% in NiFe/FeMn/glass/PZN-PT and 30 ~ 38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies.

  7. Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates

    PubMed Central

    Xue, Xu; Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Zhang, Yijun; Ren, Wei; Ren, Tao; Yang, Xi; Nan, Tianxiang; Sun, Nian X.; Liu, Ming

    2015-01-01

    E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shifted by up to |∆Hex|/Hex = 8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |∆Hex|/Hc = 67.5 ~ 125% in NiFe/FeMn/glass/PZN-PT and 30 ~ 38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies. PMID:26576658

  8. Exchange biasing in ferromagnet/antiferromagnet Fe/KMnF 3

    NASA Astrophysics Data System (ADS)

    Celinski, Z.; Lucic, D.; Cramer, N.; Camley, R. E.; Goldfarb, R. B.; Skrzypek, D.

    1999-08-01

    A new ferromagnet/antiferromagnet bilayer system, Fe/KMnF 3, exhibits interesting interfacial exchange properties. The bulk antiferromagnet KMnF 3 has three possible magnetic states: paramagnetic, antiferromagnetic, and weakly ferromagnetic spin-canted. Consequently, the exchange anisotropy in Fe/KMnF 3 is unusual. We examine the exchange bias in Fe/KMnF 3 as a function of the magnetic state. Monocrystalline Fe(0 0 1) and polycrystalline Fe films, 3 nm thick, were grown epitaxially on Ag(0 0 1) templates on GaAs(0 0 1) substrates. Epitaxial KMnF 3 was then grown on both the single-crystal and polycrystal Fe. We measured the low-field, zero-field-cooled and field-cooled magnetizations as functions of temperature. The zero-field-cooled single-crystal Fe magnetization is greatly reduced at liquid-helium temperatures. We see the influence of the transition from the antiferromagnetic to the spin-canted state on the exchange coupling. The blocking temperature is close to the Néel temperature (89 K). From the shift in the hysteresis loop, we estimate the strength of the interfacial exchange coupling to be 4.5×10 -5 J/m 2.

  9. Exchange-bias reversal in magnetically compensated ErFe O3 single crystal

    NASA Astrophysics Data System (ADS)

    Fita, I.; Wisniewski, A.; Puzniak, R.; Markovich, V.; Gorodetsky, G.

    2016-05-01

    An exchange-bias (EB) effect observed in single crystal ErFe O3 compensated ferrimagnet, exhibiting the EB field HEB increasing and diverging upon approaching compensation temperature Tcomp=45 K , and changing sign with crossing Tcomp, is reported. The EB sign may be changed to the opposite one by varying the field-cooling protocol, depending on whether Tcomp is crossed with decreasing or increasing temperature. Namely, a different EB sign with the same | HEB| and coercive field HC values is obtained approaching a given T with increasing and decreasing temperature and the HEB(T ) dependence completed in one way is a mirror image of that completed in another way.

  10. Electrical control of exchange bias via oxygen migration across CoO-ZnO nanocomposite barrier

    NASA Astrophysics Data System (ADS)

    Li, Q.; Yan, S. S.; Xu, J.; Li, S. D.; Zhao, G. X.; Long, Y. Z.; Shen, T. T.; Zhang, K.; Zhang, J.

    2016-12-01

    We proposed a nanocomposite barrier CoO-ZnO for magnetism manipulation in Co/CoO-ZnO/Ag heterojunctions. Both electrical control of magnetism and resistive switching were realized in this junction. An electrical tunable exchange bias of CoO1-v (v denotes O vacancies) on Co films was realized using voltages below 1 volt. The magnetism modulation associated with resistive switching can be attributed to the oxygen ions migration between the insulating CoO1-v layer and the semiconductive ZnO1-v layer, which can cause both ferromagnetic phase and resistance switching of CoO1-v layer.

  11. Exchange bias in finite sized NiO nanoparticles with Ni clusters

    NASA Astrophysics Data System (ADS)

    Gandhi, Ashish Chhaganlal; Lin, Jauyn Grace

    2017-02-01

    Structural and magnetic properties of finite sized NiO nanoparticles are investigated with synchrotron X-ray diffraction (XRD), transmission electron microscopy, magnetometer and ferromagnetic resonance (FMR) spectroscopy. A minor Ni phase is detected with synchrotron XRD, attributed to the oxygen defects in the NiO core. A considerable exchange bias of 100 Oe is observed at 50 K and it drops abruptly and vanishes above 150 K, in association with the reduction of frozen spins. FMR data indicate a strong interaction between ferromagnetic (FM) and antiferromagnetic (AFM) phases below 150 K, consistent with the picture of isolated FM clusters in AFM matrix.

  12. Exchange bias effect in Au-Fe3O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Chandra, Sayan; Frey Huls, N. A.; Phan, M. H.; Srinath, S.; Garcia, M. A.; Lee, Youngmin; Wang, Chao; Sun, Shouheng; Iglesias, Òscar; Srikanth, H.

    2014-02-01

    We report exchange bias (EB) effect in the Au-Fe3O4 composite nanoparticle system, where one or more Fe3O4 nanoparticles are attached to an Au seed particle forming ‘dimer’ and ‘cluster’ morphologies, with the clusters showing much stronger EB in comparison with the dimers. The EB effect develops due to the presence of stress at the Au-Fe3O4 interface which leads to the generation of highly disordered, anisotropic surface spins in the Fe3O4 particle. The EB effect is lost with the removal of the interfacial stress. Our atomistic Monte Carlo studies are in excellent agreement with the experimental results. These results show a new path towards tuning EB in nanostructures, namely controllably creating interfacial stress, and opens up the possibility of tuning the anisotropic properties of biocompatible nanoparticles via a controllable exchange coupling mechanism.

  13. Interfacial Ferromagnetism and Exchange Bias in CaRuO3/CaMnO3 Superlattices

    DTIC Science & Technology

    2012-11-07

    and the interface region is consistent with double exchange interaction among the Mn ions at the interface. Polarized neutron reflectivity and the...CaMnO3 thickness dependence of the exchange bias field together indicate that the interfacial 1. REPORT DATE ( DD -MM-YYYY) 4. TITLE AND SUBTITLE 13...consistent with double exchange interaction among the Mn ions at the interface. Polarized neutron reflectivity and the CaMnO3 thickness dependence of the

  14. Exchange bias in a mixed metal oxide based magnetocaloric compound YFe0.5Cr0.5O3

    NASA Astrophysics Data System (ADS)

    Sharma, Mohit K.; Singh, Karan; Mukherjee, K.

    2016-09-01

    We report a detailed investigation of magnetization, magnetocaloric effect and exchange bias studies on a mixed metal oxide YFe0.5Cr0.5O3 belonging to perovskite family. Our results reveal that the compound is in canted magnetic state (CMS) where ferromagnetic correlations are present in an antiferromagnetic state. Magnetic entropy change of this compound follows a power law (∆SM∼Hm) dependence of magnetic field. In this compound, inverse magnetocaloric effect (IMCE) is observed below 260 K while conventional magnetocaloric effect (CMCE) above it. The exponent 'm' is found to be independent of temperature and field only in the IMCE region. Investigation of temperature and magnetic field dependence studies of exchange bias, reveal a competition between effective Zeeman energy of the ferromagnetic regions and anisotropic exchange energy at the interface between ferromagnetic and antiferromagnetic regions. Variation of exchange bias due to temperature and field cycling is also investigated.

  15. Angular dependent FORC and FMR of exchange-biased NiFe multilayer films

    NASA Astrophysics Data System (ADS)

    Gallardo, R. A.; Khanal, S.; Vargas, J. M.; Spinu, L.; Ross, C. A.; Garcia, C.

    2017-02-01

    Dynamic ferromagnetic resonance (FMR, X-band 9.8 GHz) and static first-order reversal curve (FORC) techniques are combined to study the intrinsic exchange-bias distribution via measurements of in-plane angular variation in (FeNi/IrMn)n multilayers. The angular dependence of the exchange bias field was qualitatively and quantitatively investigated using both methods, which are sensitive to different couplings between the ferromagnetic layers. We have used the analysis of the angular dependence of first-order reversal curve (AFORC) data, extracted from FORC curves measured from {{0}\\circ} up to {{360}\\circ} in {{10}\\circ} steps. In addition, its counterpart angular dependence of FMR (AFMR) measurements were carried out and correlated with the AFORC results. The AFORC proved to be useful for simultaneously studying the magnetization reversal processes and magnetic interactions between the layers of the (FeNi/IrMn)n. These interactions are related to the structure and interfaces in the (FeNi/IrMn), and the results obtained by AFMR and AFORC are contrasted with a modified theoretical model for domain-wall formation.

  16. Exchange bias properties of [Co/CoO]{sub n} multilayers

    SciTech Connect

    Oeztuerk, M.; S Latin-Small-Letter-Dotless-I n Latin-Small-Letter-Dotless-I r, E.; Demirci, E.; Erkovan, M.; Oeztuerk, O.; Akdogan, N.

    2012-11-01

    In this study, the exchange bias properties of four polycrystalline multilayer stack samples of antiferromagnetic (AF) CoO and ferromagnetic (FM) Co in the form of [CoO/Co]{sub n} with n = 1, 2, 3, and 5 are reported. The samples were grown on top of Si (001) substrates by using magnetron sputtering method. X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) were used to determine the structural properties of the samples. XPS measurements of cobalt oxide layer revealed the coexistence of different phases in cobalt oxide as CoO and Co{sub 3}O{sub 4}, the latter of which lowers the blocking temperature. The blocking temperature is also affected by the finite size scaling effects observed in AF layers. In-plane ferromagnetic resonance (FMR) measurements revealed uniaxial in-plane magnetic anisotropy for the samples. Low temperature vibrating sample magnetometer measurements provided exchange bias with a stepwise character. Observed steps are believed to be due to magnetization reversals of individual FM layers with varying thicknesses, each of which is pinned through two interfaces from above and below with two AFM layers, except the uppermost FM Co layer with a single AFM neighbor.

  17. NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure

    SciTech Connect

    Mlynczak, E.; Luches, P.

    2013-06-21

    The magnetic and structural properties of NiO/Fe epitaxial bilayers grown on MgO(001) were studied using magnetooptic Kerr effect (MOKE) and conversion electron Moessbauer spectroscopy (CEMS). The bilayers were prepared under ultra high vacuum conditions using molecular beam epitaxy with oblique deposition. Two systems were compared: one showing the exchange bias (100ML-NiO/24ML-Fe), ML stands for a monolayer, and another where the exchange bias was not observed (50ML-NiO/50ML-Fe). For both, the magnetic anisotropy was found to be complex, yet dominated by the growth-induced uniaxial anisotropy. The training effect was observed for the 100ML-NiO/24ML-Fe system and quantitatively described using the spin glass model. The composition and magnetic state of the interfacial Fe layers were studied using {sup 57}Fe-CEMS. An iron oxide phase (Fe{sup 3+}{sub 4}Fe{sup 2+}{sub 1}O{sub 7}), as thick as 31 A, was identified at the NiO/Fe interface in the as-deposited samples. The ferrimagnetic nature of the interfacial iron oxide film explains the complex magnetic anisotropy observed in the samples.

  18. Intermartensitic Transformation and Enhanced Exchange Bias in Pd (Pt) -doped Ni-Mn-Sn alloys

    NASA Astrophysics Data System (ADS)

    Dong, S. Y.; Chen, J. Y.; Han, Z. D.; Fang, Y.; Zhang, L.; Zhang, C. L.; Qian, B.; Jiang, X. F.

    2016-05-01

    In this work, we studied the phase transitions and exchange bias of Ni50‑xMn36Sn14Tx (T = Pd, Pt; x = 0, 1, 2, 3) alloys. An intermartensitic transition (IMT), not observed in Ni50Mn36Sn14 alloy, was induced by the proper application of negative chemical pressure by Pd(Pt) doping in Ni50‑xMn36Sn14Tx (T = Pd, Pt) alloys. IMT weakened and was suppressed with the increase of applied field; it also disappeared with further increase of Pd(Pt) content (x = 3 for Pd and x = 2 for Pt). Another striking result is that exchange bias effect, ascribed to the percolating ferromagnetic domains coexisting with spin glass phase, is notably enhanced by nonmagnetic Pd(Pt) addition. The increase of unidirectional anisotropy by the addition of Pd(Pt) impurities with strong spin-orbit coupling was explained by Dzyaloshinsky-Moriya interactions in spin glass phase.

  19. Intermartensitic Transformation and Enhanced Exchange Bias in Pd (Pt) -doped Ni-Mn-Sn alloys.

    PubMed

    Dong, S Y; Chen, J Y; Han, Z D; Fang, Y; Zhang, L; Zhang, C L; Qian, B; Jiang, X F

    2016-05-12

    In this work, we studied the phase transitions and exchange bias of Ni50-xMn36Sn14Tx (T = Pd, Pt; x = 0, 1, 2, 3) alloys. An intermartensitic transition (IMT), not observed in Ni50Mn36Sn14 alloy, was induced by the proper application of negative chemical pressure by Pd(Pt) doping in Ni50-xMn36Sn14Tx (T = Pd, Pt) alloys. IMT weakened and was suppressed with the increase of applied field; it also disappeared with further increase of Pd(Pt) content (x = 3 for Pd and x = 2 for Pt). Another striking result is that exchange bias effect, ascribed to the percolating ferromagnetic domains coexisting with spin glass phase, is notably enhanced by nonmagnetic Pd(Pt) addition. The increase of unidirectional anisotropy by the addition of Pd(Pt) impurities with strong spin-orbit coupling was explained by Dzyaloshinsky-Moriya interactions in spin glass phase.

  20. Cooling field and temperature dependent exchange bias in spin glass/ferromagnet bilayers

    PubMed Central

    Rui, W. B.; Hu, Y.; Du, A.; You, B.; Xiao, M. W.; Zhang, W.; Zhou, S. M.; Du, J.

    2015-01-01

    We report on the experimental and theoretical studies of cooling field (HFC) and temperature (T) dependent exchange bias (EB) in FexAu1 − x/Fe19Ni81 spin glass (SG)/ferromagnet (FM) bilayers. When x varies from 8% to 14% in the FexAu1 − x SG alloys, with increasing T, a sign-changeable exchange bias field (HE) together with a unimodal distribution of coercivity (HC) are observed. Significantly, increasing in the magnitude of HFC reduces (increases) the value of HE in the negative (positive) region, resulting in the entire HE ∼ T curve to move leftwards and upwards. In the meanwhile, HFC variation has weak effects on HC. By Monte Carlo simulation using a SG/FM vector model, we are able to reproduce such HE dependences on T and HFC for the SG/FM system. Thus this work reveals that the SG/FM bilayer system containing intimately coupled interface, instead of a single SG layer, is responsible for the novel EB properties. PMID:26348277

  1. Intermartensitic Transformation and Enhanced Exchange Bias in Pd (Pt) -doped Ni-Mn-Sn alloys

    PubMed Central

    Dong, S. Y.; Chen, J. Y.; Han, Z. D.; Fang, Y.; Zhang, L.; Zhang, C. L.; Qian, B.; Jiang, X. F.

    2016-01-01

    In this work, we studied the phase transitions and exchange bias of Ni50−xMn36Sn14Tx (T = Pd, Pt; x = 0, 1, 2, 3) alloys. An intermartensitic transition (IMT), not observed in Ni50Mn36Sn14 alloy, was induced by the proper application of negative chemical pressure by Pd(Pt) doping in Ni50−xMn36Sn14Tx (T = Pd, Pt) alloys. IMT weakened and was suppressed with the increase of applied field; it also disappeared with further increase of Pd(Pt) content (x = 3 for Pd and x = 2 for Pt). Another striking result is that exchange bias effect, ascribed to the percolating ferromagnetic domains coexisting with spin glass phase, is notably enhanced by nonmagnetic Pd(Pt) addition. The increase of unidirectional anisotropy by the addition of Pd(Pt) impurities with strong spin-orbit coupling was explained by Dzyaloshinsky-Moriya interactions in spin glass phase. PMID:27170057

  2. NiO/Fe(001): Magnetic anisotropy, exchange bias, and interface structure

    NASA Astrophysics Data System (ADS)

    Młyńczak, E.; Luches, P.; Valeri, S.; Korecki, J.

    2013-06-01

    The magnetic and structural properties of NiO/Fe epitaxial bilayers grown on MgO(001) were studied using magnetooptic Kerr effect (MOKE) and conversion electron Mössbauer spectroscopy (CEMS). The bilayers were prepared under ultra high vacuum conditions using molecular beam epitaxy with oblique deposition. Two systems were compared: one showing the exchange bias (100ML-NiO/24ML-Fe), ML stands for a monolayer, and another where the exchange bias was not observed (50ML-NiO/50ML-Fe). For both, the magnetic anisotropy was found to be complex, yet dominated by the growth-induced uniaxial anisotropy. The training effect was observed for the 100ML-NiO/24ML-Fe system and quantitatively described using the spin glass model. The composition and magnetic state of the interfacial Fe layers were studied using 57Fe-CEMS. An iron oxide phase (Fe3+4Fe2+1O7), as thick as 31 Å, was identified at the NiO/Fe interface in the as-deposited samples. The ferrimagnetic nature of the interfacial iron oxide film explains the complex magnetic anisotropy observed in the samples.

  3. Optimization of exchange bias in Co/CoO magnetic nanocaps by tuning deposition parameters

    NASA Astrophysics Data System (ADS)

    Sharma, A.; Tripathi, J.; Ugochukwu, K. C.; Tripathi, S.

    2017-03-01

    In the present work, we report exchange bias tuning by varying thin film deposition parameters such as synthesis method and underlying layer patterning. The patterned substrates for this study were prepared by self-assembly of polystyrene (PS) latex spheres ( 530 nm) on Si (100) substrate. The desired magnetic nanocaps composed of CoO/Co bilayer film on these patterned substrates were prepared by molecular beam epitaxy technique under ultra-high vacuum conditions. For this, a Co layer of 10 nm thickness was deposited on the substrates and then oxidized in-situ to form CoO/Co/PS in-situ oxidized film or ex-situ in ambiance which also gives CoO/Co/PS naturally oxidized film. Simultaneously, reference thin films of Co ( 10 nm) were also prepared on plane Si substrate and similar oxidation treatments were performed on them respectively. The magnetic properties studied using SQUID technique revealed higher exchange bias ( 1736 Oe) in the in-situ oxidized Co/PS film as compared to that in naturally oxidized Co/PS film ( 1544 Oe) and also compared to the reference film. The observed variations in the magnetic properties are explained in terms of surface patterning induced structural changes of the deposited films and different oxidation methods.

  4. Effect of interfacial iron oxidation on the exchange bias in CoO/Fe bilayers

    NASA Astrophysics Data System (ADS)

    Młyńczak, E.; Gurgul, J.; Przewoźnik, J.; Wilgocka-Ślęzak, D.; Freindl, K.; Spiridis, N.; Korecki, J.

    2014-06-01

    The relation between the interface structure and the exchange bias was studied in the epitaxial CoO/Fe(0 0 1) bilayers that were grown on MgO(0 0 1) using molecular beam epitaxy. Three samples with different interface structures were prepared. The CoO/Fe bilayer, which was prepared using the reactive evaporation of CoO, served as the reference sample. In the other two samples, the CoO/Fe interfaces were modified prior to the CoO growth using either (i) the deposition of a 2 Å thick Co layer or (ii) an exposure to molecular oxygen, which resulted in under- and over-oxidized CoO/Fe interfaces, respectively. The actual structures of the resulting interfaces were revealed using conversion electron Mössbauer spectroscopy. For each sample, an iron oxide was found at the interface, and its amount depended on the sample preparation recipe. The exchange bias effect (EB), as a function of the temperature, was experimentally studied in detail using VSM magnetometry. The coercivity showed a distinct peak near the blocking temperature for all samples; however, the peak's location and its width were diverse. The obtained EB values depended on the interface structure. The largest hysteresis loop shift (HEB = 180 Oe at 4 K) was obtained for the sample with the thickest interfacial iron oxide layer.

  5. Left cheek bias for emotion perception, but not expression, is established in children aged 3-7 years.

    PubMed

    Lindell, Annukka K; Tenenbaum, Harriet R; Aznar, Ana

    2017-01-01

    As the left hemiface is controlled by the emotion-dominant right hemisphere, emotion is expressed asymmetrically. Portraits showing a model's left cheek consequently appear more emotive. Though the left cheek bias is well established in adults, it has not been investigated in children. To determine whether the left cheek biases for emotion perception and expression are present and/or develop between the ages of 3 and 7 years, 145 children (71 male, 74 female; M age = 65.49 months) completed two experimental tasks: one assessing biases in emotion perception, and the other assessing biases in emotion expression. Regression analysis confirmed that children aged 3-7 years find left cheek portraits happier than right cheek portraits, and age does not predict the magnitude of the bias. In contrast when asked to pose for a photo expressing happiness children did not show a left cheek bias, with logistic regression confirming that age did not predict posing orientations. These findings indicate that though the left cheek bias for emotion perception is established by age 3, a similar bias for emotion expression is not evident by age 7. This implies that tacit knowledge of the left cheek's greater expressivity is not innate but develops in later childhood/adolescence.

  6. A direct measurement of rotatable and frozen CoO spins in exchange bias system of CoO/Fe/Ag(001)

    SciTech Connect

    Wu, J.; Park, J. S.; Kim, W.; Arenholz, E.; Liberati, M.; Scholl, A.; Wu, Y. Z.; Hwang, C.; Qiu, Z. Q.

    2010-03-10

    The exchange bias of epitaxially grown CoO/Fe/Ag(001) was investigated using x-ray magnetic circular dichroism and x-ray magnetic linear dichroism (XMLD) techniques. A direct XMLD measurement on the CoO layer during the Fe magnetization reversal shows that the CoO compensated spins are rotatable at thinner thickness and frozen at larger thickness. By a quantitative determination of the rotatable and frozen CoO spins as a function of the CoO film thickness, we find the remarkable result that the exchange bias is well established before frozen spins are detectable in the CoO film. We further show that the rotatable and frozen CoO spins are uniformly distributed in the CoO film.

  7. Unwanted spatial bias in predicting establishment of an invasive insect based on simulated demographics.

    PubMed

    Gray, David R

    2014-07-01

    A strategy to estimate the probability of successful establishment of the invasive gypsy moth (given an introduction) is growing in popularity. The strategy calls for an examination of the demographic output of a phenology model of the complete life-cycle to estimate the generational success under the climate of the location under consideration. The probability is maximal where the climate satisfies the life-cycle requirements of all life-stages of 100% of the population every year. The probability decreases where a smaller proportion of the population has its requirements satisfied every year, or where the frequency of unsatisfactory years increases. The strategy can give an unbiased and objective estimate of the probability. However, implementation of the strategy has most often forced unnatural and overly simplistic modifications onto the demographic structure that is simulated by the phenology model, and used an inappropriate and arbitrary calendar date to estimate demographic changes from winter mortality. This produces pronounced spatial bias in the estimates of generational success, and therefore in the estimates of climate-mediated establishment probability. In an examination of the strategy, as implemented in New Zealand, one demographic simplification caused an overestimate of 21% in a southern location; a second simplification caused an overestimate of 17% in a northern location. One hundred percent of the generations were incorrectly considered to have failed in a northern location because of the arbitrary calendar date that was used; and 78% of the generations were incorrectly considered successful in a southern location because of the arbitrary date.

  8. Unwanted spatial bias in predicting establishment of an invasive insect based on simulated demographics

    NASA Astrophysics Data System (ADS)

    Gray, David R.

    2014-07-01

    A strategy to estimate the probability of successful establishment of the invasive gypsy moth (given an introduction) is growing in popularity. The strategy calls for an examination of the demographic output of a phenology model of the complete life-cycle to estimate the generational success under the climate of the location under consideration. The probability is maximal where the climate satisfies the life-cycle requirements of all life-stages of 100 % of the population every year. The probability decreases where a smaller proportion of the population has its requirements satisfied every year, or where the frequency of unsatisfactory years increases. The strategy can give an unbiased and objective estimate of the probability. However, implementation of the strategy has most often forced unnatural and overly simplistic modifications onto the demographic structure that is simulated by the phenology model, and used an inappropriate and arbitrary calendar date to estimate demographic changes from winter mortality. This produces pronounced spatial bias in the estimates of generational success, and therefore in the estimates of climate-mediated establishment probability. In an examination of the strategy, as implemented in New Zealand, one demographic simplification caused an overestimate of 21 % in a southern location; a second simplification caused an overestimate of 17 % in a northern location. One hundred percent of the generations were incorrectly considered to have failed in a northern location because of the arbitrary calendar date that was used; and 78 % of the generations were incorrectly considered successful in a southern location because of the arbitrary date.

  9. Triggering of spin-flipping-modulated exchange bias in FeCo nanoparticles by electronic excitation

    PubMed Central

    Sarker, Debalaya; Bhattacharya, Saswata; Srivastava, Pankaj; Ghosh, Santanu

    2016-01-01

    The exchange coupling between ferromagnetic (FM)-antiferromagnetic (AF) interfaces is a key element of modern spintronic devices. We here introduce a new way of triggering exchange bias (EB) in swift heavy ion (SHI) irradiated FeCo-SiO2 films, which is a manifestation of spin-flipping at high irradiation fluence. The elongation of FeCo nanoparticles (NPs) in SiO2 matrix gives rise to perpendicular magnetic anisotropy at intermediate fluence. However, a clear shift in hysteresis loop is evident at the highest fluence. This reveals the existence of an AF exchange pinning domain in the NPs, which is identified not to be oxide shell from XANES analysis. Thermal spike calculations along with first-principles based simulations under the framework of density functional theory (DFT) demonstrate that spin flipping of 3d valence electrons is responsible for formation of these AF domains inside the FM NPs. EXAFS experiments at Fe and Co K-edges further unravel that spin-flipping in highest fluence irradiated film results in reduced bond lengths. The results highlight the possibility of miniaturization of magnetic storage devices by using irradiated NPs instead of conventionally used FM-AF multilayers. PMID:27991552

  10. Triggering of spin-flipping-modulated exchange bias in FeCo nanoparticles by electronic excitation

    NASA Astrophysics Data System (ADS)

    Sarker, Debalaya; Bhattacharya, Saswata; Srivastava, Pankaj; Ghosh, Santanu

    2016-12-01

    The exchange coupling between ferromagnetic (FM)-antiferromagnetic (AF) interfaces is a key element of modern spintronic devices. We here introduce a new way of triggering exchange bias (EB) in swift heavy ion (SHI) irradiated FeCo-SiO2 films, which is a manifestation of spin-flipping at high irradiation fluence. The elongation of FeCo nanoparticles (NPs) in SiO2 matrix gives rise to perpendicular magnetic anisotropy at intermediate fluence. However, a clear shift in hysteresis loop is evident at the highest fluence. This reveals the existence of an AF exchange pinning domain in the NPs, which is identified not to be oxide shell from XANES analysis. Thermal spike calculations along with first-principles based simulations under the framework of density functional theory (DFT) demonstrate that spin flipping of 3d valence electrons is responsible for formation of these AF domains inside the FM NPs. EXAFS experiments at Fe and Co K-edges further unravel that spin-flipping in highest fluence irradiated film results in reduced bond lengths. The results highlight the possibility of miniaturization of magnetic storage devices by using irradiated NPs instead of conventionally used FM-AF multilayers.

  11. Exchange bias effect in NiMnSb/CrN heterostructures deposited by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sharma Akkera, Harish; Barman, Rahul; Kaur, Navjot; Choudhary, Nitin; Kaur, Davinder

    2013-05-01

    Exchange bias has been studied in various Ni50Mn36.8Sb13.2/CrN heterostructures with different CrN thicknesses (15 nm-80 nm), grown on Si (100) substrate using magnetron sputtering. The shift in hysteresis loop up to 51 Oe from the origin was observed at 10 K for Ni-Mn-Sb film without CrN layer. On the other hand, a significant shifting of hysteresis loop was observed with antiferromagnetic (AFM) CrN layer in Ni50Mn36.8Sb13.2/CrN heterostructure. The exchange coupled 140 nm Ni50Mn36.8Sb13.2/35 nm CrN heterostructure exhibited a relatively large exchange coupling field of 148 Oe at 10 K compared to other films, which may be related to uncompensated and pinned AFM spins at FM-AFM interface and different AFM domain structures for different thicknesses of CrN layer. Further nanoindentation measurements revealed the higher values of hardness and elastic modulus of about 12.7 ± 0.38 GPa and 179.83 ± 1.24 GPa in Ni50Mn36.8Sb13.2/CrN heterostructures making them promising candidate for various multifunctional MEMS devices.

  12. Triggering of spin-flipping-modulated exchange bias in FeCo nanoparticles by electronic excitation.

    PubMed

    Sarker, Debalaya; Bhattacharya, Saswata; Srivastava, Pankaj; Ghosh, Santanu

    2016-12-19

    The exchange coupling between ferromagnetic (FM)-antiferromagnetic (AF) interfaces is a key element of modern spintronic devices. We here introduce a new way of triggering exchange bias (EB) in swift heavy ion (SHI) irradiated FeCo-SiO2 films, which is a manifestation of spin-flipping at high irradiation fluence. The elongation of FeCo nanoparticles (NPs) in SiO2 matrix gives rise to perpendicular magnetic anisotropy at intermediate fluence. However, a clear shift in hysteresis loop is evident at the highest fluence. This reveals the existence of an AF exchange pinning domain in the NPs, which is identified not to be oxide shell from XANES analysis. Thermal spike calculations along with first-principles based simulations under the framework of density functional theory (DFT) demonstrate that spin flipping of 3d valence electrons is responsible for formation of these AF domains inside the FM NPs. EXAFS experiments at Fe and Co K-edges further unravel that spin-flipping in highest fluence irradiated film results in reduced bond lengths. The results highlight the possibility of miniaturization of magnetic storage devices by using irradiated NPs instead of conventionally used FM-AF multilayers.

  13. The Origin of Enhanced Coercivity in Exchange-Biased NiCoO/Py/MgO Thin Films

    NASA Astrophysics Data System (ADS)

    Dimitrov, D. V.; Prados, C.; Hadjipanayis, G. C.; Xiao, J. Q.

    1998-03-01

    We have studied the long-standing problem of the origin of enhanced coercivity in exchange coupled ferromagnetic/antiferromagnetic (FM/AF) films in sputtered Si/NiCoO/FeNi/MgO thin films. The angular dependence of the exchange bias and coercivity was studied using magnetometry with two mutually orthogonal pick-up coils. The exchange bias (H_e) was found to follow a simple harmonic angular dependence: H_e=Hm × cos (α). The coercivity (H_c) showed sharp peaks centered at 0, 180, 360^circ, superimposed on a flat background of 27 Oe. Measurements of both the longitudinal and orthogonal magnetization during the hysteresis cycle indicated that the magnetization reversal occurs by magnetization rotation instead of domain wall motion, which is usually observed in magnetically soft films. The random exchange field at the FM/AF boundary may cause the changes in the mechanism of magnetization reversal. We proposed a simple model to explain the angular dependence of H_e, based on the assumption that there is an angular spread in the exchange bias directions. A spread in the local exchange bias leads to uniaxial anisotropy in a narrow angular range and as a consequence to an enhancement in the coercivity. Numerical calculations based on this model are in good agreement with the experimental data.

  14. Connection between orbital moment enhancement and exchange bias in a [Ni80Fe20/Mn]3 multilayer

    NASA Astrophysics Data System (ADS)

    Su, H.-C.; Huang, M.-J.; Lin, H.-J.; Lee, C.-H.; Chen, C.-T.; Liu, C.-H.; Hsu, H.-F.; Lin, K.-W.; van Lierop, J.

    2013-01-01

    The overall and element specific magnetism in an exchange biased [Ni80Fe20/Mn]3 film system, with film layers 3.5 nm thick, has been studied to examine the magnetism between interfacial Mn, Ni, and Fe spins. Field-cooling the film results in large exchange bias loop shifts at temperatures from 2 to 30 K, and an enhanced coercivity remains until 75 K. The elemental magnetism ascertained from x-ray magnetic circular dichroism measurements shows that Mn appears to be a fully compensated antiferromagnet down to 20 K, and there is clear evidence of an enhanced orbital moment for both Fe and Ni from 20 to 300 K. This magnetism is likely due to overlapping d orbitals between Fe-Mn and Ni-Mn, with this coupling increasing the local anisotropy resulting in the enhanced coercivity and enabling exchange bias.

  15. Exchange bias in polycrystalline magnetite films made by ion-beam assisted deposition

    SciTech Connect

    Kaur, Maninder; Qiang, You; Jiang, Weilin; Burks, Edward C.; Liu, Kai; Namavar, Fereydoon; McCloy, John S.

    2014-11-07

    Iron oxide films were produced using ion-beam-assisted deposition, and Raman spectroscopy and x-ray diffraction indicate single-phase magnetite. However, incorporation of significant fractions of argon in the films from ion bombardment is evident from chemical analysis, and Fe/O ratios are lower than expected from pure magnetite, suggesting greater than normal disorder. Low temperature magnetometry and first-order reversal curve measurements show strong exchange bias, which likely arises from defects at grain boundaries, possibly amorphous, creating frustrated spins. Since these samples contain grains ∼6 nm, a large fraction of the material consists of grain boundaries, where spins are highly disordered and reverse independently with external field.

  16. Training effects and the microscopic magnetic structure of exchange biased Co/CoO bilayers.

    SciTech Connect

    Berger, A.; Dahlberg, E. D.; Felcher, G. P.; Hill, B. K.; te Velthius, S. G. E.

    1999-09-01

    Exchange bias of a partially oxidized thin film of ferromagnetic Co was studied by magnetization measurements and polarized neutron reflectivity (PNR). The magnetization curve shows strong effects of training with cycling of the magnetic field. Reflectivity measurements with the field parallel to the cooling field showed the onset of spin-dependent diffuse scattering--off the specular reflection--after a training cycle. Such scattering, of the Yoneda type, is due to misaligned Co domains possibly close to the Co/CoO interface. Subjecting the field cooled Co/CoO pair to a field perpendicular to the cooling field causes a rotation of the magnetization. PNR measurements confirmed earlier susceptibility studies by indicating that the rotation of the magnetization is reversible in fields up to 400 Oe. The rotation of the magnetization of Co is uniform across the film thickness.

  17. Defect-tuning exchange bias of ferromagnet/antiferromagnet core/shell nanoparticles by numerical study.

    PubMed

    Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi

    2012-07-11

    The influence of non-magnetic defects on the exchange bias (EB) of ferromagnet (FM)/antiferromagnet (AFM) core/shell nanoparticles is studied by Monte Carlo simulations. It is found that the EB can be tuned by defects in different positions. Defects at both the AFM and FM interfaces reduce the EB field while they enhance the coercive field by decreasing the effective interface coupling. However, the EB field and the coercive field show respectively a non-monotonic and a monotonic dependence on the defect concentration when the defects are located inside the AFM shell, indicating a similar microscopic mechanism to that proposed in the domain state model. These results suggest a way to optimize the EB effect for applications.

  18. Selective realignment of the exchange biased magnetization direction in spintronic layer stacks using continuous and pulsed laser radiation

    NASA Astrophysics Data System (ADS)

    Berthold, I.; Müller, M.; Ebert, R.; Schille, J.; Löschner, U.; Exner, H.; Matthes, P.; Albrecht, M.

    2014-03-01

    We report on selective realignment of the magnetization direction of the exchange biased ferromagnetic layer in two different spintronic layer stacks using laser radiation. The exchange bias effect occurs in an antiferromagnetic/ferromagnetic bilayer system when cooled in an external magnetic field below the Néel temperature and results in a shift of the ferromagnetic hysteresis loop with increased coercivity. The effect is utilized to pin the magnetization direction of the reference ferromagnetic layer in spin valve systems. We investigated the realignment of the pinned magnetization direction in a spin valve system with in plane exchange bias and in a Co/Pt multilayer with perpendicular exchange bias. The layer stacks were heated above the Néel temperature in a defined lateral area by using rapidly deflected laser radiation. Two different laser assisted annealing techniques were investigated applying either continuous or pulsed laser radiation. During laser annealing, the sample was subjected to an external magnetic field in order to selectively realign the magnetization direction of the pinned ferromagnetic layer. Magnetic structuring was performed by heating narrow single tracks as well as irradiating single pulses. By using a magneto optical sensor in combination with a polarization microscope, the magnetic structures have been visualized. After laser annealing of larger-scaled areas, the exchange bias field strength and the coercive field strength were analyzed using a magneto optical Kerr effect set up (MOKE). The impact of the processing parameters laser peak intensity, laser pulse duration, scan speed (continuous wave) and magnetic field strength on the resulting reversed exchange bias field was evaluated.

  19. Broadband ferromagnetic resonance characterization of anisotropies and relaxation in exchange-biased IrMn/CoFe bilayers

    NASA Astrophysics Data System (ADS)

    Beik Mohammadi, Jamileh; Jones, Joshua Michael; Paul, Soumalya; Khodadadi, Behrouz; Mewes, Claudia K. A.; Mewes, Tim; Kaiser, Christian

    2017-02-01

    The magnetization dynamics of exchange-biased IrMn/CoFe bilayers have been investigated using broadband and in-plane angle-dependent ferromagnetic resonance spectroscopy. The interface energy of the exchange bias effect in these bilayers exceeds values previously reported for metallic antiferromagnets. A strong perpendicular magnetic anisotropy and a small in-plane uniaxial anisotropy are also observed in these films. The magnetization relaxation of the bilayers has a strong unidirectional contribution, which is in part caused by two-magnon scattering. However, a detailed analysis of in-plane angle- and thickness-dependent linewidth data strongly suggests the presence of a previously undescribed unidirectional relaxation mechanism.

  20. Current-driven non-linear magnetodynamics in exchange-biased spin valves

    SciTech Connect

    Seinige, Heidi; Wang, Cheng; Tsoi, Maxim

    2015-05-07

    This work investigates the excitation of parametric resonance in exchange-biased spin valves (EBSVs). Using a mechanical point contact, high density dc and microwave currents were injected into the EBSV sample. Observing the reflected microwave power and the small rectification voltage that develops across the contact allows detecting the current-driven magnetodynamics not only in the bulk sample but originating exclusively from the small contact region. In addition to ferromagnetic resonance (FMR), parametric resonance at twice the natural FMR frequency was observed. In contrast to FMR, this non-linear resonance was excited only in the vicinity of the point contact where current densities are high. Power-dependent measurements displayed a typical threshold-like behavior of parametric resonance and a broadening of the instability region with increasing power. Parametric resonance showed a linear shift as a function of applied dc bias which is consistent with the field-like spin-transfer torque induced by current on magnetic moments in EBSV.

  1. The antiferromagnetic structures of IrMn3 and their influence on exchange-bias

    PubMed Central

    Kohn, A.; Kovács, A.; Fan, R.; McIntyre, G. J.; Ward, R. C. C.; Goff, J. P.

    2013-01-01

    We have determined the magnetic structures of single-crystal thin-films of IrMn3 for the crystallographic phases of chemically-ordered L12, and for chemically-disordered face-centred-cubic, which is the phase typically chosen for information-storage devices. For the chemically-ordered L12 thin-film, we find the same triangular magnetic structure as reported for the bulk material. We determine the magnetic structure of the chemically-disordered face-centred-cubic alloy for the first time, which differs from theoretical predictions, with magnetic moments tilted away from the crystal diagonals towards the face-planes. We study the influence of these two antiferromagnetic structures on the exchange-bias properties of an epitaxial body-centred-cubic Fe layer showing that magnetization reversal mechanism and bias-field in the ferromagnetic layer is altered significantly. We report a change of reversal mechanism from in-plane nucleation of 90° domain-walls when coupled to the newly reported cubic structure towards a rotational process, including an out-of-plane magnetization component when coupled to the L12 triangular structure. PMID:23934541

  2. The exchange bias phenomenon in uncompensated interfaces: theory and Monte Carlo simulations.

    PubMed

    Billoni, O V; Cannas, S A; Tamarit, F A

    2011-09-28

    We performed Monte Carlo simulations of a bilayer system composed of two thin films, one ferromagnetic (FM) and the other antiferromagnetic (AFM). Two lattice structures for the films were considered: simple cubic and body centered cubic (bcc). We imposed an uncompensated interfacial spin structure in both lattice structures; in particular we emulated an FeF2-FM system in the case of the bcc lattice. Our analysis focused on the incidence of the interfacial strength interactions between the films, J(eb), and the effect of thermal fluctuations on the bias field, H(EB). We first performed Monte Carlo simulations on a microscopic model based on classical Heisenberg spin variables. To analyze the simulation results we also introduced a simplified model that assumes coherent rotation of spins located on the same layer parallel to the interface. We found that, depending on the AFM film anisotropy to exchange ratio, the bias field is controlled either by the intrinsic pinning of a domain wall parallel to the interface or by the stability of the first AFM layer (quasi-domain wall) near the interface.

  3. Suppression of exchange bias effect in maghemite nanoparticles functionalized with H2Y

    NASA Astrophysics Data System (ADS)

    Guivar, Juan A. Ramos; Morales, M. A.; Litterst, F. Jochen

    2016-12-01

    The structural, vibrational, morphological and magnetic properties of maghemite (γ-Fe2O3) nanoparticles functionalized with polar molecules EDTA(or H4Y) and H2Y are reported. The samples were functionalized before and after total synthesis of γ-Fe2O3 nanoparticles. The molecules are anchored on the monodentate mode on the nanoparticles surface. Transmission electron microscopy (TEM) revealed the formation of maghemite nanoparticles with small diameter of 4 nm for the sample functionalized upon synthesis and 7.6 and 6.9 nm for the samples functionalized with EDTA and H2Y after the formation of nanoparticles. Exchange bias phenomena were observed in some of the samples functionalized with EDTA at temperatures below 70 K. The presence of the bias effect was discussed in terms of the formation of a thin layer of a secondary phase like lepidocrocite, and the absence of this effect was explained in terms of the chemisorption of carboxylic groups from EDTA which suppressed the canting. Studies of Mössbauer spectroscopy as a function of temperature showed slow relaxation effects and allowed discussion of the secondary phase. In the M-T curves a maximum around 116 K was associated with this secondary phase also in agreement with the Mössbauer studies. The dynamic properties were studied by AC susceptibility, the out of phase signal revealed a spin glass like regime below 36.5 K.

  4. Exchange bias in ferrite hollow nanoparticles originated by complex internal magnetic structure

    NASA Astrophysics Data System (ADS)

    De Biasi, Emilio; Lima, Enio, Jr.; Vargas, Jose M.; Zysler, Roberto D.; Arbiol, Jordi; Ibarra, Alfonso; Goya, Gerardo F.; Ibarra, M. Ricardo

    2015-10-01

    Iron-oxide hollow nanospheres (HNS) may present unusual magnetic behavior as a consequence of their unique morphology. Here, we report the unusual magnetic behavior of HNS that are 9 nm in diameter. The magnetic properties of HNS originate in their complex magnetic structure, as evidenced by Mössbauer spectroscopy and magnetization measurements. We observe a bias in the hysteresis when measured at very low temperature in the field cooling protocol (10 kOe). In addition, dc (static) and ac (dynamic) magnetization measurements against temperature and applied field reveal a frustrated order of the system below 10 K. High-resolution transmission electron microscopy (HRTEM) studies reveal that the HNS are composed of small crystalline clusters of about 2 nm in diameter, which behave as individual magnetic entities. Micromagnetic simulations (using conjugate gradient in order to minimize the total energy of the system) reproduce the experimentally observed magnetic behavior. The model considers the hollow particles as constituted by small ordered clusters embedded in an antiferromagnetic environment (spins localized outside the clusters). In addition, the surface spins (in both inner and outer surfaces of the HNS) are affected by a local surface anisotropy. The strong effective magnetic anisotropy field of the clusters induces the bias observed when the system is cooled in the presence of a magnetic external field. This effect propagates through the exchange interaction into the entire particle.

  5. Exchange bias in (FeNi/IrMn)n multilayer films evaluated by static and dynamic techniques

    NASA Astrophysics Data System (ADS)

    Khanal, Shankar; Diaconu, Andrei; Vargas, Jose M.; Lenormand, Denny R.; Garcia, Carlos; Ross, C. A.; Spinu, Leonard

    2014-06-01

    Exchange bias properties of [FeNi/IrMn]n multilayer films with variable thickness of the ferromagnetic layers and different repetitions n were determined by using static and dynamic measurement techniques. The static magnetic properties were revealed through magnetometry measurements at room temperature following major hysteresis loops and first-order reversal curves protocols. Room temperature x-band ferromagnetic resonance (FMR) and vector network analyser (VNA)-FMR experiments were used to determine dynamically the exchange anisotropy in the FeNi/IrMn multilayers. From the static measurements the exchange anisotropy was determined while dynamic measurements allowed the determination of additional parameters including anisotropy field, saturation magnetization and rotatable anisotropy. The differences between the values of the exchange biased obtained from each technique are discussed.

  6. Comment on ``Size-dependent scaling of perpendicular exchange bias in magnetic nanostructures''

    NASA Astrophysics Data System (ADS)

    Baltz, V.; Bollero, A.; Rodmacq, B.; Dieny, B.; Sort, J.

    2008-01-01

    From results at one given temperature (300K) , Malinowski [Phys. Rev. B 75, 012413 (2007)] draw the conclusion that lateral confinement of ferromagnetic-antiferromagnetic exchange-biased structures does not enhance thermally activated unpinning of the antiferromagnetic spins, which would thus contrast with a recent report [Phys. Rev. Lett. 94, 117201 (2005)], as explicitly mentioned in their manuscript. In this Comment, we discuss why such a conclusion might need revision above a “crossover temperature,” as evidenced in the literature. The value of such a crossover temperature certainly depends on the magnetic parameters of each system studied, e.g., anisotropy and exchange stiffness. From the above reasons, and contrary to the statement of Malinowski , we rather think that their results might well agree with the report to which they refer to. In our Comment we notably aim at complementing the conclusion of Malinowski by explaining why some differences between the two studies are observed at one given temperature, and why it might be expected to observe similar trends over a whole range of temperatures.

  7. Strain engineering induced interfacial self-assembly and intrinsic exchange bias in a manganite perovskite film.

    PubMed

    Cui, B; Song, C; Wang, G Y; Mao, H J; Zeng, F; Pan, F

    2013-01-01

    The control of complex oxide heterostructures at atomic level generates a rich spectrum of exotic properties and unexpected states at the interface between two separately prepared materials. The frustration of magnetization and conductivity of manganite perovskite at surface/interface which is inimical to their device applications, could also flourish in tailored functionalities in return. Here we prove that the exchange bias (EB) effect can unexpectedly emerge in a (La,Sr)MnO3 (LSMO) "single" film when large compressive stress imposed through a lattice mismatched substrate. The intrinsic EB behavior is directly demonstrated to be originating from the exchange coupling between ferromagnetic LSMO and an unprecedented LaSrMnO4-based spin glass, formed under a large interfacial strain and subsequent self-assembly. The present results not only provide a strategy for producing a new class of delicately functional interface by strain engineering, but also shed promising light on fabricating the EB part of spintronic devices in a single step.

  8. Origin of spontaneous exchange bias in Co/NiMn bilayer structure

    NASA Astrophysics Data System (ADS)

    Akbulut, A.; Akbulut, S.; Yildiz, F.

    2016-11-01

    Spontaneous exchange bias (EB) is reported for as deposited Si/Pt(tPt)/Ni45Mn55(tAFM/Co(tFM)/Pt(30 Å) thin film system without requiring any post annealing, deposition with field or field cooling procedures. Magnetic properties of this system were investigated with respect to thicknesses of buffer Pt layer (tPt), antiferromagnetic NiMn layer (tAFM) and ferromagnetic Co layer (tFM). Exchange coupling between NiMn and Co layers enhanced considerably by increasing tPt. In order to observe a spontaneous EB in the system, Pt buffer layer must be thicker than a certain thickness, and NiMn layer must be grown directly on the buffer layer. On the other hand, significant increments in the coercive fields (HC) were reported for thinner Pt buffer layers. The thickness ranges for Co and NiMn layers were also determined to obtain spontaneous EB. This spontaneous EB is discussed to be a result of NiMn (111) texture which is induced by Pt buffer layer. Greater EB fields (HEB) are measured for the samples in the negative field direction by the effect of annealing and field cooling (from 400 K to 300 K at 2 kOe).

  9. Eliminating leakage current in voltage-controlled exchange-bias devices

    NASA Astrophysics Data System (ADS)

    Mahmood, Ather; Echtenkamp, Will; Street, Michael; Binek, Christian; Magnetic Heterostructures Team

    Manipulation of magnetism by electric field has drawn much attention due to the technological importance for low-power devices, and for understanding fundamental magnetoelectric phenomena. A manifestation of electrically controlled magnetism is voltage control of exchange bias (EB). Robust isothermal voltage control of EB was demonstrated near room temperature using a heterostructure of Co/Pd thin film and an exchange coupled single crystal of the antiferromagnetic Cr2O3 (Chromia). A major obstacle for EB in lithographically patterned Chromia based thin-film devices is to minimize the leakage currents at high electric fields (>10 kV/mm). By combining electrical measurements on patterned devices and conductive Atomic Force Microscopy of Chromia thin-films, we investigate the defects which form conducting paths impeding the application of sufficient voltage for demonstrating the isothermal EB switching in thin film heterostructures. Technological challenges in the device fabrication will be discussed. This project was supported by SRC through CNFD, an SRC-NRI Center, by C-SPIN, part of STARnet, and by the NSF through MRSEC Abstract DMR-0820521.

  10. Biased thermohaline exchanges with the Arctic across the Iceland-Faroe Ridge in ocean climate models

    NASA Astrophysics Data System (ADS)

    Olsen, S. M.; Hansen, B.; Østerhus, S.; Quadfasel, D.; Valdimarsson, H.

    2016-04-01

    The northern limb of the Atlantic thermohaline circulation and its transport of heat and salt towards the Arctic strongly modulate the climate of the Northern Hemisphere. The presence of warm surface waters prevents ice formation in parts of the Arctic Mediterranean, and ocean heat is directly available for sea-ice melt, while salt transport may be critical for the stability of the exchanges. Through these mechanisms, ocean heat and salt transports play a disproportionally strong role in the climate system, and realistic simulation is a requisite for reliable climate projections. Across the Greenland-Scotland Ridge (GSR) this occurs in three well-defined branches where anomalies in the warm and saline Atlantic inflow across the shallow Iceland-Faroe Ridge (IFR) have been shown to be particularly difficult to simulate in global ocean models. This branch (IF-inflow) carries about 40 % of the total ocean heat transport into the Arctic Mediterranean and is well constrained by observation during the last 2 decades but associated with significant inter-annual fluctuations. The inconsistency between model results and observational data is here explained by the inability of coarse-resolution models to simulate the overflow across the IFR (IF-overflow), which feeds back onto the simulated IF-inflow. In effect, this is reduced in the model to reflect only the net exchange across the IFR. Observational evidence is presented for a substantial and persistent IF-overflow and mechanisms that qualitatively control its intensity. Through this, we explain the main discrepancies between observed and simulated exchange. Our findings rebuild confidence in modelled net exchange across the IFR, but reveal that compensation of model deficiencies here through other exchange branches is not effective. This implies that simulated ocean heat transport to the Arctic is biased low by more than 10 % and associated with a reduced level of variability, while the quality of the simulated salt

  11. Electric field induced reversible 180° magnetization switching through tuning of interfacial exchange bias along magnetic easy-axis in multiferroic laminates

    SciTech Connect

    Xue, Xu; Zhou, Ziyao; Peng, Bin; Zhu, Mingmin; Zhang, Yijun; Ren, Wei; Ren, Tao; Yang, Xi; Nan, Tianxiang; Sun, Nian X.; Liu, Ming

    2015-11-18

    E-field control of interfacial exchange coupling and deterministic switching of magnetization have been demonstrated in two sets of ferromagnetic(FM)/antiferromagnetic(AFM)/ferroelectric(FE) multiferroic heterostructures, including NiFe/NiCoO/glass/PZN-PT (011) and NiFe/FeMn/glass/PZN-PT (011). We designed this experiment to achieve exchange bias tuning along the magnetic easy axis, which is critical for realizing reversible 180° magnetization deterministic switching at zero or small magnetic bias. Strong exchange coupling were established across AFM-FM interfaces, which plays an important role in voltage control of magnetization switching. Through the competition between the E-field induced uniaxial anisotropy in ferromagnetic layer and unidirectional anisotropy in antiferromagnetic layer, the exchange bias was significantly shifted by up to |ΔHex|/Hex=8% in NiFe/FeMn/glass/PZN-PT (011) and 13% in NiFe/NiCoO/glass/PZN-PT (011). In addition, the square shape of the hysteresis loop, as well as a strong shape tunability of |ΔHex|/Hc=67.5~125% in NiFe/FeMn/glass/PZN-PT and 30~38% in NiFe/NiCoO/glass/PZN-PT were achieved, which lead to a near 180° magnetization switching. Lastly, electrical tuning of interfacial exchange coupling in FM/AFM/FE systems paves a new way for realizing magnetoelectric random access memories and other memory technologies.

  12. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

    DOE PAGES

    Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; ...

    2015-11-02

    In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improvesmore » their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO2 shell.« less

  13. Seeking to quantify the ferromagnetic-to-antiferromagnetic interface coupling resulting in exchange bias with various thin-film conformations

    SciTech Connect

    Hsiao, C. H.; Wang, S.; Ouyang, H.; Desautels, R. D.; Lierop, J. van; Lin, K. W.

    2014-08-07

    Ni{sub 3}Fe/(Ni, Fe)O thin films with bilayer and nanocrystallite dispersion morphologies are prepared with a dual ion beam deposition technique permitting precise control of nanocrystallite growth, composition, and admixtures. A bilayer morphology provides a Ni{sub 3}Fe-to-NiO interface, while the dispersion films have different mixtures of Ni{sub 3}Fe, NiO, and FeO nanocrystallites. Using detailed analyses of high resolution transmission electron microscopy images with Multislice simulations, the nanocrystallites' structures and phases are determined, and the intermixing between the Ni{sub 3}Fe, NiO, and FeO interfaces is quantified. From field-cooled hysteresis loops, the exchange bias loop shift from spin interactions at the interfaces are determined. With similar interfacial molar ratios of FM-to-AF, we find the exchange bias field essentially unchanged. However, when the interfacial ratio of FM to AF was FM rich, the exchange bias field increases. Since the FM/AF interface ‘contact’ areas in the nanocrystallite dispersion films are larger than that of the bilayer film, and the nanocrystallite dispersions exhibit larger FM-to-AF interfacial contributions to the magnetism, we attribute the changes in the exchange bias to be from increases in the interfacial segments that suffer defects (such as vacancies and bond distortions), that also affects the coercive fields.

  14. Implications of room temperature oxidation on crystal structure and exchange bias effect in Co/CoO nanoparticles

    SciTech Connect

    Feygenson, Mikhail; Formo, Eric V.; Freeman, Katherine; Schieber, Natalie P.; Gai, Zheng; Rondinone, Adam J.

    2015-11-02

    In this study, we describe how the exchange bias effect in Co/CoO nanoparticles depends on the size focusing and temperature treatment of precursor Co nanoparticles before oxidation at ambient conditions. By appealing to magnetization, microscopy, neutron and synchrotron x-ray measurements we found that as-synthesized Co nanoparticles readily oxidize in air only after 20 days. The highest exchange bias field of 814 Oe is observed at T = 2K. When the same nanoparticles are centrifuged and annealed at 70 °C in vacuum prior to oxidation, the exchange bias field is increased to 2570 Oe. Annealing of Co nanoparticles in vacuum improves their crystallinity and prevents complete oxidation, so that Co-core/CoO-shell structure is preserved even after 120 days. The crystal structure of CoO shell in both samples is different from its bulk counterpart. Implications of such distorted CoO shells on exchange bias are discussed. Coating of Co nanoparticles with amorphous silica shell makes them resistant to oxidation, but ultimately modifies the crystal structure of both Co core and SiO2 shell.

  15. Temperature- and magnetic field-dependence of exchange bias in SrCoO2.29 ceramics

    NASA Astrophysics Data System (ADS)

    Xie, L.; Huang, H. L.; Lu, Y. L.

    2017-01-01

    A cation's oxidation state in a transition metal oxide may significantly change its physical and chemical properties. In this work, magnetic properties of both cubic SrCoO2.29 and hexagonal SrCoO2.50 ceramics, annealed following a selected yet simple process, have been studied. The SrCoO2.50 ceramics annealed in air displays an unusual paramagnetic property, and the SrCoO2.29 quenched into water shows a short-range ferromagnetic coupling in the antiferromagnetic background. Exchange coupling at the ferromagnetic/antiferromagnetic interfaces brings out an obvious exchange bias effect in the SrCoO2.29 sample. Due to its complicated magnetic states, the exchange bias effect presents strong temperature and cooling field dependences.

  16. Field-free magnetization reversal by spin-Hall effect and exchange bias.

    PubMed

    van den Brink, A; Vermijs, G; Solignac, A; Koo, J; Kohlhepp, J T; Swagten, H J M; Koopmans, B

    2016-03-04

    As the first magnetic random access memories are finding their way onto the market, an important issue remains to be solved: the current density required to write magnetic bits becomes prohibitively high as bit dimensions are reduced. Recently, spin-orbit torques and the spin-Hall effect in particular have attracted significant interest, as they enable magnetization reversal without high current densities running through the tunnel barrier. For perpendicularly magnetized layers, however, the technological implementation of the spin-Hall effect is hampered by the necessity of an in-plane magnetic field for deterministic switching. Here we interface a thin ferromagnetic layer with an anti-ferromagnetic material. An in-plane exchange bias is created and shown to enable field-free S HE-driven magnetization reversal of a perpendicularly magnetized Pt/Co/IrMn structure. Aside from the potential technological implications, our experiment provides additional insight into the local spin structure at the ferromagnetic/anti-ferromagnetic interface.

  17. Thermal stability of exchange-biased NiFe/FeMn multilayered thin films

    NASA Astrophysics Data System (ADS)

    Chen, H. Y.; Phuoc, Nguyen N.; Ong, C. K.

    2012-09-01

    A systematic study of the effect of ferromagnetic thickness on magnetic and microwave properties of exchange-biased NiFe/FeMn multilayered thin films was carried out with regards to thermal stability. The temperature-dependent microwave characteristics of the films were obtained from the near-field microwave microscopy technique and analysed based on Landau-Lifshitz-Gilbert equation. The complex microwave permeability spectra of the magnetic thin films up to 5 GHz in the temperature range from room temperature to 420 K were measured. It was found that thicker ferromagnetic layers helped to reduce the dependence of the magnetic properties on temperature, leading to better thermal stability. The saturation magnetization MS, dynamic magnetic anisotropy field HKdyn, and ferromagnetic resonance frequency fFMR were found to decrease with temperature, while the effective damping coefficient αeff was increased with temperature. We also investigate the rotational magnetic anisotropy field HKrot with temperature which gives a measure of the rotatable magnetization of the antiferromagnetic layers and its thermal stability.

  18. Monte Carlo investigation of how interfacial magnetic couplings affect blocking temperature distributions in exchange bias bilayers

    NASA Astrophysics Data System (ADS)

    Lhoutellier, G.; Ledue, D.; Patte, R.; Baltz, V.

    2016-11-01

    Exchange bias in ferromagnetic (F)/antiferromagnetic (AF) bilayers is a function of both the bulk properties of the AF layer and the interfacial properties determining the effective interfacial couplings between the F and AF layers. The distinction between bulk and interface can be clearly revealed in blocking temperature distributions, where AF grain volume distribution results in a high-temperature peak while disordered interfacial magnetic phases produce a low-temperature contribution. However, the coupling conditions producing such bimodal blocking temperature distributions remain to be specified. In this article, we use a granular model which accounts for the disordered interfacial phases by considering small magnetic grains (SGs) with weaker anisotropy and coupling with the F grains at the F/AF interface. The SG are included in the AF material. The coupling conditions producing bimodal blocking temperature distributions were determined. Then, using Monte Carlo simulations, these conditions were validated and the effect of interfacial F-SG coupling on distributions was investigated. We next determined how the ratio between F-SG and F-AF couplings could be used to estimate the surface coverage of the disordered interfacial phases from experimental data.

  19. Exchange bias in (La,Ca)MnO3 bilayers: influence of cooling process

    NASA Astrophysics Data System (ADS)

    Restrepo-Parra, E.; Agudelo, J. D.; Restrepo, J.

    2012-12-01

    The exchange bias (EB) phenomenon in La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers was studied using Monte Carlo simulations combined with the Heisenberg model and the Metropolis algorithm. These simulations were carried out using the model proposed by Kiwi for an uncompensated interface. The Hamiltonian considered several terms corresponding to the nearest neighbor interaction, magnetocrystalline anisotropy and Zeeman effect. Several interactions in the ferromagnetic (FM), antiferromagnetic (AFM) and FM/AFM interface were considered, depending on the type of interacting ion (Mn3+eg, Mn3+eg‧ or Mn4+d3). The influence of field cooling and cooling temperature on the EB was analyzed and discussed. Regarding the field cooling, it caused an increase in the EB until a certain critical value was reached. After that, its effect was almost negligible. On the other hand, at low values of cooling temperature, not only the EB but also the coercive field were enhanced.

  20. Manipulation of Superparamagnetic Beads on Patterned Exchange-Bias Layer Systems for Biosensing Applications

    PubMed Central

    Ehresmann, Arno; Koch, Iris; Holzinger, Dennis

    2015-01-01

    A technology platform based on a remotely controlled and stepwise transport of an array arrangement of superparamagnetic beads (SPB) for efficient molecular uptake, delivery and accumulation in the context of highly specific and sensitive analyte molecule detection for the application in lab-on-a-chip devices is presented. The near-surface transport of SPBs is realized via the dynamic transformation of the SPBs’ magnetic potential energy landscape above a magnetically stripe patterned Exchange-Bias (EB) thin film layer systems due to the application of sub-mT external magnetic field pulses. In this concept, the SPB velocity is dramatically influenced by the magnitude and gradient of the magnetic field landscape (MFL) above the magnetically stripe patterned EB substrate, the SPB to substrate distance, the magnetic properties of both the SPBs and the EB layer system, respectively, as well as by the properties of the external magnetic field pulses and the surrounding fluid. The focus of this review is laid on the specific MFL design in EB layer systems via light-ion bombardment induced magnetic patterning (IBMP). A numerical approach is introduced for the theoretical description of the MFL in comparison to experimental characterization via scanning Hall probe microscopy. The SPB transport mechanism will be outlined in terms of the dynamic interplay between the EB substrate’s MFL and the pulse scheme of the external magnetic field. PMID:26580625

  1. Field-free magnetization reversal by spin-Hall effect and exchange bias

    NASA Astrophysics Data System (ADS)

    van den Brink, A.; Vermijs, G.; Solignac, A.; Koo, J.; Kohlhepp, J. T.; Swagten, H. J. M.; Koopmans, B.

    2016-03-01

    As the first magnetic random access memories are finding their way onto the market, an important issue remains to be solved: the current density required to write magnetic bits becomes prohibitively high as bit dimensions are reduced. Recently, spin-orbit torques and the spin-Hall effect in particular have attracted significant interest, as they enable magnetization reversal without high current densities running through the tunnel barrier. For perpendicularly magnetized layers, however, the technological implementation of the spin-Hall effect is hampered by the necessity of an in-plane magnetic field for deterministic switching. Here we interface a thin ferromagnetic layer with an anti-ferromagnetic material. An in-plane exchange bias is created and shown to enable field-free S HE-driven magnetization reversal of a perpendicularly magnetized Pt/Co/IrMn structure. Aside from the potential technological implications, our experiment provides additional insight into the local spin structure at the ferromagnetic/anti-ferromagnetic interface.

  2. Probing boundary magnetization through exchange bias in heterostructures with competing anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Binek, Christian

    2013-03-01

    Cr2O3 (chromia) is a magnetoelectric antiferromagnet with a bulk TN of 307 K. It has been utilized for electrically controlled exchange bias (EB) by taking advantage of voltage-controllable boundary magnetization (BM) occurring as a generic property in magnetoelectric single domain antiferromagnets.[2] In the perpendicular Cr2O3(0001)/CoPd EB system the EB-field shows an order parameter type T-dependence close to TN reflecting the T-dependence of the BM. At about 150 K a decrease of the EB-field sets in with decreasing temperature suggesting canting of the BM. To evidence this mechanism we use EB as a probe. Specifically, we investigate EB in Permalloy(5nm)/Cr2O3 (0001)(100nm) with Permalloy and chromia having competing anisotropies. We measure easy axis magnetic hysteresis loops via longitudinal magneto-optical Kerr effect for various temperatures after perpendicular and in-plane magnetic field-cooling. The T-dependence of the EB field supports the canting mechanism. In addition to the all thin film EB system, we explore a Permalloy(10nm)/Cr2O3(0001 single crystal) heterostructure where magnetoelectric annealing allows selecting Cr2O3 single domain states. Here the effect of T-dependent canting of the BM is compared with findings in the complementary perpendicular EB system. Financial support by NSF through MRSEC and the Nanoelectronic Research Initiative.

  3. Switching of perpendicular exchange bias in Pt/Co/Pt/α-Cr{sub 2}O{sub 3}/Pt layered structure using magneto-electric effect

    SciTech Connect

    Toyoki, Kentaro; Shiratsuchi, Yu Kobane, Atsushi; Harimoto, Shotaro; Onoue, Satoshi; Nomura, Hikaru; Nakatani, Ryoichi

    2015-05-07

    Switching of the perpendicular exchange bias polarity using a magneto-electric (ME) effect of α-Cr{sub 2}O{sub 3} was investigated. From the change in the exchange bias field with the electric field during the ME field cooling, i.e., the simultaneous application of both magnetic and electric fields during the cooling, we determined the threshold electric field to switch the perpendicular exchange bias polarity. It was found that the threshold electric field was inversely proportional to the magnetic field indicating that the EH product was constant. The high EH product was required to switch the exchange bias for the film possessing the high exchange anisotropy energy density, which suggests that the energy gain by the ME effect has to overcome the interfacial exchange coupling energy to reverse the interfacial antiferromagnetic spin.

  4. Martensitic transition, magnetic, magnetocaloric and exchange bias properties of Fe-substituted Mn-Ni-Sn Heusler alloys

    NASA Astrophysics Data System (ADS)

    Sharma, Jyoti; Suresh, K. G.

    2016-12-01

    In this report, effect of Fe substitution on martensitic transition, magnetic, magnetocaloric and exchange bias (EB) properties of Mn50Ni40-xFexSn10 (x=0, 0.5, 1, 1.5, 2 and 3) Heusler alloys series has been investigated systematically. Fe substitution has been found to affect the ferromagnetic/antiferromagnetic interactions significantly in both the martensite and austenite phases. Martensitic transition temperature decreases with increasing Fe content, which is attributed to the decrease in number of average valence electrons per atom (e/a ratio) of these alloys. Large magnetic entropy change (ΔSM) and refrigerant capacity (RC) have been observed in these alloys, as a maximum ΔSM of 12.6 J/kg. K is observed for composition x=0.5. Present alloys have also been found to show large exchange bias properties, as maximum exchange bias fields (HEB) of 890 Oe and 810 Oe are observed for x=0 and 0.5, respectively at 5 K. Composition and temperature dependencies of EB are associated with the change in exchange anisotropy at interfaces of competing magnetic phases. Study of minor loop and training effect also corroborates with the presence of EB in these alloys.

  5. Negative magnetization and exchange bias effect in Ni1.4Mn2Ga0.6

    NASA Astrophysics Data System (ADS)

    Albagami, Abdullah; Khan, Mahmud

    Ni-Mn-X based Heusler alloys have attracted significant interest in recent years due to their multifunctional properties. Exchange bias (EB) is one such property that results from competing magnetic interactions in these alloys. The EB effect is typically observed in materials where ferromagnetic (FM) and antiferromagnetic (AFM) interactions co-exist. Since the discovery of EB effect in CoO (AFM) coated Co (FM) nanoparticles by Meikle John and Bean in 1956, a significant amount of research efforts have been made on this subject. Here, we have performed an experimental study on the magnetic and exchange bias properties of polycrystalline Ni1.4Mn2Ga0.6 alloy by X-ray diffraction, dc magnetization, and ac susceptibility measurements. The material exhibits a ferromagnetic Curie temperature of ~300 K. The magnetization versus field data obtained at 5 K under zero field condition exhibits a double shifted hysteresis loop that disappears at higher temperatures. When the sample is cooled from room temperature to 5 K in applied magnetic fields, exchange bias is observed, whose magnitude is strongly dependent on the cooling field. A maximum exchange bias field of 730 Oe is observed under field cooling condition at 5 K. A negative magnetization is observed in the magnetization versus temperature data obtained at magnetic fields smaller than 75 Oe. The experimental results are explained in terms of the competing ferromagnetic and antiferromagnetic exchange interaction that exist in the materials due to the Mn atoms occupying multiple crystalline sites resulting in a spin glass-type frustrated ground state.

  6. Self-establishing communities enable cooperative metabolite exchange in a eukaryote.

    PubMed

    Campbell, Kate; Vowinckel, Jakob; Mülleder, Michael; Malmsheimer, Silke; Lawrence, Nicola; Calvani, Enrica; Miller-Fleming, Leonor; Alam, Mohammad T; Christen, Stefan; Keller, Markus A; Ralser, Markus

    2015-10-26

    Metabolite exchange among co-growing cells is frequent by nature, however, is not necessarily occurring at growth-relevant quantities indicative of non-cell-autonomous metabolic function. Complementary auxotrophs of Saccharomyces cerevisiae amino acid and nucleotide metabolism regularly fail to compensate for each other's deficiencies upon co-culturing, a situation which implied the absence of growth-relevant metabolite exchange interactions. Contrastingly, we find that yeast colonies maintain a rich exometabolome and that cells prefer the uptake of extracellular metabolites over self-synthesis, indicators of ongoing metabolite exchange. We conceived a system that circumvents co-culturing and begins with a self-supporting cell that grows autonomously into a heterogeneous community, only able to survive by exchanging histidine, leucine, uracil, and methionine. Compensating for the progressive loss of prototrophy, self-establishing communities successfully obtained an auxotrophic composition in a nutrition-dependent manner, maintaining a wild-type like exometabolome, growth parameters, and cell viability. Yeast, as a eukaryotic model, thus possesses extensive capacity for growth-relevant metabolite exchange and readily cooperates in metabolism within progressively establishing communities.

  7. Self-establishing communities enable cooperative metabolite exchange in a eukaryote

    PubMed Central

    Campbell, Kate; Vowinckel, Jakob; Mülleder, Michael; Malmsheimer, Silke; Lawrence, Nicola; Calvani, Enrica; Miller-Fleming, Leonor; Alam, Mohammad T; Christen, Stefan; Keller, Markus A; Ralser, Markus

    2015-01-01

    Metabolite exchange among co-growing cells is frequent by nature, however, is not necessarily occurring at growth-relevant quantities indicative of non-cell-autonomous metabolic function. Complementary auxotrophs of Saccharomyces cerevisiae amino acid and nucleotide metabolism regularly fail to compensate for each other's deficiencies upon co-culturing, a situation which implied the absence of growth-relevant metabolite exchange interactions. Contrastingly, we find that yeast colonies maintain a rich exometabolome and that cells prefer the uptake of extracellular metabolites over self-synthesis, indicators of ongoing metabolite exchange. We conceived a system that circumvents co-culturing and begins with a self-supporting cell that grows autonomously into a heterogeneous community, only able to survive by exchanging histidine, leucine, uracil, and methionine. Compensating for the progressive loss of prototrophy, self-establishing communities successfully obtained an auxotrophic composition in a nutrition-dependent manner, maintaining a wild-type like exometabolome, growth parameters, and cell viability. Yeast, as a eukaryotic model, thus possesses extensive capacity for growth-relevant metabolite exchange and readily cooperates in metabolism within progressively establishing communities. DOI: http://dx.doi.org/10.7554/eLife.09943.001 PMID:26499891

  8. Crystal-Orientation-Modulated Exchange Bias in Orthorhombic-YMnO3/La0.6Sr0.4MnO3 Multiferroic Heterostructures.

    PubMed

    Zheng, Dongxing; Gong, Junlu; Jin, Chao; Li, Peng; Bai, Haili

    2015-07-15

    The magnetic properties of the all-oxide multiferroic heterostructures composed of orthorhombic YMnO3 (YMO) with E-type antiferromagnetic and double-exchange ferromagnetic (FM) La0.6Sr0.4MnO3 (LSMO) were studied. An orientation-modulated exchange bias effect, which is related to the interfacial Mn-O-Mn bond angle, was discovered. Because of the large bond angle in YMO/LSMO(100) heterostructures, a strong exchange coupling at the interface is formed. This strong exchange coupling sustains an FM phase in YMO at the interface region. The FM phase with strong magnetocrystalline anisotropy contributes to the vertical shift and exchange bias effect in (100) orientation heterostructures. When LSMO (110) and (111) were layered with YMO, the Mn-O-Mn bond angle was reduced, leading to a weakened exchange coupling at the interface, and only a relatively small exchange bias at low temperatures was visible.

  9. Compensation temperatures and exchange bias in La1.5Ca0.5CoIrO6

    NASA Astrophysics Data System (ADS)

    Coutrim, L. T.; Bittar, E. M.; Stavale, F.; Garcia, F.; Baggio-Saitovitch, E.; Abbate, M.; Mossanek, R. J. O.; Martins, H. P.; Tobia, D.; Pagliuso, P. G.; Bufaiçal, L.

    2016-05-01

    We report on the study of magnetic properties of the La1.5Ca0.5CoIrO6 double perovskite. Via ac magnetic susceptibility we have observed evidence of weak ferromagnetism and reentrant spin glass behavior on an antiferromagnetic matrix. Regarding the magnetic behavior as a function of temperature, we have found that the material displays up to three inversions of its magnetization, depending on the appropriate choice of the applied magnetic field. At low temperature, the material exhibits exchange bias effect when it is cooled in the presence of a magnetic field. Also, our results indicate that this effect may be observed even when the system is cooled at zero field. Supported by other measurements and also by electronic structure calculations, we discuss the magnetic reversals and spontaneous exchange bias effect in terms of magnetic phase separation and magnetic frustration of Ir4 + ions located between the antiferromagnetically coupled Co ions.

  10. Observation of pure inverse spin Hall effect in ferromagnetic metals via ferromagnetic/antiferromagnetic exchange-bias structures

    NASA Astrophysics Data System (ADS)

    Wu, H.; Wan, C. H.; Yuan, Z. H.; Zhang, X.; Jiang, J.; Zhang, Q. T.; Wen, Z. C.; Han, X. F.

    2015-08-01

    We report that the spin current generated by the spin Seebeck effect (SSE) in yttrium iron garnet (YIG) can be detected by a ferromagnetic metal (NiFe). By using the ferromagnetic/antiferromagnetic (FM/AFM) exchange bias structure (NiFe/IrMn), the inverse spin Hall effect (ISHE) and planar Nernst effect (PNE) of NiFe can be unambiguously separated, allowing us to observe a pure ISHE signal. After eliminating the in-plane temperature gradient in NiFe, we can even observe a pure ISHE signal without PNE from NiFe itself. It is worth noting that a large spin Hall angle (0.098) of NiFe is obtained, which is comparable with Pt. This work provides a kind of FM/AFM exchange bias structure to detect the spin current by charge signals, and highlights that ISHE in ferromagnetic metals can be used in spintronic research and applications.

  11. Exchange bias beyond the superparamagnetic blocking temperature of the antiferromagnet in a Ni-NiO nanoparticulate system

    NASA Astrophysics Data System (ADS)

    Roy, Aparna; De Toro, J. A.; Amaral, V. S.; Muniz, P.; Riveiro, J. M.; Ferreira, J. M. F.

    2014-02-01

    We report magnetic and exchange bias studies on Ni-NiO nanoparticulate systems synthesized by a two-step process, namely, chemical reduction of a Ni salt followed by air annealing of the dried precipitate in the temperature range 400-550 °C. Size of Ni and NiO crystallites as estimated from X-ray diffraction line broadening ranges between 10.5-13.5 nm and 2.3-4 nm, respectively. The magneto-thermal plots (M-T) of these bi-magnetic samples show a well developed peak in the vicinity of 130 K. This has been identified as the superparamagnetic blocking temperature "TB" of NiO. Interestingly, all samples exhibit exchange bias even above their respective NiO blocking temperatures, right up to 300 K, the maximum temperature of measurement. This is in contrast to previous reports since exchange bias requires the antiferromagnetic NiO to have a stable direction of its moment in order to pin the ferromagnet (Ni) magnetization, whereas such stability is unlikely above TB since the NiO is superparamagnetic, its moment flipping under thermal activation. Our observation is elucidated by taking into account the core-shell morphology of the Ni-NiO nanoparticles whereby clustering of some of these nanoparticles connects their NiO shells to form extended continuous regions of NiO, which because of their large size remain blocked at T > TB, with thermally stable spins capable of pinning the Ni cores and giving rise to exchange bias. The investigated samples may thus be envisaged as being constituted of both isolated core-shell Ni-NiO nanoparticles as well as clustered ones, with TB denoting the blocking temperature of the NiO shell of the isolated particles.

  12. Enhanced Conformational Sampling Using Replica Exchange with Concurrent Solute Scaling and Hamiltonian Biasing Realized in One Dimension

    PubMed Central

    2015-01-01

    Replica exchange (REX) is a powerful computational tool for overcoming the quasi-ergodic sampling problem of complex molecular systems. Recently, several multidimensional extensions of this method have been developed to realize exchanges in both temperature and biasing potential space or the use of multiple biasing potentials to improve sampling efficiency. However, increased computational cost due to the multidimensionality of exchanges becomes challenging for use on complex systems under explicit solvent conditions. In this study, we develop a one-dimensional (1D) REX algorithm to concurrently combine the advantages of overall enhanced sampling from Hamiltonian solute scaling and the specific enhancement of collective variables using Hamiltonian biasing potentials. In the present Hamiltonian replica exchange method, termed HREST-BP, Hamiltonian solute scaling is applied to the solute subsystem, and its interactions with the environment to enhance overall conformational transitions and biasing potentials are added along selected collective variables associated with specific conformational transitions, thereby balancing the sampling of different hierarchical degrees of freedom. The two enhanced sampling approaches are implemented concurrently allowing for the use of a small number of replicas (e.g., 6 to 8) in 1D, thus greatly reducing the computational cost in complex system simulations. The present method is applied to conformational sampling of two nitrogen-linked glycans (N-glycans) found on the HIV gp120 envelope protein. Considering the general importance of the conformational sampling problem, HREST-BP represents an efficient procedure for the study of complex saccharides, and, more generally, the method is anticipated to be of general utility for the conformational sampling in a wide range of macromolecular systems. PMID:26082676

  13. Exchange bias beyond the superparamagnetic blocking temperature of the antiferromagnet in a Ni-NiO nanoparticulate system

    SciTech Connect

    Roy, Aparna E-mail: aparnaroy15@gmail.com; Ferreira, J. M. F.; De Toro, J. A.; Muniz, P.; Riveiro, J. M.; Amaral, V. S.

    2014-02-21

    We report magnetic and exchange bias studies on Ni-NiO nanoparticulate systems synthesized by a two-step process, namely, chemical reduction of a Ni salt followed by air annealing of the dried precipitate in the temperature range 400–550 °C. Size of Ni and NiO crystallites as estimated from X–ray diffraction line broadening ranges between 10.5–13.5 nm and 2.3–4 nm, respectively. The magneto-thermal plots (M-T) of these bi-magnetic samples show a well developed peak in the vicinity of 130 K. This has been identified as the superparamagnetic blocking temperature “T{sub B}” of NiO. Interestingly, all samples exhibit exchange bias even above their respective NiO blocking temperatures, right up to 300 K, the maximum temperature of measurement. This is in contrast to previous reports since exchange bias requires the antiferromagnetic NiO to have a stable direction of its moment in order to pin the ferromagnet (Ni) magnetization, whereas such stability is unlikely above T{sub B} since the NiO is superparamagnetic, its moment flipping under thermal activation. Our observation is elucidated by taking into account the core-shell morphology of the Ni-NiO nanoparticles whereby clustering of some of these nanoparticles connects their NiO shells to form extended continuous regions of NiO, which because of their large size remain blocked at T > T{sub B}, with thermally stable spins capable of pinning the Ni cores and giving rise to exchange bias. The investigated samples may thus be envisaged as being constituted of both isolated core-shell Ni-NiO nanoparticles as well as clustered ones, with T{sub B} denoting the blocking temperature of the NiO shell of the isolated particles.

  14. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    SciTech Connect

    Feygenson, Mikhail; Bauer, John C.; Gai, Zheng; Marques, Carlos; Aronson, Meigan C.; Teng, Xiaowei; Su, Dong; Stanic, Vesna; Urban, Volker S.; Beyer, Kevin A.; Dai, Sheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron-scattering, synchrotron x-ray diffraction, and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wustite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatch between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into the FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed, presumably across the interface to accommodate an excess of oxygen released during the reduction of magnetite

  15. Origin of the exchange bias training effects in magnetically coupled soft/hard synthetic bilayers at low temperature

    NASA Astrophysics Data System (ADS)

    Yalçın, Orhan; Ünlüer, Şahin; Kazan, Sinan; Şahingöz, Recep

    2015-02-01

    Hysteresis loops of the nanoscale magnetic layer Co90Fe10 and Ni81Fe19 and bilayer Co90Fe10/Ni81Fe19 and Ni81Fe19/Co90Fe10 films were measured as a function of external dc magnetic field and the thickness dependence of these films were plotted as a function of temperature. Time evolution of the minor/middle/major hysteresis loops of 5/5 nm-thick Ni81Fe19/Co90Fe10 monolayer have been observed at 10 K. The spin valve, exchange bias training and Barkhausen effects for magnetic layer and bilayer films have been analysed at various temperatures, thicknesses and different orientations according to the substrate. The exchange-bias training effects have been observed only in positive magnetization region. Origin of the exchange-bias training effects and asymmetric hysteresis loops are related to the relaxation mechanism of a pinning layer in magnetically coupled soft/hard bilayers.

  16. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    DOE PAGES

    Feygenson, Mikhail; Bauer, John C; Gai, Zheng; ...

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron scattering, synchrotron x-ray diffraction and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wüstite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatchmore » between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed across the interface to accommodate an excess of oxygen released during the reduction of magnetite.« less

  17. Bias-Exchange Metadynamics Simulations: An Efficient Strategy for the Analysis of Conduction and Selectivity in Ion Channels.

    PubMed

    Domene, Carmen; Barbini, Paolo; Furini, Simone

    2015-04-14

    Conduction through ion channels possesses two interesting features: (i) different ionic species are selected with high-selectivity and (ii) ions travel across the channel with rates approaching free-diffusion. Molecular dynamics simulations have the potential to reveal how these processes take place at the atomic level. However, analysis of conduction and selectivity at atomistic detail is still hampered by the short time scales accessible by computer simulations. Several algorithms have been developed to "accelerate" sampling along the slow degrees of freedom of the process under study and thus to probe longer time scales. In these algorithms, the slow degrees of freedom need to be defined in advance, which is a well-known shortcoming. In the particular case of ion conduction, preliminary assumptions about the number and type of ions participating in the permeation process need to be made. In this study, a novel approach for the analysis of conduction and selectivity based on bias-exchange metadynamics simulations was tested. This approach was compared with umbrella sampling simulations, using a model of a Na(+)-selective channel. Analogous conclusions resulted from both techniques, but the computational cost of bias-exchange simulations was lower. In addition, with bias-exchange metadynamics it was possible to calculate free energy profiles in the presence of a variable number and type of permeating ions. This approach might facilitate the definition of the set of collective variables required to analyze conduction and selectivity in ion channels.

  18. Exchange bias induced at a Co2FeAl0.5Si0.5/Cr interface

    NASA Astrophysics Data System (ADS)

    Yu, C. N. T.; Vick, A. J.; Inami, N.; Ono, K.; Frost, W.; Hirohata, A.

    2017-03-01

    In order to engineer the strength of an exchange bias in a cubic Heusler alloy layer, crystalline strain has been induced at a ferromagnet/antiferromagnet interface by their lattice mismatch in addition to the conventional interfacial exchange coupling between them. Such interfaces have been formed in (Co2FeAl0.5Si0.5(CFAS)/Cr)3 structures grown by ultrahigh vacuum molecular beam epitaxy. The magnetic and structural properties have been characterised to investigate the exchange interactions at the CFAS/Cr interfaces. Due to the interfacial lattice mismatch of 1.4%, the maximum offset of 18 Oe in a magnetisation curve has been measured for the case of a CFAS (2 nm)/Cr (0.9 nm) interface at 193 K. The half-metallic property of CFAS has been observed to remain unchanged, which agrees with the theoretical prediction by Culbert et al (2008 J. Appl. Phys. 103 07D707). Such a strain-induced exchange bias may provide insight of the interfacial interactions and may offer a wide flexibility in spintronic device design.

  19. Time-resolved magnetization dynamics in crystalline ferromagnets and exchange-biased systems

    NASA Astrophysics Data System (ADS)

    Engebretson, David Michael

    Time-resolved ferromagnetic resonance (FMR) measurements are performed using a pump-probe technique with a non-optical pump to observe precession and relaxation of the magnetization in epitaxial magnetic thin films at temperatures down to 5 K. Spatial localization achieved through use of an optical probe allows a direct measurement of spin relaxation, reducing the effects of inhomogeneous dephasing relative to probes of larger areas, while the use of low fields allows a study of dynamics throughout the entire magnetization reversal process. The reversal mechanism of FexCo1-x is probed as a function of cubic and uniaxial anisotropy strengths, using FMR as a direct probe of the free energy surface. A coherent rotation model describes the reversal for fields up through 700 Oe, failing only for fields near 105 Oe applied along the GaAs [01 1¯] direction where nucleation of nearly perpendicular domains is observed. Measurements of the Gilbert damping parameter alpha indicate that it is smaller for fields applied along the [01 1¯] direction than for fields along [011] or [010]. Dynamic interactions between local moments and itinerant carriers are examined in the diluted magnetic semiconductor Ga1-xMn xAs. Holes and local moments are found to precess together on timescales greater than 50 ps. Although previous experiments by other groups have observed a change in the magnetization due to introduction of photoexcited carriers, our measurements indicate no dynamical change in magnetization due to additional optically pumped carriers. The Gilbert damping parameter alpha is observed to increase more than twofold as temperature is raised from 20 K to the Curie temperature, although the decay time remains nearly independent of temperature over this range. Exchange-biased Fe/FeF2 is found to exhibit temperature-dependent anisotropy above its Neel temperature (78 K), while the anisotropy of structurally similar Fe/MnF2 remains independent of temperature above TN = 67 K. Dynamic

  20. Positive exchange-bias and giant vertical hysteretic shift in La0.3Sr0.7FeO3/SrRuO3 bilayers

    PubMed Central

    Rana, Rakesh; Pandey, Parul; Singh, R. P.; Rana, D. S.

    2014-01-01

    The exchange-bias effects in the mosaic epitaxial bilayers of the itinerant ferromagnet (FM) SrRuO3 and the antiferromagnetic (AFM) charge-ordered La0.3Sr0.7FeO3 were investigated. An uncharacteristic low-field positive exchange bias, a cooling-field driven reversal of positive to negative exchange-bias and a layer thickness optimised unusual vertical magnetization shift were all novel facets of exchange bias realized for the first time in magnetic oxides. The successive magnetic training induces a transition from positive to negative exchange bias regime with changes in domain configurations. These observations are well corroborated by the hysteretic loop asymmetries which display the modifications in the AFM spin correlations. These exotic features emphasize the key role of i) mosaic disorder induced subtle interplay of competing AFM-superexchange and FM double exchange at the exchange biased interface and, ii) training induced irrecoverable alterations in the AFM spin structure. PMID:24569516

  1. 47 CFR 63.66 - Closure of or reduction of hours of service at telephone exchanges at military establishments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of service at telephone exchanges at military establishments. Where a carrier desires to close or reduce hours of service at a telephone exchange located at a military establishment because of the... 47 Telecommunication 3 2010-10-01 2010-10-01 false Closure of or reduction of hours of service...

  2. 47 CFR 63.66 - Closure of or reduction of hours of service at telephone exchanges at military establishments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... telephone exchanges at military establishments. 63.66 Section 63.66 Telecommunication FEDERAL COMMUNICATIONS..., REDUCTION, OUTAGE AND IMPAIRMENT OF SERVICE BY COMMON CARRIERS; AND GRANTS OF RECOGNIZED PRIVATE OPERATING... of service at telephone exchanges at military establishments. Where a carrier desires to close...

  3. Off-easy-plane antiferromagnetic spin canting in coupled FePt/NiO bilayer structure with perpendicular exchange bias

    NASA Astrophysics Data System (ADS)

    Gao, Tenghua; Itokawa, Nobuhide; Wang, Jian; Yu, Youxing; Harumoto, Takashi; Nakamura, Yoshio; Shi, Ji

    2016-08-01

    We report on the investigation of perpendicular exchange bias in FePt (001 ) /NiO (1 ¯1 ¯1 ) orthogonal exchange couple with FePt partially L 10 ordered. From initial magnetization curve measurement and magnetic domain imaging, we find that, for the as-grown bilayer structure, the FePt layer experiences a small-angle magnetization rotation when it is magnetized near to saturation in film normal direction. After field cooling, the bilayer structure shows a significant enhancement of perpendicular magnetic anisotropy, indicating the field mediated coupling between the spins across the FePt/NiO interface. According to Koon's theoretical calculation on the basis of lowest energy ferromagnetic/antiferromagnetic coupling configuration for compensated spins at antiferromagnetic side, we consider slightly slanted Ni spins at the interface off the (1 ¯1 ¯1 ) easy plane can stabilize the spin coupling between FePt and NiO and result in the observed exchange bias in this paper. This consideration was further confirmed by stripe domain width calculation.

  4. Exchange bias effect and glassy-like behavior of EuCrO{sub 3} and CeCrO{sub 3} nano-powders

    SciTech Connect

    Taheri, M. Razavi, F. S.; Kremer, R. K.; Trudel, S.

    2015-09-28

    The magnetic properties of nano-sized EuCrO{sub 3} and CeCrO{sub 3} powders, synthesized by a solution combustion method, were investigated using DC/AC magnetization measurements. An exchange bias effect, magnetization irreversibility and AC susceptibility dispersion in these samples provided evidence for the presence of the spin disorder magnetic phase. The exchange bias phenomenon, which is assigned to the exchange coupling between the glassy-like shell and canted antiferromagnetic core, showed the opposite sign in EuCrO{sub 3} and CeCrO{sub 3} at low temperatures, suggesting different exchange interactions at the interfaces in these compounds. We also observed a sign reversal of exchange bias in CeCrO{sub 3} at different temperatures.

  5. The Influence of temperature and applied magnetic field on the exchange bias effect of La1.5Ca0.5CoIrO6

    NASA Astrophysics Data System (ADS)

    Coutrim, L. T.; Bittar, E. M.; Baggio-Saitovitch, E.; Bufaiçal, L.

    2017-04-01

    La1.5Ca0.5CoIrO6 is a re-entrant spin-glass double-perovskite that exhibits a non-negligible spontaneous exchange bias effect at low temperatures. When performing magnetization as a function of applied field [M(H)] measurements after cooling the sample in the presence of a magnetic field, the exchange bias is greatly enhanced. In this work we report a detailed investigation of the influence of the maximum applied field (Hm) on the exchange bias effect for M (H) curves measured with and without the presence of an applied field on cooling. In both cases the shift in the hysteresis loops decreases for increasing Hm. We have also investigated the influence of the cooling field on the exchange bias effect. By increasing the applied field on cooling there is an initial increase of the exchange bias, followed by a decrease of the effect for larger cooling fields. A detailed study of the magnetic evolution of the system with temperature showed that despite the enhancement of the coercive field observed at temperatures above the freezing of the spin-glass phase, there is no trace of exchange bias effect at these temperatures. We discuss our results in terms of the pinning of the spins at the magnetic interfaces.

  6. Current-driven switching of exchange biased spin-valve giant magnetoresistive nanopillars using a conducting nanoprobe

    NASA Astrophysics Data System (ADS)

    Hayakawa, J.; Ito, K.; Fujimori, M.; Heike, S.; Hashizume, T.; Steen, J.; Brugger, J.; Ohno, H.

    2004-09-01

    An array of exchange biased spin-valve giant-magnetoresistance nanopillars was fabricated and the current I dependence of the resistance R was investigated using an electrically conducting atomic-force microscope (AFM) probe contact at room temperature. We observed current induced switching in a MnIr /CoFe/Cu/CoFe/NiFe nanopillar using the AFM probe contact. Current-driven switching using nanoprobe contact is a powerful method for developing nonvolatile and rewritable magnetic memory with high density.

  7. Exchange bias effect in Co(Cr0.925Fe0.075)2O4

    NASA Astrophysics Data System (ADS)

    Padam, R.; Pandya, Swati; Ravi, S.; Grover, A. K.; Pal, D.

    2013-02-01

    Single phase sample of 7.5% Fe doped CoCr2O4 i.e. Co(Cr0.925Fe0.075)2O4 was prepared. Temperature and field variation of magnetization shows that the sample exhibits the novel phenomenon of magnetization reversal at compensation temperature Tcomp ˜ 67.8 K. In addition to this, sample is found to exhibit positive and negative exchange bias (EB) at T > Tcomp and T < Tcomp respectively. This is explained in terms of presence of competing interactions.

  8. Large exchange bias effect in LaCr0.9Ru0.1O3

    NASA Astrophysics Data System (ADS)

    Sarkar, Babusona; Dalal, Biswajit; De, S. K.

    2016-11-01

    The incorporation of tetravalent Ru (10%) into antiferromagnetic spin structure of LaCrO3 leads to mixed valence states of Cr (Cr2+ and Cr3+). Highly delocalized 4d orbital of Ru induces prominent ferromagnetic (FM) component in antiferromagnetic (AFM) matrix of parent compound. The complex magnetic interaction across the interface of FM and AFM regions gives rise to large exchange bias field (HEB) of about 10 kOe. The inverse and normal magnetocaloric effect for magnetic field up to 50 kOe coexists in a single material due to multiple magnetic phase transitions with temperature.

  9. Anisotropic behavior of exchange bias effect in tensile-deformed Pt{sub 3}Fe single crystal

    SciTech Connect

    Kobayashi, Satoru Morita, Ryo

    2015-05-07

    Plastic strain in Pt{sub 3}Fe causes changes in the atomic arrangement around the (111) glide plane and induces ferromagnetism even at room temperature. We have performed detailed magnetization measurements on a Pt{sub 3}Fe single crystal with plastic strains of 11.6% under magnetic fields in various directions with respect to the [100] strain axis in order to elucidate the reversal mechanism of induced ferromagnetic domains. We observed that by decreasing the angle between the magnetization direction and strain axis, hysteresis loops are strongly sheared, which is associated with a large increase in coercivity. We also observed that an exchange bias effect appears for all field orientations, but the exchange field maximizes for an intermediate field direction. On the other hand, both phenomena are insensitive to magnetic fields perpendicular to the [100] strain axis. These observations were explained by a single-domain model with uniaxial anisotropy along the [100] strain axis.

  10. Enhancing the blocking temperature of perpendicular-exchange biased Cr2O3 thin films using buffer layers

    NASA Astrophysics Data System (ADS)

    Shimomura, Naoki; Pati, Satya Prakash; Nozaki, Tomohiro; Shibata, Tatsuo; Sahashi, Masashi

    2017-02-01

    In this study, we investigated the effect of buffer layers on the blocking temperature (TB) of perpendicular exchange bias of thin Cr2O3/Co exchange coupled films with a Ru spacer and revealed a high TB of 260 K for 20-nm-thick Cr2O3 thin films. By comparing the TB values of the 20-nm-thick Cr2O3 films on Pt and α-Fe2O3 buffers, we investigated the lattice strain effect on the TB. We show that higher TB values can be obtained using an α-Fe2O3 buffer, which is likely because of the lattice strain-induced increase in Cr2O3 magnetocrystalline anisotropy.

  11. Sign reversal of magnetization and exchange bias in Ni(Cr1-xAlx)2O4 (x=0-0.50)

    NASA Astrophysics Data System (ADS)

    Barman, Junmoni; Ravi, S.

    2017-03-01

    Ni(Cr1-xAlx)2O4 (x=0-0.50) samples were prepared in single phase form by using sol-gel method and their structural and magnetic properties were studied. Al substitution transforms the crystal structure of NiCr2O4 from tetragonal cell with space group I41/amd to cubic cell of Fd 3 barm space group. Magnetization measurements by varying the temperature and magnetic field were carried out to investigate the interesting magnetization reversal and exchange bias behaviors. Magnetization reversal is observed for x=0.10 sample with a magnetic compensation temperature of 40 K and it is explained by considering different temperature dependences of magnetic moments of the two sublattices. Shifting of magnetic hysteresis loops towards the negative magnetic field axis and hence the presence of negative exchange bias field is observed for x=0.15 sample. The x=0.10 sample exhibits the tunable positive and negative exchange bias field. Exchange bias in these samples is explained considering the anisotropic exchange interaction between the ferrimagnetic and the antiferromagnetic components of magnetic spins. However, the sign reversal of exchange bias field is due to the change in domination of one ferrimagnetic sublattice over the other with variation in temperature. Both normal and inverse magnetocaloric effects are observed for x=0.10 sample.

  12. Sign reversal of magnetization and tunable exchange bias field in NdCr1-xFexO3 (x=0.05-0.2)

    NASA Astrophysics Data System (ADS)

    Bora, Tribedi; Ravi, S.

    2015-07-01

    Magnetization reversal and tunable exchange bias behavior are observed in NdCr1-xFexO3 compounds for x=0.05-0.20. The magnetic compensation temperature (Tcomp) is found to increase with increase in Fe concentration and its maximum value is 198 K for x=0.15 sample. The observed magnetization reversal is explained by considering the competition between the weak ferromagnetic component of Cr3+ ions and the paramagnetic moments of Nd3+ and Fe3+ ions under the influence of negative internal magnetic field. The exchange anisotropy between the above two components of magnetic moments give rise to tunable positive and negative exchange bias fields. The sign reversal of exchange bias field also coincides with Tcomp. Bipolar switching of magnetization is demonstrated at T

  13. Probing core and shell contributions to exchange bias in Co /Co3O4 nanoparticles of controlled size

    NASA Astrophysics Data System (ADS)

    De, D.; Iglesias, Óscar; Majumdar, S.; Giri, Saurav

    2016-11-01

    Coupling at the interface of core/shell magnetic nanoparticles is known to be responsible for exchange bias (EB) and the relative sizes of core and shell components are supposed to influence the associated phenomenology. In this work, we have prepared core/shell structured nanoparticles with a total average diameter around ˜27 nm and a wide range of shell thicknesses through the controlled oxidation of Co nanoparticles well dispersed in an amorphous silica host. Structural characterizations give compelling evidence of the formation of Co3O4 crystallite phase at the shells surrounding the Co core. Field cooled hysteresis loops display nonmonotonous dependence of the exchange bias HE and coercive HC fields, that become maximum for a sample with an intermediate shell thickness, at which lattice strain is also maximum for both phases. The EB effects persist up to temperatures above the ordering temperature of the oxide shell. Results of our atomistic Monte Carlo simulations of particles with the same size and composition as in experiments are in agreement with the experimental observations and have allowed us to identify a change in the contribution of the interfacial surface spins to the magnetization reversal, giving rise to the observed maximum in HE and HC.

  14. Influence of 8-Oxoguanosine on the Fine Structure of DNA Studied with Biasing-Potential Replica Exchange Simulations

    SciTech Connect

    Kara, Mahmut; Zacharias, Martin W.

    2013-03-05

    Chemical modification or radiation can cause DNA damage, which plays a crucial role for mutagenesis of DNA, carcinogenesis, and aging. DNA damage can also alter the fine structure of DNA that may serve as a recognition signal for DNA repair enzymes. A new, advanced sampling replica-exchange method has been developed to specifically enhance the sampling of conformational substates in duplex DNA during molecular dynamics (MD) simulations. The approach employs specific biasing potentials acting on pairs of pseudodihedral angles of the nucleic acid backbone that are added in the replica simulations to promote transitions of the most common substates of the DNA backbone. The sampled states can exchange with a reference simulation under the control of the original force field. The application to 7,8-dihydro-8oxo-guanosine, one of the most common oxidative damage in DNA indicated better convergence of sampled states during 10 ns simulations compared to 20 times longer standard MD simulations. It is well suited to study systematically the fine structure and dynamics of large nucleic acids under realistic conditions, including explicit solvent and ions. The biasing potential-replica exchange MD simulations indicated significant differences in the population of nucleic acid backbone substates in the case of 7,8-dihydro-8oxo-guanosine compared to a regular guanosine in the same sequence context. This concerns both the ratio of the B-DNA substates BI and BII associated with the backbone dihedral angles ε and z but also coupled changes in the backbone dihedral angles a and g. Such differences may play a crucial role in the initial recognition of damaged DNA by repair enzymes.

  15. Methods for preparing polymer-decorated single exchange-biased magnetic nanoparticles for application in flexible polymer-based films

    PubMed Central

    2017-01-01

    Background: Magnetic nanoparticles (NPs) must not only be well-defined in composition, shape and size to exhibit the desired properties (e.g., exchange-bias for thermal stability of the magnetization) but also judiciously functionalized to ensure their stability in air and their compatibility with a polymer matrix, in order to avoid aggregation which may seriously affect their physical properties. Dipolar interactions between NPs too close to each other favour a collective magnetic glass state with lower magnetization and coercivity because of inhomogeneous and frustrated macrospin cluster freezing. Consequently, tailoring chemically (through surface functionalization) and magnetically stable NPs for technological applications is of primary importance. Results: In this work, well-characterized exchange-biased perfectly epitaxial CoxFe3− xO4@CoO core@shell NPs, which were isotropic in shape and of about 10 nm in diameter, were decorated by two different polymers, poly(methyl methacrylate) (PMMA) or polystyrene (PS), using radical-controlled polymerization under various processing conditions. We compared the influence of the synthesis parameters on the structural and microstructural properties of the resulting hybrid systems, with special emphasis on significantly reducing their mutual magnetic attraction. For this, we followed two routes: the first one consists of the direct grafting of bromopropionyl ester groups at the surface of the NPs, which were previously recovered and redispersed in a suitable solvent. The second route deals with an “all in solution” process, based on the decoration of NPs by oleic acid followed by ligand exchange with the desired bromopropionyl ester groups. We then built various assemblies of NPs directly on a substrate or suspended in PMMA. Conclusion: The alternative two-step strategy leads to better dispersed polymer-decorated magnetic particles, and the resulting nanohybrids can be considered as valuable building blocks for

  16. Quantifying biases in non-steady state chamber measurements of soil-atmosphere gas exchange

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Limitations of non-steady state (NSS) chamber methods for determining soil-to-atmosphere trace gas exchange rates have been recognized for several decades. Of these limitations, the so-called “chamber effect” is one of the most challenging to overcome. The chamber effect can be defined as the inhere...

  17. Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias

    SciTech Connect

    Liu, Zhiqi; Biegalski, Michael D; Hsu, Mr. S. L.; Shang, Dr. Shunli; Marker, Cassie; Liu, Jian; Li, Li; Fan, Lisha; Meyer, Tricia L; Wong, Anthony T; Nichols, John A; Chen, Deyang; You, Long; Chen, Zuhuang; Wang, Kai; Wang, Kevin; Ward, Thomas Zac; Gai, Zheng; Lee, Ho Nyung; Sefat, Athena Safa; Lauter, Valeria; Liu, Zi-Kui; Christen, Hans M.

    2015-11-05

    We achieved a high-quality epitaxial growth of inter­metallic MnPt films on oxides, with potential for multiferroic heterostructure applications. Also, antisite-stabilized spin-flipping induces ferromagnetism in MnPt films, although it is robustly antiferromagnetic in bulk. Moreover, highly ordered antiferromagnetic MnPt films exhibit superiorly large exchange coupling with a ferromagnetic layer.

  18. Mercury vapor air-surface exchange measured by collocated micrometeorological and enclosure methods - Part II: Bias and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Sommar, J.; Lin, C.-J.; Feng, X.

    2015-05-01

    Dynamic flux chambers (DFCs) and micrometeorological (MM) methods are extensively deployed for gauging air-surface Hg0 gas exchange. However, a systematic evaluation of the precision of the contemporary Hg0 flux quantification methods is not available. In this study, the uncertainty in Hg0 flux measured by the relaxed eddy accumulation (REA) method, the aerodynamic gradient method (AGM), the modified Bowen ratio (MBR) method, as well as DFC of traditional (TDFC) and novel (NDFC) designs, are assessed using a robust data set from two field intercomparison campaigns. The absolute precision in Hg0 concentration difference (ΔC) measurements is estimated at 0.064 ng m-3 for the gradient-based MBR and AGM systems. For the REA system, the parameter is Hg0 concentration (C) dependent at 0.069 + 0.022C. During the campaigns, 57 and 62 % of the individual vertical gradient measurements are found to be significantly different from 0, while for the REA technique, the percentage of significant observations is lower. For the chambers, non-significant fluxes are confined to a few night-time periods with varying ambient Hg0 concentrations. Relative bias for DFC-derived fluxes is estimated to be ~ ±10, and ~ 85% of the flux bias is within ±2 ng m-2 h-1 in absolute terms. The DFC flux bias follows a diurnal cycle, which is largely affected by the forced temperature and irradiation bias in the chambers. Due to contrasting prevailing micrometeorological conditions, the relative uncertainty (median) in turbulent exchange parameters differs by nearly a factor of 2 between the campaigns, while that in ΔC measurement is fairly consistent. The estimated flux uncertainties for the triad of MM techniques are 16-27, 12-23 and 19-31% (interquartile range) for the AGM, MBR and REA methods, respectively. This study indicates that flux-gradient-based techniques (MBR and AGM) are preferable to REA in quantifying Hg0 flux over ecosystems with low vegetation height. A limitation of all Hg0 flux

  19. Orbital Reconstruction Enhanced Exchange Bias in La0.6Sr0.4MnO3/Orthorhombic YMnO3 Heterostructures

    PubMed Central

    Zheng, Dongxing; Jin, Chao; Li, Peng; Wang, Liyan; Feng, Liefeng; Mi, Wenbo; Bai, Haili

    2016-01-01

    The exchange bias in ferromagnetic/multiferroic heterostructures is usually considered to originate from interfacial coupling. In this work, an orbital reconstruction enhanced exchange bias was discovered. As La0.6Sr0.4MnO3 (LSMO) grown on YMnO3 (YMO) suffers a tensile strain (a > c), the doubly degenerate eg orbital splits into high energy 3z2 − r2 and low energy x2 − y2 orbitals, which makes electrons occupy the localized x2 − y2 orbital and leads to the formation of antiferromagnetic phase in LSMO. The orbital reconstruction induced antiferromagnetic phase enhances the exchange bias in the LSMO/YMO heterostructures, lightening an effective way for electric-field modulated magnetic moments in multiferroic magnetoelectric devices. PMID:27090614

  20. Magnetoelectric switching of perpendicular exchange bias in Pt/Co/α-Cr{sub 2}O{sub 3}/Pt stacked films

    SciTech Connect

    Toyoki, Kentaro; Shiratsuchi, Yu Kobane, Atsushi; Nakatani, Ryoichi; Mitsumata, Chiharu; Kotani, Yoshinori; Nakamura, Tetsuya

    2015-04-20

    We report the realization of magnetoelectric switching of the perpendicular exchange bias in Pt/Co/α-Cr{sub 2}O{sub 3}/Pt stacked films. The perpendicular exchange bias was switched isothermally by the simultaneous application of magnetic and electric fields. The threshold electric field required to switch the perpendicular exchange bias was found to be inversely proportional to the magnetic field, which confirmed the magnetoelectric mechanism of the process. The observed temperature dependence of the threshold electric field suggested that the energy barrier of the antiferromagnetic spin reversal was significantly lower than that assuming the coherent rotation. Pulse voltage measurements indicated that the antiferromagnetic domain propagation dominates the switching process. These results suggest an analogy of the electric-field-induced magnetization with a simple ferromagnet.

  1. Magnetic properties of exchange biased and of unbiased oxide/permalloy thin layers: a ferromagnetic resonance and Brillouin scattering study.

    PubMed

    Zighem, F; Roussigné, Y; Chérif, S-M; Moch, P; Ben Youssef, J; Paumier, F

    2010-10-13

    Microstrip ferromagnetic resonance and Brillouin scattering are used to provide a comparative determination of the magnetic parameters of thin permalloy layers interfaced with a non-magnetic (Al(2)O(3)) or with an antiferromagnetic oxide (NiO). It results from our microstructural study that no preferential texture is favoured in the observed polycrystalline sublayers. It is shown that the perpendicular anisotropy can be monitored using an interfacial surface energy term which is practically independent of the nature of the interface. In the interval of thicknesses investigated (5-25 nm) the saturation magnetization does not significantly differ from the reported one in bulk permalloy. In-plane uniaxial anisotropy and exchange bias anisotropy are also derived from the study of the dynamic magnetic excitations and compared with our independent evaluations using conventional magnetometry.

  2. Effect of antiferromagnetic layer thickness on exchange bias, training effect, and magnetotransport properties in ferromagnetic/antiferromagnetic antidot arrays

    SciTech Connect

    Gong, W. J.; Liu, W. Feng, J. N.; Zhang, Z. D.; Kim, D. S.; Choi, C. J.

    2014-04-07

    The effect of antiferromagnetic (AFM) layer on exchange bias (EB), training effect, and magnetotransport properties in ferromagnetic (FM) /AFM nanoscale antidot arrays and sheet films Ag(10 nm)/Co(8 nm)/NiO(t{sub NiO})/Ag(5 nm) at 10 K is studied. The AFM layer thickness dependence of the EB field shows a peak at t{sub NiO} = 2 nm that is explained by using the random field model. The misalignment of magnetic moments in the three-dimensional antidot arrays causes smaller decrease of EB field compared with that in the sheet films for training effect. The anomalous magnetotransport properties, in particular positive magnetoresistance (MR) for antidot arrays but negative MR for sheet films are found. The training effect and magnetotransport properties are strongly affected by the three-dimensional spin-alignment effects in the antidot arrays.

  3. Low-temperature synthesis of K0.5FeF3 with tunable exchange bias

    NASA Astrophysics Data System (ADS)

    Xu, Qiao-Ru; Liu, Yang; Zheng, Yu-Di; Rui, Wenbin; Sheng, Yan; Shen, Xuan; Du, Jun; Xu, Mingxiang; Dong, Shuai; Wu, Di; Xu, Qingyu

    2013-09-01

    Fluorides K0.5FeF3 with tetragonal tungsten bronze structure have been fabricated by solid state reaction at low sintering temperature in the range between 150 °C and 400 °C with the assistance of crystal water during the grinding and sintering processes. Unusual magnetic properties have been observed, including positive exchange bias field (HE) with negative vertical magnetization shift (Mshift), and smaller field cooling (FC) magnetization than the zero field cooling one below 53 K. The results are explained by a core-shell structure consisting of antiferromagnetic core and spin glass (SG) shell with antiferromagnetic interfacial coupling between the pinned interface spins and the SG shell spins. The sign of HE and Mshift can be changed by increasing the cooling field in the FC process, which is attributed to the competition between the antiferromagnetic interfacial coupling and the Zeeman energy of magnetization of the SG shell.

  4. Permalloy-FeMn exchange-biased multilayers grown on flexible substrates for microwave applications

    NASA Astrophysics Data System (ADS)

    Phuoc, Nguyen N.; Xu, Feng; Ma, Yungui; Ong, C. K.

    2009-09-01

    Permalloy-FeMn multilayers deposited onto flexible substrates oriented for wide-band absorber applications were fabricated using RF sputtering deposition. The ferromagnetic resonance (FMR) frequency was tuned by changing the thickness of the Permalloy layers. Plural FMR frequencies appeared in the multilayer film due to the difference in exchange couple energies at their interfaces. A multilayer thin film with varying thickness of Permalloy layers was also fabricated with the properties of a wide-band absorber. Its range of 1-4 GHz (the absorption width where the reflection loss is less than 10 dB) appears promising for future applications.

  5. Positive exchange bias in a Ni 80Fe 20/Ni xFe 1-xO thin-film bilayer

    NASA Astrophysics Data System (ADS)

    Lin, K.-W.; Tzeng, Y.-M.; Guo, Z.-Y.; Liu, C.-Y.; van Lierop, J.

    2006-09-01

    We have measured positive exchange bias in a Ni 80Fe 20/Ni xFe 1-xO thin-film nanocrystallite system. A series of solid solution Ni xFe 1-xO 40 nm thick films capped with 25 nm thick Ni 80Fe 20 were deposited using a range of %O 2/Ar bombardment energies (i.e. End-Hall voltages). Proper tuning of the deposition conditions results in a Ni 80Fe 20/Ni xFe 1-xO (30%O 2/Ar) based bilayer that exhibits a positive exchange bias loop shift of Hex˜60 Oe at 150 K.

  6. Self Exchange Bias and Bi-stable Magneto-Resistance States in Amorphous TbFeCo and TbSmFeCo Thin Films

    NASA Astrophysics Data System (ADS)

    Ma, Chung; Li, Xiaopu; Lu, Jiwei; Poon, Joseph; Comes, Ryan; Devaraj, Arun; Spurgeon, Steven

    Amorphous ferrimagetic TbFeCo and TbSmFeCo thin films are found to exhibit strong perpendicular magnetic anisotropy. Self exchange bias effect and bi-stable magneto-resistance states are observed near compensation temperature by magnetic hysteresis loop, anomalous Hall effect and transverse magneto-resistance measurements. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb concentration distributed within the amorphous films. The observed exchange anisotropy originates from the exchange interaction between the two nanoscale amorphous phases. Exchange bias effect is used for increasing stability in spin valves and magnetic tunneling junctions. This study opens up a new platform for using amorphous ferrimagnetic thin films that require no epitaxial growth in nanodevices.. The work was supported by the Defense Threat Reduction Agency Grant and the U.S. Department of Energy.

  7. Mercury vapor air-surface exchange measured by collocated micrometeorological and enclosure methods - Part II: Bias and uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Sommar, J.; Lin, C.-J.; Feng, X.

    2015-02-01

    Dynamic flux chambers (DFCs) and micrometeorological (MM) methods are extensively deployed for gauging air-surface Hg0 gas exchange. However, a systematic evaluation of the precision of the contemporary Hg0 flux quantification methods is not available. In this study, the uncertainty in Hg0 flux measured by relaxed eddy accumulation (REA) method, aerodynamic gradient method (AGM), modified Bowen-ratio (MBR) method, as well as DFC of traditional (TDFC) and novel (NDFC) designs is assessed using a robust data-set from two field intercomparison campaigns. The absolute precision in Hg0 concentration difference (Δ C) measurements is estimated at 0.064 ng m-3 for the gradient-based MBR and AGM system. For the REA system, the parameter is Hg0 concentration (C) dependent at 0.069+0.022C. 57 and 62% of the individual vertical gradient measurements were found to be significantly different from zero during the campaigns, while for the REA-technique the percentage of significant observations was lower. For the chambers, non-significant fluxes are confined to a few nighttime periods with varying ambient Hg0 concentration. Relative bias for DFC-derived fluxes is estimated to be ~ ±10%, and ~ 85% of the flux bias are within ±2 ng m-2 h-1 in absolute term. The DFC flux bias follows a diurnal cycle, which is largely dictated by temperature controls on the enclosed volume. Due to contrasting prevailing micrometeorological conditions, the relative uncertainty (median) in turbulent exchange parameters differs by nearly a factor of two between the campaigns, while that in Δ C measurements is fairly stable. The estimated flux uncertainties for the triad of MM-techniques are 16-27, 12-23 and 19-31% (interquartile range) for the AGM, MBR and REA method, respectively. This study indicates that flux-gradient based techniques (MBR and AGM) are preferable to REA in quantifying Hg0 flux over ecosystems with low vegetation height. A limitation of all Hg0 flux measurement systems investigated

  8. Unexpected magnetism, Griffiths phase, and exchange bias in the mixed lanthanide Pr0.6Er0.4Al2

    NASA Astrophysics Data System (ADS)

    Pathak, Arjun K.; Paudyal, D.; Jayasekara, W. T.; Calder, S.; Kreyssig, A.; Goldman, A. I.; Gschneidner, K. A.; Pecharsky, V. K.

    2014-06-01

    We report an unusual coexistence of ferromagnetism and ferrimagnetism, and metamagnetism in Pr0.6Er0.4Al2. In addition, this compound retains a clear Griffiths phase behavior even at 1 kOe magnetic field and shows a large exchange bias after field cooling from the paramagnetic state. The crystal-field excitations and opposite exchange interactions between nearest-neighbor and next-nearest-neighbor rare earth sites explain these behaviors.

  9. Tunable exchange bias in dilute magnetic alloys – chiral spin glasses

    PubMed Central

    Hudl, Matthias; Mathieu, Roland; Nordblad, Per

    2016-01-01

    A unidirectional anisotropy appears in field cooled samples of dilute magnetic alloys at temperatures well below the cusp temperature of the zero field cooled magnetization curve. Magnetization measurements on a Cu(13.5 at% Mn) sample show that this anisotropy is essentially temperature independent and acts on a temperature dependent excess magnetization, ΔM. The anisotropy can be partially or fully transferred from being locked to the direction of the cooling field at lower fields to becoming locked to the direction of ΔM at larger fields, thus instead appearing as a uniaxial anisotropy. This introduces a deceiving division of the anisotropy into a superposition of a unidirectional and a uniaxial part. This two faced nature of the anisotropy has been empirically scrutinized and concluded to originate from one and the same exchange mechanism: the Dzyaloshinsky-Moriya interaction. PMID:26817418

  10. 77 FR 18309 - Patient Protection and Affordable Care Act; Establishment of Exchanges and Qualified Health Plans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ...This final rule will implement the new Affordable Insurance Exchanges (``Exchanges''), consistent with title I of the Patient Protection and Affordable Care Act of 2010 as amended by the Health Care and Education Reconciliation Act of 2010, referred to collectively as the Affordable Care Act. The Exchanges will provide competitive marketplaces for individuals and small employers to directly......

  11. 76 FR 41865 - Patient Protection and Affordable Care Act; Establishment of Exchanges and Qualified Health Plans

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-15

    ...This proposed rule would implement the new Affordable Insurance Exchanges (``Exchanges''), consistent with title I of the Patient Protection and Affordable Care Act of 2010 (Pub. L. 111-148) as amended by the Health Care and Education Reconciliation Act of 2010 (Pub. L. 111-152), referred to collectively as the Affordable Care Act. The Exchanges will provide competitive marketplaces for......

  12. Extensive and biased intergenomic nonreciprocal DNA exchanges shaped a nascent polyploid genome, Gossypium (cotton).

    PubMed

    Guo, Hui; Wang, Xiyin; Gundlach, Heidrun; Mayer, Klaus F X; Peterson, Daniel G; Scheffler, Brian E; Chee, Peng W; Paterson, Andrew H

    2014-08-01

    Genome duplication is thought to be central to the evolution of morphological complexity, and some polyploids enjoy a variety of capabilities that transgress those of their diploid progenitors. Comparison of genomic sequences from several tetraploid (AtDt) Gossypium species and genotypes with putative diploid A- and D-genome progenitor species revealed that unidirectional DNA exchanges between homeologous chromosomes were the predominant mechanism responsible for allelic differences between the Gossypium tetraploids and their diploid progenitors. Homeologous gene conversion events (HeGCEs) gradually subsided, declining to rates similar to random mutation during radiation of the polyploid into multiple clades and species. Despite occurring in a common nucleus, preservation of HeGCE is asymmetric in the two tetraploid subgenomes. At-to-Dt conversion is far more abundant than the reciprocal, is enriched in heterochromatin, is highly correlated with GC content and transposon distribution, and may silence abundant A-genome-derived retrotransposons. Dt-to-At conversion is abundant in euchromatin and genes, frequently reversing losses of gene function. The long-standing observation that the nonspinnable-fibered D-genome contributes to the superior yield and quality of tetraploid cotton fibers may be explained by accelerated Dt to At conversion during cotton domestication and improvement, increasing dosage of alleles from the spinnable-fibered A-genome. HeGCE may provide an alternative to (rare) reciprocal DNA exchanges between chromosomes in heterochromatin, where genes have approximately five times greater abundance of Dt-to-At conversion than does adjacent intergenic DNA. Spanning exon-to-gene-sized regions, HeGCE is a natural noninvasive means of gene transfer with the precision of transformation, potentially important in genetic improvement of many crop plants.

  13. Strong perpendicular exchange bias in epitaxial La(0.7)Sr(0.3)MnO3:BiFeO3 nanocomposite films through vertical interfacial coupling.

    PubMed

    Zhang, Wenrui; Chen, Aiping; Jian, Jie; Zhu, Yuanyuan; Chen, Li; Lu, Ping; Jia, Quanxi; MacManus-Driscoll, Judith L; Zhang, Xinghang; Wang, Haiyan

    2015-09-07

    An exchange bias effect with perpendicular anisotropy is of great interest owing to potential applications such as read heads in magnetic storage devices with high thermal stability and reduced dimensions. Here we report a novel approach for achieving perpendicular exchange bias by orienting the ferromagnetic/antiferromagnetic coupling in the vertical geometry through a unique vertically aligned nanocomposite (VAN) design. Our results demonstrate robust perpendicular exchange bias phenomena in micrometer-thick films employing a prototype material system of antiferromagnetic BiFeO3 and ferromagnetic La0.7Sr0.3MnO3. The unique response of exchange bias to a perpendicular magnetic field reveals the existence of exchange coupling along their vertical heterointerfaces, which exhibits a strong dependence on their strain states. This VAN approach enables a large selection of material systems for achieving perpendicular exchange bias, which could lead to advanced spintronic devices.

  14. Lamellar magnetism and exchange bias in billion-year-old metamorphic titanohematite with nanoscale ilmenite exsolution lamellae: II. Exchange-bias at 5 K after field-free cooling of NRM and after cooling in a +5 T field

    NASA Astrophysics Data System (ADS)

    Robinson, Peter; McEnroe, Suzanne A.; Jackson, M.

    2016-11-01

    This is the second of three papers investigating properties of titanohematite-bearing quartzo-feldspathic rocks that create a significant remanent magnetic anomaly in the Modum District, South Norway. The first paper provided initial magnetic results, mineralogical characterization and evidence for the presence of lamellar magnetism. In this paper, knowledge of lamellar magnetic properties is explored through experiments where ilmenite lamellae were magnetized below 57 K, and interact magnetically along interfaces with the titanohematite host. Samples with known NRM directions were placed in specific orientations in an MPMS then cooled in zero field to 5 K, where hysteresis loops were measured in fields up to 5 Tesla. This assured that results were ultimately related to the natural lamellar magnetism produced during cooling ˜ 1 billion years ago. In a second set of experiments the same oriented samples, were subjected to a +5 Tesla field then field cooled to 5 K before hysteresis experiments. The first experiments consistently produced asymmetric shifted hysteresis loops with two loop separations, one in a positive field and one in a negative field. Without exception, when the NRM was oriented toward the negative field end of the MPMS, the bimodal loop showed a dominant loop separation in a positive field. By contrast, when the NRM was oriented toward the positive field end of the MPMS, the bimodal loop showed a dominant loop separation in a negative field. Both observations are consistent with antiferromagnetic coupling between the hard magnetization of ilmenite and the more easily shifted lamellar magnetism of the hematite. The bimodal nature of the loops indicates that the NRMs are vector sums of natural lamellar moments, which are oriented both positively and negatively, and that these opposite moments control the orientations of ilmenite magnetizations when cooling through 57 K. Here, extreme exchange biases up to 1.68 Tesla were measured. The second set of

  15. Lamellar magnetism and exchange bias in billion-year-old metamorphic titanohematite with nanoscale ilmenite exsolution lamellae - II: exchange-bias at 5 K after field-free cooling of NRM and after cooling in a +5 T field

    NASA Astrophysics Data System (ADS)

    Robinson, Peter; McEnroe, Suzanne A.; Jackson, Mike

    2017-02-01

    This is the second of three papers investigating properties of titanohematite-bearing quartzo-feldspathic rocks that create a significant remanent magnetic anomaly in the Modum District, South Norway. The first paper provided initial magnetic results, mineralogical characterization and evidence for the presence of lamellar magnetism. In this paper, knowledge of lamellar magnetic properties is explored through experiments where ilmenite lamellae were magnetized below 57 K, and interact magnetically along interfaces with the titanohematite host. Samples with known NRM directions were placed in specific orientations in an MPMS then cooled in zero field to 5 K, where hysteresis loops were measured in fields up to 5 Tesla. This assured that results were ultimately related to the natural lamellar magnetism produced during cooling ˜1 billion years ago. In a second set of experiments the same oriented samples, were subjected to a +5 Tesla (T) field then field cooled to 5 K before hysteresis experiments. The first experiments consistently produced asymmetric shifted hysteresis loops with two loop separations, one in a positive field and one in a negative field. Without exception, when the NRM was oriented toward the negative field end of the MPMS, the bimodal loop showed a dominant loop separation in a positive field. By contrast, when the NRM was oriented toward the positive field end of the MPMS, the bimodal loop showed a dominant loop separation in a negative field. Both observations are consistent with antiferromagnetic coupling between the hard magnetization of ilmenite and the more easily shifted lamellar magnetism of the hematite. The bimodal nature of the loops indicates that the NRMs are vector sums of natural lamellar moments, which are oriented both positively and negatively, and that these opposite moments control the orientations of ilmenite magnetizations when cooling through 57 K. Here, extreme exchange biases up to 1.68 T were measured. The second set of

  16. Accelerated flexible protein-ligand docking using Hamiltonian replica exchange with a repulsive biasing potential

    PubMed Central

    Ostermeir, Katja; Zacharias, Martin

    2017-01-01

    A molecular dynamics replica exchange based method has been developed that allows rapid identification of putative ligand binding sites on the surface of biomolecules. The approach employs a set of ambiguity restraints in replica simulations between receptor and ligand that allow close contacts in the reference replica but promotes transient dissociation in higher replicas. This avoids long-lived trapping of the ligand or partner proteins at nonspecific, sticky, sites on the receptor molecule and results in accelerated exploration of the possible binding regions. In contrast to common docking methods that require knowledge of the binding site, exclude solvent and often keep parts of receptor and ligand rigid the approach allows for full flexibility of binding partners. Application to peptide-protein, protein-protein and a drug-receptor system indicate rapid sampling of near-native binding regions even in case of starting far away from the native binding site outperforming continuous MD simulations. An application on a DNA minor groove binding ligand in complex with DNA demonstrates that it can also be used in explicit solvent simulations. PMID:28207811

  17. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    NASA Astrophysics Data System (ADS)

    Letellier, F.; Lechevallier, L.; Lardé, R.; Le Breton, J.-M.; Akmaldinov, K.; Auffret, S.; Dieny, B.; Baltz, V.

    2014-11-01

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  18. Direct imaging of thermally-activated grain-boundary diffusion in Cu/Co/IrMn/Pt exchange-bias structures using atom-probe tomography

    SciTech Connect

    Letellier, F.; Lardé, R.; Le Breton, J.-M.; Akmaldinov, K.; Auffret, S.; Dieny, B.; Baltz, V.

    2014-11-28

    Magnetic devices are often subject to thermal processing steps, such as field cooling to set exchange bias and annealing to crystallize amorphous magnetic electrodes. These processing steps may result in interdiffusion and the subsequent deterioration of magnetic properties. In this study, we investigated thermally-activated diffusion in Cu/Co/IrMn/Pt exchange biased polycrystalline thin-film structures using atom probe tomography. Images taken after annealing at 400 °C for 60 min revealed Mn diffusion into Co grains at the Co/IrMn interface and along Pt grain boundaries for the IrMn/Pt stack, i.e., a Harrison type C regime. Annealing at 500 °C showed further Mn diffusion into Co grains. At the IrMn/Pt interface, annealing at 500 °C led to a type B behavior since Mn diffusion was detected both along Pt grain boundaries and also into Pt grains. The deterioration of the films' exchange bias properties upon annealing was correlated to the observed diffusion. In particular, the topmost Pt capping layer thickness turned out to be crucial since a faster deterioration of the exchange bias properties for thicker caps was observed. This is consistent with the idea that Pt acts as a getter for Mn, drawing Mn out of the IrMn layer.

  19. Perpendicular Exchange-Biased Magnetotransport at the Vertical Heterointerfaces in La(0.7)Sr(0.3)MnO3:NiO Nanocomposites.

    PubMed

    Zhang, Wenrui; Li, Leigang; Lu, Ping; Fan, Meng; Su, Qing; Khatkhatay, Fauzia; Chen, Aiping; Jia, Quanxi; Zhang, Xinghang; MacManus-Driscoll, Judith L; Wang, Haiyan

    2015-10-07

    Heterointerfaces in manganite-based heterostructures in either layered or vertical geometry control their magnetotransport properties. Instead of using spin-polarized tunneling across the interface, a unique approach based on the magnetic exchange coupling along the vertical interface to control the magnetotransport properties has been demonstrated. By coupling ferromagnetic La0.7Sr0.3MnO3 and antiferromagnetic NiO in an epitaxial vertically aligned nanocomposite (VAN) architecture, a dynamic and reversible switch of the resistivity between two distinct exchange biased states has been achieved. This study explores the use of vertical interfacial exchange coupling to tailor magnetotransport properties, and demonstrates their viability for spintronic applications.

  20. Exchange bias induced by the fully strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3} dead layers

    SciTech Connect

    Xie, Q. Y.; Wu, X. S.; Gao, J.; Jia, Q. J.

    2014-05-07

    A pure compressively strained La{sub 2/3}Ca{sub 1/3}MnO{sub 3} (LCMO) dead layer grown on (001)-oriented LaAlO{sub 3} substrate can show all the rich phenomenon of large bias field shift, coercive field enhancement, and high blocking temperature. The obtained exchange bias field (∼350 Oe) and the enhanced coercivity of about 1160 Oe at 5 K under 500 Oe cooling field are superior to that have been reported in LCMO-based ferromagnetic/antiferromagnetic superlattices or nanoscale systems. Our results clearly demonstrate that the inhomogeneous magnetic dead layer of LCMO can induce a strong exchange bias effect, which may be exploited as a very simple structure for spin-valve device application.

  1. Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition

    SciTech Connect

    D'Addato, Sergio; Spadaro, Maria Chiara; Luches, Paola; Valeri, Sergio; Grillo, Vincenzo; Rotunno, Enzo; Roldan Gutierrez, Manuel A.; Pennycook, Stephen J.; Ferretti, Anna Maria; Capetti, Elena; Ponti, A.

    2015-01-01

    Films of magnetic Ni@NiO core–shell nanoparticles (NPs, core diameter d ≅ 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness ts could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopy (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field Hbias is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core–shell NPs with desired magnetic properties.

  2. Establishing and Enriching School-Community Ties in Small Schools. Small Schools Network Information Exchange Number 6.

    ERIC Educational Resources Information Center

    Regional Laboratory for Educational Improvement of the Northeast & Islands, Andover, MA.

    This information packet contains 14 articles reprinted from various books and journals. Establishing and enriching school-community ties in small schools is the theme for this "Information Exchange Packet," the sixth in a series developed for Small Schools Network members. The articles and their authors are: "Skills in Building Support for…

  3. Doping dependent magnetism and exchange bias in CaMn{sub 1−x}W{sub x}O{sub 3} manganites

    SciTech Connect

    Markovich, V. Gorodetsky, G.; Fita, I.; Wisniewski, A.; Puzniak, R.; Naumov, S. V.; Mostovshchikova, E. V.; Telegin, S. V.; Jung, G.

    2014-09-07

    Magnetic properties of CaMn{sub 1−x}W{sub x}O{sub 3} (0 ≤ x ≤ 0.1) have been investigated, and the research was focused on the exchange bias (EB) phenomenon in CaMn{sub 0.93}W{sub 0.07}O{sub 3}. Magnetic ground state was found to be dependent on tungsten doping level and the following states were distinguished: (i) G-type antiferromagnetic (AFM) state with a weak ferromagnetic (FM) component at x = 0 and 0.04; (ii) mostly orbitally ordered C-type AFM at x = 0.07 and 0.1. For the studied manganites, spontaneous magnetization increases sharply with increasing doping level reaching M{sub 0} ≈ 9.5 emu/g at T = 10 K for x = 0.04, and then decreases rapidly reaching zero for x = 0.1. Exchange bias effect, manifested by vertical and horizontal shifts in the hysteresis loop for field cooled sample, has been observed in CaMn{sub 0.93}W{sub 0.07}O{sub 3}. Exchange bias field, coercivity, remanence asymmetry, and magnetic coercivity depend strongly on temperature, cooling field, and maximal measuring field. Horizontal and vertical shifts of magnetization loop sharply decrease with increasing temperature and vanish above 70 K, whereas coercivity and magnetic coercivity disappear only above 100 K (temperature of transition to the G-type AFM state). The exchange bias field H{sub EB} increases with increasing cooling field H{sub cool} and goes through a broad maximum at 40 kOe, while the remanence asymmetry increases monotonously in the entire investigated cooling field range, up to 50 kOe. For the compound with x = 0.07, the size of the FM regions ≈2 nm was estimated from the dependence of exchange bias field H{sub EB} upon H{sub cool}. It is suggested that the exchange bias originates from interface exchange coupling between small FM clusters and the G-type AFM phase inside the primary C-type orbitally ordered AFM phase.

  4. Tunability of exchange bias in Ni@NiO core-shell nanoparticles obtained by sequential layer deposition

    DOE PAGES

    D'Addato, Sergio; Spadaro, Maria Chiara; Luches, Paola; ...

    2015-01-01

    Films of magnetic Ni@NiO core–shell nanoparticles (NPs, core diameter d ≅ 12 nm, nominal shell thickness variable between 0 and 6.5 nm) obtained with sequential layer deposition were investigated, to gain insight into the relationships between shell thickness/morphology, core-shell interface, and magnetic properties. Different values of NiO shell thickness ts could be obtained while keeping the Ni core size fixed, at variance with conventional oxidation procedures where the oxide shell is grown at the expense of the core. Chemical composition, morphology of the as-produced samples and structural features of the Ni/NiO interface were investigated with x-ray photoelectron spectroscopy and microscopymore » (scanning electron microscopy, transmission electron microscopy) techniques, and related with results from magnetic measurements obtained with a superconducting quantum interference device. The effect of the shell thickness on the magnetic properties could be studied. The exchange bias (EB) field Hbias is small and almost constant for ts up to 1.6 nm; then it rapidly grows, with no sign of saturation. This behavior is clearly related to the morphology of the top NiO layer, and is mostly due to the thickness dependence of the NiO anisotropy constant. The ability to tune the EB effect by varying the thickness of the last NiO layer represents a step towards the rational design and synthesis of core–shell NPs with desired magnetic properties.« less

  5. Interfaces exchange bias and magnetic properties of ordered CoFe2O4/Co3O4 nanocomposites

    NASA Astrophysics Data System (ADS)

    Zhang, B. B.; Xu, J. C.; Wang, P. F.; Han, Y. B.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Yang, Y. T.; Gong, J.; Ge, H. L.; Wang, X. Q.

    2015-11-01

    Cobalt ferrites (CoFe2O4) nanoparticles were implanted into the ordered mesoporous cobaltosic oxide (Co3O4) nanowires to synthesize magnetic CoFe2O4/Co3O4 nanocomposites. X-ray diffraction (XRD), N2 physical absorption-desorption, transmission electron microscope (TEM) and energy disperse spectroscopy (EDS) were used to characterize the microstructure of mesoporous Co3O4 and CoFe2O4/Co3O4 nanocomposites. The percent of pore-volume of mesoporous Co3O4 nanowires was calculated to be about 41.99% and CoFe2O4 nanoparticles were revealed to exist in the mesopores of Co3O4. The magnetic behavior of both samples were investigated with superconducting quantum interference device (SQUID). Magnetization increased with the doping CoFe2O4 and decreasing temperature, while coercivity hardly changed. The exchange bias effect was obviously observed at 100 K and enhanced with the doping CoFe2O4. CoFe2O4 nanoparticles reinforced the interfaces magnetic interaction between antiferromagnetic Co3O4 and ferrimagnetic CoFe2O4.

  6. Néel walls between tailored parallel-stripe domains in IrMn/CoFe exchange bias layers

    SciTech Connect

    Ueltzhöffer, Timo Schmidt, Christoph; Ehresmann, Arno; Krug, Ingo; Nickel, Florian; Gottlob, Daniel

    2015-03-28

    Tailored parallel-stripe magnetic domains with antiparallel magnetizations in adjacent domains along the long stripe axis have been fabricated in an IrMn/CoFe Exchange Bias thin film system by 10 keV He{sup +}-ion bombardment induced magnetic patterning. Domain walls between these domains are of Néel type and asymmetric as they separate domains of different anisotropies. X-ray magnetic circular dichroism asymmetry images were obtained by x-ray photoelectron emission microscopy at the Co/Fe L{sub 3} edges at the synchrotron radiation source BESSY II. They revealed Néel-wall tail widths of 1 μm in agreement with the results of a model that was modified in order to describe such walls. Similarly obtained domain core widths show a discrepancy to values estimated from the model, but could be explained by experimental broadening. The rotation senses in adjacent walls were determined, yielding unwinding domain walls with non-interacting walls in this layer system.

  7. Negative magnetization and exchange bias in Y1 - x Prx CrO3 with (0>x>0.3)

    NASA Astrophysics Data System (ADS)

    Verdin, E.; Duran, A.; Morales, F.; Escudero, E.

    2015-03-01

    Rare earth orthochromites compounds with perovskite structure have attracted great interest because its potential applications as data storage and spintronic. We report studies of the crystalline structure, thermal, and magnetic properties performed in the compound Y1-xPrxCrO3with 0exchange bias and magnetization reversal when the magnetization-temperature (M-T) curves were measured in field cooled mode (FC). All those changes are attributed to the influence of the Dzialoshinskii-Moriya indirect interaction that we related to the octahedral distortion, because the Pr substitution affecting the Cr-O bond lengths. This work was partially supported by DGAPA-UNAM, IN103213, IN10014, CONACyT-Mexico, Project 129293, BISSNANO, and by the Institute of Sciences Project PICCO 11-7, Distrito Federal, Mexico.

  8. Fe/CoO(001) and Fe/CoO(111) bilayers: Effect of crystal orientation on the exchange bias

    NASA Astrophysics Data System (ADS)

    Młyńczak, E.; Matlak, B.; Kozioł-Rachwał, A.; Gurgul, J.; Spiridis, N.; Korecki, J.

    2013-08-01

    A comparative study of the structure and magnetism of Fe/CoO(111) and Fe/CoO(001) epitaxial bilayers was performed to investigate the role of uncompensated spins in the exchange bias (EB) phenomenon. Low-energy electron diffraction, x-ray photoelectron spectroscopy, conversion electron Mössbauer spectroscopy (CEMS), and the magneto-optic Kerr effect were used to characterize the structural and magnetic properties of the bilayers. Magnetically compensated and uncompensated CoO films were prepared using molecular beam epitaxy through the evaporation of single Co atomic layers and their subsequent oxidation (layer-by-layer technique) on MgO crystals with (001) and (111) orientations. Two-monolayer-thick 57Fe probes located on top of the oxide films and covered with 56Fe allowed for an analysis of the interfacial chemical and magnetic structure using CEMS. For both structures, submonolayer oxidation of the iron detected at the Fe/CoO interface was found to be accompanied by the formation of a mixed FeCo region. The Fe layers showed fourfold magnetocrystalline anisotropy when grown on CoO(001) and weak uniaxial anisotropy when grown on CoO(111). Although the structural quality and composition of the two structures were comparable, they exhibited distinct EB properties. A hysteresis loop shift as high as 354 Oe at 80 K was obtained for the Fe/CoO(111) bilayer, compared to only 37 Oe for the magnetically compensated Fe/CoO(001).

  9. Calculation of adsorption free energy for solute-surface interactions using biased replica-exchange molecular dynamics

    PubMed Central

    Wang, Feng; Stuart, Steven J.; Latour, Robert A.

    2009-01-01

    The adsorption behavior of a biomolecule, such as a peptide or protein, to a functionalized surface is of fundamental importance for a broad range of applications in biotechnology. The adsorption free energy for these types of interactions can be determined from a molecular dynamics simulation using the partitioning between adsorbed and nonadsorbed states, provided that sufficient sampling of both states is obtained. However, if interactions between the solute and the surface are strong, the solute will tend to be trapped near the surface during the simulation, thus preventing the adsorption free energy from being calculated by this method. This situation occurs even when using an advanced sampling algorithm such as replica-exchange molecular dynamics (REMD). In this paper, the authors demonstrate the fundamental basis of this problem using a model system consisting of one sodium ion (Na+) as the solute positioned over a surface functionalized with one negatively charged group (COO−) in explicit water. With this simple system, the authors show that sufficient sampling in the coordinate normal to the surface cannot be obtained by conventional REMD alone. The authors then present a method to overcome this problem through the use of an adaptive windowed-umbrella sampling technique to develop a biased-energy function that is combined with REMD. This approach provides an effective method for the calculation of adsorption free energy for solute-surface interactions. PMID:19768127

  10. Effect of morphology on exchange bias in NiMnSn and NiCoMnIn magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Lapa, Pavel N.; Monroe, James A.; Franco, Brian E.; Karaman, Ibrahim; Roshchin, Igor V.

    2014-03-01

    Exchange bias (EB) is one of puzzling magnetic properties of magnetic shape memory alloys (MSMA). Despite a few attempts to explain the mechanism, there is no comprehensive model describing it. The main obstacle is the lack of information about the magnetic structure of martensitic and austenite phases. In contrast to classical EB systems where the exchange coupling happens at the interface between ferromagnetic and antiferromagnetic layers, the EB in MSMA is attributed to coexistence of ferromagnetic and antiferromagnetic regions. We report the results of structural analysis obtained using wavelength-dispersive X-ray spectroscopy (WDS) and magnetic characterization of these samples. We observe a correlation of EB with the secondary heat treatment for NiCoMnIn alloys. Comparative first order reversal curve (FORC) analysis for NiMnSn samples with different heat treatment suggests a correlation between morphology and distribution of exchange bias values. Additionally, exchange bias in these alloys can be induced even after zero-field cooling by applying a constant field for 2 hours before measuring the magnetization curve. This behavior is consistent with magnetic glassiness observed in these alloys at low temperatures. The work is funded by TAMU and US NSF-DMR MMN program/MWN initiative grant 1108396.

  11. Correlation between Barrier Width, Barrier Height, and DC Bias Voltage Dependences on the Magnetoresistance Ratio in Ir-Mn Exchange Biased Single and Double Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Saito, Yoshiaki; Amano, Minoru; Nakajima, Kentaro; Takahashi, Shigeki; Sagoi, Masayuki; Inomata, Koichiro

    2000-10-01

    Dual spin-valve-type double tunnel junctions (DTJs) of Ir-Mn/CoFe/AlOx/Co90Fe10/AlOx/CoFe/Ir-Mn and spin-valve-type single tunnel junctions (STJs) of Ir-Mn/CoFe/AlOx/CoFe/Ni-Fe were fabricated using an ultrahigh vacuum sputtering system, conventional photolithography and ion-beam milling. The STJs could be fabricated with various barrier heights by changing the oxidization conditions during deposition and changing the annealing temperature after deposition, while the AlOx layer thickness remained unchanged. There was a correlation between barrier width, height estimated using Simmons’ expressions, and dc bias voltage dependence on the MR ratio. The VB dependence on the tunneling magnetoresistance (TMR) ratio was mainly related to the barrier width, and the decrease in the TMR ratio with increasing bias voltage is well explained, taking into account the spin-independent two-step tunneling via defect states in the barrier, as a main mechanism, at room temperature. Under optimized oxidization and annealing conditions, the maximum TMR ratio at a low bias voltage, and the dc bias voltage value at which the TMR ratio decreases in value by half (V1/2) were 42.4% and 952 mV in DTJs, and 49.0% and 425 mV in STJs, respectively.

  12. Reentrant spin-glass behavior and bipolar exchange-bias effect in "Sn" substituted cobalt-orthotitanate

    NASA Astrophysics Data System (ADS)

    Nayak, S.; Joshi, D. C.; Krautz, M.; Waske, A.; Eckert, J.; Thota, S.

    2016-01-01

    We report the co-existence of longitudinal ferrimagnetic behavior with Néel temperature TN ˜ 46.1 K and reentrant transverse spin-glass state at 44.05 K in Tin (Sn) doped cobalt-orthotitanate (Co2TiO4). The ferrimagnetic ordering is resulting from different magnetic moments of Co2+ on the A-sites (3.87 μB) and B-sites (5.069 μB). The magnetic compensation temperature (TCOMP) shifts from 31.74 K to 27.1 K when 40 at. % of "Sn4+" substitutes "Ti4+" at B-sites where the bulk-magnetization of two-sublattices balance each other. For T > TN, the dc-magnetic susceptibility (χdc = M/Hdc) fits well with the Néel's expression for the two-sublattice model with antiferromagnetic molecular field constants NBB ˜ 15.44, NAB ˜ 32.01, and NAA ˜ 20.88. The frequency dependence of ac-magnetic susceptibility χac data follows the Vogel-Fulcher law, and the power-law of critical slowing-down with "zν" = 6.01 suggests the existence of spin-clusters (where "z" and "ν" being dynamic critical-exponent and correlation length of critical-exponent, respectively). This system exhibits unusual hysteresis loops with large bipolar exchange-bias effect (HEB ˜ 13.6 kOe at 7 K) after zero-field cooling process from an un-magnetized state, and a dramatic collapse of remanence (MR) and coercive field (HC) across TCOMP. The possible origins of such anomalous characteristics were discussed.

  13. Giant spontaneous exchange bias triggered by crossover of superspin glass in Sb-doped Ni50Mn38Ga12 Heusler alloys

    PubMed Central

    Tian, Fanghua; Cao, Kaiyan; Zhang, Yin; Zeng, Yuyang; Zhang, Rui; Chang, Tieyan; Zhou, Chao; Xu, Minwei; Song, Xiaoping; Yang, Sen

    2016-01-01

    A spontaneous exchange bias (SEB) discovered by Wang et al. [Phys. Rev. Lett. 106 (2011) 077203.] after zero-field cooling (ZFC) has attracted recent attention due to its interesting physics. In this letter, we report a giant SEB tuned by Sb-doping in Ni50Mn38Ga12-xSbx Heusler alloys. Such an SEB was switched on below the blocking temperature of approximately 50 K. The maximum exchange bias HE can arrive at 2930 Oe in a Ni50Mn38Ga10Sb2 sample after ZFC to 2 K. Further studies showed that this SEB was attributable to interaction of superspin glass (SSG) and antiferromagnetic matix, which was triggered by the crossover of SSG from canonical spin glass to a cluster spin glass. Our results not only explain the underlying physics of SEB, but also provide a way to tune and control the SEB performance. PMID:27478090

  14. Large exchange bias enhancement in (Pt(or Pd)/Co)/IrMn/Co trilayers with ultrathin IrMn thanks to interfacial Cu dusting

    SciTech Connect

    Vinai, G.; Moritz, J.; Bandiera, S.; Prejbeanu, I. L.; Dieny, B.

    2014-04-21

    The magnitude of exchange bias (H{sub ex}) at room temperature can be significantly enhanced in IrMn/Co and (Pt(or Pd)/Co)/IrMn/Co structures thanks to the insertion of an ultrathin Cu dusting layer at the IrMn/Co interface. The combination of trilayer structure and interfacial Cu dusting leads to a three-fold increase in H{sub ex} as compared to the conventional IrMn/Co bilayer structure, with an increased blocking temperature (T{sub B}) and a concave curvature of the temperature dependence H{sub ex}(T), ideal for improved Thermally Assisted-Magnetic Random Access Memory storage layer. This exchange bias enhancement is ascribed to a reduction of the spin frustration at the IrMn/Co interface thanks to interfacial Cu addition.

  15. Charge transfer-induced magnetic exchange bias and electron localization in (111)- and (001)-oriented LaNiO3/LaMnO3 superlattices

    NASA Astrophysics Data System (ADS)

    Wei, Haoming; Barzola-Quiquia, Jose Luis; Yang, Chang; Patzig, Christian; Höche, Thomas; Esquinazi, Pablo; Grundmann, Marius; Lorenz, Michael

    2017-03-01

    High-quality lattice-matched LaNiO3/LaMnO3 superlattices with monolayer terrace structure have been grown on both (111)- and (001)-oriented SrTiO3 substrates by pulsed laser deposition. In contrast to the previously reported experiments, a magnetic exchange bias is observed that reproducibly occurs in both (111)- and (001)-oriented superlattices with the thin single layers of 5 and 7 unit cells, respectively. The exchange bias is theoretically explained by charge transfer-induced magnetic moments at Ni atoms. Furthermore, magnetization data at low temperature suggest two magnetic phases in the superlattices, with Néel temperature around 10 K. Electrical transport measurements reveal a metal-insulator transition with strong localization of electrons in the superlattices with the thin LaNiO3 layers of 4 unit cells, in which the electrical transport is dominated by two-dimensional variable range hopping.

  16. Study of angular dependence of exchange bias and misalignment in uniaxial and unidirectional anisotropy in NiFe(111)/FeMn(111)/CoFeB(amorphous) stack

    NASA Astrophysics Data System (ADS)

    Singh, Braj Bhusan; Chaudhary, Sujeet

    2015-07-01

    We report the investigation of the in-plane azimuthal angular dependence of the magnetization reversal in the ion beam sputtered exchanged biased NiFe(111)/FeMn(111)/CoFeB(amorphous) stack. Compared to the as-deposited case, the magnetic annealing resulted in 3 fold enhancement in exchange bias but decrease in coercivity. The observed cosine dependence of exchange biased CoFeB layer on the in-plane azimuthal angle of applied field is corroborated with Meiklejohn and Bean model. The training effect associated with the exchange bias showed unconventional increase in coercivity after first cycle of hysteresis loop, while the exchange bias decreases sharply, and for subsequent cycles the exchange bias follows the empirical relation based on the energy dissipation in the AF layer. The ferromagnetic resonance (FMR) measurements also exhibited the in-plane azimuthal angle dependence of the magnetic resonance field indicating that the uniaxial and unidirectional anisotropies are not collinear, although they lie in the same plane. However, no misalignment between the unidirectional anisotropy and the exchange bias direction is observed. The misalignment angle between the uniaxial and unidirectional anisotropy, as measured by FMR, is found to be 10° and 14° for CoFeB and NiFe, respectively. This misalignment is attributed to the interface roughness as revealed by x-ray reflectance measurements.

  17. Influence of time dependent longitudinal magnetic fields on the cooling process, exchange bias and magnetization reversal mechanism in FM core/AFM shell nanoparticles: a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Yüksel, Yusuf; Akıncı, Ümit

    2016-12-01

    Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.

  18. Modulated exchange bias in NiFe/CoO/α-Fe2O3 trilayers and NiFe/CoO bilayers

    NASA Astrophysics Data System (ADS)

    Li, X.; Lin, K.-W.; Yeh, W.-C.; Desautels, R. D.; van Lierop, J.; Pong, Philip W. T.

    2017-02-01

    While the exchange bias in ferromagnetic/antiferromagnetic (FM/AF) bilayer and FM1/AF/FM2 trilayer configurations has been widely investigated, the role of an AF2 layer in FM/AF1/AF2 trilayer configurations is still not well understood. In this work, the magnetic properties of NiFe/CoO, NiFe/α-Fe2O3 bilayers, and NiFe/CoO/α-Fe2O3 trilayer were studied comparatively. The microstructure and chemical composition were characterized. Temperature dependent magnetometry reveals increased irreversibility temperature in NiFe/CoO/α-Fe2O3 trilayer compared with NiFe/CoO bilayer. The magnetic hysteresis loops show that the exchange bias (Hex) and coercivity (Hc) depend strongly on the anisotropy of AF layer (CoO, α-Fe2O3 and CoO/α-Fe2O3). Our work shows that the AF1/AF2 interfacial interactions can be used effectively for tuning the exchange bias in FM/AF1/AF2 trilayers.

  19. Exchange bias effect in Au-Fe3O4 dumbbell nanoparticles induced by the charge transfer from gold

    SciTech Connect

    Feygenson, Mikhail; Bauer, John C; Gai, Zheng; Marques, Carlos; Aronson, Meigan C.; Teng, Xiaowei; Su, Dong; Stanic, Vesna; Urban, Volker S; Kevin, Beyer; Dai, Sheng

    2015-08-10

    We have studied the origin of the exchange bias effect in the Au-Fe3O4 dumbbell nanoparticles in two samples with different sizes of the Au seed nanoparticles (4.1 and 2.7 nm) and same size of Fe3O4 nanoparticles (9.8 nm). The magnetization, small-angle neutron scattering, synchrotron x-ray diffraction and scanning transmission electron microscope measurements determined the antiferromagnetic FeO wüstite phase within Fe3O4 nanoparticles, originating at the interface with the Au nanoparticles. The interface between antiferromagnetic FeO and ferrimagnetic Fe3O4 is giving rise to the exchange bias effect. The strength of the exchange bias fields depends on the interfacial area and lattice mismatch between both phases. We propose that the charge transfer from the Au nanoparticles is responsible for a partial reduction of the Fe3O4 into FeO phase at the interface with Au nanoparticles. The Au-O bonds are formed across the interface to accommodate an excess of oxygen released during the reduction of magnetite.

  20. Synthesis and controllable oxidation of monodisperse cobalt-doped wüstite nanoparticles and their core-shell stability and exchange-bias stabilization.

    PubMed

    Chen, Chih-Jung; Chiang, Ray-Kuang; Kamali, Saeed; Wang, Sue-Lein

    2015-09-14

    Cobalt-doped wüstite (CWT), Co0.33Fe0.67O, nanoparticles were prepared via the thermal decomposition of CoFe2-oleate complexes in organic solvents. A controllable oxidation process was then performed to obtain Co0.33Fe0.67O/CoFe2O4 core-shell structures with different core-to-shell volume ratios and exchange bias properties. The oxidized core-shell samples with a ∼4 nm CoFe2O4 shell showed good resistance to oxygen transmission. Thus, it is inferred that the cobalt ferrite shell provides a better oxidation barrier performance than magnetite in the un-doped case. The hysteresis loops of the oxidized 19 nm samples exhibited a high exchange bias field (H(E)), an enhanced coercivity field (H(C)), and a pronounced vertical shift, thus indicating the presence of a strong exchange bias coupling effect. More importantly, the onset temperature of H(E) was found to be higher than 200 K, which suggests that cobalt doping increases the Néel temperature (T(N)) of the CWT core. In general, the results show that the homogeneous dispersion of Co in iron precursors improves the stability of the final CWT nanoparticles. Moreover, the CoFe2O4 shells formed following oxidation increase the oxidation resistance of the CWT cores and enhance their anisotropy energy.

  1. Reentrant spin-glass behavior and bipolar exchange-bias effect in “Sn” substituted cobalt-orthotitanate

    SciTech Connect

    Nayak, S.; Joshi, D. C.; Thota, S.; Krautz, M.; Waske, A.; Eckert, J.

    2016-01-28

    We report the co-existence of longitudinal ferrimagnetic behavior with Néel temperature T{sub N} ∼ 46.1 K and reentrant transverse spin-glass state at 44.05 K in Tin (Sn) doped cobalt-orthotitanate (Co{sub 2}TiO{sub 4}). The ferrimagnetic ordering is resulting from different magnetic moments of Co{sup 2+} on the A-sites (3.87 μ{sub B}) and B-sites (5.069 μ{sub B}). The magnetic compensation temperature (T{sub COMP}) shifts from 31.74 K to 27.1 K when 40 at. % of “Sn{sup 4+}” substitutes “Ti{sup 4+}” at B-sites where the bulk-magnetization of two-sublattices balance each other. For T > T{sub N}, the dc-magnetic susceptibility (χ{sub dc} = M/H{sub dc}) fits well with the Néel's expression for the two-sublattice model with antiferromagnetic molecular field constants N{sub BB} ∼ 15.44, N{sub AB} ∼ 32.01, and N{sub AA} ∼ 20.88. The frequency dependence of ac-magnetic susceptibility χ{sub ac} data follows the Vogel-Fulcher law, and the power-law of critical slowing-down with “zν” = 6.01 suggests the existence of spin-clusters (where “z” and “ν” being dynamic critical-exponent and correlation length of critical-exponent, respectively). This system exhibits unusual hysteresis loops with large bipolar exchange-bias effect (H{sub EB} ∼ 13.6 kOe at 7 K) after zero-field cooling process from an un-magnetized state, and a dramatic collapse of remanence (M{sub R}) and coercive field (H{sub C}) across T{sub COMP}. The possible origins of such anomalous characteristics were discussed.

  2. Positive to negative zero-field cooled exchange bias in La0.5Sr0.5Mn0.8Co0.2O3 ceramics

    PubMed Central

    Shang, Cui; Guo, Shaopu; Wang, Ruilong; Sun, Zhigang; Xiao, Haibo; Xu, Lingfang; Yang, Changping; Xia, Zhengcai

    2016-01-01

    Exchange bias effect obtained after zero-field cooling from unmagnetized state usually exhibits a shift of hysteresis loop negative to the direction of the initial magnetic field, known as negative zero-field cooled exchange bias. Here, positive zero-field cooled exchange bias is reported in La0.5Sr0.5Mn0.8Co0.2O3 ceramics. In addition, a transition from positive to negative exchange bias has been observed with increasing initial magnetization field and measurement temperature. Based on a simple spin bidomain model with variable interface, two type of interfacial spin configuration formed during the initial magnetization process are proposed to interpret the observed phenomenon. PMID:27168382

  3. Tuning the exchange bias in NiFe/Fe-oxide bilayers by way of different Fe-oxide based mixtures made with an ion-beam deposition technique.

    PubMed

    Lin, K W; Kol, P H; Guo, Z Y; Ouyang, H; van Lierop, J

    2007-01-01

    We have investigated the structural and magnetic properties of ion-beam deposited polycrystalline NiFe (25 nm)/Fe-oxide (35 nm) bilayers. A film prepared with an assist beam O2 to Ar gas ratio of 0% during deposition had a bottom layer that consisted of pure b.c.c. Fe (a = 2.87 A) whereas films prepared with 19%O2/Ar and 35%O2/Ar had either Fe3O4 (a = 8.47 angstroms) or alpha-Fe2O3 (a = 5.04 angstroms, c = 13.86 angstroms) bottom layers, respectively. Cross-sectional transmission electron microscopy revealed a smooth interface between the top nano-columnar NiFe and bottom nano-columnar Fe-oxide layer for all films. At room temperature, the observed coercivity (Hc approximately 25 Oe) for a film prepared with 19% O2/Ar indicates the existence of a magnetically hard ferrimagnetic Fe3O4 phase that is enhancing the plain NiFe (Hc approximately 2 Oe) by way of exchange coupling. A significant amount of exchange bias is observed below 50 K, and at 10 K the size of exchange bias hysteresis loops shift increases with increasing oxygen in the films. Furthermore, the strongest exchange coupling (H(ex) approximately 135 Oe at 10 K) is with alpha-Fe2O3 (35% O2/Ar) as the bottom film layer. This indicates that the pure antiferromagnetic phases work better than ferrimagnetic phases when in contact with ferromagnetic NiFe. H(ex) (T) is well described by an effective AF domain wall energy that creates an exchange field with a (1 - T/T(crit)) temperature dependence. Hc (T) exhibits three distinct regimes of constant temperature that may indicate the existence of different AF spin populations that couple to the FM layer at different temperatures.

  4. 78 FR 15553 - Patient Protection and Affordable Care Act; Establishment of Exchanges and Qualified Health Plans...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-11

    ... 45 CFR Parts 155 and 156 RIN 0938-AR76 Patient Protection and Affordable Care Act; Establishment of... of the Patient Protection and Affordable Care Act and the Health Care and Education Reconciliation Act of 2010 (collectively referred to as the Affordable Care Act) related to the Small Business...

  5. Magnetic structures at the ferromagnetic NiFe and antiferromagnetic NiMn interface in exchange-biased films: Role of noncollinear magnetism and roughness

    NASA Astrophysics Data System (ADS)

    Nakamura, Kohji; Freeman, A. J.; Wang, Ding-Sheng; Zhong, Lieping; Fernandez-de-Castro, Juan

    2002-01-01

    The magnetic structures at the compensated ferromagnetic/antiferromagnetic (FM/AFM) interface of exchange bias FM NiFe/AFM NiMn films were determined with first-principles full-potential linearized augmented plane-wave calculations including noncollinear magnetism. The results predict that the magnetic moments of the FM NiFe layer lie perpendicular to those of the AFM NiMn layer. The intra-atomic noncollinear magnetism that arises near the interface is found to play an important role in stabilizing the perpendicular coupling that leads to a large biquadratic exchange energy (BEE). The BEE is large enough to require formation of a magnetic domain wall (with an estimated thickness ~370 Å) in the AFM NiMn layers, which may account for the observed large coercivity and exchange bias. We also discuss magnetic structures at a rough FM/AFM interface-as simulated in model calculations with the inclusion of line step defects-which may contribute to a unidirectional magnetic anisotropy.

  6. Microscopic model for exchange bias from grain-boundary disorder in a ferromagnet/antiferromagnet thin film with a nanocrystalline microstructure

    SciTech Connect

    Cortie, D. L.; Biternas, A. G.; Chantrell, R. W.; Wang, X. L.; Klose, F.

    2014-07-21

    Monte Carlo spin simulations were coupled to a Voronoi microstructure-generator to predict the magnitude and behavior of exchange bias in a ferromagnet/antiferromagnet (AF) thin film bilayer with a nanocrystalline microstructure. Our model accounts for the effects of irregular grain-shapes, finite-sized particles, and the possible presence of local random-fields originating from the antiferromagnet's grain-boundary regions. As the grain-boundary represents a crystal-structure distortion, we model the local effect on the exchange constants in the Gaussian approximation which can cause regions resembling a spin glass confined to an unusual 2D topology. Although an ensemble of completely disconnected AF grains isolated by non-magnetic barriers provides a small exchange bias, the introduction of a spin-glass network at the boundaries causes a four-fold enhancement in the magnitude of the loop-shift. This implies the importance of local grain-boundary behavior in defect-engineered antiferromagnets.

  7. EXCHANGE

    SciTech Connect

    Boltz, J.C.

    1992-09-01

    EXCHANGE is published monthly by the Idaho National Engineering Laboratory (INEL), a multidisciplinary facility operated for the US Department of Energy (DOE). The purpose of EXCHANGE is to inform computer users about about recent changes and innovations in both the mainframe and personal computer environments and how these changes can affect work being performed at DOE facilities.

  8. Negative magnetization and the tunable exchange bias field in LaCr0.8Mn0.2O3

    NASA Astrophysics Data System (ADS)

    Bora, Tribedi; Ravi, S.

    2014-05-01

    Manganese substituted Lanthanum chromite LaCr0.8Mn0.2O3 exhibits negative magnetization with decrease in temperature under the field cooled (FC) condition for the applied field H≤2000 Oe. The maximum magnetic compensation temperature, (Tcomp) was 147 K. A reentrant positive magnetization was observed at T≤50 K due to low temperature transition. The negative magnetization is explained by considering the paramagnetic moment of Mn ions under the influence of negative internal field. Measurement of magnetic hysteresis loops under FC condition shows the presence of exchange bias field at T

  9. Thermally driven asymmetric responses of grains versus spin-glass related distributions of blocking temperature in exchange biased Co/IrMn bilayers

    SciTech Connect

    Baltz, V.

    2013-02-11

    Controlling ferromagnetic/antiferromagnetic blocking temperatures in exchange biased based devices appears crucial for applications. The blocking temperature is ascribed to the ability of both antiferromagnetic grains and interfacial spin-glass-like phases to withstand ferromagnetic magnetization reversal. To better understand the respective contributions of grains versus spin-glass, blocking temperature distributions were measured after various thermal treatments for cobalt/iridium-manganese bilayers. The high-temperature contribution linked to antiferromagnetic grains shifts towards lower temperatures above a threshold thermal annealing. In contrast, the occurrence and evolution of training effects for the low-temperature contribution only agree with its inferred interfacial spin-glass-like origin.

  10. Lamellar magnetism and exchange bias in billion-year-old titanohematite with nanoscale ilmenite exsolution lamellae: I. Mineral and magnetic characterization

    NASA Astrophysics Data System (ADS)

    McEnroe, Suzanne A.; Robinson, Peter; Miyajima, Nobuyoshi; Fabian, Karl; Dyar, Darby; Sklute, Elizabeth

    2016-07-01

    Recent high-resolution aeromagnetic surveys in South Norway have revealed numerous remanent anomalies over Mesoproterozoic metamorphic rocks. Studies on the nature of the minerals that are the remanent carriers has led to discoveries of titanohematite samples with unusual magnetic properties caused by nanoscale exsolution lamellae with their related lamellar magnetism. Here we focus on a rock unit dominated by quartz-plagioclase-biotite granulite containing titanohematite grains with a strong lattice-preferred orientation parallel to regional foliation. When samples with their natural remanent magnetization (NRM), acquired nearly 1 billion years ago, are cooled to 10 K and hysteresis loops measured, these loops show bi-modal exchange bias caused by the magnetism induced within the ilmenite by antiferromagnetic coupling with the adjacent lamellar NRM. By contrast when the samples are cooled in a strong magnetic field (1.5 Tesla), this results in unimodal lamellar magnetism, and, below the TN of ilmenite it adopts a consistent negative orientation, giving rise to unimodal negative exchange bias of >500 mT. The results presented here cover the chemical and magnetic properties, Mossbauer results and transmission electron microscopy of the titanohematite and ilmenite lamellae. Initial magnetic experiments indicated the shifts found in the exchange-bias experiments were directly related to the orientation of the sample to the applied field and the initial state of the NRM. In most samples with these unusual magnetic properties, ilmenite lamellae could not be seen in an optical or a scanning electron microscope. However magnetic experiments gave proof of the presence of ilmenite, later confirmed by Mössbauer spectroscopy. Several attempts were made to identify ilmenite in TEM studies, finally successful in showing ilmenite lamellae parallel to (001) of hematite with thicknesses ˜1.2 to 1.7 nm and aspect ratios 7-13. Here we compare new TEM images and the magnetic

  11. Exchange bias in Fe/Fe{sub 3}O{sub 4} core-shell magnetic nanoparticles mediated by frozen interfacial spins.

    SciTech Connect

    Ong, Q. K.; Wei, A.; Lin, X.-M.; Center for Nanoscale Materials; Purdue Univ.

    2009-10-01

    The magnetization curves of monodisperse Fe/Fe{sub 3}O{sub 4} core-shell and Fe{sub 3}O{sub 4} hollow-shell nanoparticles reveal an unusual exchange-bias effect. Hysteresis measurements of core-shell particles at 5 K after field cooling exhibit a large loop shift associated with unidirectional anisotropy whereas Fe{sub 3}O{sub 4} hollow-shell nanoparticles support much smaller shifts. Both core-shell and hollow-shell particles exhibit sharp demagnetization jumps at low fields associated with a sudden switching of shell moments. Temperature-dependent magnetization of core-shell particles at high fields shows a deviation between field-cooled and zero-field-cooled curves below 30 K, suggesting the presence of frozen spins at the interface. These frozen interfacial spins play an important role in mediating the exchange coupling between the ferromagnetic core and ferrimagnetic shell.

  12. Observation of giant exchange bias in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy

    SciTech Connect

    Sharma, Jyoti; Suresh, K. G.

    2015-02-16

    We report a giant exchange bias (EB) field of 3520 Oe in bulk Mn{sub 50}Ni{sub 42}Sn{sub 8} Heusler alloy. The low temperature magnetic state of the martensite phase has been studied by DC magnetization and AC susceptibility measurements. Frequency dependence of spin freezing temperature (T{sub f}) on critical slowing down relation and observation of memory effect in zero field cooling mode confirms the super spin glass (SSG) phase at low temperatures. Large EB is attributed to the strong exchange coupling between the SSG clusters formed by small regions of ferromagnetic order embedded in an antiferromagnetic (AFM) matrix. The temperature and cooling field dependence of EB have been studied and related to the change in unidirectional anisotropy at SSG/AFM interface. The training effect also corroborates with the presence of frozen (SSG) moments at the interface and their role in EB.

  13. In-plane magnetic anisotropies in Ni/FeMn and Ni90Fe10/FeMn exchange biased bilayers

    NASA Astrophysics Data System (ADS)

    Pires, M. J. M.; de Oliveira, R. B.; Martins, M. D.; Ardisson, J. D.; Macedo, W. A. A.

    2007-12-01

    The in-plane magnetic anisotropy in Ni/FeMn and Ni90Fe10/FeMn exchange-biased bilayers prepared by co-evaporation under molecular beam epitaxy conditions is investigated employing longitudinal magneto-optical Kerr effect (MOKE) and ferromagnetic resonance (FMR). The exchange anisotropy was induced by a magnetic field cooling immediately after the deposition of the bilayers. Besides the induced term, the presence of an additional uniaxial anisotropy in the FM layers was detected both by MOKE and FMR, and the characteristic directions of these two anisotropy terms are not coincident. The interplay between the anisotropy contributions is discussed considering micromagnetic simulations and the in-plane resonance condition for different magnetic field orientation. X-ray diffraction, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy were used to complement the characterization of the samples.

  14. A Proposal for Establishing a Free Market Basis for Plant Genome Information Exchange

    SciTech Connect

    Slezak, T.

    2001-09-26

    The current situation of genomics information exchange is reminiscent of some Third World cities, where residents despair they will ever get official utility service and therefore tap into power, phone, and gas sources with makeshift connections. Thus, each genomics grant spawns yet another idiosyncratic Web site, with makeshift links to whatever random Web sites the PI is most familiar with. There are few standards for semantics of data, and fewer standards for automating the interchange or integration of these autonomous Web sites. The US Plant Genome Initiative (PGI) has been enthusiastic contributor to this proliferation of chaotic Web sites, but to its credit it appears to be the first major program to attempt to find a solution. Some of us from the earliest days of the Human Genome Program have been acutely aware of the problems of genomic data integration, since long before the Web appeared and made the problem exponentially harder to resolve. We have seen large scale attempts, and subsequent failures or inadequacies, of many potential solution approaches (i.e., database federation, classical data warehousing, centralized data, etc.) and believe we know at least some of the reasons they still remain inadequate. It is our opinion that the only solution that has a chance of succeeding is one that considers the overall economics of genomics data production, sharing, and integration. We believe that attempting to create a kind of Free Market for data created under the Plant Genome Initiative will represent the most practical, powerful, and cost-effective approach to dealing with the broad range of plant genome information that has been unleashed.

  15. Monitoring of lateral hyporheic exchange fluxes and hyporheic travel times at the newly established Steinlach Test Site, Germany

    NASA Astrophysics Data System (ADS)

    Osenbrück, K.; Lemke, D.; Schwientek, M.; Callisto Alvarez, M. C.; Wöhling, Th.; Cirpka, O. A.

    2012-04-01

    Hyporheic exchange is believed to significantly contribute to the retention and degradation of pollutants during downstream transport in surface waters. A better understanding of the relevant hydraulic drivers of stream water infiltration into the hyporheic zone in conjunction with the associated biogeochemical processes is needed in order to quantify the self-cleaning potential of rivers and to predict water quality changes. Key parameters include the spatial and temporal variation of stream water infiltration (i.e. hyporheic exchange) and the distribution of hyporheic travel times. In this study we present the setup, performance and first results of a multi-disciplinary hyporheic monitoring program at the newly established Steinlach Test Site (STS) near Tübingen in Southern Germany. The STS covers an area of about 0.6 ha and consists of a river loop located within a sub-catchment of the Neckar river. The main objective is the quantification and interrelation of hyporheic processes including hyporheic exchange, travel-time distributions, microbial community dynamics and biochemical pollutant turnover at the groundwater-surface water interface. Here we will focus on the extent and time scale of hyporheic exchange fluxes at the STS derived from time series of temperature (T), specific electrical conductivity (EC), and δ18O of water. The STS is equipped with more than 30 piezometers, most of them containing automatic water level, T and EC probes. Additional water samples for major ions, stable isotopes and other water quality parameters were taken in the course of flood events in summer 2011. The sand and gravel aquifer in the subsurface of the STS is characterised by a complex geometry with heterogeneous hydraulic conductivity. Low residence times in the southern part are confirmed by a small to negligible response in EC and T at the respective piezometers compared to the large variation of EC in the stream water. Using deconvolution techniques, a mean travel time

  16. Intriguing photo-control of exchange bias in BiFeO3/La2/3Sr1/3MnO3 thin films on SrTiO3 substrates.

    PubMed

    Sung, Kil Dong; Lee, Tae Kwon; Jung, Jong Hoon

    2015-01-01

    To date, electric fields have been widely used to control the magnetic properties of BiFeO3-based antiferromagnet/ferromagnet heterostructures through application of an exchange bias. To extend the applicability of exchange bias, however, an alternative mechanism to electric fields is required. Here, we report the photo-control of exchange bias in BiFeO3/La2/3Sr1/3MnO3 thin films on an SrTiO3 substrate. Through an ex situ pulsed laser deposition technique, we successfully synthesized epitaxial BiFeO3/La2/3Sr1/3MnO3 thin films on SrTiO3 substrates. By measuring magnetoresistance under light illumination, we investigated the effect of light illumination on resistance, exchange bias, and coercive field in BiFeO3/La2/3Sr1/3MnO3 thin films. After illumination of red and blue lights, the exchange bias was sharply reduced compared to that measured in the dark. With increasing light intensity, the exchange bias under red and blue lights initially decreased to zero and then appeared again. It is possible to reasonably explain these behaviors by considering photo-injection from SrTiO3 and the photo-conductivity of La2/3Sr1/3MnO3. This study may provide a fundamental understanding of the mechanism underlying photo-controlled exchange bias, which is significant for the development of new functional spintronic devices.

  17. Exchange bias in sputtered FeNi/FeMn systems: Effect of short low-temperature heat treatments

    NASA Astrophysics Data System (ADS)

    Savin, Peter; Guzmán, Jorge; Lepalovskij, Vladimir; Svalov, Andrey; Kurlyandskaya, Galina; Asenjo, Agustina; Vas'kovskiy, Vladimir; Vazquez, Manuel

    2016-03-01

    Short (5 min) post-deposition thermal treatments under magnetic field at low temperature (up to 200 °C) performed in exchange-coupled FeNi(40 nm)/FeMn(20 nm) bilayer thin films prepared by magnetron sputtering are shown to be effective to significantly modify their exchange field (from around 40 Oe down to 27 Oe) between FeNi and FeMn layers. A similar exchange field decrease was observed for the first deposited FeNi layer of the FeNi(40 nm)/FeMn(20 nm)/FeNi(40 nm) trilayer films after the same thermal treatments. The exchange field value for the second FeNi layer was not substantially changed. The X-ray diffraction patterns indicates that such a heat treatment has no effect on the grain size and crystalline texture of the films, while atomic force microscope studies reveal an increase of the surface roughness after the treatment which is more noticeable in the case of the trilayer film. Analysis of the experimental results leads us to conclude that the variations of the exchange field after heat treatment are likely caused by a modification of interfacial roughness and/or interfacial magnetic structure, but unlikely by the changes in the microstructure and/or changes of composition of the antiferromagnetic FeMn layer.

  18. Brillouin Light Scattering study of the rotatable magnetic anisotropy in exchange biased bilayers of Ni81 Fe19 Ir20 Mn80

    NASA Astrophysics Data System (ADS)

    Rodríguez, Roberto; Oliveira, Alexandre; Estrada, Francisco; Santos, Obed; Azevedo, Antonio; Rezende, Sergio

    It is known that when a ferromagnet (FM) is in atomic contact with an antiferromagnet (AF) the exchange coupling between the FM and AF spins at the interface induces a unidirectional anisotropy in the ferromagnetic film. This effect is known as exchange bias (EB). Despite the large amount of research on this topic there are still several aspects of the EB mechanism that are not well understood. One of this aspects is the origin of the rotatable anisotropy in polycrystalline AFs. By means of Brillouin Light Scattering (BLS) measurements, we investigated the dependence of the rotatable anisotropy field HRA and exchange field HE with the magnitude of the external magnetic field (Ho) in FM/AM bilayers of Ni81Fe19(10nm)/Ir20Mn80(tAF) . We developed an algorithm to numerically fit the in-plane angular dependence of the magnon frequency, at a fixed value of Ho measured by BLS. From the fit parameters we were able to investigate HRA and HE dependency on Ho. The results reveal that HRA value depends on Ho, so we argue that AF grain distribution at the interface is partially modified by the applied field strength. Contrary to this, the relation between HE and Ho is not straightforward, remaining constant at high values of Ho.

  19. Probing the ground state and zero-field cooled exchange bias by magnetoresistance measurement in Mn50Ni41Sn9 ribbon

    NASA Astrophysics Data System (ADS)

    Chen, Jiyun; Tu, Ruikang; Fang, Xiaoting; Gu, Quanchao; Zhou, Yanying; Cui, Rongjing; Han, Zhida; Zhang, Lei; Fang, Yong; Qian, Bin; Zhang, Chengliang; Jiang, Xuefan

    2017-03-01

    Recently, a new type of exchange bias (EB) after zero-field cooling has attracted considerable interest mainly in bulk magnetic competing systems. Here, we use a detailed magnetotransport investigation to probe the ground state and zero-field cooled EB (ZEB) in Mn50Ni41Sn9 ribbon. Both ZEB and field cooled EB were detected in magnetoresistance results consistent with magnetic measurement. A pure spin-glass ground state is proposed based on parabolic shape of low-field magnetoresistance combined with AC magnetization, memory effect. The appearance of ZEB is attributed to the field-induced nucleation and growth of ferromagnetic domains in the spin glass matrix forming unidirectional anisotropy at the interface.

  20. Non-collinear magnetism and exchange bias at the FM NiFe/AFM NiMn interface: local spin density FLAPW study

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Freeman, A. J.; Wang, D.-S.; Zhong, L.; Fernandez-de-Castro, J.

    2001-03-01

    Magnetism at interfaces, such as the exchange bias between ferromagnetic (FM) and antiferromagnetic (AFM) materials, has attracted great attention because of technological applications. In order to investigate magnetic structures at the FM/AFM interface, we have implemented the FLAPW (E. Wimmer, H. Krakauer, M. Weinert and A.J. Freeman, PRB 24, 864(1981)) methodologies including non-collinear magnetism, in which the magnetic moment direction as well as the magnitude can vary continuously all over space. We first demonstrate this approach to determine the structure of a magnetic structure at an interface between FM NiFe and AFM NiMn. Although both bulk systems each show collinear FM and AFM structures, we found that a perpendicular magnetic orientation at their interface is energetically favorable, where the magnetic moments of the FM NiFe tend to lie perpendicular to those of AFM NiMn.

  1. Phase separation and exchange biasing in the ferromagnetic IV-VI semiconductor Ge{sub 1-x}Mn{sub x}Te

    SciTech Connect

    Lechner, R. T.; Springholz, G.; Hassan, M.; Groiss, H.; Kirchschlager, R.; Stangl, J.; Hrauda, N.; Bauer, G.

    2010-07-12

    Ferromagnetic Ge{sub 1-x}Mn{sub x}Te grown by molecular beam epitaxy with Mn content of x{sub Mn}approx =0.5 is shown to exhibit a strong tendency for phase separation. At higher growth temperatures apart from the cubic Ge{sub 0.5}Mn{sub 0.5}Te, a hexagonal MnTe and a rhombohedral distorted Ge{sub 0.83}Mn{sub 0.17}Te phase is formed. This coexistence of antiferromagnetic MnTe and ferromagnetic Ge{sub 0.5}Mn{sub 0.5}Te results in magnetic exchange-bias effects.

  2. Effect of L1{sub 2} ordering in antiferromagnetic Ir-Mn epitaxial layer on exchange bias of FePd films

    SciTech Connect

    Chang, Y. C.; Duh, J. G. E-mail: lin.yg@nsrrc.org.tw; Hsiao, S. N. E-mail: lin.yg@nsrrc.org.tw; Liu, S. H.; Su, S. H.; Chiu, K. F.; Hsieh, W. C.; Chen, S. K.; Lin, Y. G. E-mail: lin.yg@nsrrc.org.tw; Lee, H. Y.; Sung, C. K.

    2015-05-07

    Two series of samples of single-layer IrMn and IrMn/FePd bilayer films, deposited on a single-crystal MgO substrate at different IrMn deposition temperatures (T{sub s} = 300–700 °C), were investigated using magnetron sputtering. L1{sub 2} ordering was revealed for the 30 nm-thick IrMn epitaxial (001) films with T{sub s} ≥ 400 °C, determined by synchrotron radiation x-ray diffractometry (XRD). XRD results also provide evidence of the epitaxial growth of the IrMn films on MgO substrate. Increasing T{sub s} from 400 to 700 °C monotonically increases the ordering parameter of L1{sub 2} phases from 0.17 to 0.81. An in-plane exchange bias field (H{sub eb}) of 22 Oe is obtained in a 10 nm-thick FePd film that is deposited on the disordered IrMn films. As the L1{sub 2} ordering of the IrMn layers increases, the H{sub eb} gradually decreases to 0 Oe, meaning that the exchange bias behavior vanishes. The increased surface roughness, revealed by atomic force microscopy, of the epitaxial IrMn layers with increasing T{sub s} cannot be the main cause of the decrease in H{sub eb} due to the compensated surface spins regardless of the disordered and ordered (001) IrMn layers. The change of antiferromagnetic structure from the A1 to the L1{sub 2} phase was correlated with the evolution of H{sub eb}.

  3. Optimization of magneto-resistive response of ion-irradiated exchange biased films through zigzag arrangement of magnetization

    SciTech Connect

    Trützschler, Julia; Sentosun, Kadir; McCord, Jeffrey; Langer, Manuel; Fassbender, Jürgen; Mönch, Ingolf; Mattheis, Roland

    2014-03-14

    Exchange coupled ferromagnetic-antiferromagnetic Ni{sub 81}Fe{sub 19}/Ir{sub 23}Mn{sub 77} films with a zigzag alignment of magnetization are prepared by local ion irradiation. The anisotropic magneto-resistive behavior of the magnetic thin film structures is correlated to the magnetic structure and modeled. A unique uniaxial field sensitivity along the net magnetization alignment is obtained through the orthogonally modulated and magnetic domain wall stabilized magnetic ground state. Controlling local thin film magnetization distributions and, thus, the overall magnetization response opens unique ways to tailor the magneto-resistive sensitivity of functional magnetic thin film devices.

  4. Antisite-disorder driven large exchange bias effect in phase separated La1.5Ca0.5CoMnO6 double perovskite

    NASA Astrophysics Data System (ADS)

    Sahoo, R. C.; Paladhi, D.; Dasgupta, Papri; Poddar, A.; Singh, Ripandeep; Das, A.; Nath, T. K.

    2017-04-01

    Investigations of structural and magnetic properties of polycrystalline hole doped double perovskite La1.5Ca0.5CoMnO6 has clearly revealed the existence of structural antisite-disorder (either, Co-O-Co or Mn-O-Mn) in the system. The ordering of Co2+ and Mn4+ gives rise to a ferromagnetic transition around 157 K. A spin-canted antiferromagnetic transition is found in this material at TCAFM 9 K. The effect of antisite-disorder in the double perovskite structure is most likely the prime reason for antiferromagnetic interaction. The temperature dependent inverse susceptibility exhibits Curie-Weiss like behaviour and it yields an effective paramagnetic moment of 6.49 μB. At very low temperature (Texchange bias (EB) field of HEB 5.5 kOe and can be tuned by the cooling field. The presence of zero-field cooled spontaneous EB effect (P-type and N-type) is confirmed to be not an experimental artefact - an inherent property of this double perovskite material. A phenomenological model has been proposed to explain the exchange coupling between the ferromagnetic and canted-antiferromagnetic interfaces of antisite-disordered La1.5Ca0.5CoMnO6 mainly on the basis of uncompensated interface spins.

  5. Shape anisotropy and exchange bias in magnetic flattened nanospindles with metallic/oxide core/shell structures.

    PubMed

    Mendoza-Reséndez, Raquel; Luna, Carlos

    2012-09-01

    A preliminary study of the magnetic phenomenology of Fe and Fe90Co10 nanospindles with axial ratio equal to 5 is presented. These nanospindles are constituted by single-domains single-crystals coated by oxide surface layer and assembled in chains into the nanospindle. The thermal dependence of the coercive field and the saturation magnetization in the temperature range from 4 K up to room temperature indicates that the coercive field is roughly proportional to the saturation magnetization (which follows the T3/2 Bloch law) at temperatures above the blocking temperature of the oxide. This suggests that the predominant source of magnetic anisotropy in this temperature range is the shape anisotropy. However, at temperatures below the oxide blocking temperature, the magnetic coupling between the spins of the oxide and the nanocrystals is produced at the interface. This exchange coupling enhances the effective anisotropy of the nanospindles and the coercive field increases more abruptly than the saturation of magnetization as temperature decreases.

  6. Griffiths phase, spin-phonon coupling, and exchange bias effect in double perovskite Pr{sub 2}CoMnO{sub 6}

    SciTech Connect

    Liu, Wenjie; Shi, Lei Zhou, Shiming; Zhao, Jiyin; Li, Yang; Guo, Yuqiao

    2014-11-21

    The ceramic Pr{sub 2}CoMnO{sub 6} of double perovskite structure is prepared by a solid-state reaction and the magnetic properties, phonon behaviors are studied in detail. Two ferromagnetic transitions at T{sub C1} ∼ 172 K and T{sub C2} ∼ 140 K are observed in the temperature-dependent magnetization curves, respectively. Furthermore, a detail analysis on the magnetic susceptibility reveals that a short-range ferromagnetic clustered state exists above T{sub C1}, which can be well described as the Griffiths phase with a well-defined Griffiths temperature T{sub G} ∼ 210 K. The presence of the B-site antisite defects is considered to contribute to the observed Griffiths singularity. Temperature-dependent Raman scattering experiment reveals an obvious softening of the phonon mode involving stretching vibrations of the (Co/Mn)O{sub 6} octahedra in FM temperature regions, indicating a close correlation between magnetism and lattice in Pr{sub 2}CoMnO{sub 6}. On the other hand, it is found that the phonon softening extends up to T{sub G}, which further confirms the preformation of the short-range ferromagnetic clusters up to T{sub G}. Moreover, the field-cooling magnetic hysteresis loop reveals that exchange bias phenomena is present, which is supposed to origin from the exchange coupling between Co/Mn ordered ferromagnetic phases with antiferromagnetic antiphase boundaries caused by the partially Co/Mn antisite disorders. These findings give a systematic understanding on the magnetic interaction in Pr{sub 2}CoMnO{sub 6} which is closely related to the lattice and atomic distribution, and add special interest for application of this material.

  7. Magnetic compensation phenomenon and the sign reversal in the exchange bias field in a single crystal of Nd0.75Ho0.25Al2

    NASA Astrophysics Data System (ADS)

    Kulkarni, P. D.; Thamizhavel, A.; Rakhecha, V. C.; Nigam, A. K.; Paulose, P. L.; Ramakrishnan, S.; Grover, A. K.

    2009-05-01

    In the Nd0.75Ho0.25Al2 alloy system, the magnetic moments of Nd and Ho occupying the same crystallographic site randomly are antiferromagnetically coupled via long-range indirect exchange interaction mediated by the conduction electrons. A single crystal grown at this stoichiometry displays a magnetic compensation behavior (Tcomp~24 K) in all orientations. In the close vicinity of Tcomp, the magnetization hysteresis loops measured for H || [100] assume an asymmetric shape, and the notion of an exchange bias field (Hexch) surfaces. Hexch changes sign across Tcomp as the left shift of the loops transforms to the right shift. This phase reversal appears to correlate with the corresponding reversal in the directions of the local magnetic moments of Nd3+ and Ho3+ ions together with that of the conduction electron polarization (CEP). Near Tcomp, where the opposing contributions to the net magnetization from local magnetic moments are nearly equal, the contribution from CEP assumes an accentuated significance. Interestingly, the width of the M-H loop shows a divergence, followed by a collapse on approaching Tcomp from high- as well as low-temperature ends. The observed behavior confirms a long-standing prediction based on a phenomenological model for ferrimagnetic systems. The field-induced changes in the magnetization data leave an imprint of a quasi-phase transition in the heat capacity data. Magneto-resistance (ΔR/R vs. T) has an oscillatory response, in which onset of magnetic ordering and phase reversal in magnetic orientations can be recognized.

  8. Investigations on Ni-Co-Mn-Sn thin films: Effect of substrate temperature and Ar gas pressure on the martensitic transformations and exchange bias properties

    SciTech Connect

    Machavarapu, Ramudu Jakob, Gerhard

    2015-03-15

    We report the effect of substrate temperature (T{sub S}) and Ar gas pressure (P{sub D}) on the martensitic transformations, magnetic and exchange bias (EB) properties in Heusler type Ni-Co-Mn-Sn epitaxial thin films. Martensitic transformation temperatures and EB fields at 5 K were found to increase with increasing T{sub S}. The observed maximum EB value of 320 Oe after field cooling in the film deposited at 650 {sup ∘}C is high among the values reported for Ni-Mn-Sn thin films which is attributed to the coexistence of ferromagnetic (FM) and antiferromagnetic (AF) phases in the martensitic state. In the case of P{sub D} variation, with increase in P{sub D}, martensitic transformation temperatures were increased and a sharp transformation was observed in the film deposited at 0.06 mbar. Magnetization values at 5 K were higher for increasing P{sub D}. These observations are attributed to the compositional shift. EB effect is also present in these films. Microstructural features observed using atomic force microscopy (AFM) shows a fine twinning and reduced precipitation with increase in P{sub D}, which is also confirmed from the scanning electron microscopy (SEM) images. EB effects in both series were confirmed from the training effect. Target ageing effect has been observed in the films deposited before and after ninety days of time interval. This has been confirmed both on substrate temperature and Ar gas pressure variations.

  9. In-plane magnetic pattern separation in NiFe/NiO and Co/NiO exchange biased bilayers investigated by magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Ehresmann, A.; Krug, I.; Kronenberger, A.; Ehlers, A.; Engel, D.

    2004-09-01

    Ion bombardment induced magnetic patterning (IBMP) was used to write in-plane magnetized micro and submicron patterns in exchange biased magnetic bilayers, where the magnetization directions of the adjacent patterns are antiparallel to each other in remanence. These magnetic patterns were investigated by non-contact magnetic force microscopy (MFM). It is shown that the recorded MFM images of the IBMP patterns in two exemplarily chosen standard layer systems (NiFe (4.8 nm)/NiO (68 nm) and Co (4.8 nm)/NiO (68 nm)) can be well described by a model within the point-dipole approximation for the tip magnetization. For 5 and 0.9 μm wide bar patterns the domain wall widths between adjacent magnetically patterned areas were determined to a≈1 μm. The minimum magnetically stable pattern width was estimated to be 0.7 μm in the standard system Co (4.8 nm)/NiO (68 nm).

  10. Mixing antiferromagnets to tune NiFe-[IrMn/FeMn] interfacial spin-glasses, grains thermal stability, and related exchange bias properties

    SciTech Connect

    Akmaldinov, K.; Ducruet, C.; Portemont, C.; Joumard, I.; Prejbeanu, I. L.; Dieny, B.; Baltz, V.

    2014-05-07

    Spintronics devices and in particular thermally assisted magnetic random access memories require a wide range of ferromagnetic/antiferromagnetic (F/AF) exchange bias (EB) properties and subsequently of AF materials to fulfil diverse functionality requirements for the reference and storage. For the reference layer, large EB energies and high blocking temperature (T{sub B}) are required. In contrast, for the storage layer, mostly moderate T{sub B} are needed. One of the present issues is to find a storage layer with properties intermediate between those of IrMn and FeMn and in particular: (i) with a T{sub B} larger than FeMn for better stability at rest-T but lower than IrMn to reduce power consumption at write-T and (ii) with improved magnetic interfacial quality, i.e., with reduced interfacial glassy character for lower properties dispersions. To address this issue, the EB properties of F/AF based stacks were studied for various mixed [IrMn/FeMn] AFs. In addition to EB loop shifts, the F/AF magnetic interfacial qualities and the AF grains thermal stability are probed via measurements of the low- and high-temperature contributions to the T{sub B} distributions, respectively. A tuning of the above three parameters is observed when evolving from IrMn to FeMn via [IrMn/FeMn] repetitions.

  11. A CoFeB/MgO/CoFeB perpendicular magnetic tunnel junction coupled to an in-plane exchange-biased magnetic layer

    SciTech Connect

    Zhu, M. Chong, H.; Vu, Q. B.; Vo, T.; Brooks, R.; Stamper, H.; Bennett, S.; Piccirillo, J.

    2015-05-25

    We report a stack structure which utilizes an in-plane exchange-biased magnetic layer to influence the coercivity of the bottom CoFeB layer in a CoFeB/MgO/CoFeB perpendicular magnetic tunnel junction. By employing a thickness wedge deposition technique, we were able to study various aspects of this stack using vibrating sample magnetometer including: (1) the coupling between two CoFeB layers as a function of MgO thickness; and (2) the coupling between the bottom CoFeB and the in-plane magnetic layer as a function of Ta spacer thickness. Furthermore, modification of the bottom CoFeB coercivity allows one to measure tunneling magnetoresistance and resistance-area product (RA) of CoFeB/MgO/CoFeB in this pseudo-spin-valve format using current-in-plane-tunneling technique, without resorting to (Co/Pt){sub n} or (Co/Pd){sub n} multilayer pinning.

  12. Origin of spin-glass and exchange bias in La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3−γ} nanoparticles

    SciTech Connect

    Silva, R. B. da; Araújo, J. H. de; Soares, J. M.; Machado, F. L. A.

    2014-03-21

    The structure and the magnetic properties of nanopowdered samples of La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3−γ} with average particles size d in the range of 67-367 nm prepared by a sol-gel method were investigated in detail. The samples were characterized by X-ray diffraction, scanning electron microscopy, specific heat, Mössbauer spectroscopy, ac susceptibility, and magnetization measurements. Exchange bias with vertical magnetization shift was found in all samples. Charge ordering and antiferromagnetism were observed close to 200 K for large particles (d ≥ 304 nm) samples, while for particles with intermediated and smaller values (d ≤ 156 nm) a cluster-glass like behaviour and a short range charge ordering were seen near 115 K and 200 K, respectively. The spin-glass like and exchange bias behaviour in nanopowdered samples of La{sub 1∕3}Sr{sub 2∕3}FeO{sub 3−γ} are associated to compact Fe{sup 3+} antiferromagnetic (AF) clusters caused by an oxygen deficiency, which was found to be higher in the samples with the smallest average particles sizes. The effect of exchange bias and vertical magnetization shifts are explained by a simple model involving the interaction of one AF phase with a canted AF phase.

  13. Enhancement of exchange bias and training effect in ion-beam sputtered Fe{sub 46}Mn{sub 54}/Ni{sub 81}Fe{sub 19} bilayers

    SciTech Connect

    Fulara, Himanshu; Chaudhary, Sujeet Kashyap, Subhash C.; Granville, Simon

    2014-01-28

    We present a remarkable enhancement by 300% of the exchange-bias field at room temperature, without affecting the coercivity value, via optimum magnetic annealing (250 °C/3 kOe) in ion-beam sputtered FeMn(30 nm)/NiFe(10 nm) bilayers. This specific behavior has been attributed to a higher degree of γ-FeMn(111) orientation that offers more interfacial FeMn moments to get pinned with the moments of the adjacent NiFe layer. Unlike the absence of training effect at room temperature, a pronounced training effect and an accompanying magnetization reversal asymmetry are evidenced upon field cooling below 50 K due to the presence of biaxial exchange induced anisotropy across the interdiffused FeMn/NiFe interface. The present findings not only have technological significance but also are of relevance to the understanding of interfacial spin disorder and frustration in these exchange-biased systems.

  14. Photo-carrier control of exchange bias in BiFeO{sub 3}/La{sub 2/3}Sr{sub 1/3}MnO{sub 3} thin films

    SciTech Connect

    Sung, K. D.; Lee, T. K.; Park, Y. A.; Hur, N.; Jung, J. H.

    2014-06-23

    We report the facile control of exchange bias in BiFeO{sub 3}/La{sub 2/3}Sr{sub 1/3}MnO{sub 3} (BFO/LSMO) thin films on an SrTiO{sub 3} (STO) substrate using light irradiation. Illumination with weak red light (λ: 630 nm, intensity: ∼1 mW/cm{sup 2}) reduced the exchange bias field (H{sub E}) of BFO/LSMO from +30 Oe in the dark to −2 Oe with red light. In accompanying the decrease of H{sub E}, the resistance of BFO/LSMO significantly increased. These results were attributed to the reduction in the hole-doping ratio of LSMO and the weakened exchange coupling between Fe and Mn spins at the interface, resulting from photo-injected electrons from the STO substrate. Successive turning on/off of red light gives rise to cyclical change of corresponding H{sub E}, which should be useful for applications like photo-controlled tunneling magnetoresistance devices.

  15. Manipulating the exchange bias effect of Pb(Zr0.52Ti0.48)O3/CoFe2O4/NiO heterostructural films by electric fields

    NASA Astrophysics Data System (ADS)

    Li, Yong-Chao; Pan, Dan-Feng; Wu, Jun; Li, Ying-bin; Wang, Guang-hou; Liu, Jun-Ming; Wan, Jian-Guo

    2016-10-01

    The Pb(Zr0.52Ti0.48)O3/CoFe2O4/NiO heterostructural films with exchange bias (EB) effect have been prepared on Pt/Ti/SiO2/Si wafers using a sol-gel process, and reversible manipulation of EB effect by electric fields has been realized. Compared with the exchange bias field (Heb = -75 Oe) at as-grown state, the modulation gain of Heb by electric fields can reach 83% (Heb = -12.5 Oe) in the case of +5.0 V and 283% (Heb = -287.5 Oe) in the case of -5.0 V, respectively. Moreover, such electrically tunable EB effect is repeatable and has good endurance and retention. Through analyzing the energy band structures in different electric treatment states, we discuss the mechanism of such electric-field-tunable EB effect. Two factors, i.e., the filling (or releasing) of electrons into (or from) the defect levels produced by oxygen vacancies at positive (or negative) electric voltages, and the redistribution of electrons due to the ferroelectric polarization, both of which give rise to the variation of the strength of exchange interaction in the CFO layer, have been revealed to be responsible for the electric modulation of EB effect. This work provides a promising avenue for electrically manipulating the EB effect and developing high-performance memory and storage devices with low power consumption.

  16. Eliminating Bias

    EPA Pesticide Factsheets

    Learn how to eliminate bias from monitoring systems by instituting appropriate installation, operation, and quality assurance procedures. Provides links to download An Operator's Guide to Eliminating Bias in CEM Systems.

  17. Intergroup bias.

    PubMed

    Hewstone, Miles; Rubin, Mark; Willis, Hazel

    2002-01-01

    This chapter reviews the extensive literature on bias in favor of in-groups at the expense of out-groups. We focus on five issues and identify areas for future research: (a) measurement and conceptual issues (especially in-group favoritism vs. out-group derogation, and explicit vs. implicit measures of bias); (b) modern theories of bias highlighting motivational explanations (social identity, optimal distinctiveness, uncertainty reduction, social dominance, terror management); (c) key moderators of bias, especially those that exacerbate bias (identification, group size, status and power, threat, positive-negative asymmetry, personality and individual differences); (d) reduction of bias (individual vs. intergroup approaches, especially models of social categorization); and (e) the link between intergroup bias and more corrosive forms of social hostility.

  18. Large coercivity and exchange bias in [Fe{sub 1-{delta}}(FeO){sub {delta}}]{sub x}(TiO{sub 2}){sub 1-x} granular films

    SciTech Connect

    Cheng, Y. H.; Wang, C. H.; Luo, X. G.; Liu, Hui; Wang, W. H.; Zhang, X. H.; Li, L. Y.; Zheng, R. K.

    2013-05-13

    [Fe{sub 1-{delta}}(FeO){sub {delta}}]{sub x}(TiO{sub 2}){sub 1-x} (0{<=}{delta}{<=}0.91, 0.34{<=}x{<=}0.54) granular films were fabricated by magnetron sputtering. Large coercivity (H{sub C} = 10.5 kOe) and exchange-bias-field (H{sub E} = 6.5 kOe) at 5 K were found in the film with {delta}=0.84 and x = 0.48. AC susceptibility measurements exhibit a frequency (f) dependent peak T{sub f} in the in-phase susceptibility curve. The fitting of the relation of T{sub f} vs f with both the Vogel-Fulcher law and critical slowing down theory indicate that the evident enhancement of the H{sub C} and H{sub E} can be qualitatively ascribed to the existence of cluster-spin glass state. The results may help to deeply understand the origin of exchange bias and related effects.

  19. Exchange-bias effect at La0.75Sr0.25MnO3/LaNiO3 interfaces

    SciTech Connect

    Rojas Sánchez, J. C.; Nelson-Cheeseman, B.; Granada, M.; Arenholz, E.; Steren, L. B.

    2012-03-26

    In this paper, we show that ferromagnetic/paramagnetic La0.75Sr0.25MnO3/LaNiO3 multilayers present an unexpected magnetic exchange-bias effect (EBE), observed in field-cooled magnetization loops. The exchange-bias field and the enhancement of the coercivity vanish around 50 K. We demonstrate that the oxidation state of the Ni and Mn cations changes from Mn3+-Ni3+ to Mn4+-Ni2+ in the layers close to the interface probed by x-ray absorption spectroscopy measurements. The variation of the valence states is accompanied by a change in the magnetic behavior of the cations at the La0.75Sr0.25MnO3/LaNiO3 interface, possibly giving rise to the formation of magnetic or magnetically frustrated regions that may pin the ferromagnetic a0.75Sr0.25MnO3 layers and explain the EBE.

  20. Ion Accelerator With Negatively Biased Decelerator Grid

    NASA Technical Reports Server (NTRS)

    Brophy, John R.

    1994-01-01

    Three-grid ion accelerator in which accelerator grid is biased at negative potential and decelerator grid downstream of accelerator grid biased at smaller negative potential. This grid and bias arrangement reduces frequency of impacts, upon accelerator grid, of charge-exchange ions produced downstream in collisions between accelerated ions and atoms and molecules of background gas. Sputter erosion of accelerator grid reduced.

  1. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

    NASA Astrophysics Data System (ADS)

    Wu, S. Z.; Miao, J.; Xu, X. G.; Yan, W.; Reeve, R.; Zhang, X. H.; Jiang, Y.

    2015-03-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature.

  2. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure.

    PubMed

    Wu, S Z; Miao, J; Xu, X G; Yan, W; Reeve, R; Zhang, X H; Jiang, Y

    2015-03-10

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature.

  3. Study of the sign change of exchange bias across the spin reorientation transition in Co(Cr1-x Fe x )2O4 (x  =  0.00-0.125).

    PubMed

    Padam, R; Pandya, Swati; Ravi, S; Ramakrishnan, S; Nigam, A K; Grover, A K; Pal, D

    2017-02-08

    We present the evolution of novel phenomena of magnetic compensation effect, exchange bias (EB) effect and the field induced anomalies in '[Formula: see text]' substituted multiferroic compound [Formula: see text]. A few percent of '[Formula: see text]' substitution for '[Formula: see text]' in [Formula: see text] results in the reversal of field cooled magnetization under low applied fields below compensation temperature T comp. Further, increase in the field leads to the spin reorientation transition (T SR). Signature of EB in a narrow temperature window in the vicinity of T SR and its sign change across T SR is observed. Magnitude of EB depends on the amount of compensation and rigidity of the spin reorientation. We also notice the appearance of positive EB below the lock-in transition (T L). Presence of unidirectional anisotropy developed in the commensurate spin-spiral below T L could be responsible for the appearance of EB below T L.

  4. Strain-mediated electric-field control of exchange bias in a Co90Fe10/BiFeO3/SrRuO3/PMN-PT heterostructure

    PubMed Central

    Wu, S. Z.; Miao, J.; Xu, X. G.; Yan, W.; Reeve, R.; Zhang, X. H.; Jiang, Y.

    2015-01-01

    The electric-field (E-field) controlled exchange bias (EB) in a Co90Fe10/BiFeO3 (BFO)/SrRuO3/PMN-PT heterostructure has been investigated under different tensile strain states. The in-plane tensile strain of the BFO film is changed from +0.52% to +0.43% as a result of external E-field applied to the PMN-PT substrate. An obvious change of EB by the control of non-volatile strain has been observed. A magnetization reversal driven by E-field has been observed in the absence of magnetic field. Our results indicate that a reversible non-volatile E-field control of a ferromagnetic layer through strain modulated multiferroic BFO could be achieved at room temperature. PMID:25752272

  5. Estimation of bias with the single-zone assumption in measurement of residential air exchange using the perfluorocarbon tracer gas method

    PubMed Central

    Van Ryswyk, K; Wallace, L; Fugler, D; MacNeill, M; Héroux, M È; Gibson, M D; Guernsey, J R; Kindzierski, W; Wheeler, A J

    2015-01-01

    Residential air exchange rates (AERs) are vital in understanding the temporal and spatial drivers of indoor air quality (IAQ). Several methods to quantify AERs have been used in IAQ research, often with the assumption that the home is a single, well-mixed air zone. Since 2005, Health Canada has conducted IAQ studies across Canada in which AERs were measured using the perfluorocarbon tracer (PFT) gas method. Emitters and detectors of a single PFT gas were placed on the main floor to estimate a single-zone AER (AER1z). In three of these studies, a second set of emitters and detectors were deployed in the basement or second floor in approximately 10% of homes for a two-zone AER estimate (AER2z). In total, 287 daily pairs of AER2z and AER1z estimates were made from 35 homes across three cities. In 87% of the cases, AER2z was higher than AER1z. Overall, the AER1z estimates underestimated AER2z by approximately 16% (IQR: 5–32%). This underestimate occurred in all cities and seasons and varied in magnitude seasonally, between homes, and daily, indicating that when measuring residential air exchange using a single PFT gas, the assumption of a single well-mixed air zone very likely results in an under prediction of the AER. PMID:25399878

  6. Exchange bias effect in epitaxial La{sub 0.67}Ca{sub 0.33}MnO{sub 3}/SrMnO{sub 3} thin film structure

    SciTech Connect

    Yu, T.; Ning, X. K.; Liu, W. Feng, J. N.; Zhao, X. G.; Zhang, Z. D.

    2014-08-28

    Bilayers consisting of La{sub 0.67}Ca{sub 0.33}MnO{sub 3} (LCMO) and SrMnO{sub 3} (SMO) have been prepared by pulsed-laser deposition on SrTiO{sub 3} (001) substrates. Unconventional magnetic coupling was found after cooling in a small field. The LCMO/SMO bilayers exhibit an exchange bias field of 209 Oe, which vanishes as the temperature rises above 90 K. A small magnetization has been found above the Curie temperature of the pure LCMO thin films. Spin-cluster-like antiferromagnetic (AFM)/ferromagnetic (FM) clusters have been deduced to exist at the interface due to the competing types of magnetic order at the interface. The magnetic relaxation is found to follow a double-exponential equation and a slow relaxation process is observed due to the strong exchange coupling between AFM/FM clusters and the LCMO layer. We speculate that the short-range high-temperature FM order of the Mn{sup 3+} and Mn{sup 4+} moments above the Curie temperature at the interface gives rise to the magnetic regions that pin the FM LCMO layer as the temperature decreases.

  7. Journal bias or author bias?

    PubMed

    Harris, Ian

    2016-01-01

    I read with interest the comment by Mark Wilson in the Indian Journal of Medical Ethics regarding bias and conflicts of interest in medical journals. Wilson targets one journal (the New England Journal of Medicine: NEJM) and one particular "scandal" to make his point that journals' decisions on publication are biased by commercial conflicts of interest (CoIs). It is interesting that he chooses the NEJM which, by his own admission, had one of the strictest CoI policies and had published widely on this topic. The feeling is that if the NEJM can be guilty, they can all be guilty.

  8. Room temperature magnetic ordering, enhanced magnetization and exchange bias of GdMnO3 nanoparticles in (GdMnO3)0.70(CoFe2O4)0.30

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Mahapatra, A. S.; Mallick, A.; Chakrabarti, P. K.

    2017-02-01

    Nanoparticles of GdMnO3 (GMO) are prepared by sol-gel method. To enhance the magnetic property and also to obtain the magnetic ordering at room temperature (RT), nanoparticles of GMO are incorporated in the matrix of CoFe2O4 (CFO). Desired crystallographic phases of CFO, GMO and GMO-CFO are confirmed by analyzing X-ray diffractrograms (XRD) using Rietveld method. The average size of nanoparticles and their distribution, crystallographic phase, nanocrystallinity etc. are studied by high-resolution transmission electron microscope (HRTEM). Magnetic hysteresis loops (M-H) of GMO-CFO under zero field cooled (ZFC) and field cooled (FC) conditions are observed at different temperatures down to 5 K. Magnetization vs. temperature (M-T) under ZFC and FC conditions are also recorded. Interestingly, exchange bias (EB) is found at low temperature which suggests the encapsulation of the ferromagnetic (FM) nanoparticles of GMO by the ferrimagnetic nanoparticles of CFO below 100 K. Enhanced magnetization, EB effect and RT magnetic ordering of GMO-CFO would be interesting for both theoretical and experimental investigations.

  9. Cooling field tuned magnetic phase transition and exchange bias-like effect in Y{sub 0.9}Pr{sub 0.1}CrO{sub 3}

    SciTech Connect

    Deng, Dongmei E-mail: dyu@ansto.gov.au Feng, Zhenjie; Jing, Chao; Ren, Wei; Cao, Shixun; Zhang, Jincang E-mail: dyu@ansto.gov.au; Zheng, Jiashun; Yu, Dehong E-mail: dyu@ansto.gov.au Sun, Dehui; Avdeev, Maxim; Wang, Baomin; Lu, Bo

    2015-09-07

    Cooling magnetic field dependence of magnetic phase transition has been observed in Y{sub 0.9}Pr{sub 0.1}CrO{sub 3}. G{sub z}F{sub x} order (spin structure of PrCrO{sub 3}) is dominant after zero field cooling (ZFC), whereas G{sub x}F{sub z} order (spin structure of YCrO{sub 3}) is dominant after cooling under a field higher than 100 Oe. Positive/negative exchange bias-like effect, with large vertical shift and small horizontal shift, has been observed after FC/ZFC process. The vertical shift can be attributed to the frozen ordered Pr{sup 3+} and Cr{sup 3+} spins in magnetic domains, because of the strong coupling between Pr{sup 3+} and Cr{sup 3+} sublattices; while the horizontal shift is a result of the pinning of spins at the interfaces. The frozen structure is generated by the field used for the measurement of the initial magnetization curve of M(H) for the ZFC cooled sample, while it is generated by the cooling field for the sample cooled under a cooling field higher than 100 Oe.

  10. Study of the sign change of exchange bias across the spin reorientation transition in Co(Cr1-x Fe x )2O4 (x  =  0.00-0.125)

    NASA Astrophysics Data System (ADS)

    Padam, R.; Pandya, Swati; Ravi, S.; Ramakrishnan, S.; Nigam, A. K.; Grover, A. K.; Pal, D.

    2017-02-01

    We present the evolution of novel phenomena of magnetic compensation effect, exchange bias (EB) effect and the field induced anomalies in ‘\\text{Fe} ’ substituted multiferroic compound \\text{CoC}{{\\text{r}}2}{{\\text{O}}4} . A few percent of ‘\\text{Fe} ’ substitution for ‘\\text{Cr} ’ in \\text{CoC}{{\\text{r}}2}{{\\text{O}}4} results in the reversal of field cooled magnetization under low applied fields below compensation temperature T comp. Further, increase in the field leads to the spin reorientation transition (T SR). Signature of EB in a narrow temperature window in the vicinity of T SR and its sign change across T SR is observed. Magnitude of EB depends on the amount of compensation and rigidity of the spin reorientation. We also notice the appearance of positive EB below the lock-in transition (T L). Presence of unidirectional anisotropy developed in the commensurate spin-spiral below T L could be responsible for the appearance of EB below T L.

  11. Indiana Health Information Exchange

    Cancer.gov

    The Indiana Health Information Exchange is comprised of various Indiana health care institutions, established to help improve patient safety and is recognized as a best practice for health information exchange.

  12. Classifying sex biased congenital anomalies

    SciTech Connect

    Lubinsky, M.S.

    1997-03-31

    The reasons for sex biases in congenital anomalies that arise before structural or hormonal dimorphisms are established has long been unclear. A review of such disorders shows that patterning and tissue anomalies are female biased, and structural findings are more common in males. This suggests different gender dependent susceptibilities to developmental disturbances, with female vulnerabilities focused on early blastogenesis/determination, while males are more likely to involve later organogenesis/morphogenesis. A dual origin for some anomalies explains paradoxical reductions of sex biases with greater severity (i.e., multiple rather than single malformations), presumably as more severe events increase the involvement of an otherwise minor process with opposite biases to those of the primary mechanism. The cause for these sex differences is unknown, but early dimorphisms, such as differences in growth or presence of H-Y antigen, may be responsible. This model provides a useful rationale for understanding and classifying sex-biased congenital anomalies. 42 refs., 7 tabs.

  13. Solar array/spacecraft biasing

    NASA Technical Reports Server (NTRS)

    Fitzgerald, D. J.

    1981-01-01

    Biasing techniques and their application to the control of spacecraft potential is discussed. Normally when a spacecraft is operated with ion thrusters, the spacecraft will be 10-20 volts negative of the surrounding plasma. This will affect scientific measurements and will allow ions from the charge-exchange plasma to bombard the spacecraft surfaces with a few tens of volts of energy. This condition may not be tolerable. A proper bias system is described that can bring the spacecraft to or near the potential of the surrounding plasma.

  14. Establishing the next generation at work: leader generativity as a moderator of the relationships between leader age, leader-member exchange, and leadership success.

    PubMed

    Zacher, Hannes; Rosing, Kathrin; Henning, Thomas; Frese, Michael

    2011-03-01

    In this study, the authors investigated leader generativity as a moderator of the relationships between leader age, leader-member exchange, and three criteria of leadership success (follower perceptions of leader effectiveness, follower satisfaction with leader, and follower extra effort). Data came from 128 university professors paired with one research assistant each. Results showed positive relationships between leader age and leader generativity, and negative relationships between leader age and follower perceptions of leader effectiveness and follower extra effort. Consistent with expectations based on leadership categorization theory, leader generativity moderated the relationships between leader age and all three criteria of leadership success, such that leaders high in generativity were better able to maintain high levels of leadership success at higher ages than leaders low in generativity. Finally, results of mediated moderation analyses showed that leader-member exchange quality mediated these moderating effects. The findings suggest that, in combination, leader age and the age-related construct of generativity importantly influence leadership processes and outcomes.

  15. Berkson's bias, selection bias, and missing data.

    PubMed

    Westreich, Daniel

    2012-01-01

    Although Berkson's bias is widely recognized in the epidemiologic literature, it remains underappreciated as a model of both selection bias and bias due to missing data. Simple causal diagrams and 2 × 2 tables illustrate how Berkson's bias connects to collider bias and selection bias more generally, and show the strong analogies between Berksonian selection bias and bias due to missing data. In some situations, considerations of whether data are missing at random or missing not at random are less important than the causal structure of the missing data process. Although dealing with missing data always relies on strong assumptions about unobserved variables, the intuitions built with simple examples can provide a better understanding of approaches to missing data in real-world situations.

  16. Temperature trend biases

    NASA Astrophysics Data System (ADS)

    Venema, Victor; Lindau, Ralf

    2016-04-01

    In an accompanying talk we show that well-homogenized national dataset warm more than temperatures from global collections averaged over the region of common coverage. In this poster we want to present auxiliary work about possible biases in the raw observations and on how well relative statistical homogenization can remove trend biases. There are several possible causes of cooling biases, which have not been studied much. Siting could be an important factor. Urban stations tend to move away from the centre to better locations. Many stations started inside of urban areas and are nowadays more outside. Even for villages the temperature difference between the centre and edge can be 0.5°C. When a city station moves to an airport, which often happened around WWII, this takes the station (largely) out of the urban heat island. During the 20th century the Stevenson screen was established as the dominant thermometer screen. This screen protected the thermometer much better against radiation than earlier designs. Deficits of earlier measurement methods have artificially warmed the temperatures in the 19th century. Newer studies suggest we may have underestimated the size of this bias. Currently we are in a transition to Automatic Weather Stations. The net global effect of this transition is not clear at this moment. Irrigation on average decreases the 2m-temperature by about 1 degree centigrade. At the same time, irrigation has increased significantly during the last century. People preferentially live in irrigated areas and weather stations serve agriculture. Thus it is possible that there is a higher likelihood that weather stations are erected in irrigated areas than elsewhere. In this case irrigation could lead to a spurious cooling trend. In the Parallel Observations Science Team of the International Surface Temperature Initiative (ISTI-POST) we are studying influence of the introduction of Stevenson screens and Automatic Weather Stations using parallel measurements

  17. Correcting the bias against interdisciplinary research.

    PubMed

    Shapiro, Ehud

    2014-04-01

    When making decisions about funding and jobs the scientific community should recognise that most of the tools used to evaluate scientific excellence are biased in favour of established disciplines and against interdisciplinary research.

  18. Experimental study of the microscopic mechanisms of magnetization reversal in FeNi/FeMn exchange-biased ferromagnet/antiferromagnet polycrystalline bilayers using the magneto-optical indicator film technique

    NASA Astrophysics Data System (ADS)

    Gornakov, V. S.; Kabanov, Yu. P.; Tikhomirov, O. A.; Nikitenko, V. I.; Urazhdin, S. V.; Yang, F. Y.; Chien, C. L.; Shapiro, A. J.; Shull, R. D.

    2006-05-01

    Remagnetization of the FeNi/FeMn bilayer was investigated using the magneto-optical indicator film imaging technique. We show the formation and breakdown of the homogeneous exchange spring into exchange springs of opposite chiralities during reversal in a rotating magnetic field. In reversal with a linear field, contrary to theoretical predictions, the winding of the exchange spring occurs without net magnetization rotation. It initiates by the formation of local spin spirals with opposite chirality and terminates with the formation of a single chiral state through the propagation of a specific kind of boundary separating regions with this single chirality from those with the mixed chiral state.

  19. Approach to Exchange Bias Effect in La2/3Ca1/3MnO3/BiFeO3 and BiFeO3/ La2/3Ca1/3MnO3 Bilayers

    NASA Astrophysics Data System (ADS)

    Dominguez, Claribel; Ordonez, John; Diez, Sandra; Gomez, Maria; Guénon, Stefan; Schuller, Ivan

    2013-03-01

    We have grown bilayers of ferromagnetic La2/3Ca1/3MnO3 (LCMO) and multiferroic BiFeO3 (BFO) on (100) SrTiO3 (STO) substrates, by DC- and magnetron RF -sputtering technique, respectively, at high-oxygen pressures. We maintain constant the thickness of the layers (tBFO=72nm; tLCMO=80nm). Temperature dependence of the resistivity indicates that the MI-transition temperature of the manganite in the BFO/LCMO/STO is affected by the presence of the BFO layer in comparison with TMI for the single LCMO layer. Furthermore, temperature dependence of magnetization shows that the BFO/LCMO/STO bilayer has higher Curie temperature than that for LCMO/BFO/STO, indicating a strong structural dependence of the LCMO layer with magnetic response. The dependence of the magnetic moment with magnetic field after field cooling gives indication of the existence of Exchange Bias effect in the LCMO/BFO/STO bilayer. Isothermal loops also display dependence of the Exchange Bias magnitude with field cooling. This work has been supported by UNIVALLE Research Project CI 7864, and ``El Patrimonio Autónomo Fondo Nacional de Financiamiento para CT&I FJC,'' Contract RC - No. 275-2011, COLCIENCIAS-CENM, Colombia

  20. Demonstrating the Correspondence Bias

    ERIC Educational Resources Information Center

    Howell, Jennifer L.; Shepperd, James A.

    2011-01-01

    Among the best-known and most robust biases in person perception is the correspondence bias--the tendency for people to make dispositional, rather than situational, attributions for an actor's behavior. The correspondence bias appears in virtually every social psychology textbook and in many introductory psychology textbooks, yet the authors'…

  1. Oaths and hypothetical bias.

    PubMed

    Stevens, T H; Tabatabaei, Maryam; Lass, Daniel

    2013-09-30

    Results from experiments using an oath to eliminate hypothetical bias in stated preference valuation are presented. An oath has several potential advantages relative to other methods for reducing hypothetical bias. Our empirical results suggest that with an oath, mean hypothetical payments are not different from mean actual payments and that when controlling for experimental participants' characteristics using regression analyses, the oath eliminated hypothetical bias.

  2. Recalibrating Academic Bias

    ERIC Educational Resources Information Center

    Yancey, George

    2012-01-01

    Whether political and/or religious academic bias exists is a question with important ramifications for the educational institutions. Those arguing for the presence of such bias contend that political conservatives and the highly religious in academia are marginalized and face discrimination. The question of academic bias tends to be cast in a…

  3. Queries for Bias Testing

    NASA Technical Reports Server (NTRS)

    Gordon, Diana F.

    1992-01-01

    Selecting a good bias prior to concept learning can be difficult. Therefore, dynamic bias adjustment is becoming increasingly popular. Current dynamic bias adjustment systems, however, are limited in their ability to identify erroneous assumptions about the relationship between the bias and the target concept. Without proper diagnosis, it is difficult to identify and then remedy faulty assumptions. We have developed an approach that makes these assumptions explicit, actively tests them with queries to an oracle, and adjusts the bias based on the test results.

  4. "Catching" Social Bias.

    PubMed

    Skinner, Allison L; Meltzoff, Andrew N; Olson, Kristina R

    2017-02-01

    Identifying the origins of social bias is critical to devising strategies to overcome prejudice. In two experiments, we tested the hypothesis that young children can catch novel social biases from brief exposure to biased nonverbal signals demonstrated by adults. Our results are consistent with this hypothesis. In Experiment 1, we found that children who were exposed to a brief video depicting nonverbal bias in favor of one individual over another subsequently explicitly preferred, and were more prone to behave prosocially toward, the target of positive nonverbal signals. Moreover, in Experiment 2, preschoolers generalized such bias to other individuals. The spread of bias observed in these experiments lays a critical foundation for understanding the way that social biases may develop and spread early in childhood.

  5. Renormalized halo bias

    SciTech Connect

    Assassi, Valentin; Baumann, Daniel; Green, Daniel; Zaldarriaga, Matias E-mail: dbaumann@damtp.cam.ac.uk E-mail: matiasz@ias.edu

    2014-08-01

    This paper provides a systematic study of renormalization in models of halo biasing. Building on work of McDonald, we show that Eulerian biasing is only consistent with renormalization if non-local terms and higher-derivative contributions are included in the biasing model. We explicitly determine the complete list of required bias parameters for Gaussian initial conditions, up to quartic order in the dark matter density contrast and at leading order in derivatives. At quadratic order, this means including the gravitational tidal tensor, while at cubic order the velocity potential appears as an independent degree of freedom. Our study naturally leads to an effective theory of biasing in which the halo density is written as a double expansion in fluctuations and spatial derivatives. We show that the bias expansion can be organized in terms of Galileon operators which aren't renormalized at leading order in derivatives. Finally, we discuss how the renormalized bias parameters impact the statistics of halos.

  6. Chromatography process development in the quality by design paradigm I: Establishing a high-throughput process development platform as a tool for estimating "characterization space" for an ion exchange chromatography step.

    PubMed

    Bhambure, R; Rathore, A S

    2013-01-01

    This article describes the development of a high-throughput process development (HTPD) platform for developing chromatography steps. An assessment of the platform as a tool for establishing the "characterization space" for an ion exchange chromatography step has been performed by using design of experiments. Case studies involving use of a biotech therapeutic, granulocyte colony-stimulating factor have been used to demonstrate the performance of the platform. We discuss the various challenges that arise when working at such small volumes along with the solutions that we propose to alleviate these challenges to make the HTPD data suitable for empirical modeling. Further, we have also validated the scalability of this platform by comparing the results from the HTPD platform (2 and 6 μL resin volumes) against those obtained at the traditional laboratory scale (resin volume, 0.5 mL). We find that after integration of the proposed correction factors, the HTPD platform is capable of performing the process optimization studies at 170-fold higher productivity. The platform is capable of providing semi-quantitative assessment of the effects of the various input parameters under consideration. We think that platform such as the one presented is an excellent tool for examining the "characterization space" and reducing the extensive experimentation at the traditional lab scale that is otherwise required for establishing the "design space." Thus, this platform will specifically aid in successful implementation of quality by design in biotech process development. This is especially significant in view of the constraints with respect to time and resources that the biopharma industry faces today.

  7. Are all biases missing data problems?

    PubMed

    Howe, Chanelle J; Cain, Lauren E; Hogan, Joseph W

    2015-09-01

    Estimating causal effects is a frequent goal of epidemiologic studies. Traditionally, there have been three established systematic threats to consistent estimation of causal effects. These three threats are bias due to confounders, selection, and measurement error. Confounding, selection, and measurement bias have typically been characterized as distinct types of biases. However, each of these biases can also be characterized as missing data problems that can be addressed with missing data solutions. Here we describe how the aforementioned systematic threats arise from missing data as well as review methods and their related assumptions for reducing each bias type. We also link the assumptions made by the reviewed methods to the missing completely at random (MCAR) and missing at random (MAR) assumptions made in the missing data framework that allow for valid inferences to be made based on the observed, incomplete data.

  8. Bias correction with Data Assimilation

    NASA Astrophysics Data System (ADS)

    Canter, Martin; Barth, Alexander

    2015-04-01

    With this work, we aim at developping a new method of bias correction using data assimilation. This method is based on the stochastic forcing of a model to correct bias. First, through a preliminary run, we estimate the bias of the model and its possible sources. Then, we establish a forcing term which is directly added inside the model's equations. We create an ensemble of runs and consider the forcing term as a control variable during the assimilation of observations. We then use this analysed forcing term to correct the bias of the model. Since the forcing is added inside the model, it acts as a source term, unlike external forcings such as wind. This procedure has been developed and successfully tested with a twin experiment on a Lorenz 95 model. Indeed, we were able to estimate and recover an artificial bias that had been added into the model. This bias had a spatial structure and was constant through time. The mean and behaviour of the corrected model corresponded to those the reference model. It is currently being applied and tested on the sea ice ocean NEMO LIM model, which is used in the PredAntar project. NEMO LIM is a global and low resolution (2 degrees) coupled model (hydrodynamic model and sea ice model) with long time steps allowing simulations over several decades. Due to its low resolution, the model is subject to bias in area where strong currents are present. We aim at correcting this bias by using perturbed current fields from higher resolution models and randomly generated perturbations. The random perturbations need to be constrained in order to respect the physical properties of the ocean, and not create unwanted phenomena. To construct those random perturbations, we first create a random field with the Diva tool (Data-Interpolating Variational Analysis). Using a cost function, this tool penalizes abrupt variations in the field, while using a custom correlation length. It also decouples disconnected areas based on topography. Then, we filter

  9. Bias in clinical chemistry.

    PubMed

    Theodorsson, Elvar; Magnusson, Bertil; Leito, Ivo

    2014-01-01

    Clinical chemistry uses automated measurement techniques and medical knowledge in the interest of patients and healthy subjects. Automation has reduced repeatability and day-to-day variation considerably. Bias has been reduced to a lesser extent by reference measurement systems. It is vital to minimize clinically important bias, in particular bias within conglomerates of laboratories that measure samples from the same patients. Small and variable bias components will over time show random error properties and conventional random-error based methods for calculating measurement uncertainty can then be applied. The present overview of bias presents the general principles of error and uncertainty concepts, terminology and analysis, and suggests methods to minimize bias and measurement uncertainty in the interest of healthcare.

  10. Bias in research.

    PubMed

    Simundić, Ana-Maria

    2013-01-01

    By writing scientific articles we communicate science among colleagues and peers. By doing this, it is our responsibility to adhere to some basic principles like transparency and accuracy. Authors, journal editors and reviewers need to be concerned about the quality of the work submitted for publication and ensure that only studies which have been designed, conducted and reported in a transparent way, honestly and without any deviation from the truth get to be published. Any such trend or deviation from the truth in data collection, analysis, interpretation and publication is called bias. Bias in research can occur either intentionally or unintentionally. Bias causes false conclusions and is potentially misleading. Therefore, it is immoral and unethical to conduct biased research. Every scientist should thus be aware of all potential sources of bias and undertake all possible actions to reduce or minimize the deviation from the truth. This article describes some basic issues related to bias in research.

  11. Interpretation biases in paranoia.

    PubMed

    Savulich, George; Freeman, Daniel; Shergill, Sukhi; Yiend, Jenny

    2015-01-01

    Information in the environment is frequently ambiguous in meaning. Emotional ambiguity, such as the stare of a stranger, or the scream of a child, encompasses possible good or bad emotional consequences. Those with elevated vulnerability to affective disorders tend to interpret such material more negatively than those without, a phenomenon known as "negative interpretation bias." In this study we examined the relationship between vulnerability to psychosis, measured by trait paranoia, and interpretation bias. One set of material permitted broadly positive/negative (valenced) interpretations, while another allowed more or less paranoid interpretations, allowing us to also investigate the content specificity of interpretation biases associated with paranoia. Regression analyses (n=70) revealed that trait paranoia, trait anxiety, and cognitive inflexibility predicted paranoid interpretation bias, whereas trait anxiety and cognitive inflexibility predicted negative interpretation bias. In a group comparison those with high levels of trait paranoia were negatively biased in their interpretations of ambiguous information relative to those with low trait paranoia, and this effect was most pronounced for material directly related to paranoid concerns. Together these data suggest that a negative interpretation bias occurs in those with elevated vulnerability to paranoia, and that this bias may be strongest for material matching paranoid beliefs. We conclude that content-specific biases may be important in the cause and maintenance of paranoid symptoms.

  12. Knowledge Exchange and Discovery in the Age of Social Media: The Journey From Inception to Establishment of a Parent-Led Web-Based Research Advisory Community for Childhood Disability

    PubMed Central

    2016-01-01

    total of 58% (23/40) of parents and 56% (5/9) of researchers indicated they felt safe to share sensitive or personal information. While researchers shared evidence-based resources and consulted with families to get guidance on specific issues, there was an unexpected benefit of gaining an understanding of what issues were important to families in their daily lives. Parents felt a sense of belonging to this community where they could share their stories but also wanted more researcher participation and clarity on the purpose of the group. Conclusions The PPR community grew from inception to an established community with active engagement and knowledge exchange. Both parents and researchers described valuable experiences. Researchers should consider social media as a means of engaging families in all phases of research to ensure that research and its outcomes are meaningful to those who need it most. PMID:27836818

  13. Long-range magnetic interactions and proximity effects in an amorphous exchange-spring magnet

    PubMed Central

    Magnus, F.; Brooks-Bartlett, M. E.; Moubah, R.; Procter, R. A.; Andersson, G.; Hase, T. P. A.; Banks, S. T.; Hjörvarsson, B.

    2016-01-01

    Low-dimensional magnetic heterostructures are a key element of spintronics, where magnetic interactions between different materials often define the functionality of devices. Although some interlayer exchange coupling mechanisms are by now well established, the possibility of direct exchange coupling via proximity-induced magnetization through non-magnetic layers is typically ignored due to the presumed short range of such proximity effects. Here we show that magnetic order can be induced throughout a 40-nm-thick amorphous paramagnetic layer through proximity to ferromagnets, mediating both exchange-spring magnet behaviour and exchange bias. Furthermore, Monte Carlo simulations show that nearest-neighbour magnetic interactions fall short in describing the observed effects and long-range magnetic interactions are needed to capture the extent of the induced magnetization. The results highlight the importance of considering the range of interactions in low-dimensional heterostructures and how magnetic proximity effects can be used to obtain new functionality. PMID:27291298

  14. Long-range magnetic interactions and proximity effects in an amorphous exchange-spring magnet

    SciTech Connect

    Magnus, F.; Brooks-Bartlett, M. E.; Moubah, R.; Procter, R. A.; Andersson, G.; Hase, T. P. A.; Banks, S. T.; Hjorvarsson, B.

    2016-06-13

    Low-dimensional magnetic heterostructures are a key element of spintronics, where magnetic interactions between different materials often define the functionality of devices. Although some interlayer exchange coupling mechanisms are by now well established, the possibility of direct exchange coupling via proximity-induced magnetization through non-magnetic layers is typically ignored due to the presumed short range of such proximity effects. Here we show that magnetic order can be induced throughout a 40-nm-thick amorphous paramagnetic layer through proximity to ferromagnets, mediating both exchange-spring magnet behaviour and exchange bias. Furthermore, Monte Carlo simulations show that nearest-neighbour magnetic interactions fall short in describing the observed effects and long-range magnetic interactions are needed to capture the extent of the induced magnetization. Lastly, the results highlight the importance of considering the range of interactions in low-dimensional heterostructures and how magnetic proximity effects can be used to obtain new functionality.

  15. The Bias Fallacy

    ERIC Educational Resources Information Center

    Linvill, Darren L.

    2013-01-01

    Do those who complain about liberal bias in higher education have any actionable point at all? Critics of the politicization of higher education claim that political partisanship in the classroom is pervasive and that it affects student learning. Although the existence of such partisanship has not been empirically proven, allegations of bias are…

  16. Bias dependence of perpendicular spin torque and eigenmode distributions in MgO-based nanopillars.

    SciTech Connect

    Muduli, P. K.; Heinonen, O. G.; Akerman, J.

    2011-05-01

    We have measured the bias voltage and field dependence of eigenmode frequencies in a magnetic tunnel junction with MgO barrier. We show that both free layer (FL) and reference layer (RL) modes are excited, and that a crossover between these modes is observed by varying external field and bias voltage. The bias voltage dependence of the FL and RL modes are shown to be dramatically different. The bias dependence of the FL modes is linear in bias voltage, whereas that of the RL mode is strongly quadratic. Using modeling and micromagnetic simulations, we show that the linear bias dependence of FL frequencies is primarily due to a linear dependence of the perpendicular spin torque on bias voltage, whereas the quadratic dependence of the RL on bias voltage is dominated by the reduction of exchange bias due to Joule heating, and is not attributable to a quadratic dependence of the perpendicular spin torque on bias voltage.

  17. Biased predecision processing.

    PubMed

    Brownstein, Aaron L

    2003-07-01

    Decision makers conduct biased predecision processing when they restructure their mental representation of the decision environment to favor one alternative before making their choice. The question of whether biased predecision processing occurs has been controversial since L. Festinger (1957) maintained that it does not occur. The author reviews relevant research in sections on theories of cognitive dissonance, decision conflict, choice certainty, action control, action phases, dominance structuring, differentiation and consolidation, constructive processing, motivated reasoning, and groupthink. Some studies did not find evidence of biased predecision processing, but many did. In the Discussion section, the moderators are summarized and used to assess the theories.

  18. Gender bias in the force concept inventory?

    NASA Astrophysics Data System (ADS)

    Dietz, R. D.; Pearson, R. H.; Semak, M. R.; Willis, C. W.

    2012-02-01

    Could the well-established fact that males tend to score higher than females on the Force Concept Inventory (FCI) be due to gender bias in the questions? The eventual answer to the question hinges on the definition of bias. We assert that a question is biased only if a factor other than ability (in this case gender) affects the likelihood that a student will answer the question correctly. The statistical technique of differential item functioning allows us to control for ability in our analysis of student performance on each of the thirty FCI questions. This method uses the total score on the FCI as the measure of ability. We conclude that the evidence for gender bias in the FCI questions is marginal at best.

  19. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  20. Introduction to Unconscious Bias

    NASA Astrophysics Data System (ADS)

    Schmelz, Joan T.

    2010-05-01

    We all have biases, and we are (for the most part) unaware of them. In general, men and women BOTH unconsciously devalue the contributions of women. This can have a detrimental effect on grant proposals, job applications, and performance reviews. Sociology is way ahead of astronomy in these studies. When evaluating identical application packages, male and female University psychology professors preferred 2:1 to hire "Brian” over "Karen” as an assistant professor. When evaluating a more experienced record (at the point of promotion to tenure), reservations were expressed four times more often when the name was female. This unconscious bias has a repeated negative effect on Karen's career. This talk will introduce the concept of unconscious bias and also give recommendations on how to address it using an example for a faculty search committee. The process of eliminating unconscious bias begins with awareness, then moves to policy and practice, and ends with accountability.

  1. Increasingly minimal bias routing

    DOEpatents

    Bataineh, Abdulla; Court, Thomas; Roweth, Duncan

    2017-02-21

    A system and algorithm configured to generate diversity at the traffic source so that packets are uniformly distributed over all of the available paths, but to increase the likelihood of taking a minimal path with each hop the packet takes. This is achieved by configuring routing biases so as to prefer non-minimal paths at the injection point, but increasingly prefer minimal paths as the packet proceeds, referred to herein as Increasing Minimal Bias (IMB).

  2. Validation of an interpretation bias assessment for body dissatisfaction.

    PubMed

    Martinelli, Mary K; Holzinger, Jayne B; Chasson, Gregory S

    2014-09-01

    Currently, research on interpretation bias and body dissatisfaction is limited. The few experimental paradigms that have been used to explore this phenomenon utilized a method that may not accurately capture the nature of interpretation bias as explained by cognitive theory. The present study investigated the reliability and validity of a novel computerized assessment of interpretation bias (WSAP) for body dissatisfaction, which may more accurately reflect the cognitive processing involved in such bias by implementing the Word Sentence Association Paradigm (WSAP), a previously established method of measuring interpretation bias in other clinical populations. Undergraduate females (n=214) completed the WSAP and other measures. Results indicate initial support for the WSAP as a valid, reliable measure of interpretation bias for body dissatisfaction. Although preliminary, this study contributes to the minimal research in this area and serves as the first psychometric investigation of the WSAP to measure such interpretation bias for body dissatisfaction.

  3. Establishing operations

    PubMed Central

    Michael, Jack

    1993-01-01

    The first two books on behavior analysis (Skinner, 1938; Keller & Schoenfeld, 1950) had chapter-length coverage of motivation. The next generation of texts also had chapters on the topic, but by the late 1960s it was no longer being given much treatment in the behavior-analytic literature. The present failure to deal with the topic leaves a gap in our understanding of operant functional relations. A partial solution is to reintroduce the concept of the establishing operation, defined as an environmental event, operation, or stimulus condition that affects an organism by momentarily altering (a) the reinforcing effectiveness of other events and (b) the frequency of occurrence of that part of the organism's repertoire relevant to those events as consequences. Discriminative and motivative variables can be distinguished as follows: The former are related to the differential availability of an effective form of reinforcement given a particular type of behavior; the latter are related to the differential reinforcing effectiveness of environmental events. An important distinction can also be made between unconditioned establishing operations (UEOs), such as food deprivation and painful stimulation, and conditioned establishing operations (CEOs) that depend on the learning history of the organism. One type of CEO is a stimulus that has simply been paired with a UEO and as a result may take on some of the motivative properties of that UEO. The warning stimulus in avoidance procedures is another important type of CEO referred to as reflexive because it establishes its own termination as a form of reinforcement and evokes the behavior that has accomplished such termination. Another CEO is closely related to the concept of conditional conditioned reinforcement and is referred to as a transitive CEO, because it establishes some other stimulus as a form of effective reinforcement and evokes the behavior that has produced that other stimulus. The multiple control of human

  4. A new family of 1D exchange biased heterometal single-molecule magnets: observation of pronounced quantum tunneling steps in the hysteresis loops of quasi-linear {Mn2Ni3} clusters.

    PubMed

    Das, Animesh; Gieb, Klaus; Krupskaya, Yulia; Demeshko, Serhiy; Dechert, Sebastian; Klingeler, Rüdiger; Kataev, Vladislav; Büchner, Bernd; Müller, Paul; Meyer, Franc

    2011-03-16

    First members of a new family of heterometallic Mn/Ni complexes [Mn(2)Ni(3)X(2)L(4)(LH)(2)(H(2)O)(2)] (X = Cl: 1; X = Br: 2) with the new ligand 2-{3-(2-hydroxyphenyl)-1H-pyrazol-1-yl}ethanol (H(2)L) have been synthesized, and single crystals obtained from CH(2)Cl(2) solutions have been characterized crystallographically. The molecular structures feature a quasi-linear Mn(III)-Ni(II)-Ni(II)-Ni(II)-Mn(III) core with six-coordinate metal ions, where elongated axes of all the distorted octahedral coordination polyhedra are aligned parallel and are fixed with respect to each other by intramolecular hydrogen bonds. 1 and 2 exhibit quite strong ferromagnetic exchange interactions throughout (J(Mn-Ni) ≈ 40 K (1) or 42 K (2); J(Ni-Ni) ≈ 22 K (1) or 18 K (2)) that lead to an S(tot) = 7 ground state, and a sizable uniaxial magnetoanisotropy with D(mol) values -0.55 K (1) and -0.45 K (2). These values are directly derived also from frequency- and temperature-dependent high-field EPR spectra. Slow relaxation of the magnetization at low temperatures and single-molecule magnet (SMM) behavior are evident from frequency-dependent peaks in the out-of-phase ac susceptibilities and magnetization versus dc field measurements, with significant energy barriers to spin reversal U(eff) = 27 K (1) and 22 K (2). Pronounced quantum tunnelling steps are observed in the hysteresis loops of the temperature- and scan rate-dependent magnetization data, but with the first relaxation step shifted above (1) or below (2) the zero crossing of the magnetic field, despite the very similar molecular structures. The different behavior of 1 and 2 is interpreted in terms of antiferromagnetic (1) or ferromagnetic (2) intermolecular interactions, which are discussed in view of the subtle differences of intermolecular contacts within the crystal lattice.

  5. Distinguishing Selection Bias and Confounding Bias in Comparative Effectiveness Research.

    PubMed

    Haneuse, Sebastien

    2016-04-01

    Comparative effectiveness research (CER) aims to provide patients and physicians with evidence-based guidance on treatment decisions. As researchers conduct CER they face myriad challenges. Although inadequate control of confounding is the most-often cited source of potential bias, selection bias that arises when patients are differentially excluded from analyses is a distinct phenomenon with distinct consequences: confounding bias compromises internal validity, whereas selection bias compromises external validity. Despite this distinction, however, the label "treatment-selection bias" is being used in the CER literature to denote the phenomenon of confounding bias. Motivated by an ongoing study of treatment choice for depression on weight change over time, this paper formally distinguishes selection and confounding bias in CER. By formally distinguishing selection and confounding bias, this paper clarifies important scientific, design, and analysis issues relevant to ensuring validity. First is that the 2 types of biases may arise simultaneously in any given study; even if confounding bias is completely controlled, a study may nevertheless suffer from selection bias so that the results are not generalizable to the patient population of interest. Second is that the statistical methods used to mitigate the 2 biases are themselves distinct; methods developed to control one type of bias should not be expected to address the other. Finally, the control of selection and confounding bias will often require distinct covariate information. Consequently, as researchers plan future studies of comparative effectiveness, care must be taken to ensure that all data elements relevant to both confounding and selection bias are collected.

  6. A Review of Established Guidelines and Standards for International Education Travel and Exchange Programs for Students. Report of the Department of Education to the Governor and the General Assembly of Virgina. House Document No. 25.

    ERIC Educational Resources Information Center

    Virginia State General Assembly, Richmond. House.

    This study of existing guidelines and standards for international travel by students in local school divisions is the result of a Virginia Department of Education team effort over four months. The interdisciplinary team reviewed guidelines and standards for international travel and student exchange programs from major organizations and developed…

  7. Enhanced magnetic behavior, exchange bias effect, and dielectric property of BiFeO{sub 3} incorporated in (BiFeO{sub 3}){sub 0.50} (Co{sub 0.4}Zn{sub 0.4}Cu{sub 0.2} Fe{sub 2}O{sub 4}){sub 0.5} nanocomposite

    SciTech Connect

    Mukhopadhyay, K.; Mahapatra, A. S.; Sutradhar, S.; Chakrabarti, P. K.

    2014-03-15

    Nanoparticles of BiFeO{sub 3} (BFO) are incorporated in the nanocomposite of (BiFeO{sub 3}){sub 0.50} (Co{sub 0.4}Zn{sub 0.4}Cu{sub 0.2} Fe{sub 2}O{sub 4}){sub 0.5}, (BFO-CZCF) and these are prepared by chemical route. The formation of pure crystallographic phase of each component (BFO and CZCF) in the nanocomposite of BFO-CZCF has been confirmed by Rietveld analysis of the X-ray diffractograms using FULLPROF program. Morphology, average particle size and its distribution, crystallographic phase etc. are obtained from the high-resolution transmission electron microscopy of BFO-CZCF. Magnetic measurements of BFO-CZCF have been carried out to explore the modulation of magnetic behavior of BFO in BFO-CZCF. Interestingly, magnetization of BFO-CZCF has been drastically enhanced compared to that of the pristine BFO. An exchange bias effect is also observed in the M vs. H loops of BFO-CZCF recorded in field cooled and zero field cooled conditions, which suggest that nanoparticles of BFO (AFM) are encapsulated by nanoparticles of CZCF (FM) in BFO-CZCF. Thermal variation of dielectric constant of BFO-CZCF is recorded in the range of 300 to 1073 K and a ferroelectric to paraelectric transition is observed at ∼728 K. Enhanced magnetic property of BFO would quite interesting for this important multiferroic.

  8. Sex Bias in Children.

    ERIC Educational Resources Information Center

    Zalk, Sue Rosenberg; And Others

    This study investigated children's sex biased attitudes as a function of the sex, age, and race of the child as well as a geographical-SES factor. Two attitudes were measured on a 55-item questionnaire: Sex Pride (attributing positive characteristics to a child of the same sex) and Sex Prejudice (attributing negative characteristics to a child of…

  9. A significant bias

    NASA Astrophysics Data System (ADS)

    Eades, Alwyn

    2013-09-01

    While I do not wish to belittle the unfortunate conclusions that may be drawn from your news article "Gender bias judges research by women more critically" (May p12), I do want to comment on the way the article is presented.

  10. Own Variety Bias

    PubMed Central

    García, Andrea Ariza

    2015-01-01

    In a language identification task, native Belgian French and native Swiss French speakers identified French from France as their own variety. However, Canadian French was not subject to this bias. Canadian and French listeners didn’t claim a different variety as their own. PMID:27648211

  11. Educators Exchange: A Program Evaluation.

    ERIC Educational Resources Information Center

    Armstrong, William B.

    The Educators Exchange Program (EEP) was established under a training and educational exchange agreement reached by California's San Diego Community College District (SDCCD) and the republic of Mexico. In the program, the District provided a 4-week technological training program to faculty at Centros de Capacitacion Tecnologica Industrial…

  12. Gregorian calendar bias in monthly temperature databases

    NASA Astrophysics Data System (ADS)

    Cerveny, Randall S.; Svoma, Bohumil M.; Balling, Robert C.; Vose, Russell S.

    2008-10-01

    In this study we address a systematic bias in climate records that manifests due to the establishment of the Gregorian calendar system and exerts a statistically significant effect on monthly and seasonal temperature records. The addition of one extra day in February normally every fourth year produces a significant seasonal drift in the monthly values of that year in four major temperature datasets used in climate change analysis. The addition of a `leap year day' for the Northern Hemisphere creates statistically significantly colder months of July to December and, to a lesser degree warmer months of February to June than correspondingly common (non-leap year) months. The discovery of such a fundamental bias in four major temperature datasets used in climate analysis (and likely present in any dataset displaying strong annual cycles, e.g., U.S. streamflow data) indicates the continued need for detailed scrutiny of climate records for such biases.

  13. Optimism Bias in Fans and Sports Reporters.

    PubMed

    Love, Bradley C; Kopeć, Łukasz; Guest, Olivia

    2015-01-01

    People are optimistic about their prospects relative to others. However, existing studies can be difficult to interpret because outcomes are not zero-sum. For example, one person avoiding cancer does not necessitate that another person develops cancer. Ideally, optimism bias would be evaluated within a closed formal system to establish with certainty the extent of the bias and the associated environmental factors, such that optimism bias is demonstrated when a population is internally inconsistent. Accordingly, we asked NFL fans to predict how many games teams they liked and disliked would win in the 2015 season. Fans, like ESPN reporters assigned to cover a team, were overly optimistic about their team's prospects. The opposite pattern was found for teams that fans disliked. Optimism may flourish because year-to-year team results are marked by auto-correlation and regression to the group mean (i.e., good teams stay good, but bad teams improve).

  14. Optimism Bias in Fans and Sports Reporters

    PubMed Central

    Love, Bradley C.

    2015-01-01

    People are optimistic about their prospects relative to others. However, existing studies can be difficult to interpret because outcomes are not zero-sum. For example, one person avoiding cancer does not necessitate that another person develops cancer. Ideally, optimism bias would be evaluated within a closed formal system to establish with certainty the extent of the bias and the associated environmental factors, such that optimism bias is demonstrated when a population is internally inconsistent. Accordingly, we asked NFL fans to predict how many games teams they liked and disliked would win in the 2015 season. Fans, like ESPN reporters assigned to cover a team, were overly optimistic about their team’s prospects. The opposite pattern was found for teams that fans disliked. Optimism may flourish because year-to-year team results are marked by auto-correlation and regression to the group mean (i.e., good teams stay good, but bad teams improve). PMID:26352146

  15. Unbiased isotope equilibrium factors from partial isotope exchange experiments in 3-exchange site systems

    NASA Astrophysics Data System (ADS)

    Agrinier, Pierre; Javoy, Marc

    2016-09-01

    Two methods are available in order to evaluate the equilibrium isotope fractionation factors between exchange sites or phases from partial isotope exchange experiments. The first one developed by Northrop and Clayton (1966) is designed for isotope exchanges between two exchange sites (hereafter, the N&C method), the second one from Zheng et al. (1994) is a refinement of the first one to account for a third isotope exchanging site (hereafter, the Z method). In this paper, we use a simple model of isotope kinetic exchange for a 3-exchange site system (such as hydroxysilicates where oxygen occurs as OH and non-OH groups like in muscovite, chlorite, serpentine, or water or calcite) to explore the behavior of the N&C and Z methods. We show that these two methods lead to significant biases that cannot be detected with the usual graphical tests proposed by the authors. Our model shows that biases originate because isotopes are fractionated between all these exchanging sites. Actually, we point out that the variable mobility (or exchangeability) of isotopes in and between the exchange sites only controls the amplitude of the bias, but is not essential to the production of this bias as previously suggested. Setting a priori two of the three exchange sites at isotopic equilibrium remove the bias and thus is required for future partial exchange experiments to produce accurate and unbiased extrapolated equilibrium fractionation factors. Our modeling applied to published partial oxygen isotope exchange experiments for 3-exchange site systems (the muscovite-calcite (Chacko et al., 1996), the chlorite-water (Cole and Ripley, 1998) and the serpentine-water (Saccocia et al., 2009)) shows that the extrapolated equilibrium fractionation factors (reported as 1000 ln(α)) using either the N&C or the Z methods lead to bias that may reach several δ per mil in a few cases. These problematic cases, may be because experiments were conducted at low temperature and did not reach high

  16. Exchange Network

    EPA Pesticide Factsheets

    The Environmental Information Exchange Network (EIEN) is an Internet-based system used by state, tribal and territorial partners to securely share environmental and health information with one another and EPA.

  17. Gas exchange

    MedlinePlus Videos and Cool Tools

    ... during exhalation. Gas exchange is the delivery of oxygen from the lungs to the bloodstream, and the ... share a membrane with the capillaries in which oxygen and carbon dioxide move freely between the respiratory ...

  18. HEAT EXCHANGER

    DOEpatents

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  19. Assessment of the possibility of establishing material cycling in an experimental model of the bio-technical life support system with plant and human wastes included in mass exchange

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Ushakova, S. A.; Velichko, V. V.; Tikhomirova, N. A.; Kudenko, Yu. A.; Gribovskaya, I. V.; Gros, J.-B.; Lasseur, Ch.

    2011-05-01

    A pilot model of a bio-technical life support system (BTLSS) including human and plant wastes has been developed at the Institute of Biophysics SB RAS (Krasnoyarsk, Russia). This paper describes the structure of the photosynthesizing unit of the system, which includes wheat, chufa and vegetables. The study substantiates the simultaneous use of neutral and biological substrates for cultivating plants. A novel physicochemical method for the involvement of human wastes in the cycling has been employed, which enables the use of recycled products as nutrients for plants. Inedible plant biomass was subjected to biological combustion in the soil-like substrate (SLS) and was thus involved in the system mass exchange; NaCl contained in native urine was returned to the human through the consumption of Salicornia europaea, an edible salt-concentrating plant. Mass transfer processes in the studied BLSS have been examined for different chemical components.

  20. Attention Bias to Threat Faces in Severe Mood Dysregulation

    PubMed Central

    Hommer, Rebecca E.; Meyer, Allison; Stoddard, Joel; Connolly, Megan E.; Mogg, Karin; Bradley, Brendan P.; Pine, Daniel S.; Leibenluft, Ellen; Brotman, Melissa A.

    2013-01-01

    Background We used a dot-probe paradigm to examine attention bias toward threat (i.e., angry) and happy face stimuli in Severe Mood Dysregulation (SMD) vs. healthy comparison (HC) youth. The tendency to allocate attention to threat is well established in anxiety and other disorders of negative affect. SMD is characterized by the negative affect of irritability, and longitudinal studies suggest childhood irritability predicts adult anxiety and depression. Therefore, it is important to study pathophysiologic connections between irritability and anxiety disorders. Methods SMD patients (N=74) and HC youth (N=42) completed a visual probe paradigm to assess attention bias to emotional faces. Diagnostic interviews were conducted and measures of irritability and anxiety were obtained in patients. Results SMD youth differed from HC youth in having a bias toward threatening faces (p<0.01). Threat bias was positively correlated with the severity of the SMD syndrome and depressive symptoms; degree of threat bias did not differ between SMD youth with and without co-occurring anxiety disorders or depression. SMD and HC youth did not differ in bias toward or away from happy faces. Conclusions SMD youth demonstrate an attention bias toward threat, with greater threat bias associated with higher levels of SMD symptom severity. Our findings suggest that irritability may share a pathophysiological link with anxiety and depressive disorders. This finding suggests the value of exploring further whether attention bias modification treatments that are effective for anxiety are also helpful in the treatment of irritability. PMID:23798350

  1. Biasing GPCR signaling from inside.

    PubMed

    Shukla, Arun K

    2014-01-28

    The discovery of "functional selectivity" or "biased signaling" through G protein-coupled receptors (GPCRs) has redefined the classical GPCR signaling paradigm. Moreover, the therapeutic potential of biased signaling by and biased ligands for GPCRs is changing the landscape of GPCR drug discovery. The concept of biased signaling has primarily been developed and discussed in the context of ligands that bind to the extracellular regions of GPCRs. However, two recent reports demonstrate that it is also possible to bias GPCR signaling from inside the cell by targeting intracellular regions of these receptors. These findings present a novel handle for delineating the functional outcomes of biased signaling by GPCRs. Moreover, these approaches also uncover a previously unexplored framework for biasing GPCR signaling for drug discovery.

  2. Biases in signal evolution: learning makes a difference.

    PubMed

    ten Cate, Carel; Rowe, Candy

    2007-07-01

    It is now well established that signal receivers have a key role in the evolution of animal communication: the suite of sensory and cognitive processes by which animals perceive and learn about their environment can have a significant impact on signal design. A crucial property of these information-processing mechanisms is the emergence of 'receiver bias' in the behavioural responses to signals. Whereas most research has focussed on receiver biases in the sensory system, more recent studies show that biases can also arise from learning about signals. Here, we highlight how learning-based biases can arise, and how these differ from biases emerging from sensory systems in their impact on signal evolution.

  3. Socio-Economic Bias in Piaget's Theory and Its Implications for Cross-Culture Studies

    ERIC Educational Resources Information Center

    Buck-Morss, Susan

    1975-01-01

    The existence of a time lag discovered in the cross-cultural application of Piagetian tests may result from a socio-economic bias in Piaget's theory. Abstract, formal cognition may reflect a particular social structure, embodying the principles of exchange value, reification, and alienation which govern production and exchange in the…

  4. Bias modification training can alter approach bias and chocolate consumption.

    PubMed

    Schumacher, Sophie E; Kemps, Eva; Tiggemann, Marika

    2016-01-01

    Recent evidence has demonstrated that bias modification training has potential to reduce cognitive biases for attractive targets and affect health behaviours. The present study investigated whether cognitive bias modification training could be applied to reduce approach bias for chocolate and affect subsequent chocolate consumption. A sample of 120 women (18-27 years) were randomly assigned to an approach-chocolate condition or avoid-chocolate condition, in which they were trained to approach or avoid pictorial chocolate stimuli, respectively. Training had the predicted effect on approach bias, such that participants trained to approach chocolate demonstrated an increased approach bias to chocolate stimuli whereas participants trained to avoid such stimuli showed a reduced bias. Further, participants trained to avoid chocolate ate significantly less of a chocolate muffin in a subsequent taste test than participants trained to approach chocolate. Theoretically, results provide support for the dual process model's conceptualisation of consumption as being driven by implicit processes such as approach bias. In practice, approach bias modification may be a useful component of interventions designed to curb the consumption of unhealthy foods.

  5. Outcome predictability biases learning.

    PubMed

    Griffiths, Oren; Mitchell, Chris J; Bethmont, Anna; Lovibond, Peter F

    2015-01-01

    Much of contemporary associative learning research is focused on understanding how and when the associative history of cues affects later learning about those cues. Very little work has investigated the effects of the associative history of outcomes on human learning. Three experiments extended the "learned irrelevance" paradigm from the animal conditioning literature to examine the influence of an outcome's prior predictability on subsequent learning of relationships between cues and that outcome. All 3 experiments found evidence for the idea that learning is biased by the prior predictability of the outcome. Previously predictable outcomes were readily associated with novel predictive cues, whereas previously unpredictable outcomes were more readily associated with novel nonpredictive cues. This finding highlights the importance of considering the associative history of outcomes, as well as cues, when interpreting multistage designs. Associative and cognitive explanations of this certainty matching effect are discussed.

  6. Heat exchanger

    DOEpatents

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  7. The intentionality bias and schizotypy.

    PubMed

    Moore, J W; Pope, A

    2014-01-01

    The "intentionality bias" refers to our automatic tendency to judge other people's actions to be intentional. In this experiment we extended research on this effect in two key ways. First, we developed a novel nonlinguistic task for assessing the intentionality bias. This task used video stimuli of ambiguous movements. Second, we investigated the relationship between the strength of this bias and schizotypy (schizophrenia-like symptoms in healthy individuals). Our results showed that the intentionality bias was replicated for the video stimuli and also that this bias is stronger in those individuals scoring higher on the schizotypy rating scales. Overall these findings lend further support for the existence of the intentionality bias. We also discuss the possible relevance of these findings for our understanding of certain symptoms of schizophrenic illness.

  8. Biased ligands: pathway validation for novel GPCR therapeutics.

    PubMed

    Rominger, David H; Cowan, Conrad L; Gowen-MacDonald, William; Violin, Jonathan D

    2014-06-01

    G protein-coupled receptors (GPCRs), in recent years, have been shown to signal via multiple distinct pathways. Furthermore, biased ligands for some receptors can differentially stimulate or inhibit these pathways versus unbiased endogenous ligands or drugs. Biased ligands can be used to gain a deeper understanding of the molecular targets and cellular responses associated with a GPCR, and may be developed into therapeutics with improved efficacy, safety and/or tolerability. Here we review examples and approaches to pathway validation that establish the relevance and therapeutic potential of distinct pathways that can be selectively activated or blocked by biased ligands.

  9. Permanent magnet flux-biased magnetic actuator with flux feedback

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention is a permanent magnet flux-biased magnetic actuator with flux feedback for adjustably suspending an element on a single axis. The magnetic actuator includes a pair of opposing electromagnets and provides bi-directional forces along the single axis to the suspended element. Permanent magnets in flux feedback loops from the opposing electromagnets establish a reference permanent magnet flux-bias to linearize the force characteristics of the electromagnets to extend the linear range of the actuator without the need for continuous bias currents in the electromagnets.

  10. Correlation between bias fields and magnetoresistance in CoPt biased FeNi/Ta/FeNi GMR heterosystems

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Sahoo, S.; Echtenkamp, W.; Binek, Ch.

    2009-03-01

    Exchange coupled magnetic hard layer (HL)/ soft layer (SL) thin films show SL biasing in close analogy to conventional exchange bias systems with antiferromagnetic pinning.^1 Here we study CoPt(35nm)/FeNi450nm/Ta(d)/FeNi450nm heterostructures with d between 0.7 and 5nm. The CoPt films have in-plane magnetic anisotropy and pin the adjacent FeNi SL films. The latter are exchange coupled from top via Ta spacer layers with FeNi in a GMR-type architecture. We use AGFM and SQUID magnetometry to study the FeNi magnetization reversal with (CoPt) and without (vacuum) pinning layer proximity. The two minor FeNi hysteresis loops of the GMR trilayer reveal different biasing effects due to the distinct exchange interaction at the respective interfaces. The FeNi/CoPt coupling is systematically tuned via a series of set fields which allow partial demagnetization of the pinning layer. Moreover we study the correlation between the overall and minor magnetization reversals and the corresponding magnetoresistance effects for various temperature between T=20 and 400K. ^1Ch. Binek, S. Polisetty, Xi He and A. Berger, Phys. Rev. Lett. 96, 067201 (2006). Financial support by NSF through Career DMR-0547887, MRSEC DMR-0820521 and the NRI.

  11. Size Bias in Galaxy Surveys

    NASA Astrophysics Data System (ADS)

    Schmidt, Fabian; Rozo, Eduardo; Dodelson, Scott; Hui, Lam; Sheldon, Erin

    2009-07-01

    Only certain galaxies are included in surveys: those bright and large enough to be detectable as extended sources. Because gravitational lensing can make galaxies appear both brighter and larger, the presence of foreground inhomogeneities can scatter galaxies across not only magnitude cuts but also size cuts, changing the statistical properties of the resulting catalog. Here we explore this size bias and how it combines with magnification bias to affect galaxy statistics. We demonstrate that photometric galaxy samples from current and upcoming surveys can be even more affected by size bias than by magnification bias.

  12. Audibility and visual biasing in speech perception

    NASA Astrophysics Data System (ADS)

    Clement, Bart Richard

    Although speech perception has been considered a predominantly auditory phenomenon, large benefits from vision in degraded acoustic conditions suggest integration of audition and vision. More direct evidence of this comes from studies of audiovisual disparity that demonstrate vision can bias and even dominate perception (McGurk & MacDonald, 1976). It has been observed that hearing-impaired listeners demonstrate more visual biasing than normally hearing listeners (Walden et al., 1990). It is argued here that stimulus audibility must be equated across groups before true differences can be established. In the present investigation, effects of visual biasing on perception were examined as audibility was degraded for 12 young normally hearing listeners. Biasing was determined by quantifying the degree to which listener identification functions for a single synthetic auditory /ba-da-ga/ continuum changed across two conditions: (1)an auditory-only listening condition; and (2)an auditory-visual condition in which every item of the continuum was synchronized with visual articulations of the consonant-vowel (CV) tokens /ba/ and /ga/, as spoken by each of two talkers. Audibility was altered by presenting the conditions in quiet and in noise at each of three signal-to- noise (S/N) ratios. For the visual-/ba/ context, large effects of audibility were found. As audibility decreased, visual biasing increased. A large talker effect also was found, with one talker eliciting more biasing than the other. An independent lipreading measure demonstrated that this talker was more visually intelligible than the other. For the visual-/ga/ context, audibility and talker effects were less robust, possibly obscured by strong listener effects, which were characterized by marked differences in perceptual processing patterns among participants. Some demonstrated substantial biasing whereas others demonstrated little, indicating a strong reliance on audition even in severely degraded acoustic

  13. Sequential biases in accumulating evidence

    PubMed Central

    Huggins, Richard; Dogo, Samson Henry

    2015-01-01

    Whilst it is common in clinical trials to use the results of tests at one phase to decide whether to continue to the next phase and to subsequently design the next phase, we show that this can lead to biased results in evidence synthesis. Two new kinds of bias associated with accumulating evidence, termed ‘sequential decision bias’ and ‘sequential design bias’, are identified. Both kinds of bias are the result of making decisions on the usefulness of a new study, or its design, based on the previous studies. Sequential decision bias is determined by the correlation between the value of the current estimated effect and the probability of conducting an additional study. Sequential design bias arises from using the estimated value instead of the clinically relevant value of an effect in sample size calculations. We considered both the fixed‐effect and the random‐effects models of meta‐analysis and demonstrated analytically and by simulations that in both settings the problems due to sequential biases are apparent. According to our simulations, the sequential biases increase with increased heterogeneity. Minimisation of sequential biases arises as a new and important research area necessary for successful evidence‐based approaches to the development of science. © 2015 The Authors. Research Synthesis Methods Published by John Wiley & Sons Ltd. PMID:26626562

  14. Steady-State Density Functional Theory for Finite Bias Conductances.

    PubMed

    Stefanucci, G; Kurth, S

    2015-12-09

    In the framework of density functional theory, a formalism to describe electronic transport in the steady state is proposed which uses the density on the junction and the steady current as basic variables. We prove that, in a finite window around zero bias, there is a one-to-one map between the basic variables and both local potential on as well as bias across the junction. The resulting Kohn-Sham system features two exchange-correlation (xc) potentials, a local xc potential, and an xc contribution to the bias. For weakly coupled junctions the xc potentials exhibit steps in the density-current plane which are shown to be crucial to describe the Coulomb blockade diamonds. At small currents these steps emerge as the equilibrium xc discontinuity bifurcates. The formalism is applied to a model benzene junction, finding perfect agreement with the orthodox theory of Coulomb blockade.

  15. Cognitive bias in forensic anthropology: visual assessment of skeletal remains is susceptible to confirmation bias.

    PubMed

    Nakhaeizadeh, Sherry; Dror, Itiel E; Morgan, Ruth M

    2014-05-01

    An experimental study was designed to examine cognitive biases within forensic anthropological non-metric methods in assessing sex, ancestry and age at death. To investigate examiner interpretation, forty-one non-novice participants were semi randomly divided into three groups. Prior to conducting the assessment of the skeletal remains, two of the groups were given different extraneous contextual information regarding the sex, ancestry and age at death of the individual. The third group acted as a control group with no extraneous contextual information. The experiment was designed to investigate if the interpretation and conclusions of the skeletal remains would differ amongst participants within the three groups, and to assess whether the examiners would confirm or disagree with the given extraneous context when establishing a biological profile. The results revealed a significant biasing effect within the three groups, demonstrating a strong confirmation bias in the assessment of sex, ancestry and age at death. In assessment of sex, 31% of the participants in the control group concluded that the skeleton remains were male. In contrast, in the group that received contextual information that the remains were male, 72% concluded that the remains were male, and in the participant group where the context was that the remains were of a female, 0% of the participants concluded that the remains were male. Comparable results showing bias were found in assessing ancestry and age at death. These data demonstrate that cognitive bias can impact forensic anthropological non-metric methods on skeletal remains and affects the interpretation and conclusions of the forensic scientists. This empirical study is a step in establishing an evidence base approach for dealing with cognitive issues in forensic anthropological assessments, so as to enhance this valuable forensic science discipline.

  16. Brown coals as natural electron-ion-exchangers

    SciTech Connect

    Kossov, I.I.; Aleksandrov, I.V.; Kamneva, A.I.

    1984-01-01

    The existence of electron-ion-exchange properties in brown coals has been established. The influence of the redox properties of the organic and mineral fractions of the coals on their capacity for electron exchange has been shown.

  17. Heat exchanger

    DOEpatents

    Brackenbury, Phillip J.

    1986-04-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  18. Observational biases for transiting planets

    NASA Astrophysics Data System (ADS)

    Kipping, David M.; Sandford, Emily

    2016-12-01

    Observational biases distort our view of nature, such that the patterns we see within a surveyed population of interest are often unrepresentative of the truth we seek. Transiting planets currently represent the most informative data set on the ensemble properties of exoplanets within 1 au of their star. However, the transit method is inherently biased due to both geometric and detection-driven effects. In this work, we derive the overall observational biases affecting the most basic transit parameters from first principles. By assuming a trapezoidal transit and using conditional probability, we infer the expected distribution of these terms both as a joint distribution and in a marginalized form. These general analytic results provide a baseline against which to compare trends predicted by mission-tailored injection/recovery simulations and offer a simple way to correct for observational bias. Our results explain why the observed population of transiting planets displays a non-uniform impact parameter distribution, with a bias towards near-equatorial geometries. We also find that the geometric bias towards observed planets transiting near periastron is attenuated by the longer durations which occur near apoastron. Finally, we predict that the observational bias with respect to ratio-of-radii is super-quadratic, scaling as (RP/R⋆)5/2, driven by an enhanced geometric transit probability and modestly longer durations.

  19. Cognitive Bias in Systems Verification

    NASA Technical Reports Server (NTRS)

    Larson, Steve

    2012-01-01

    Working definition of cognitive bias: Patterns by which information is sought and interpreted that can lead to systematic errors in decisions. Cognitive bias is used in diverse fields: Economics, Politics, Intelligence, Marketing, to name a few. Attempts to ground cognitive science in physical characteristics of the cognitive apparatus exceed our knowledge. Studies based on correlations; strict cause and effect is difficult to pinpoint. Effects cited in the paper and discussed here have been replicated many times over, and appear sound. Many biases have been described, but it is still unclear whether they are all distinct. There may only be a handful of fundamental biases, which manifest in various ways. Bias can effect system verification in many ways . Overconfidence -> Questionable decisions to deploy. Availability -> Inability to conceive critical tests. Representativeness -> Overinterpretation of results. Positive Test Strategies -> Confirmation bias. Debiasing at individual level very difficult. The potential effect of bias on the verification process can be managed, but not eliminated. Worth considering at key points in the process.

  20. Bilingual comparison of Mandarin and English cognitive bias tasks.

    PubMed

    Smith, Louise; Leung, Wing Gi; Crane, Bryony; Parkinson, Brian; Toulopoulou, Timothea; Yiend, Jenny

    2017-03-13

    Most research into cognitive biases has used Western samples, despite potential East-West socio-cultural differences. One reason is the lack of appropriate measures for non-Westerners. This study is about cross-linguistic equivalence which needs to be established before assessing cross-cultural differences in future research. We developed parallel Mandarin and English measures of interpretation bias and attention bias using back-translation and decentering procedures. We assessed task equivalence by administering both sets of measures to 47 bilingual Mandarin-English speakers. Interpretation bias measurement was similar and reliable across language versions, confirming suitability of the Mandarin versions for future cross-cultural research. By contrast, scores on attention bias tasks did not intercorrelate reliably, suggesting that nonverbal stimuli such as pictures or facial expressions of emotion might present better prospects for cross-cultural comparison. The development of the first set of equivalent measures of interpretation bias in an Eastern language paves the way for future research investigating East-West differences in biased cognition.

  1. Automated Confocal Microscope Bias Correction

    NASA Astrophysics Data System (ADS)

    Dorval, Thierry; Genovesio, Auguste

    2006-10-01

    Illumination artifacts systematically occur in 2D cross-section confocal microscopy imaging . These bias can strongly corrupt an higher level image processing such as a segmentation, a fluorescence evaluation or even a pattern extraction/recognition. This paper presents a new fully automated bias correction methodology based on large image database preprocessing. This method is very appropriate to the High Content Screening (HCS), method dedicated to drugs discovery. Our method assumes that the amount of pictures available is large enough to allow a reliable statistical computation of an average bias image. A relevant segmentation evaluation protocol and experimental results validate our correction algorithm by outperforming object extraction on non corrupted images.

  2. Chemical exchange program analysis.

    SciTech Connect

    Waffelaert, Pascale

    2007-09-01

    As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of

  3. RMB Exchange Rate Forecast Approach Based on BP Neural Network

    NASA Astrophysics Data System (ADS)

    Ye, Sun

    RMB exchange rate system has reformed since July, 2005. This article chose RMB exchange rate data during a period from July, 2005 to September 2010 to establish BP neural network model to forecast RMB exchange rate in the future by using MATLAB software. The result showed that BP neural network is effective to forecast RMB exchange rate and also indicated that RMB exchange rate will continue to appreciate in the future.

  4. Knowledge Exchange with Sistema Scotland

    ERIC Educational Resources Information Center

    Allan, Julie; Moran, Nikki; Duffy, Celia; Loening, Gica

    2010-01-01

    This paper reports on a knowledge exchange project, funded by the Scottish Funding Council and undertaken by a group of researchers from three higher education institutions in Scotland and the project partner, Sistema Scotland. This newly established charity is attempting to implement a major programme of social change, developed in Venezuela,…

  5. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  6. A Practical Guide to Approaching Biased Agonism at G Protein Coupled Receptors.

    PubMed

    Gundry, Jaimee; Glenn, Rachel; Alagesan, Priya; Rajagopal, Sudarshan

    2017-01-01

    Biased agonism, the ability of a receptor to differentially activate downstream signaling pathways depending on binding of a "biased" agonist compared to a "balanced" agonist, is a well-established paradigm for G protein-coupled receptor (GPCR) signaling. Biased agonists have the promise to act as smarter drugs by specifically targeting pathogenic or therapeutic signaling pathways while avoiding others that could lead to side effects. A number of biased agonists targeting a wide array of GPCRs have been described, primarily based on their signaling in pharmacological assays. However, with the promise of biased agonists as novel therapeutics, comes the peril of not fully characterizing and understanding the activities of these compounds. Indeed, it is likely that some of the compounds that have been described as biased, may not be if quantitative approaches for bias assessment are used. Moreover, cell specific effects can result in "system bias" that cannot be accounted by current approaches for quantifying ligand bias. Other confounding includes kinetic effects which can alter apparent bias and differential propagation of biological signal that results in different levels of amplification of reporters downstream of the same effector. Moreover, the effects of biased agonists frequently cannot be predicted from their pharmacological profiles, and must be tested in the vivo physiological context. Thus, the development of biased agonists as drugs requires a detailed pharmacological characterization, involving both qualitative and quantitative approaches, and a detailed physiological characterization. With this understanding, we stand on the edge of a new era of smarter drugs that target GPCRs.

  7. Examining Explanatory Biases in Young Children's Biological Reasoning

    ERIC Educational Resources Information Center

    Legare, Cristine H.; Gelman, Susan A.

    2014-01-01

    Despite the well-established literature on explanation in early childhood, little is known about what constrains children's explanations. State change and negative outcomes were examined as potential explanatory biases in the domain of naïve biology, extending upon previous work in the domain of naïve physics. In two studies, preschool children…

  8. Facing the partner influences exchanges in force

    PubMed Central

    Takagi, Atsushi; Bagnato, Carlo; Burdet, Etienne

    2016-01-01

    Many studies in psychology have documented how the behaviour of verbally communicating pairs is affected by social factors such as the partner’s gaze. However, few studies have examined whether physically interacting pairs are influenced by social factors. Here, we asked two partners to exchange forces with one another, where the goal was to accurately replicate the force back onto the other. We first measured an individual’s accuracy in reproducing a force from a robot. We then tested pairs who knowingly exchanged forces whilst separated by a curtain. These separated pairs exchanged forces as two independent individuals would, hence the force reproduction accuracy of partners is not affected by knowingly reproducing a force onto a nonvisible partner. On the other hand, pairs who exchanged forces whilst facing one another consistently under-reproduced the partner’s force in comparison to separated partners. Thus, the force reproduction accuracy of subjects is strongly biased by facing a partner. PMID:27739492

  9. Long-range magnetic interactions and proximity effects in an amorphous exchange-spring magnet

    DOE PAGES

    Magnus, F.; Brooks-Bartlett, M. E.; Moubah, R.; ...

    2016-06-13

    Low-dimensional magnetic heterostructures are a key element of spintronics, where magnetic interactions between different materials often define the functionality of devices. Although some interlayer exchange coupling mechanisms are by now well established, the possibility of direct exchange coupling via proximity-induced magnetization through non-magnetic layers is typically ignored due to the presumed short range of such proximity effects. Here we show that magnetic order can be induced throughout a 40-nm-thick amorphous paramagnetic layer through proximity to ferromagnets, mediating both exchange-spring magnet behaviour and exchange bias. Furthermore, Monte Carlo simulations show that nearest-neighbour magnetic interactions fall short in describing the observed effectsmore » and long-range magnetic interactions are needed to capture the extent of the induced magnetization. Lastly, the results highlight the importance of considering the range of interactions in low-dimensional heterostructures and how magnetic proximity effects can be used to obtain new functionality.« less

  10. Negativity Bias in Dangerous Drivers

    PubMed Central

    Chai, Jing; Qu, Weina; Sun, Xianghong; Zhang, Kan; Ge, Yan

    2016-01-01

    The behavioral and cognitive characteristics of dangerous drivers differ significantly from those of safe drivers. However, differences in emotional information processing have seldom been investigated. Previous studies have revealed that drivers with higher anger/anxiety trait scores are more likely to be involved in crashes and that individuals with higher anger traits exhibit stronger negativity biases when processing emotions compared with control groups. However, researchers have not explored the relationship between emotional information processing and driving behavior. In this study, we examined the emotional information processing differences between dangerous drivers and safe drivers. Thirty-eight non-professional drivers were divided into two groups according to the penalty points that they had accrued for traffic violations: 15 drivers with 6 or more points were included in the dangerous driver group, and 23 drivers with 3 or fewer points were included in the safe driver group. The emotional Stroop task was used to measure negativity biases, and both behavioral and electroencephalograph data were recorded. The behavioral results revealed stronger negativity biases in the dangerous drivers than in the safe drivers. The bias score was correlated with self-reported dangerous driving behavior. Drivers with strong negativity biases reported having been involved in mores crashes compared with the less-biased drivers. The event-related potentials (ERPs) revealed that the dangerous drivers exhibited reduced P3 components when responding to negative stimuli, suggesting decreased inhibitory control of information that is task-irrelevant but emotionally salient. The influence of negativity bias provides one possible explanation of the effects of individual differences on dangerous driving behavior and traffic crashes. PMID:26765225

  11. Socially biased learning in monkeys.

    PubMed

    Fragaszy, D; Visalberghi, E

    2004-02-01

    We review socially biased learning about food and problem solving in monkeys, relying especially on studies with tufted capuchin monkeys (Cebus apella) and callitrichid monkeys. Capuchin monkeys most effectively learn to solve a new problem when they can act jointly with an experienced partner in a socially tolerant setting and when the problem can be solved by direct action on an object or substrate, but they do not learn by imitation. Capuchin monkeys are motivated to eat foods, whether familiar or novel, when they are with others that are eating, regardless of what the others are eating. Thus, social bias in learning about foods is indirect and mediated by facilitation of feeding. In most respects, social biases in learning are similar in capuchins and callitrichids, except that callitrichids provide more specific behavioral cues to others about the availability and palatability of foods. Callitrichids generally are more tolerant toward group members and coordinate their activity in space and time more closely than capuchins do. These characteristics support stronger social biases in learning in callitrichids than in capuchins in some situations. On the other hand, callitrichids' more limited range of manipulative behaviors, greater neophobia, and greater sensitivity to the risk of predation restricts what these monkeys learn in comparison with capuchins. We suggest that socially biased learning is always the collective outcome of interacting physical, social, and individual factors, and that differences across populations and species in social bias in learning reflect variations in all these dimensions. Progress in understanding socially biased learning in nonhuman species will be aided by the development of appropriately detailed models of the richly interconnected processes affecting learning.

  12. Carbon exchange by establishing biofuel crops in Central Illinois

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perennial grass biofuels may contribute to long-term carbon sequestration in soils, thereby providing a broad range of environmental benefits at multiple scales. To quantify those benefits, the carbon balance was investigated over three perennial grass biofuel crops miscanthus (Miscanthus giganteus)...

  13. Educator Exchange Resource Guide.

    ERIC Educational Resources Information Center

    Garza, Cris; Rodriguez, Victor

    This resource guide was developed for teachers and administrators interested in participating in intercultural and international exchange programs or starting an exchange program. An analysis of an exchange program's critical elements discusses exchange activities; orientation sessions; duration of exchange; criteria for participation; travel,…

  14. Entropy exchange for infinite-dimensional systems

    PubMed Central

    Duan, Zhoubo; Hou, Jinchuan

    2017-01-01

    In this paper the entropy exchange for channels and states in infinite-dimensional systems are defined and studied. It is shown that, this entropy exchange depends only on the given channel and the state. An explicit expression of the entropy exchange in terms of the state and the channel is proposed. The generalized Klein’s inequality, the subadditivity and the triangle inequality about the entropy including infinite entropy for the infinite-dimensional systems are established, and then, applied to compare the entropy exchange with the entropy change. PMID:28164995

  15. Heuristic-biased stochastic sampling

    SciTech Connect

    Bresina, J.L.

    1996-12-31

    This paper presents a search technique for scheduling problems, called Heuristic-Biased Stochastic Sampling (HBSS). The underlying assumption behind the HBSS approach is that strictly adhering to a search heuristic often does not yield the best solution and, therefore, exploration off the heuristic path can prove fruitful. Within the HBSS approach, the balance between heuristic adherence and exploration can be controlled according to the confidence one has in the heuristic. By varying this balance, encoded as a bias function, the HBSS approach encompasses a family of search algorithms of which greedy search and completely random search are extreme members. We present empirical results from an application of HBSS to the realworld problem of observation scheduling. These results show that with the proper bias function, it can be easy to outperform greedy search.

  16. Measurement Bias Detection through Factor Analysis

    ERIC Educational Resources Information Center

    Barendse, M. T.; Oort, F. J.; Werner, C. S.; Ligtvoet, R.; Schermelleh-Engel, K.

    2012-01-01

    Measurement bias is defined as a violation of measurement invariance, which can be investigated through multigroup factor analysis (MGFA), by testing across-group differences in intercepts (uniform bias) and factor loadings (nonuniform bias). Restricted factor analysis (RFA) can also be used to detect measurement bias. To also enable nonuniform…

  17. Without Bias: A Guidebook for Nondiscriminatory Communication.

    ERIC Educational Resources Information Center

    Pickens, Judy E., Ed.; And Others

    This guidebook discusses ways to eliminate various types of discrimination from business communications. Separately authored chapters discuss eliminating racial and ethnic bias; eliminating sexual bias; achieving communication sensitive about handicaps of disabled persons; eliminating bias from visual media; eliminating bias from meetings,…

  18. The Truth and Bias Model of Judgment

    ERIC Educational Resources Information Center

    West, Tessa V.; Kenny, David A.

    2011-01-01

    We present a new model for the general study of how the truth and biases affect human judgment. In the truth and bias model, judgments about the world are pulled by 2 primary forces, the truth force and the bias force, and these 2 forces are interrelated. The truth and bias model differentiates force and value, where the force is the strength of…

  19. Unpacking the Evidence of Gender Bias

    ERIC Educational Resources Information Center

    Fulmer, Connie L.

    2010-01-01

    The purpose of this study was to investigate gender bias in pre-service principals using the Gender-Leader Implicit Association Test. Analyses of student-learning narratives revealed how students made sense of gender bias (biased or not-biased) and how each reacted to evidence (surprised or not-surprised). Two implications were: (1) the need for…

  20. Collection Development and the Psychology of Bias

    ERIC Educational Resources Information Center

    Quinn, Brian

    2012-01-01

    The library literature addressing the role of bias in collection development emphasizes a philosophical approach. It is based on the notion that bias can be controlled by the conscious act of believing in certain values and adhering to a code of ethics. It largely ignores the psychological research on bias, which suggests that bias is a more…

  1. Research Review: Attention Bias Modification (ABM)--A Novel Treatment for Anxiety Disorders

    ERIC Educational Resources Information Center

    Bar-Haim, Yair

    2010-01-01

    Attention bias modification (ABM) is a newly emerging therapy for anxiety disorders that is rooted in current cognitive models of anxiety and in established experimental data on threat-related attentional biases in anxiety. This review describes the evidence indicating that ABM has the potential to become an enhancing tool for current…

  2. A Lack of Left Visual Field Bias when Individuals with Autism Process Faces

    ERIC Educational Resources Information Center

    Dundas, Eva M.; Best, Catherine A.; Minshew, Nancy J.; Strauss, Mark S.

    2012-01-01

    It has been established that typically developing individuals have a bias to attend to facial information in the left visual field (LVF) more than in the right visual field. This bias is thought to arise from the right hemisphere's advantage for processing facial information, with evidence suggesting it to be driven by the configural demands of…

  3. The Threshold of Embedded M Collider Bias and Confounding Bias

    ERIC Educational Resources Information Center

    Kelcey, Benjamin; Carlisle, Joanne

    2011-01-01

    Of particular import to this study, is collider bias originating from stratification on retreatment variables forming an embedded M or bowtie structural design. That is, rather than assume an M structural design which suggests that "X" is a collider but not a confounder, the authors adopt what they consider to be a more reasonable…

  4. Corrosive resistant heat exchanger

    DOEpatents

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  5. Bias in Dynamic Monte Carlo Alpha Calculations

    SciTech Connect

    Sweezy, Jeremy Ed; Nolen, Steven Douglas; Adams, Terry R.; Trahan, Travis John

    2015-02-06

    A 1/N bias in the estimate of the neutron time-constant (commonly denoted as α) has been seen in dynamic neutronic calculations performed with MCATK. In this paper we show that the bias is most likely caused by taking the logarithm of a stochastic quantity. We also investigate the known bias due to the particle population control method used in MCATK. We conclude that this bias due to the particle population control method is negligible compared to other sources of bias.

  6. Exchange frequency in replica exchange molecular dynamics

    NASA Astrophysics Data System (ADS)

    Sindhikara, Daniel; Meng, Yilin; Roitberg, Adrian E.

    2008-01-01

    The effect of the exchange-attempt frequency on sampling efficiency is studied in replica exchange molecular dynamics (REMD). We show that sampling efficiency increases with increasing exchange-attempt frequency. This conclusion is contrary to a commonly expressed view in REMD. Five peptides (1-21 residues long) are studied with a spectrum of exchange-attempt rates. Convergence rates are gauged by comparing ensemble properties between fixed length test REMD simulations and longer reference simulations. To show the fundamental correlation between exchange frequency and convergence time, a simple model is designed and studied, displaying the same basic behavior of much more complex systems.

  7. Combating Anti-Muslim Bias

    ERIC Educational Resources Information Center

    Shah, Nirvi

    2011-01-01

    America's 2.5 million Muslims make up less than 1% of the U.S. population, according to the Pew Research Center. Many Muslim students face discrimination and some cases have warranted investigation by the U.S. Department of Education's Office of Civil Rights. Muslim groups have reported widespread bias as well. For many Muslim…

  8. Stereotype Formation: Biased by Association

    ERIC Educational Resources Information Center

    Le Pelley, Mike E.; Reimers, Stian J.; Calvini, Guglielmo; Spears, Russell; Beesley, Tom; Murphy, Robin A.

    2010-01-01

    We propose that biases in attitude and stereotype formation might arise as a result of learned differences in the extent to which social groups have previously been predictive of behavioral or physical properties. Experiments 1 and 2 demonstrate that differences in the experienced predictiveness of groups with respect to evaluatively neutral…

  9. Test Bias and Construct Validity.

    ERIC Educational Resources Information Center

    Jensen, Arthur R.

    The several statistical methods described for detecting test bias in terms of various internal features of a person's test performances and the test's construct validity can be applied to any groups in the population. But the evidence regarding groups other than U.S. blacks and whites is either lacking or is still too sketchy to permit any strong…

  10. Response Bias in Hospice Evaluation.

    ERIC Educational Resources Information Center

    Hayslip, Bert, Jr.; And Others

    1991-01-01

    Analyzed response bias among 34 recipients of care in hospice. Found nonrespondents to have better bereavement prognoses and tended to care for patients who were younger, male, and in program for shorter time. Nonrespondents were in contact with staff less than were respondents. Data are consistent with earlier research showing significant…

  11. Key Words in Instruction. Bias

    ERIC Educational Resources Information Center

    Callison, Daniel

    2005-01-01

    Two challenging criteria for judging information involve bias and authority. In both cases, judgments may not be clearly possible. In both cases, there may be degrees or levels of acceptability. For students to gain experience and to demonstrate skills in making judgments, they need opportunities to consider a wide spectrum of resources under a…

  12. Gender Bias in the Courts.

    ERIC Educational Resources Information Center

    Gill, Wanda E.

    The term gender bias was coined by the National Judicial Education Program to Promote Equality for Women and Men in the Courts and is defined as the predisposition or tendency to think about and behave toward people primarily on the basis of their sex rather than their status, professional accomplishments, or aspirations. An effective method for…

  13. Sex Bias in Counseling Materials

    ERIC Educational Resources Information Center

    Harway, Michele

    1977-01-01

    This article reviews findings of bias in counseling materials and presents results of three original studies. Indications are that textbooks used by practitioners present the sexes in stereotypical fashion, and a greater proportion of college catalog context is devoted to men than to women. (Author)

  14. Bias in Estimation of Misclassification Rates.

    PubMed

    Haberman, Shelby J

    2006-06-01

    When a simple random sample of size n is employed to establish a classification rule for prediction of a polytomous variable by an independent variable, the best achievable rate of misclassification is higher than the corresponding best achievable rate if the conditional probability distribution is known for the predicted variable given the independent variable. In typical cases, this increased misclassification rate due to sampling is remarkably small relative to other increases in expected measures of prediction accuracy due to samplings that are typically encountered in statistical analysis.This issue is particularly striking if a polytomous variable predicts a polytomous variable, for the excess misclassification rate due to estimation approaches 0 at an exponential rate as n increases. Even with a continuous real predictor and with simple nonparametric methods, it is typically not difficult to achieve an excess misclassification rate on the order of n (-1). Although reduced excess error is normally desirable, it may reasonably be argued that, in the case of classification, the reduction in bias is related to a more fundamental lack of sensitivity of misclassification error to the quality of the prediction. This lack of sensitivity is not an issue if criteria based on probability prediction such as logarithmic penalty or least squares are employed, but the latter measures typically involve more substantial issues of bias. With polytomous predictors, excess expected errors due to sampling are typically of order n (-1). For a continuous real predictor, the increase in expected error is typically of order n (-2/3).

  15. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  16. Woven heat exchanger

    DOEpatents

    Piscitella, Roger R.

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  17. Perceptual Other-Race Training Reduces Implicit Racial Bias

    PubMed Central

    Lebrecht, Sophie; Pierce, Lara J.; Tarr, Michael J.; Tanaka, James W.

    2009-01-01

    Background Implicit racial bias denotes socio-cognitive attitudes towards other-race groups that are exempt from conscious awareness. In parallel, other-race faces are more difficult to differentiate relative to own-race faces – the “Other-Race Effect.” To examine the relationship between these two biases, we trained Caucasian subjects to better individuate other-race faces and measured implicit racial bias for those faces both before and after training. Methodology/Principal Findings Two groups of Caucasian subjects were exposed equally to the same African American faces in a training protocol run over 5 sessions. In the individuation condition, subjects learned to discriminate between African American faces. In the categorization condition, subjects learned to categorize faces as African American or not. For both conditions, both pre- and post-training we measured the Other-Race Effect using old-new recognition and implicit racial biases using a novel implicit social measure – the “Affective Lexical Priming Score” (ALPS). Subjects in the individuation condition, but not in the categorization condition, showed improved discrimination of African American faces with training. Concomitantly, subjects in the individuation condition, but not the categorization condition, showed a reduction in their ALPS. Critically, for the individuation condition only, the degree to which an individual subject's ALPS decreased was significantly correlated with the degree of improvement that subject showed in their ability to differentiate African American faces. Conclusions/Significance Our results establish a causal link between the Other-Race Effect and implicit racial bias. We demonstrate that training that ameliorates the perceptual Other-Race Effect also reduces socio-cognitive implicit racial bias. These findings suggest that implicit racial biases are multifaceted, and include malleable perceptual skills that can be modified with relatively little training. PMID

  18. Types of Research Bias Encountered in IR.

    PubMed

    Gabr, Ahmed; Kallini, Joseph Ralph; Desai, Kush; Hickey, Ryan; Thornburg, Bartley; Kulik, Laura; Lewandowski, Robert J; Salem, Riad

    2016-04-01

    Bias is a systemic error in studies that leads to inaccurate deductions. Relevant biases in the field of IR and interventional oncology were identified after reviewing articles published in the Journal of Vascular and Interventional Radiology and CardioVascular and Interventional Radiology. Biases cited in these articles were divided into three categories: preinterventional (health care access, participation, referral, and sample biases), periinterventional (contamination, investigator, and operator biases), and postinterventional (guarantee-time, lead time, loss to follow-up, recall, and reporting biases).

  19. Mitigating Evidentiary Bias in Planning and Policy-Making

    PubMed Central

    Parkhurst, Justin

    2017-01-01

    The field of cognitive psychology has increasingly provided scientific insights to explore how humans are subject to unconscious sources of evidentiary bias, leading to errors that can affect judgement and decision-making. Increasingly these insights are being applied outside the realm of individual decision-making to the collective arena of policy-making as well. A recent editorial in this journal has particularly lauded the work of the World Bank for undertaking an open and critical reflection on sources of unconscious bias in its own expert staff that could undermine achievement of its key goals. The World Bank case indeed serves as a remarkable case of a global policy-making agency making its own critical reflections transparent for all to see. Yet the recognition that humans are prone to cognitive errors has been known for centuries, and the scientific exploration of such biases provided by cognitive psychology is now well-established. What still remains to be developed, however, is a widespread body of work that can inform efforts to institutionalise strategies to mitigate the multiple sources and forms of evidentiary bias arising within administrative and policy-making environments. Addressing this gap will require a programme of conceptual and empirical work that supports robust development and evaluation of institutional bias mitigation strategies. The cognitive sciences provides a scientific basis on which to proceed, but a critical priority will now be the application of that science to improve policy-making within those agencies taking responsibility for social welfare and development programmes.

  20. Woven heat exchanger

    DOEpatents

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  1. Micromagnetic simulation of ferrimagnetic TbFeCo films with exchange coupled nanophases

    NASA Astrophysics Data System (ADS)

    Ma, Chung T.; Li, Xiaopu; Poon, S. Joseph

    2016-11-01

    Amorphous ferrimagnetic TbFeCo thin films are found to exhibit exchange bias effect near the compensation temperature by magnetic hysteresis loop measurement. The observed exchange anisotropy is believed to originate from the exchange interaction between the two nanoscale amorphous phases distributed within the films. Here, we present a computational model of phase-separated TbFeCo using micromagnetic simulation. Two types of cells with different Tb concentration are distributed within the simulated space to obtain a heterogeneous structure consisting of two nanoscale amorphous phases. Each cell contains separated Tb and FeCo components, forming two antiferromagnetically coupled sublattices. Using this model, we are able to show the existence of exchange bias effect, and the shift in hysteresis loops is in agreement with experiment. The micromagnetic model developed herein for a heterogeneous magnetic material may also account for some recent measurements of exchange bias effect in crystalline films.

  2. Replica state exchange metadynamics for improving the convergence of free energy estimates.

    PubMed

    Galvelis, Raimondas; Sugita, Yuji

    2015-07-15

    Metadynamics (MTD) is a powerful enhanced sampling method for systems with rugged energy landscapes. It constructs a bias potential in a predefined collective variable (CV) space to overcome barriers between metastable states. In bias-exchange MTD (BE-MTD), multiple replicas approximate the CV space by exchanging bias potentials (replica conditions) with the Metropolis-Hastings (MH) algorithm. We demonstrate that the replica-exchange rates and the convergence of free energy estimates of BE-MTD are improved by introducing the infinite swapping (IS) or the Suwa-Todo (ST) algorithms. Conceptually, IS and ST perform transitions in a replica state space rather than exchanges in a replica condition space. To emphasize this, the proposed scheme is called the replica state exchange MTD (RSE-MTD). Benchmarks were performed with alanine polypeptides in vacuum and water. For the systems tested in this work, there is no significant performance difference between IS and ST.

  3. Exchangeability in the case-crossover design.

    PubMed

    Mittleman, Murray A; Mostofsky, Elizabeth

    2014-10-01

    In cohort and case-control studies, confounding that arises as a result of differences in the distribution of determinants of the outcome between exposure groups leading to non-exchangeability are addressed by restriction, matching or with statistical models. In case-only studies, this issue is addressed by comparing each individual with his/herself. Although case-only designs use self-matching and only include individuals who develop the outcome of interest, issues of non-exchangeability are identical to those that arise in traditional case-control and cohort studies. In this review, we describe one type of case-only design, the case-crossover design, and discuss how the concept of exchangeability can be used to understand issues of confounding, carryover effects, period effects and selection bias in case-crossover studies.

  4. Exchange coupling and its applications in magnetic data storage.

    PubMed

    Li, Kebin; Wu, Yihong; Guo, Zaibing; Zheng, Yuankai; Han, Guchang; Qiu, Jinjun; Luo, Ping; An, Lihua; Zhou, Tiejun

    2007-01-01

    The continuing scaling of magnetic recording is facing more and more scientific and technological challenges because both the read sensor and recording bit are approaching sub-50 nm regime with the ever increasing areal density in hard disk drives. One of the key and indispensable elements for both high-sensitivity sensors and high-density media is the exchange bias between a ferromagnetic and an antiferromagnetic layer or the exchange coupling between two ferromagnets via a non-magnetic spacer. In the nanometer regime, the exchange coupling between ferromagnet and antiferromagnet or two ferromagnets through a conductive spacer is governed by the intergrain exchange interaction which has its origin in electron spins. Interlayer exchange coupling in multilayer or trilayer essentially originates from the quantum confinement effect. In this paper, we first review the physical origin and various theoretical models of the two types of exchange couplings, followed by a review of the applications of the exchange bias and interlayer exchange coupling in data storage with emphasis on the advanced read sensor and advanced media including perpendicular media and patterned media.

  5. Mindfulness reduces the correspondence bias.

    PubMed

    Hopthrow, Tim; Hooper, Nic; Mahmood, Lynsey; Meier, Brian P; Weger, Ulrich

    2017-03-01

    The correspondence bias (CB) refers to the idea that people sometimes give undue weight to dispositional rather than situational factors when explaining behaviours and attitudes. Three experiments examined whether mindfulness, a non-judgmental focus on the present moment, could reduce the CB. Participants engaged in a brief mindfulness exercise (the raisin task), a control task, or an attention to detail task before completing a typical CB measure involving an attitude-attribution paradigm. The results indicated that participants in the mindfulness condition experienced a significant reduction in the CB compared to participants in the control or attention to detail conditions. These results suggest that mindfulness training can play a unique role in reducing social biases related to person perception.

  6. Good practices for quantitative bias analysis.

    PubMed

    Lash, Timothy L; Fox, Matthew P; MacLehose, Richard F; Maldonado, George; McCandless, Lawrence C; Greenland, Sander

    2014-12-01

    Quantitative bias analysis serves several objectives in epidemiological research. First, it provides a quantitative estimate of the direction, magnitude and uncertainty arising from systematic errors. Second, the acts of identifying sources of systematic error, writing down models to quantify them, assigning values to the bias parameters and interpreting the results combat the human tendency towards overconfidence in research results, syntheses and critiques and the inferences that rest upon them. Finally, by suggesting aspects that dominate uncertainty in a particular research result or topic area, bias analysis can guide efficient allocation of sparse research resources. The fundamental methods of bias analyses have been known for decades, and there have been calls for more widespread use for nearly as long. There was a time when some believed that bias analyses were rarely undertaken because the methods were not widely known and because automated computing tools were not readily available to implement the methods. These shortcomings have been largely resolved. We must, therefore, contemplate other barriers to implementation. One possibility is that practitioners avoid the analyses because they lack confidence in the practice of bias analysis. The purpose of this paper is therefore to describe what we view as good practices for applying quantitative bias analysis to epidemiological data, directed towards those familiar with the methods. We focus on answering questions often posed to those of us who advocate incorporation of bias analysis methods into teaching and research. These include the following. When is bias analysis practical and productive? How does one select the biases that ought to be addressed? How does one select a method to model biases? How does one assign values to the parameters of a bias model? How does one present and interpret a bias analysis?. We hope that our guide to good practices for conducting and presenting bias analyses will encourage

  7. Self regulating body bias generator

    NASA Technical Reports Server (NTRS)

    Hass, Kenneth (Inventor)

    2004-01-01

    The back bias voltage on a functional circuit is controlled through a closed loop process. A delay element receives a clock pulse and produces a delay output. The delay element is advantageously constructed of the same materials as the functional circuit so that the aging and degradation of the delay element parallels the degradation of the functional circuit. As the delay element degrades, the transistor switching time increases, increasing the time delay of the delay output. An AND gate compares a clock pulse to an output pulse of the delay element, the AND output forming a control pulse. A duty cycle of the control pulse is determined by the delay time between the clock pulse and the delay element output. The control pulse is received at the input of a charge pump. The charge pump produces a back bias voltage which is then applied to the delay element and to the functional circuit. If the time delay produced by the delay element exceeds the optimal delay, the duty cycle of the control pulse is shortened, and the back bias voltage is lowered, thereby increasing the switching speed of the transistors in the delay element and reducing the time delay. If the throughput of the delay element is too fast, the duty cycle of the control pulse is lengthened, raising the back bias voltage produced by the charge pump. This, in turn, lowers the switching speed of the transistors in both the delay element and the functional circuit. The slower switching speed in the delay element increases time delay. In this manner, the switching speed of the delay element, and of the functional circuit, is maintained at a constant level over the life of the circuit.

  8. Galaxy formation and physical bias

    NASA Technical Reports Server (NTRS)

    Cen, Renyue; Ostriker, Jeremiah P.

    1992-01-01

    We have supplemented our code, which computes the evolution of the physical state of a representative piece of the universe to include, not only the dynamics of dark matter (with a standard PM code), and the hydrodynamics of the gaseous component (including detailed collisional and radiative processes), but also galaxy formation on a heuristic but plausible basis. If, within a cell the gas is Jeans' unstable, collapsing, and cooling rapidly, it is transformed to galaxy subunits, which are then followed with a collisionless code. After grouping them into galaxies, we estimate the relative distributions of galaxies and dark matter and the relative velocities of galaxies and dark matter. In a large scale CDM run of 80/h Mpc size with 8 x 10 exp 6 cells and dark matter particles, we find that physical bias b is on the 8/h Mpc scale is about 1.6 and increases towards smaller scales, and that velocity bias is about 0.8 on the same scale. The comparable HDM simulation is highly biased with b = 2.7 on the 8/h Mpc scale. Implications of these results are discussed in the light of the COBE observations which provide an accurate normalization for the initial power spectrum. CDM can be ruled out on the basis of too large a predicted small scale velocity dispersion at greater than 95 percent confidence level.

  9. Response bias in plaintiffs' histories.

    PubMed

    Lees-Haley, P R; Williams, C W; Zasler, N D; Marguilies, S; English, L T; Stevens, K B

    1997-11-01

    This study investigated response bias in self-reported history of factors relevant to the assessment of traumatic brain injury, toxic brain injury and related emotional distress. Response bias refers to systematic error in self-report data. A total of 446 subjects (comprising 131 litigating and 315 non-litigating adults from five locations in the United States) completed a symptom questionnaire. Data were obtained from university faculty and students, from patients in clinics specializing in physiatry neurology, and family medicine, and from plaintiffs undergoing forensic neuropsychological evaluations. Comparisons were made for litigant and non litigant ratings of their past and current cognitive and emotional functioning, including life in general, ability to concentrate, memory, depression, anxiety, alcohol, drugs, ability to work or attend school, irritability, headaches, confusion, self-esteem, and fatigue. Although there is no basis for hypothesizing plaintiffs to be healthier than the general population, plaintiffs rated their pre-injury functioning superior to non-plaintiffs. These findings suggest that response biases need to be taken into account by forensic examiners when relying on litigants' self-reports of pre-injury status.

  10. The Nonverbal Transmission of Intergroup Bias: A Model of Bias Contagion with Implications for Social Policy

    PubMed Central

    Weisbuch, Max; Pauker, Kristin

    2013-01-01

    Social and policy interventions over the last half-century have achieved laudable reductions in blatant discrimination. Yet members of devalued social groups continue to face subtle discrimination. In this article, we argue that decades of anti-discrimination interventions have failed to eliminate intergroup bias because such bias is contagious. We present a model of bias contagion in which intergroup bias is subtly communicated through nonverbal behavior. Exposure to such nonverbal bias “infects” observers with intergroup bias. The model we present details two means by which nonverbal bias can be expressed—either as a veridical index of intergroup bias or as a symptom of worry about appearing biased. Exposure to this nonverbal bias can increase perceivers’ own intergroup biases through processes of implicit learning, informational influence, and normative influence. We identify critical moderators that may interfere with these processes and consequently propose several social and educational interventions based on these moderators. PMID:23997812

  11. Examining Event-Related Potential (ERP) Correlates of Decision Bias in Recognition Memory Judgments

    PubMed Central

    Hill, Holger; Windmann, Sabine

    2014-01-01

    Memory judgments can be based on accurate memory information or on decision bias (the tendency to report that an event is part of episodic memory when one is in fact unsure). Event related potentials (ERP) correlates are important research tools for elucidating the dynamics underlying memory judgments but so far have been established only for investigations of accurate old/new discrimination. To identify the ERP correlates of bias, and observe how these interact with ERP correlates of memory, we conducted three experiments that manipulated decision bias within participants via instructions during recognition memory tests while their ERPs were recorded. In Experiment 1, the bias manipulation was performed between blocks of trials (automatized bias) and compared to trial-by-trial shifts of bias in accord with an external cue (flexibly controlled bias). In Experiment 2, the bias manipulation was performed at two different levels of accurate old/new discrimination as the memory strength of old (studied) items was varied. In Experiment 3, the bias manipulation was added to another, bottom-up driven manipulation of bias induced via familiarity. In the first two Experiments, and in the low familiarity condition of Experiment 3, we found evidence of an early frontocentral ERP component at 320 ms poststimulus (the FN320) that was sensitive to the manipulation of bias via instruction, with more negative amplitudes indexing more liberal bias. By contrast, later during the trial (500–700 ms poststimulus), bias effects interacted with old/new effects across all three experiments. Results suggest that the decision criterion is typically activated early during recognition memory trials, and is integrated with retrieved memory signals and task-specific processing demands later during the trial. More generally, the findings demonstrate how ERPs can help to specify the dynamics of recognition memory processes under top-down and bottom-up controlled retrieval conditions. PMID

  12. 75 FR 45584 - Planning and Establishment of State-Level Exchanges; Request for Comments Regarding Exchange...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ..., 2010. The Department of Health and Human Services (HHS) invites public comments in advance of future... the comment period. For information on viewing public comments, see the beginning of the SUPPLEMENTARY... ). SUPPLEMENTARY INFORMATION: Inspection of Public Comments. All comments received before the close of the...

  13. Outcome-Reporting Bias in Education Research

    ERIC Educational Resources Information Center

    Pigott, Therese D.; Valentine, Jeffrey C.; Polanin, Joshua R.; Williams, Ryan T.; Canada, Dericka D.

    2013-01-01

    Outcome-reporting bias occurs when primary studies do not include information about all outcomes measured in a study. When studies omit findings on important measures, efforts to synthesize the research using systematic review techniques will be biased and interpretations of individual studies will be incomplete. Outcome-reporting bias has been…

  14. Using Newspapers to Study Media Bias.

    ERIC Educational Resources Information Center

    Kirman, Joseph M.

    1992-01-01

    Suggests that students can learn to recognize media bias by studying media reports of current events or historical topics. Describes a study unit using media coverage of the second anniversary of the Palestinian uprising against Israel. Discusses lesson objectives, planning, defining bias teaching procedures, and criteria for determining bias. (DK)

  15. Attentional Bias for Exercise-Related Images

    ERIC Educational Resources Information Center

    Berry, Tanya R.; Spence, John C.; Stolp, Sean M.

    2011-01-01

    This research examined attentional bias toward exercise-related images using a visual probe task. It was hypothesized that more-active participants would display attentional bias toward the exercise-related images. The results showed that men displayed attentional bias for the exercise images. There was a significant interaction of activity level…

  16. Gender Bias: Recent Research and Interventions.

    ERIC Educational Resources Information Center

    New Jersey Research Bulletin, 1996

    1996-01-01

    This annotated bibliography lists 14 publications about recent research on gender bias and interventions to reduce gender bias in schools. The bibliography is divided into two sections: current research and intervention. The first includes descriptions of studies examining the following topics: gender bias in U.S. schools and its effects;…

  17. Understanding Errors, Biases that Can Affect Journalists.

    ERIC Educational Resources Information Center

    Stocking, S. Holly; Gross, Paget H.

    1989-01-01

    Outlines some of the errors and biases in thinking that psychologists have documented in recent years, including the eyewitness fallacy, underutilization of statistics, confirmation bias, misperceptions of risk, sample errors and biases, and misunderstanding of regression. Argues that journalism educators need to bring these to the attention of…

  18. Integrating Implicit Bias into Counselor Education

    ERIC Educational Resources Information Center

    Boysen, Guy A.

    2010-01-01

    The author reviews the empirical and theoretical literature on implicit bias as it relates to counselor education. Counselor educators can integrate implicit bias into the concepts of multicultural knowledge, awareness, and skill. Knowledge about implicit bias includes its theoretical explanation, measurement, and impact on counseling. Awareness…

  19. Opinion Dynamics with Confirmation Bias

    PubMed Central

    Allahverdyan, Armen E.; Galstyan, Aram

    2014-01-01

    Background Confirmation bias is the tendency to acquire or evaluate new information in a way that is consistent with one's preexisting beliefs. It is omnipresent in psychology, economics, and even scientific practices. Prior theoretical research of this phenomenon has mainly focused on its economic implications possibly missing its potential connections with broader notions of cognitive science. Methodology/Principal Findings We formulate a (non-Bayesian) model for revising subjective probabilistic opinion of a confirmationally-biased agent in the light of a persuasive opinion. The revision rule ensures that the agent does not react to persuasion that is either far from his current opinion or coincides with it. We demonstrate that the model accounts for the basic phenomenology of the social judgment theory, and allows to study various phenomena such as cognitive dissonance and boomerang effect. The model also displays the order of presentation effect–when consecutively exposed to two opinions, the preference is given to the last opinion (recency) or the first opinion (primacy) –and relates recency to confirmation bias. Finally, we study the model in the case of repeated persuasion and analyze its convergence properties. Conclusions The standard Bayesian approach to probabilistic opinion revision is inadequate for describing the observed phenomenology of persuasion process. The simple non-Bayesian model proposed here does agree with this phenomenology and is capable of reproducing a spectrum of effects observed in psychology: primacy-recency phenomenon, boomerang effect and cognitive dissonance. We point out several limitations of the model that should motivate its future development. PMID:25007078

  20. Charge amplifier with bias compensation

    DOEpatents

    Johnson, Gary W.

    2002-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  1. Evidence of interface exchange magnetism in self-assembled cobalt-fullerene nanocomposites exposed to air

    NASA Astrophysics Data System (ADS)

    Lavrentiev, V.; Stupakov, A.; Lavrentieva, I.; Motylenko, M.; Barchuk, M.; Rafaja, D.

    2017-03-01

    We report on the establishing of an exclusive magnetic effect in air-exposed CoxC60 nanocomposites (x > 2) created through self-assembling in the depositing mixture. In order to verify the influence of ambient air on the CoxC60 mixture film, we have studied in detail the film magnetization at rather low temperatures, which provides their ferromagnetic behavior. Tracing the possible exchange bias effect, we distinguished a clear vertical shift of the hysteresis loops recorded for the air-exposed CoxC60 films in the field cooling (FC) regime. The detected vertical shift of the FC loops is caused by an uncompensated magnetic moment M u induced by exchange coupling of the Co spins at the Co/CoO interface. This interface arises due to the oxidation of small Co clusters distributed in a C60-based matrix of self-assembled composite films, which occurs during air exposure. The core–shell structure of the Co/CoO magnetic clusters (about 2–3 nm in size) consisting of a ε-Co core and fcc-CoO shell was confirmed by means of transmission electron microscopy. Established interface magnetism testifies to a composite nanostructure in the CoxC60 mixture film with x > 2 and explains the influence of air exposure on the film structure. The discovered magnetic effect implies a new application potential for cobalt-fullerene composites in sensors and catalysis.

  2. 75 FR 78694 - Proposed Residential Exchange Program Settlement Agreement Proceeding (REP-12); Public Hearing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-16

    ... Exchange rate. Application of the 7(b)(3) surcharge to the PF Exchange rate has the effect of increasing...: (1) ] Matters of procedure only (the status of the rate proceeding, for example); (2) exchanges of... establish the utilities' ASCs for the Exchange Period, which coincides with BPA's rate period. On June...

  3. A "Scientific Diversity" Intervention to Reduce Gender Bias in a Sample of Life Scientists.

    PubMed

    Moss-Racusin, Corinne A; van der Toorn, Jojanneke; Dovidio, John F; Brescoll, Victoria L; Graham, Mark J; Handelsman, Jo

    2016-01-01

    Mounting experimental evidence suggests that subtle gender biases favoring men contribute to the underrepresentation of women in science, technology, engineering, and mathematics (STEM), including many subfields of the life sciences. However, there are relatively few evaluations of diversity interventions designed to reduce gender biases within the STEM community. Because gender biases distort the meritocratic evaluation and advancement of students, interventions targeting instructors' biases are particularly needed. We evaluated one such intervention, a workshop called "Scientific Diversity" that was consistent with an established framework guiding the development of diversity interventions designed to reduce biases and was administered to a sample of life science instructors (N = 126) at several sessions of the National Academies Summer Institute for Undergraduate Education held nationwide. Evidence emerged indicating the efficacy of the "Scientific Diversity" workshop, such that participants were more aware of gender bias, expressed less gender bias, and were more willing to engage in actions to reduce gender bias 2 weeks after participating in the intervention compared with 2 weeks before the intervention. Implications for diversity interventions aimed at reducing gender bias and broadening the participation of women in the life sciences are discussed.

  4. A “Scientific Diversity” Intervention to Reduce Gender Bias in a Sample of Life Scientists

    PubMed Central

    Moss-Racusin, Corinne A.; van der Toorn, Jojanneke; Dovidio, John F.; Brescoll, Victoria L.; Graham, Mark J.; Handelsman, Jo

    2016-01-01

    Mounting experimental evidence suggests that subtle gender biases favoring men contribute to the underrepresentation of women in science, technology, engineering, and mathematics (STEM), including many subfields of the life sciences. However, there are relatively few evaluations of diversity interventions designed to reduce gender biases within the STEM community. Because gender biases distort the meritocratic evaluation and advancement of students, interventions targeting instructors’ biases are particularly needed. We evaluated one such intervention, a workshop called “Scientific Diversity” that was consistent with an established framework guiding the development of diversity interventions designed to reduce biases and was administered to a sample of life science instructors (N = 126) at several sessions of the National Academies Summer Institute for Undergraduate Education held nationwide. Evidence emerged indicating the efficacy of the “Scientific Diversity” workshop, such that participants were more aware of gender bias, expressed less gender bias, and were more willing to engage in actions to reduce gender bias 2 weeks after participating in the intervention compared with 2 weeks before the intervention. Implications for diversity interventions aimed at reducing gender bias and broadening the participation of women in the life sciences are discussed. PMID:27496360

  5. Challenges in bias correcting climate change simulations

    NASA Astrophysics Data System (ADS)

    Maraun, Douglas; Shepherd, Ted; Zappa, Giuseppe; Gutierrez, Jose; Widmann, Martin; Hagemann, Stefan; Richter, Ingo; Soares, Pedro; Mearns, Linda

    2016-04-01

    Biases in climate model simulations - if these are directly used as input for impact models - will introduce further biases in subsequent impact simulations. In response to this issue, so-called bias correction methods have been developed to post-process climate model output. These methods are now widely used and a crucial component in the generation of high resolution climate change projections. Bias correction is conceptually similar to model output statistics, which has been successfully used for several decades in numerical weather prediction. Yet in climate science, some authors outrightly dismiss any form of bias correction. Starting from this seeming contradiction, we highlight differences between the two contexts and infer consequences and limitations for the applicability of bias correction to climate change projections. We first show that cross validation approaches successfully used to evaluate weather forecasts are fundamentally insufficient to evaluate climate change bias correction. We further demonstrate that different types of model mismatches with observations require different solutions, and some may not sensibly be mitigated. In particular we consider the influence of large-scale circulation biases, biases in the persistence of weather regimes, and regional biases caused by an insufficient representation of the flow-topography interaction. We conclude with a list of recommendations and suggestions for future research to reduce, to post-process, and to cope with climate model biases.

  6. Numeracy and framing bias in epilepsy.

    PubMed

    Choi, Hyunmi; Wong, John B; Mendiratta, Anil; Heiman, Gary A; Hamberger, Marla J

    2011-01-01

    Patients with epilepsy are frequently confronted with complex treatment decisions. Communicating treatment risks is often difficult because patients may have difficulty with basic statistical concepts (i.e., low numeracy) or might misconceive the statistical information based on the way information is presented, a phenomenon known as "framing bias." We assessed numeracy and framing bias in 95 adults with chronic epilepsy and explored cognitive correlates of framing bias. Compared with normal controls, patients with epilepsy had significantly poorer performance on the Numeracy scale (P=0.02), despite a higher level of education than normal controls (P<0.001). Compared with patients with higher numeracy, patients with lower numeracy were significantly more likely to exhibit framing bias. Abstract problem solving performance correlated with the degree of framing bias (r=0.631, P<0.0001), suggesting a relationship between aspects of executive functioning and framing bias. Poor numeracy and susceptibility framing bias place patients with epilepsy at risk for uninformed decisions.

  7. The Protestant Establishment Revisited

    ERIC Educational Resources Information Center

    Baltzell, E. Digby

    1976-01-01

    The author's book, "The Protestant Establishment: Aristocracy and Caste in America", is highly critical of the WASP (White-Anglo-Saxon-Protestant) establishment and proposed the development and need for some sort of upper-class ruling-group. Here is a re-evaluation of his book, now thirteen years old, by the author. (Author/RK)

  8. Charge exchange system

    DOEpatents

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  9. Determination of exchange and rotational anisotropies in IrMn /Fe(t)/IrMn exchange coupled structures using dynamic and static techniques: Application to microwave devices

    NASA Astrophysics Data System (ADS)

    Kuanr, Bijoy K.; Maat, Stefan; Chandrashekariaih, S.; Veerakumar, V.; Camley, R. E.; Celinski, Z.

    2008-04-01

    We determined the exchange anisotropy and rotational anisotropy of IrMn(7 nm)/Fe(t=3-20 nm)/IrMn(7 nm) exchange-biased structures using conventional ferromagnetic resonance (FMR) and network analyzer FMR (NA-FMR). Compared to single Fe layer films of identical thickness, we observe an isotropic downward shift and an angular variation of the FMR resonance field in the multilayer structures. The isotropic shift originates from the rotational anisotropy, while the angular variation originates from the exchange anisotropy. Both exchange anisotropy and rotational anisotropy increase with decreasing Fe thickness in the exchange-biased structures. The isotropic downward shift of the resonance field translates to an upward shift of the resonance frequency, and can be used to boost the operational frequency of microwave devices (bandpass/stop filters) by several gigahertz.

  10. Imputation for semiparametric transformation models with biased-sampling data

    PubMed Central

    Liu, Hao; Qin, Jing; Shen, Yu

    2012-01-01

    Widely recognized in many fields including economics, engineering, epidemiology, health sciences, technology and wildlife management, length-biased sampling generates biased and right-censored data but often provide the best information available for statistical inference. Different from traditional right-censored data, length-biased data have unique aspects resulting from their sampling procedures. We exploit these unique aspects and propose a general imputation-based estimation method for analyzing length-biased data under a class of flexible semiparametric transformation models. We present new computational algorithms that can jointly estimate the regression coefficients and the baseline function semiparametrically. The imputation-based method under the transformation model provides an unbiased estimator regardless whether the censoring is independent or not on the covariates. We establish large-sample properties using the empirical processes method. Simulation studies show that under small to moderate sample sizes, the proposed procedure has smaller mean square errors than two existing estimation procedures. Finally, we demonstrate the estimation procedure by a real data example. PMID:22903245

  11. Potential Interference Bias in Ozone Standard Compliance Monitoring.

    PubMed

    Leston, Alan R; Ollison, Will M; Spicer, Chester W; Satola, Jan

    2005-10-01

    The U.S. Environmental Protection Agency has established a federal reference method (FRM) for ozone (O3) and allowed for designation of federal equivalent methods (FEMs). However, the ethylene-chemiluminescence FRM for O3 has been replaced by the UV photometric FEM by most state and local monitoring agencies because of its relative ease of operation. Accumulating evidence indicates that the FEM is prone to bias under the hot, humid, and stagnant conditions conducive to high O3 formation. This bias may lead to overreporting hourly O3 concentrations by as much as 20-40 ppb. Measurement bias is caused by contamination of the O3 scrubber, a problem that is not detected by dry air calibration. An adequate wet test has not been codified, although a procedure has been proposed for agency consideration. This paper includes documentation of laboratory tests quantifying specific interferant responses, collocated ambient FRM/FEM monitoring results, and smog chamber comparisons of the FRM and FEMs with alternative scrubber designs. As the numbers of reports on monitor interferences have grown, interested parties have called for agency recognition and correction of these biases.

  12. Origin and nature of measurement bias in catadioptric parallel goniophotometers.

    PubMed

    Karamata, Boris; Andersen, Marilyne

    2014-05-01

    We briefly categorize and compare parallel goniophotometers, which are instruments capable of simultaneously measuring the far-field distribution of light scattered by a surface or emitted by a source over a large solid angle. Little is known about the accuracy and reliability of an appealing category, the catadioptric parallel goniophotometers (CPGs), which exploit a curved reflector and a lens system. We analyzed the working principle common to all the different design configurations of a CPG and established the specifications implicitly imposed on the lens system. Based on heuristic considerations, we show that the properties of a real (thick) lens system are not fully compatible with these specifications. This causes a bias to the measurements that increases with the acceptance angle of the lens system. Depending on the angular field, the measured sample area can be drastically reduced and shifted relative to the center of the sample. To gain insights into the nature and importance of the measurement bias, it was calculated with our model implemented in MATLAB for the CPG configuration incorporating a lens system with a very large acceptance angle (fisheye lens). Our results demonstrate that, due to the spatio-angular-filtering properties of the fisheye lens, this category of CPGs is so severely biased as to give unusable measurements. In addition, our findings raise the question of the importance of the bias in the other types of CPGs that rely on a lens system with a lower acceptance angle.

  13. Revival of test bias research in preemployment testing.

    PubMed

    Aguinis, Herman; Culpepper, Steven A; Pierce, Charles A

    2010-07-01

    We developed a new analytic proof and conducted Monte Carlo simulations to assess the effects of methodological and statistical artifacts on the relative accuracy of intercept- and slope-based test bias assessment. The main simulation design included 3,185,000 unique combinations of a wide range of values for true intercept- and slope-based test bias, total sample size, proportion of minority group sample size to total sample size, predictor (i.e., preemployment test scores) and criterion (i.e., job performance) reliability, predictor range restriction, correlation between predictor scores and the dummy-coded grouping variable (e.g., ethnicity), and mean difference between predictor scores across groups. Results based on 15 billion 925 million individual samples of scores and more than 8 trillion 662 million individual scores raise questions about the established conclusion that test bias in preemployment testing is nonexistent and, if it exists, it only occurs regarding intercept-based differences that favor minority group members. Because of the prominence of test fairness in the popular media, legislation, and litigation, our results point to the need to revive test bias research in preemployment testing.

  14. Gender bias in autoimmunity is influenced by microbiota.

    PubMed

    Yurkovetskiy, Leonid; Burrows, Michael; Khan, Aly A; Graham, Laura; Volchkov, Pavel; Becker, Lev; Antonopoulos, Dionysios; Umesaki, Yoshinori; Chervonsky, Alexander V

    2013-08-22

    Gender bias and the role of sex hormones in autoimmune diseases are well established. In specific pathogen-free nonobese diabetic (NOD) mice, females have 1.3-4.4 times higher incidence of type 1 diabetes (T1D). Germ-free (GF) mice lost the gender bias (female-to-male ratio 1.1-1.2). Gut microbiota differed in males and females, a trend reversed by male castration, confirming that androgens influence gut microbiota. Colonization of GF NOD mice with defined microbiota revealed that some, but not all, lineages overrepresented in male mice supported a gender bias in T1D. Although protection of males did not correlate with blood androgen concentration, hormone-supported expansion of selected microbial lineages may work as a positive-feedback mechanism contributing to the sexual dimorphism of autoimmune diseases. Gene-expression analysis suggested pathways involved in protection of males from T1D by microbiota. Our results favor a two-signal model of gender bias, in which hormones and microbes together trigger protective pathways.

  15. Observations and Models of Galaxy Assembly Bias

    NASA Astrophysics Data System (ADS)

    Campbell, Duncan A.

    2017-01-01

    The assembly history of dark matter haloes imparts various correlations between a halo’s physical properties and its large scale environment, i.e. assembly bias. It is common for models of the galaxy-halo connection to assume that galaxy properties are only a function of halo mass, implicitly ignoring how assembly bias may affect galaxies. Recently, programs to model and constrain the degree to which galaxy properties are influenced by assembly bias have been undertaken; however, the extent and character of galaxy assembly bias remains a mystery. Nevertheless, characterizing and modeling galaxy assembly bias is an important step in understanding galaxy evolution and limiting any systematic effects assembly bias may pose in cosmological measurements using galaxy surveys.I will present work on modeling and constraining the effect of assembly bias in two galaxy properties: stellar mass and star-formation rate. Conditional abundance matching allows for these galaxy properties to be tied to halo formation history to a variable degree, making studies of the relative strength of assembly bias possible. Galaxy-galaxy clustering and galactic conformity, the degree to which galaxy color is correlated between neighbors, are sensitive observational measures of galaxy assembly bias. I will show how these measurements can be used to constrain galaxy assembly bias and the peril of ignoring it.

  16. Asymmetric divertor biasing in MAST

    NASA Astrophysics Data System (ADS)

    Helander, P.; Cohen, R.; Counsell, G. C.; Ryutov, D. D.

    2002-11-01

    Experiments are being carried out on the Mega-Ampere Spherical Tokamak (MAST) where the divertor tiles are electrically biased in a toroidally alternating way. The aim is to induce convective cells in the divertor plasma, broaden the SOL and reduce the divertor heat load. This paper describes the underlying theory and experimental results. Criteria are presented for achieving strong broadening and exciting shear-flow turbulence in the SOL, and properties of the expected turbulence are derived. It is also shown that magnetic shear near the X-point is likely to confine the potential perturbations to the divertor region, leaving the part of the SOL that is in direct contact with the core plasma intact. Preliminary comparison of the theory with MAST data is encouraging: the distortion of the heat deposition pattern, its broadening, and the incremental heat load are qualitatively in agreement; quantitative comparisons are underway.

  17. Reexamining our bias against heuristics.

    PubMed

    McLaughlin, Kevin; Eva, Kevin W; Norman, Geoff R

    2014-08-01

    Using heuristics offers several cognitive advantages, such as increased speed and reduced effort when making decisions, in addition to allowing us to make decision in situations where missing data do not allow for formal reasoning. But the traditional view of heuristics is that they trade accuracy for efficiency. Here the authors discuss sources of bias in the literature implicating the use of heuristics in diagnostic error and highlight the fact that there are also data suggesting that under certain circumstances using heuristics may lead to better decisions that formal analysis. They suggest that diagnostic error is frequently misattributed to the use of heuristics and propose an alternative view whereby content knowledge is the root cause of diagnostic performance and heuristics lie on the causal pathway between knowledge and diagnostic error or success.

  18. Social reward shapes attentional biases.

    PubMed

    Anderson, Brian A

    2016-01-01

    Paying attention to stimuli that predict a reward outcome is important for an organism to survive and thrive. When visual stimuli are associated with tangible, extrinsic rewards such as money or food, these stimuli acquire high attentional priority and come to automatically capture attention. In humans and other primates, however, many behaviors are not motivated directly by such extrinsic rewards, but rather by the social feedback that results from performing those behaviors. In the present study, I examine whether positive social feedback can similarly influence attentional bias. The results show that stimuli previously associated with a high probability of positive social feedback elicit value-driven attentional capture, much like stimuli associated with extrinsic rewards. Unlike with extrinsic rewards, however, such stimuli also influence task-specific motivation. My findings offer a potential mechanism by which social reward shapes the information that we prioritize when perceiving the world around us.

  19. Understanding bias in provenance studies

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Andò, Sergio; Malusà, Marco; Vezzoli, Giovanni

    2010-05-01

    Innumerable pieces of information are stored in the sedimentary archive. Each single sediment layer contains billions of detrital grains, and every grain preserves imprints of its geological story. If we learn to read, compare, and combine these messages properly, through a deeper understanding of physical and chemical processes that modify sediment composition during the sedimentary cycle, provenance analysis may eventually enable us to reconstruct more accurately the geological processes that shaped the Earth's crust in the past. Interpreting detrital modes is not straightforward because provenance signals issued from source rocks become progressively blurred by multiple noises in the sedimentary environment ("environmental bias"; Komar, 2007), and finally during post-depositional history ("diagenetic bias"; Morton and Hallsworth, 2007). During transport and deposition, detrital minerals are segregated in different size fractions and environments according to their size, density and shape (Rubey, 1933; Garzanti et al., 2008). Heavy-mineral concentration can increase by an order of magnitude due to selective-entrainment effects, with potentially overwhelming impact on chemical composition and provenance estimates based on detrital-geochronology data (Garzanti et al., 2009). Conversely, heavy-mineral concentration is typically reduced by an order of magnitude in Alpine and Himalayan foreland-basin deposits older than the Pleistocene (Garzanti and Andò, 2007). Extensive chemical dissolution can occur even prior to deposition during weathering in hot humid climates (Velbel, 2007). Primary provenance signals can be isolated and assessed by studying first modern sediments in hyperarid settings (i.e., free from diagenetic and weathering bias). Next, weathering, hydraulic-sorting, and diagenetic effects can be singled out by analysing sediments of similar provenance produced in contrasting climatic conditions, sediments transported in diverse modes and deposited in

  20. What drives social in-group biases in face recognition memory? ERP evidence from the own-gender bias

    PubMed Central

    Kemter, Kathleen; Schweinberger, Stefan R.; Wiese, Holger

    2014-01-01

    It is well established that memory is more accurate for own-relative to other-race faces (own-race bias), which has been suggested to result from larger perceptual expertise for own-race faces. Previous studies also demonstrated better memory for own-relative to other-gender faces, which is less likely to result from differences in perceptual expertise, and rather may be related to social in-group vs out-group categorization. We examined neural correlates of the own-gender bias using event-related potentials (ERP). In a recognition memory experiment, both female and male participants remembered faces of their respective own gender more accurately compared with other-gender faces. ERPs during learning yielded significant differences between the subsequent memory effects (subsequently remembered – subsequently forgotten) for own-gender compared with other-gender faces in the occipito-temporal P2 and the central N200, whereas neither later subsequent memory effects nor ERP old/new effects at test reflected a neural correlate of the own-gender bias. We conclude that the own-gender bias is mainly related to study phase processes, which is in line with sociocognitive accounts. PMID:23474824

  1. On evolutionary explanations of cognitive biases.

    PubMed

    Marshall, James A R; Trimmer, Pete C; Houston, Alasdair I; McNamara, John M

    2013-08-01

    Apparently irrational biases such as overconfidence, optimism, and pessimism are increasingly studied by biologists, psychologists, and neuroscientists. Functional explanations of such phenomena are essential; we argue that recent proposals, focused on benefits from overestimating the probability of success in conflicts or practising self-deception to better deceive others, are still lacking in crucial regards. Attention must be paid to the difference between cognitive and outcome biases; outcome biases are suboptimal, yet cognitive biases can be optimal. However, given that cognitive biases are subjectively experienced by affected individuals, developing theory and collecting evidence on them poses challenges. An evolutionary theory of cognitive bias might require closer integration of function and mechanism, analysing the evolution of constraints imposed by the mechanisms that determine behaviour.

  2. Professional Culture and Climate: Addressing Unconscious Bias

    NASA Astrophysics Data System (ADS)

    Knezek, Patricia

    2016-10-01

    Unconscious bias reflects expectations or stereotypes that influence our judgments of others (regardless of our own group). Everyone has unconscious biases. The end result of unconscious bias can be an accumulation of advantage or disadvantage that impacts the long term career success of individuals, depending on which biases they are subject to. In order to foster a professional culture and climate, being aware of these unconscious biases and mitigating against them is a first step. This is particularly important when judgements are needed, such as in cases for recruitment, choice of speakers for conferences, and even reviewing papers submitted for publication. This presentation will cover how unconscious bias manifests itself, what evidence exists to demonstrate it exists, and ways it can be addressed.

  3. Symmetry as Bias: Rediscovering Special Relativity

    NASA Technical Reports Server (NTRS)

    Lowry, Michael R.

    1992-01-01

    This paper describes a rational reconstruction of Einstein's discovery of special relativity, validated through an implementation: the Erlanger program. Einstein's discovery of special relativity revolutionized both the content of physics and the research strategy used by theoretical physicists. This research strategy entails a mutual bootstrapping process between a hypothesis space for biases, defined through different postulated symmetries of the universe, and a hypothesis space for physical theories. The invariance principle mutually constrains these two spaces. The invariance principle enables detecting when an evolving physical theory becomes inconsistent with its bias, and also when the biases for theories describing different phenomena are inconsistent. Structural properties of the invariance principle facilitate generating a new bias when an inconsistency is detected. After a new bias is generated. this principle facilitates reformulating the old, inconsistent theory by treating the latter as a limiting approximation. The structural properties of the invariance principle can be suitably generalized to other types of biases to enable primal-dual learning.

  4. Publication Bias in Methodological Computational Research

    PubMed Central

    Boulesteix, Anne-Laure; Stierle, Veronika; Hapfelmeier, Alexander

    2015-01-01

    The problem of publication bias has long been discussed in research fields such as medicine. There is a consensus that publication bias is a reality and that solutions should be found to reduce it. In methodological computational research, including cancer informatics, publication bias may also be at work. The publication of negative research findings is certainly also a relevant issue, but has attracted very little attention to date. The present paper aims at providing a new formal framework to describe the notion of publication bias in the context of methodological computational research, facilitate and stimulate discussions on this topic, and increase awareness in the scientific community. We report an exemplary pilot study that aims at gaining experiences with the collection and analysis of information on unpublished research efforts with respect to publication bias, and we outline the encountered problems. Based on these experiences, we try to formalize the notion of publication bias. PMID:26508827

  5. Biased but in Doubt: Conflict and Decision Confidence

    PubMed Central

    De Neys, Wim; Cromheeke, Sofie; Osman, Magda

    2011-01-01

    Human reasoning is often biased by intuitive heuristics. A central question is whether the bias results from a failure to detect that the intuitions conflict with traditional normative considerations or from a failure to discard the tempting intuitions. The present study addressed this unresolved debate by using people's decision confidence as a nonverbal index of conflict detection. Participants were asked to indicate how confident they were after solving classic base-rate (Experiment 1) and conjunction fallacy (Experiment 2) problems in which a cued intuitive response could be inconsistent or consistent with the traditional correct response. Results indicated that reasoners showed a clear confidence decrease when they gave an intuitive response that conflicted with the normative response. Contrary to popular belief, this establishes that people seem to acknowledge that their intuitive answers are not fully warranted. Experiment 3 established that younger reasoners did not yet show the confidence decrease, which points to the role of improved bias awareness in our reasoning development. Implications for the long standing debate on human rationality are discussed. PMID:21283574

  6. Cognitive Biases and Nonverbal Cue Availability in Detecting Deception

    ERIC Educational Resources Information Center

    Burgoon, Judee K.; Blair, J. Pete; Strom, Renee E.

    2008-01-01

    In potentially deceptive situations, people rely on mental shortcuts to help process information. These heuristic judgments are often biased and result in inaccurate assessments of sender veracity. Four such biases--truth bias, visual bias, demeanor bias, and expectancy violation bias--were examined in a judgment experiment that varied nonverbal…

  7. When Do Children Exhibit a "Yes" Bias?

    ERIC Educational Resources Information Center

    Okanda, Mako; Itakura, Shoji

    2010-01-01

    This study investigated whether one hundred and thirty-five 3- to 6-year-old children exhibit a yes bias to various yes-no questions and whether their knowledge status affects the production of a yes bias. Three-year-olds exhibited a yes bias to all yes-no questions such as "preference-object" and "knowledge-object" questions pertaining to…

  8. Field emission from bias-grown diamond thin films in a microwave plasma

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Ding, Ming Q.; Auciello, Orlando

    2002-01-01

    A method of producing diamond or diamond like films in which a negative bias is established on a substrate with an electrically conductive surface in a microwave plasma chemical vapor deposition system. The atmosphere that is subjected to microwave energy includes a source of carbon, nitrogen and hydrogen. The negative bias is maintained on the substrate through both the nucleation and growth phase of the film until the film is continuous. Biases between -100V and -200 are preferred. Carbon sources may be one or more of CH.sub.4, C.sub.2 H.sub.2 other hydrocarbons and fullerenes.

  9. Chronic and acute biases in perceptual stabilization

    PubMed Central

    Al-Dossari, Munira; Blake, Randolph; Brascamp, Jan W.; Freeman, Alan W.

    2015-01-01

    When perceptually ambiguous stimuli are presented intermittently, the percept on one presentation tends to be the same as that on the previous presentation. The role of short-term, acute biases in the production of this perceptual stability is relatively well understood. In addition, however, long-lasting, chronic bias may also contribute to stability. In this paper we develop indices for both biases and for stability, and show that stability can be expressed as a sum of contributions from the two types of bias. We then apply this analytical procedure to binocular rivalry, showing that adjustment of the monocular contrasts can alter the relative contributions of the two biases. Stability is mainly determined by chronic bias when the contrasts are equal, but acute bias dominates stability when right-eye contrast is set lower than left-eye contrast. Finally, we show that the right-eye bias persists in continuous binocular rivalry. Our findings reveal a previously unappreciated contribution of chronic bias to stable perception. PMID:26641947

  10. Detecting Gender Bias Through Test Item Analysis

    NASA Astrophysics Data System (ADS)

    González-Espada, Wilson J.

    2009-03-01

    Many physical science and physics instructors might not be trained in pedagogically appropriate test construction methods. This could lead to test items that do not measure what they are intended to measure. A subgroup of these items might show bias against some groups of students. This paper describes how the author became aware of potentially biased items against females in his examinations, which led to the exploration of fundamental issues related to item validity, gender bias, and differential item functioning, or DIF. A brief discussion of DIF in the context of university courses, as well as practical suggestions to detect possible gender-biased items, follows.

  11. Adaptable history biases in human perceptual decisions

    PubMed Central

    Abrahamyan, Arman; Silva, Laura Luz; Dakin, Steven C.; Gardner, Justin L.

    2016-01-01

    When making choices under conditions of perceptual uncertainty, past experience can play a vital role. However, it can also lead to biases that worsen decisions. Consistent with previous observations, we found that human choices are influenced by the success or failure of past choices even in a standard two-alternative detection task, where choice history is irrelevant. The typical bias was one that made the subject switch choices after a failure. These choice history biases led to poorer performance and were similar for observers in different countries. They were well captured by a simple logistic regression model that had been previously applied to describe psychophysical performance in mice. Such irrational biases seem at odds with the principles of reinforcement learning, which would predict exquisite adaptability to choice history. We therefore asked whether subjects could adapt their irrational biases following changes in trial order statistics. Adaptability was strong in the direction that confirmed a subject’s default biases, but weaker in the opposite direction, so that existing biases could not be eradicated. We conclude that humans can adapt choice history biases, but cannot easily overcome existing biases even if irrational in the current context: adaptation is more sensitive to confirmatory than contradictory statistics. PMID:27330086

  12. Identifying and Avoiding Bias in Research

    PubMed Central

    Pannucci, Christopher J.; Wilkins, Edwin G.

    2010-01-01

    This narrative review provides an overview on the topic of bias as part of Plastic and Reconstructive Surgery's series of articles on evidence-based medicine. Bias can occur in the planning, data collection, analysis, and publication phases of research. Understanding research bias allows readers to critically and independently review the scientific literature and avoid treatments which are suboptimal or potentially harmful. A thorough understanding of bias and how it affects study results is essential for the practice of evidence-based medicine. PMID:20679844

  13. Bayesian long branch attraction bias and corrections.

    PubMed

    Susko, Edward

    2015-03-01

    Previous work on the star-tree paradox has shown that Bayesian methods suffer from a long branch attraction bias. That work is extended to settings involving more taxa and partially resolved trees. The long branch attraction bias is confirmed to arise more broadly and an additional source of bias is found. A by-product of the analysis is methods that correct for biases toward particular topologies. The corrections can be easily calculated using existing Bayesian software. Posterior support for a set of two or more trees can thus be supplemented with corrected versions to cross-check or replace results. Simulations show the corrections to be highly effective.

  14. Development of bias in analytical predictions based on behavior of platforms during hurricanes

    SciTech Connect

    Aggarwal, R.K.; Dolan, D.K.; Cornell, C.A.

    1996-12-31

    A Joint Industry Project (JIP) was initiated by 13 oil companies and the US Minerals Management Service (MMS), wherein a methodology was developed to use information from observed platform conditions resulting from Andrew and the hurricane hindcast data with capacity, reliability, and Bayesian updating analyses to determine a measure of differences (biases) in the analytical predictions and field observations. The procedures used for structural integrity analysis were also improved as a result of this study. Phase 1 of this project completed in October 1993 defined a global bias factor. A study of foundation behavior was completed following Phase 1 and determined bias factors specific to foundation failure modes. This paper presents the approach followed in the most recent phase of this project in which bias factors specific to jacket and two foundation failure modes (lateral and axial) were developed. This study utilized an updated storm hindcast, improved analysis models, and a more detailed calibration procedure. The three bias factors were developed and were found to differ significantly. The bias factors developed through this study have provided means to further improve procedures used in the assessment of existing platforms. The proper use of these new analytical methodologies and bias factors will produce more appropriate and cost-effective mitigation measures for safe platform operations. The methodology for establishing bias factors developed and proven in these projects is applicable to other offshore regions and production systems with specific environmental, geotechnical, material and structure features.

  15. Bias reduction in the estimation of mutual information.

    PubMed

    Zhu, Jie; Bellanger, Jean-Jacques; Shu, Huazhong; Yang, Chunfeng; Le Bouquin Jeannès, Régine

    2014-11-01

    This paper deals with the control of bias estimation when estimating mutual information from a nonparametric approach. We focus on continuously distributed random data and the estimators we developed are based on a nonparametric k-nearest-neighbor approach for arbitrary metrics. Using a multidimensional Taylor series expansion, a general relationship between the estimation error bias and the neighboring size for the plug-in entropy estimator is established without any assumption on the data for two different norms. The theoretical analysis based on the maximum norm developed coincides with the experimental results drawn from numerical tests made by Kraskov et al. [Phys. Rev. E 69, 066138 (2004)PLEEE81539-375510.1103/PhysRevE.69.066138]. To further validate the novel relation, a weighted linear combination of distinct mutual information estimators is proposed and, using simulated signals, the comparison of different strategies allows for corroborating the theoretical analysis.

  16. Bias reduction in the estimation of mutual information

    NASA Astrophysics Data System (ADS)

    Zhu, Jie; Bellanger, Jean-Jacques; Shu, Huazhong; Yang, Chunfeng; Le Bouquin Jeannès, Régine

    2014-11-01

    This paper deals with the control of bias estimation when estimating mutual information from a nonparametric approach. We focus on continuously distributed random data and the estimators we developed are based on a nonparametric k -nearest-neighbor approach for arbitrary metrics. Using a multidimensional Taylor series expansion, a general relationship between the estimation error bias and the neighboring size for the plug-in entropy estimator is established without any assumption on the data for two different norms. The theoretical analysis based on the maximum norm developed coincides with the experimental results drawn from numerical tests made by Kraskov et al. [Phys. Rev. E 69, 066138 (2004), 10.1103/PhysRevE.69.066138]. To further validate the novel relation, a weighted linear combination of distinct mutual information estimators is proposed and, using simulated signals, the comparison of different strategies allows for corroborating the theoretical analysis.

  17. Method for removing atomic-model bias in macromolecular crystallography

    DOEpatents

    Terwilliger, Thomas C.

    2006-08-01

    Structure factor bias in an electron density map for an unknown crystallographic structure is minimized by using information in a first electron density map to elicit expected structure factor information. Observed structure factor amplitudes are combined with a starting set of crystallographic phases to form a first set of structure factors. A first electron density map is then derived and features of the first electron density map are identified to obtain expected distributions of electron density. Crystallographic phase probability distributions are established for possible crystallographic phases of reflection k, and the process is repeated as k is indexed through all of the plurality of reflections. An updated electron density map is derived from the crystallographic phase probability distributions for each one of the reflections. The entire process is then iterated to obtain a final set of crystallographic phases with minimum bias from known electron density maps.

  18. 17 CFR 10.114 - Acceleration of establishment of restitution procedure.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 1 2013-04-01 2013-04-01 false Acceleration of establishment of restitution procedure. 10.114 Section 10.114 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE Restitution Orders § 10.114 Acceleration of establishment...

  19. 17 CFR 10.114 - Acceleration of establishment of restitution procedure.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 1 2010-04-01 2010-04-01 false Acceleration of establishment of restitution procedure. 10.114 Section 10.114 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE Restitution Orders § 10.114 Acceleration of establishment...

  20. 17 CFR 10.114 - Acceleration of establishment of restitution procedure.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 1 2012-04-01 2012-04-01 false Acceleration of establishment of restitution procedure. 10.114 Section 10.114 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE Restitution Orders § 10.114 Acceleration of establishment...

  1. 17 CFR 10.114 - Acceleration of establishment of restitution procedure.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 1 2014-04-01 2014-04-01 false Acceleration of establishment of restitution procedure. 10.114 Section 10.114 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE Restitution Orders § 10.114 Acceleration of establishment...

  2. 17 CFR 10.114 - Acceleration of establishment of restitution procedure.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 1 2011-04-01 2011-04-01 false Acceleration of establishment of restitution procedure. 10.114 Section 10.114 Commodity and Securities Exchanges COMMODITY FUTURES TRADING COMMISSION RULES OF PRACTICE Restitution Orders § 10.114 Acceleration of establishment...

  3. Nonsurvivable momentum exchange system

    NASA Technical Reports Server (NTRS)

    Roder, Russell (Inventor); Ahronovich, Eliezer (Inventor); Davis, III, Milton C. (Inventor)

    2007-01-01

    A demiseable momentum exchange system includes a base and a flywheel rotatably supported on the base. The flywheel includes a web portion defining a plurality of web openings and a rim portion. The momentum exchange system further includes a motor for driving the flywheel and a cover for engaging the base to substantially enclose the flywheel. The system may also include components having a melting temperature below 1500 degrees Celsius. The momentum exchange system is configured to demise on reentry.

  4. Extension Learning Exchange: Lessons from Nicaragua

    ERIC Educational Resources Information Center

    Treadwell, Paul; Lachapelle, Paul; Howe, Rod

    2013-01-01

    There is a clear need to support global professional development, international education, and collaborative learning opportunities in Extension. The program described here established an international learning exchange in Nicaragua to lead to global professional development and future international collaboration. The primary lessons and outcomes…

  5. 12 CFR 614.4900 - Foreign exchange.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... international financial activities. The bank's policies should include established guidelines for: (1) Net... Cooperatives and Agricultural Credit Banks Financing International Trade § 614.4900 Foreign exchange. (a) Before a bank for cooperatives or an agricultural credit bank may engage in any financial...

  6. Text Exchange System

    NASA Technical Reports Server (NTRS)

    Snyder, W. V.; Hanson, R. J.

    1986-01-01

    Text Exchange System (TES) exchanges and maintains organized textual information including source code, documentation, data, and listings. System consists of two computer programs and definition of format for information storage. Comprehensive program used to create, read, and maintain TES files. TES developed to meet three goals: First, easy and efficient exchange of programs and other textual data between similar and dissimilar computer systems via magnetic tape. Second, provide transportable management system for textual information. Third, provide common user interface, over wide variety of computing systems, for all activities associated with text exchange.

  7. Establishing Passing Scores.

    ERIC Educational Resources Information Center

    McLarty, Joyce R.

    The problem of establishing appropriate passing scores is one of evaluation rather than estimation and not amenable to exact solution. It must therefore be approached by (1) identifying criteria for judging the acceptability of the passing score, (2) collecting the data appropriate to assessing each relevant criterion, and (3) judging how well the…

  8. Establishing a Continuous Repertoire.

    ERIC Educational Resources Information Center

    Meadowcroft, Pamela; Holland, James G.

    Investigators in this study looked for conditions that can rapidly establish continuous stimulus control of continuous response variations, or "response mapping." Unlike previous research in stimulus control, where a single stimulus comes to control a single response, 36 5-year-old children received errorless discrimination training at…

  9. Establishing a University Foundation.

    ERIC Educational Resources Information Center

    Lemish, Donald L.

    A handbook on how to establish a university foundation is presented. It presupposes that a foundation will be used as the umbrella organization for receiving all private gifts, restricted and unrestricted, for the benefit of a public college or university; and hence it chiefly addresses readers from public colleges and universities. Information is…

  10. Haploinsufficiency predictions without study bias

    PubMed Central

    Steinberg, Julia; Honti, Frantisek; Meader, Stephen; Webber, Caleb

    2015-01-01

    Any given human individual carries multiple genetic variants that disrupt protein-coding genes, through structural variation, as well as nucleotide variants and indels. Predicting the phenotypic consequences of a gene disruption remains a significant challenge. Current approaches employ information from a range of biological networks to predict which human genes are haploinsufficient (meaning two copies are required for normal function) or essential (meaning at least one copy is required for viability). Using recently available study gene sets, we show that these approaches are strongly biased towards providing accurate predictions for well-studied genes. By contrast, we derive a haploinsufficiency score from a combination of unbiased large-scale high-throughput datasets, including gene co-expression and genetic variation in over 6000 human exomes. Our approach provides a haploinsufficiency prediction for over twice as many genes currently unassociated with papers listed in Pubmed as three commonly-used approaches, and outperforms these approaches for predicting haploinsufficiency for less-studied genes. We also show that fine-tuning the predictor on a set of well-studied ‘gold standard’ haploinsufficient genes does not improve the prediction for less-studied genes. This new score can readily be used to prioritize gene disruptions resulting from any genetic variant, including copy number variants, indels and single-nucleotide variants. PMID:26001969

  11. Modeling confirmation bias and polarization

    PubMed Central

    Del Vicario, Michela; Scala, Antonio; Caldarelli, Guido; Stanley, H. Eugene; Quattrociocchi, Walter

    2017-01-01

    Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide availability of content on the web fosters the aggregation of likeminded people where debates tend to enforce group polarization. Such a configuration might alter the public debate and thus the formation of the public opinion. In this paper we provide a mathematical model to study online social debates and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, under which the interaction among discordant pairs of users is allowed even with a negative feedback, either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that the new models (UCM and RUCM), unlike the BCM, are able to explain the coexistence of two stable final opinions, often observed in reality. Lastly, we present a mean field approximation of the newly introduced models. PMID:28074874

  12. Modeling confirmation bias and polarization

    NASA Astrophysics Data System (ADS)

    Del Vicario, Michela; Scala, Antonio; Caldarelli, Guido; Stanley, H. Eugene; Quattrociocchi, Walter

    2017-01-01

    Online users tend to select claims that adhere to their system of beliefs and to ignore dissenting information. Confirmation bias, indeed, plays a pivotal role in viral phenomena. Furthermore, the wide availability of content on the web fosters the aggregation of likeminded people where debates tend to enforce group polarization. Such a configuration might alter the public debate and thus the formation of the public opinion. In this paper we provide a mathematical model to study online social debates and the related polarization dynamics. We assume the basic updating rule of the Bounded Confidence Model (BCM) and we develop two variations a) the Rewire with Bounded Confidence Model (RBCM), in which discordant links are broken until convergence is reached; and b) the Unbounded Confidence Model, under which the interaction among discordant pairs of users is allowed even with a negative feedback, either with the rewiring step (RUCM) or without it (UCM). From numerical simulations we find that the new models (UCM and RUCM), unlike the BCM, are able to explain the coexistence of two stable final opinions, often observed in reality. Lastly, we present a mean field approximation of the newly introduced models.

  13. Control of magnetic direction in multi-layer ferromagnetic devices by bias voltage

    DOEpatents

    You, Chun-Yeol; Bader, Samuel D.

    2001-01-01

    A system for controlling the direction of magnetization of materials comprising a ferromagnetic device with first and second ferromagnetic layers. The ferromagnetic layers are disposed such that they combine to form an interlayer with exchange coupling. An insulating layer and a spacer layer are located between the first and second ferromagnetic layers. A direct bias voltage is applied to the interlayer exchange coupling, causing the direction of magnetization of the second ferromagnetic layer to change. This change of magnetization direction occurs in the absence of any applied external magnetic field.

  14. Exploratory Studies of Bias in Achievement Tests.

    ERIC Educational Resources Information Center

    Green, Donald Ross; Draper, John F.

    This paper considers the question of bias in group administered academic achievement tests, bias which is inherent in the instruments themselves. A body of data on the test of performance of three disadvantaged minority groups--northern, urban black; southern, rural black; and, southwestern, Mexican-Americans--as tryout samples in contrast to…

  15. Attributional Biases among Clinicians and Nonclinicians.

    ERIC Educational Resources Information Center

    Harari, Oren; Hosey, Karen R.

    1981-01-01

    Clinicians and nonclinicians made causal attributions to actor behaviors. Analysis showed clear observer attribution bias for both groups. A greater bias occurred with deviant actor behavior and in situations that featured actor actions over opinions over emotions. Results are discussed in terms of applicability to clinical practice. (Author/JAC)

  16. Hindsight Bias and Developing Theories of Mind

    ERIC Educational Resources Information Center

    Bernstein, Daniel M.; Atance, Cristina; Meltzoff, Andrew N.; Loftus, Geoffrey R.

    2007-01-01

    Although "hindsight bias" (the "I knew it all along" phenomenon) has been documented in adults, its development has not been investigated. This is despite the fact that hindsight bias errors closely resemble the errors children make on theory of mind (ToM) tasks. Two main goals of the present work were to (a) create a battery of hindsight tasks…

  17. Understanding Unconscious Bias and Unintentional Racism

    ERIC Educational Resources Information Center

    Moule, Jean

    2009-01-01

    Unconscious biases affect one's relationships, whether they are fleeting relationships in airports or longer term relationships between teachers and students, teachers and parents, teachers and other educators. In this article, the author argues that understanding one's possible biases is essential for developing community in schools.…

  18. Developmental Changes in the Whole Number Bias

    ERIC Educational Resources Information Center

    Braithwaite, David W.; Siegler, Robert S.

    2017-01-01

    Many students' knowledge of fractions is adversely affected by whole number bias, the tendency to focus on the separate whole number components (numerator and denominator) of a fraction rather than on the fraction's integrated magnitude (ratio of numerator to denominator). Although whole number bias appears early in the fraction learning process…

  19. Definition of the Situation and Observer Bias.

    ERIC Educational Resources Information Center

    Kolman, Anita Sue

    An experiment is reported in which an attempt was made to bias college students' observations of a videotape of children at play. The study is framed in terms of W.I. Thomas' ideas concerning the definition of the situation. Observer bias is an instance when a definition of a situation is based primarily on subjective situational factors. Reliance…

  20. Biases in Children's and Adults' Moral Judgments

    ERIC Educational Resources Information Center

    Powell, Nina L.; Derbyshire, Stuart W. G.; Guttentag, Robert E.

    2012-01-01

    Two experiments examined biases in children's (5/6- and 7/8-year-olds) and adults' moral judgments. Participants at all ages judged that it was worse to produce harm when harm occurred (a) through action rather than inaction (omission bias), (b) when physical contact with the victim was involved (physical contact principle), and (c) when the harm…