Sample records for establishing molecular tools

  1. Molecular diagnostics of inflammatory disease: New tools and perspectives.

    PubMed

    Garzorz-Stark, Natalie; Lauffer, Felix

    2017-08-01

    This essay reviews current approaches to establish novel molecular diagnostic tools for inflammatory skin diseases. Moreover, it highlights the importance of stratifying patients according to molecular signatures and revising current outdated disease classification systems to eventually reach the goal of personalized medicine. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Genome-Enabled Molecular Tools for Reductive Dehalogenation

    DTIC Science & Technology

    2011-11-01

    Genome-Enabled Molecular Tools for Reductive Dehalogenation - A Shift in Paradigm for Bioremediation - Alfred M. Spormann Departments of Chemical...Genome-Enabled Molecular Tools for Reductive Dehalogenation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...Applications Technical Session No. 3D C-77 GENOME-ENABLED MOLECULAR TOOLS FOR REDUCTIVE DEHALOGENATION PROFESSOR ALFRED SPORMANN Stanford

  3. Application of molecular genetic tools for forest pathology

    Treesearch

    Mee-Sook Kim; John Hanna; Amy Ross-Davis; Ned Klopfenstein

    2012-01-01

    In recent years, advances in molecular genetics have provided powerful tools to address critical issues in forest pathology to help promote resilient forests. Although molecular genetic tools are initially applied to understand individual components of forest pathosystems, forest pathosystems involve dynamic interactions among biotic and abiotic components of the...

  4. [Establishing Individualized Medicine for Intractable Cancer Based on Clinical Molecular Pathogenesis].

    PubMed

    Jono, Hirofumi

    2018-01-01

     Although cancer treatment has dramatically improved with the development of molecular-targeted agents over the past decade, identifying eligible patients and predicting the therapeutic effects remain a major challenge. Because intratumoral heterogeneity represents genetic and molecular differences affecting patients' responses to these therapeutic agents, establishing individualized medicine based on precise molecular pathological analysis of tumors is urgently required. This review focuses on the pathogenesis of oral squamous cell carcinoma (OSCC), a common head and neck neoplasm, and introduces our approaches toward developing novel anticancer therapies particularly based on clinical molecular pathogenesis. Deeper understanding of more precise molecular pathogenesis in clinical settings may open up novel strategies for establishing individualized medicine for OSCC.

  5. MLP Tools: a PyMOL plugin for using the molecular lipophilicity potential in computer-aided drug design

    NASA Astrophysics Data System (ADS)

    Oberhauser, Nils; Nurisso, Alessandra; Carrupt, Pierre-Alain

    2014-05-01

    The molecular lipophilicity potential (MLP) is a well-established method to calculate and visualize lipophilicity on molecules. We are here introducing a new computational tool named MLP Tools, written in the programming language Python, and conceived as a free plugin for the popular open source molecular viewer PyMOL. The plugin is divided into several sub-programs which allow the visualization of the MLP on molecular surfaces, as well as in three-dimensional space in order to analyze lipophilic properties of binding pockets. The sub-program Log MLP also implements the virtual log P which allows the prediction of the octanol/water partition coefficients on multiple three-dimensional conformations of the same molecule. An implementation on the recently introduced MLP GOLD procedure, improving the GOLD docking performance in hydrophobic pockets, is also part of the plugin. In this article, all functions of the MLP Tools will be described through a few chosen examples.

  6. How to Train a Cell - Cutting-Edge Molecular Tools

    NASA Astrophysics Data System (ADS)

    Czapiński, Jakub; Kiełbus, Michał; Kałafut, Joanna; Kos, Michał; Stepulak, Andrzej; Rivero-Müller, Adolfo

    2017-03-01

    In biological systems, the formation of molecular complexes is the currency for all cellular processes. Traditionally, functional experimentation was targeted to single molecular players in order to understand its effects in a cell or animal phenotype. In the last few years, we have been experiencing rapid progress in the development of ground-breaking molecular biology tools that affect the metabolic, structural, morphological, and (epi)genetic instructions of cells by chemical, optical (optogenetic) and mechanical inputs. Such precise dissection of cellular processes is not only essential for a better understanding of biological systems, but will also allow us to better diagnose and fix common dysfunctions. Here, we present several of these emerging and innovative techniques by providing the reader with elegant examples on how these tools have been implemented in cells, and, in some cases, organisms, to unravel molecular processes in minute detail. We also discuss their advantages and disadvantages with particular focus on their translation to multicellular organisms for in vivo spatiotemporal regulation. We envision that further developments of these tools will not only help solve the processes of life, but will give rise to novel clinical and industrial applications.

  7. How to Train a Cell–Cutting-Edge Molecular Tools

    PubMed Central

    Czapiński, Jakub; Kiełbus, Michał; Kałafut, Joanna; Kos, Michał; Stepulak, Andrzej; Rivero-Müller, Adolfo

    2017-01-01

    In biological systems, the formation of molecular complexes is the currency for all cellular processes. Traditionally, functional experimentation was targeted to single molecular players in order to understand its effects in a cell or animal phenotype. In the last few years, we have been experiencing rapid progress in the development of ground-breaking molecular biology tools that affect the metabolic, structural, morphological, and (epi)genetic instructions of cells by chemical, optical (optogenetic) and mechanical inputs. Such precise dissection of cellular processes is not only essential for a better understanding of biological systems, but will also allow us to better diagnose and fix common dysfunctions. Here, we present several of these emerging and innovative techniques by providing the reader with elegant examples on how these tools have been implemented in cells, and, in some cases, organisms, to unravel molecular processes in minute detail. We also discuss their advantages and disadvantages with particular focus on their translation to multicellular organisms for in vivo spatiotemporal regulation. We envision that further developments of these tools will not only help solve the processes of life, but will give rise to novel clinical and industrial applications. PMID:28344971

  8. MIMO: an efficient tool for molecular interaction maps overlap

    PubMed Central

    2013-01-01

    Background Molecular pathways represent an ensemble of interactions occurring among molecules within the cell and between cells. The identification of similarities between molecular pathways across organisms and functions has a critical role in understanding complex biological processes. For the inference of such novel information, the comparison of molecular pathways requires to account for imperfect matches (flexibility) and to efficiently handle complex network topologies. To date, these characteristics are only partially available in tools designed to compare molecular interaction maps. Results Our approach MIMO (Molecular Interaction Maps Overlap) addresses the first problem by allowing the introduction of gaps and mismatches between query and template pathways and permits -when necessary- supervised queries incorporating a priori biological information. It then addresses the second issue by relying directly on the rich graph topology described in the Systems Biology Markup Language (SBML) standard, and uses multidigraphs to efficiently handle multiple queries on biological graph databases. The algorithm has been here successfully used to highlight the contact point between various human pathways in the Reactome database. Conclusions MIMO offers a flexible and efficient graph-matching tool for comparing complex biological pathways. PMID:23672344

  9. Establishment of replacement batches for heparin low-molecular-mass for calibration CRS, and the International Standard Low Molecular Weight Heparin for Calibration.

    PubMed

    Mulloy, B; Heath, A; Behr-Gross, M-E

    2007-12-01

    An international collaborative study involving fourteen laboratories has taken place, organised by the European Directorate for the Quality of Medicines & HealthCare (EDQM) with National Institute for Biological Standards & Control (NIBSC) (in its capacity as a World Health Organisation (WHO) Laboratory for Biological Standardisation) to provide supporting data for the establishment of replacement batches of Heparin Low-Molecular-Mass (LMM) for Calibration Chemical Reference Substance (CRS), and of the International Reference Reagent (IRR) Low Molecular Weight Heparin for Molecular Weight Calibration. A batch of low-molecular-mass heparin was donated to the organisers and candidate preparations of freeze-dried heparin were produced at NIBSC and EDQM. The establishment study was organised in two phases: a prequalification (phase 1, performed in 3 laboratories in 2005) followed by an international collaborative study (phase 2). In phase 2, started in March 2006, molecular mass parameters were determined for seven different LMM heparin samples using the current CRS batch and two batches of candidate replacement material with a defined number average relative molecular mass (Mn) of 3,700, determined in phase 1. The values calculated using the candidates as standard were systematically different from values calculated using the current batch with its assigned number-average molecular mass (Mna) of 3,700. Using raw data supplied by participants, molecular mass parameters were recalculated using the candidates as standard with values for Mna of 3,800 and 3,900. Values for these parameters agreed more closely with those calculated using the current batch supporting the fact that the candidates, though similar to batch 1 in view of the production processes used, differ slightly in terms of molecular mass distribution. Therefore establishment of the candidates was recommended with an assigned Mna value of 3,800 that is both consistent with phase 1 results and guarantees

  10. Molecular identification tools for sibling species of Scedosporium and Pseudallescheria.

    PubMed

    Lackner, M; Klaassen, C H; Meis, J F; van den Ende, A H G Gerrits; de Hoog, G S

    2012-07-01

    The aim of this study was to develop molecular identification tools for currently recognized species of Pseudallescheria and Scedosporium through the use of species-specific primers and RFLP, so as to enhance rapid differentiation of clinically relevant species. The variability of species was established in a set of 681 Internal Transcribed Spacer (ITS) and 349 ß-tubulin (BT2) sequences. Amplified Fragment Length Polymorphism profile clustering matched with BT2 results, whereas ITS grouping was less detailed. ITS was sufficient for the differentiation of most haplotypes of clinically relevant species (P. apiosperma, P. boydii, S. aurantiacum, S. dehoogii, and S. prolificans) and of environmental species (P. minutispora and Lophotrichus fimeti) when Restriction Fragment Length Polymorphism (RFLP) were applied. For the identification of P. apiosperma and P. boydii species-specific BT2 primers were needed. Pseudallescheria fusoidea, P. ellipsoidea and P. angusta remained difficult to distinguish from P. boydii.

  11. Molecular Surveillance as Monitoring Tool for Drug-Resistant Plasmodium falciparum in Suriname

    PubMed Central

    Adhin, Malti R.; Labadie-Bracho, Mergiory; Bretas, Gustavo

    2013-01-01

    The aim of this translational study was to show the use of molecular surveillance for polymorphisms and copy number as a monitoring tool to track the emergence and dynamics of Plasmodium falciparum drug resistance. A molecular baseline for Suriname was established in 2005, with P. falciparum chloroquine resistance transporter (pfcrt) and P. falciparum multidrug resistance (pfmdr1) markers and copy number in 40 samples. The baseline results revealed the existence of a uniformly distributed mutated genotype corresponding with the fully mefloquine-sensitive 7G8-like genotype (Y184F, S1034C, N1042D, and D1246Y) and a fixed pfmdr1 N86 haplotype. All samples harbored the pivotal pfcrtK76T mutation, showing that chloroquine reintroduction should not yet be contemplated in Suriname. After 5 years, 40 samples were assessed to trace temporal changes in the status of pfmdr1 polymorphisms and copy number and showed minor genetic alterations in the pfmdr1 gene and no significant changes in copy number, thus providing scientific support for prolongation of the current drug policy in Suriname. PMID:23836573

  12. Rosetta Structure Prediction as a Tool for Solving Difficult Molecular Replacement Problems.

    PubMed

    DiMaio, Frank

    2017-01-01

    Molecular replacement (MR), a method for solving the crystallographic phase problem using phases derived from a model of the target structure, has proven extremely valuable, accounting for the vast majority of structures solved by X-ray crystallography. However, when the resolution of data is low, or the starting model is very dissimilar to the target protein, solving structures via molecular replacement may be very challenging. In recent years, protein structure prediction methodology has emerged as a powerful tool in model building and model refinement for difficult molecular replacement problems. This chapter describes some of the tools available in Rosetta for model building and model refinement specifically geared toward difficult molecular replacement cases.

  13. FlaME: Flash Molecular Editor - a 2D structure input tool for the web.

    PubMed

    Dallakian, Pavel; Haider, Norbert

    2011-02-01

    So far, there have been no Flash-based web tools available for chemical structure input. The authors herein present a feasibility study, aiming at the development of a compact and easy-to-use 2D structure editor, using Adobe's Flash technology and its programming language, ActionScript. As a reference model application from the Java world, we selected the Java Molecular Editor (JME). In this feasibility study, we made an attempt to realize a subset of JME's functionality in the Flash Molecular Editor (FlaME) utility. These basic capabilities are: structure input, editing and depiction of single molecules, data import and export in molfile format. The result of molecular diagram sketching in FlaME is accessible in V2000 molfile format. By integrating the molecular editor into a web page, its communication with the HTML elements on this page is established using the two JavaScript functions, getMol() and setMol(). In addition, structures can be copied to the system clipboard. A first attempt was made to create a compact single-file application for 2D molecular structure input/editing on the web, based on Flash technology. With the application examples presented in this article, it could be demonstrated that the Flash methods are principally well-suited to provide the requisite communication between the Flash object (application) and the HTML elements on a web page, using JavaScript functions.

  14. Lightweight Object Oriented Structure analysis: Tools for building Tools to Analyze Molecular Dynamics Simulations

    PubMed Central

    Romo, Tod D.; Leioatts, Nicholas; Grossfield, Alan

    2014-01-01

    LOOS (Lightweight Object-Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 120 pre-built tools, including suites of tools for analyzing simulation convergence, 3D histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only 4 core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. PMID:25327784

  15. Plasmid Vectors and Molecular Building Blocks for the Development of Genetic Manipulation Tools for Trypanosoma cruzi

    PubMed Central

    Bouvier, León A.; Cámara, María de los Milagros; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.

    2013-01-01

    The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted. PMID:24205392

  16. Lightweight object oriented structure analysis: tools for building tools to analyze molecular dynamics simulations.

    PubMed

    Romo, Tod D; Leioatts, Nicholas; Grossfield, Alan

    2014-12-15

    LOOS (Lightweight Object Oriented Structure-analysis) is a C++ library designed to facilitate making novel tools for analyzing molecular dynamics simulations by abstracting out the repetitive tasks, allowing developers to focus on the scientifically relevant part of the problem. LOOS supports input using the native file formats of most common biomolecular simulation packages, including CHARMM, NAMD, Amber, Tinker, and Gromacs. A dynamic atom selection language based on the C expression syntax is included and is easily accessible to the tool-writer. In addition, LOOS is bundled with over 140 prebuilt tools, including suites of tools for analyzing simulation convergence, three-dimensional histograms, and elastic network models. Through modern C++ design, LOOS is both simple to develop with (requiring knowledge of only four core classes and a few utility functions) and is easily extensible. A python interface to the core classes is also provided, further facilitating tool development. © 2014 Wiley Periodicals, Inc.

  17. FlaME: Flash Molecular Editor - a 2D structure input tool for the web

    PubMed Central

    2011-01-01

    Background So far, there have been no Flash-based web tools available for chemical structure input. The authors herein present a feasibility study, aiming at the development of a compact and easy-to-use 2D structure editor, using Adobe's Flash technology and its programming language, ActionScript. As a reference model application from the Java world, we selected the Java Molecular Editor (JME). In this feasibility study, we made an attempt to realize a subset of JME's functionality in the Flash Molecular Editor (FlaME) utility. These basic capabilities are: structure input, editing and depiction of single molecules, data import and export in molfile format. Implementation The result of molecular diagram sketching in FlaME is accessible in V2000 molfile format. By integrating the molecular editor into a web page, its communication with the HTML elements on this page is established using the two JavaScript functions, getMol() and setMol(). In addition, structures can be copied to the system clipboard. Conclusion A first attempt was made to create a compact single-file application for 2D molecular structure input/editing on the web, based on Flash technology. With the application examples presented in this article, it could be demonstrated that the Flash methods are principally well-suited to provide the requisite communication between the Flash object (application) and the HTML elements on a web page, using JavaScript functions. PMID:21284863

  18. A tool to assess potential for alien plant establishment and expansion under climate change.

    PubMed

    Roger, Erin; Duursma, Daisy Englert; Downey, Paul O; Gallagher, Rachael V; Hughes, Lesley; Steel, Jackie; Johnson, Stephen B; Leishman, Michelle R

    2015-08-15

    Predicting the influence of climate change on the potential distribution of naturalised alien plant species is an important and challenging task. While prioritisation of management actions for alien plants under current climatic conditions has been widely adopted, very few systems explicitly incorporate the potential of future changes in climate conditions to influence the distribution of alien plant species. Here, we develop an Australia-wide screening tool to assess the potential of naturalised alien plants to establish and spread under both current and future climatic conditions. The screening tool developed uses five spatially explicit criteria to establish the likelihood of alien plant population establishment and expansion under baseline climate conditions and future climates for the decades 2035 and 2065. Alien plants are then given a threat rating according to current and future threat to enable natural resource managers to focus on those species that pose the largest potential threat now and in the future. To demonstrate the screening tool, we present results for a representative sample of approximately 10% (n = 292) of Australia's known, naturalised alien plant species. Overall, most alien plant species showed decreases in area of habitat suitability under future conditions compared to current conditions and therefore the threat rating of most alien plant species declined between current and future conditions. Use of the screening tool is intended to assist natural resource managers in assessing the threat of alien plant establishment and spread under current and future conditions and thus prioritise detailed weed risk assessments for those species that pose the greatest threat. The screening tool is associated with a searchable database for all 292 alien plant species across a range of spatial scales, available through an interactive web-based portal at http://weedfutures.net/. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights

  19. eMovie: a storyboard-based tool for making molecular movies.

    PubMed

    Hodis, Eran; Schreiber, Gideon; Rother, Kristian; Sussman, Joel L

    2007-05-01

    The 3D structures of macromolecules are difficult to grasp and also to communicate. By their nature, movies or animations are particularly useful for highlighting key features by offering a 'guided tour' of structures and conformation changes. However, high-quality movies are rarely seen because they are currently difficult and time consuming to make. By adopting the traditional movie 'storyboard' concept, which gives guidance and direction to filming, eMovie makes the creation of lengthy molecular animations much easier. This tool is a plug-in for the open-source molecular graphics program PyMOL, and enables experts and novices alike to produce informative and high-quality molecular animations.

  20. Molecular genealogy tools for white-tailed deer with chronic wasting disease

    PubMed Central

    Ernest, Holly B.; Hoar, Bruce R.; Well, Jay A.; O’Rourke, Katherine I.

    2010-01-01

    Molecular genetic data provide powerful tools for genealogy reconstruction to reveal mechanisms underlying disease ecology. White-tailed deer (Odocoileus virginianus) congregate in matriarchal groups; kin-related close social spacing may be a factor in the spread of infectious diseases. Spread of chronic wasting disease (CWD), a prion disorder of deer and their cervid relatives, is presumed to be associated with direct contact between individuals and by exposure to shared food and water sources contaminated with prions shed by infected deer. Key aspects of disease ecology are yet unknown. DNA tools for pedigree reconstruction were developed to fill knowledge gaps in disease dynamics in prion-infected wild animals. Kinship indices using data from microsatellite loci and sequence haplotypes of mitochondrial DNA were employed to assemble genealogies. Molecular genealogy tools will be useful for landscape-level population genetic research and monitoring, in addition to epidemiologic studies examining transmission of CWD in captive and free-ranging cervids. PMID:20592847

  1. Application of molecular genetic tools to studies of forest pathosystems [Chapter 2

    Treesearch

    Mee-Sook Kim; Ned B. Klopfenstein; Richard C. Hamelin

    2005-01-01

    The use of molecular genetics in forest pathology has greatly increased over the past 10 years. For the most part, molecular genetic tools were initially developed to focus on individual components (e.g., pathogen, host) of forest pathosystems. As part of broader forest ecosystem complexes, forest pathosystems involve dynamic interactions among living components (e.g...

  2. Bio-AIMS Collection of Chemoinformatics Web Tools based on Molecular Graph Information and Artificial Intelligence Models.

    PubMed

    Munteanu, Cristian R; Gonzalez-Diaz, Humberto; Garcia, Rafael; Loza, Mabel; Pazos, Alejandro

    2015-01-01

    The molecular information encoding into molecular descriptors is the first step into in silico Chemoinformatics methods in Drug Design. The Machine Learning methods are a complex solution to find prediction models for specific biological properties of molecules. These models connect the molecular structure information such as atom connectivity (molecular graphs) or physical-chemical properties of an atom/group of atoms to the molecular activity (Quantitative Structure - Activity Relationship, QSAR). Due to the complexity of the proteins, the prediction of their activity is a complicated task and the interpretation of the models is more difficult. The current review presents a series of 11 prediction models for proteins, implemented as free Web tools on an Artificial Intelligence Model Server in Biosciences, Bio-AIMS (http://bio-aims.udc.es/TargetPred.php). Six tools predict protein activity, two models evaluate drug - protein target interactions and the other three calculate protein - protein interactions. The input information is based on the protein 3D structure for nine models, 1D peptide amino acid sequence for three tools and drug SMILES formulas for two servers. The molecular graph descriptor-based Machine Learning models could be useful tools for in silico screening of new peptides/proteins as future drug targets for specific treatments.

  3. Molecular tools for carotenogenesis analysis in the zygomycete Mucor circinelloides.

    PubMed

    Torres-Martínez, Santiago; Ruiz-Vázquez, Rosa M; Garre, Victoriano; López-García, Sergio; Navarro, Eusebio; Vila, Ana

    2012-01-01

    The carotene producer fungus Mucor circinelloides is the zygomycete more amenable to genetic manipulations by using molecular tools. Since the initial development of an effective procedure of genetic transformation, more than two decades ago, the availability of new molecular approaches such as gene replacement techniques and gene expression inactivation by RNA silencing, in addition to the sequencing of its genome, has made Mucor a valuable organism for the study of a number of processes. Here we describe in detail the main techniques and methods currently used to manipulate M. circinelloides, including transformation, gene replacement, gene silencing, RNAi, and immunoprecipitation.

  4. Developing molecular tools for Chlamydomonas reinhardtii

    NASA Astrophysics Data System (ADS)

    Noor-Mohammadi, Samaneh

    Microalgae have garnered increasing interest over the years for their ability to produce compounds ranging from biofuels to neutraceuticals. A main focus of researchers has been to use microalgae as a natural bioreactor for the production of valuable and complex compounds. Recombinant protein expression in the chloroplasts of green algae has recently become more routine; however, the heterologous expression of multiple proteins or complete biosynthetic pathways remains a significant challenge. To take full advantage of these organisms' natural abilities, sophisticated molecular tools are needed to be able to introduce and functionally express multiple gene biosynthetic pathways in its genome. To achieve the above objective, we have sought to establish a method to construct, integrate and express multigene operons in the chloroplast and nuclear genome of the model microalgae Chlamydomonas reinhardtii. Here we show that a modified DNA Assembler approach can be used to rapidly assemble multiple-gene biosynthetic pathways in yeast and then integrate these assembled pathways at a site-specific location in the chloroplast, or by random integration in the nuclear genome of C. reinhardtii. As a proof of concept, this method was used to successfully integrate and functionally express up to three reporter proteins (AphA6, AadA, and GFP) in the chloroplast of C. reinhardtii and up to three reporter proteins (Ble, AphVIII, and GFP) in its nuclear genome. An analysis of the relative gene expression of the engineered strains showed significant differences in the mRNA expression levels of the reporter genes and thus highlights the importance of proper promoter/untranslated-region selection when constructing a target pathway. In addition, this work focuses on expressing the cofactor regeneration enzyme phosphite dehydrogenase (PTDH) in the chloroplast and nuclear genomes of C. reinhardtii. The PTDH enzyme converts phosphite into phosphate and NAD(P)+ into NAD(P)H. The reduced

  5. ms2: A molecular simulation tool for thermodynamic properties

    NASA Astrophysics Data System (ADS)

    Deublein, Stephan; Eckl, Bernhard; Stoll, Jürgen; Lishchuk, Sergey V.; Guevara-Carrion, Gabriela; Glass, Colin W.; Merker, Thorsten; Bernreuther, Martin; Hasse, Hans; Vrabec, Jadran

    2011-11-01

    This work presents the molecular simulation program ms2 that is designed for the calculation of thermodynamic properties of bulk fluids in equilibrium consisting of small electro-neutral molecules. ms2 features the two main molecular simulation techniques, molecular dynamics (MD) and Monte-Carlo. It supports the calculation of vapor-liquid equilibria of pure fluids and multi-component mixtures described by rigid molecular models on the basis of the grand equilibrium method. Furthermore, it is capable of sampling various classical ensembles and yields numerous thermodynamic properties. To evaluate the chemical potential, Widom's test molecule method and gradual insertion are implemented. Transport properties are determined by equilibrium MD simulations following the Green-Kubo formalism. ms2 is designed to meet the requirements of academia and industry, particularly achieving short response times and straightforward handling. It is written in Fortran90 and optimized for a fast execution on a broad range of computer architectures, spanning from single processor PCs over PC-clusters and vector computers to high-end parallel machines. The standard Message Passing Interface (MPI) is used for parallelization and ms2 is therefore easily portable to different computing platforms. Feature tools facilitate the interaction with the code and the interpretation of input and output files. The accuracy and reliability of ms2 has been shown for a large variety of fluids in preceding work. Program summaryProgram title:ms2 Catalogue identifier: AEJF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEJF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Special Licence supplied by the authors No. of lines in distributed program, including test data, etc.: 82 794 No. of bytes in distributed program, including test data, etc.: 793 705 Distribution format: tar.gz Programming language: Fortran90 Computer: The

  6. Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances.

    PubMed

    Wagner, James M; Alper, Hal S

    2016-04-01

    Coupling the tools of synthetic biology with traditional molecular genetic techniques can enable the rapid prototyping and optimization of yeast strains. While the era of yeast synthetic biology began in the well-characterized model organism Saccharomyces cerevisiae, it is swiftly expanding to include non-conventional yeast production systems such as Hansenula polymorpha, Kluyveromyces lactis, Pichia pastoris, and Yarrowia lipolytica. These yeasts already have roles in the manufacture of vaccines, therapeutic proteins, food additives, and biorenewable chemicals, but recent synthetic biology advances have the potential to greatly expand and diversify their impact on biotechnology. In this review, we summarize the development of synthetic biological tools (including promoters and terminators) and enabling molecular genetics approaches that have been applied in these four promising alternative biomanufacturing platforms. An emphasis is placed on synthetic parts and genome editing tools. Finally, we discuss examples of synthetic tools developed in other organisms that can be adapted or optimized for these hosts in the near future. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. NIKE: a new clinical tool for establishing levels of indications for cataract surgery.

    PubMed

    Lundström, Mats; Albrecht, Susanne; Håkansson, Ingemar; Lorefors, Ragnhild; Ohlsson, Sven; Polland, Werner; Schmid, Andrea; Svensson, Göran; Wendel, Eva

    2006-08-01

    The purpose of this study was to construct a new clinical tool for establishing levels of indications for cataract surgery, and to validate this tool. Teams from nine eye clinics reached an agreement about the need to develop a clinical tool for setting levels of indications for cataract surgery and about the items that should be included in the tool. The tool was to be called 'NIKE' (Nationell Indikationsmodell för Kataraktextraktion). The Canadian Cataract Priority Criteria Tool served as a model for the NIKE tool, which was modified for Swedish conditions. Items included in the tool were visual acuity of both eyes, patients' perceived difficulties in day-to-day life, cataract symptoms, the ability to live independently, and medical/ophthalmic reasons for surgery. The tool was validated and tested in 343 cataract surgery patients. Validity, stability and reliability were tested and the outcome of surgery was studied in relation to the indication setting. Four indication groups (IGs) were suggested. The group with the greatest indications for surgery was named group 1 and that with the lowest, group 4. Validity was proved to be good. Surgery had the greatest impact on the group with the highest indications for surgery. Test-retest reliability test and interexaminer tests of indication settings showed statistically significant intraclass correlations (intraclass correlation coefficients [ICCs] 0.526 and 0.923, respectively). A new clinical tool for indication setting in cataract surgery is presented. This tool, the NIKE, takes into account both visual acuity and the patient's perceived problems in day-to-day life because of cataract. The tool seems to be stable and reliable and neutral towards different examiners.

  8. [Establishment and Management of Multiple Myeloma Specimen Bank Applied for Molecular Biological Researches].

    PubMed

    Li, Han-Qing; Mei, Jian-Gang; Cao, Hong-Qin; Shao, Liang-Jing; Zhai, Yong-Ping

    2017-12-01

    To establish a multiple myeloma specimen bank applied for molecular biological researches and to explore the methods of specimen collection, transportation, storage, quality control and the management of specimen bank. Bone marrow and blood samples were collected from multiple myeloma patients, plasma cell sorting were operated after the separation of mononuclear cells from bone marrow specimens. The plasma cells were divided into 2 parts, one was added with proper amount of TRIzol and then kept in -80 °C refrigerator for subsequent RNA extraction, the other was added with proper amount of calf serum cell frozen liquid and then kept in -80 °C refrigerator for subsequent cryopreservation of DNA extraction after numbered respectively. Serum and plasma were separated from peripheral blood, specimens of serum and plasma were then stored at -80 °C refrigerator after registration. Meantime, the myeloma specimen information management system was established, managed and maintained by specially-assigned persons and continuous modification and improvement in the process of use as to facilitate the rapid collection, management, query of the effective samples and clinical data. A total of 244 portions plasma cells, 564 portions of serum, and 1005 portions of plasma were collected, clinical characters were documented. A multiple myeloma specimen bank have been established initially, which can provide quality samples and related clinical information for molecular biological research on multiple myeloma.

  9. Pseudotyped baculovirus is an effective gene expression tool for studying molecular function during axolotl limb regeneration.

    PubMed

    Oliveira, Catarina R; Lemaitre, Regis; Murawala, Prayag; Tazaki, Akira; Drechsel, David N; Tanaka, Elly M

    2018-01-15

    Axolotls can regenerate complex structures through recruitment and remodeling of cells within mature tissues. Accessing the underlying mechanisms at a molecular resolution is crucial to understand how injury triggers regeneration and how it proceeds. However, gene transformation in adult tissues can be challenging. Here we characterize the use of pseudotyped baculovirus (BV) as an effective gene transfer method both for cells within mature limb tissue and within the blastema. These cells remain competent to participate in regeneration after transduction. We further characterize the effectiveness of BV for gene overexpression studies by overexpressing Shh in the blastema, which yields a high penetrance of classic polydactyly phenotypes. Overall, our work establishes BV as a powerful tool to access gene function in axolotl limb regeneration. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. [Establishing IAQ Metrics and Baseline Measures.] "Indoor Air Quality Tools for Schools" Update #20

    ERIC Educational Resources Information Center

    US Environmental Protection Agency, 2009

    2009-01-01

    This issue of "Indoor Air Quality Tools for Schools" Update ("IAQ TfS" Update) contains the following items: (1) News and Events; (2) IAQ Profile: Establishing Your Baseline for Long-Term Success (Feature Article); (3) Insight into Excellence: Belleville Township High School District #201, 2009 Leadership Award Winner; and (4) Have Your Questions…

  11. Rapid molecular diagnostics for multi-drug resistant tuberculosis in India.

    PubMed

    Ramachandran, Rajeswari; Muniyandi, M

    2018-03-01

    Rapid molecular diagnostic methods help in the detection of TB and Rifampicin resistance. These methods detect TB early, are accurate and play a crucial role in reducing the burden of drug resistant tuberculosis. Areas covered: This review analyses rapid molecular diagnostic tools used in the diagnosis of MDR-TB in India, such as the Line Probe Assay and GeneXpert. We have discussed the burden of MDR-TB and the impact of recent diagnostic tools on case detection and treatment outcomes. This review also discusses the costs involved in establishing these new techniques in India. Expert commentary: Molecular methods have considerable advantages for the programmatic management of drug resistant TB. These include speed, standardization of testing, potentially high throughput and reduced laboratory biosafety requirements. There is a desperate need for India to adopt modern, rapid, molecular tools with point-of-care tests being currently evaluated. New molecular diagnostic tests appear to be cost effective and also help in detecting missing cases. There is enough evidence to support the scaling up of these new tools in India.

  12. Polymerase chain reaction: A molecular diagnostic tool in periodontology

    PubMed Central

    Maheaswari, Rajendran; Kshirsagar, Jaishree Tukaram; Lavanya, Nallasivam

    2016-01-01

    This review discusses the principles of polymerase chain reaction (PCR) and its application as a diagnostic tool in periodontology. The relevant MEDLINE and PubMed indexed journals were searched manually and electronically by typing PCR, applications of PCR, PCR in periodontics, polymorphism studies in periodontitis, and molecular techniques in periodontology. The searches were limited to articles in English language and the articles describing PCR process and its relation to periodontology were collected and used to prepare a concise review. PCR has now become a standard diagnostic and research tool in periodontology. Various studies reveal that its sensitivity and specificity allow it as a rapid, efficient method of detecting, identifying, and quantifying organism. Different immune and inflammatory markers can be identified at the mRNA expression level, and also the determination of genetic polymorphisms, thus providing the deeper insight into the mechanisms underlying the periodontal disease. PMID:27143822

  13. Polymerase chain reaction: A molecular diagnostic tool in periodontology.

    PubMed

    Maheaswari, Rajendran; Kshirsagar, Jaishree Tukaram; Lavanya, Nallasivam

    2016-01-01

    This review discusses the principles of polymerase chain reaction (PCR) and its application as a diagnostic tool in periodontology. The relevant MEDLINE and PubMed indexed journals were searched manually and electronically by typing PCR, applications of PCR, PCR in periodontics, polymorphism studies in periodontitis, and molecular techniques in periodontology. The searches were limited to articles in English language and the articles describing PCR process and its relation to periodontology were collected and used to prepare a concise review. PCR has now become a standard diagnostic and research tool in periodontology. Various studies reveal that its sensitivity and specificity allow it as a rapid, efficient method of detecting, identifying, and quantifying organism. Different immune and inflammatory markers can be identified at the mRNA expression level, and also the determination of genetic polymorphisms, thus providing the deeper insight into the mechanisms underlying the periodontal disease.

  14. Developing Molecular Genetic Tools to Facilitate Economic Production in Green Algae

    DTIC Science & Technology

    2012-09-10

    Economic Production in Green Algae FA9550-10-1-0052 Georgianna, David, R Gimpel, Javier Hannon, Michael, J Mayfield, Stephen, P Prof. Stephen...Final Performance Report Project Title: Developing Molecular Genetic Tools to Facilitate Economic Production in Green Algae Award Number... ECONOMIC PRODUCTION IN GREEN ALGAE ABSTRACT It is now accepted that algae have enormous potential to generate economically viable and

  15. Molecular tools for bathing water assessment in Europe: Balancing social science research with a rapidly developing environmental science evidence-base.

    PubMed

    Oliver, David M; Hanley, Nick D; van Niekerk, Melanie; Kay, David; Heathwaite, A Louise; Rabinovici, Sharyl J M; Kinzelman, Julie L; Fleming, Lora E; Porter, Jonathan; Shaikh, Sabina; Fish, Rob; Chilton, Sue; Hewitt, Julie; Connolly, Elaine; Cummins, Andy; Glenk, Klaus; McPhail, Calum; McRory, Eric; McVittie, Alistair; Giles, Amanna; Roberts, Suzanne; Simpson, Katherine; Tinch, Dugald; Thairs, Ted; Avery, Lisa M; Vinten, Andy J A; Watts, Bill D; Quilliam, Richard S

    2016-02-01

    The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.

  16. Molecular HIV screening.

    PubMed

    Bourlet, Thomas; Memmi, Meriam; Saoudin, Henia; Pozzetto, Bruno

    2013-09-01

    Nuclear acid testing is more and more used for the diagnosis of infectious diseases. This paper focuses on the use of molecular tools for HIV screening. The term 'screening' will be used under the meaning of first-line HIV molecular techniques performed on a routine basis, which excludes HIV molecular tests designed to confirm or infirm a newly discovered HIV-seropositive patient or other molecular tests performed for the follow-up of HIV-infected patients. The following items are developed successively: i) presentation of the variety of molecular tools used for molecular HIV screening, ii) use of HIV molecular tools for the screening of blood products, iii) use of HIV molecular tools for the screening of organs and tissue from human origin, iv) use of HIV molecular tools in medically assisted procreation and v) use of HIV molecular tools in neonates from HIV-infected mothers.

  17. Molecular epidemiology: new rules for new tools?

    PubMed

    Merlo, Domenico Franco; Sormani, Maria Pia; Bruzzi, Paolo

    2006-08-30

    Molecular epidemiology combines biological markers and epidemiological observations in the study of the environmental and genetic determinants of cancer and other diseases. The potential advantages associated with biomarkers are manifold and include: (a) increased sensitivity and specificity to carcinogenic exposures; (b) more precise evaluation of the interplay between genetic and environmental determinants of cancer; (c) earlier detection of carcinogenic effects of exposure; (d) characterization of disease subtypes-etiologies patterns; (e) evaluation of primary prevention measures. These, in turn, may translate into better tools for etiologic research, individual risk assessment, and, ultimately, primary and secondary prevention. An area that has not received sufficient attention concerns the validation of these biomarkers as surrogate endpoints for cancer risk. Validation of a candidate biomarker's surrogacy is the demonstration that it possesses the properties required for its use as a substitute for a true endpoint. The principles underlying the validation process underwent remarkable developments and discussion in therapeutic research. However, the challenges posed by the application of these principles to epidemiological research, where the basic tool for this validation (i.e., the randomized study) is seldom possible, have not been thoroughly explored. The validation process of surrogacy must be applied rigorously to intermediate biomarkers of cancer risk before using them as risk predictors at the individual as well as at the population level.

  18. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii.

    PubMed

    Di Rienzi, Sara C; Lindstrom, Kimberly C; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M K; Brewer, Bonita J

    2011-02-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. 2010 John Wiley & Sons, Ltd.

  19. Genetic, genomic, and molecular tools for studying the protoploid yeast, L. waltii

    PubMed Central

    Di Rienzi, Sara C.; Lindstrom, Kimberly C.; Lancaster, Ragina; Rolczynski, Lisa; Raghuraman, M. K.; Brewer, Bonita J.

    2011-01-01

    Sequencing of the yeast Kluyveromyces waltii (recently renamed Lachancea waltii) provided evidence of a whole genome duplication event in the lineage leading to the well-studied Saccharomyces cerevisiae. While comparative genomic analyses of these yeasts have proven to be extremely instructive in modeling the loss or maintenance of gene duplicates, experimental tests of the ramifications following such genome alterations remain difficult. To transform L. waltii from an organism of the computational comparative genomic literature into an organism of the functional comparative genomic literature, we have developed genetic, molecular and genomic tools for working with L. waltii. In particular, we have characterized basic properties of L. waltii (growth, ploidy, molecular karyotype, mating type and the sexual cycle), developed transformation, cell cycle arrest and synchronization protocols, and have created centromeric and non-centromeric vectors as well as a genome browser for L. waltii. We hope that these tools will be used by the community to follow up on the ideas generated by sequence data and lead to a greater understanding of eukaryotic biology and genome evolution. PMID:21246627

  20. Current update on established and novel biomarkers in salivary gland carcinoma pathology and the molecular pathways involved.

    PubMed

    Stenner, Markus; Klussmann, J Peter

    2009-03-01

    This review aims to take stock of the new information that has accumulated over the past decade on the molecular pathology of salivary gland cancer. Emphasis will be placed on established and novel immunohistochemical markers, the pathways involved, and on findings of prognostic importance as well as new therapeutic concepts. Whenever reasonable, analogies to tumors of better explored, histologically related glandular organs such as pancreas and breast are established.

  1. Molecular tools for differentiation of non-typeable Haemophilus influenzae from Haemophilus haemolyticus

    PubMed Central

    Pickering, Janessa; Richmond, Peter C.; Kirkham, Lea-Ann S.

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi) and Haemophilus haemolyticus are closely related bacteria that reside in the upper respiratory tract. NTHi is associated with respiratory tract infections that frequently result in antibiotic prescription whilst H. haemolyticus is rarely associated with disease. NTHi and H. haemolyticus can be indistinguishable by traditional culture methods and molecular differentiation has proven difficult. This current review chronologically summarizes the molecular approaches that have been developed for differentiation of NTHi from H. haemolyticus, highlighting the advantages and disadvantages of each target and/or technique. We also provide suggestions for the development of new tools that would be suitable for clinical and research laboratories. PMID:25520712

  2. ms 2: A molecular simulation tool for thermodynamic properties, release 3.0

    NASA Astrophysics Data System (ADS)

    Rutkai, Gábor; Köster, Andreas; Guevara-Carrion, Gabriela; Janzen, Tatjana; Schappals, Michael; Glass, Colin W.; Bernreuther, Martin; Wafai, Amer; Stephan, Simon; Kohns, Maximilian; Reiser, Steffen; Deublein, Stephan; Horsch, Martin; Hasse, Hans; Vrabec, Jadran

    2017-12-01

    A new version release (3.0) of the molecular simulation tool ms 2 (Deublein et al., 2011; Glass et al. 2014) is presented. Version 3.0 of ms 2 features two additional ensembles, i.e. microcanonical (NVE) and isobaric-isoenthalpic (NpH), various Helmholtz energy derivatives in the NVE ensemble, thermodynamic integration as a method for calculating the chemical potential, the osmotic pressure for calculating the activity of solvents, the six Maxwell-Stefan diffusion coefficients of quaternary mixtures, statistics for sampling hydrogen bonds, smooth-particle mesh Ewald summation as well as the ability to carry out molecular dynamics runs for an arbitrary number of state points in a single program execution.

  3. Molecular genetic markers for thyroid FNAB. Established assays and future perspective.

    PubMed

    Musholt, Thomas J; Musholt, P B

    2015-01-01

    Thyroid nodules > 1 cm are observed in about 12% of unselected adult employees aged 18-65 years screened by ultrasound scan (40). While intensive ultrasound screening leads to early detection of thyroid diseases, the determination of benign or malignant behaviour remains uncertain and may trigger anxieties in many patients and their physicians. A considerable number of thyroid resections are consecutively performed due to suspicion of malignancy in the detected nodes. Fine needle aspiration biopsy (FNAB) has been recommended for the assessment of thyroid nodules to facilitate detection of thyroid carcinomas but also to rule out malignancy and thereby avoid unnecessary thyroid resections. However, cytology results are dependent on experience of the respective cytologist and unfortunately inconclusive in many cases. Molecular genetic markers are already used nowadays to enhance sensitivity and specificity of FNAB cytology in some centers in Germany. The most clinically relevant molecular genetic markers as pre-operative diagnostic tools and the clinical implications for the intraoperative and postoperative management were reviewed. Molecular genetic markers predominantly focus on the preoperative detection of thyroid malignancies rather than the exclusion of thyroid carcinomas. While some centers routinely assess FNABs, other centers concentrate on FNABs with cytology results of follicular neoplasia or suspicion of thyroid carcinoma. Predominantly mutations of BRAF, RET/PTC, RAS, and PAX8/PPARγ or expression of miRNAs are analyzed. However, only the detection of BRAF mutations predicts the presence of (papillary) thyroid malignancy with almost 98% probability, indicating necessity of oncologic thyroid resections irrespective of the cytology result. Other genetic alterations are associated with thyroid malignancy with varying frequency and achieve less impact on the clinical management. Molecular genetic analysis of FNABs is increasingly performed in Germany

  4. Molecular cytogenetics: an indispensable tool for cancer diagnosis.

    PubMed

    Wan, Thomas Sk; Ma, Edmond Sk

    2012-01-01

    Cytogenetic aberrations may escape detection or recognition in traditional karyotyping. The past decade has seen an explosion of methodological advances in molecular cytogenetics technology. These cytogenetics techniques add color to the black and white world of conventional banding. Fluorescence in-situ hybridization (FISH) study has emerged as an indispensable tool for both basic and clinical research, as well as diagnostics, in leukemia and cancers. FISH can be used to identify chromosomal abnormalities through fluorescent labeled DNA probes that target specific DNA sequences. Subsequently, FISH-based tests such as multicolor karyotyping, comparative genomic hybridization (CGH) and array CGH have been used in emerging clinical applications as they enable resolution of complex karyotypic aberrations and whole global scanning of genomic imbalances. More recently, crossspecies array CGH analysis has also been employed in cancer gene identification. The clinical impact of FISH is pivotal, especially in the diagnosis, prognosis and treatment decisions for hematological diseases, all of which facilitate the practice of personalized medicine. This review summarizes the methodology and current utilization of these FISH techniques in unraveling chromosomal changes and highlights how the field is moving away from conventional methods towards molecular cytogenetics approaches. In addition, the potential of the more recently developed FISH tests in contributing information to genetic abnormalities is illustrated.

  5. Molecular imaging of rheumatoid arthritis: emerging markers, tools, and techniques

    PubMed Central

    2014-01-01

    Early diagnosis and effective monitoring of rheumatoid arthritis (RA) are important for a positive outcome. Instant treatment often results in faster reduction of inflammation and, as a consequence, less structural damage. Anatomical imaging techniques have been in use for a long time, facilitating diagnosis and monitoring of RA. However, mere imaging of anatomical structures provides little information on the processes preceding changes in synovial tissue, cartilage, and bone. Molecular imaging might facilitate more effective diagnosis and monitoring in addition to providing new information on the disease pathogenesis. A limiting factor in the development of new molecular imaging techniques is the availability of suitable probes. Here, we review which cells and molecules can be targeted in the RA joint and discuss the advances that have been made in imaging of arthritis with a focus on such molecular targets as folate receptor, F4/80, macrophage mannose receptor, E-selectin, intercellular adhesion molecule-1, phosphatidylserine, and matrix metalloproteinases. In addition, we discuss a new tool that is being introduced in the field, namely the use of nanobodies as tracers. Finally, we describe additional molecules displaying specific features in joint inflammation and propose these as potential new molecular imaging targets, more specifically receptor activator of nuclear factor κB and its ligand, chemokine receptors, vascular cell adhesion molecule-1, αVβ3 integrin, P2X7 receptor, suppression of tumorigenicity 2, dendritic cell-specific transmembrane protein, and osteoclast-stimulatory transmembrane protein. PMID:25099015

  6. Systems Biology-Driven Hypotheses Tested In Vivo: The Need to Advancing Molecular Imaging Tools.

    PubMed

    Verma, Garima; Palombo, Alessandro; Grigioni, Mauro; La Monaca, Morena; D'Avenio, Giuseppe

    2018-01-01

    Processing and interpretation of biological images may provide invaluable insights on complex, living systems because images capture the overall dynamics as a "whole." Therefore, "extraction" of key, quantitative morphological parameters could be, at least in principle, helpful in building a reliable systems biology approach in understanding living objects. Molecular imaging tools for system biology models have attained widespread usage in modern experimental laboratories. Here, we provide an overview on advances in the computational technology and different instrumentations focused on molecular image processing and analysis. Quantitative data analysis through various open source software and algorithmic protocols will provide a novel approach for modeling the experimental research program. Besides this, we also highlight the predictable future trends regarding methods for automatically analyzing biological data. Such tools will be very useful to understand the detailed biological and mathematical expressions under in-silico system biology processes with modeling properties.

  7. Characteristics and evolution of the ecosystem of software tools supporting research in molecular biology.

    PubMed

    Pazos, Florencio; Chagoyen, Monica

    2018-01-16

    Daily work in molecular biology presently depends on a large number of computational tools. An in-depth, large-scale study of that 'ecosystem' of Web tools, its characteristics, interconnectivity, patterns of usage/citation, temporal evolution and rate of decay is crucial for understanding the forces that shape it and for informing initiatives aimed at its funding, long-term maintenance and improvement. In particular, the long-term maintenance of these tools is compromised because of their specific development model. Hundreds of published studies become irreproducible de facto, as the software tools used to conduct them become unavailable. In this study, we present a large-scale survey of >5400 publications describing Web servers within the two main bibliographic resources for disseminating new software developments in molecular biology. For all these servers, we studied their citation patterns, the subjects they address, their citation networks and the temporal evolution of these factors. We also analysed how these factors affect the availability of these servers (whether they are alive). Our results show that this ecosystem of tools is highly interconnected and adapts to the 'trendy' subjects in every moment. The servers present characteristic temporal patterns of citation/usage, and there is a worrying rate of server 'death', which is influenced by factors such as the server popularity and the institutions that hosts it. These results can inform initiatives aimed at the long-term maintenance of these resources. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Establishing a Measurement Tool for a Nursing Work Environment in Taiwan.

    PubMed

    Lin, Li-Chiu; Lee, Huan-Fang; Yen, Miaofen

    2017-02-01

    The nursing work environment is a critical global health care problem. Many health care providers are concerned about the associations between the nursing work environment and the outcomes of organizations, nurses, and patients. Nursing work environment instruments have been assessed in the West but have not been considered in Asia. However, different cultures will affect the factorial structure of the tool. Using a stratified nationwide random sample, we created a measurement tool for the nursing work environment in Taiwan. The Nursing Work Environment Index-Revised Scale and the Essentials of Magnetism scale were used to examine the factorial structure. Item analysis, exploratory factor analysis, and confirmatory factor analysis were used to examine the hypothesis model and generate a new factorial structure. The Taiwan Nursing Work Environment Index (TNWEI) was established to evaluate the nursing work environment in Taiwan. The four factors were labeled "Organizational Support" (7 items), "Nurse Staffing and Resources" (4 items), "Nurse-Physician Collaboration" (4 items), and "Support for Continuing Education" (4 items). The 19 items explained 58.5% of the variance. Confirmatory factor analysis showed a good fit to the model (x2/df = 5.99; p < .05, goodness of fit index [GFI] = .90; RMSEA = .07). The TNWEI provides a comprehensive and efficient method for measuring the nurses' work environment in Taiwan.

  9. Development and Application of Camelid Molecular Cytogenetic Tools

    PubMed Central

    Avila, Felipe; Das, Pranab J.; Kutzler, Michelle; Owens, Elaine; Perelman, Polina; Rubes, Jiri; Hornak, Miroslav; Johnson, Warren E.

    2014-01-01

    Cytogenetic chromosome maps offer molecular tools for genome analysis and clinical cytogenetics and are of particular importance for species with difficult karyotypes, such as camelids (2n = 74). Building on the available human–camel zoo-fluorescence in situ hybridization (FISH) data, we developed the first cytogenetic map for the alpaca (Lama pacos, LPA) genome by isolating and identifying 151 alpaca bacterial artificial chromosome (BAC) clones corresponding to 44 specific genes. The genes were mapped by FISH to 31 alpaca autosomes and the sex chromosomes; 11 chromosomes had 2 markers, which were ordered by dual-color FISH. The STS gene mapped to Xpter/Ypter, demarcating the pseudoautosomal region, whereas no markers were assigned to chromosomes 14, 21, 22, 28, and 36. The chromosome-specific markers were applied in clinical cytogenetics to identify LPA20, the major histocompatibility complex (MHC)-carrying chromosome, as a part of an autosomal translocation in a sterile male llama (Lama glama, LGL; 2n = 73,XY). FISH with LPAX BACs and LPA36 paints, as well as comparative genomic hybridization, were also used to investigate the origin of the minute chromosome, an abnormally small LPA36 in infertile female alpacas. This collection of cytogenetically mapped markers represents a new tool for camelid clinical cytogenetics and has applications for the improvement of the alpaca genome map and sequence assembly. PMID:23109720

  10. Biopython: freely available Python tools for computational molecular biology and bioinformatics.

    PubMed

    Cock, Peter J A; Antao, Tiago; Chang, Jeffrey T; Chapman, Brad A; Cox, Cymon J; Dalke, Andrew; Friedberg, Iddo; Hamelryck, Thomas; Kauff, Frank; Wilczynski, Bartek; de Hoon, Michiel J L

    2009-06-01

    The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. Biopython is freely available, with documentation and source code at (www.biopython.org) under the Biopython license.

  11. Establishment of a Molecular Serotyping Scheme and a Multiplexed Luminex-Based Array for Enterobacter aerogenes

    PubMed Central

    Guo, Xi; Wang, Min; Wang, Lu; Wang, Yao; Chen, Tingting; Wu, Pan; Chen, Min; Liu, Bin; Feng, Lu

    2018-01-01

    Serotyping based on surface polysaccharide antigens is important for the clinical detection and epidemiological surveillance of pathogens. Polysaccharide gene clusters (PSgcs) are typically responsible for the diversity of bacterial surface polysaccharides. Through whole-genome sequencing and analysis, eight putative PSgc types were identified in 23 Enterobacter aerogenes strains from several geographic areas, allowing us to present the first molecular serotyping system for E. aerogenes. A conventional antigenic scheme was also established and correlated well with the molecular serotyping system that was based on PSgc genetic variation, indicating that PSgc-based molecular typing and immunological serology provide equally valid results. Further, a multiplex Luminex-based array was developed, and a double-blind test was conducted with 97 clinical specimens from Shanghai, China, to validate our array. The results of these analyses indicated that strains containing PSgc4 and PSgc7 comprised the predominant groups. We then examined 86 publicly available E. aerogenes strain genomes and identified an additional seven novel PSgc types, with PSgc10 being the most abundant type. In total, our study identified 15 PSgc types in E. aerogenes, providing the basis for a molecular serotyping scheme. From these results, differing epidemic patterns were identified between strains that were predominant in different regions. Our study highlights the feasibility and reliability of a serotyping system based on PSgc diversity, and for the first time, presents a molecular serotyping system, as well as an antigenic scheme for E. aerogenes, providing the basis for molecular diagnostics and epidemiological surveillance of this important emerging pathogen. PMID:29616012

  12. Establishment of a Molecular Serotyping Scheme and a Multiplexed Luminex-Based Array for Enterobacter aerogenes.

    PubMed

    Guo, Xi; Wang, Min; Wang, Lu; Wang, Yao; Chen, Tingting; Wu, Pan; Chen, Min; Liu, Bin; Feng, Lu

    2018-01-01

    Serotyping based on surface polysaccharide antigens is important for the clinical detection and epidemiological surveillance of pathogens. Polysaccharide gene clusters (PSgcs) are typically responsible for the diversity of bacterial surface polysaccharides. Through whole-genome sequencing and analysis, eight putative PSgc types were identified in 23 Enterobacter aerogenes strains from several geographic areas, allowing us to present the first molecular serotyping system for E. aerogenes . A conventional antigenic scheme was also established and correlated well with the molecular serotyping system that was based on PSgc genetic variation, indicating that PSgc-based molecular typing and immunological serology provide equally valid results. Further, a multiplex Luminex-based array was developed, and a double-blind test was conducted with 97 clinical specimens from Shanghai, China, to validate our array. The results of these analyses indicated that strains containing PSgc4 and PSgc7 comprised the predominant groups. We then examined 86 publicly available E. aerogenes strain genomes and identified an additional seven novel PSgc types, with PSgc10 being the most abundant type. In total, our study identified 15 PSgc types in E. aerogenes , providing the basis for a molecular serotyping scheme. From these results, differing epidemic patterns were identified between strains that were predominant in different regions. Our study highlights the feasibility and reliability of a serotyping system based on PSgc diversity, and for the first time, presents a molecular serotyping system, as well as an antigenic scheme for E. aerogenes , providing the basis for molecular diagnostics and epidemiological surveillance of this important emerging pathogen.

  13. Synthesis of Novel Hydrocarbon Soluble Multifunctional Anionic Initiators: Tools for Synthesis of Novel Dendrimer and Molecular Brush Polymer Architectures

    DTIC Science & Technology

    2015-02-09

    Synthesis of Novel Dendrimer and Molecular Brush Polymer Architectures. Research Area:7.4 The views, opinions and/or findings contained in this report...journals: Final Report: Synthesis of Novel Hydrocarbon Soluble Multifunctional Anionic Initiators: Tools for Synthesis of Novel Dendrimer and Molecular

  14. MIiSR: Molecular Interactions in Super-Resolution Imaging Enables the Analysis of Protein Interactions, Dynamics and Formation of Multi-protein Structures.

    PubMed

    Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan

    2015-12-01

    Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.

  15. Establishment of a new conditionally immortalized cell line from human brain microvascular endothelial cells: a promising tool for human blood-brain barrier studies.

    PubMed

    Kamiichi, Atsuko; Furihata, Tomomi; Kishida, Satoshi; Ohta, Yuki; Saito, Kosuke; Kawamatsu, Shinya; Chiba, Kan

    2012-12-07

    The blood-brain barrier (BBB) is formed by brain microvascular endothelial cells (BMEC) working together with astrocytes and pericytes, in which tight junctions and various transporters strictly regulate the penetration of diverse compounds into the brain. Clarification of the molecular machinery that provides such regulation using in vitro BBB models has provided important insights into the roles of the BBB in central nervous system (CNS) disorders and CNS drug development. In this study, we succeeded in establishing a new cell line, hereinafter referred to as human BMEC/conditionally immortalized, clone β (HBMEC/ciβ), as part of our ongoing efforts to develop an in vitro human BBB model. Our results showed that HBMEC/ciβ proliferated well. Furthermore, we found that HBMEC/ciβ exhibited the barrier property of restricting small molecule intercellular penetration and possessed effective efflux transporter functions, both of which are essential to a functioning BBB. Because higher temperatures are known to terminate immortalization signals, we specifically examined the effects of higher temperatures on the HBMEC/ciβ differentiation status. The results showed that higher temperatures stimulated HBMEC/ciβ differentiation, marked by morphological alteration and increases in several mRNA levels. To summarize, our data indicates that the newly established HBMEC/ciβ offers a promising tool for use in the development of a practical in vitro human BBB model that could make significant contributions toward understanding the molecular biology of CNS disorders, as well as to CNS drug development. It is also believed that the development of a specific culture method for HBMEC/ciβ will add significant value to the HBMEC/ciβ-based BBB model. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. SCIENCE RESULTS INTEGRATION. BRINGING MOLECULAR BIOLOGY TECHNIQUES TO REGIONAL WATER MONITORING PROGRAMS

    EPA Science Inventory

    EPA's Office of Research and Development (ORD) develops innovative methods for use in environmental monitoring and assessment by scientists in Regions, states, and Tribes. Molecular-biology-based methods are not yet established in the environmental monitoring "tool box". SRI (Sci...

  17. A Comprehensive Tool and Analytical Pathway for Differential Molecular Profiling and Biomarker Discovery

    DTIC Science & Technology

    2014-10-20

    three possiblities: AKR , B6, and BALB_B) and MUP Protein (containing two possibilities: Intact and Denatured), then you can view a plot of the Strain...the tags for the last two labels. Again, if the attribute Strain has three tags: AKR , B6, 74 Distribution A . Approved for public release...AFRL-RH-WP-TR-2014-0131 A COMPREHENSIVE TOOL AND ANALYTICAL PATHWAY FOR DIFFERENTIAL MOLECULAR PROFILING AND BIOMARKER DISCOVERY

  18. Role of Molecular Profiling in Soft Tissue Sarcoma.

    PubMed

    Lindsay, Timothy; Movva, Sujana

    2018-05-01

    Diagnosis and treatment of soft tissue sarcoma (STS) is a particularly daunting task, largely due to the profound heterogeneity that characterizes these malignancies. Molecular profiling has emerged as a useful tool to confirm histologic diagnoses and more accurately classify these malignancies. Recent large-scale, multiplatform analyses have begun the work of establishing a more complete understanding of molecular profiling in STS subtypes and to identify new molecular alterations that may guide the development of novel targeted therapies. This review provides a brief and general overview of the role that molecular profiling has in STS, highlighting select sarcoma subtypes that are notable for recent developments. The role of molecular profiling as it relates to diagnostic strategies is discussed, along with ways that molecular profiling may provide guidance for potential therapeutic interventions. Copyright © 2018 by the National Comprehensive Cancer Network.

  19. Photorejuvenation: still not a fully established clinical tool for cosmetic treatment

    NASA Astrophysics Data System (ADS)

    Gong, Wei; Xie, Shusen; Li, Hui

    2006-01-01

    Several methods have been used to improve the esthetic appearance of photodamaged skin including dermabrasion, chemical peels and laser resurfacing using CO2 and Er:YAG laser. These procedures sacrifice epidermis, resulting in a long recuperation period and potential complications including persistent scarring, infection, hyperpigmentation, etc. Compared to ablative CO2 or Er:YAG laser resurfacing, non-ablative photorejuvenation technologies are playing an increasing role in the treatment of photodamaged skin. The clinical objective of which is to maximize thermal damage to upper dermis while minimizing injury to overlying skin. A variety of laser and non-laser systems have been used in the initial stage for this treatment. In our review, different treatment modalities have resulted in varying degrees of clinical effects. The basic mechanisms relate to improvement in employing non-ablative technologies are also discussed. Photorejuvenation is still not a fully established clinical tool for cosmetic treatment according to our review, therefore more research on basic mechanisms should be made.

  20. Clinical and molecular characterization of a re-established line of sheep exhibiting hemophilia A

    PubMed Central

    PORADA, C. D.; SANADA, C.; LONG, C. R.; WOOD, J. A.; DESAI, J.; FREDERICK, N.; MILLSAP, L.; BORMANN, C.; MENGES, S. L.; HANNA, C.; FLORES-FOXWORTH, G.; SHIN, T.; WESTHUSIN, M. E.; LIU, W.; GLIMP, H.; ZANJANI, E. D.; LOZIER, J. N.; PLISKA, V.; STRANZINGER, G.; JOERG, H.; KRAEMER, D. C.; ALMEIDA-PORADA, G.

    2010-01-01

    Summary Background Large animal models that accurately mimic human hemophilia A (HA) are in great demand for developing and testing novel therapies to treat HA. Objectives To re-establish a line of sheep exhibiting a spontaneous bleeding disorder closely mimicking severe human HA, fully characterize their clinical presentation, and define the molecular basis for disease. Patients/methods Sequential reproductive manipulations were performed with cryopreserved semen from a deceased affected ram. The resultant animals were examined for hematologic parameters, clinical symptoms, and responsiveness to human FVIII (hFVIII). The full coding region of sheep FVIII mRNA was sequenced to identify the genetic lesion. Results and conclusions The combined reproductive technologies yielded 36 carriers and 8 affected animals. The latter had almost non-existent levels of FVIII:C and extremely prolonged aPTT, with otherwise normal hematologic parameters. These animals exhibited bleeding from the umbilical cord, prolonged tail and nail cuticle bleeding time, and multiple episodes of severe spontaneous bleeding, including hemarthroses, muscle hematomas and hematuria, all of which responded to hFVIII. Inhibitors of hFVIII were detected in four treated animals, further establishing the preclinical value of this model. Sequencing identified a premature stop codon and frame-shift in exon 14, providing a molecular explanation for HA. Given the decades of experience using sheep to study both normal physiology and a wide array of diseases and the high homology between human and sheep FVIII, this new model will enable a better understanding of HA and facilitate the development and testing of novel treatments that can directly translate to HA patients. PMID:19943872

  1. Improved Infrastucture for Cdms and JPL Molecular Spectroscopy Catalogues

    NASA Astrophysics Data System (ADS)

    Endres, Christian; Schlemmer, Stephan; Drouin, Brian; Pearson, John; Müller, Holger S. P.; Schilke, P.; Stutzki, Jürgen

    2014-06-01

    Over the past years a new infrastructure for atomic and molecular databases has been developed within the framework of the Virtual Atomic and Molecular Data Centre (VAMDC). Standards for the representation of atomic and molecular data as well as a set of protocols have been established which allow now to retrieve data from various databases through one portal and to combine the data easily. Apart from spectroscopic databases such as the Cologne Database for Molecular Spectroscopy (CDMS), the Jet Propulsion Laboratory microwave, millimeter and submillimeter spectral line catalogue (JPL) and the HITRAN database, various databases on molecular collisions (BASECOL, KIDA) and reactions (UMIST) are connected. Together with other groups within the VAMDC consortium we are working on common user tools to simplify the access for new customers and to tailor data requests for users with specified needs. This comprises in particular tools to support the analysis of complex observational data obtained with the ALMA telescope. In this presentation requests to CDMS and JPL will be used to explain the basic concepts and the tools which are provided by VAMDC. In addition a new portal to CDMS will be presented which has a number of new features, in particular meaningful quantum numbers, references linked to data points, access to state energies and improved documentation. Fit files are accessible for download and queries to other databases are possible.

  2. Establishment of tools for neurogenetic analysis of sexual behavior in the silkmoth, Bombyx mori.

    PubMed

    Kiya, Taketoshi; Morishita, Koudai; Uchino, Keiro; Iwami, Masafumi; Sezutsu, Hideki

    2014-01-01

    Silkmoth, Bombyx mori, is an ideal model insect for investigating the neural mechanisms underlying sex pheromone-induced innate behavior. Although transgenic techniques and the GAL4/UAS system are well established in the silkmoth, genetic tools useful for investigating brain function at the neural circuit level have been lacking. In the present study, we established silkmoth strains in which we could visualize neural projections (UAS-mCD8GFP) and cell nucleus positions (UAS-GFP.nls), and manipulate neural excitability by thermal stimulation (UAS-dTrpA1). In these strains, neural projections and nucleus position were reliably labeled with green fluorescent protein in a GAL4-dependent manner. Further, the behavior of silkworm larvae and adults could be controlled by GAL4-dependent misexpression of dTrpA1. Ubiquitous dTrpA1 misexpression led both silkmoth larvae and adults to exhibit seizure-like phenotypes in a heat stimulation-dependent manner. Furthermore, dTrpA1 misexpression in the sex pheromone receptor neurons of male silkmoths allowed us to control male sexual behavior by changing the temperature. Thermally stimulated male silkmoths exhibited full sexual behavior, including wing-flapping, orientation, and attempted copulation, and precisely approached a thermal source in a manner similar to male silkmoths stimulated with the sex pheromone. These findings indicate that a thermogenetic approach using dTrpA1 is feasible in Lepidopteran insects and thermogenetic analysis of innate behavior is applicable in the silkmoth. These tools are essential for elucidating the relationships between neural circuits and function using neurogenetic methods.

  3. Establishment of Tools for Neurogenetic Analysis of Sexual Behavior in the Silkmoth, Bombyx mori

    PubMed Central

    Kiya, Taketoshi; Morishita, Koudai; Uchino, Keiro; Iwami, Masafumi; Sezutsu, Hideki

    2014-01-01

    Background Silkmoth, Bombyx mori, is an ideal model insect for investigating the neural mechanisms underlying sex pheromone-induced innate behavior. Although transgenic techniques and the GAL4/UAS system are well established in the silkmoth, genetic tools useful for investigating brain function at the neural circuit level have been lacking. Results In the present study, we established silkmoth strains in which we could visualize neural projections (UAS-mCD8GFP) and cell nucleus positions (UAS-GFP.nls), and manipulate neural excitability by thermal stimulation (UAS-dTrpA1). In these strains, neural projections and nucleus position were reliably labeled with green fluorescent protein in a GAL4-dependent manner. Further, the behavior of silkworm larvae and adults could be controlled by GAL4-dependent misexpression of dTrpA1. Ubiquitous dTrpA1 misexpression led both silkmoth larvae and adults to exhibit seizure-like phenotypes in a heat stimulation-dependent manner. Furthermore, dTrpA1 misexpression in the sex pheromone receptor neurons of male silkmoths allowed us to control male sexual behavior by changing the temperature. Thermally stimulated male silkmoths exhibited full sexual behavior, including wing-flapping, orientation, and attempted copulation, and precisely approached a thermal source in a manner similar to male silkmoths stimulated with the sex pheromone. Conclusion These findings indicate that a thermogenetic approach using dTrpA1 is feasible in Lepidopteran insects and thermogenetic analysis of innate behavior is applicable in the silkmoth. These tools are essential for elucidating the relationships between neural circuits and function using neurogenetic methods. PMID:25396742

  4. Molecular Targeted Viral Nanoparticles as Tools for Imaging Cancer

    PubMed Central

    Cho, C.F.; Sourabh, S.; Simpson, E.J.; Steinmetz, N.F.; Luyt, L.G.; Lewis, J.D.

    2015-01-01

    Viral nanoparticles (VNPs) are a novel class of bionanomaterials that harness the natural biocompatibility of viruses for the development of therapeutics, vaccines, and imaging tools. The plant virus, cowpea mosaic virus (CPMV), has been successfully engineered to create novel cancer-targeted imaging agents by incorporating fluorescent dyes, polyethylene glycol (PEG) polymers, and targeting moieties. Using straightforward conjugation strategies, VNPs with high selectivity for cancer-specific molecular targets can be synthesized for in vivo imaging of tumors. Here we describe the synthesis and purification of CPMV-based VNPs, the functionalization of these VNPs using click chemistry, and their use for imaging xenograft tumors in animal models. VNPs decorated with fluorescent dyes, PEG, and targeting ligands can be synthesized in one day, and imaging studies can be performed over hours, days, or weeks, depending on the application. PMID:24243252

  5. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools.

    PubMed

    Price, Jeffrey H; Goodacre, Angela; Hahn, Klaus; Hodgson, Louis; Hunter, Edward A; Krajewski, Stanislaw; Murphy, Robert F; Rabinovich, Andrew; Reed, John C; Heynen, Susanne

    2002-01-01

    Cellular behavior is complex. Successfully understanding systems at ever-increasing complexity is fundamental to advances in modern science and unraveling the functional details of cellular behavior is no exception. We present a collection of prospectives to provide a glimpse of the techniques that will aid in collecting, managing and utilizing information on complex cellular processes via molecular imaging tools. These include: 1) visualizing intracellular protein activity with fluorescent markers, 2) high throughput (and automated) imaging of multilabeled cells in statistically significant numbers, and 3) machine intelligence to analyze subcellular image localization and pattern. Although not addressed here, the importance of combining cell-image-based information with detailed molecular structure and ligand-receptor binding models cannot be overlooked. Advanced molecular imaging techniques have the potential to impact cellular diagnostics for cancer screening, clinical correlations of tissue molecular patterns for cancer biology, and cellular molecular interactions for accelerating drug discovery. The goal of finally understanding all cellular components and behaviors will be achieved by advances in both instrumentation engineering (software and hardware) and molecular biochemistry. Copyright 2002 Wiley-Liss, Inc.

  6. Molecular Imaging and Precision Medicine in Dementia and Movement Disorders.

    PubMed

    Mallik, Atul K; Drzezga, Alexander; Minoshima, Satoshi

    2017-01-01

    Precision medicine (PM) has been defined as "prevention and treatment strategies that take individual variability into account." Molecular imaging (MI) is an ideally suited tool for PM approaches to neurodegenerative dementia and movement disorders (MD). Here we review PM approaches and discuss how they may be applied to other associated neurodegenerative dementia and MD. With ongoing major therapeutic research initiatives that include the use of molecular imaging, we look forward to established interventions targeted to specific molecular pathophysiology and expect the potential benefit of MI PM approaches in neurodegenerative dementia and MD will only increase. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Molecular Tools for Diagnosis of Visceral Leishmaniasis: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy

    PubMed Central

    de Ruiter, C. M.; van der Veer, C.; Leeflang, M. M. G.; Deborggraeve, S.; Lucas, C.

    2014-01-01

    Molecular methods have been proposed as highly sensitive tools for the detection of Leishmania parasites in visceral leishmaniasis (VL) patients. Here, we evaluate the diagnostic accuracy of these tools in a meta-analysis of the published literature. The selection criteria were original studies that evaluate the sensitivities and specificities of molecular tests for diagnosis of VL, adequate classification of study participants, and the absolute numbers of true positives and negatives derivable from the data presented. Forty studies met the selection criteria, including PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), and loop-mediated isothermal amplification (LAMP). The sensitivities of the individual studies ranged from 29 to 100%, and the specificities ranged from 25 to 100%. The pooled sensitivity of PCR in whole blood was 93.1% (95% confidence interval [CI], 90.0 to 95.2), and the specificity was 95.6% (95% CI, 87.0 to 98.6). The specificity was significantly lower in consecutive studies, at 63.3% (95% CI, 53.9 to 71.8), due either to true-positive patients not being identified by parasitological methods or to the number of asymptomatic carriers in areas of endemicity. PCR for patients with HIV-VL coinfection showed high diagnostic accuracy in buffy coat and bone marrow, ranging from 93.1 to 96.9%. Molecular tools are highly sensitive assays for Leishmania detection and may contribute as an additional test in the algorithm, together with a clear clinical case definition. We observed wide variety in reference standards and study designs and now recommend consecutively designed studies. PMID:24829226

  8. Molecular Descriptors

    NASA Astrophysics Data System (ADS)

    Consonni, Viviana; Todeschini, Roberto

    In the last decades, several scientific researches have been focused on studying how to encompass and convert - by a theoretical pathway - the information encoded in the molecular structure into one or more numbers used to establish quantitative relationships between structures and properties, biological activities, or other experimental properties. Molecular descriptors are formally mathematical representations of a molecule obtained by a well-specified algorithm applied to a defined molecular representation or a well-specified experimental procedure. They play a fundamental role in chemistry, pharmaceutical sciences, environmental protection policy, toxicology, ecotoxicology, health research, and quality control. Evidence of the interest of the scientific community in the molecular descriptors is provided by the huge number of descriptors proposed up today: more than 5000 descriptors derived from different theories and approaches are defined in the literature and most of them can be calculated by means of dedicated software applications. Molecular descriptors are of outstanding importance in the research fields of quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs), where they are the independent chemical information used to predict the properties of interest. Along with the definition of appropriate molecular descriptors, the molecular structure representation and the mathematical tools for deriving and assessing models are other fundamental components of the QSAR/QSPR approach. The remarkable progress during the last few years in chemometrics and chemoinformatics has led to new strategies for finding mathematical meaningful relationships between the molecular structure and biological activities, physico-chemical, toxicological, and environmental properties of chemicals. Different approaches for deriving molecular descriptors here reviewed and some of the most relevant descriptors are presented in

  9. Malignant pleural mesothelioma and mesothelial hyperplasia: A new molecular tool for the differential diagnosis.

    PubMed

    Bruno, Rossella; Alì, Greta; Giannini, Riccardo; Proietti, Agnese; Lucchi, Marco; Chella, Antonio; Melfi, Franca; Mussi, Alfredo; Fontanini, Gabriella

    2017-01-10

    Malignant pleural mesothelioma (MPM) is a rare asbestos related cancer, aggressive and unresponsive to therapies. Histological examination of pleural lesions is the gold standard of MPM diagnosis, although it is sometimes hard to discriminate the epithelioid type of MPM from benign mesothelial hyperplasia (MH).This work aims to define a new molecular tool for the differential diagnosis of MPM, using the expression profile of 117 genes deregulated in this tumour.The gene expression analysis was performed by nanoString System on tumour tissues from 36 epithelioid MPM and 17 MH patients, and on 14 mesothelial pleural samples analysed in a blind way. Data analysis included raw nanoString data normalization, unsupervised cluster analysis by Pearson correlation, non-parametric Mann Whitney U-test and molecular classification by the Uncorrelated Shrunken Centroid (USC) Algorithm.The Mann-Whitney U-test found 35 genes upregulated and 31 downregulated in MPM. The unsupervised cluster analysis revealed two clusters, one composed only of MPM and one only of MH samples, thus revealing class-specific gene profiles. The Uncorrelated Shrunken Centroid algorithm identified two classifiers, one including 22 genes and the other 40 genes, able to properly classify all the samples as benign or malignant using gene expression data; both classifiers were also able to correctly determine, in a blind analysis, the diagnostic categories of all the 14 unknown samples.In conclusion we delineated a diagnostic tool combining molecular data (gene expression) and computational analysis (USC algorithm), which can be applied in the clinical practice for the differential diagnosis of MPM.

  10. Molecular tools for diagnosis of visceral leishmaniasis: systematic review and meta-analysis of diagnostic test accuracy.

    PubMed

    de Ruiter, C M; van der Veer, C; Leeflang, M M G; Deborggraeve, S; Lucas, C; Adams, E R

    2014-09-01

    Molecular methods have been proposed as highly sensitive tools for the detection of Leishmania parasites in visceral leishmaniasis (VL) patients. Here, we evaluate the diagnostic accuracy of these tools in a meta-analysis of the published literature. The selection criteria were original studies that evaluate the sensitivities and specificities of molecular tests for diagnosis of VL, adequate classification of study participants, and the absolute numbers of true positives and negatives derivable from the data presented. Forty studies met the selection criteria, including PCR, real-time PCR, nucleic acid sequence-based amplification (NASBA), and loop-mediated isothermal amplification (LAMP). The sensitivities of the individual studies ranged from 29 to 100%, and the specificities ranged from 25 to 100%. The pooled sensitivity of PCR in whole blood was 93.1% (95% confidence interval [CI], 90.0 to 95.2), and the specificity was 95.6% (95% CI, 87.0 to 98.6). The specificity was significantly lower in consecutive studies, at 63.3% (95% CI, 53.9 to 71.8), due either to true-positive patients not being identified by parasitological methods or to the number of asymptomatic carriers in areas of endemicity. PCR for patients with HIV-VL coinfection showed high diagnostic accuracy in buffy coat and bone marrow, ranging from 93.1 to 96.9%. Molecular tools are highly sensitive assays for Leishmania detection and may contribute as an additional test in the algorithm, together with a clear clinical case definition. We observed wide variety in reference standards and study designs and now recommend consecutively designed studies. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  11. MBS Measurement Tool for Swallow Impairment—MBSImp: Establishing a Standard

    PubMed Central

    Martin-Harris, Bonnie; Brodsky, Martin B.; Michel, Yvonne; Castell, Donald O.; Schleicher, Melanie; Sandidge, John; Maxwell, Rebekah; Blair, Julie

    2014-01-01

    The aim of this study was to test reliability, content, construct, and external validity of a new modified barium swallowing study (MBSS) tool (MBSImp) that is used to quantify swallowing impairment. Multiple regression, confirmatory factor, and correlation analyses were used to analyze 300 in- and outpatients with heterogeneous medical and surgical diagnoses who were sequentially referred for MBS exams at a university medical center and private tertiary care community hospital. Main outcome measures were the MBSImp and index scores of aspiration, health status, and quality of life. Inter- and intrarater concordance were 80% or greater for blinded scoring of MBSSs. Regression analysis revealed contributions of eight of nine swallow types to impressions of overall swallowing impairment (p ≤ 0.05). Factor analysis revealed 13 significant components (loadings ≥ 0.5) that formed two impairment groupings (oral and pharyngeal). Significant correlations were found between Oral and Pharyngeal Impairment scores and Penetration-Aspiration Scale scores, and indexes of intake status, nutrition, health status, and quality of life. The MBSImp demonstrated clinical practicality, favorable inter- and intrarater reliability following standardized training, content, and external validity. This study reflects potential for establishment of a new standard for quantification and comparison of oropharyngeal swallowing impairment across patient diagnoses as measured on MBSS. PMID:18855050

  12. An Additive Definition of Molecular Complexity.

    PubMed

    Böttcher, Thomas

    2016-03-28

    A framework for molecular complexity is established that is based on information theory and consistent with chemical knowledge. The resulting complexity index Cm is derived from abstracting the information content of a molecule by the degrees of freedom in the microenvironments on a per-atom basis, allowing the molecular complexity to be calculated in a simple and additive way. This index allows the complexity of any molecule to be universally assessed and is sensitive to stereochemistry, heteroatoms, and symmetry. The performance of this complexity index is evaluated and compared against the current state of the art. Its additive character gives consistent values also for very large molecules and supports direct comparisons of chemical reactions. Finally, this approach may provide a useful tool for medicinal chemistry in drug design and lead selection, as demonstrated by correlating molecular complexities of antibiotics with compound-specific parameters.

  13. Tools to Analyze Morphology and Spatially Mapped Molecular Data | Informatics Technology for Cancer Research (ITCR)

    Cancer.gov

    This project is to develop, deploy, and disseminate a suite of open source tools and integrated informatics platform that will facilitate multi-scale, correlative analyses of high resolution whole slide tissue image data, spatially mapped genetics and molecular data for cancer research. This platform will play an essential role in supporting studies of tumor initiation, development, heterogeneity, invasion, and metastasis.

  14. Biopython: freely available Python tools for computational molecular biology and bioinformatics

    PubMed Central

    Cock, Peter J. A.; Antao, Tiago; Chang, Jeffrey T.; Chapman, Brad A.; Cox, Cymon J.; Dalke, Andrew; Friedberg, Iddo; Hamelryck, Thomas; Kauff, Frank; Wilczynski, Bartek; de Hoon, Michiel J. L.

    2009-01-01

    Summary: The Biopython project is a mature open source international collaboration of volunteer developers, providing Python libraries for a wide range of bioinformatics problems. Biopython includes modules for reading and writing different sequence file formats and multiple sequence alignments, dealing with 3D macro molecular structures, interacting with common tools such as BLAST, ClustalW and EMBOSS, accessing key online databases, as well as providing numerical methods for statistical learning. Availability: Biopython is freely available, with documentation and source code at www.biopython.org under the Biopython license. Contact: All queries should be directed to the Biopython mailing lists, see www.biopython.org/wiki/_Mailing_listspeter.cock@scri.ac.uk. PMID:19304878

  15. Natural Resources for Optogenetic Tools.

    PubMed

    Mathes, Tilo

    2016-01-01

    Photoreceptors are found in all kingdoms of life and mediate crucial responses to environmental challenges. Nature has evolved various types of photoresponsive protein structures with different chromophores and signaling concepts for their given purpose. The abundance of these signaling proteins as found nowadays by (meta-)genomic screens enriched the palette of optogenetic tools significantly. In addition, molecular insights into signal transduction mechanisms and design principles from biophysical studies and from structural and mechanistic comparison of homologous proteins opened seemingly unlimited possibilities for customizing the naturally occurring proteins for a given optogenetic task. Here, a brief overview on the photoreceptor concepts already established as optogenetic tools in natural or engineered form, their photochemistry and their signaling/design principles is given. Finally, so far not regarded photosensitive modules and protein architectures with potential for optogenetic application are described.

  16. Improving molecular tools for global surveillance of measles virus.

    PubMed

    Bankamp, Bettina; Byrd-Leotis, Lauren A; Lopareva, Elena N; Woo, Gibson K S; Liu, Chunyu; Jee, Youngmee; Ahmed, Hinda; Lim, Wilina W; Ramamurty, Nalini; Mulders, Mick N; Featherstone, David; Bellini, William J; Rota, Paul A

    2013-09-01

    The genetic characterization of wild-type measles viruses plays an important role in the description of viral transmission pathways and the verification of measles elimination. The 450 nucleotides that encode the carboxyl-terminus of the nucleoprotein (N-450) are routinely sequenced for genotype analysis. The objectives of this study were to develop improved primers and controls for RT-PCR reactions used for genotyping of measles samples and to develop a method to provide a convenient, safe, and inexpensive means to distribute measles RNA for RT-PCR assays and practice panels. A newly designed, genetically defined synthetic RNA and RNA isolated from cells infected with currently circulating genotypes were used to compare the sensitivity of primer pairs in RT-PCR and nested PCR. FTA® cards loaded with lysates of measles infected cells were tested for their ability to preserve viral RNA and destroy virus infectivity. A new primer pair, MeV216/MeV214, was able to amplify N-450 from viruses representing 10 currently circulating genotypes and a genotype A vaccine strain and demonstrated 100-fold increased sensitivity compared to the previously used primer set. A nested PCR assay further increased the sensitivity of detection from patient samples. A synthetic positive control RNA was developed that produced PCR products that are distinguishable by size from PCR products amplified from clinical samples. FTA® cards completely inactivated measles virus and stabilized RNA for at least six months. These improved molecular tools will advance molecular characterization of circulating measles viruses globally and provide enhanced quality control measures. Published by Elsevier B.V.

  17. Improving molecular tools for global surveillance of measles virus⋆

    PubMed Central

    Bankamp, Bettina; Byrd-Leotis, Lauren A.; Lopareva, Elena N.; Woo, Gibson K.S.; Liu, Chunyu; Jee, Youngmee; Ahmed, Hinda; Lim, Wilina W.; Ramamurty, Nalini; Mulders, Mick N.; Featherstone, David; Bellini, William J.; Rota, Paul A.

    2017-01-01

    Background The genetic characterization of wild-type measles viruses plays an important role in the description of viral transmission pathways and the verification of measles elimination. The 450 nucleotides that encode the carboxyl-terminus of the nucleoprotein (N-450) are routinely sequenced for genotype analysis. Objectives The objectives of this study were to develop improved primers and controls for RT-PCR reactions used for genotyping of measles samples and to develop a method to provide a convenient, safe, and inexpensive means to distribute measles RNA for RT-PCR assays and practice panels. Study design A newly designed, genetically defined synthetic RNA and RNA isolated from cells infected with currently circulating genotypes were used to compare the sensitivity of primer pairs in RT-PCR and nested PCR. FTA® cards loaded with lysates of measles infected cells were tested for their ability to preserve viral RNA and destroy virus infectivity. Results A new primer pair, MeV216/MeV214, was able to amplify N-450 from viruses representing 10 currently circulating genotypes and a genotype A vaccine strain and demonstrated 100-fold increased sensitivity compared to the previously used primer set. A nested PCR assay further increased the sensitivity of detection from patient samples. A synthetic positive control RNA was developed that produced PCR products that are distinguishable by size from PCR products amplified from clinical samples. FTA® cards completely inactivated measles virus and stabilized RNA for at least six months. Conclusions These improved molecular tools will advance molecular characterization of circulating measles viruses globally and provide enhanced quality control measures. PMID:23806666

  18. Electrochemical reverse engineering: A systems-level tool to probe the redox-based molecular communication of biology.

    PubMed

    Li, Jinyang; Liu, Yi; Kim, Eunkyoung; March, John C; Bentley, William E; Payne, Gregory F

    2017-04-01

    The intestine is the site of digestion and forms a critical interface between the host and the outside world. This interface is composed of host epithelium and a complex microbiota which is "connected" through an extensive web of chemical and biological interactions that determine the balance between health and disease for the host. This biology and the associated chemical dialogues occur within a context of a steep oxygen gradient that provides the driving force for a variety of reduction and oxidation (redox) reactions. While some redox couples (e.g., catecholics) can spontaneously exchange electrons, many others are kinetically "insulated" (e.g., biothiols) allowing the biology to set and control their redox states far from equilibrium. It is well known that within cells, such non-equilibrated redox couples are poised to transfer electrons to perform reactions essential to immune defense (e.g., transfer from NADH to O 2 for reactive oxygen species, ROS, generation) and protection from such oxidative stresses (e.g., glutathione-based reduction of ROS). More recently, it has been recognized that some of these redox-active species (e.g., H 2 O 2 ) cross membranes and diffuse into the extracellular environment including lumen to transmit redox information that is received by atomically-specific receptors (e.g., cysteine-based sulfur switches) that regulate biological functions. Thus, redox has emerged as an important modality in the chemical signaling that occurs in the intestine and there have been emerging efforts to develop the experimental tools needed to probe this modality. We suggest that electrochemistry provides a unique tool to experimentally probe redox interactions at a systems level. Importantly, electrochemistry offers the potential to enlist the extensive theories established in signal processing in an effort to "reverse engineer" the molecular communication occurring in this complex biological system. Here, we review our efforts to develop this

  19. Molecular profiling--a tool for addressing emerging gaps in the comparative risk assessment of GMOs.

    PubMed

    Heinemann, Jack A; Kurenbach, Brigitta; Quist, David

    2011-10-01

    Assessing the risks of genetically modified organisms (GMOs) is required by both international agreement and domestic legislation. Many view the use of the "omics" tools for profiling classes of molecules as useful in risk assessment, but no consensus has formed on the need or value of these techniques for assessing the risks of all GMOs. In this and many other cases, experts support case-by-case use of molecular profiling techniques for risk assessment. We review the latest research on the applicability and usefulness of molecular profiling techniques for GMO risk assessment. As more and more kinds of GMOs and traits are developed, broader use of molecular profiling in a risk assessment may be required to supplement the comparative approach to risk assessment. The literature-based discussions on the use of profiling appear to have settled on two findings: 1. profiling techniques are reliable and relevant, at least no less so than other techniques used in risk assessment; and 2. although not required routinely, regulators should be aware of when they are needed. The dismissal of routine molecular profiling may be confusing to regulators who then lack guidance on when molecular profiling might be worthwhile. Molecular profiling is an important way to increase confidence in risk assessments if the profiles are properly designed to address relevant risks and are applied at the correct stage of the assessment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. [Molecular markers: an important tool in the diagnosis, treatment and epidemiology of invasive aspergillosis].

    PubMed

    Frías-de León, María Guadalupe; Acosta-Altamirano, Gustavo; Duarte-Escalante, Esperanza; Martínez-Hernández, José Enrique; Martínez-Rivera, María de Los Ángeles; Reyes-Montes, María Del Rocío

    2014-01-01

    Increase in the incidence of invasive aspergillosis has represented a difficult problem for management of patients with this infection due to its high rate of mortality, limited knowledge concerning its diagnosis, and therapeutic practice. The difficulty in management of patients with aspergillosis initiates with detection of the fungus in the specimens of immunosuppressed patients infected with Aspergillus fumigatus; in addition, difficulty exists in terms of the development of resistance to antifungals as a consequence of their indiscriminate use in prophylactic and therapeutic practice and to ignorance concerning the epidemiological data of aspergillosis. With the aim of resolving these problems, molecular markers is employed at present with specific and accurate results. However, in Mexico, the use of molecular markers has not yet been implemented in the routine of intrahospital laboratories; despite the fact that these molecular markers has been widely referred in the literature, it is necessary for it to validated and standardized to ensure that the results obtained in any laboratory would be reliable and comparable. In the present review, we present an update on the usefulness of molecular markers in accurate identification of A. fumigatus, detection of resistance to antifugal triazoles, and epidemiological studies for establishing the necessary measures for prevention and control of aspergillosis.

  1. Molecular profiling of cancer--the future of personalized cancer medicine: a primer on cancer biology and the tools necessary to bring molecular testing to the clinic.

    PubMed

    Stricker, Thomas; Catenacci, Daniel V T; Seiwert, Tanguy Y

    2011-04-01

    Cancers arise as a result of an accumulation of genetic aberrations that are either acquired or inborn. Virtually every cancer has its unique set of molecular changes. Technologies have been developed to study cancers and derive molecular characteristics that increasingly have implications for clinical care. Indeed, the identification of key genetic aberrations (molecular drivers) may ultimately translate into dramatic benefit for patients through the development of highly targeted therapies. With the increasing availability of newer, more powerful, and cheaper technologies such as multiplex mutational screening, next generation sequencing, array-based approaches that can determine gene copy numbers, methylation, expression, and others, as well as more sophisticated interpretation of high-throughput molecular information using bioinformatics tools like signatures and predictive algorithms, cancers will routinely be characterized in the near future. This review examines the background information and technologies that clinicians and physician-scientists will need to interpret in order to develop better, personalized treatment strategies. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Molecular analysis of the NDP gene in two families with Norrie disease.

    PubMed

    Rivera-Vega, M Refugio; Chiñas-Lopez, Silvet; Vaca, Ana Luisa Jimenez; Arenas-Sordo, M Luz; Kofman-Alfaro, Susana; Messina-Baas, Olga; Cuevas-Covarrubias, Sergio Alberto

    2005-04-01

    To describe the molecular defects in the Norrie disease protein (NDP) gene in two families with Norrie disease (ND). We analysed two families with ND at molecular level through polymerase chain reaction, DNA sequence analysis and GeneScan. Two molecular defects found in the NDP gene were: a missense mutation (265C > G) within codon 97 that resulted in the interchange of arginine by proline, and a partial deletion in the untranslated 3' region of exon 3 of the NDP gene. Clinical findings were more severe in the family that presented the partial deletion. We also diagnosed the carrier status of one daughter through GeneScan; this method proved to be a useful tool for establishing female carriers of ND. Here we report two novel mutations in the NDP gene in Mexican patients and propose that GeneScan is a viable mean of establishing ND carrier status.

  3. The yeast p53 functional assay: a new tool for molecular epidemiology. Hopes and facts.

    PubMed

    Fronza, G; Inga, A; Monti, P; Scott, G; Campomenosi, P; Menichini, P; Ottaggio, L; Viaggi, S; Burns, P A; Gold, B; Abbondandolo, A

    2000-04-01

    The assumption of molecular epidemiology that carcinogens leave fingerprints has suggested that analysis of the frequency, type, and site of mutations in genes frequently altered in carcinogenesis may provide clues to the identification of the factors contributing to carcinogenesis. In this mini-review, we revise the development, and validation of the yeast-based p53 functional assay as a new tool for molecular epidemiology. We show that this assay has some very interesting virtues but also has some drawbacks. The yeast functional assay can be used to determine highly specific mutation fingerprints in the human p53 cDNA sequence. Discrimination is possible when comparing mutation spectra induced by sufficiently different mutagens. However, we also reported that the same carcinogen may induce distinguishable mutation spectra due to known influencing factors.

  4. The Universal Design for Play Tool: Establishing Validity and Reliability

    ERIC Educational Resources Information Center

    Ruffino, Amy Goetz; Mistrett, Susan G.; Tomita, Machiko; Hajare, Poonam

    2006-01-01

    The Universal Design for Play (UDP) Tool is an instrument designed to evaluate the presence of universal design (UD) features in toys. This study evaluated its psychometric properties, including content validity, construct validity, and test-retest reliability. The UDP tool was designed to assist in selecting toys most appropriate for children…

  5. Analysis about diamond tool wear in nano-metric cutting of single crystal silicon using molecular dynamics method

    NASA Astrophysics Data System (ADS)

    Wang, Zhiguo; Liang, Yingchun; Chen, Mingjun; Tong, Zhen; Chen, Jiaxuan

    2010-10-01

    Tool wear not only changes its geometry accuracy and integrity, but also decrease machining precision and surface integrity of workpiece that affect using performance and service life of workpiece in ultra-precision machining. Scholars made a lot of experimental researches and stimulant analyses, but there is a great difference on the wear mechanism, especially on the nano-scale wear mechanism. In this paper, the three-dimensional simulation model is built to simulate nano-metric cutting of a single crystal silicon with a non-rigid right-angle diamond tool with 0 rake angle and 0 clearance angle by the molecular dynamics (MD) simulation approach, which is used to investigate the diamond tool wear during the nano-metric cutting process. A Tersoff potential is employed for the interaction between carbon-carbon atoms, silicon-silicon atoms and carbon-silicon atoms. The tool gets the high alternating shear stress, the tool wear firstly presents at the cutting edge where intension is low. At the corner the tool is splitted along the {1 1 1} crystal plane, which forms the tipping. The wear at the flank face is the structure transformation of diamond that the diamond structure transforms into the sheet graphite structure. Owing to the tool wear the cutting force increases.

  6. Naumovozyma castellii: an alternative model for budding yeast molecular biology.

    PubMed

    Karademir Andersson, Ahu; Cohn, Marita

    2017-03-01

    Naumovozyma castellii (Saccharomyces castellii) is a member of the budding yeast family Saccharomycetaceae. It has been extensively used as a model organism for telomere biology research and has gained increasing interest as a budding yeast model for functional analyses owing to its amenability to genetic modifications. Owing to the suitable phylogenetic distance to S. cerevisiae, the whole genome sequence of N. castellii has provided unique data for comparative genomic studies, and it played a key role in the establishment of the timing of the whole genome duplication and the evolutionary events that took place in the subsequent genomic evolution of the Saccharomyces lineage. Here we summarize the historical background of its establishment as a laboratory yeast species, and the development of genetic and molecular tools and strains. We review the research performed on N. castellii, focusing on areas where it has significantly contributed to the discovery of new features of molecular biology and to the advancement of our understanding of molecular evolution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Establishment of stable cell line for inducing KAP1 protein expression.

    PubMed

    Liu, Xiaoyan; Khan, Md Asaduzzaman; Cheng, Jingliang; Wei, Chunli; Zhang, Lianmei; Fu, Junjiang

    2015-06-01

    Generation of the stable cell lines is a highly efficient tool in functional studies of certain genes or proteins, where the particular genes or proteins are inducibly expressed. The KRAB-associated protein-1 (KAP1) is an important transcription regulatory protein, which is investigated in several molecular biological studies. In this study, we have aimed to generate a stable cell line for inducing KAP1 expression. The recombinant plasmid pcDNA5/FRT/TO-KAP1 was constructed at first, which was then transfected into Flp-In™T-REx™-HEK293 cells to establish an inducible pcDNA5/FRT/TO-KAP1-HEK293 cell line. The Western blot analysis showed that the protein level of KAP1 is over-expressed in the established stable cell line by doxycycline induction, both dose and time dependently. Thus we have successfully established stable pcDNA5/FRT/TO-KAP1-HEK293 cell line, which can express KAP1 inducibly. This inducible cell line might be very useful for KAP1 functional studies.

  8. Zoonotic Potential and Molecular Epidemiology of Giardia Species and Giardiasis†

    PubMed Central

    Feng, Yaoyu; Xiao, Lihua

    2011-01-01

    Summary: Molecular diagnostic tools have been used recently in assessing the taxonomy, zoonotic potential, and transmission of Giardia species and giardiasis in humans and animals. The results of these studies have firmly established giardiasis as a zoonotic disease, although host adaptation at the genotype and subtype levels has reduced the likelihood of zoonotic transmission. These studies have also identified variations in the distribution of Giardia duodenalis genotypes among geographic areas and between domestic and wild ruminants and differences in clinical manifestations and outbreak potentials of assemblages A and B. Nevertheless, our efforts in characterizing the molecular epidemiology of giardiasis and the roles of various animals in the transmission of human giardiasis are compromised by the lack of case-control and longitudinal cohort studies and the sampling and testing of humans and animals living in the same community, the frequent occurrence of infections with mixed genotypes and subtypes, and the apparent heterozygosity at some genetic loci for some G. duodenalis genotypes. With the increased usage of multilocus genotyping tools, the development of next-generation subtyping tools, the integration of molecular analysis in epidemiological studies, and an improved understanding of the population genetics of G. duodenalis in humans and animals, we should soon have a better appreciation of the molecular epidemiology of giardiasis, the disease burden of zoonotic transmission, the taxonomy status and virulences of various G. duodenalis genotypes, and the ecology of environmental contamination. PMID:21233509

  9. Semantic Differential as One of the Research Tools Suitable for Establishing the Attitudes of Pupils to Old Age and Seniors

    ERIC Educational Resources Information Center

    Divilová, Sona

    2016-01-01

    The paper presents the results of the pre-research conducted under the project entitled "Seniors in the Eyes of Children". The main objective of the project was to create and test a research tool in order to establish what the attitudes of pupils to old age and seniors were. Semantic differential was chosen for these purposes. Semantic…

  10. Rheological and molecular weight comparisons of approved hyaluronic acid products - preliminary standards for establishing class III medical device equivalence.

    PubMed

    Braithwaite, Gavin J C; Daley, Michael J; Toledo-Velasquez, David

    2016-01-01

    Hyaluronic acid of various molecular weights has been in use for the treatment of osteoarthritis knee pain for decades. Worldwide, these products are regulated as either as drugs or devices and in some countries as both. In the US, this class of products is regulated as Class III medical devices, which places specific regulatory requirements on developers of these materials under a Pre-Market Approval process, typically requiring data from prospective randomized controlled clinical studies. In 1984 pharmaceutical manufacturers became able to file an Abbreviated New Drug Application for approval of a generic drug, thus establishing standards for demonstrating equivalence to an existing chemical entity. Recently, the first biosimilar, or 'generic biologic', was approved. Biosimilars are biological products that are approved by the FDA because they are 'highly similar' to a reference product, and have been shown to have no clinically meaningful differences from the reference product. For devices, Class II medical devices have a pathway for declaring equivalence to an existing product by filing a 510 k application for FDA clearance. However, until recently no equivalent regulatory pathway was available to Class III devices. In this paper, we consider the critical mechanical performance parameters for intra-articular hyaluronic products to demonstrate indistinguishable characteristics. Analogous to the aforementioned pathways that allow for a demonstration of equivalence, we examine these parameters for an existing, marketed device and compare molecular weight and rheological properties of multiple batches of a similar product. We propose that this establishes a scientific rationale for establishing Class III medical device equivalence.

  11. Molecular beacon sequence design algorithm.

    PubMed

    Monroe, W Todd; Haselton, Frederick R

    2003-01-01

    A method based on Web-based tools is presented to design optimally functioning molecular beacons. Molecular beacons, fluorogenic hybridization probes, are a powerful tool for the rapid and specific detection of a particular nucleic acid sequence. However, their synthesis costs can be considerable. Since molecular beacon performance is based on its sequence, it is imperative to rationally design an optimal sequence before synthesis. The algorithm presented here uses simple Microsoft Excel formulas and macros to rank candidate sequences. This analysis is carried out using mfold structural predictions along with other free Web-based tools. For smaller laboratories where molecular beacons are not the focus of research, the public domain algorithm described here may be usefully employed to aid in molecular beacon design.

  12. Establishing Time for Professional Learning

    ERIC Educational Resources Information Center

    Journal of Staff Development, 2013

    2013-01-01

    Time for collaborative learning is an essential resource for educators working to implement college- and career-ready standards. The pages in this article include tools from the workbook "Establishing Time for Professional Learning." The tools support a complete process to help educators effectively find and use time. The following…

  13. Molecular epidemiology for vector research on leishmaniasis.

    PubMed

    Kato, Hirotomo; Gomez, Eduardo A; Cáceres, Abraham G; Uezato, Hiroshi; Mimori, Tatsuyuki; Hashiguchi, Yoshihisa

    2010-03-01

    Leishmaniasis is a protozoan disease caused by the genus Leishmania transmitted by female phlebotomine sand flies. Surveillance of the prevalence of Leishmania and responsive vector species in endemic and surrounding areas is important for predicting the risk and expansion of the disease. Molecular biological methods are now widely applied to epidemiological studies of infectious diseases including leishmaniasis. These techniques are used to detect natural infections of sand fly vectors with Leishmania protozoa and are becoming powerful tools due to their sensitivity and specificity. Recently, genetic analyses have been performed on sand fly species and genotyping using PCR-RFLP has been applied to the sand fly taxonomy. In addition, a molecular mass screening method has been established that enables both sand fly species and natural leishmanial infections to be identified simultaneously in hundreds of sand flies with limited effort. This paper reviews recent advances in the study of sand flies, vectors of leishmaniasis, using molecular biological approaches.

  14. Molecular Epidemiology for Vector Research on Leishmaniasis

    PubMed Central

    Kato, Hirotomo; Gomez, Eduardo A; Cáceres, Abraham G; Uezato, Hiroshi; Mimori, Tatsuyuki; Hashiguchi, Yoshihisa

    2010-01-01

    Leishmaniasis is a protozoan disease caused by the genus Leishmania transmitted by female phlebotomine sand flies. Surveillance of the prevalence of Leishmania and responsive vector species in endemic and surrounding areas is important for predicting the risk and expansion of the disease. Molecular biological methods are now widely applied to epidemiological studies of infectious diseases including leishmaniasis. These techniques are used to detect natural infections of sand fly vectors with Leishmania protozoa and are becoming powerful tools due to their sensitivity and specificity. Recently, genetic analyses have been performed on sand fly species and genotyping using PCR-RFLP has been applied to the sand fly taxonomy. In addition, a molecular mass screening method has been established that enables both sand fly species and natural leishmanial infections to be identified simultaneously in hundreds of sand flies with limited effort. This paper reviews recent advances in the study of sand flies, vectors of leishmaniasis, using molecular biological approaches. PMID:20617005

  15. Establishing a novel modeling tool: a python-based interface for a neuromorphic hardware system.

    PubMed

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2009-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated.

  16. Molecular phylogenetic analysis of Enterobius vermicularis and development of an 18S ribosomal DNA-targeted diagnostic PCR.

    PubMed

    Zelck, Ulrike E; Bialek, Ralf; Weiss, Michael

    2011-04-01

    We genetically characterized pinworms obtained from 37 children from different regions of Germany and established new species-specific molecular diagnostic tools. No ribosomal DNA diversity was found; the phylogenetic position of Enterobius vermicularis within the Oxyurida order and its close relationship to the Ascaridida and Spirurida orders was confirmed.

  17. Is high pressure liquid chromatography an effective screening tool for characterization of molecular defects in hemoglobinopathies?

    PubMed

    Moorchung, Nikhil; Phillip, Joseph; Sarkar, Ravi Shankar; Prasad, Rupesh; Dutta, Vibha

    2013-01-01

    Hemoglobinopathies constitute entities that are generated by either abnormal hemoglobin or thalassemias. high pressure liquid chromatography (HPLC) is one of the best methods for screening and detection of various hemoglobinopathies but it has intrinsic interpretive problems. The study was designed to evaluate the different mutations seen in cases of hemoglobinopathies and compare the same with screening tests. 68 patients of hemoglobinopathies were screened by HPLC. Mutation studies in the beta globin gene was performed using the polymerase chain reaction (PCR)-based allele-specific Amplification Refractory Mutation System (ARMS). Molecular analysis for the sickle cell mutation was done by standard methods. The IVS 1/5 mutation was the commonest mutation seen and it was seen in 26 (38.23%) of the cases. This was followed by the IVS 1/1, codon 41/42, codon 8/9, del 22 mutation, codon 15 mutation and the -619 bp deletion. No mutation was seen in eight cases. There was a 100% concordance between the sickle cell trait as diagnosed by HPLC and genetic testing. Our study underlies the importance of molecular testing in all cases of hemoglobinopathies. Although HPLC is a useful screening tool, molecular testing is very useful in accurately diagnosing the mutations. Molecular testing is especially applicable in cases with an abnormal hemoglobin (HbD, HbE and HbS) because there may be a concomitant inheritance of a beta thalassemia mutation. Molecular testing is the gold standard when it comes to the diagnosis of hemoglobinopathies.

  18. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine.

    PubMed

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-02-16

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM's diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients' target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ's cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the "multi-component, multi-target and multi-pathway" combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM's molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

  19. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine

    NASA Astrophysics Data System (ADS)

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-02-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

  20. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine

    PubMed Central

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-01-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm. PMID:26879404

  1. Establishment and proteomic characterization of a novel synovial sarcoma cell line, NCC-SS2-C1.

    PubMed

    Oyama, Rieko; Kito, Fusako; Sakumoto, Marimu; Shiozawa, Kumiko; Toki, Shunichi; Endo, Makoto; Yoshida, Akihiko; Kawai, Akira; Kondo, Tadashi

    2018-05-01

    Synovial sarcoma is an aggressive mesenchymal tumor, characterized by the presence of unique transfusion gene, SS18-SSX. Cell lines enable researchers to investigate the molecular backgrounds of disease and the significance of SS18-SSX in relevant cellular contexts. We report the establishment and proteomic characterization of a novel synovial sarcoma cell line. Primary tissue culture was performed using tumor tissue of synovial sarcoma. The established cell line was authenticated by assessing its DNA microsatellite short tandem repeat analysis and characterized by in vitro assay. Proteomic study was achieved by mass spectrometry, and the results were analyzed by treemap. The cell line NCC-SS2-C1 was established from a primary tumor tissue of a synovial sarcoma patient. The cell line has grown well for 11 mo and has been subcultured more than 15 times. The established cells were authenticated by assessing their short tandem repeat pattern comparing with that of original tumor tissue. The cells showed polygonal in shape and formed spheroid when seeded on the low-attachment dish. Proteomic analysis revealed the molecular pathways which are unique to the original tumor tissue or the established cell line. In conclusion, a novel synovial sarcoma cell line NCC-SS2-C1 was successfully established from the primary tumor tissue. The cell line has characteristic transfusion SS18-SSX and poses aggressive in vitro growth and capability of spheroid formation. Thus, NCC-SS2-C1 cell line will be a useful tool for investigation of the mechanisms of disease and the biological role of fusion gene.

  2. Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique

    PubMed Central

    2014-01-01

    Among Australian endemic tephritid fruit flies, the sibling species Bactrocera tryoni and Bactrocera neohumeralis have been serious horticultural pests since the introduction of horticulture in the nineteenth century. More recently, Bactrocera jarvisi has also been declared a pest in northern Australia. After several decades of genetic research there is now a range of classical and molecular genetic tools that can be used to develop improved Sterile Insect Technique (SIT) strains for control of these pests. Four-way crossing strategies have the potential to overcome the problem of inbreeding in mass-reared strains of B. tryoni. The ability to produce hybrids between B. tryoni and the other two species in the laboratory has proved useful for the development of genetically marked strains. The identification of Y-chromosome markers in B. jarvisi means that male and female embryos can be distinguished in any strain that carries a B. jarvisi Y chromosome. This has enabled the study of homologues of the sex-determination genes during development of B jarvisi and B. tryoni, which is necessary for the generation of genetic-sexing strains. Germ-line transformation has been established and a draft genome sequence for B. tryoni released. Transcriptomes from various species, tissues and developmental stages, to aid in identification of manipulation targets for improving SIT, have been assembled and are in the pipeline. Broad analyses of the microbiome have revealed a metagenome that is highly variable within and across species and defined by the environment. More specific analyses detected Wolbachia at low prevalence in the tropics but absent in temperate regions, suggesting a possible role for this endosymbiont in future control strategies. PMID:25470996

  3. Molecular Phylogenetic Analysis of Enterobius vermicularis and Development of an 18S Ribosomal DNA-Targeted Diagnostic PCR▿

    PubMed Central

    Zelck, Ulrike E.; Bialek, Ralf; Weiß, Michael

    2011-01-01

    We genetically characterized pinworms obtained from 37 children from different regions of Germany and established new species-specific molecular diagnostic tools. No ribosomal DNA diversity was found; the phylogenetic position of Enterobius vermicularis within the Oxyurida order and its close relationship to the Ascaridida and Spirurida orders was confirmed. PMID:21248085

  4. Establishing a Novel Modeling Tool: A Python-Based Interface for a Neuromorphic Hardware System

    PubMed Central

    Brüderle, Daniel; Müller, Eric; Davison, Andrew; Muller, Eilif; Schemmel, Johannes; Meier, Karlheinz

    2008-01-01

    Neuromorphic hardware systems provide new possibilities for the neuroscience modeling community. Due to the intrinsic parallelism of the micro-electronic emulation of neural computation, such models are highly scalable without a loss of speed. However, the communities of software simulator users and neuromorphic engineering in neuroscience are rather disjoint. We present a software concept that provides the possibility to establish such hardware devices as valuable modeling tools. It is based on the integration of the hardware interface into a simulator-independent language which allows for unified experiment descriptions that can be run on various simulation platforms without modification, implying experiment portability and a huge simplification of the quantitative comparison of hardware and simulator results. We introduce an accelerated neuromorphic hardware device and describe the implementation of the proposed concept for this system. An example setup and results acquired by utilizing both the hardware system and a software simulator are demonstrated. PMID:19562085

  5. Collaborative study for the establishment of replacement batches of heparin low- molecular-mass for assay biological reference preparations.

    PubMed

    Terao, E; Daas, A; Rautmann, G; Buchheit, K-H

    2010-10-01

    A collaborative study was run by the European Directorate for the Quality of Medicines & HealthCare (EDQM) in the context of the Biological Standardisation Programme (BSP), under the aegis of the Council of Europe and the European Commission, to establish replacement batches for the dwindling stocks of the Heparin low-molecular-mass for assay European Pharmacopoeia Biological Reference Preparation (BRP). The replacement batches of BRP are intended to be used in the assays for anti-Xa and anti-IIa activities, as described in the European Pharmacopoeia (Ph. Eur.) monograph Heparins, low-molecular-mass (0828). Three freeze-dried candidate batches were calibrated against the current International Standard (IS) for Heparin, lowmolecular- weight (2nd IS, 01/608). For the purpose of the continuity check between subsequent BRP batches, the current Heparin low-molecular-mass for assay BRP (batch 5) was also included in the test panel. Thirteen official medicines control and manufacturers laboratories from European and non-European countries contributed data. A central statistical analysis of the datasets was performed at the EDQM. On the basis of the results, the 3 candidate materials were assigned a potency of 104 IU/vial for the anti-Xa activity and 31 IU/vial for the anti-IIa activity. Taken into account the preliminary stability data and the results of this collaborative study, the 3 batches of candidate BRP were adopted in June 2010 by the Commission of the Ph. Eur. as Heparin low-molecular-mass for assay BRP batches 6, 7 and 8.

  6. Deliberate teaching tools for clinical teaching encounters: A critical scoping review and thematic analysis to establish definitional clarity.

    PubMed

    Sidhu, Navdeep S; Edwards, Morgan

    2018-04-27

    We conducted a scoping review of tools designed to add structure to clinical teaching, with a thematic analysis to establish definitional clarity. Six thousand and forty nine citations were screened, 434 reviewed for eligibility, and 230 identified as meeting study inclusion criteria. Eighty-nine names and 51 definitions were identified. Based on a post facto thematic analysis, we propose that these tools be named "deliberate teaching tools" (DTTs) and defined as "frameworks that enable clinicians to have a purposeful and considered approach to teaching encounters by incorporating elements identified with good teaching practice." We identified 46 DTTs in the literature, with 38 (82.6%) originally described for the medical setting. Forty justification articles consisted of 16 feedback surveys, 13 controlled trials, seven pre-post intervention studies with no control group, and four observation studies. Current evidence of efficacy is not entirely conclusive, and many studies contain methodology flaws. Forty-nine clarification articles comprised 12 systematic reviews and 37 narrative reviews. The most number of DTTs described by any review was four. A common design theme was identified in approximately three-quarters of DTTs. Applicability of DTTs to specific alternate settings should be considered in context, and appropriately designed justification studies are warranted to demonstrate efficacy.

  7. Development of a New Molecular Subtyping Tool for Salmonella enterica Serovar Enteritidis Based on Single Nucleotide Polymorphism Genotyping Using PCR

    PubMed Central

    Kelly, Hilary; Dupras, Andrée Ann; Belanger, Sebastien; Devenish, John

    2014-01-01

    The lack of a sufficiently discriminatory molecular subtyping tool for Salmonella enterica serovar Enteritidis has hindered source attribution efforts and impeded regulatory actions required to disrupt its food-borne transmission. The underlying biological reason for the ineffectiveness of current molecular subtyping tools such as pulsed-field gel electrophoresis (PFGE) and phage typing appears to be related to the high degree of clonality of S. Enteritidis. By interrogating the organism's genome, we previously identified single nucleotide polymorphisms (SNP) distributed throughout the chromosome and have designed a highly discriminatory PCR-based SNP typing test based on 60 polymorphic loci. The application of the SNP-PCR method to DNA samples from S. Enteritidis strains (n = 55) obtained from a variety of sources has led to the differentiation and clustering of the S. Enteritidis isolates into 12 clades made up of 2 to 9 isolates per clade. Significantly, the SNP-PCR assay was able to further differentiate predominant PFGE types (e.g., XAI.0003) and phage types (e.g., phage type 8) into smaller subsets. The SNP-PCR subtyping test proved to be an accurate, precise, and quantitative tool for evaluating the relationships among the S. Enteritidis isolates tested in this study and should prove useful for clustering related S. Enteritidis isolates involved in outbreaks. PMID:25297333

  8. Three-Dimensional Printing of a Scalable Molecular Model and Orbital Kit for Organic Chemistry Teaching and Learning

    ERIC Educational Resources Information Center

    Penny, Matthew R.; Cao, Zi Jing; Patel, Bhaven; dos Santos, Bruno Sil; Asquith, Christopher R. M.; Szulc, Blanka R.; Rao, Zenobia X.; Muwaffak, Zaid; Malkinson, John P.; Hilton, Stephen T.

    2017-01-01

    Three-dimensional (3D) chemical models are a well-established learning tool used to enhance the understanding of chemical structures by converting two-dimensional paper or screen outputs into realistic three-dimensional objects. While commercial atom model kits are readily available, there is a surprising lack of large molecular and orbital models…

  9. Deliberate Establishment of Asymptomatic Bacteriuria-A Novel Strategy to Prevent Recurrent UTI.

    PubMed

    Wullt, Björn; Svanborg, Catharina

    2016-07-29

    We have established a novel strategy to reduce the risk for recurrent urinary tract infection (UTI), where rapidly increasing antibiotic resistance poses a major threat. Epidemiologic studies have demonstrated that asymptomatic bacteriuria (ABU) protects the host against symptomatic infections with more virulent strains. To mimic this protective effect, we deliberately establish ABU in UTI-prone patients, who are refractory to conventional therapy. The patients are inoculated with Escherichia coli (E. coli) 83972, now widely used as a prototype ABU strain. Therapeutic efficacy has been demonstrated in a placebo-controlled trial, supporting the feasibility of using E. coli 83972 as a tool to prevent recurrent UTI and, potentially, to outcompete antibiotic-resistant strains from the human urinary tract. In addition, the human inoculation protocol offers unique opportunities to study host-parasite interaction in vivo in the human urinary tract. Here, we review the clinical evidence for protection using this approach as well as some molecular insights into the pathogenesis of UTI that have been gained during these studies.

  10. Exome Sequencing Is an Efficient Tool for Variant Late-Infantile Neuronal Ceroid Lipofuscinosis Molecular Diagnosis

    PubMed Central

    Ortega-Recalde, Oscar; Nallathambi, Jeyabalan; Anandula, Venkata Ramana; Renukaradhya, Umashankar; Laissue, Paul

    2014-01-01

    The neuronal ceroid-lipofuscinoses (NCL) is a group of neurodegenerative disorders characterized by epilepsy, visual failure, progressive mental and motor deterioration, myoclonus, dementia and reduced life expectancy. Classically, NCL-affected individuals have been classified into six categories, which have been mainly defined regarding the clinical onset of symptoms. However, some patients cannot be easily included in a specific group because of significant variation in the age of onset and disease progression. Molecular genetics has emerged in recent years as a useful tool for enhancing NCL subtype classification. Fourteen NCL genetic forms (CLN1 to CLN14) have been described to date. The variant late-infantile form of the disease has been linked to CLN5, CLN6, CLN7 (MFSD8) and CLN8 mutations. Despite advances in the diagnosis of neurodegenerative disorders mutations in these genes may cause similar phenotypes, which rends difficult accurate candidate gene selection for direct sequencing. Three siblings who were affected by variant late-infantile NCL are reported in the present study. We used whole-exome sequencing, direct sequencing and in silico approaches to identify the molecular basis of the disease. We identified the novel c.1219T>C (p.Trp407Arg) and c.1361T>C (p.Met454Thr) MFSD8 pathogenic mutations. Our results highlighted next generation sequencing as a novel and powerful methodological approach for the rapid determination of the molecular diagnosis of NCL. They also provide information regarding the phenotypic and molecular spectrum of CLN7 disease. PMID:25333361

  11. Exome sequencing is an efficient tool for variant late-infantile neuronal ceroid lipofuscinosis molecular diagnosis.

    PubMed

    Patiño, Liliana Catherine; Battu, Rajani; Ortega-Recalde, Oscar; Nallathambi, Jeyabalan; Anandula, Venkata Ramana; Renukaradhya, Umashankar; Laissue, Paul

    2014-01-01

    The neuronal ceroid-lipofuscinoses (NCL) is a group of neurodegenerative disorders characterized by epilepsy, visual failure, progressive mental and motor deterioration, myoclonus, dementia and reduced life expectancy. Classically, NCL-affected individuals have been classified into six categories, which have been mainly defined regarding the clinical onset of symptoms. However, some patients cannot be easily included in a specific group because of significant variation in the age of onset and disease progression. Molecular genetics has emerged in recent years as a useful tool for enhancing NCL subtype classification. Fourteen NCL genetic forms (CLN1 to CLN14) have been described to date. The variant late-infantile form of the disease has been linked to CLN5, CLN6, CLN7 (MFSD8) and CLN8 mutations. Despite advances in the diagnosis of neurodegenerative disorders mutations in these genes may cause similar phenotypes, which rends difficult accurate candidate gene selection for direct sequencing. Three siblings who were affected by variant late-infantile NCL are reported in the present study. We used whole-exome sequencing, direct sequencing and in silico approaches to identify the molecular basis of the disease. We identified the novel c.1219T>C (p.Trp407Arg) and c.1361T>C (p.Met454Thr) MFSD8 pathogenic mutations. Our results highlighted next generation sequencing as a novel and powerful methodological approach for the rapid determination of the molecular diagnosis of NCL. They also provide information regarding the phenotypic and molecular spectrum of CLN7 disease.

  12. Compensation effects in molecular interactions and the quantum chemical le Chatelier principle.

    PubMed

    Mezey, Paul G

    2015-05-28

    Components of molecular interactions and various changes in the components of total energy changes during molecular processes typically exhibit some degrees of compensation. This may be as prominent as the over 90% compensation of the electronic energy and nuclear repulsion energy components of the total energy in some conformational changes. Some of these compensations are enhanced by solvent effects. For various arrangements of ions in a solvent, however, not only compensation but also a formal, mutual enhancement between the electronic energy and nuclear repulsion energy components of the total energy may also occur, when the tools of nuclear charge variation are applied to establish quantum chemically rigorous energy inequalities.

  13. Logic integration of mRNA signals by an RNAi-based molecular computer.

    PubMed

    Xie, Zhen; Liu, Siyuan John; Bleris, Leonidas; Benenson, Yaakov

    2010-05-01

    Synthetic in vivo molecular 'computers' could rewire biological processes by establishing programmable, non-native pathways between molecular signals and biological responses. Multiple molecular computer prototypes have been shown to work in simple buffered solutions. Many of those prototypes were made of DNA strands and performed computations using cycles of annealing-digestion or strand displacement. We have previously introduced RNA interference (RNAi)-based computing as a way of implementing complex molecular logic in vivo. Because it also relies on nucleic acids for its operation, RNAi computing could benefit from the tools developed for DNA systems. However, these tools must be harnessed to produce bioactive components and be adapted for harsh operating environments that reflect in vivo conditions. In a step toward this goal, we report the construction and implementation of biosensors that 'transduce' mRNA levels into bioactive, small interfering RNA molecules via RNA strand exchange in a cell-free Drosophila embryo lysate, a step beyond simple buffered environments. We further integrate the sensors with our RNAi 'computational' module to evaluate two-input logic functions on mRNA concentrations. Our results show how RNA strand exchange can expand the utility of RNAi computing and point toward the possibility of using strand exchange in a native biological setting.

  14. Logic integration of mRNA signals by an RNAi-based molecular computer

    PubMed Central

    Xie, Zhen; Liu, Siyuan John; Bleris, Leonidas; Benenson, Yaakov

    2010-01-01

    Synthetic in vivo molecular ‘computers’ could rewire biological processes by establishing programmable, non-native pathways between molecular signals and biological responses. Multiple molecular computer prototypes have been shown to work in simple buffered solutions. Many of those prototypes were made of DNA strands and performed computations using cycles of annealing-digestion or strand displacement. We have previously introduced RNA interference (RNAi)-based computing as a way of implementing complex molecular logic in vivo. Because it also relies on nucleic acids for its operation, RNAi computing could benefit from the tools developed for DNA systems. However, these tools must be harnessed to produce bioactive components and be adapted for harsh operating environments that reflect in vivo conditions. In a step toward this goal, we report the construction and implementation of biosensors that ‘transduce’ mRNA levels into bioactive, small interfering RNA molecules via RNA strand exchange in a cell-free Drosophila embryo lysate, a step beyond simple buffered environments. We further integrate the sensors with our RNAi ‘computational’ module to evaluate two-input logic functions on mRNA concentrations. Our results show how RNA strand exchange can expand the utility of RNAi computing and point toward the possibility of using strand exchange in a native biological setting. PMID:20194121

  15. Molecular Tools for the Detection of Nitrogen Cycling Archaea

    PubMed Central

    Rusch, Antje

    2013-01-01

    Archaea are widespread in extreme and temperate environments, and cultured representatives cover a broad spectrum of metabolic capacities, which sets them up for potentially major roles in the biogeochemistry of their ecosystems. The detection, characterization, and quantification of archaeal functions in mixed communities require Archaea-specific primers or probes for the corresponding metabolic genes. Five pairs of degenerate primers were designed to target archaeal genes encoding key enzymes of nitrogen cycling: nitrite reductases NirA and NirB, nitrous oxide reductase (NosZ), nitrogenase reductase (NifH), and nitrate reductases NapA/NarG. Sensitivity towards their archaeal target gene, phylogenetic specificity, and gene specificity were evaluated in silico and in vitro. Owing to their moderate sensitivity/coverage, the novel nirB-targeted primers are suitable for pure culture studies only. The nirA-targeted primers showed sufficient sensitivity and phylogenetic specificity, but poor gene specificity. The primers designed for amplification of archaeal nosZ performed well in all 3 criteria; their discrimination against bacterial homologs appears to be weakened when Archaea are strongly outnumbered by bacteria in a mixed community. The novel nifH-targeted primers showed high sensitivity and gene specificity, but failed to discriminate against bacterial homologs. Despite limitations, 4 of the new primer pairs are suitable tools in several molecular methods applied in archaeal ecology. PMID:23365509

  16. The CREST biorepository: a tool for molecular epidemiology and translational studies on malignant mesothelioma, lung cancer, and other respiratory tract diseases.

    PubMed

    Ugolini, Donatella; Donatella, Ugolini; Neri, Monica; Monica, Neri; Canessa, Pier Aldo; Aldo, Canessa Pier; Casilli, Cristina; Cristina, Casilli; Catrambone, Giuseppe; Giuseppe, Catrambone; Ivaldi, Giovanni Paolo; Paolo, Ivaldi Giovanni; Lando, Cecilia; Cecilia, Lando; Marroni, Paola; Paola, Marroni; Paganuzzi, Michela; Michela, Paganuzzi; Parodi, Barbara; Barbara, Parodi; Visconti, Paola; Paola, Visconti; Puntoni, Riccardo; Riccardo, Puntoni; Bonassi, Stefano; Stefano, Bonassi

    2008-11-01

    The Cancer of RESpiratory Tract (CREST) biorepository was established to investigate biological mechanisms and to develop tools and strategies for primary and secondary prevention of respiratory tract cancer. The CREST biorepository is focused on pleural malignant mesothelioma, a rare and severe cancer linked to asbestos exposure whose incidence is particularly high in the Ligurian region. The CREST biorepository includes biological specimens from (a) patients with pleural malignant mesothelioma and lung cancer, (b) patients with nonneoplastic respiratory conditions, and (c) control subjects. Whole blood, plasma, serum, lymphocytes, pleural fluid, saliva, and biopsies are collected, and a questionnaire is administered. Collection, transportation, and storage are done according to international standards. As of January 31, 2008, the overall number of subjects recruited was 1,590 (446 lung cancer, 209 pleural malignant mesothelioma, and 935 controls). The biorepository includes a total of 10,055 aliquots (4,741 serum; 3,082 plasma; 1,599 whole blood; 633 pleural fluid; and 561 lymphocytes) and 107 biopsies. Demographic, clinical, and epidemiologic information is collected for each subject and processed in a dedicated database. The CREST biorepository is a valuable tool for molecular epidemiology and translational studies. This structure relies on a network of contacts with local health districts that allows for an active search for patients. This is a particularly efficient approach, especially when the object of the study is a rare cancer type. The CREST experience suggests that the presence of limited resources can be overcome by the biorepository specialization, the high quality of the epidemiologic information, and the variety of samples.

  17. 15N isotopic analyses: a powerful tool to establish links between seized 3,4-methylenedioxymethamphetamine (MDMA) tablets.

    PubMed

    Palhol, Fabien; Lamoureux, Catherine; Naulet, Norbert

    2003-06-01

    In this study the (15)N/(14)N isotopic ratios of 43 samples of 3,4-methylenedioxymethamphetamine (MDMA) samples were measured using Gas Chromatography-Combustion-Isotope-Ratio Mass Spectrometry (GC-C-IRMS). The results show a large discrimination between samples with a range of delta(15)N values between -16 and +19 per thousand. Comparison between delta(15)N values and other physical and chemical parameters shows a strong relationship between delta(15)N and brand logo or composition. Thus, it could be assumed that tablets from different seizures probably originated from the same clandestine manufacturing source. Hence, (15)N isotopic parameters provide an important additional tool to establish common origins between seizures of clandestine synthetic drugs.

  18. Sex chromosomal abnormalities associated with equine infertility: validation of a simple molecular screening tool in the Purebred Spanish Horse.

    PubMed

    Anaya, G; Molina, A; Valera, M; Moreno-Millán, M; Azor, P; Peral-García, P; Demyda-Peyrás, S

    2017-08-01

    Chromosomal abnormalities in the sex chromosome pair (ECAX and ECAY) are widely associated with reproductive problems in horses. However, a large proportion of these abnormalities remains undiagnosed due to the lack of an affordable diagnostic tool that allows for avoiding karyotyping tests. Hereby, we developed an STR (single-tandem-repeat)-based molecular method to determine the presence of the main sex chromosomal abnormalities in horses in a fast, cheap and reliable way. The frequency of five ECAX-linked (LEX026, LEX003, TKY38, TKY270 and UCDEQ502) and two ECAY-linked (EcaYH12 and SRY) markers was characterized in 261 Purebred Spanish Horses to determine the efficiency of the methodology developed to be used as a chromosomal diagnostic tool. All the microsatellites analyzed were highly polymorphic, with a sizeable number of alleles (polymorphic information content > 0.5). Based on this variability, the methodology showed 100% sensitivity and 99.82% specificity to detect the most important sex chromosomal abnormalities reported in horses (chimerism, Turner's syndrome and sex reversal syndromes). The method was also validated with 100% efficiency in 10 individuals previously diagnosed as chromosomally aberrant. This STR screening panel is an efficient and reliable molecular-cytogenetic tool for the early detection of sex chromosomal abnormalities in equines that could be included in breeding programs to save money, effort and time of veterinary practitioners and breeders. © 2017 Stichting International Foundation for Animal Genetics.

  19. Establishing a community-wide DNA barcode library as a new tool for arctic research.

    PubMed

    Wirta, H; Várkonyi, G; Rasmussen, C; Kaartinen, R; Schmidt, N M; Hebert, P D N; Barták, M; Blagoev, G; Disney, H; Ertl, S; Gjelstrup, P; Gwiazdowicz, D J; Huldén, L; Ilmonen, J; Jakovlev, J; Jaschhof, M; Kahanpää, J; Kankaanpää, T; Krogh, P H; Labbee, R; Lettner, C; Michelsen, V; Nielsen, S A; Nielsen, T R; Paasivirta, L; Pedersen, S; Pohjoismäki, J; Salmela, J; Vilkamaa, P; Väre, H; von Tschirnhaus, M; Roslin, T

    2016-05-01

    DNA sequences offer powerful tools for describing the members and interactions of natural communities. In this study, we establish the to-date most comprehensive library of DNA barcodes for a terrestrial site, including all known macroscopic animals and vascular plants of an intensively studied area of the High Arctic, the Zackenberg Valley in Northeast Greenland. To demonstrate its utility, we apply the library to identify nearly 20 000 arthropod individuals from two Malaise traps, each operated for two summers. Drawing on this material, we estimate the coverage of previous morphology-based species inventories, derive a snapshot of faunal turnover in space and time and describe the abundance and phenology of species in the rapidly changing arctic environment. Overall, 403 terrestrial animal and 160 vascular plant species were recorded by morphology-based techniques. DNA barcodes (CO1) offered high resolution in discriminating among the local animal taxa, with 92% of morphologically distinguishable taxa assigned to unique Barcode Index Numbers (BINs) and 93% to monophyletic clusters. For vascular plants, resolution was lower, with 54% of species forming monophyletic clusters based on barcode regions rbcLa and ITS2. Malaise catches revealed 122 BINs not detected by previous sampling and DNA barcoding. The insect community was dominated by a few highly abundant taxa. Even closely related taxa differed in phenology, emphasizing the need for species-level resolution when describing ongoing shifts in arctic communities and ecosystems. The DNA barcode library now established for Zackenberg offers new scope for such explorations, and for the detailed dissection of interspecific interactions throughout the community. © 2015 John Wiley & Sons Ltd.

  20. Molecular identification of livestock breeds: a tool for modern conservation biology.

    PubMed

    Yaro, Mohammed; Munyard, Kylie A; Stear, Michael J; Groth, David M

    2017-05-01

    Global livestock genetic diversity includes all of the species, breeds and strains of domestic animals, and their variations. Although a recent census indicated that there were 40 species and over 8000 breeds of domestic animals; for the purpose of conservation biology the diversity between and within breeds rather than species is regarded to be of crucial importance. This domestic animal genetic diversity has developed through three main evolutionary events, from speciation (about 3 million years ago) through domestication (about 12000 years ago) to specialised breeding (starting about 200 years ago). These events and their impacts on global animal genetic resources have been well documented in the literature. The key importance of global domestic animal resources in terms of economic, scientific and cultural heritage has also been addressed. In spite of their importance, there is a growing number of reports on the alarming erosion of domestic animal genetic resources. This erosion of is happening in spite of several global conservation initiatives designed to mitigate it. Herein we discuss these conservation interventions and highlight their strengths and weaknesses. However, pivotal to the success of these conservation initiatives is the reliability of the genetic assignment of individual members to a target breed. Finally, we discuss the prospect of using improved breed identification methodologies to develop a reliable breed-specific molecular identification tool that is easily applicable to populations of livestock breeds in various ecosystems. These identification tools, when developed, will not only facilitate the regular monitoring of threatened or endangered breed populations, but also enhance the development of more efficient and sustainable livestock production systems. © 2016 Cambridge Philosophical Society.

  1. Establishment and characterization of the NCC-SS1-C1 synovial sarcoma cell line.

    PubMed

    Kito, Fusako; Oyama, Rieko; Takai, Yoko; Sakumoto, Marimu; Shiozawa, Kumiko; Qiao, Zhiwei; Uehara, Takenori; Yoshida, Akihiko; Kawai, Akira; Kondo, Tadashi

    2018-04-01

    Synovial sarcoma is an aggressive mesenchymal malignancy characterized by unique gene fusions. Tissue culture cells are essential tools for further understanding tumorigenesis and anti-cancer drug development; however, only a limited number of well-characterized synovial sarcoma cell lines exist. Thus, the objective of this study was to establish a patient-derived synovial sarcoma cell line. We established a synovial sarcoma cell line from tumor tissue isolated from a 72-year-old female patient. Prepared cells were analyzed for the presence of gene fusions by fluorescence in situ hybridization, RT-PCR, and karyotyping. In addition, the resulting cell line was characterized by viability, short tandem repeat, colony and spheroid formation, and invasion analyses. Differences in gene enrichment between the primary tumor and cell line were examined by mass spectrometric protein expression profiling and KEGG pathway analysis. Our analyses revealed that the primary tumor and NCC-SS1-C1 cell line harbored the SS18-SSX1 fusion gene typical of synovial sarcoma and similar proteomics profiles. In vitro analyses also confirmed that the established cell line harbored invasive, colony-forming, and spheroid-forming potentials. Moreover, drug screening with chemotherapeutic agents and tyrosine kinase inhibitors revealed that doxorubicin, a subset of tyrosine kinase inhibitors, and several molecular targeting drugs markedly decreased NCC-SS1-C1 cell viability. Results from the present study support that the NCC-SS1-C1 cell line will be an effective tool for sarcoma research.

  2. TranscriptomeBrowser 3.0: introducing a new compendium of molecular interactions and a new visualization tool for the study of gene regulatory networks.

    PubMed

    Lepoivre, Cyrille; Bergon, Aurélie; Lopez, Fabrice; Perumal, Narayanan B; Nguyen, Catherine; Imbert, Jean; Puthier, Denis

    2012-01-31

    Deciphering gene regulatory networks by in silico approaches is a crucial step in the study of the molecular perturbations that occur in diseases. The development of regulatory maps is a tedious process requiring the comprehensive integration of various evidences scattered over biological databases. Thus, the research community would greatly benefit from having a unified database storing known and predicted molecular interactions. Furthermore, given the intrinsic complexity of the data, the development of new tools offering integrated and meaningful visualizations of molecular interactions is necessary to help users drawing new hypotheses without being overwhelmed by the density of the subsequent graph. We extend the previously developed TranscriptomeBrowser database with a set of tables containing 1,594,978 human and mouse molecular interactions. The database includes: (i) predicted regulatory interactions (computed by scanning vertebrate alignments with a set of 1,213 position weight matrices), (ii) potential regulatory interactions inferred from systematic analysis of ChIP-seq experiments, (iii) regulatory interactions curated from the literature, (iv) predicted post-transcriptional regulation by micro-RNA, (v) protein kinase-substrate interactions and (vi) physical protein-protein interactions. In order to easily retrieve and efficiently analyze these interactions, we developed In-teractomeBrowser, a graph-based knowledge browser that comes as a plug-in for Transcriptome-Browser. The first objective of InteractomeBrowser is to provide a user-friendly tool to get new insight into any gene list by providing a context-specific display of putative regulatory and physical interactions. To achieve this, InteractomeBrowser relies on a "cell compartments-based layout" that makes use of a subset of the Gene Ontology to map gene products onto relevant cell compartments. This layout is particularly powerful for visual integration of heterogeneous biological information

  3. Application of computer-assisted molecular modeling for immunoassay of low molecular weight food contaminants: A review.

    PubMed

    Xu, Zhen-Lin; Shen, Yu-Dong; Beier, Ross C; Yang, Jin-Yi; Lei, Hong-Tao; Wang, Hong; Sun, Yuan-Ming

    2009-08-11

    Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demand for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the molecular structure of antibody binding sites and antigenic epitopes, as well as the intermolecular binding forces that come into play, the traditional 'trial and error' method used to develop antibodies still remains the method of choice. Therefore, development of enhanced immunochemical techniques for specific- and generic-assays, requires new approaches for antibody design that will improve affinity and specificity of the antibody in a more rapid and economic manner. Computer-assisted molecular modeling (CAMM) has been demonstrated to be a useful tool to help the immunochemist develop immunoassays. CAMM methods can be used to help direct improvements to important antibody features, and can provide insights into the effects of molecular structure on biological activity that are difficult or impossible to obtain in any other way. In this review, we briefly summarize applications of CAMM in immunoassay development, including assisting in hapten design, explaining cross-reactivity, modeling antibody-antigen interactions, and providing insights into the effects of the mouse body temperature on the three-dimensional conformation of a hapten during antibody production. The fundamentals and theory, programs and software, limitations, and prospects of CAMM in immunoassay development were also discussed.

  4. Designing and establishing a fine hardwood timber plantation

    Treesearch

    James R. McKenna; Lenny D. Farlee

    2013-01-01

    Today, new tools and lessons learned from established plantations of black walnut and other fine hardwoods can provide landowners with guidelines to design and establish successful plantations to produce quality timber for the future. From earlier plantations now maturing, we can recognize design features critical during establishment. Current production practices...

  5. Density functional simulations as a tool to probe molecular interactions in wet supercritical CO2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glezakou, Vassiliki Alexandra; McGrail, B. Peter

    2013-06-03

    Recent advances in mixed Gaussian and plane wave algorithms have made possible the effective use of density functional theory (DFT) in ab initio molecular dynamics (AIMD) simulations for large and chemically complex models of condensed phase materials. In this chapter, we are reviewing recent progress on the modeling and characterization of co-sequestration processes and reactivity in wet supercritical CO2 (sc-CO2). We examine the molecular transformations of mineral and metal components of a sequestration system in contact with water-bearing scCO2 media and aim to establish a reliable correspondence between experimental observations and theory models with predictive ability and transferability of resultsmore » in large scale geomechanical simulators. This work is funded by the Department of Energy, Office of Fossil Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy’s Office of Biological and Environmental Research located at Pacific Northwest National Laboratory. The Pacific Norhtwest National Laboratory (PNNL) is operated by Battelle for DOE under contract DE-AC06-76RL01830.« less

  6. Quantitative Characterization of Molecular Similarity Spaces: Tools for Computational Toxicology

    DTIC Science & Technology

    2000-01-20

    numbers for hydrogen-filled molecular structure, hydrogen-suppressed molecular structure, and van der Waals volume. Van der Waals...relative covalent radii Geometrical Vw van der Waals volume 3DW 3-D Wiener number for the hydrogen-suppressed geometric distance matrix...molecular structure, and van der Waals volume. Van der Waals volume, Vw (Bondi 1964). was calculated using Sybyl 6.1 from Tripos As- sociates. Inc

  7. Refining prognosis in lung cancer: A report on the quality and relevance of clinical prognostic tools

    PubMed Central

    Mahar, Alyson L.; Compton, Carolyn; McShane, Lisa M.; Halabi, Susan; Asamura, Hisao; Rami-Porta, Ramon; Groome, Patti A.

    2015-01-01

    Introduction Accurate, individualized prognostication for lung cancer patients requires the integration of standard patient and pathologic factors, biologic, genetic, and other molecular characteristics of the tumor. Clinical prognostic tools aim to aggregate information on an individual patient to predict disease outcomes such as overall survival, but little is known about their clinical utility and accuracy in lung cancer. Methods A systematic search of the scientific literature for clinical prognostic tools in lung cancer published Jan 1, 1996-Jan 27, 2015 was performed. In addition, web-based resources were searched. A priori criteria determined by the Molecular Modellers Working Group of the American Joint Committee on Cancer were used to investigate the quality and usefulness of tools. Criteria included clinical presentation, model development approaches, validation strategies, and performance metrics. Results Thirty-two prognostic tools were identified. Patients with metastases were the most frequently considered population in non-small cell lung cancer. All tools for small cell lung cancer covered that entire patient population. Included prognostic factors varied considerably across tools. Internal validity was not formally evaluated for most tools and only eleven were evaluated for external validity. Two key considerations were highlighted for tool development: identification of an explicit purpose related to a relevant clinical population and clear decision-points, and prioritized inclusion of established prognostic factors over emerging factors. Conclusions Prognostic tools will contribute more meaningfully to the practice of personalized medicine if better study design and analysis approaches are used in their development and validation. PMID:26313682

  8. Establishment gaps as an innovative tool to restore landscape-scale grassland biodiversity

    NASA Astrophysics Data System (ADS)

    Tóthmérész, Béla; Deák, Balázs; Török, Péter; Tischew, Sabine; Kirmer, Anita; Kelemen, András; Miglécz, Tamás; Tóth, Katalin; Radócz, Szilvia; Sonkoly, Judit; Valkó, Orsolya

    2017-04-01

    The large-scale abandonment of croplands resulted in landscape-scale changes in biodiversity, ecosystem services and agricultural production in Central Europe. Grasslands are vital landscape elements, and sustaining their biodiversity is crucial for biodiversity conservation. Thus, grassland restoration on former croplands offers a vital opportunity to restore grassland biodiversity. We studied vegetation changes in former croplands sown by grass seed mixtures in Hungary. We evaluated the usefulness of sowing grass seed mixtures, a frequently used restoration technique. We also developed a novel method (so-called establishment gaps) to increase the diversity of species-poor sown grasslands. We compiled a multi-species seed mixture containing 35 species. We established altogether 32 establishment gaps (size: 1×1-m, 2×2-m and 4×4-m) in 8-year-old restored grasslands. We evaluated the success and cost-effectiveness of spontaneous grassland recovery and active grassland restoration by seed sowing. We focused on the restoration of ecosystem services, like weed control, biomass production, and recovery of biodiversity. Using establishment gaps we could successfully introduce target species to the species-poor recovered grasslands. All sown species established in the establishment gaps and many of them maintained or even increased their first-year cover to the second year. Larger establishment gaps were characterised by higher cover of sown species and more homogeneous species composition compared to the smaller ones. Thus, we recommend using large establishment gaps in restoration practice. Our findings suggest that grassland restoration on croplands offer a viable solution for restoring biodiversity and ecosystem services. We found that both spontaneous grassland recovery and seed sowing can be cost-effective methods, and can be successful even during a relatively short period of a nature conservation project.

  9. Molecular epidemiology, and possible real-world applications in breast cancer.

    PubMed

    Ito, Hidemi; Matsuo, Keitaro

    2016-01-01

    Gene-environment interaction, a key idea in molecular epidemiology, has enabled the development of personalized medicine. This concept includes personalized prevention. While genome-wide association studies have identified a number of genetic susceptibility loci in breast cancer risk, however, the application of this knowledge to practical prevention is still underway. Here, we briefly review the history of molecular epidemiology and its progress in breast cancer epidemiology. We then introduce our experience with the trial combination of GWAS-identified loci and well-established lifestyle and reproductive risk factors in the risk prediction of breast cancer. Finally, we report our exploration of the cumulative risk of breast cancer based on this risk prediction model as a potential tool for individual risk communication, including genetic risk factors and gene-environment interaction with obesity.

  10. Preset pivotal tool holder

    DOEpatents

    Asmanes, Charles

    1979-01-01

    A tool fixture is provided for precise pre-alignment of a radiused edge cutting tool in a tool holder relative to a fixed reference pivot point established on said holder about which the tool holder may be selectively pivoted relative to the fixture base member to change the contact point of the tool cutting edge with a workpiece while maintaining the precise same tool cutting radius relative to the reference pivot point.

  11. Windowed R-PDLF recoupling: a flexible and reliable tool to characterize molecular dynamics.

    PubMed

    Gansmüller, Axel; Simorre, Jean-Pierre; Hediger, Sabine

    2013-09-01

    This work focuses on the improvement of the R-PDLF heteronuclear recoupling scheme, a method that allows quantification of molecular dynamics up to the microsecond timescale in heterogeneous materials. We show how the stability of the sequence towards rf-imperfections, one of the main sources of error of this technique, can be improved by the insertion of windows without irradiation into the basic elements of the symmetry-based recoupling sequence. The impact of this modification on the overall performance of the sequence in terms of scaling factor and homonuclear decoupling efficiency is evaluated. This study indicates the experimental conditions for which precise and reliable measurement of dipolar couplings can be obtained using the popular R18(1)(7) recoupling sequence, as well as alternative symmetry-based R sequences suited for fast MAS conditions. An analytical expression for the recoupled dipolar modulation has been derived that applies to a whole class of sequences with similar recoupling properties as R18(1)(7). This analytical expression provides an efficient and precise way to extract dipolar couplings from the experimental dipolar modulation curves. We hereby provide helpful tools and information for tailoring R-PDLF recoupling schemes to specific sample properties and hardware capabilities. This approach is particularly well suited for the study of materials with strong and heterogeneous molecular dynamics where a precise measurement of dipolar couplings is crucial. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Establishment of a national database to link epidemiological and molecular data from norovirus outbreaks in Ireland.

    PubMed

    Kelly, S; Foley, B; Dunford, L; Coughlan, S; Tuite, G; Duffy, M; Mitchell, S; Smyth, B; O'Neill, H; McKeown, P; Hall, W; Lynch, M

    2008-11-01

    A prospective study of norovirus outbreaks in Ireland was carried out over a 1-year period from 1 October 2004 to 30 September 2005. Epidemiological and molecular data on norovirus outbreaks in the Republic of Ireland (ROI) and Northern Ireland (NI) were collected and combined in real time in a common database. Most reported outbreaks occurred in hospitals and residential institutions and person-to-person spread was the predominant mode of transmission. The predominant circulating norovirus strain was the GII.4-2004 strain with a small number of outbreaks due to GII.2. This study represents the first time that enhanced epidemiological and virological data on norovirus outbreaks in Ireland have been described. The link established between the epidemiological and virological institutions during the course of this study has been continued and the data is being used as a source of data for the Foodborne Viruses in Europe Network (DIVINE-NET).

  13. Molecular imaging in the diagnosis of Alzheimer's disease and related disorders.

    PubMed

    Koric, L; Guedj, E; Habert, M O; Semah, F; Branger, P; Payoux, P; Le Jeune, F

    2016-12-01

    The diagnosis of Alzheimer's disease (AD) and its related disorders rely on clinical criteria. There is, however, a large clinical overlap between the different neurodegenerative diseases affecting cognition and, frequently, there are diagnostic uncertainties with atypical clinical presentations. Current clinical practices can now regularly use positron emission tomography (PET) and single-photon emission computed tomography (SPECT) molecular imaging to help resolve such uncertainties. The Neurology Group of the French Society of Nuclear Medicine and Federations of Memory, Resources and Research Centers have collaborated to establish clinical guidelines to determine which molecular imaging techniques to use when seeking a differential diagnosis between AD and other neurodegenerative disorders affecting cognition. According to the current medical literature, the potential usefulness of molecular imaging to address the typical clinical criteria in common forms of AD remains modest, as typical AD presentations rarely raise questions of differential diagnoses with other neurodegenerative disorders. However, molecular imaging could be of significant value in the diagnosis of atypical neurodegenerative disorders, including early onset, rapid cognitive decline, prominent non-amnestic presentations involving language, visuospatial, behavioral/executive and/or non-cognitive symptoms in AD, or prominent amnestic presentations in other non-AD dementias. The clinical use of molecular imaging should be recommended for assessing cognitive disturbances particularly in patients with early clinical onset (before age 65) and atypical presentations. However, diagnostic tools should always be part of the global clinical approach, as an isolated positive result cannot adequately establish a diagnosis of any neurodegenerative disorder. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Effects of random aspects of cutting tool wear on surface roughness and tool life

    NASA Astrophysics Data System (ADS)

    Nabil, Ben Fredj; Mabrouk, Mohamed

    2006-10-01

    The effects of random aspects of cutting tool flank wear on surface roughness and on tool lifetime, when turning the AISI 1045 carbon steel, were studied in this investigation. It was found that standard deviations corresponding to tool flank wear and to the surface roughness increase exponentially with cutting time. Under cutting conditions that correspond to finishing operations, no significant differences were found between the calculated values of the capability index C p at the steady-state region of the tool flank wear, using the best-fit method or the Box-Cox transformation, or by making the assumption that the surface roughness data are normally distributed. Hence, a method to establish cutting tool lifetime could be established that simultaneously respects the desired average of surface roughness and the required capability index.

  15. Forming Tool Use Representations: A Neurophysiological Investigation into Tool Exposure

    ERIC Educational Resources Information Center

    Mizelle, John Christopher; Tang, Teresa; Pirouz, Nikta; Wheaton, Lewis A.

    2011-01-01

    Prior work has identified a common left parietofrontal network for storage of tool-related information for various tasks. How these representations become established within this network on the basis of different modes of exposure is unclear. Here, healthy subjects engaged in physical practice (direct exposure) with familiar and unfamiliar tools.…

  16. Impact of gastrointestinal parasitic nematodes of sheep, and the role of advanced molecular tools for exploring epidemiology and drug resistance - an Australian perspective

    PubMed Central

    2013-01-01

    Parasitic nematodes (roundworms) of small ruminants and other livestock have major economic impacts worldwide. Despite the impact of the diseases caused by these nematodes and the discovery of new therapeutic agents (anthelmintics), there has been relatively limited progress in the development of practical molecular tools to study the epidemiology of these nematodes. Specific diagnosis underpins parasite control, and the detection and monitoring of anthelmintic resistance in livestock parasites, presently a major concern around the world. The purpose of the present article is to provide a concise account of the biology and knowledge of the epidemiology of the gastrointestinal nematodes (order Strongylida), from an Australian perspective, and to emphasize the importance of utilizing advanced molecular tools for the specific diagnosis of nematode infections for refined investigations of parasite epidemiology and drug resistance detection in combination with conventional methods. It also gives a perspective on the possibility of harnessing genetic, genomic and bioinformatic technologies to better understand parasites and control parasitic diseases. PMID:23711194

  17. Molecular Investigations of Bacteroides as Microbial Source Tracking Tools in Southeast Louisiana Watersheds

    NASA Astrophysics Data System (ADS)

    Schulz, C. J.; Childers, G. W.; Engel, A. S.

    2006-12-01

    Microbial Source Tracking (MST) is a developing field that is gaining increased attention. MST refers to a host of techniques that discriminates among the origins of fecal material found in natural waters from different sources (e.g. human, livestock, and wildlife) by using microbial indicator species with specificity to only certain host organisms. The development of species-specific molecular markers would allow for better evaluation of public health risks and tracking of nutrient sources impacting a watershed. Although several MST methods have been reported with varying levels of success, few offer general applicability for natural waters due to spatial and temporal constraints associated with these methods. One group of molecular MST markers that show promise for broad environmental applications are molecular 16S rDNA probes for Bacteroides. This method is based on 16S rDNA detection directly from environmental samples without the need for a preliminary cultivation step. In this study we have expanded previous sampling efforts to compile a database of over 1000 partial 16S rRNA Bacteroides genes retrieved from the fecal material of 15 different host species (human, cat, dog, pig, kangaroo). To characterize survival of Bacteroides outside of the host, survival time of the Bacteroides marker was compared to that of E.coli under varying natural environmental conditions (temperature and salinity). Bacteroides displayed a survival curve with shouldering and tailing similar to that of E.coli, but log reduction times differed with treatment. In summary, MST marker stability was identified within host species and the overall Bacteroides community structure correlated to host diet, suggesting that detection of a Bacteroides community could confidently identify fecal contamination point sources. Natural water samples from southeast Louisiana were collected for MST including the Tangipahoa River watershed where the source of fecal contamination has been hotly debated. The

  18. Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock.

    PubMed

    Sabado, Virginie; Vienne, Ludovic; Nunes, José Manuel; Rosbash, Michael; Nagoshi, Emi

    2017-01-30

    Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit.

  19. Fluorescence circadian imaging reveals a PDF-dependent transcriptional regulation of the Drosophila molecular clock

    PubMed Central

    Sabado, Virginie; Vienne, Ludovic; Nunes, José Manuel; Rosbash, Michael; Nagoshi, Emi

    2017-01-01

    Circadian locomotor behaviour is controlled by a pacemaker circuit composed of clock-containing neurons. To interrogate the mechanistic relationship between the molecular clockwork and network communication critical to the operation of the Drosophila circadian pacemaker circuit, we established new fluorescent circadian reporters that permit single-cell recording of transcriptional and post-transcriptional rhythms in brain explants and cultured neurons. Live-imaging experiments combined with pharmacological and genetic manipulations demonstrate that the neuropeptide pigment-dispersing factor (PDF) amplifies the molecular rhythms via time-of-day- and activity-dependent upregulation of transcription from E-box-containing clock gene promoters within key pacemaker neurons. The effect of PDF on clock gene transcription and the known role of PDF in enhancing PER/TIM stability occur via independent pathways downstream of the PDF receptor, the former through a cAMP-independent mechanism and the latter through a cAMP-PKA dependent mechanism. These results confirm and extend the mechanistic understanding of the role of PDF in controlling the synchrony of the pacemaker neurons. More broadly, our results establish the utility of the new live-imaging tools for the study of molecular-neural interactions important for the operation of the circadian pacemaker circuit. PMID:28134281

  20. Investigating Evolutionary Questions Using Online Molecular Databases.

    ERIC Educational Resources Information Center

    Puterbaugh, Mary N.; Burleigh, J. Gordon

    2001-01-01

    Recommends using online molecular databases as teaching tools to illustrate evolutionary questions and concepts while introducing students to public molecular databases. Provides activities in which students make molecular comparisons between species. (YDS)

  1. Explaining reaction mechanisms using the dual descriptor: a complementary tool to the molecular electrostatic potential.

    PubMed

    Martínez-Araya, Jorge Ignacio

    2013-07-01

    The intrinsic reactivity of cyanide when interacting with a silver cation was rationalized using the dual descriptor (DD) as a complement to the molecular electrostatic potential (MEP) in order to predict interactions at the local level. It was found that DD accurately explains covalent interactions that cannot be explained by MEP, which focuses on essentially ionic interactions. This allowed the rationalization of the reaction mechanism that yields silver cyanide in the gas phase. Other similar reaction mechanisms involving a silver cation interacting with water, ammonia, and thiosulfate were also explained by the combination of MEP and DD. This analysis provides another example of the usefulness of DD as a tool for gaining a deeper understanding of any reaction mechanism that is mainly governed by covalent interactions.

  2. Genomic Tools in Groundnut Breeding Program: Status and Perspectives

    PubMed Central

    Janila, P.; Variath, Murali T.; Pandey, Manish K.; Desmae, Haile; Motagi, Babu N.; Okori, Patrick; Manohar, Surendra S.; Rathnakumar, A. L.; Radhakrishnan, T.; Liao, Boshou; Varshney, Rajeev K.

    2016-01-01

    Groundnut, a nutrient-rich food legume, is cultivated world over. It is valued for its good quality cooking oil, energy and protein rich food, and nutrient-rich fodder. Globally, groundnut improvement programs have developed varieties to meet the preferences of farmers, traders, processors, and consumers. Enhanced yield, tolerance to biotic and abiotic stresses and quality parameters have been the target traits. Spurt in genetic information of groundnut was facilitated by development of molecular markers, genetic, and physical maps, generation of expressed sequence tags (EST), discovery of genes, and identification of quantitative trait loci (QTL) for some important biotic and abiotic stresses and quality traits. The first groundnut variety developed using marker assisted breeding (MAB) was registered in 2003. Since then, USA, China, Japan, and India have begun to use genomic tools in routine groundnut improvement programs. Introgression lines that combine foliar fungal disease resistance and early maturity were developed using MAB. Establishment of marker-trait associations (MTA) paved way to integrate genomic tools in groundnut breeding for accelerated genetic gain. Genomic Selection (GS) tools are employed to improve drought tolerance and pod yield, governed by several minor effect QTLs. Draft genome sequence and low cost genotyping tools such as genotyping by sequencing (GBS) are expected to accelerate use of genomic tools to enhance genetic gains for target traits in groundnut. PMID:27014312

  3. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy

    PubMed Central

    2017-01-01

    Unique Molecular Identifiers (UMIs) are random oligonucleotide barcodes that are increasingly used in high-throughput sequencing experiments. Through a UMI, identical copies arising from distinct molecules can be distinguished from those arising through PCR amplification of the same molecule. However, bioinformatic methods to leverage the information from UMIs have yet to be formalized. In particular, sequencing errors in the UMI sequence are often ignored or else resolved in an ad hoc manner. We show that errors in the UMI sequence are common and introduce network-based methods to account for these errors when identifying PCR duplicates. Using these methods, we demonstrate improved quantification accuracy both under simulated conditions and real iCLIP and single-cell RNA-seq data sets. Reproducibility between iCLIP replicates and single-cell RNA-seq clustering are both improved using our proposed network-based method, demonstrating the value of properly accounting for errors in UMIs. These methods are implemented in the open source UMI-tools software package. PMID:28100584

  4. Establishment of a national database to link epidemiological and molecular data from norovirus outbreaks in Ireland

    PubMed Central

    KELLY, S.; FOLEY, B.; DUNFORD, L.; COUGHLAN, S.; TUITE, G.; DUFFY, M.; MITCHELL, S.; SMYTH, B.; O'NEILL, H.; McKEOWN, P.; HALL, W.; LYNCH, M.

    2008-01-01

    SUMMARY A prospective study of norovirus outbreaks in Ireland was carried out over a 1-year period from 1 October 2004 to 30 September 2005. Epidemiological and molecular data on norovirus outbreaks in the Republic of Ireland (ROI) and Northern Ireland (NI) were collected and combined in real time in a common database. Most reported outbreaks occurred in hospitals and residential institutions and person-to-person spread was the predominant mode of transmission. The predominant circulating norovirus strain was the GII.4-2004 strain with a small number of outbreaks due to GII.2. This study represents the first time that enhanced epidemiological and virological data on norovirus outbreaks in Ireland have been described. The link established between the epidemiological and virological institutions during the course of this study has been continued and the data is being used as a source of data for the Foodborne Viruses in Europe Network (DIVINE-NET). PMID:18252027

  5. FDA Escherichia coli Identification (FDA-ECID) Microarray: a Pangenome Molecular Toolbox for Serotyping, Virulence Profiling, Molecular Epidemiology, and Phylogeny

    PubMed Central

    Patel, Isha R.; Gangiredla, Jayanthi; Lacher, David W.; Mammel, Mark K.; Jackson, Scott A.; Lampel, Keith A.

    2016-01-01

    ABSTRACT Most Escherichia coli strains are nonpathogenic. However, for clinical diagnosis and food safety analysis, current identification methods for pathogenic E. coli either are time-consuming and/or provide limited information. Here, we utilized a custom DNA microarray with informative genetic features extracted from 368 sequence sets for rapid and high-throughput pathogen identification. The FDA Escherichia coli Identification (FDA-ECID) platform contains three sets of molecularly informative features that together stratify strain identification and relatedness. First, 53 known flagellin alleles, 103 alleles of wzx and wzy, and 5 alleles of wzm provide molecular serotyping utility. Second, 41,932 probe sets representing the pan-genome of E. coli provide strain-level gene content information. Third, approximately 125,000 single nucleotide polymorphisms (SNPs) of available whole-genome sequences (WGS) were distilled to 9,984 SNPs capable of recapitulating the E. coli phylogeny. We analyzed 103 diverse E. coli strains with available WGS data, including those associated with past foodborne illnesses, to determine robustness and accuracy. The array was able to accurately identify the molecular O and H serotypes, potentially correcting serological failures and providing better resolution for H-nontypeable/nonmotile phenotypes. In addition, molecular risk assessment was possible with key virulence marker identifications. Epidemiologically, each strain had a unique comparative genomic fingerprint that was extended to an additional 507 food and clinical isolates. Finally, a 99.7% phylogenetic concordance was established between microarray analysis and WGS using SNP-level data for advanced genome typing. Our study demonstrates FDA-ECID as a powerful tool for epidemiology and molecular risk assessment with the capacity to profile the global landscape and diversity of E. coli. IMPORTANCE This study describes a robust, state-of-the-art platform developed from available

  6. Standardized molecular diagnostic tool for the identification of cryptic species within the Bemisia tabaci complex.

    PubMed

    Elfekih, Samia; Tay, Wee Tek; Gordon, Karl; Court, Leon N; De Barro, Paul J

    2018-01-01

    The whitefly Bemisia tabaci complex harbours over 40 cryptic species that have been placed in 11 phylogenetically distinct clades based on the molecular characterization of partial mitochondrial DNA COI (mtCOI) gene region. Four cryptic species are currently within the invasive clade, i.e. MED, MEAM1, MEAM2 and IO. Correct identification of these species is a critical step towards implementing reliable measures for plant biosecurity and border protection; however, no standardized B. tabaci-specific primers are currently available which has caused inconsistencies in the species identification processes. We report three sets of polymerase chain reaction (PCR) primers developed to amplify the mtCOI region which can be used for genotyping MED, MEAM1 and IO species, and tested these primers on 91 MED, 35 MEAM1 and five IO individuals. PCR and sequencing of amplicons identified a total of 21, six and one haplotypes in MED, MEAM1 and IO respectively, of which six haplotypes were new to the B. tabaci database. These primer pairs enabled standardization and robust molecular species identification via mtCOI screening of the targeted invasive cryptic species and will improve quarantine decisions. Use of this diagnostic tool could be extended to other species within the complex. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. POLYANA-A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

    NASA Astrophysics Data System (ADS)

    Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios

    2015-12-01

    We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.

  8. GENE-07. MOLECULAR NEUROPATHOLOGY 2.0 - INCREASING DIAGNOSTIC ACCURACY IN PEDIATRIC NEUROONCOLOGY

    PubMed Central

    Sturm, Dominik; Jones, David T.W.; Capper, David; Sahm, Felix; von Deimling, Andreas; Rutkoswki, Stefan; Warmuth-Metz, Monika; Bison, Brigitte; Gessi, Marco; Pietsch, Torsten; Pfister, Stefan M.

    2017-01-01

    Abstract The classification of central nervous system (CNS) tumors into clinically and biologically distinct entities and subgroups is challenging. Children and adolescents can be affected by >100 histological variants with very variable outcomes, some of which are exceedingly rare. The current WHO classification has introduced a number of novel molecular markers to aid routine neuropathological diagnostics, and DNA methylation profiling is emerging as a powerful tool to distinguish CNS tumor classes. The Molecular Neuropathology 2.0 study aims to integrate genome wide (epi-)genetic diagnostics with reference neuropathological assessment for all newly-diagnosed pediatric brain tumors in Germany. To date, >350 patients have been enrolled. A molecular diagnosis is established by epigenetic tumor classification through DNA methylation profiling and targeted panel sequencing of >130 genes to detect diagnostically and/or therapeutically useful DNA mutations, structural alterations, and fusion events. Results are aligned with the reference neuropathological diagnosis, and discrepant findings are discussed in a multi-disciplinary tumor board including reference neuroradiological evaluation. Ten FFPE sections as input material are sufficient to establish a molecular diagnosis in >95% of tumors. Alignment with reference pathology results in four broad categories: a) concordant classification (~77%), b) discrepant classification resolvable by tumor board discussion and/or additional data (~5%), c) discrepant classification without currently available options to resolve (~8%), and d) cases currently unclassifiable by molecular diagnostics (~10%). Discrepancies are enriched in certain histopathological entities, such as histological high grade gliomas with a molecularly low grade profile. Gene panel sequencing reveals predisposing germline events in ~10% of patients. Genome wide (epi-)genetic analyses add a valuable layer of information to routine neuropathological

  9. Exploitation of molecular mobilities for advanced organic optoelectronic and photonic nano-materials

    NASA Astrophysics Data System (ADS)

    Gray, Tomoko O.

    Electro-optically active organic materials have shown great potential in advanced technologies such as ultrafast electro-optical switches for broadband communication, light-emitting diodes, and photovoltaic cells. Currently, the maturity of chemical synthesis enables a sophisticated integration of the active elements into complex macromolecules. Also, the structure-property relationships of the isolated single electrically/optically active elements are well established. Unfortunately, such correlations involving single molecule are not applicable to complex unstructured condensed systems, in which unique mesoscale properties and complex dynamics of super-/supra-molecular structures are present. Our current challenge arises, in particular, from a deficiency of appropriate characterization tools that close the gap between phenomenological measurements and theoretical models. This work addresses submolecular mobilities relevant for opto-electronic functionalities of photoluminescent polymers and non-linear optical (NLO) materials. Thereby, I will introduce novel nanoscale thermomechanical characterization tools that are based on scanning force microscopy. From nanoscale thermomechanical measurements sub-/super-molecular mobilities of novel optoelectronic materials can be inferred and to some degree controlled. For instance, we have explored interfacial constraints as a engineering tool to control molecular mobility. This will be illustrated with electroluminescent polymers, which are prone to undesired pi-pi aggregation due to the rod-like structure---intrinsic to all conjugated polymers. The nanoscale confinement is used to reduced chain mobility, and thus, hinders undesired aggregation, and consequently, yields superior spectral stability. From the nanomaterial design perspective, I will also address mobility control with targeted molecular designs. This involves two classes of novel NLO materials, side-chain dendronized polymers and self-assembling molecular

  10. Combining medical informatics and bioinformatics toward tools for personalized medicine.

    PubMed

    Sarachan, B D; Simmons, M K; Subramanian, P; Temkin, J M

    2003-01-01

    Key bioinformatics and medical informatics research areas need to be identified to advance knowledge and understanding of disease risk factors and molecular disease pathology in the 21 st century toward new diagnoses, prognoses, and treatments. Three high-impact informatics areas are identified: predictive medicine (to identify significant correlations within clinical data using statistical and artificial intelligence methods), along with pathway informatics and cellular simulations (that combine biological knowledge with advanced informatics to elucidate molecular disease pathology). Initial predictive models have been developed for a pilot study in Huntington's disease. An initial bioinformatics platform has been developed for the reconstruction and analysis of pathways, and work has begun on pathway simulation. A bioinformatics research program has been established at GE Global Research Center as an important technology toward next generation medical diagnostics. We anticipate that 21 st century medical research will be a combination of informatics tools with traditional biology wet lab research, and that this will translate to increased use of informatics techniques in the clinic.

  11. Establishment of a large panel of patient-derived preclinical models of human renal cell carcinoma.

    PubMed

    Lang, Hervé; Béraud, Claire; Bethry, Audrey; Danilin, Sabrina; Lindner, Véronique; Coquard, Catherine; Rothhut, Sylvie; Massfelder, Thierry

    2016-09-13

    The objective of the present work was to establish a large panel of preclinical models of human renal cell carcinoma (RCC) directly from patients, faithfully reproducing the biological features of the original tumor. RCC tissues (all stages/subtypes) were collected for 8 years from 336 patients undergoing surgery, xenografted subcutaneously in nude mice, and serially passaged into new mice up to 13 passages. Tissue samples from the primary tumor and tumors grown in mice through passages were analyzed for biological tissue stability by histopathology, mRNA profiling, von Hippel-Lindau gene sequencing, STR fingerprinting, growth characteristics and response to current therapies. Metastatic models were also established by orthotopic implantation and analyzed by imagery. We established a large panel of 30 RCC models (passage > 3, 8.9% success rate). High tumor take rate was associated with high stage and grade. Histopathologic, molecular and genetic characteristics were preserved between original tumors and case-matched xenografts. The models reproduced the sensitivity to targeted therapies observed in the clinic. Overall, these models constitute an invaluable tool for the clinical design of efficient therapies, the identification of predictive biomarkers and translational research.

  12. Novel molecular diagnostic tools for malaria elimination: a review of options from the point of view of high-throughput and applicability in resource limited settings.

    PubMed

    Britton, Sumudu; Cheng, Qin; McCarthy, James S

    2016-02-16

    As malaria transmission continues to decrease, an increasing number of countries will enter pre-elimination and elimination. To interrupt transmission, changes in control strategies are likely to require more accurate identification of all carriers of Plasmodium parasites, both symptomatic and asymptomatic, using diagnostic tools that are highly sensitive, high throughput and with fast turnaround times preferably performed in local health service settings. Currently available immunochromatographic lateral flow rapid diagnostic tests and field microscopy are unlikely to consistently detect infections at parasite densities less than 100 parasites/µL making them insufficiently sensitive for detecting all carriers. Molecular diagnostic platforms, such as PCR and LAMP, are currently available in reference laboratories, but at a cost both financially and in turnaround time. This review describes the recent progress in developing molecular diagnostic tools in terms of their capacity for high throughput and potential for performance in non-reference laboratories for malaria elimination.

  13. Workshop on Molecular Animation

    PubMed Central

    Bromberg, Sarina; Chiu, Wah; Ferrin, Thomas E.

    2011-01-01

    Summary February 25–26, 2010, in San Francisco, the Resource for Biocomputing, Visualization and Informatics (RBVI) and the National Center for Macromolecular Imaging (NCMI) hosted a molecular animation workshop for 21 structural biologists, molecular animators, and creators of molecular visualization software. Molecular animation aims to visualize scientific understanding of biomolecular processes and structures. The primary goal of the workshop was to identify the necessary tools for: producing high quality molecular animations, understanding complex molecular and cellular structures, creating publication supplementary materials and conference presentations, and teaching science to students and the public. Another use of molecular animation emerged in the workshop: helping to focus scientific inquiry about the motions of molecules and enhancing informal communication within and between laboratories. PMID:20947014

  14. Lymph Node Metastases Optical Molecular Diagnostic and Radiation Therapy

    DTIC Science & Technology

    2017-03-01

    structures and not molecular functions. The one tool commonly used for metastases imaging is nuclear medicine. Positron emission tomography, PET, is...be visualized at a relevant stage., largely because most imaging is based upon structures and not molecular functions. But there are no tools to...system suitable for imaging signals from in small animals on the standard radiation therapy tools. (3) To evaluate the limits on structural , metabolic

  15. Field-based detection of biological samples for forensic analysis: Established techniques, novel tools, and future innovations.

    PubMed

    Morrison, Jack; Watts, Giles; Hobbs, Glyn; Dawnay, Nick

    2018-04-01

    Field based forensic tests commonly provide information on the presence and identity of biological stains and can also support the identification of species. Such information can support downstream processing of forensic samples and generate rapid intelligence. These approaches have traditionally used chemical and immunological techniques to elicit the result but some are known to suffer from a lack of specificity and sensitivity. The last 10 years has seen the development of field-based genetic profiling systems, with specific focus on moving the mainstay of forensic genetic analysis, namely STR profiling, out of the laboratory and into the hands of the non-laboratory user. In doing so it is now possible for enforcement officers to generate a crime scene DNA profile which can then be matched to a reference or database profile. The introduction of these novel genetic platforms also allows for further development of new molecular assays aimed at answering the more traditional questions relating to body fluid identity and species detection. The current drive for field-based molecular tools is in response to the needs of the criminal justice system and enforcement agencies, and promises a step-change in how forensic evidence is processed. However, the adoption of such systems by the law enforcement community does not represent a new strategy in the way forensic science has integrated previous novel approaches. Nor do they automatically represent a threat to the quality control and assurance practices that are central to the field. This review examines the historical need and subsequent research and developmental breakthroughs in field-based forensic analysis over the past two decades with particular focus on genetic methods Emerging technologies from a range of scientific fields that have potential applications in forensic analysis at the crime scene are identified and associated issues that arise from the shift from laboratory into operational field use are discussed

  16. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    NASA Astrophysics Data System (ADS)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  17. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    PubMed Central

    Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed for use as a pre- and posttest to measure student learning gains. To develop the assessment, we first worked with faculty to create a set of learning goals that targeted important concepts in the field and seemed likely to be emphasized by most instructors teaching these subjects. We interviewed students using open-ended questions to identify commonly held misconceptions, formulated multiple-choice questions that included these ideas as distracters, and reinterviewed students to establish validity of the instrument. The assessment was then evaluated by 25 biology experts and modified based on their suggestions. The complete revised assessment was administered to more than 1300 students at three institutions. Analysis of statistical parameters including item difficulty, item discrimination, and reliability provides evidence that the IMCA is a valid and reliable instrument with several potential uses in gauging student learning of key concepts in molecular and cell biology. PMID:21123692

  18. Mumps virus F gene and HN gene sequencing as a molecular tool to study mumps virus transmission.

    PubMed

    Gouma, Sigrid; Cremer, Jeroen; Parkkali, Saara; Veldhuijzen, Irene; van Binnendijk, Rob S; Koopmans, Marion P G

    2016-11-01

    Various mumps outbreaks have occurred in the Netherlands since 2004, particularly among persons who had received 2 doses of measles, mumps, and rubella (MMR) vaccination. Genomic typing of pathogens can be used to track outbreaks, but the established genotyping of mumps virus based on the small hydrophobic (SH) gene sequences did not provide sufficient resolution. Therefore, we expanded the sequencing to include fusion (F) gene and haemagglutinin-neuraminidase (HN) gene sequences in addition to the SH gene sequences from 109 mumps virus genotype G strains obtained between 2004 and mid 2015 in the Netherlands. When the molecular information from these 3 genes was combined, we were able to identify separate mumps virus clusters and track mumps virus transmission. The analyses suggested that multiple mumps virus introductions occurred in the Netherlands between 2004 and 2015 resulting in several mumps outbreaks throughout this period, whereas during some local outbreaks the molecular data pointed towards endemic circulation. Combined analysis of epidemiological data and sequence data collected in 2015 showed good support for the phylogenetic clustering. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle

    PubMed Central

    Goodyear, Laurie J.

    2014-01-01

    Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial function, increases mitochondrial biogenesis, and increases the expression of glucose transporter proteins and numerous metabolic genes. This review focuses on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. PMID:25434013

  20. Molecular marker to identify radiolarian species -toward establishment of paleo-environmental proxy-

    NASA Astrophysics Data System (ADS)

    Ishitani, Y.

    2017-12-01

    Marine fossilized unicellular plankton are known to have many genetically divergent species (biological species) in the single morphological species and these biological species show the species-specific environments much more precisely than that of morphological species. Among these plankton, Radiolaria are one of the best candidates for time- and environmental-indicators in the modern and past oceans, because radiolarians are the only group which represent entire water column from shallow to deep waters. However, the ecology and evolution of radiolarian were traditionally studied in paleontology and paleoceanography by morphological species. Even Radiolaria has a huge potential for novel proxy of wide and deep environments, there is no criterion to identify the biological species. The motivation for this study is setting the quantitative delimitation to establish the biological species of radiolarians based on molecular data, for leading the future ecological and paleo-environmental study. Identification of the biological species by ribosomal DNA sequences are mainly based on two ways: one is the evolutionary distance of the small subunit (SSU) rDNA, the internal transcribed spacer region of ribosomal DNA (ITS1 and 2), and the large subunit (LSU) rDNA; and the other is the secondary structure of ITS2. In the present study, all four possible genetic markers (SSU, ITS1, ITS2, and LSU rDNA) were amplified from 232 individuals of five radiolarian morphological species and applied to examine the evolutionary distance and secondary structure of rDNA. Comprehensive survey clearly shows that evolutionary distance of ITS1 rDNA and the secondary structure of ITS2 is good to identify the species. Notably, evolutionary distance of ITS1 rDNA is possible to set the common delimitation to identify the biological species, as 0.225 substitution per site. The results show that the ITS1 and ITS 2 rDNA could be the criterion for radiolarian species identification.

  1. Optimising molecular diagnostic capacity for effective control of tuberculosis in high-burden settings.

    PubMed

    Sabiiti, W; Mtafya, B; Kuchaka, D; Azam, K; Viegas, S; Mdolo, A; Farmer, E C W; Khonga, M; Evangelopoulos, D; Honeyborne, I; Rachow, A; Heinrich, N; Ntinginya, N E; Bhatt, N; Davies, G R; Jani, I V; McHugh, T D; Kibiki, G; Hoelscher, M; Gillespie, S H

    2016-08-01

    The World Health Organization's 2035 vision is to reduce tuberculosis (TB) associated mortality by 95%. While low-burden, well-equipped industrialised economies can expect to see this goal achieved, it is challenging in the low- and middle-income countries that bear the highest burden of TB. Inadequate diagnosis leads to inappropriate treatment and poor clinical outcomes. The roll-out of the Xpert(®) MTB/RIF assay has demonstrated that molecular diagnostics can produce rapid diagnosis and treatment initiation. Strong molecular services are still limited to regional or national centres. The delay in implementation is due partly to resources, and partly to the suggestion that such techniques are too challenging for widespread implementation. We have successfully implemented a molecular tool for rapid monitoring of patient treatment response to anti-tuberculosis treatment in three high TB burden countries in Africa. We discuss here the challenges facing TB diagnosis and treatment monitoring, and draw from our experience in establishing molecular treatment monitoring platforms to provide practical insights into successful optimisation of molecular diagnostic capacity in resource-constrained, high TB burden settings. We recommend a holistic health system-wide approach for molecular diagnostic capacity development, addressing human resource training, institutional capacity development, streamlined procurement systems, and engagement with the public, policy makers and implementers of TB control programmes.

  2. [18F]-FDG positron emission tomography--an established clinical tool opening a new window into exercise physiology.

    PubMed

    Rudroff, Thorsten; Kindred, John H; Kalliokoski, Kari K

    2015-05-15

    Positron emission tomography (PET) with [(18)F]-fluorodeoxyglucose (FDG) is an established clinical tool primarily used to diagnose and evaluate disease status in patients with cancer. PET imaging using FDG can be a highly valuable tool to investigate normal human physiology by providing a noninvasive, quantitative measure of glucose uptake into various cell types. Over the past years it has also been increasingly used in exercise physiology studies to identify changes in glucose uptake, metabolism, and muscle activity during different exercise modalities. Metabolically active cells transport FDG, an (18)fluorine-labeled glucose analog tracer, from the blood into the cells where it is then phosphorylated but not further metabolized. This metabolic trapping process forms the basis of this method's use during exercise. The tracer is given to a participant during an exercise task, and the actual PET imaging is performed immediately after the exercise. Provided the uptake period is of sufficient duration, and the imaging is performed shortly after the exercise; the captured image strongly reflects the metabolic activity of the cells used during the task. When combined with repeated blood sampling to determine tracer blood concentration over time, also known as the input function, glucose uptake rate of the tissues can be quantitatively calculated. This synthesis provides an accounting of studies using FDG-PET to measure acute exercise-induced skeletal muscle activity, describes the advantages and limitations of this imaging technique, and discusses its applications to the field of exercise physiology. Copyright © 2015 the American Physiological Society.

  3. Molecular plant breeding: methodology and achievements.

    PubMed

    Varshney, Rajeev K; Hoisington, Dave A; Nayak, Spurthi N; Graner, Andreas

    2009-01-01

    The progress made in DNA marker technology has been remarkable and exciting in recent years. DNA markers have proved valuable tools in various analyses in plant breeding, for example, early generation selection, enrichment of complex F(1)s, choice of donor parent in backcrossing, recovery of recurrent parent genotype in backcrossing, linkage block analysis and selection. Other main areas of applications of molecular markers in plant breeding include germplasm characterization/fingerprinting, determining seed purity, systematic sampling of germplasm, and phylogenetic analysis. Molecular markers, thus, have proved powerful tools in replacing the bioassays and there are now many examples available to show the efficacy of such markers. We have illustrated some basic concepts and methodology of applying molecular markers for enhancing the selection efficiency in plant breeding. Some successful examples of product developments of molecular breeding have also been presented.

  4. Indigoid Photoswitches: Visible Light Responsive Molecular Tools.

    PubMed

    Petermayer, Christian; Dube, Henry

    2018-05-15

    Indigoid photoswitches comprise a class of chromophores that are derived from the parent and well-known indigo dye. Different from most photoswitches their core structures absorb in the visible region of the spectrum in both isomeric states even without substitutions, which makes them especially interesting for applications not tolerant of high-energy UV light. Also different from most current photoswitching systems, they provide highly rigid structures that undergo large yet precisely controllable geometry changes upon photoisomerization. The favorable combination of pronounced photochromism, fast and efficient photoreactions, and high thermal bistability have led to a strongly increased interest in indigoid photoswitches over the last years. As a result, intriguing applications of these chromophores as reversible triggering units in supramolecular and biological chemistry, the field of molecular machines, or smart molecules have been put forward. In this Account current developments in the synthesis, mechanistic understanding of light responsiveness, advantageous properties as phototools, and new applications of indigoid photoswitches are summarized with the focus on hemithioindigo, hemiindigo, and indigo as key examples. Many methods for the synthesis of hemithioindigos are known, but derivatives with a fourth substituent at the double bond could not easily be prepared because of the resulting increased steric hindrance in the products. Recent efforts in our laboratory have provided two different methods to prepare these highly promising photoswitches in very efficient ways. One method is especially designed for the introduction of sterically hindered ketones while the second one allows rapid structural diversification in only three high-yielding synthetic steps. Given the lesser prominence of indigoid photoswitches, mechanistic understanding of their excited state behavior and therefore rational design opportunities for photophysical properties are also much

  5. Implementation of new tools in molecular epidemiology studies of Echinococcus granulosus sensu lato in South America.

    PubMed

    Avila, Héctor G; Santos, Guilherme B; Cucher, Marcela A; Macchiaroli, Natalia; Pérez, Matías G; Baldi, Germán; Jensen, Oscar; Pérez, Verónica; López, Raúl; Negro, Perla; Scialfa, Exequiel; Zaha, Arnaldo; Ferreira, Henrique B; Rosenzvit, Mara; Kamenetzky, Laura

    2017-06-01

    The aim of this work was to determine Echinococcus granulosus sensu lato species and genotypes in intermediate and definitive hosts and in human isolates from endemic regions of Argentina and Brazil including those where no molecular data is available by a combination of classical and alternative molecular tools. A total of 227 samples were isolated from humans, natural intermediate and definitive hosts. Amplification of cytochrome c oxidase subunit I gene fragment was performed and a combination of AluI digestion assay, High Resolution Melting analysis (HRM) assay and DNA sequencing was implemented for Echinococcus species/genotype determination. E. granulosus sensu stricto (G1) was found in sheep (n=35), cattle (n=67) and dogs (n=5); E. ortleppi (G5) in humans (n=3) and cattle (n=108); E. canadensis (G6) in humans (n=2) and E. canadensis (G7) in pigs (n=7). We reported for the first time the presence of E. ortleppi (G5) and E. canadensis (G6) in humans from San Juan and Catamarca Argentinean provinces and E. canadensis (G7) in pigs from Cordoba Argentinean province. In this work, we widened molecular epidemiology studies of E. granulosus s. l. in South America by analyzing several isolates from definitive and intermediate hosts, including humans from endemic regions were such information was scarce or unavailable. The presence of different species/genotypes in the same region and host species reinforce the need of rapid and specific techniques for accurate determination of Echinococcus species such as the ones proposed in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Molecular and Paleontological Evidence for a Post-Cretaceous Origin of Rodents

    PubMed Central

    Wu, Shaoyuan; Wu, Wenyu; Zhang, Fuchun; Ye, Jie; Ni, Xijun; Sun, Jimin; Edwards, Scott V.; Meng, Jin; Organ, Chris L.

    2012-01-01

    The timing of the origin and diversification of rodents remains controversial, due to conflicting results from molecular clocks and paleontological data. The fossil record tends to support an early Cenozoic origin of crown-group rodents. In contrast, most molecular studies place the origin and initial diversification of crown-Rodentia deep in the Cretaceous, although some molecular analyses have recovered estimated divergence times that are more compatible with the fossil record. Here we attempt to resolve this conflict by carrying out a molecular clock investigation based on a nine-gene sequence dataset and a novel set of seven fossil constraints, including two new rodent records (the earliest known representatives of Cardiocraniinae and Dipodinae). Our results indicate that rodents originated around 61.7–62.4 Ma, shortly after the Cretaceous/Paleogene (K/Pg) boundary, and diversified at the intraordinal level around 57.7–58.9 Ma. These estimates are broadly consistent with the paleontological record, but challenge previous molecular studies that place the origin and early diversification of rodents in the Cretaceous. This study demonstrates that, with reliable fossil constraints, the incompatibility between paleontological and molecular estimates of rodent divergence times can be eliminated using currently available tools and genetic markers. Similar conflicts between molecular and paleontological evidence bedevil attempts to establish the origination times of other placental groups. The example of the present study suggests that more reliable fossil calibration points may represent the key to resolving these controversies. PMID:23071573

  7. Biomimetic molecular design tools that learn, evolve, and adapt.

    PubMed

    Winkler, David A

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known "S curve", with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  8. Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies

    NASA Astrophysics Data System (ADS)

    Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.

    2017-09-01

    Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.

  9. Characterization of microsatellite loci in Phormia regina towards expanding molecular applications in forensic entomology.

    PubMed

    Farncombe, K M; Beresford, D; Kyle, C J

    2014-07-01

    Forensic entomology involves the use of insects and arthropods to assist a spectrum of medico-criminal investigations that range from identifying cases of abuse, corpse movements, and most commonly, post mortem interval estimates. Many of these applications focus on the use of blowflies given their predicable life history characteristics in their larval stages. Molecular tools have become increasingly important in the unambiguous identification of larval blowfly species, however, these same tools have the potential to broaden the array of molecular applications in forensic entomology to include individual identifications and population assignments. Herein, we establish a microsatellite profiling system for the blowfly, Phormiaregina (Diptera: Calliphoridae). The goal being to create a system to identify the population genetic structure of this species and subsequently establish if these data are amenable to identifying corpse movements based on the geographic distribution of specific genetic clusters of blowflies. Using next generation sequencing technology, we screened a partial genomic DNA sequence library of P.regina, searching for di-, tetra-, and penta-nucleotide microsatellite loci. We identified and developed primers for 84 highly repetitive segments of DNA, of which 14 revealed consistent genotypes and reasonable levels of genetic variation (4-26 alleles/locus; heterozygosity ranged from 0.385 to 0.909). This study provides the first step in assessing the utility of microsatellite markers to track the movements and sources of corpses via blowflies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Transcriptome profiling of Diachasmimorpha longicaudata towards useful molecular tools for population management.

    PubMed

    Mannino, M Constanza; Rivarola, Máximo; Scannapieco, Alejandra C; González, Sergio; Farber, Marisa; Cladera, Jorge L; Lanzavecchia, Silvia B

    2016-10-12

    Diachasmimorpha longicaudata (Hymenoptera: Braconidae) is a solitary parasitoid of Tephritidae (Diptera) fruit flies of economic importance currently being mass-reared in bio-factories and successfully used worldwide. A peculiar biological aspect of Hymenoptera is its haplo-diploid life cycle, where females (diploid) develop from fertilized eggs and males (haploid) from unfertilized eggs. Diploid males were described in many species and recently evidenced in D. longicaudata by mean of inbreeding studies. Sex determination in this parasitoid is based on the Complementary Sex Determination (CSD) system, with alleles from at least one locus involved in early steps of this pathway. Since limited information is available about genetics of this parasitoid species, a deeper analysis on D. longicaudata's genomics is required to provide molecular tools for achieving a more cost effective production under artificial rearing conditions. We report here the first transcriptome analysis of male-larvae, adult females and adult males of D. longicaudata using 454-pyrosequencing. A total of 469766 reads were analyzed and 8483 high-quality isotigs were assembled. After functional annotation, a total of 51686 unigenes were produced, from which, 7021 isotigs and 20227 singletons had at least one BLAST hit against the NCBI non-redundant protein database. A preliminary comparison of adult female and male evidenced that 98 transcripts showed differential expression profiles, with at least a 10-fold difference. Among the functionally annotated transcripts we detected four sequences potentially involved in sex determination and three homologues to two known genes involved in the sex determination cascade. Finally, a total of 4674SimpleSequence Repeats (SSRs) were in silico identified and characterized. The information obtained here will significantly contribute to the development of D. longicaudata functional genomics, genetics and population-based genome studies. Thousands of new

  11. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE PAGES

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  12. AutoFACT: An Automatic Functional Annotation and Classification Tool

    PubMed Central

    Koski, Liisa B; Gray, Michael W; Lang, B Franz; Burger, Gertraud

    2005-01-01

    Background Assignment of function to new molecular sequence data is an essential step in genomics projects. The usual process involves similarity searches of a given sequence against one or more databases, an arduous process for large datasets. Results We present AutoFACT, a fully automated and customizable annotation tool that assigns biologically informative functions to a sequence. Key features of this tool are that it (1) analyzes nucleotide and protein sequence data; (2) determines the most informative functional description by combining multiple BLAST reports from several user-selected databases; (3) assigns putative metabolic pathways, functional classes, enzyme classes, GeneOntology terms and locus names; and (4) generates output in HTML, text and GFF formats for the user's convenience. We have compared AutoFACT to four well-established annotation pipelines. The error rate of functional annotation is estimated to be only between 1–2%. Comparison of AutoFACT to the traditional top-BLAST-hit annotation method shows that our procedure increases the number of functionally informative annotations by approximately 50%. Conclusion AutoFACT will serve as a useful annotation tool for smaller sequencing groups lacking dedicated bioinformatics staff. It is implemented in PERL and runs on LINUX/UNIX platforms. AutoFACT is available at . PMID:15960857

  13. Why You Should Establish a Connection to the Internet.

    ERIC Educational Resources Information Center

    Hill, Judy A.; Misic, Mark M.

    1996-01-01

    Provides the rationale for establishing a connection to the Internet. Describes Internet services, including e-mail, telnet, file transfer protocol (FTP), USENET, gopher, Archie, and World Wide Web. Identifies reasons why the Internet is a valuable tool. Outlines steps for establishing a connection and discusses the future of the Internet. A…

  14. Variable expression of molecular markers in juvenile nasopharyngeal angiofibroma.

    PubMed

    Mishra, A; Pandey, A; Mishra, S C

    2017-09-01

    Molecular categorisation may explain the wide variation in the clinical characteristics of juvenile nasopharyngeal angiofibroma. Variations in molecular markers in juvenile nasopharyngeal angiofibroma in an Indian population were investigated and compared with global reports. Variable molecular marker expression was demonstrated at the regional and global levels. A wide variation in molecular characteristics is evident. Molecular data have been reported for only 11 countries, indicating a clear geographical bias. Only 58 markers have been studied, and most are yet to be validated. Research into the molecular epidemiology of juvenile nasopharyngeal angiofibroma is still in its infancy. Although the molecular variation is not well understood, data obtained so far have prompted important research questions. Hence, multicentre collaborative molecular studies are needed to establish the aetiopathogenesis and establish molecular surrogates for clinical characteristics.

  15. Establishment of a Nipah virus rescue system.

    PubMed

    Yoneda, Misako; Guillaume, Vanessa; Ikeda, Fusako; Sakuma, Yuki; Sato, Hiroki; Wild, T Fabian; Kai, Chieko

    2006-10-31

    Nipah virus (NiV), a paramyxovirus, was first discovered in Malaysia in 1998 in an outbreak of infection in pigs and humans and incurred a high fatality rate in humans. Fruit bats, living in vast areas extending from India to the western Pacific, were identified as the natural reservoir of the virus. However, the mechanisms that resulted in severe pathogenicity in humans (up to 70% mortality) and that enabled crossing the species barrier were not known. In this study, we established a system that enabled the rescue of replicating NiVs from a cloned DNA by cotransfection of a constructed full-length cDNA clone and supporting plasmids coding virus nucleoprotein, phosphoprotein, and polymerase with the infection of the recombinant vaccinia virus, MVAGKT7, expressing T7 RNA polymerase. The rescued NiV (rNiV), by using the newly developed reverse genetics system, showed properties in vitro that were similar to the parent virus and retained the severe pathogenicity in a previously established animal model by experimental infection. A recombinant NiV was also developed, expressing enhanced green fluorescent protein (rNiV-EGFP). Using the virus, permissibility of NiV was compared with the presence of a known cellular receptor, ephrin B2, in a number of cell lines of different origins. Interestingly, two cell lines expressing ephrin B2 were not susceptible for rNiV-EGFP, indicating that additional factors are clearly required for full NiV replication. The reverse genetics for NiV will provide a powerful tool for the analysis of the molecular mechanisms of pathogenicity and cross-species infection.

  16. Coupling scanning tunneling microscope and supersonic molecular beams: a unique tool for in situ investigation of the morphology of activated systems.

    PubMed

    Smerieri, M; Reichelt, R; Savio, L; Vattuone, L; Rocca, M

    2012-09-01

    We report here on a new experimental apparatus combining a commercial low temperature scanning tunneling microscope with a supersonic molecular beam. This setup provides a unique tool for the in situ investigation of the topography of activated adsorption systems and opens thus new interesting perspectives. It has been tested towards the formation of the O/Ag(110) added rows reconstruction and of their hydroxylation, comparing data recorded upon O(2) exposure at thermal and hyperthermal energies.

  17. Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic.

    PubMed

    Suliman, Noor Azuin; Mat Taib, Che Norma; Mohd Moklas, Mohamad Aris; Adenan, Mohd Ilham; Hidayat Baharuldin, Mohamad Taufik; Basir, Rusliza

    2016-01-01

    Nootropics or smart drugs are well-known compounds or supplements that enhance the cognitive performance. They work by increasing the mental function such as memory, creativity, motivation, and attention. Recent researches were focused on establishing a new potential nootropic derived from synthetic and natural products. The influence of nootropic in the brain has been studied widely. The nootropic affects the brain performances through number of mechanisms or pathways, for example, dopaminergic pathway. Previous researches have reported the influence of nootropics on treating memory disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Those disorders are observed to impair the same pathways of the nootropics. Thus, recent established nootropics are designed sensitively and effectively towards the pathways. Natural nootropics such as Ginkgo biloba have been widely studied to support the beneficial effects of the compounds. Present review is concentrated on the main pathways, namely, dopaminergic and cholinergic system, and the involvement of amyloid precursor protein and secondary messenger in improving the cognitive performance.

  18. Establishing Natural Nootropics: Recent Molecular Enhancement Influenced by Natural Nootropic

    PubMed Central

    Adenan, Mohd Ilham; Hidayat Baharuldin, Mohamad Taufik

    2016-01-01

    Nootropics or smart drugs are well-known compounds or supplements that enhance the cognitive performance. They work by increasing the mental function such as memory, creativity, motivation, and attention. Recent researches were focused on establishing a new potential nootropic derived from synthetic and natural products. The influence of nootropic in the brain has been studied widely. The nootropic affects the brain performances through number of mechanisms or pathways, for example, dopaminergic pathway. Previous researches have reported the influence of nootropics on treating memory disorders, such as Alzheimer's, Parkinson's, and Huntington's diseases. Those disorders are observed to impair the same pathways of the nootropics. Thus, recent established nootropics are designed sensitively and effectively towards the pathways. Natural nootropics such as Ginkgo biloba have been widely studied to support the beneficial effects of the compounds. Present review is concentrated on the main pathways, namely, dopaminergic and cholinergic system, and the involvement of amyloid precursor protein and secondary messenger in improving the cognitive performance. PMID:27656235

  19. Biomimetic molecular design tools that learn, evolve, and adapt

    PubMed Central

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872

  20. The cognitive life of mechanical molecular models.

    PubMed

    Charbonneau, Mathieu

    2013-12-01

    The use of physical models of molecular structures as research tools has been central to the development of biochemistry and molecular biology. Intriguingly, it has received little attention from scholars of science. In this paper, I argue that these physical models are not mere three-dimensional representations but that they are in fact very special research tools: they are cognitive augmentations. Despite the fact that they are external props, these models serve as cognitive tools that augment and extend the modeler's cognitive capacities and performance in molecular modeling tasks. This cognitive enhancement is obtained because of the way the modeler interacts with these models, the models' materiality contributing to the solving of the molecule's structure. Furthermore, I argue that these material models and their component parts were designed, built and used specifically to serve as cognitive facilitators and cognitive augmentations. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Molecular tools for the identification of Tuber melanosporum in agroindustry.

    PubMed

    Séjalon-Delmas, N; Roux, C; Martins, M; Kulifaj, M; Bécard, G; Dargent, R

    2000-06-01

    Tuber melanosporum Vitt., Tuber magnatum Pico, and Tuber uncinatum Chat. can be differentiated by their morphological characters. Fraud problems have arisen recently with the importation to Europe of truffles from China. T. melanosporum is morphologically very close, but distinct from the Chinese species [Tuber indicum (Cooke and Massee) and T. himalayense BC (Zhang and Winter)]. We have optimized molecular tools to unequivocally identify T. melanosporum. DNA extraction from ascocarps of black truffles is not straightforward. Problems to obtain pure DNA are due to high contents of phenolic compounds, melanine, and various polymers (proteins, polysaccharides, etc). These compounds coprecipitate with the DNA during extraction and strongly inhibit the PCR reaction. We have developed an efficient and reliable protocol for DNA extraction from truffle ascocarps. It was used successfully for DNA extraction from mycorrhizal root tips as well as from canned preparations of T. melanosporum. Several approaches to identify T. melanosporum by PCR were developed. Two specific primers for T. melanosporum were designed after comparison of the ITS region of this species with those of three Chinese fungi. They proved to be efficient to specifically detect the presence of T. melanosporum by PCR. The mycorrhizal status of trees inoculated with T. melanosporum but unable to produce truffles was confirmed in a single-step PCR reaction. A multiplex PCR approach was also developed with three sets of primers (including a specific one for Chinese truffles) to detect, in one PCR reaction, the presence of any other Tuber species mixed with T. melanosporum ascocarps. This optimized protocol, in association with the specific primers we designed, is applicable to quality control in the truffle industry from the production stages to final commercial products.

  2. Modeling Complex Workflow in Molecular Diagnostics

    PubMed Central

    Gomah, Mohamed E.; Turley, James P.; Lu, Huimin; Jones, Dan

    2010-01-01

    One of the hurdles to achieving personalized medicine has been implementing the laboratory processes for performing and reporting complex molecular tests. The rapidly changing test rosters and complex analysis platforms in molecular diagnostics have meant that many clinical laboratories still use labor-intensive manual processing and testing without the level of automation seen in high-volume chemistry and hematology testing. We provide here a discussion of design requirements and the results of implementation of a suite of lab management tools that incorporate the many elements required for use of molecular diagnostics in personalized medicine, particularly in cancer. These applications provide the functionality required for sample accessioning and tracking, material generation, and testing that are particular to the evolving needs of individualized molecular diagnostics. On implementation, the applications described here resulted in improvements in the turn-around time for reporting of more complex molecular test sets, and significant changes in the workflow. Therefore, careful mapping of workflow can permit design of software applications that simplify even the complex demands of specialized molecular testing. By incorporating design features for order review, software tools can permit a more personalized approach to sample handling and test selection without compromising efficiency. PMID:20007844

  3. Advancing the education in molecular diagnostics: the IFCC-Initiative "Clinical Molecular Biology Curriculum" (C-CMBC); a ten-year experience.

    PubMed

    Lianidou, Evi; Ahmad-Nejad, Parviz; Ferreira-Gonzalez, Andrea; Izuhara, Kenji; Cremonesi, Laura; Schroeder, Maria-Eugenia; Richter, Karin; Ferrari, Maurizio; Neumaier, Michael

    2014-09-25

    Molecular techniques are becoming commonplace in the diagnostic laboratory. Their applications influence all major phases of laboratory medicine including predisposition/genetic risk, primary diagnosis, therapy stratification and prognosis. Readily available laboratory hardware and wetware (i.e. consumables and reagents) foster rapid dissemination to countries that are just establishing molecular testing programs. Appropriate skill levels extending beyond the technical procedure are required for analytical and diagnostic proficiency that is mandatory in molecular genetic testing. An international committee (C-CMBC) of the International Federation for Clinical Chemistry (IFCC) was established to disseminate skills in molecular genetic testing in member countries embarking on the respective techniques. We report the ten-year experience with different teaching and workshop formats for beginners in molecular diagnostics. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. HIV-TRACE (Transmission Cluster Engine): a tool for large scale molecular epidemiology of HIV-1 and other rapidly evolving pathogens.

    PubMed

    Kosakovsky Pond, Sergei L; Weaver, Steven; Leigh Brown, Andrew J; Wertheim, Joel O

    2018-01-31

    In modern applications of molecular epidemiology, genetic sequence data are routinely used to identify clusters of transmission in rapidly evolving pathogens, most notably HIV-1. Traditional 'shoeleather' epidemiology infers transmission clusters by tracing chains of partners sharing epidemiological connections (e.g., sexual contact). Here, we present a computational tool for identifying a molecular transmission analog of such clusters: HIV-TRACE (TRAnsmission Cluster Engine). HIV-TRACE implements an approach inspired by traditional epidemiology, by identifying chains of partners whose viral genetic relatedness imply direct or indirect epidemiological connections. Molecular transmission clusters are constructed using codon-aware pairwise alignment to a reference sequence followed by pairwise genetic distance estimation among all sequences. This approach is computationally tractable and is capable of identifying HIV-1 transmission clusters in large surveillance databases comprising tens or hundreds of thousands of sequences in near real time, i.e., on the order of minutes to hours. HIV-TRACE is available at www.hivtrace.org and from github.com/veg/hivtrace, along with the accompanying result visualization module from github.com/veg/hivtrace-viz. Importantly, the approach underlying HIV-TRACE is not limited to the study of HIV-1 and can be applied to study outbreaks and epidemics of other rapidly evolving pathogens. © The Author 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Evolution of egg coats: linking molecular biology and ecology.

    PubMed

    Shu, Longfei; Suter, Marc J-F; Räsänen, Katja

    2015-08-01

    One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.

  6. Photoswitching of DNA Hybridization Using a Molecular Motor.

    PubMed

    Lubbe, Anouk S; Liu, Qing; Smith, Sanne J; de Vries, Jan Willem; Kistemaker, Jos C M; de Vries, Alex H; Faustino, Ignacio; Meng, Zhuojun; Szymanski, Wiktor; Herrmann, Andreas; Feringa, Ben L

    2018-04-18

    Reversible control over the functionality of biological systems via external triggers may be used in future medicine to reduce the need for invasive procedures. Additionally, externally regulated biomacromolecules are now considered as particularly attractive tools in nanoscience and the design of smart materials, due to their highly programmable nature and complex functionality. Incorporation of photoswitches into biomolecules, such as peptides, antibiotics, and nucleic acids, has generated exciting results in the past few years. Molecular motors offer the potential for new and more precise methods of photoregulation, due to their multistate switching cycle, unidirectionality of rotation, and helicity inversion during the rotational steps. Aided by computational studies, we designed and synthesized a photoswitchable DNA hairpin, in which a molecular motor serves as the bridgehead unit. After it was determined that motor function was not affected by the rigid arms of the linker, solid-phase synthesis was employed to incorporate the motor into an 8-base-pair self-complementary DNA strand. With the photoswitchable bridgehead in place, hairpin formation was unimpaired, while the motor part of this advanced biohybrid system retains excellent photochemical properties. Rotation of the motor generates large changes in structure, and as a consequence the duplex stability of the oligonucleotide could be regulated by UV light irradiation. Additionally, Molecular Dynamics computations were employed to rationalize the observed behavior of the motor-DNA hybrid. The results presented herein establish molecular motors as powerful multistate switches for application in biological environments.

  7. Exploring molecular networks using MONET ontology.

    PubMed

    Silva, João Paulo Müller da; Lemke, Ney; Mombach, José Carlos; Souza, José Guilherme Camargo de; Sinigaglia, Marialva; Vieira, Renata

    2006-03-31

    The description of the complex molecular network responsible for cell behavior requires new tools to integrate large quantities of experimental data in the design of biological information systems. These tools could be used in the characterization of these networks and in the formulation of relevant biological hypotheses. The building of an ontology is a crucial step because it integrates in a coherent framework the concepts necessary to accomplish such a task. We present MONET (molecular network), an extensible ontology and an architecture designed to facilitate the integration of data originating from different public databases in a single- and well-documented relational database, that is compatible with MONET formal definition. We also present an example of an application that can easily be implemented using these tools.

  8. Establishment of cholangiocarcinoma cell lines from patients in the endemic area of liver fluke infection in Thailand.

    PubMed

    Saensa-Ard, Sunitta; Leuangwattanawanit, Saman; Senggunprai, Laddawan; Namwat, Nisana; Kongpetch, Sarinya; Chamgramol, Yaovalux; Loilome, Watcharin; Khansaard, Walaiporn; Jusakul, Apinya; Prawan, Auemduan; Pairojkul, Chawalit; Khantikeo, Narong; Yongvanit, Puangrat; Kukongviriyapan, Veerapol

    2017-11-01

    Cholangiocarcinoma is a rare type of cancer which is an increasingly discernible health threat. The disease is usually very difficult in diagnosis and various treatment modalities are typically not effective. Cholangiocarcinoma is a complex and very heterogeneous malignancy characterized by tumor location, different risk factors, molecular profiling, and prognosis. Cancer cell lines represent an important tool for investigation in various aspects of tumor biology and molecular therapeutics. We established two cell lines, KKU-452 and KKU-023, which were derived from patients residing in the endemic area of liver fluke infection in Thailand. Both of tumor tissues have gross pathology of perihilar and intrahepatic mass-forming cholangiocarcinoma. Two cell lines were characterized for their biological, molecular and genetic properties. KKU-452 and KKU-023 cells are both adherent cells with epithelium morphology, but have some differences in their growth pattern (a doubling time of 17.9 vs 34.8 h, respectively) and the expression of epithelial bile duct markers, CK7 and CK19. Cytogenetic analysis of KKU-452 and KKU-023 cells revealed their highly complex karyotypes; hypertriploid and hypotetraploid, respectively, with multiple chromosomal aberrations. Both cell lines showed mutations in p53 but not in KRAS. KKU-452 showed a very rapid migration and invasion properties in concert with low expression of E-cadherin and high expression of N-cadherin, whereas KKU-023 showed opposite characters. KKU-023, but not KKU-452, showed in vivo tumorigenicity in xenografted nude mice. Those two established cholangiocarcinoma cell lines with unique characters may be valuable for better understanding the process of carcinogenesis and developing new therapeutics for the patients.

  9. MOLECULAR DETECTION OF CRYPTOSPORIDIUM OOCYSTS IN WATER: THE CHALLENGE AND PROMISE

    EPA Science Inventory

    Because of the presence of host-adapted Cryptosporidium species and genotypes, molecular tools can help assess the source and hazardous potential of Cryptosporidium oocysts in water. The development and use of molecular tools in the analysis of environmental samples have gone tho...

  10. Recent progress and challenges in population genetics of polyploid organisms: an overview of current state-of-the-art molecular and statistical tools.

    PubMed

    Dufresne, France; Stift, Marc; Vergilino, Roland; Mable, Barbara K

    2014-01-01

    Despite the importance of polyploidy and the increasing availability of new genomic data, there remain important gaps in our knowledge of polyploid population genetics. These gaps arise from the complex nature of polyploid data (e.g. multiple alleles and loci, mixed inheritance patterns, association between ploidy and mating system variation). Furthermore, many of the standard tools for population genetics that have been developed for diploids are often not feasible for polyploids. This review aims to provide an overview of the state-of-the-art in polyploid population genetics and to identify the main areas where further development of molecular techniques and statistical theory is required. We review commonly used molecular tools (amplified fragment length polymorphism, microsatellites, Sanger sequencing, next-generation sequencing and derived technologies) and their challenges associated with their use in polyploid populations: that is, allele dosage determination, null alleles, difficulty of distinguishing orthologues from paralogues and copy number variation. In addition, we review the approaches that have been used for population genetic analysis in polyploids and their specific problems. These problems are in most cases directly associated with dosage uncertainty and the problem of inferring allele frequencies and assumptions regarding inheritance. This leads us to conclude that for advancing the field of polyploid population genetics, most priority should be given to development of new molecular approaches that allow efficient dosage determination, and to further development of analytical approaches to circumvent dosage uncertainty and to accommodate 'flexible' modes of inheritance. In addition, there is a need for more simulation-based studies that test what kinds of biases could result from both existing and novel approaches. © 2013 John Wiley & Sons Ltd.

  11. 10 CFR 434.606 - Simulation tool.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 3 2013-01-01 2013-01-01 false Simulation tool. 434.606 Section 434.606 Energy DEPARTMENT... RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.606 Simulation tool. 606.1 The criteria established in subsection 521 for the selection of a simulation tool shall be followed when using the...

  12. 10 CFR 434.606 - Simulation tool.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 3 2012-01-01 2012-01-01 false Simulation tool. 434.606 Section 434.606 Energy DEPARTMENT... RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.606 Simulation tool. 606.1 The criteria established in subsection 521 for the selection of a simulation tool shall be followed when using the...

  13. 10 CFR 434.606 - Simulation tool.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Simulation tool. 434.606 Section 434.606 Energy DEPARTMENT... RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.606 Simulation tool. 606.1 The criteria established in subsection 521 for the selection of a simulation tool shall be followed when using the...

  14. 10 CFR 434.606 - Simulation tool.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 3 2014-01-01 2014-01-01 false Simulation tool. 434.606 Section 434.606 Energy DEPARTMENT... RESIDENTIAL BUILDINGS Building Energy Compliance Alternative § 434.606 Simulation tool. 606.1 The criteria established in subsection 521 for the selection of a simulation tool shall be followed when using the...

  15. Promising Practices in Instruction of Discovery Tools

    ERIC Educational Resources Information Center

    Buck, Stefanie; Steffy, Christina

    2013-01-01

    Libraries are continually changing to meet the needs of users; this includes implementing discovery tools, also referred to as web-scale discovery tools, to make searching library resources easier. Because these tools are so new, it is difficult to establish definitive best practices for teaching these tools; however, promising practices are…

  16. An automated genotyping tool for enteroviruses and noroviruses.

    PubMed

    Kroneman, A; Vennema, H; Deforche, K; v d Avoort, H; Peñaranda, S; Oberste, M S; Vinjé, J; Koopmans, M

    2011-06-01

    Molecular techniques are established as routine in virological laboratories and virus typing through (partial) sequence analysis is increasingly common. Quality assurance for the use of typing data requires harmonization of genotype nomenclature, and agreement on target genes, depending on the level of resolution required, and robustness of methods. To develop and validate web-based open-access typing-tools for enteroviruses and noroviruses. An automated web-based typing algorithm was developed, starting with BLAST analysis of the query sequence against a reference set of sequences from viruses in the family Picornaviridae or Caliciviridae. The second step is phylogenetic analysis of the query sequence and a sub-set of the reference sequences, to assign the enterovirus type or norovirus genotype and/or variant, with profile alignment, construction of phylogenetic trees and bootstrap validation. Typing is performed on VP1 sequences of Human enterovirus A to D, and ORF1 and ORF2 sequences of genogroup I and II noroviruses. For validation, we used the tools to automatically type sequences in the RIVM and CDC enterovirus databases and the FBVE norovirus database. Using the typing-tools, 785(99%) of 795 Enterovirus VP1 sequences, and 8154(98.5%) of 8342 norovirus sequences were typed in accordance with previously used methods. Subtyping into variants was achieved for 4439(78.4%) of 5838 NoV GII.4 sequences. The online typing-tools reliably assign genotypes for enteroviruses and noroviruses. The use of phylogenetic methods makes these tools robust to ongoing evolution. This should facilitate standardized genotyping and nomenclature in clinical and public health laboratories, thus supporting inter-laboratory comparisons. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Isothermal multiple displacement amplification: a methodical approach enhancing molecular routine diagnostics of microcarcinomas and small biopsies.

    PubMed

    Mairinger, Fabian D; Walter, Robert Fh; Vollbrecht, Claudia; Hager, Thomas; Worm, Karl; Ting, Saskia; Wohlschläger, Jeremias; Zarogoulidis, Paul; Zarogoulidis, Konstantinos; Schmid, Kurt W

    2014-01-01

    Isothermal multiple displacement amplification (IMDA) can be a powerful tool in molecular routine diagnostics for homogeneous and sequence-independent whole-genome amplification of notably small tumor samples, eg, microcarcinomas and biopsies containing a small amount of tumor. Currently, this method is not well established in pathology laboratories. We designed a study to confirm the feasibility and convenience of this method for routine diagnostics with formalin-fixed, paraffin-embedded samples prepared by laser-capture microdissection. A total of 250 μg DNA (concentration 5 μg/μL) was generated by amplification over a period of 8 hours with a material input of approximately 25 cells, approximately equivalent to 175 pg of genomic DNA. In the generated DNA, a representation of all chromosomes could be shown and the presence of elected genes relevant for diagnosis in clinical samples could be proven. Mutational analysis of clinical samples could be performed without any difficulty and showed concordance with earlier diagnostic findings. We established the feasibility and convenience of IMDA for routine diagnostics. We also showed that small amounts of DNA, which were not analyzable with current molecular methods, could be sufficient for a wide field of applications in molecular routine diagnostics when they are preamplified with IMDA.

  18. Recent advances of molecular toolbox construction expand Pichia pastoris in synthetic biology applications.

    PubMed

    Kang, Zhen; Huang, Hao; Zhang, Yunfeng; Du, Guocheng; Chen, Jian

    2017-01-01

    Pichia pastoris: (reclassified as Komagataella phaffii), a methylotrophic yeast strain has been widely used for heterologous protein production because of its unique advantages, such as readily achievable high-density fermentation, tractable genetic modifications and typical eukaryotic post-translational modifications. More recently, P. pastoris as a metabolic pathway engineering platform has also gained much attention. In this mini-review, we addressed recent advances of molecular toolboxes, including synthetic promoters, signal peptides, and genome engineering tools that established for P. pastoris. Furthermore, the applications of P. pastoris towards synthetic biology were also discussed and prospected especially in the context of genome-scale metabolic pathway analysis.

  19. Comparison of Established and Emerging Biodosimetry Assays

    PubMed Central

    Rothkamm, K.; Beinke, C.; Romm, H.; Badie, C.; Balagurunathan, Y.; Barnard, S.; Bernard, N.; Boulay-Greene, H.; Brengues, M.; De Amicis, A.; De Sanctis, S.; Greither, R.; Herodin, F.; Jones, A.; Kabacik, S.; Knie, T.; Kulka, U.; Lista, F.; Martigne, P.; Missel, A.; Moquet, J.; Oestreicher, U.; Peinnequin, A.; Poyot, T.; Roessler, U.; Scherthan, H.; Terbrueggen, B.; Thierens, H.; Valente, M.; Vral, A.; Zenhausern, F.; Meineke, V.; Braselmann, H.; Abend, M.

    2014-01-01

    Rapid biodosimetry tools are required to assist with triage in the case of a large-scale radiation incident. Here, we aimed to determine the dose-assessment accuracy of the well-established dicentric chromosome assay (DCA) and cytokinesis-block micronucleus assay (CBMN) in comparison to the emerging γ-H2AX foci and gene expression assays for triage mode biodosimetry and radiation injury assessment. Coded blood samples exposed to 10 X-ray doses (240 kVp, 1 Gy/min) of up to 6.4 Gy were sent to participants for dose estimation. Report times were documented for each laboratory and assay. The mean absolute difference (MAD) of estimated doses relative to the true doses was calculated. We also merged doses into binary dose categories of clinical relevance and examined accuracy, sensitivity and specificity of the assays. Dose estimates were reported by the first laboratories within 0.3–0.4 days of receipt of samples for the γ-H2AX and gene expression assays compared to 2.4 and 4 days for the DCA and CBMN assays, respectively. Irrespective of the assay we found a 2.5–4-fold variation of interlaboratory accuracy per assay and lowest MAD values for the DCA assay (0.16 Gy) followed by CBMN (0.34 Gy), gene expression (0.34 Gy) and γ-H2AX (0.45 Gy) foci assay. Binary categories of dose estimates could be discriminated with equal efficiency for all assays, but at doses ≥1.5 Gy a 10% decrease in efficiency was observed for the foci assay, which was still comparable to the CBMN assay. In conclusion, the DCA has been confirmed as the gold standard biodosimetry method, but in situations where speed and throughput are more important than ultimate accuracy, the emerging rapid molecular assays have the potential to become useful triage tools. PMID:23862692

  20. Exploring the relative reactivities of the hydroxyl groups of monosaccharides by molecular modeling and molecular mechanics

    NASA Astrophysics Data System (ADS)

    Box, V. G. S.; Evans-Lora, T.

    2000-01-01

    The molecular modeling program STR3DI.EXE, and its molecular mechanics module, QVBMM, were used to simulate, and evaluate, the stereo-electronic effects in the mono-alkoxides of the 4,6- O-ethylideneglycopyranosides of allose, mannose, galactose and glucose. This study has confirmed the ability of these molecular modeling tools to predict the regiochemistry and reactivity of these sugar derivatives, and holds considerable implications for unraveling the chemistry of the rare monosaccharides.

  1. Screening mitochondrial DNA sequence variation as an alternative method for tracking established and outbreak populations of Queensland fruit fly at the species southern range limit.

    PubMed

    Blacket, Mark J; Malipatil, Mali B; Semeraro, Linda; Gillespie, Peter S; Dominiak, Bernie C

    2017-04-01

    Understanding the relationship between incursions of insect pests and established populations is critical to implementing effective control. Studies of genetic variation can provide powerful tools to examine potential invasion pathways and longevity of individual pest outbreaks. The major fruit fly pest in eastern Australia, Queensland fruit fly Bactrocera tryoni (Froggatt), has been subject to significant long-term quarantine and population reduction control measures in the major horticulture production areas of southeastern Australia, at the species southern range limit. Previous studies have employed microsatellite markers to estimate gene flow between populations across this region. In this study, we used an independent genetic marker, mitochondrial DNA (mtDNA) sequences, to screen genetic variation in established and adjacent outbreak populations in southeastern Australia. During the study period, favorable environmental conditions resulted in multiple outbreaks, which appeared genetically distinctive and relatively geographically localized, implying minimal dispersal between simultaneous outbreaks. Populations in established regions were found to occur over much larger areas. Screening mtDNA (female) lineages proved to be an effective alternative genetic tool to assist in understanding fruit fly population dynamics and provide another possible molecular method that could now be employed for better understanding of the ecology and evolution of this and other pest species.

  2. Molecular Tools To Study Preharvest Food Safety Challenges.

    PubMed

    Kumar, Deepak; Thakur, Siddhartha

    2018-02-01

    Preharvest food safety research and activities have advanced over time with the recognition of the importance and complicated nature of the preharvest phase of food production. In developed nations, implementation of preharvest food safety procedures along with strict monitoring and containment at various postharvest stages such as slaughter, processing, storage, and distribution have remarkably reduced the burden of foodborne pathogens in humans. Early detection and adequate surveillance of pathogens at the preharvest stage is of the utmost importance to ensure a safe meat supply. There is an urgent need to develop rapid, cost-effective, and point-of-care diagnostics which could be used at the preharvest stage and would complement postmortem and other quality checks performed at the postharvest stage. With newer methods and technologies, more efforts need to be directed toward developing rapid, sensitive, and specific methods for detection or screening of foodborne pathogens at the preharvest stage. In this review, we will discuss the molecular methods available for detection and molecular typing of bacterial foodborne pathogens at the farm. Such methods include conventional techniques such as endpoint PCR, real-time PCR, DNA microarray, and more advanced techniques such as matrix-assisted layer desorption ionization-time of flight mass spectrometry and whole-genome sequencing.

  3. Combining Coarse-Grained Protein Models with Replica-Exchange All-Atom Molecular Dynamics

    PubMed Central

    Wabik, Jacek; Kmiecik, Sebastian; Gront, Dominik; Kouza, Maksim; Koliński, Andrzej

    2013-01-01

    We describe a combination of all-atom simulations with CABS, a well-established coarse-grained protein modeling tool, into a single multiscale protocol. The simulation method has been tested on the C-terminal beta hairpin of protein G, a model system of protein folding. After reconstructing atomistic details, conformations derived from the CABS simulation were subjected to replica-exchange molecular dynamics simulations with OPLS-AA and AMBER99sb force fields in explicit solvent. Such a combination accelerates system convergence several times in comparison with all-atom simulations starting from the extended chain conformation, demonstrated by the analysis of melting curves, the number of native-like conformations as a function of time and secondary structure propagation. The results strongly suggest that the proposed multiscale method could be an efficient and accurate tool for high-resolution studies of protein folding dynamics in larger systems. PMID:23665897

  4. The supersonic molecular beam injector as a reliable tool for plasma fueling and physics experiment on HL-2A.

    PubMed

    Chen, C Y; Yu, D L; Feng, B B; Yao, L H; Song, X M; Zang, L G; Gao, X Y; Yang, Q W; Duan, X R

    2016-09-01

    On HL-2A tokamak, supersonic molecular beam injection (SMBI) has been developed as a routine refueling method. The key components of the system are an electromagnetic valve and a conic nozzle. The valve and conic nozzle are assembled to compose the simplified Laval nozzle for generating the pulsed beam. The appurtenance of the system includes the cooling system serving the cooled SMBI generation and the in situ calibration component for quantitative injection. Compared with the conventional gas puffing, the SMBI features prompt response and larger fueling flux. These merits devote the SMBI a good fueling method, an excellent plasma density feedback control tool, and an edge localized mode mitigation resource.

  5. Integrative pathway knowledge bases as a tool for systems molecular medicine.

    PubMed

    Liang, Mingyu

    2007-08-20

    There exists a sense of urgency to begin to generate a cohesive assembly of biomedical knowledge as the pace of knowledge accumulation accelerates. The urgency is in part driven by the emergence of systems molecular medicine that emphasizes the combination of systems analysis and molecular dissection in the future of medical practice and research. A potentially powerful approach is to build integrative pathway knowledge bases that link organ systems function with molecules.

  6. Establishing Minimum Flow Requirements Based on Benthic Vegetation: What are Some Issues Related to Identifying Quantity of Inflow and Tools Used to Quantify Ecosystem Response?

    NASA Astrophysics Data System (ADS)

    Hunt, M. J.; Nuttle, W. K.; Cosby, B. J.; Marshall, F. E.

    2005-05-01

    Establishing minimum flow requirements in aquatic ecosystems is one way to stipulate controls on water withdrawals in a watershed. The basis of the determination is to identify the amount of flow needed to sustain a threshold ecological function. To develop minimum flow criteria an understanding of ecological response in relation to flow is essential. Several steps are needed including: (1) identification of important resources and ecological functions, (2) compilation of available information, (3) determination of historical conditions, (4) establishment of technical relationships between inflow and resources, and (5) identification of numeric criteria that reflect the threshold at which resources are harmed. The process is interdisciplinary requiring the integration of hydrologic and ecologic principles with quantitative assessments. The tools used quantify the ecological response and key questions related to how the quantity of flow influences the ecosystem are examined by comparing minimum flow determination in two different aquatic systems in South Florida. Each system is characterized by substantial hydrologic alteration. The first, the Caloosahatchee River is a riverine system, located on the southwest coast of Florida. The second, the Everglades- Florida Bay ecotone, is a wetland mangrove ecosystem, located on the southern tip of the Florida peninsula. In both cases freshwater submerged aquatic vegetation (Vallisneria americana or Ruppia maritima), located in areas of the saltwater- freshwater interface has been identified as a basis for minimum flow criteria. The integration of field studies, laboratory studies, and literature review was required. From this information we developed ecological modeling tools to quantify and predict plant growth in response to varying environmental variables. Coupled with hydrologic modeling tools questions relating to the quantity and timing of flow and ecological consequences in relation to normal variability are addressed.

  7. Molecular methods for pathogen detection and quantification

    USDA-ARS?s Scientific Manuscript database

    Ongoing interest in convenient, inexpensive, fast, sensitive and accurate techniques for detecting and/or quantifying the presence of soybean pathogens has resulted in increased usage of molecular tools. The method of extracting a molecular target (usually DNA or RNA) for detection depends wholly up...

  8. The establishment of surrogates and correlates of protection: Useful tools for the licensure of effective influenza vaccines?

    PubMed Central

    Ward, Brian J.; Pillet, Stephane; Charland, Nathalie; Trepanier, Sonia; Couillard, Julie; Landry, Nathalie

    2018-01-01

    ABSTRACT The search for a test that can predict vaccine efficacy is an important part of any vaccine development program. Although regulators hesitate to acknowledge any test as a true ‘correlate of protection’, there are many precedents for defining ‘surrogate’ assays. Surrogates can be powerful tools for vaccine optimization, licensure, comparisons between products and development of improved products. When such tests achieve ‘reference’ status however, they can inadvertently become barriers to new technologies that do not work the same way as existing vaccines. This is particularly true when these tests are based upon circularly-defined ‘reference’ or, even worse, proprietary reagents. The situation with inactivated influenza vaccines is a good example of this phenomenon. The most frequently used tests to define vaccine-induced immunity are all serologic assays: hemagglutination inhibition (HI), single radial hemolysis (SRH) and microneutralization (MN). The first two, and particularly the HI assay, have achieved reference status and criteria have been established in many jurisdictions for their use in licensing new vaccines and to compare the performance of different vaccines. However, all of these assays are based on biological reagents that are notoriously difficult to standardize and can vary substantially by geography, by chance (i.e. developing reagents in eggs that may not antigenitically match wild-type viruses) and by intention (ie: choosing reagents that yield the most favorable results). This review describes attempts to standardize these assays to improve their performance as surrogates, the dangers of over-reliance on ‘reference’ serologic assays, the ways that manufacturers can exploit the existing regulatory framework to make their products ‘look good’ and the implications of this long-established system for the introduction of novel influenza vaccines. PMID:29252098

  9. An interactive web-tool for molecular analyses links naturally occurring mutation data with three-dimensional structures of the rhodopsin-like glycoprotein hormone receptors.

    PubMed

    Kleinau, Gunnar; Kreuchwig, Annika; Worth, Catherine L; Krause, Gerd

    2010-06-01

    The collection, description and molecular analysis of naturally occurring (pathogenic) mutations are important for understanding the functional mechanisms and malfunctions of biological units such as proteins. Numerous databases collate a huge amount of functional data or descriptions of mutations, but tools to analyse the molecular effects of genetic variations are as yet poorly provided. The goal of this work was therefore to develop a translational web-application that facilitates the interactive linkage of functional and structural data and which helps improve our understanding of the molecular basis of naturally occurring gain- or loss- of function mutations. Here we focus on the human glycoprotein hormone receptors (GPHRs), for which a huge number of mutations are known to cause diseases. We describe new options for interactive data analyses within three-dimensional structures, which enable the assignment of molecular relationships between structure and function. Strikingly, as the functional data are converted into relational percentage values, the system allows the comparison and classification of data from different GPHR subtypes and different experimental approaches. Our new application has been incorporated into a freely available database and website for the GPHRs (http://www.ssfa-gphr.de), but the principle development would also be applicable to other macromolecules.

  10. MIPs as Tools in Environmental Biotechnology.

    PubMed

    Mattiasson, Bo

    2015-01-01

    Molecular imprints are potentially fantastic constructions. They are selective, robust, and nonbiodegradable if produced from stable polymers. A range of different applications has been presented, everything from separation of enantiomers, via adsorbents for sample preparation before analysis to applications in wastewater treatment. This chapter deals with molecularly imprinted polymers (MIPs) as tools in environmental biotechnology, a field that has the potential to become very important in the future.

  11. WWW Entrez: A Hypertext Retrieval Tool for Molecular Biology.

    ERIC Educational Resources Information Center

    Epstein, Jonathan A.; Kans, Jonathan A.; Schuler, Gregory D.

    This article describes the World Wide Web (WWW) Entrez server which is based upon the National Center for Biotechnology Information's (NCBI) Entrez retrieval database and software. Entrez is a molecular sequence retrieval system that contains an integrated view of portions of Medline and all publicly available nucleotide and protein databases,…

  12. Establishment and operation of a biorepository for molecular epidemiologic studies in Costa Rica.

    PubMed

    Cortés, Bernal; Schiffman, Mark; Herrero, Rolando; Hildesheim, Allan; Jiménez, Silvia; Shea, Katheryn; González, Paula; Porras, Carolina; Fallas, Greivin; Rodríguez, Ana Cecilia

    2010-04-01

    The Proyecto Epidemiológico Guanacaste (PEG) has conducted several large studies related to human papillomavirus (HPV) and cervical cancer in Guanacaste, Costa Rica in a long-standing collaboration with the U.S. National Cancer Institute. To improve molecular epidemiology efforts and save costs, we have gradually transferred technology to Costa Rica, culminating in state-of-the-art laboratories and a biorepository to support a phase III clinical trial investigating the efficacy of HPV 16/18 vaccine. Here, we describe the rationale and lessons learned in transferring molecular epidemiologic and biorepository technology to a developing country. At the outset of the PEG in the early 1990s, we shipped all specimens to repositories and laboratories in the United States, which created multiple problems. Since then, by intensive personal interactions between experts from the United States and Costa Rica, we have successfully transferred liquid-based cytology, HPV DNA testing and serology, chlamydia and gonorrhea testing, PCR-safe tissue processing, and viable cryopreservation. To accommodate the vaccine trial, a state-of-the-art repository opened in mid-2004. Approximately 15,000 to 50,000 samples are housed in the repository on any given day, and >500,000 specimens have been shipped, many using a custom-made dry shipper that permits exporting >20,000 specimens at a time. Quality control of shipments received by the NCI biorepository has revealed an error rate of <0.2%. Recently, the PEG repository has incorporated other activities; for example, large-scale aliquotting and long-term, cost-efficient storage of frozen specimens returned from the United States. Using Internet-based specimen tracking software has proven to be efficient even across borders. For long-standing collaborations, it makes sense to transfer the molecular epidemiology expertise toward the source of specimens. The successes of the PEG molecular epidemiology laboratories and biorepository prove that

  13. Molecular subgroups of adult medulloblastoma: a long-term single-institution study.

    PubMed

    Zhao, Fu; Ohgaki, Hiroko; Xu, Lei; Giangaspero, Felice; Li, Chunde; Li, Peng; Yang, Zhijun; Wang, Bo; Wang, Xingchao; Wang, Zhenmin; Ai, Lin; Zhang, Jing; Luo, Lin; Liu, Pinan

    2016-07-01

    Recent transcriptomic approaches have demonstrated that there are at least 4 distinct subgroups in medulloblastoma (MB); however, survival studies of molecular subgroups in adult MB have been inconclusive because of small sample sizes. The aim of this study is to investigate the molecular subgroups in adult MB and identify their clinical and prognostic implications in a large, single-institution cohort. We determined gene expression profiles for 13 primary adult MBs. Bioinformatics tools were used to establish distinct molecular subgroups based on the most informative genes in the dataset. Immunohistochemistry with subgroup-specific antibodies was then used for validation within an independent cohort of 201 formalin-fixed MB tumors, in conjunction with a systematic analysis of clinical and histological characteristics. Three distinct molecular variants of adult MB were identified: the SHH, WNT, and group 4 subgroups. Validation of these subgroups in the 201-tumor cohort by immunohistochemistry identified significant differences in subgroup-specific demographics, histology, and metastatic status. The SHH subgroup accounted for the majority of the tumors (62%), followed by the group 4 subgroup (28%) and the WNT subgroup (10%). Group 4 tumors had significantly worse progression-free and overall survival compared with tumors of the other molecular subtypes. We have identified 3 subgroups of adult MB, characterized by distinct expression profiles, clinical features, pathological features, and prognosis. Clinical variables incorporated with molecular subgroup are more significantly informative for predicting adult patient outcome. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Well-tempered metadynamics as a tool for characterizing multi-component, crystalline molecular machines.

    PubMed

    Ilott, Andrew J; Palucha, Sebastian; Hodgkinson, Paul; Wilson, Mark R

    2013-10-10

    The well-tempered, smoothly converging form of the metadynamics algorithm has been implemented in classical molecular dynamics simulations and used to obtain an estimate of the free energy surface explored by the molecular rotations in the plastic crystal, octafluoronaphthalene. The biased simulations explore the full energy surface extremely efficiently, more than 4 orders of magnitude faster than unbiased molecular dynamics runs. The metadynamics collective variables used have also been expanded to include the simultaneous orientations of three neighboring octafluoronaphthalene molecules. Analysis of the resultant three-dimensional free energy surface, which is sampled to a very high degree despite its significant complexity, demonstrates that there are strong correlations between the molecular orientations. Although this correlated motion is of limited applicability in terms of exploiting dynamical motion in octafluoronaphthalene, the approach used is extremely well suited to the investigation of the function of crystalline molecular machines.

  15. Genetic tools for the investigation of Roseobacter clade bacteria

    PubMed Central

    2009-01-01

    Background The Roseobacter clade represents one of the most abundant, metabolically versatile and ecologically important bacterial groups found in marine habitats. A detailed molecular investigation of the regulatory and metabolic networks of these organisms is currently limited for many strains by missing suitable genetic tools. Results Conjugation and electroporation methods for the efficient and stable genetic transformation of selected Roseobacter clade bacteria including Dinoroseobacter shibae, Oceanibulbus indolifex, Phaeobacter gallaeciensis, Phaeobacter inhibens, Roseobacter denitrificans and Roseobacter litoralis were tested. For this purpose an antibiotic resistance screening was performed and suitable genetic markers were selected. Based on these transformation protocols stably maintained plasmids were identified. A plasmid encoded oxygen-independent fluorescent system was established using the flavin mononucleotide-based fluorescent protein FbFP. Finally, a chromosomal gene knockout strategy was successfully employed for the inactivation of the anaerobic metabolism regulatory gene dnr from D. shibae DFL12T. Conclusion A genetic toolbox for members of the Roseobacter clade was established. This provides a solid methodical basis for the detailed elucidation of gene regulatory and metabolic networks underlying the ecological success of this group of marine bacteria. PMID:20021642

  16. Malnutrition screening tools for hospitalized children.

    PubMed

    Hartman, Corina; Shamir, Raanan; Hecht, Christina; Koletzko, Berthold

    2012-05-01

    Malnutrition is highly prevalent in hospitalized children and has been associated with relevant clinical outcomes. The scope of this review is to describe the five screening tools and the recent European Society for Parenteral and Enteral Nutrition (ESPEN) research project aimed at establishing agreed, evidence-based criteria for malnutrition and screening tools for its diagnosis in hospitalized children. Five nutrition screening tools have recently been developed to identify the risk of malnutrition in hospitalized children. These tools have been tested to a limited extent by their authors in the original published studies but have not been validated by other independent studies. So far, such screening tools have not been established widely as part of standard pediatric care. Although nutrition screening and assessment are recommended by European Society for Parenteral and Enteral Nutrition and the European Society for Pediatric Gastroenterology Hepatology and Nutrition and are often accepted to be required by healthcare facilities, there is no standardized approach to nutritional screening for pediatric inpatients. The near future will provide us with comparative data on the existing tools which may contribute to delineating a standard for useful nutrition screening in pediatrics.

  17. Molecular Tools for Facilitative Carbohydrate Transporters (Gluts).

    PubMed

    Tanasova, Marina; Fedie, Joseph R

    2017-09-19

    Facilitative carbohydrate transporters-Gluts-have received wide attention over decades due to their essential role in nutrient uptake and links with various metabolic disorders, including diabetes, obesity, and cancer. Endeavors directed towards understanding the mechanisms of Glut-mediated nutrient uptake have resulted in a multidisciplinary research field spanning protein chemistry, chemical biology, organic synthesis, crystallography, and biomolecular modeling. Gluts became attractive targets for cancer research and medicinal chemistry, leading to the development of new approaches to cancer diagnostics and providing avenues for cancer-targeting therapeutics. In this review, the current state of knowledge of the molecular interactions behind Glut-mediated sugar uptake, Glut-targeting probes, therapeutics, and inhibitors are discussed. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Democratizing molecular diagnostics for the developing world.

    PubMed

    Abou Tayoun, Ahmad N; Burchard, Paul R; Malik, Imran; Scherer, Axel; Tsongalis, Gregory J

    2014-01-01

    Infectious diseases that are largely treatable continue to pose a tremendous burden on the developing world despite the availability of highly potent drugs. The high mortality and morbidity rates of these diseases are largely due to a lack of affordable diagnostics that are accessible to resource-limited areas and that can deliver high-quality results. In fact, modified molecular diagnostics for infectious diseases were rated as the top biotechnology to improve health in developing countries. In this review, we describe the characteristics of accessible molecular diagnostic tools and discuss the challenges associated with implementing such tools at low infrastructure sites. We highlight our experience as part of the "Grand Challenge" project supported by the Gates Foundation for addressing global health inequities and describe issues and solutions associated with developing adequate technologies or molecular assays needed for broad access in the developing world. We believe that sharing this knowledge will facilitate the development of new molecular technologies that are extremely valuable for improving global health.

  19. Protocols for Molecular Dynamics Simulations of RNA Nanostructures.

    PubMed

    Kim, Taejin; Kasprzak, Wojciech K; Shapiro, Bruce A

    2017-01-01

    Molecular dynamics (MD) simulations have been used as one of the main research tools to study a wide range of biological systems and bridge the gap between X-ray crystallography or NMR structures and biological mechanism. In the field of RNA nanostructures, MD simulations have been used to fix steric clashes in computationally designed RNA nanostructures, characterize the dynamics, and investigate the interaction between RNA and other biomolecules such as delivery agents and membranes.In this chapter we present examples of computational protocols for molecular dynamics simulations in explicit and implicit solvent using the Amber Molecular Dynamics Package. We also show examples of post-simulation analysis steps and briefly mention selected tools beyond the Amber package. Limitations of the methods, tools, and protocols are also discussed. Most of the examples are illustrated for a small RNA duplex (helix), but the protocols are applicable to any nucleic acid structure, subject only to the computational speed and memory limitations of the hardware available to the user.

  20. Molecular optoelectronics: the interaction of molecular conduction junctions with light.

    PubMed

    Galperin, Michael; Nitzan, Abraham

    2012-07-14

    The interaction of light with molecular conduction junctions is attracting growing interest as a challenging experimental and theoretical problem on one hand, and because of its potential application as a characterization and control tool on the other. It stands at the interface between two important fields, molecular electronics and molecular plasmonics and has attracted attention as a challenging scientific problem with potentially important technological consequences. Here we review the present state of the art of this field, focusing on several key phenomena and applications: using light as a switching device, using light to control junction transport in the adiabatic and non-adiabatic regimes, light generation in biased junctions and Raman scattering from such systems. This field has seen remarkable progress in the past decade, and the growing availability of scanning tip configurations that can combine optical and electrical probes suggests that further progress towards the goal of realizing molecular optoelectronics on the nanoscale is imminent.

  1. jAMVLE, a New Integrated Molecular Visualization Learning Environment

    ERIC Educational Resources Information Center

    Bottomley, Steven; Chandler, David; Morgan, Eleanor; Helmerhorst, Erik

    2006-01-01

    A new computer-based molecular visualization tool has been developed for teaching, and learning, molecular structure. This java-based jmol Amalgamated Molecular Visualization Learning Environment (jAMVLE) is platform-independent, integrated, and interactive. It has an overall graphical user interface that is intuitive and easy to use. The…

  2. A survey of educational uses of molecular visualization freeware.

    PubMed

    Craig, Paul A; Michel, Lea Vacca; Bateman, Robert C

    2013-01-01

    As biochemists, one of our most captivating teaching tools is the use of molecular visualization. It is a compelling medium that can be used to communicate structural information much more effectively with interactive animations than with static figures. We have conducted a survey to begin a systematic evaluation of the current classroom usage of molecular visualization. Participants (n = 116) were asked to complete 11 multiple choice and 3 open ended questions. To provide more depth to these results, interviews were conducted with 12 of the participants. Many common themes arose in the survey and the interviews: a shared passion for the use of molecular visualization in teaching, broad diversity in software preference, the lack of uniform standards for assessment, a desire for more quality resources, and the challenge of enabling students to incorporate visualization in their learning. The majority of respondents had used molecular visualization for more than 5 years and mentioned 32 different visualization tools used, with Jmol and PyMOL clearly standing out as the most frequently used programs at the present time. The most common uses of molecular visualization in teaching were lecture and lab illustrations, followed by exam questions, in-class or in-laboratory exercises, and student projects, which frequently included presentations. While a minority of instructors used a grading rubric/scoring matrix for assessment of student learning with molecular visualization, many expressed a desire for common use assessment tools. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  3. The application of HIV molecular epidemiology to public health.

    PubMed

    Paraskevis, D; Nikolopoulos, G K; Magiorkinis, G; Hodges-Mameletzis, I; Hatzakis, A

    2016-12-01

    HIV is responsible for one of the largest viral pandemics in human history. Despite a concerted global response for prevention and treatment, the virus persists. Thus, urgent public health action, utilizing novel interventions, is needed to prevent future transmission events, critical to eliminating HIV. For public health planning to prove effective and successful, we need to understand the dynamics of regional epidemics and to intervene appropriately. HIV molecular epidemiology tools as implemented in phylogenetic, phylodynamic and phylogeographic analyses have proven to be powerful tools in public health planning across many studies. Numerous applications with HIV suggest that molecular methods alone or in combination with mathematical modelling can provide inferences about the transmission dynamics, critical epidemiological parameters (prevalence, incidence, effective number of infections, Re, generation times, time between infection and diagnosis), or the spatiotemporal characteristics of epidemics. Molecular tools have been used to assess the impact of an intervention and outbreak investigation which are of great public health relevance. In some settings, molecular sequence data may be more readily available than HIV surveillance data, and can therefore allow for molecular analyses to be conducted more easily. Nonetheless, classic methods have an integral role in monitoring and evaluation of public health programmes, and should supplement emerging techniques from the field of molecular epidemiology. Importantly, molecular epidemiology remains a promising approach in responding to viral diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. MOLECULAR DIAGNOSTICS - ANOTHER PIECE IN THE ENVIRONMENTAL PUZZLE

    EPA Science Inventory

    Molecular biology offers sensitive and expedient tools for the detection of exposure to environmental stressors. Molecular approaches provide the means for detection of the "first cellular event(s)" in response to environmental changes-specifically, immediate changes in gene expr...

  5. A Powerful Molecular Engineering Tool Provided Efficient Chlamydomonas Mutants as Bio-Sensing Elements for Herbicides Detection

    PubMed Central

    Lambreva, Maya D.; Giardi, Maria Teresa; Rambaldi, Irene; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Husu, Ivan; Johanningmeier, Udo; Rea, Giuseppina

    2013-01-01

    This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I50 values ranging from 6×10−8 M to 2×10−6 M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified. PMID:23613953

  6. Molecular anions.

    PubMed

    Simons, Jack

    2008-07-24

    The experimental and theoretical study of molecular anions has undergone explosive growth over the past 40 years. Advances in techniques used to generate anions in appreciable numbers as well as new ion-storage, ion-optics, and laser spectroscopic tools have been key on the experimental front. Theoretical developments on the electronic structure and molecular dynamics fronts now allow one to achieve higher accuracy and to study electronically metastable states, thus bringing theory in close collaboration with experiment in this field. In this article, many of the experimental and theoretical challenges specific to studying molecular anions are discussed. Results from many research groups on several classes of molecular anions are overviewed, and both literature citations and active (in online html and pdf versions) links to numerous contributing scientists' Web sites are provided. Specific focus is made on the following families of anions: dipole-bound, zwitterion-bound, double-Rydberg, multiply charged, metastable, cluster-based, and biological anions. In discussing each kind of anion, emphasis is placed on the structural, energetic, spectroscopic, and chemical-reactivity characteristics that make these anions novel, interesting, and important.

  7. A Comparative Study of Successful Central Nervous System Drugs Using Molecular Modeling

    ERIC Educational Resources Information Center

    Kim, Hyosub; Sulaimon, Segun; Menezes, Sandra; Son, Anne; Menezes, Warren J. C.

    2011-01-01

    Molecular modeling is a powerful tool used for three-dimensional visualization and for exploring electrostatic forces involved in drug transport. This tool enhances student understanding of structure-property relationships, as well as actively engaging them in class. Molecular modeling of several central nervous system (CNS) drugs is used to…

  8. Biomarkers as drug development tools: discovery, validation, qualification and use.

    PubMed

    Kraus, Virginia B

    2018-06-01

    The 21st Century Cures Act, approved in the USA in December 2016, has encouraged the establishment of the national Precision Medicine Initiative and the augmentation of efforts to address disease prevention, diagnosis and treatment on the basis of a molecular understanding of disease. The Act adopts into law the formal process, developed by the FDA, of qualification of drug development tools, including biomarkers and clinical outcome assessments, to increase the efficiency of clinical trials and encourage an era of molecular medicine. The FDA and European Medicines Agency (EMA) have developed similar processes for the qualification of biomarkers intended for use as companion diagnostics or for development and regulatory approval of a drug or therapeutic. Biomarkers that are used exclusively for the diagnosis, monitoring or stratification of patients in clinical trials are not subject to regulatory approval, although their qualification can facilitate the conduct of a trial. In this Review, the salient features of biomarker discovery, analytical validation, clinical qualification and utilization are described in order to provide an understanding of the process of biomarker development and, through this understanding, convey an appreciation of their potential advantages and limitations.

  9. Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy.

    PubMed

    Kedrov, Alexej; Janovjak, Harald; Sapra, K Tanuj; Müller, Daniel J

    2007-01-01

    Molecular interactions are the basic language of biological processes. They establish the forces interacting between the building blocks of proteins and other macromolecules, thus determining their functional roles. Because molecular interactions trigger virtually every biological process, approaches to decipher their language are needed. Single-molecule force spectroscopy (SMFS) has been used to detect and characterize different types of molecular interactions that occur between and within native membrane proteins. The first experiments detected and localized molecular interactions that stabilized membrane proteins, including how these interactions were established during folding of alpha-helical secondary structure elements into the native protein and how they changed with oligomerization, temperature, and mutations. SMFS also enables investigators to detect and locate molecular interactions established during ligand and inhibitor binding. These exciting applications provide opportunities for studying the molecular forces of life. Further developments will elucidate the origins of molecular interactions encoded in their lifetimes, interaction ranges, interplay, and dynamics characteristic of biological systems.

  10. International Journal of Molecular Science 2017 Best Paper Award.

    PubMed

    2017-11-02

    The Editors of the International Journal of Molecular Sciences have established the Best Paper Award to recognize the most outstanding articles published in the areas of molecular biology, molecular physics and chemistry that have been published in the International Journal of Molecular Sciences. The prizes have been awarded annually since 2012 [...].

  11. Molecular characterization of colorectal cancer patients and concomitant patient-derived tumor cell establishment

    PubMed Central

    Kim, Seung Tae; Kim, Sun Young; Kim, Nayoung K.D.; Jang, Jiryeon; Kang, Mihyun; Jang, Hyojin; Ahn, Soomin; Kim, Seok Hyeong; Park, Yoona; Cho, Yong Beom; Heo, Jeong Wook; Lee, Woo Yong; Park, Joon Oh; Lim, Ho Yeong; Kang, Won Ki; Park, Young Suk; Park, Woong-Yang; Lee, Jeeyun; Kim, Hee Cheol

    2016-01-01

    Background We aimed to establish a prospectively enrolled colorectal cancer (CRC) cohort for targeted sequencing of primary tumors from CRC patients. In parallel, we established collateral PDC models from the matched primary tumor tissues, which may be later used as preclinical models for genome-directed targeted therapy experiments. Results In all, we identified 27 SNVs in the 6 genes such as PIK3CA (N = 16), BRAF (N = 6), NRAS (N = 2), and CTNNB1 (N = 1), PTEN (N = 1), and ERBB2 (N = 1). RET-NCOA4 translocation was observed in one out of 105 patients (0.9%). PDC models were successfully established from 62 (55.4%) of the 112 samples. To confirm the genomic features of various tumor cells, we compared variant allele frequency results of the primary tumor and progeny PDCs. The Pearson correlation coefficient between the variants from primary tumor cells and PDCs was 0.881. Methods Between April 2014 and June 2015, 112 patients with CRC who underwent resection of the primary tumor were enrolled in the SMC Oncology Biomarker study. The PDC culture protocol was performed for all eligible patients. All of the primary tumors from the 112 patients who provided written informed consent were genomically sequenced with targeted sequencing. In parallel, PDC establishment was attempted for all sequenced tumors. Conclusions We have prospectively sequenced a CRC cohort of 105 patients and successfully established 62 PDC in parallel. Each genomically characterized PDCs can be used as a preclinical model especially in rare genomic alteration event. PMID:26909603

  12. Establishment of left–right asymmetry in vertebrate development: the node in mouse embryos

    PubMed Central

    Komatsu, Yoshihiro

    2014-01-01

    Establishment of vertebrate left–right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left–right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left–right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left–right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left–right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left–right asymmetry. PMID:23771646

  13. Establishment of left-right asymmetry in vertebrate development: the node in mouse embryos.

    PubMed

    Komatsu, Yoshihiro; Mishina, Yuji

    2013-12-01

    Establishment of vertebrate left-right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left-right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left-right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left-right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left-right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left-right asymmetry.

  14. Griffin: A Tool for Symbolic Inference of Synchronous Boolean Molecular Networks.

    PubMed

    Muñoz, Stalin; Carrillo, Miguel; Azpeitia, Eugenio; Rosenblueth, David A

    2018-01-01

    Boolean networks are important models of biochemical systems, located at the high end of the abstraction spectrum. A number of Boolean gene networks have been inferred following essentially the same method. Such a method first considers experimental data for a typically underdetermined "regulation" graph. Next, Boolean networks are inferred by using biological constraints to narrow the search space, such as a desired set of (fixed-point or cyclic) attractors. We describe Griffin , a computer tool enhancing this method. Griffin incorporates a number of well-established algorithms, such as Dubrova and Teslenko's algorithm for finding attractors in synchronous Boolean networks. In addition, a formal definition of regulation allows Griffin to employ "symbolic" techniques, able to represent both large sets of network states and Boolean constraints. We observe that when the set of attractors is required to be an exact set, prohibiting additional attractors, a naive Boolean coding of this constraint may be unfeasible. Such cases may be intractable even with symbolic methods, as the number of Boolean constraints may be astronomically large. To overcome this problem, we employ an Artificial Intelligence technique known as "clause learning" considerably increasing Griffin 's scalability. Without clause learning only toy examples prohibiting additional attractors are solvable: only one out of seven queries reported here is answered. With clause learning, by contrast, all seven queries are answered. We illustrate Griffin with three case studies drawn from the Arabidopsis thaliana literature. Griffin is available at: http://turing.iimas.unam.mx/griffin.

  15. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    PubMed

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Molecular docking.

    PubMed

    Morris, Garrett M; Lim-Wilby, Marguerita

    2008-01-01

    Molecular docking is a key tool in structural molecular biology and computer-assisted drug design. The goal of ligand-protein docking is to predict the predominant binding mode(s) of a ligand with a protein of known three-dimensional structure. Successful docking methods search high-dimensional spaces effectively and use a scoring function that correctly ranks candidate dockings. Docking can be used to perform virtual screening on large libraries of compounds, rank the results, and propose structural hypotheses of how the ligands inhibit the target, which is invaluable in lead optimization. The setting up of the input structures for the docking is just as important as the docking itself, and analyzing the results of stochastic search methods can sometimes be unclear. This chapter discusses the background and theory of molecular docking software, and covers the usage of some of the most-cited docking software.

  17. Molecular stratigraphy: a new tool for climatic assessment

    NASA Astrophysics Data System (ADS)

    Brassell, S. C.; Eglinton, G.; Marlowe, I. T.; Pflaumann, U.; Sarnthein, M.

    1986-03-01

    Variations in sea-surface temperatures over the past 500,000 years are inferred from the relative abundance behaviour of two organic compounds, C37 alkenones over the upper 8 metres of a sediment core from the eastern equatorial Atlantic. This molecular record, ascribed to contributions from prymnesiophyte algae, correlates well with the variations in the δ18 signal for the calcareous skeletons of certain planktonic foraminifera, thus providing the first demonstration of a new stratigraphical technique, which may be especially valuable where methods based on carbonate δ18 fail.

  18. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host

    PubMed Central

    Scaife, Mark A; Nguyen, Ginnie TDT; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-01-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach. Significance Statement Chlamydomonas reinhardtii offers potential as a host for the production of high value compounds for industrial biotechnology. Synthetic biology provides a mechanism to generate generic, well characterised tools for application in the rational genetic manipulation of organisms: if synthetic biology principles were adopted for manipulation of C. reinhardtii, development of this microalga as an industrial biotechnology platform would be expedited. PMID:25641561

  19. Molecular Force Spectroscopy on Cells

    NASA Astrophysics Data System (ADS)

    Liu, Baoyu; Chen, Wei; Zhu, Cheng

    2015-04-01

    Molecular force spectroscopy has become a powerful tool to study how mechanics regulates biology, especially the mechanical regulation of molecular interactions and its impact on cellular functions. This force-driven methodology has uncovered a wealth of new information of the physical chemistry of molecular bonds for various biological systems. The new concepts, qualitative and quantitative measures describing bond behavior under force, and structural bases underlying these phenomena have substantially advanced our fundamental understanding of the inner workings of biological systems from the nanoscale (molecule) to the microscale (cell), elucidated basic molecular mechanisms of a wide range of important biological processes, and provided opportunities for engineering applications. Here, we review major force spectroscopic assays, conceptual developments of mechanically regulated kinetics of molecular interactions, and their biological relevance. We also present current challenges and highlight future directions.

  20. Turbulence in molecular clouds - A new diagnostic tool to probe their origin

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.; Battaglia, A.

    1985-01-01

    A method is presented to uncover the instability responsible for the type of turbulence observed in molecular clouds and the value of the physical parameters of the 'placental medium' from which turbulence originated. The method utilizes the observational relation between velocities and sizes of molecular clouds, together with a recent model for large-scale turbulence (constructed by Canuto and Goldman, 1985).

  1. Molecular brain imaging in the multimodality era

    PubMed Central

    Price, Julie C

    2012-01-01

    Multimodality molecular brain imaging encompasses in vivo visualization, evaluation, and measurement of cellular/molecular processes. Instrumentation and software developments over the past 30 years have fueled advancements in multimodality imaging platforms that enable acquisition of multiple complementary imaging outcomes by either combined sequential or simultaneous acquisition. This article provides a general overview of multimodality neuroimaging in the context of positron emission tomography as a molecular imaging tool and magnetic resonance imaging as a structural and functional imaging tool. Several image examples are provided and general challenges are discussed to exemplify complementary features of the modalities, as well as important strengths and weaknesses of combined assessments. Alzheimer's disease is highlighted, as this clinical area has been strongly impacted by multimodality neuroimaging findings that have improved understanding of the natural history of disease progression, early disease detection, and informed therapy evaluation. PMID:22434068

  2. Systems biology: a new tool for farm animal science.

    PubMed

    Hollung, Kristin; Timperio, Anna M; Olivan, Mamen; Kemp, Caroline; Coto-Montes, Ana; Sierra, Veronica; Zolla, Lello

    2014-03-01

    It is rapidly emerging that the tender meat phenotype is affected by an enormous amount of variables, not only tied to genetics (livestock breeding selection), but also to extrinsic factors, such as feeding conditions, physical activity, rearing environment, administration of hormonal growth promotants, pre-slaughter handling and stress. Proteomics has been widely accepted by meat scientists over the last years and is now commonly used to shed light on the postmortem processes involved in meat tenderization. This review discusses the latest findings with the use of proteomics and systems biology to study the different biochemical pathways postmortem aiming at understanding the concerted action of different molecular mechanisms responsible for meat quality. The conversion of muscle to meat postmortem can be described as a sequence of events involving molecular pathways controlled by a complex interplay of many factors. Among the different pathways emerging are the influence of apoptosis and lately also the role of autophagy in muscle postmortem development. This review thus, focus on how systems-wide integrated investigations (metabolomics, transcriptomics, interactomics, phosphoproteomics, mathematical modeling), which have emerged as complementary tools to proteomics, have helped establishing a few milestones in our understanding of the events leading from muscle to meat conversion.

  3. Assessment of chloroethene biodegradation in the subsurface by microbiological, molecular and isotopic tools

    NASA Astrophysics Data System (ADS)

    Schmidt, K. R.; Kranzioch, I.; Heidinger, M.; Ertl, S.; Tiehm, A.

    2012-04-01

    methods is continuously increasing. For example, microbiological and molecular tools showed the presence and activity of halorespiring bacteria in sediment samples of the Yangtze river, China. PCR-detection demonstrated the presence of five different halorespiring bacterial groups as well as of four different dechlorinating enzymes of Dehalococcoides. In conclusion, our study demonstrates that (i) multiple lines of evidence approaches result in a profound understanding of the biodegradation processes occurring in the field, (ii) stable isotope fractionation is suitable for assessing and quantifying anaerobic and aerobic chloroethene degradation and (iii) detection and quantification of dechlorinating bacteria and enzymes by PCR methods provide more insight into biodegradation processes. Acknowledgement The authors gratefully acknowledge financial support by the German Ministry of Education and Research (BMBF, grant no 02WN0446, 02WN0447 and 02WT1130), the German Ministry of Economics and Technology (BMWi, grant no KF2265705AK9 and KF2285302AK9) and the federal state of Rhineland-Palatinate. We thank all project partners for fruitful cooperation.

  4. Molecular Markers for Breast Cancer: Prediction on Tumor Behavior

    PubMed Central

    Banin Hirata, Bruna Karina; Oda, Julie Massayo Maeda; Losi Guembarovski, Roberta; Ariza, Carolina Batista; de Oliveira, Carlos Eduardo Coral; Watanabe, Maria Angelica Ehara

    2014-01-01

    Breast cancer is one of the most common cancers with greater than 1,300,000 cases and 450,000 deaths each year worldwide. The development of breast cancer involves a progression through intermediate stages until the invasive carcinoma and finally into metastatic disease. Given the variability in clinical progression, the identification of markers that could predict the tumor behavior is particularly important in breast cancer. The determination of tumor markers is a useful tool for clinical management in cancer patients, assisting in diagnostic, staging, evaluation of therapeutic response, detection of recurrence and metastasis, and development of new treatment modalities. In this context, this review aims to discuss the main tumor markers in breast carcinogenesis. The most well-established breast molecular markers with prognostic and/or therapeutic value like hormone receptors, HER-2 oncogene, Ki-67, and p53 proteins, and the genes for hereditary breast cancer will be presented. Furthermore, this review shows the new molecular targets in breast cancer: CXCR4, caveolin, miRNA, and FOXP3, as promising candidates for future development of effective and targeted therapies, also with lower toxicity. PMID:24591761

  5. 3D visualization of molecular structures in the MOGADOC database

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Popov, Evgeny; Rudert, Rainer; Kramer, Rüdiger; Vogt, Jürgen

    2010-08-01

    The MOGADOC database (Molecular Gas-Phase Documentation) is a powerful tool to retrieve information about compounds which have been studied in the gas-phase by electron diffraction, microwave spectroscopy and molecular radio astronomy. Presently the database contains over 34,500 bibliographic references (from the beginning of each method) for about 10,000 inorganic, organic and organometallic compounds and structural data (bond lengths, bond angles, dihedral angles, etc.) for about 7800 compounds. Most of the implemented molecular structures are given in a three-dimensional (3D) presentation. To create or edit and visualize the 3D images of molecules, new tools (special editor and Java-based 3D applet) were developed. Molecular structures in internal coordinates were converted to those in Cartesian coordinates.

  6. Interfacial interaction track of amorphous solid dispersions established by water-soluble polymer and indometacin.

    PubMed

    Li, Jing; Fan, Na; Wang, Xin; Li, Chang; Sun, Mengchi; Wang, Jian; Fu, Qiang; He, Zhonggui

    2017-08-30

    The present work studied interfacial interactions of amorphous solid dispersions matrix of indometacin (IMC) that established using PVP K30 (PVP) and PEG 6000 (PEG) by focusing on their interaction forces and wetting process. Infrared spectroscopy (IR), raman spectroscopy, X-ray photoelectron spectra and contact angle instrument were used throughout the study. Hydrogen bond energy formed between PEG and IMC were stronger than that of PVP and IMC evidenced by molecular modeling measurement. The blue shift of raman spectroscopy confirmed that hydrogen bonding forces were formed between IMC and two polymers. The contact angle study can be used as an easy method to determine the dissolution mechanism of amorphous solid dispersions through fitting the profile of contact angle of water on a series of tablets. It is believed that the track of interfacial interactions will certainly become powerful tools to for designing and evaluating amorphous solid dispersions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology.

    PubMed

    Cock, Peter J A; Grüning, Björn A; Paszkiewicz, Konrad; Pritchard, Leighton

    2013-01-01

    The Galaxy Project offers the popular web browser-based platform Galaxy for running bioinformatics tools and constructing simple workflows. Here, we present a broad collection of additional Galaxy tools for large scale analysis of gene and protein sequences. The motivating research theme is the identification of specific genes of interest in a range of non-model organisms, and our central example is the identification and prediction of "effector" proteins produced by plant pathogens in order to manipulate their host plant. This functional annotation of a pathogen's predicted capacity for virulence is a key step in translating sequence data into potential applications in plant pathology. This collection includes novel tools, and widely-used third-party tools such as NCBI BLAST+ wrapped for use within Galaxy. Individual bioinformatics software tools are typically available separately as standalone packages, or in online browser-based form. The Galaxy framework enables the user to combine these and other tools to automate organism scale analyses as workflows, without demanding familiarity with command line tools and scripting. Workflows created using Galaxy can be saved and are reusable, so may be distributed within and between research groups, facilitating the construction of a set of standardised, reusable bioinformatic protocols. The Galaxy tools and workflows described in this manuscript are open source and freely available from the Galaxy Tool Shed (http://usegalaxy.org/toolshed or http://toolshed.g2.bx.psu.edu).

  8. A Survey of Educational Uses of Molecular Visualization Freeware†

    PubMed Central

    Craig, Paul A.; Michel, Lea Vacca; Bateman, Robert C.

    2014-01-01

    As biochemists, one of our most captivating teaching tools is the use of molecular visualization. It is a compelling medium that can be used to communicate structural information much more effectively with interactive animations than with static figures. We have conducted a survey to begin a systematic evaluation of the current classroom usage of molecular visualization. Participants (n = 116) were asked to complete 11 multiple choice and 3 open ended questions. To provide more depth to these results, interviews were conducted with 12 of the participants. Many common themes arose in the survey and the interviews: a shared passion for the use of molecular visualization in teaching, broad diversity in software preference, the lack of uniform standards for assessment, a desire for more quality resources, and the challenge of enabling students to incorporate visualization in their learning. The majority of respondents had used molecular visualization for more than 5 years and mentioned 32 different visualization tools used, with Jmol and PyMOL clearly standing out as the most frequently used programs at the present time. The most common uses of molecular visualization in teaching were lecture and lab illustrations, followed by exam questions, in-class or in-laboratory exercises, and student projects, which frequently included presentations. While a minority of instructors used a grading rubric/scoring matrix for assessment of student learning with molecular visualization, many expressed a desire for common use assessment tools. PMID:23649886

  9. Molecular tools for cryptic Candida species identification with applications in a clinical laboratory.

    PubMed

    Gamarra, Soledad; Dudiuk, Catiana; Mancilla, Estefanía; Vera Garate, María Verónica; Guerrero, Sergio; Garcia-Effron, Guillermo

    2013-01-01

    Candida spp. includes more than 160 species but only 20 species pose clinical problems. C. albicans and C. parapsilosis account for more than 75% of all the fungemias worldwide. In 1995 and 2005, one C. albicans and two C. parapsilosis-related species were described, respectively. Using phenotypic traits, the identification of these newly described species is inconclusive or impossible. Thus, molecular-based procedures are mandatory. In the proposed educational experiment we have adapted different basic molecular biology techniques designed to identify these species including PCR, multiplex PCR, PCR-based restriction endonuclease analysis and nuclear ribosomal RNA amplification. During the classes, students acquired the ability to search and align gene sequences, design primers, and use bioinformatics software. Also, in the performed experiments, fungal molecular taxonomy concepts were introduced and the obtained results demonstrated that classic identification (phenotypic) in some cases needs to be complemented with molecular-based techniques. As a conclusion we can state that we present an inexpensive and well accepted group of classes involving important concepts that can be recreated in any laboratory. Copyright © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  10. Jane: a new tool for the cophylogeny reconstruction problem.

    PubMed

    Conow, Chris; Fielder, Daniel; Ovadia, Yaniv; Libeskind-Hadas, Ran

    2010-02-03

    This paper describes the theory and implementation of a new software tool, called Jane, for the study of historical associations. This problem arises in parasitology (associations of hosts and parasites), molecular systematics (associations of orderings and genes), and biogeography (associations of regions and orderings). The underlying problem is that of reconciling pairs of trees subject to biologically plausible events and costs associated with these events. Existing software tools for this problem have strengths and limitations, and the new Jane tool described here provides functionality that complements existing tools. The Jane software tool uses a polynomial time dynamic programming algorithm in conjunction with a genetic algorithm to find very good, and often optimal, solutions even for relatively large pairs of trees. The tool allows the user to provide rich timing information on both the host and parasite trees. In addition the user can limit host switch distance and specify multiple host switch costs by specifying regions in the host tree and costs for host switches between pairs of regions. Jane also provides a graphical user interface that allows the user to interactively experiment with modifications to the solutions found by the program. Jane is shown to be a useful tool for cophylogenetic reconstruction. Its functionality complements existing tools and it is therefore likely to be of use to researchers in the areas of parasitology, molecular systematics, and biogeography.

  11. IBiSA_Tools: A Computational Toolkit for Ion-Binding State Analysis in Molecular Dynamics Trajectories of Ion Channels.

    PubMed

    Kasahara, Kota; Kinoshita, Kengo

    2016-01-01

    Ion conduction mechanisms of ion channels are a long-standing conundrum. Although the molecular dynamics (MD) method has been extensively used to simulate ion conduction dynamics at the atomic level, analysis and interpretation of MD results are not straightforward due to complexity of the dynamics. In our previous reports, we proposed an analytical method called ion-binding state analysis to scrutinize and summarize ion conduction mechanisms by taking advantage of a variety of analytical protocols, e.g., the complex network analysis, sequence alignment, and hierarchical clustering. This approach effectively revealed the ion conduction mechanisms and their dependence on the conditions, i.e., ion concentration and membrane voltage. Here, we present an easy-to-use computational toolkit for ion-binding state analysis, called IBiSA_tools. This toolkit consists of a C++ program and a series of Python and R scripts. From the trajectory file of MD simulations and a structure file, users can generate several images and statistics of ion conduction processes. A complex network named ion-binding state graph is generated in a standard graph format (graph modeling language; GML), which can be visualized by standard network analyzers such as Cytoscape. As a tutorial, a trajectory of a 50 ns MD simulation of the Kv1.2 channel is also distributed with the toolkit. Users can trace the entire process of ion-binding state analysis step by step. The novel method for analysis of ion conduction mechanisms of ion channels can be easily used by means of IBiSA_tools. This software is distributed under an open source license at the following URL: http://www.ritsumei.ac.jp/~ktkshr/ibisa_tools/.

  12. Exploring the role of molecular biomarkers as a potential weapon against gastric cancer: A review of the literature.

    PubMed

    Matboli, Marwa; El-Nakeep, Sarah; Hossam, Nourhan; Habieb, Alaa; Azazy, Ahmed E M; Ebrahim, Ali E; Nagy, Ziad; Abdel-Rahman, Omar

    2016-07-14

    Gastric cancer (GC) is a global health problem and a major cause of cancer-related death with high recurrence rates ranging from 25% to 40% for GC patients staging II-IV. Unfortunately, while the majority of GC patients usually present with advanced tumor stage; there is still limited evidence-based therapeutic options. Current approach to GC management consists mainly of; endoscopy followed by, gastrectomy and chemotherapy or chemo-radiotherapy. Recent studies in GC have confirmed that it is a heterogeneous disease. Many molecular characterization studies have been performed in GC. Recent discoveries of the molecular pathways underlying the disease have opened the door to more personalized treatment and better predictable outcome. The identification of molecular markers is a useful tool for clinical managementin GC patients, assisting in diagnosis, evaluation of response to treatment and development of novel therapeutic modalities. While chemotherapeutic agents have certain physiological effects on the tumor cells, the prediction of the response is different from one type of tumor to the other. The specificity of molecular biomarkers is a principal feature driving their application in anticancer therapies. Here we are trying to focus on the role of molecular pathways of GC and well-established molecular markers that can guide the therapeutic management.

  13. Galaxy tools and workflows for sequence analysis with applications in molecular plant pathology

    PubMed Central

    Grüning, Björn A.; Paszkiewicz, Konrad; Pritchard, Leighton

    2013-01-01

    The Galaxy Project offers the popular web browser-based platform Galaxy for running bioinformatics tools and constructing simple workflows. Here, we present a broad collection of additional Galaxy tools for large scale analysis of gene and protein sequences. The motivating research theme is the identification of specific genes of interest in a range of non-model organisms, and our central example is the identification and prediction of “effector” proteins produced by plant pathogens in order to manipulate their host plant. This functional annotation of a pathogen’s predicted capacity for virulence is a key step in translating sequence data into potential applications in plant pathology. This collection includes novel tools, and widely-used third-party tools such as NCBI BLAST+ wrapped for use within Galaxy. Individual bioinformatics software tools are typically available separately as standalone packages, or in online browser-based form. The Galaxy framework enables the user to combine these and other tools to automate organism scale analyses as workflows, without demanding familiarity with command line tools and scripting. Workflows created using Galaxy can be saved and are reusable, so may be distributed within and between research groups, facilitating the construction of a set of standardised, reusable bioinformatic protocols. The Galaxy tools and workflows described in this manuscript are open source and freely available from the Galaxy Tool Shed (http://usegalaxy.org/toolshed or http://toolshed.g2.bx.psu.edu). PMID:24109552

  14. The use of agrobiodiversity for plant improvement and the intellectual property paradigm: institutional fit and legal tools for mass selection, conventional and molecular plant breeding.

    PubMed

    Batur, Fulya; Dedeurwaerdere, Tom

    2014-12-01

    Focused on the impact of stringent intellectual property mechanisms over the uses of plant agricultural biodiversity in crop improvement, the article delves into a systematic analysis of the relationship between institutional paradigms and their technological contexts of application, identified as mass selection, controlled hybridisation, molecular breeding tools and transgenics. While the strong property paradigm has proven effective in the context of major leaps forward in genetic engineering, it faces a systematic breakdown when extended to mass selection, where innovation often displays a collective nature. However, it also creates partial blockages in those innovation schemes rested between on-farm observation and genetic modification, i.e. conventional plant breeding and upstream molecular biology research tools. Neither overly strong intellectual property rights, nor the absence of well delineated protection have proven an optimal fit for these two intermediary socio-technological systems of cumulative incremental innovation. To address these challenges, the authors look at appropriate institutional alternatives which can create effective incentives for in situ agrobiodiversity conservation and the equitable distribution of technologies in plant improvement, using the flexibilities of the TRIPS Agreement, the liability rules set forth in patents or plant variety rights themselves (in the form of farmers', breeders' and research exceptions), and other ad hoc reward regimes.

  15. Educational websites--Bioinformatics Tools II.

    PubMed

    Lomberk, Gwen

    2009-01-01

    In this issue, the highlighted websites are a continuation of a series of educational websites; this one in particular from a couple of years ago, Bioinformatics Tools [Pancreatology 2005;5:314-315]. These include sites that are valuable resources for many research needs in genomics and proteomics. Bioinformatics has become a laboratory tool to map sequences to databases, develop models of molecular interactions, evaluate structural compatibilities, describe differences between normal and disease-associated DNA, identify conserved motifs within proteins, and chart extensive signaling networks, all in silico. Copyright 2008 S. Karger AG, Basel and IAP.

  16. Control of root meristem establishment in conifers.

    PubMed

    Brunoni, Federica; Ljung, Karin; Bellini, Catherine

    2018-06-19

    The evolution of terrestrial plant life was made possible by the establishment of a root system, which enabled plants to migrate from aquatic to terrestrial habitats. During evolution, root organization has gradually progressed from a very simple to a highly hierarchical architecture. Roots are initiated during embryogenesis and branch afterwards through lateral root formation. Additionally, adventitious roots can be formed post-embryonically from aerial organs. Induction of adventitious roots forms the basis of the vegetative propagation via cuttings in horticulture, agriculture and forestry. This method, together with somatic embryogenesis, is routinely used to clonally multiply conifers. In addition to being utilized as propagation techniques, adventitious rooting and somatic embryogenesis have emerged as versatile models to study cellular and molecular mechanisms of embryo formation and organogenesis of coniferous species. Both formation of the embryonic root and the adventitious root primordia require the establishment of auxin gradients within cells that coordinate the developmental response. These processes also share key elements of the genetic regulatory networks that, for example, are triggering cell fate. This minireview gives an overview of the molecular control mechanisms associated with root development in conifers, from initiation in the embryo to post-embryonic formation in cuttings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  17. Molecular biomimetics: GEPI-based biological routes to technology.

    PubMed

    Tamerler, Candan; Khatayevich, Dmitriy; Gungormus, Mustafa; Kacar, Turgay; Oren, E Emre; Hnilova, Marketa; Sarikaya, Mehmet

    2010-01-01

    In nature, the viability of biological systems is sustained via specific interactions among the tens of thousands of proteins, the major building blocks of organisms from the simplest single-celled to the most complex multicellular species. Biomolecule-material interaction is accomplished with molecular specificity and efficiency leading to the formation of controlled structures and functions at all scales of dimensional hierarchy. Through evolution, Mother Nature developed molecular recognition by successive cycles of mutation and selection. Molecular specificity of probe-target interactions, e.g., ligand-receptor, antigen-antibody, is always based on specific peptide molecular recognition. Using biology as a guide, we can now understand, engineer, and control peptide-material interactions and exploit them as a new design tool for novel materials and systems. We adapted the protocols of combinatorially designed peptide libraries, via both cell surface or phage display methods; using these we select short peptides with specificity to a variety of practical materials. These genetically engineered peptides for inorganics (GEPI) are then studied experimentally to establish their binding kinetics and surface stability. The bound peptide structure and conformations are interrogated both experimentally and via modeling, and self-assembly characteristics are tested via atomic force microscopy. We further engineer the peptide binding and assembly characteristics using a computational biomimetics approach where bioinformatics based peptide-sequence similarity analysis is developed to design higher generation function-specific peptides. The molecular biomimetic approach opens up new avenues for the design and utilization of multifunctional molecular systems in a wide-range of applications from tissue engineering, disease diagnostics, and therapeutics to various areas of nanotechnology where integration is required among inorganic, organic and biological materials. Here, we

  18. Molecular tools in understanding the evolution of Vibrio cholerae

    PubMed Central

    Rahaman, Md. Habibur; Islam, Tarequl; Colwell, Rita R.; Alam, Munirul

    2015-01-01

    Vibrio cholerae, the etiological agent of cholera, has been a scourge for centuries. Cholera remains a serious health threat for developing countries and has been responsible for millions of deaths globally over the past 200 years. Identification of V. cholerae has been accomplished using a variety of methods, ranging from phenotypic strategies to DNA based molecular typing and currently whole genomic approaches. This array of methods has been adopted in epidemiological investigations, either singly or in the aggregate, and more recently for evolutionary analyses of V. cholerae. Because the new technologies have been developed at an ever increasing pace, this review of the range of fingerprinting strategies, their relative advantages and limitations, and cholera case studies was undertaken. The task was challenging, considering the vast amount of the information available. To assist the study, key references representative of several areas of research are provided with the intent to provide readers with a comprehensive view of recent advances in the molecular epidemiology of V. cholerae. Suggestions for ways to obviate many of the current limitations of typing techniques are also provided. In summary, a comparative report has been prepared that includes the range from traditional typing to whole genomic strategies. PMID:26500613

  19. Equipping Every Student with Psychological Tools: A Vygotskian Guide to Establishing the Goals of Education

    ERIC Educational Resources Information Center

    Eun, Barohny

    2016-01-01

    The present conceptual analysis begins with an assertion that the most fundamental act in any educational endeavors is establishing their goals. The discussion proceeds to reviewing recent pertinent literature that presents Vygotsky's theory of development as a useful source in providing guidance to establishing the goals of education in rapidly…

  20. OptoBase: A web platform for molecular optogenetics.

    PubMed

    Kolar, Katja; Knobloch, Christian; Stork, Hendrik; Žnidarič, Matej; Weber, Wilfried

    2018-06-18

    OptoBase is an online platform for molecular optogenetics. At its core is a hand-annotated and ontology-supported database that aims to cover all existing optogenetic switches and publications, which is further complemented with a collection of convenient optogenetics-related web tools. OptoBase is meant for both expert optogeneticists, to easily keep track of the field, as well as for all researchers who find optogenetics inviting as a powerful tool to address their biological questions of interest. It is available at https://www.optobase.org. This work also presents OptoBase-based analysis of the trends in molecular optogenetics.

  1. Tools and procedures for visualization of proteins and other biomolecules.

    PubMed

    Pan, Lurong; Aller, Stephen G

    2015-04-01

    Protein, peptides, and nucleic acids are biomolecules that drive biological processes in living organisms. An enormous amount of structural data for a large number of these biomolecules has been described with atomic precision in the form of structural "snapshots" that are freely available in public repositories. These snapshots can help explain how the biomolecules function, the nature of interactions between multi-molecular complexes, and even how small-molecule drugs can modulate the biomolecules for clinical benefits. Furthermore, these structural snapshots serve as inputs for sophisticated computer simulations to turn the biomolecules into moving, "breathing" molecular machines for understanding their dynamic properties in real-time computer simulations. In order for the researcher to take advantage of such a wealth of structural data, it is necessary to gain competency in the use of computer molecular visualization tools for exploring the structures and visualizing three-dimensional spatial representations. Here, we present protocols for using two common visualization tools--the Web-based Jmol and the stand-alone PyMOL package--as well as a few examples of other popular tools. Copyright © 2015 John Wiley & Sons, Inc.

  2. Laboratory Molecular Astrophysics as an Invaluable Tool in understanding Astronomical Observations.

    NASA Astrophysics Data System (ADS)

    Fraser, Helen Jane

    2015-08-01

    We are entering the decade of molecular astrochemistry: spectroscopic data pertaining to the interactions between baryonic matter and electromagnetic radiation are now at the forefront of astronomical observations. Elucidating such data is reliant on inputs from laboratory experiments, modeling, and theoretical chemistry / physics, a field that is intended to be a key focus for the proposed new commission in Laboratory Astrophysics.Here, we propose a “tour de force” review of some recent successes since the last GA in molecular astrophysics, particularly those that have been directly facilitated by laboratory data in Astrochemistry. It is vital to highlight to the astronomers that the absence of laboratory data from the literature would otherwise have precluded advances in our astronomical understanding, e.g:the detection of gas-phase water deep in pre-stellar cores,the detection of water and other molecular species in gravitationally lensed galaxies at z~6“Jumps” in the appearance or disappearance of molecules, including the very recent detection of the first branched organic molecule in the ISM, iso-propyl-cyanide,disentangling dense spectroscopic features in the sub-mm as measured by ALMA, Herschel and SOFIA, the so-called “weeds” and “flowers”,the first ''image'' of a CO snow-line in a protoplanetary disk.Looking forward, the advent of high spatial and spectral resolution telescopes, particularly ALMA, SKA E-ELT and JWST, will continue to drive forward the needs and interests of laboratory astrochemistry in the coming decade. We will look forward to five key areas where advances are expected, and both observational and laboratory techniques are evolving:-(a) understanding star forming regions at very high spatial and spectral senstivity and resolution(b) extragalactic astrochemistry(c) (exo-)planetary atmospheres, surfaces and Solar System sample return - linkinginterstellar and planetary chemistry(d) astrobiology - linking simple molecular

  3. MEvoLib v1.0: the first molecular evolution library for Python.

    PubMed

    Álvarez-Jarreta, Jorge; Ruiz-Pesini, Eduardo

    2016-10-28

    Molecular evolution studies involve many different hard computational problems solved, in most cases, with heuristic algorithms that provide a nearly optimal solution. Hence, diverse software tools exist for the different stages involved in a molecular evolution workflow. We present MEvoLib, the first molecular evolution library for Python, providing a framework to work with different tools and methods involved in the common tasks of molecular evolution workflows. In contrast with already existing bioinformatics libraries, MEvoLib is focused on the stages involved in molecular evolution studies, enclosing the set of tools with a common purpose in a single high-level interface with fast access to their frequent parameterizations. The gene clustering from partial or complete sequences has been improved with a new method that integrates accessible external information (e.g. GenBank's features data). Moreover, MEvoLib adjusts the fetching process from NCBI databases to optimize the download bandwidth usage. In addition, it has been implemented using parallelization techniques to cope with even large-case scenarios. MEvoLib is the first library for Python designed to facilitate molecular evolution researches both for expert and novel users. Its unique interface for each common task comprises several tools with their most used parameterizations. It has also included a method to take advantage of biological knowledge to improve the gene partition of sequence datasets. Additionally, its implementation incorporates parallelization techniques to enhance computational costs when handling very large input datasets.

  4. [Establishment of animal model for Pneumocystis carinii and study on etiological and molecular biological detection technology].

    PubMed

    Tian, Li-guang; Ai, Lin; Chu, Yan-hong; Wu, Xiu-ping; Cai, Yu-chun; Chen, Zhuo; Chen, Shao-hong; Chen, Jia-xu

    2015-04-01

    To establish an animal model for Pneumocystis pneumonia (PCP) and to study the etiological and molecular biological technology for PCP detection. SD and Wistar rats were divided into experimental and control groups randomly. The animals in the experimental group were immunosuppressed by subcutaneous injection with dexamethasone 2 mg per time per rat, twice a week, while those in the control group underwent the same way of injection with physiological saline simultaneously. After the induction for 8 weeks, all the rats were killed and their bronchoalveolar lavage fluid (BALF) and lung tissues were collected for smear making and microscopic detection. Meanwhile, the BALF samples were detected by PCR, and the products were sequenced and compared with rat source PCP in GenBank. A total of 34 samples of lung tissue and BALF were observed. The etiological detection showed that the infection rates of the rats in the experimental and control groups were 29.2% (7/24) and 0, respectively. In the experimental group, the infection rates of SD and Wistar rats were 25.0% (3/12) and 33.3% (4/12), respectively, and the difference between them was not statistically significant (P = 0.31). The positive detection rates of the lung smears and BALF from SD rats in the experimental group were 25.0% (3/12) and 16.7% (2/12), respectively, while those in Wistar rats in the experimental group were 33.3% (4/12) and 16.7% (2/12), respectively, and there were no statistically significant difference between them (P = 0.34, 0.24). A total of 28 samples of BALF were detected by PCR, and the positive detection rates of rats in the experimental group and control group were 91.7% (26/28) and 0, respectively. The sequence analysis of the PCR products showed that it shared 100% homology with the genes of rat source PCP in Gen Bank (JX499145, GU133622 and EF646865). The animal model of PCP can be established by subcutaneous injection with dexamethasone. As animal models, there are no significant

  5. Tool to Prioritize Energy Efficiency Investments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farese, P.; Gelman, R.; Hendron, R.

    2012-08-01

    To provide analytic support of the U.S. Department of Energy's Office of the Building Technology Program (BTP), NREL developed a Microsoft Excel-based tool to provide an open and objective comparison of the hundreds of investment opportunities available to BTP. This tool uses established methodologies to evaluate the energy savings and cost of those savings.

  6. Noncovalent Molecular Electronics.

    PubMed

    Gryn'ova, G; Corminboeuf, C

    2018-05-03

    Molecular electronics covers several distinctly different conducting architectures, including organic semiconductors and single-molecule junctions. The noncovalent interactions, abundant in the former, are also often found in the latter, i.e., the dimer junctions. In the present work, we draw the parallel between the two types of noncovalent molecular electronics for a range of π-conjugated heteroaromatic molecules. In silico modeling allows us to distill the factors that arise from the chemical nature of their building blocks and from their mutual arrangement. We find that the same compounds are consistently the worst and the best performers in the two types of electronic assemblies, emphasizing the universal imprint of the underlying chemistry of the molecular cores on their diverse charge transport characteristics. The interplay between molecular and intermolecular factors creates a spectrum of noncovalent conductive architectures, which can be manipulated using the design strategies based upon the established relationships between chemistry and transport.

  7. Cellular trajectories and molecular mechanisms of iPSC reprogramming.

    PubMed

    Apostolou, Effie; Stadtfeld, Matthias

    2018-06-16

    The discovery of induced pluripotent stem cells (iPSCs) has solidified the concept of transcription factors as major players in controlling cell identity and provided a tractable tool to study how somatic cell identity can be dismantled and pluripotency established. A number of landmark studies have established hallmarks and roadmaps of iPSC formation by describing relative kinetics of transcriptional, protein and epigenetic changes, including alterations in DNA methylation and histone modifications. Recently, technological advancements such as single-cell analyses, high-resolution genome-wide chromatin assays and more efficient reprogramming systems have been used to challenge and refine our understanding of the reprogramming process. Here, we will outline novel insights into the molecular mechanisms underlying iPSC formation, focusing on how the core reprogramming factors OCT4, KLF4, SOX2 and MYC (OKSM) drive changes in gene expression, chromatin state and 3D genome topology. In addition, we will discuss unexpected consequences of reprogramming factor expression in in vitro and in vivo systems that may point towards new applications of iPSC technology. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Molecular ecological network analyses.

    PubMed

    Deng, Ye; Jiang, Yi-Huei; Yang, Yunfeng; He, Zhili; Luo, Feng; Zhou, Jizhong

    2012-05-30

    Understanding the interaction among different species within a community and their responses to environmental changes is a central goal in ecology. However, defining the network structure in a microbial community is very challenging due to their extremely high diversity and as-yet uncultivated status. Although recent advance of metagenomic technologies, such as high throughout sequencing and functional gene arrays, provide revolutionary tools for analyzing microbial community structure, it is still difficult to examine network interactions in a microbial community based on high-throughput metagenomics data. Here, we describe a novel mathematical and bioinformatics framework to construct ecological association networks named molecular ecological networks (MENs) through Random Matrix Theory (RMT)-based methods. Compared to other network construction methods, this approach is remarkable in that the network is automatically defined and robust to noise, thus providing excellent solutions to several common issues associated with high-throughput metagenomics data. We applied it to determine the network structure of microbial communities subjected to long-term experimental warming based on pyrosequencing data of 16 S rRNA genes. We showed that the constructed MENs under both warming and unwarming conditions exhibited topological features of scale free, small world and modularity, which were consistent with previously described molecular ecological networks. Eigengene analysis indicated that the eigengenes represented the module profiles relatively well. In consistency with many other studies, several major environmental traits including temperature and soil pH were found to be important in determining network interactions in the microbial communities examined. To facilitate its application by the scientific community, all these methods and statistical tools have been integrated into a comprehensive Molecular Ecological Network Analysis Pipeline (MENAP), which is open

  9. Tegument protein control of latent herpesvirus establishment and animation

    PubMed Central

    2011-01-01

    Herpesviruses are successful pathogens that infect most vertebrates as well as at least one invertebrate species. Six of the eight human herpesviruses are widely distributed in the population. Herpesviral infections persist for the life of the infected host due in large part to the ability of these viruses to enter a non-productive, latent state in which viral gene expression is limited and immune detection and clearance is avoided. Periodically, the virus will reactivate and enter the lytic cycle, producing progeny virus that can spread within or to new hosts. Latency has been classically divided into establishment, maintenance, and reactivation phases. Here we focus on demonstrated and postulated molecular mechanisms leading to the establishment of latency for representative members of each human herpesvirus family. Maintenance and reactivation are also briefly discussed. In particular, the roles that tegument proteins may play during latency are highlighted. Finally, we introduce the term animation to describe the initiation of lytic phase gene expression from a latent herpesvirus genome, and discuss why this step should be separated, both molecularly and theoretically, from reactivation. PMID:21429246

  10. Malaria parasite mutants with altered erythrocyte permeability: a new drug resistance mechanism and important molecular tool

    PubMed Central

    Hill, David A; Desai, Sanjay A

    2010-01-01

    Erythrocytes infected with plasmodia, including those that cause human malaria, have increased permeability to a diverse collection of organic and inorganic solutes. While these increases have been known for decades, their mechanistic basis was unclear until electrophysiological studies revealed flux through one or more ion channels on the infected erythrocyte membrane. Current debates have centered on the number of distinct ion channels, which channels mediate the transport of each solute and whether the channels represent parasite-encoded proteins or human channels activated after infection. This article reviews the identification of the plasmodial surface anion channel and other proposed channels with an emphasis on two distinct channel mutants generated through in vitro selection. These mutants implicate parasite genetic elements in the parasite-induced permeability, reveal an important new antimalarial drug resistance mechanism and provide tools for molecular studies. We also critically examine the technical issues relevant to the detection of ion channels by electrophysiological methods; these technical considerations have general applicability for interpreting studies of various ion channels proposed for the infected erythrocyte membrane. PMID:20020831

  11. Molecular Imaging in Synthetic Biology, and Synthetic Biology in Molecular Imaging.

    PubMed

    Gilad, Assaf A; Shapiro, Mikhail G

    2017-06-01

    Biomedical synthetic biology is an emerging field in which cells are engineered at the genetic level to carry out novel functions with relevance to biomedical and industrial applications. This approach promises new treatments, imaging tools, and diagnostics for diseases ranging from gastrointestinal inflammatory syndromes to cancer, diabetes, and neurodegeneration. As these cellular technologies undergo pre-clinical and clinical development, it is becoming essential to monitor their location and function in vivo, necessitating appropriate molecular imaging strategies, and therefore, we have created an interest group within the World Molecular Imaging Society focusing on synthetic biology and reporter gene technologies. Here, we highlight recent advances in biomedical synthetic biology, including bacterial therapy, immunotherapy, and regenerative medicine. We then discuss emerging molecular imaging approaches to facilitate in vivo applications, focusing on reporter genes for noninvasive modalities such as magnetic resonance, ultrasound, photoacoustic imaging, bioluminescence, and radionuclear imaging. Because reporter genes can be incorporated directly into engineered genetic circuits, they are particularly well suited to imaging synthetic biological constructs, and developing them provides opportunities for creative molecular and genetic engineering.

  12. Assessment of competency in endoscopy: establishing and validating generalizable competency benchmarks for colonoscopy.

    PubMed

    Sedlack, Robert E; Coyle, Walter J

    2016-03-01

    The Mayo Colonoscopy Skills Assessment Tool (MCSAT) has previously been used to describe learning curves and competency benchmarks for colonoscopy; however, these data were limited to a single training center. The newer Assessment of Competency in Endoscopy (ACE) tool is a refinement of the MCSAT tool put forth by the Training Committee of the American Society for Gastrointestinal Endoscopy, intended to include additional important quality metrics. The goal of this study is to validate the changes made by updating this tool and establish more generalizable and reliable learning curves and competency benchmarks for colonoscopy by examining a larger national cohort of trainees. In a prospective, multicenter trial, gastroenterology fellows at all stages of training had their core cognitive and motor skills in colonoscopy assessed by staff. Evaluations occurred at set intervals of every 50 procedures throughout the 2013 to 2014 academic year. Skills were graded by using the ACE tool, which uses a 4-point grading scale defining the continuum from novice to competent. Average learning curves for each skill were established at each interval in training and competency benchmarks for each skill were established using the contrasting groups method. Ninety-three gastroenterology fellows at 10 U.S. academic institutions had 1061 colonoscopies assessed by using the ACE tool. Average scores of 3.5 were found to be inclusive of all minimal competency thresholds identified for each core skill. Cecal intubation times of less than 15 minutes and independent cecal intubation rates of 90% were also identified as additional competency thresholds during analysis. The average fellow achieved all cognitive and motor skill endpoints by 250 procedures, with >90% surpassing these thresholds by 300 procedures. Nationally generalizable learning curves for colonoscopy skills in gastroenterology fellows are described. Average ACE scores of 3.5, cecal intubation rates of 90%, and intubation times

  13. Treatment Algorithms Based on Tumor Molecular Profiling: The Essence of Precision Medicine Trials.

    PubMed

    Le Tourneau, Christophe; Kamal, Maud; Tsimberidou, Apostolia-Maria; Bedard, Philippe; Pierron, Gaëlle; Callens, Céline; Rouleau, Etienne; Vincent-Salomon, Anne; Servant, Nicolas; Alt, Marie; Rouzier, Roman; Paoletti, Xavier; Delattre, Olivier; Bièche, Ivan

    2016-04-01

    With the advent of high-throughput molecular technologies, several precision medicine (PM) studies are currently ongoing that include molecular screening programs and PM clinical trials. Molecular profiling programs establish the molecular profile of patients' tumors with the aim to guide therapy based on identified molecular alterations. The aim of prospective PM clinical trials is to assess the clinical utility of tumor molecular profiling and to determine whether treatment selection based on molecular alterations produces superior outcomes compared with unselected treatment. These trials use treatment algorithms to assign patients to specific targeted therapies based on tumor molecular alterations. These algorithms should be governed by fixed rules to ensure standardization and reproducibility. Here, we summarize key molecular, biological, and technical criteria that, in our view, should be addressed when establishing treatment algorithms based on tumor molecular profiling for PM trials. © The Author 2015. Published by Oxford University Press.

  14. Molecular detection technologies for arboviruses

    USDA-ARS?s Scientific Manuscript database

    Arthropod-borne animal viruses (arboviruses) cause significant livestock and economic losses to world agriculture. This paper discusses the current and potential impact of these viruses, as well as the current and developing molecular diagnostic tools for these emerging and re-emerging insect transm...

  15. Oak plantation establishment using mechanical, burning, and herbicide treatments

    Treesearch

    James H. Miller

    1993-01-01

    Abstract.Mechanical methods, prescribed burning, and herbicide treatments for establishing oak plantations are reviewed, with emphasis on herbicides. Integrated prescriptions for site preparation using these silvicultural tools are outlined for both clearcut forests and old field sites. The basic premise is that intensive cultural treatments will be...

  16. Assessment of the Simulated Molecular Composition with the GECKO-A Modeling Tool Using Chamber Observations for α-Pinene.

    NASA Astrophysics Data System (ADS)

    Aumont, B.; Camredon, M.; Isaacman-VanWertz, G. A.; Karam, C.; Valorso, R.; Madronich, S.; Kroll, J. H.

    2016-12-01

    Gas phase oxidation of VOC is a gradual process leading to the formation of multifunctional organic compounds, i.e., typically species with higher oxidation state, high water solubility and low volatility. These species contribute to the formation of secondary organic aerosols (SOA) viamultiphase processes involving a myriad of organic species that evolve through thousands of reactions and gas/particle mass exchanges. Explicit chemical mechanisms reflect the understanding of these multigenerational oxidation steps. These mechanisms rely directly on elementary reactions to describe the chemical evolution and track the identity of organic carbon through various phases down to ultimate oxidation products. The development, assessment and improvement of such explicit schemes is a key issue, as major uncertainties remain on the chemical pathways involved during atmospheric oxidation of organic matter. An array of mass spectrometric techniques (CIMS, PTRMS, AMS) was recently used to track the composition of organic species during α-pinene oxidation in the MIT environmental chamber, providing an experimental database to evaluate and improve explicit mechanisms. In this study, the GECKO-A tool (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) is used to generate fully explicit oxidation schemes for α-pinene multiphase oxidation simulating the MIT experiment. The ability of the GECKO-A chemical scheme to explain the organic molecular composition in the gas and the condensed phases is explored. First results of this model/observation comparison at the molecular level will be presented.

  17. Molecular Neuroanatomy: A Generation of Progress

    PubMed Central

    Pollock, Jonathan D.; Wu, Da-Yu; Satterlee, John

    2014-01-01

    The neuroscience research landscape has changed dramatically over the past decade. An impressive array of neuroscience tools and technologies have been generated, including brain gene expression atlases, genetically encoded proteins to monitor and manipulate neuronal activity and function, cost effective genome sequencing, new technologies enabling genome manipulation, new imaging methods and new tools for mapping neuronal circuits. However, despite these technological advances, several significant scientific challenges must be overcome in the coming decade to enable a better understanding of brain function and to develop next generation cell type-targeted therapeutics to treat brain disorders. For example, we do not have an inventory of the different types of cells that exist in the brain, nor do we know how to molecularly phenotype them. We also lack robust technologies to map connections between cells. This review will provide an overview of some of the tools and technologies neuroscientists are currently using to move the field of molecular neuroanatomy forward and also discuss emerging technologies that may enable neuroscientists to address these critical scientific challenges over the coming decade. PMID:24388609

  18. Radiative transfer in molecular lines

    NASA Astrophysics Data System (ADS)

    Asensio Ramos, A.; Trujillo Bueno, J.; Cernicharo, J.

    2001-07-01

    The highly convergent iterative methods developed by Trujillo Bueno and Fabiani Bendicho (1995) for radiative transfer (RT) applications are generalized to spherical symmetry with velocity fields. These RT methods are based on Jacobi, Gauss-Seidel (GS), and SOR iteration and they form the basis of a new NLTE multilevel transfer code for atomic and molecular lines. The benchmark tests carried out so far are presented and discussed. The main aim is to develop a number of powerful RT tools for the theoretical interpretation of molecular spectra.

  19. Establishment and validation of a method for multi-dose irradiation of cells in 96-well microplates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abatzoglou, Ioannis; Zois, Christos E.; Pouliliou, Stamatia

    2013-02-15

    Highlights: ► We established a method for multi-dose irradiation of cell cultures within a 96-well plate. ► Equations to adjust to preferable dose levels are produced and provided. ► Up to eight different dose levels can be tested in one microplate. ► This method results in fast and reliable estimation of radiation dose–response curves. -- Abstract: Microplates are useful tools in chemistry, biotechnology and molecular biology. In radiobiology research, these can be also applied to assess the effect of a certain radiation dose delivered to the whole microplate, to test radio-sensitivity, radio-sensitization or radio-protection. Whether different radiation doses can bemore » accurately applied to a single 96-well plate to further facilitate and accelerated research by one hand and spare funds on the other, is a question dealt in the current paper. Following repeated ion-chamber, TLD and radiotherapy planning dosimetry we established a method for multi-dose irradiation of cell cultures within a 96-well plate, which allows an accurate delivery of desired doses in sequential columns of the microplate. Up to eight different dose levels can be tested in one microplate. This method results in fast and reliable estimation of radiation dose–response curves.« less

  20. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics.

    PubMed

    Schmiedt, Hanno; Jensen, Per; Schlemmer, Stephan

    2016-08-21

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thus far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.

  1. Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmiedt, Hanno; Schlemmer, Stephan; Jensen, Per, E-mail: jensen@uni-wuppertal.de

    In modern physics and chemistry concerned with many-body systems, one of the mainstays is identical-particle-permutation symmetry. In particular, both the intra-molecular dynamics of a single molecule and the inter-molecular dynamics associated, for example, with reactive molecular collisions are strongly affected by selection rules originating in nuclear-permutation symmetry operations being applied to the total internal wavefunctions, including nuclear spin, of the molecules involved. We propose here a general tool to determine coherently the permutation symmetry and the rotational symmetry (associated with the group of arbitrary rotations of the entire molecule in space) of molecular wavefunctions, in particular the nuclear-spin functions. Thusmore » far, these two symmetries were believed to be mutually independent and it has even been argued that under certain circumstances, it is impossible to establish a one-to-one correspondence between them. However, using the Schur-Weyl duality theorem we show that the two types of symmetry are inherently coupled. In addition, we use the ingenious representation-theory technique of Young tableaus to represent the molecular nuclear-spin degrees of freedom in terms of well-defined mathematical objects. This simplifies the symmetry classification of the nuclear wavefunction even for large molecules. Also, the application to reactive collisions is very straightforward and provides a much simplified approach to obtaining selection rules.« less

  2. Spatial Modelling Tools to Integrate Public Health and Environmental Science, Illustrated with Infectious Cryptosporidiosis

    PubMed Central

    Lal, Aparna

    2016-01-01

    Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change. PMID:26848669

  3. Spatial Modelling Tools to Integrate Public Health and Environmental Science, Illustrated with Infectious Cryptosporidiosis.

    PubMed

    Lal, Aparna

    2016-02-02

    Contemporary spatial modelling tools can help examine how environmental exposures such as climate and land use together with socio-economic factors sustain infectious disease transmission in humans. Spatial methods can account for interactions across global and local scales, geographic clustering and continuity of the exposure surface, key characteristics of many environmental influences. Using cryptosporidiosis as an example, this review illustrates how, in resource rich settings, spatial tools have been used to inform targeted intervention strategies and forecast future disease risk with scenarios of environmental change. When used in conjunction with molecular studies, they have helped determine location-specific infection sources and environmental transmission pathways. There is considerable scope for such methods to be used to identify data/infrastructure gaps and establish a baseline of disease burden in resource-limited settings. Spatial methods can help integrate public health and environmental science by identifying the linkages between the physical and socio-economic environment and health outcomes. Understanding the environmental and social context for disease spread is important for assessing the public health implications of projected environmental change.

  4. Synthesis and Characterization of a Magnetically Active 19F Molecular Beacon.

    PubMed

    Dempsey, Megan E; Marble, Hetal D; Shen, Tun-Li; Fawzi, Nicolas L; Darling, Eric M

    2018-02-21

    Gene expression is used extensively to describe cellular characteristics and behaviors; however, most methods of assessing gene expression are unsuitable for living samples, requiring destructive processes such as fixation or lysis. Recently, molecular beacons have become a viable tool for live-cell imaging of mRNA molecules in situ. Historically, beacon-mediated imaging has been limited to fluorescence-based approaches. We propose the design and synthesis of a novel molecular beacon for magnetic resonance detection of any desired target nucleotide sequence. The biologically compatible synthesis incorporates commonly used bioconjugation reactions in aqueous conditions and is accessible for laboratories without extensive synthesis capabilities. The resulting beacon uses fluorine ( 19 F) as a reporter, which is broadened, or turned "off", via paramagnetic relaxation enhancement from a stabilized nitroxide radical spin label when the beacon is not bound to its nucleic acid target. Therefore, the 19 F NMR signal of the beacon is quenched in its hairpin conformation when the spin label and the 19 F substituent are held in proximity, but the signal is recovered upon beacon hybridization to its specific complementary nucleotide sequence by physical separation of the radical from the 19 F reporter. This study establishes a path for magnetic resonance-based assessment of specific mRNA expression, providing new possibilities for applying molecular beacon technology in living systems.

  5. A Diagnostic Assessment for Introductory Molecular and Cell Biology

    ERIC Educational Resources Information Center

    Shi, Jia; Wood, William B.; Martin, Jennifer M.; Guild, Nancy A.; Vicens, Quentin; Knight, Jennifer K.

    2010-01-01

    We have developed and validated a tool for assessing understanding of a selection of fundamental concepts and basic knowledge in undergraduate introductory molecular and cell biology, focusing on areas in which students often have misconceptions. This multiple-choice Introductory Molecular and Cell Biology Assessment (IMCA) instrument is designed…

  6. Control of molecular rotation with an optical centrifuge

    NASA Astrophysics Data System (ADS)

    Korobenko, Aleksey

    2017-04-01

    The main purpose of this work is the experimental study of the applicability of an optical centrifuge - a novel tool, utilizing non-resonant broadband laser radiation to excite molecular rotation - to produce and control molecules in extremely high rotational states, so called molecular ``super rotors'', and to study their optical, magnetic, acoustic, hydrodynamic and quantum mechanical properties.

  7. OralCard: a bioinformatic tool for the study of oral proteome.

    PubMed

    Arrais, Joel P; Rosa, Nuno; Melo, José; Coelho, Edgar D; Amaral, Diana; Correia, Maria José; Barros, Marlene; Oliveira, José Luís

    2013-07-01

    The molecular complexity of the human oral cavity can only be clarified through identification of components that participate within it. However current proteomic techniques produce high volumes of information that are dispersed over several online databases. Collecting all of this data and using an integrative approach capable of identifying unknown associations is still an unsolved problem. This is the main motivation for this work. We present the online bioinformatic tool OralCard, which comprises results from 55 manually curated articles reflecting the oral molecular ecosystem (OralPhysiOme). It comprises experimental information available from the oral proteome both of human (OralOme) and microbial origin (MicroOralOme) structured in protein, disease and organism. This tool is a key resource for researchers to understand the molecular foundations implicated in biology and disease mechanisms of the oral cavity. The usefulness of this tool is illustrated with the analysis of the oral proteome associated with diabetes melitus type 2. OralCard is available at http://bioinformatics.ua.pt/oralcard. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Updates to the Virtual Atomic and Molecular Data Centre

    NASA Astrophysics Data System (ADS)

    Hill, Christian; Tennyson, Jonathan; Gordon, Iouli E.; Rothman, Laurence S.; Dubernet, Marie-Lise

    2014-06-01

    The Virtual Atomic and Molecular Data Centre (VAMDC) has established a set of standards for the storage and transmission of atomic and molecular data and an SQL-based query language (VSS2) for searching online databases, known as nodes. The project has also created an online service, the VAMDC Portal, through which all of these databases may be searched and their results compared and aggregated. Since its inception four years ago, the VAMDC e-infrastructure has grown to encompass over 40 databases, including HITRAN, in more than 20 countries and engages actively with scientists in six continents. Associated with the portal are a growing suite of software tools for the transformation of data from its native, XML-based, XSAMS format, to a range of more convenient human-readable (such as HTML) and machinereadable (such as CSV) formats. The relational database for HITRAN1, created as part of the VAMDC project is a flexible and extensible data model which is able to represent a wider range of parameters than the current fixed-format text-based one. Over the next year, a new online interface to this database will be tested, released and fully documented - this web application, HITRANonline2, will fully replace the ageing and incomplete JavaHAWKS software suite.

  9. Molecular detection and identification of Rickettsiales pathogens in dog ticks from Costa Rica.

    PubMed

    Campos-Calderón, Liliana; Ábrego-Sánchez, Leyda; Solórzano-Morales, Antony; Alberti, Alberto; Tore, Gessica; Zobba, Rosanna; Jiménez-Rocha, Ana E; Dolz, Gaby

    2016-10-01

    Although vector-borne diseases are globally widespread with considerable impact on animal production and on public health, few reports document their presence in Central America. This study focuses on the detection and molecular identification of species belonging to selected bacterial genera (Ehrlichia, Anaplasma and Rickettsia) in ticks sampled from dogs in Costa Rica by targeting several genes: 16S rRNA/dsb genes for Ehrlichia; 16S rRNA/groEL genes for Anaplasma, and ompA/gltA/groEL genes for Rickettsia. PCR and sequence analyses provides evidences of Ehrlichia canis, Anaplasma platys, and Anaplasma phagocytophilum infection in Rhipicephalus sanguineus s.l ticks, and allow establishing the presence of Rickettsia monacensis in Ixodes boliviensis. Furthermore, the presence of recently discovered Mediterranean A. platys-like strains is reported for the first time in Central America. Results provide new background on geographical distribution of selected tick-transmitted bacterial pathogens in Costa Rica and on their molecular epidemiology, and are pivotal to the development of effective and reliable diagnostic tools in Central America. Copyright © 2016 Elsevier GmbH. All rights reserved.

  10. Conservation of the introgressed European water frog complex using molecular tools.

    PubMed

    Holsbeek, G; Maes, G E; De Meester, L; Volckaert, F A M

    2009-03-01

    In Belgium, the Pelophylax esculentus complex has recently been subjected to multiple introductions of non-native water frogs, increasing the occurrence of hybridisation events. In the present study, we tested the reliability of morphometric and recently developed microsatellite tools to identify introgression and to determine the origin of exotic Belgian water frogs. By analysing 150 individuals of each taxon of the P. esculentus complex and an additional 60 specimens of the introduced P. cf. bedriagae, we show that neither of the currently available tools appears to have sufficient power to reliably distinguish all Belgian water frog species. We therefore aimed at increasing the discriminatory power of a microsatellite identification tool by developing a new marker panel with additional microsatellite loci. By adding only two new microsatellite loci (RlCA5 and RlCA1b20), all taxa of the P. esculentus complex could be distinguished from each other with high confidence. Three more loci (Res3, Res5 and Res17) provided a powerful discrimination of the exotic species.

  11. Using Metaphors to Explain Molecular Testing to Cancer Patients.

    PubMed

    Pinheiro, Ana P M; Pocock, Rachel H; Dixon, Margie D; Shaib, Walid L; Ramalingam, Suresh S; Pentz, Rebecca D

    2017-04-01

    Molecular testing to identify targetable molecular alterations is routine practice for several types of cancer. Explaining the underlying molecular concepts can be difficult, and metaphors historically have been used in medicine to provide a common language between physicians and patients. Although previous studies have highlighted the use and effectiveness of metaphors to help explain germline genetic concepts to the general public, this study is the first to describe the use of metaphors to explain molecular testing to cancer patients in the clinical setting. Oncologist-patient conversations about molecular testing were recorded, transcribed verbatim, and coded. If a metaphor was used, patients were asked to explain it and assess its helpfulness. Sixty-six patients participated. Nine oncologists used metaphors to describe molecular testing; 25 of 66 (38%) participants heard a metaphor, 13 of 25 (52%) were questioned, 11 of 13 (85%) demonstrated understanding and reported the metaphor as being useful. Seventeen metaphors (bus driver, boss, switch, battery, circuit, broken light switch, gas pedal, key turning off an engine, key opening a lock, food for growth, satellite and antenna, interstate, alternate circuit, traffic jam, blueprint, room names, Florida citrus) were used to explain eight molecular testing terms (driver mutations, targeted therapy, hormones, receptors, resistance, exon specificity, genes, and cancer signatures). Because metaphors have proven to be a useful communication tool in other settings, these 17 metaphors may be useful for oncologists to adapt to their own setting to explain molecular testing terms. The Oncologist 2017;22:445-449 Implications for Practice: This article provides a snapshot of 17 metaphors that proved useful in describing 8 complicated molecular testing terms at 3 sites. As complex tumor sequencing becomes standard of care in clinics and widely used in clinical research, the use of metaphors may prove a useful communication

  12. Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.

    PubMed

    Scaife, Mark A; Nguyen, Ginnie T D T; Rico, Juan; Lambert, Devinn; Helliwell, Katherine E; Smith, Alison G

    2015-05-01

    Microalgae constitute a diverse group of eukaryotic unicellular organisms that are of interest for pure and applied research. Owing to their natural synthesis of value-added natural products microalgae are emerging as a source of sustainable chemical compounds, proteins and metabolites, including but not limited to those that could replace compounds currently made from fossil fuels. For the model microalga, Chlamydomonas reinhardtii, this has prompted a period of rapid development so that this organism is poised for exploitation as an industrial biotechnology platform. The question now is how best to achieve this? Highly advanced industrial biotechnology systems using bacteria and yeasts were established in a classical metabolic engineering manner over several decades. However, the advent of advanced molecular tools and the rise of synthetic biology provide an opportunity to expedite the development of C. reinhardtii as an industrial biotechnology platform, avoiding the process of incremental improvement. In this review we describe the current status of genetic manipulation of C. reinhardtii for metabolic engineering. We then introduce several concepts that underpin synthetic biology, and show how generic parts are identified and used in a standard manner to achieve predictable outputs. Based on this we suggest that the development of C. reinhardtii as an industrial biotechnology platform can be achieved more efficiently through adoption of a synthetic biology approach. © 2015 The Authors The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.

  13. The Health Impact Assessment (HIA) Resource and Tool ...

    EPA Pesticide Factsheets

    Health Impact Assessment (HIA) is a relatively new and rapidly emerging field in the U.S. An inventory of available HIA resources and tools was conducted, with a primary focus on resources developed in the U.S. The resources and tools available to HIA practitioners in the conduct of their work were identified through multiple methods and compiled into a comprehensive list. The compilation includes tools and resources related to the HIA process itself and those that can be used to collect and analyze data, establish a baseline profile, assess potential health impacts, and establish benchmarks and indicators for monitoring and evaluation. These resources include literature and evidence bases, data and statistics, guidelines, benchmarks, decision and economic analysis tools, scientific models, methods, frameworks, indices, mapping, and various data collection tools. Understanding the data, tools, models, methods, and other resources available to perform HIAs will help to advance the HIA community of practice in the U.S., improve the quality and rigor of assessments upon which stakeholder and policy decisions are based, and potentially improve the overall effectiveness of HIA to promote healthy and sustainable communities. The Health Impact Assessment (HIA) Resource and Tool Compilation is a comprehensive list of resources and tools that can be utilized by HIA practitioners with all levels of HIA experience to guide them throughout the HIA process. The HIA Resource

  14. Use of Molecular Diagnostic Tools for the Identification of Species Responsible for Snakebite in Nepal: A Pilot Study

    PubMed Central

    Sharma, Sanjib Kumar; Kuch, Ulrich; Höde, Patrick; Bruhse, Laura; Pandey, Deb P.; Ghimire, Anup; Chappuis, François; Alirol, Emilie

    2016-01-01

    Snakebite is an important medical emergency in rural Nepal. Correct identification of the biting species is crucial for clinicians to choose appropriate treatment and anticipate complications. This is particularly important for neurotoxic envenoming which, depending on the snake species involved, may not respond to available antivenoms. Adequate species identification tools are lacking. This study used a combination of morphological and molecular approaches (PCR-aided DNA sequencing from swabs of bite sites) to determine the contribution of venomous and non-venomous species to the snakebite burden in southern Nepal. Out of 749 patients admitted with a history of snakebite to one of three study centres, the biting species could be identified in 194 (25.9%). Out of these, 87 had been bitten by a venomous snake, most commonly the Indian spectacled cobra (Naja naja; n = 42) and the common krait (Bungarus caeruleus; n = 22). When both morphological identification and PCR/sequencing results were available, a 100% agreement was noted. The probability of a positive PCR result was significantly lower among patients who had used inadequate “first aid” measures (e.g. tourniquets or local application of remedies). This study is the first to report the use of forensic genetics methods for snake species identification in a prospective clinical study. If high diagnostic accuracy is confirmed in larger cohorts, this method will be a very useful reference diagnostic tool for epidemiological investigations and clinical studies. PMID:27105074

  15. Molecular markers for establishing distinctness in vegetatively propagated crops: a case study in grapevine.

    PubMed

    Ibáñez, Javier; Vélez, M Dolores; de Andrés, M Teresa; Borrego, Joaquín

    2009-11-01

    Distinctness, uniformity and stability (DUS) testing of varieties is usually required to apply for Plant Breeders' Rights. This exam is currently carried out using morphological traits, where the establishment of distinctness through a minimum distance is the key issue. In this study, the possibility of using microsatellite markers for establishing the minimum distance in a vegetatively propagated crop (grapevine) has been evaluated. A collection of 991 accessions have been studied with nine microsatellite markers and pair-wise compared, and the highest intra-variety distance and the lowest inter-variety distance determined. The collection included 489 different genotypes, and synonyms and sports. Average values for number of alleles per locus (19), Polymorphic Information Content (0.764) and heterozygosities observed (0.773) and expected (0.785) indicated the high level of polymorphism existing in grapevine. The maximum intra-variety variability found was one allele between two accessions of the same variety, of a total of 3,171 pair-wise comparisons. The minimum inter-variety variability found was two alleles between two pairs of varieties, of a total of 119,316 pair-wise comparisons. In base to these results, the minimum distance required to set distinctness in grapevine with the nine microsatellite markers used could be established in two alleles. General rules for the use of the system as a support for establishing distinctness in vegetatively propagated crops are discussed.

  16. A concept taxonomy and an instrument hierarchy: tools for establishing and evaluating the conceptual framework of a patient-reported outcome (PRO) instrument as applied to product labeling claims.

    PubMed

    Erickson, Pennifer; Willke, Richard; Burke, Laurie

    2009-01-01

    To facilitate development and evaluation of a PRO instrument conceptual framework, we propose two tools--a PRO concept taxonomy and a PRO instrument hierarchy. FDA's draft guidance on patient reported outcome (PRO) measures states that a clear description of the conceptual framework of an instrument is useful for evaluating its adequacy to support a treatment benefit claim for use in product labeling the draft guidance, however does not propose tools for establishing or evaluating a PRO instrument's conceptual framework. We draw from our review of PRO concepts and instruments that appear in prescription drug labeling approved in the United States from 1997 to 2007. We propose taxonomy terms that define relationships between PRO concepts, including "family,"compound concept," and "singular concept." Based on the range of complexity represented by the concepts, as defined by the taxonomy, we propose nine instrument orders for PRO measurement. The nine orders range from individual event counts to multi-item, multiscale instruments. This analysis of PRO concepts and instruments illustrates that the taxonomy and hierarchy are applicable to PRO concepts across a wide range of therapeutic areas and provide a basis for defining the instrument conceptual framework complexity. Although the utility of these tools in the drug development, review, and approval processes has not yet been demonstrated, these tools could be useful to improve communication and enhance efficiency in the instrument development and review process.

  17. Molecular Tools for Monitoring the Ecological Sustainability of a Stone Bio-Consolidation Treatment at the Royal Chapel, Granada

    PubMed Central

    Jroundi, Fadwa; Gonzalez-Muñoz, Maria Teresa; Sterflinger, Katja; Piñar, Guadalupe

    2015-01-01

    . The molecular strategy employed here is suggested as an efficient monitoring tool to assess the impact on the stone-autochthonous microbiota of the application of biomineralization processes as a restoration/conservation procedure. PMID:26222040

  18. Molecular Tools for Monitoring the Ecological Sustainability of a Stone Bio-Consolidation Treatment at the Royal Chapel, Granada.

    PubMed

    Jroundi, Fadwa; Gonzalez-Muñoz, Maria Teresa; Sterflinger, Katja; Piñar, Guadalupe

    2015-01-01

    Biomineralization processes have recently been applied in situ to protect and consolidate decayed ornamental stone of the Royal Chapel in Granada (Spain). While this promising method has demonstrated its efficacy regarding strengthening of the stone, little is known about its ecological sustainability. Here, we report molecular monitoring of the stone-autochthonous microbiota before and at 5, 12 and 30 months after the bio-consolidation treatment (medium/long-term monitoring), employing the well-known molecular strategy of DGGE analyses. Before the bio-consolidation treatment, the bacterial diversity showed the exclusive dominance of Actinobacteria (100%), which decreased in the community (44.2%) after 5 months, and Gamma-proteobacteria (30.24%) and Chloroflexi (25.56%) appeared. After 12 months, Gamma-proteobacteria vanished from the community and Cyanobacteria (22.1%) appeared and remained dominant after thirty months, when the microbiota consisted of Actinobacteria (42.2%) and Cyanobacteria (57.8%) only. Fungal diversity showed that the Ascomycota phylum was dominant before treatment (100%), while, after five months, Basidiomycota (6.38%) appeared on the stone, and vanished again after twelve months. Thirty months after the treatment, the fungal population started to stabilize and Ascomycota dominated on the stone (83.33%) once again. Members of green algae (Chlorophyta, Viridiplantae) appeared on the stone at 5, 12 and 30 months after the treatment and accounted for 4.25%, 84.77% and 16.77%, respectively. The results clearly show that, although a temporary shift in the bacterial and fungal diversity was observed during the first five months, most probably promoted by the application of the bio-consolidation treatment, the microbiota tends to regain its initial stability in a few months. Thus, the treatment does not seem to have any negative side effects on the stone-autochthonous microbiota over that time. The molecular strategy employed here is suggested as an

  19. Optimization of preservation and processing of sea anemones for microbial community analysis using molecular tools.

    PubMed

    Rocha, Joana; Coelho, Francisco J R C; Peixe, Luísa; Gomes, Newton C M; Calado, Ricardo

    2014-11-11

    For several years, knowledge on the microbiome associated with marine invertebrates was impaired by the challenges associated with the characterization of bacterial communities. With the advent of culture independent molecular tools it is possible to gain new insights on the diversity and richness of microorganisms associated with marine invertebrates. In the present study, we evaluated if different preservation and processing methodologies (prior to DNA extraction) can affect the bacterial diversity retrieved from snakelocks anemone Anemonia viridis. Denaturing gradient gel electrophoresis (DGGE) community fingerprints were used as proxy to determine the bacterial diversity retrieved (H'). Statistical analyses indicated that preservation significantly affects H'. The best approach to preserve and process A. viridis biomass for bacterial community fingerprint analysis was flash freezing in liquid nitrogen (preservation) followed by the use of a mechanical homogenizer (process), as it consistently yielded higher H'. Alternatively, biomass samples can be processed fresh followed by cell lyses using a mechanical homogenizer or mortar &pestle. The suitability of employing these two alternative procedures was further reinforced by the quantification of the 16S rRNA gene; no significant differences were recorded when comparing these two approaches and the use of liquid nitrogen followed by processing with a mechanical homogenizer.

  20. Optimization of preservation and processing of sea anemones for microbial community analysis using molecular tools

    PubMed Central

    Rocha, Joana; Coelho, Francisco J. R. C.; Peixe, Luísa; Gomes, Newton C. M.; Calado, Ricardo

    2014-01-01

    For several years, knowledge on the microbiome associated with marine invertebrates was impaired by the challenges associated with the characterization of bacterial communities. With the advent of culture independent molecular tools it is possible to gain new insights on the diversity and richness of microorganisms associated with marine invertebrates. In the present study, we evaluated if different preservation and processing methodologies (prior to DNA extraction) can affect the bacterial diversity retrieved from snakelocks anemone Anemonia viridis. Denaturing gradient gel electrophoresis (DGGE) community fingerprints were used as proxy to determine the bacterial diversity retrieved (H′). Statistical analyses indicated that preservation significantly affects H′. The best approach to preserve and process A. viridis biomass for bacterial community fingerprint analysis was flash freezing in liquid nitrogen (preservation) followed by the use of a mechanical homogenizer (process), as it consistently yielded higher H′. Alternatively, biomass samples can be processed fresh followed by cell lyses using a mechanical homogenizer or mortar & pestle. The suitability of employing these two alternative procedures was further reinforced by the quantification of the 16S rRNA gene; no significant differences were recorded when comparing these two approaches and the use of liquid nitrogen followed by processing with a mechanical homogenizer. PMID:25384534

  1. Modelling human behaviour in a bumper car ride using molecular dynamics tools: a student project

    NASA Astrophysics Data System (ADS)

    Buendía, Jorge J.; Lopez, Hector; Sanchis, Guillem; Pardo, Luis Carlos

    2017-05-01

    Amusement parks are excellent laboratories of physics, not only to check physical laws, but also to investigate if those physical laws might also be applied to human behaviour. A group of Physics Engineering students from Universitat Politècnica de Catalunya has investigated if human behaviour, when driving bumper cars, can be modelled using tools borrowed from the analysis of molecular dynamics simulations, such as the radial and angular distribution functions. After acquiring several clips and obtaining the coordinates of the cars, those magnitudes are computed and analysed. Additionally, an analogous hard disks system is simulated to compare its distribution functions to those obtained from the cars’ coordinates. Despite the clear difference between bumper cars and a hard disk-like particle system, the obtained distribution functions are very similar. This suggests that there is no important effect of the individuals in the collective behaviour of the system in terms of structure. The research, performed by the students, has been undertaken in the frame of a motivational project designed to approach the scientific method for university students named FISIDABO. This project offers both the logistical and technical support to undertake the experiments designed by students at the amusement park of Barcelona TIBIDABO and accompanies them all along the scientific process.

  2. Revision of the genus Dinotoperla Tillyard, 1921 (Plecoptera: Gripopterygidae) using morphological characters and molecular data: Establishes two new genera, three new species and updates the larval taxonomy.

    PubMed

    Mynott, Julia H; Suter, Phillip J; Theischinger, Gunther

    2017-01-23

    The larval taxonomy of Australian stoneflies (Plecoptera) shows a large disparity in knowledge when compared to the adult taxonomy with many species having undescribed larval forms. The importance of stoneflies as an indicator group for monitoring aquatic ecosystems means knowledge of the larval taxonomy and the ability to identify species is essential. This study combined morphology and mitochondrial gene sequences to associate the adult and larval life-stages for species of Dinotoperla Tillyard. Morphological identification of adult males was recognised for 17 of the 35 Dinotoperla species and combining molecular data with morphology confirmed eight new adult-larval life stage associations. Further, molecular data supported the larval taxonomy for five morphospecies which remain unassociated. The combination of molecular and morphological methods enabled the larval morphology to be reassessed for the genus Dinotoperla and this has led to the establishment of two new genera, Odontoperla, gen. nov. and Oedemaperla, gen. nov., and the new species Dinotoperla aryballoi, sp. nov, D. tasmaniensis, sp. nov. and Oedemaperla shackletoni, sp. nov. as well as the new or updated descriptions of the larvae of 31 species and a comprehensive dichotomous key to these larvae.

  3. The Health Impact Assessment (HIA) Resource and Tool Compilation

    EPA Pesticide Factsheets

    The compilation includes tools and resources related to the HIA process and can be used to collect and analyze data, establish a baseline profile, assess potential health impacts, and establish benchmarks and indicators for monitoring and evaluation.

  4. Structural distributions from single-molecule measurements as a tool for molecular mechanics

    PubMed Central

    Hanson, Jeffrey A.; Brokaw, Jason; Hayden, Carl C.; Chu, Jhih-Wei; Yang, Haw

    2011-01-01

    A mechanical view provides an attractive alternative for predicting the behavior of complex systems since it circumvents the resource-intensive requirements of atomistic models; however, it remains extremely challenging to characterize the mechanical responses of a system at the molecular level. Here, the structural distribution is proposed to be an effective means to extracting the molecular mechanical properties. End-to-end distance distributions for a series of short poly-L-proline peptides with the sequence PnCG3K-biotin (n = 8, 12, 15 and 24) were used to experimentally illustrate this new approach. High-resolution single-molecule Förster-type resonance energy transfer (FRET) experiments were carried out and the conformation-resolving power was characterized and discussed in the context of the conventional constant-time binning procedure for FRET data analysis. It was shown that the commonly adopted theoretical polymer models—including the worm-like chain, the freely jointed chain, and the self-avoiding chain—could not be distinguished by the averaged end-to-end distances, but could be ruled out using the molecular details gained by conformational distribution analysis because similar polymers of different sizes could respond to external forces differently. Specifically, by fitting the molecular conformational distribution to a semi-flexible polymer model, the effective persistence lengths for the series of short poly-L-proline peptides were found to be size-dependent with values of ~190 Å, ~67 Å, ~51 Å, and ~76 Å for n = 8, 12, 15, and 24, respectively. A comprehensive computational modeling was carried out to gain further insights for this surprising discovery. It was found that P8 exists as the extended all-trans isomaer whereas P12 and P15 predominantly contained one proline residue in the cis conformation. P24 exists as a mixture of one-cis (75%) and two-cis (25%) isomers where each isomer contributes to an experimentally resolvable

  5. TopoMS: Comprehensive topological exploration for molecular and condensed-matter systems.

    PubMed

    Bhatia, Harsh; Gyulassy, Attila G; Lordi, Vincenzo; Pask, John E; Pascucci, Valerio; Bremer, Peer-Timo

    2018-06-15

    We introduce TopoMS, a computational tool enabling detailed topological analysis of molecular and condensed-matter systems, including the computation of atomic volumes and charges through the quantum theory of atoms in molecules, as well as the complete molecular graph. With roots in techniques from computational topology, and using a shared-memory parallel approach, TopoMS provides scalable, numerically robust, and topologically consistent analysis. TopoMS can be used as a command-line tool or with a GUI (graphical user interface), where the latter also enables an interactive exploration of the molecular graph. This paper presents algorithmic details of TopoMS and compares it with state-of-the-art tools: Bader charge analysis v1.0 (Arnaldsson et al., 01/11/17) and molecular graph extraction using Critic2 (Otero-de-la-Roza et al., Comput. Phys. Commun. 2014, 185, 1007). TopoMS not only combines the functionality of these individual codes but also demonstrates up to 4× performance gain on a standard laptop, faster convergence to fine-grid solution, robustness against lattice bias, and topological consistency. TopoMS is released publicly under BSD License. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  6. The adverse outcome pathway concept: a pragmatic tool in toxicology.

    PubMed

    Vinken, Mathieu

    2013-10-04

    Adverse outcome pathways (AOPs) are novel tools in toxicology and human risk assessment with broad potential. AOPs are designed to provide a clear-cut mechanistic representation of critical toxicological effects that span over different layers of biological organization. AOPs share a common structure consisting of a molecular initiating event, a series of intermediate steps and key events, and an adverse outcome. Development of AOPs ideally complies with OECD guidelines. This also holds true for AOP evaluation, which includes consideration of the Bradford Hill criteria for weight-of-evidence assessment and meeting a set of key questions defined by the OECD. Elaborate AOP frameworks have yet been proposed for chemical-induced skin sensitization, cholestasis, liver fibrosis and liver steatosis. These newly postulated AOPs can serve a number of ubiquitous purposes, including the establishment of (quantitative) structure-activity relationships, the development of novel in vitro toxicity screening tests and the elaboration of prioritization strategies. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. [Relevance of big data for molecular diagnostics].

    PubMed

    Bonin-Andresen, M; Smiljanovic, B; Stuhlmüller, B; Sörensen, T; Grützkau, A; Häupl, T

    2018-04-01

    Big data analysis raises the expectation that computerized algorithms may extract new knowledge from otherwise unmanageable vast data sets. What are the algorithms behind the big data discussion? In principle, high throughput technologies in molecular research already introduced big data and the development and application of analysis tools into the field of rheumatology some 15 years ago. This includes especially omics technologies, such as genomics, transcriptomics and cytomics. Some basic methods of data analysis are provided along with the technology, however, functional analysis and interpretation requires adaptation of existing or development of new software tools. For these steps, structuring and evaluating according to the biological context is extremely important and not only a mathematical problem. This aspect has to be considered much more for molecular big data than for those analyzed in health economy or epidemiology. Molecular data are structured in a first order determined by the applied technology and present quantitative characteristics that follow the principles of their biological nature. These biological dependencies have to be integrated into software solutions, which may require networks of molecular big data of the same or even different technologies in order to achieve cross-technology confirmation. More and more extensive recording of molecular processes also in individual patients are generating personal big data and require new strategies for management in order to develop data-driven individualized interpretation concepts. With this perspective in mind, translation of information derived from molecular big data will also require new specifications for education and professional competence.

  8. Integrating evolutionary and molecular genetics of aging.

    PubMed

    Flatt, Thomas; Schmidt, Paul S

    2009-10-01

    Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940s and 1950s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980s and 1990s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging.

  9. Molecular spintronics using single-molecule magnets

    NASA Astrophysics Data System (ADS)

    Bogani, Lapo; Wernsdorfer, Wolfgang

    2008-03-01

    A revolution in electronics is in view, with the contemporary evolution of the two novel disciplines of spintronics and molecular electronics. A fundamental link between these two fields can be established using molecular magnetic materials and, in particular, single-molecule magnets. Here, we review the first progress in the resulting field, molecular spintronics, which will enable the manipulation of spin and charges in electronic devices containing one or more molecules. We discuss the advantages over more conventional materials, and the potential applications in information storage and processing. We also outline current challenges in the field, and propose convenient schemes to overcome them.

  10. Molecular Chemistry as Diagnostic tool for Starbursts and AGNs The Molecular ISM of NGC 4418

    NASA Astrophysics Data System (ADS)

    Monje, R. R.; Aalto, S.

    We present a brief discussion of the statistical surveys of HCN, HNC, HCO+ and HC3N that are used to model the extreme environments in the nuclei of starbursts and AGNs. Molecular studies are particularly useful for probing the deeply enshrouded dusty nuclei of luminous infrared galaxies. Here we present NGC 4418 as an example, one of the closest LIRG with high obscuration of the inner region. The interpretation of the observed line ratios require parallel development of theoretical chemical and radiative transport models.

  11. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology.

    PubMed

    Sepulveda, Antonia R; Hamilton, Stanley R; Allegra, Carmen J; Grody, Wayne; Cushman-Vokoun, Allison M; Funkhouser, William K; Kopetz, Scott E; Lieu, Christopher; Lindor, Noralane M; Minsky, Bruce D; Monzon, Federico A; Sargent, Daniel J; Singh, Veena M; Willis, Joseph; Clark, Jennifer; Colasacco, Carol; Rumble, R Bryan; Temple-Smolkin, Robyn; Ventura, Christina B; Nowak, Jan A

    2017-03-01

    To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens. The American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology convened an expert panel to develop an evidence-based guideline to establish standard molecular biomarker testing and guide therapies for patients with CRC. A comprehensive literature search that included more than 4,000 articles was conducted. Twenty-one guideline statements were established. Evidence supports mutational testing for EGFR signaling pathway genes, since they provide clinically actionable information as negative predictors of benefit to anti-EGFR monoclonal antibody therapies for targeted therapy of CRC. Mutations in several of the biomarkers have clear prognostic value. Laboratory approaches to operationalize CRC molecular testing are presented. Key Words: Molecular diagnostics; Gastrointestinal; Histology; Genetics; Oncology. Copyright © 2017 American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, American Society for Clinical Oncology, and American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  12. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology.

    PubMed

    Sepulveda, Antonia R; Hamilton, Stanley R; Allegra, Carmen J; Grody, Wayne; Cushman-Vokoun, Allison M; Funkhouser, William K; Kopetz, Scott E; Lieu, Christopher; Lindor, Noralane M; Minsky, Bruce D; Monzon, Federico A; Sargent, Daniel J; Singh, Veena M; Willis, Joseph; Clark, Jennifer; Colasacco, Carol; Bryan Rumble, R; Temple-Smolkin, Robyn; B Ventura, Christina; Nowak, Jan A

    2017-05-01

    - To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens. - The American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology convened an expert panel to develop an evidence-based guideline to establish standard molecular biomarker testing and guide therapies for patients with CRC. A comprehensive literature search that included more than 4,000 articles was conducted. - Twenty-one guideline statements were established. - Evidence supports mutational testing for EGFR signaling pathway genes, since they provide clinically actionable information as negative predictors of benefit to anti-EGFR monoclonal antibody therapies for targeted therapy of CRC. Mutations in several of the biomarkers have clear prognostic value. Laboratory approaches to operationalize CRC molecular testing are presented.

  13. MoleculeNet: a benchmark for molecular machine learning† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc02664a

    PubMed Central

    Wu, Zhenqin; Ramsundar, Bharath; Feinberg, Evan N.; Gomes, Joseph; Geniesse, Caleb; Pappu, Aneesh S.; Leswing, Karl

    2017-01-01

    Molecular machine learning has been maturing rapidly over the last few years. Improved methods and the presence of larger datasets have enabled machine learning algorithms to make increasingly accurate predictions about molecular properties. However, algorithmic progress has been limited due to the lack of a standard benchmark to compare the efficacy of proposed methods; most new algorithms are benchmarked on different datasets making it challenging to gauge the quality of proposed methods. This work introduces MoleculeNet, a large scale benchmark for molecular machine learning. MoleculeNet curates multiple public datasets, establishes metrics for evaluation, and offers high quality open-source implementations of multiple previously proposed molecular featurization and learning algorithms (released as part of the DeepChem open source library). MoleculeNet benchmarks demonstrate that learnable representations are powerful tools for molecular machine learning and broadly offer the best performance. However, this result comes with caveats. Learnable representations still struggle to deal with complex tasks under data scarcity and highly imbalanced classification. For quantum mechanical and biophysical datasets, the use of physics-aware featurizations can be more important than choice of particular learning algorithm. PMID:29629118

  14. Establishment and characterization of a novel osteosarcoma cell line: CHOS.

    PubMed

    Liu, Yunlu; Feng, Xiaobo; Zhang, Yukun; Jiang, Hongyan; Cai, Xianyi; Yan, Xinxin; Huang, Zengfa; Mo, Fengbo; Yang, Wen; Yang, Cao; Yang, Shuhua; Liu, Xianzhe

    2016-12-01

    Osteosarcoma has a well-recognized bimodal distribution, with the first peak in adolescence and another in the elderly age-group. The elderly patients have different clinical features and a poorer prognosis as compared to adolescents. To better understand the biological features of osteosarcoma in the elderly population, we established a new human osteosarcoma cell line from a 58-year-old man with primary chondroblastic osteosarcoma. After 6 months of continuous culture in vitro for over 50 passages, an immortalized cell line CHOS was established. The cell line was well-characterized by cytogenetic, biomarker, functional, and histological analyses. The CHOS cells exhibited a spindle-shaped morphology and a doubling time of 36 h. Cytogenetic analysis of CHOS cells revealed the loss of chromosome Y and the gain of chromosome 12. Quantitative real-time polymerase chain reaction (RT-PCR), Western blotting and/or immunofluorescence revealed the expression of chondroblastic, mesenchymal and tumor metastasis markers in the CHOS cells. Compared with the osteosarcoma cell line, the CHOS cells were found to be more sensitive to cisplatin and doxorubicin, but were resistant to methotrexate. The cell line was highly tumorigenic and maintained the histological characteristics and invasive nature of the original tumor. Furthermore, on immunohistochemical analysis, the xenografts and metastases were found to co-express collagen II, aggrecan, vimentin and S100A4 that resembled the original tumor cells. Our results indicate, the potential of CHOS cell line to serve as a useful tool for further studies on the molecular biology of osteosarcoma, especially in the elderly patients. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2116-2125, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Molecular genetics at the Fort Collins Science Center

    USGS Publications Warehouse

    Oyler-McCance, S.J.; Stevens, P.D.

    2011-01-01

    The Fort Collins Science Center operates a molecular genetic and systematics research facility (FORT Molecular Ecology Laboratory) that uses molecular genetic tools to provide genetic information needed to inform natural resource management decisions. For many wildlife species, the data generated have become increasingly important in the development of their long-term management strategies, leading to a better understanding of species diversity, population dynamics and ecology, and future conservation and management needs. The Molecular Ecology Lab serves Federal research and resource management agencies by developing scientifically rigorous research programs using nuclear, mitochondrial and chloroplast DNA to help address many of today's conservation biology and natural resource management issues.

  16. Establishment and characterization of CAG/EGFP transgenic rabbit line.

    PubMed

    Takahashi, Ri-ichi; Kuramochi, Takashi; Aoyagi, Kazuki; Hashimoto, Shu; Miyoshi, Ichiro; Kasai, Noriyuki; Hakamata, Yoji; Kobayashi, Eiji; Ueda, Masatsugu

    2007-02-01

    Cell marking is a very important procedure for identifying donor cells after cell and/or organ transplantation in vivo. Transgenic animals expressing marker proteins such as enhanced green fluorescent protein (EGFP) in their tissues are a powerful tool for research in fields of tissue engineering and regenerative medicine. The purpose of this study was to establish transgenic rabbit lines that ubiquitously express EGFP under the control of the cytomegalovirus immediate early enhancer/beta-actin promoter (CAG) to provide a fluorescent transgenic animal as a bioresource. We microinjected the EGFP expression vector into 945 rabbit eggs and 4 independent transgenic candidate pups were obtained. Two of them died before sexual maturation and one was infertile. One transgenic male candidate founder rabbit was obtained and could be bred by artificial insemination. The rabbit transmitted the transgene in a Mendelian manner. Using fluorescence in situ hybridization analysis, we detected the transgene at 7q11 on chromosome 7 as a large centromeric region in two F1 offspring (one female and one male). Eventually, one transgenic line was established. Ubiquitous EGFP fluorescence was confirmed in all examined organs. There were no gender-related differences in fluorescence. The established CAG/EGFP transgenic rabbit will be an important bioresource and a useful tool for various studies in tissue engineering and regenerative medicine.

  17. Molecular markers in bladder cancer: Novel research frontiers.

    PubMed

    Sanguedolce, Francesca; Cormio, Antonella; Bufo, Pantaleo; Carrieri, Giuseppe; Cormio, Luigi

    2015-01-01

    Bladder cancer (BC) is a heterogeneous disease encompassing distinct biologic features that lead to extremely different clinical behaviors. In the last 20 years, great efforts have been made to predict disease outcome and response to treatment by developing risk assessment calculators based on multiple standard clinical-pathological factors, as well as by testing several molecular markers. Unfortunately, risk assessment calculators alone fail to accurately assess a single patient's prognosis and response to different treatment options. Several molecular markers easily assessable by routine immunohistochemical techniques hold promise for becoming widely available and cost-effective tools for a more reliable risk assessment, but none have yet entered routine clinical practice. Current research is therefore moving towards (i) identifying novel molecular markers; (ii) testing old and new markers in homogeneous patients' populations receiving homogeneous treatments; (iii) generating a multimarker panel that could be easily, and thus routinely, used in clinical practice; (iv) developing novel risk assessment tools, possibly combining standard clinical-pathological factors with molecular markers. This review analyses the emerging body of literature concerning novel biomarkers, ranging from genetic changes to altered expression of a huge variety of molecules, potentially involved in BC outcome and response to treatment. Findings suggest that some of these indicators, such as serum circulating tumor cells and tissue mitochondrial DNA, seem to be easily assessable and provide reliable information. Other markers, such as the phosphoinositide-3-kinase (PI3K)/AKT (serine-threonine kinase)/mTOR (mammalian target of rapamycin) pathway and epigenetic changes in DNA methylation seem to not only have prognostic/predictive value but also, most importantly, represent valuable therapeutic targets. Finally, there is increasing evidence that the development of novel risk assessment tools

  18. Current Advances in the Application of Raman Spectroscopy for Molecular Diagnosis of Cervical Cancer

    PubMed Central

    Ramos, Inês Raquel Martins; Malkin, Alison; Lyng, Fiona Mary

    2015-01-01

    Raman spectroscopy provides a unique biochemical fingerprint capable of identifying and characterizing the structure of molecules, cells, and tissues. In cervical cancer, it is acknowledged as a promising biochemical tool due to its ability to detect premalignancy and early malignancy stages. This review summarizes the key research in the area and the evidence compiled is very encouraging for ongoing and further research. In addition to the diagnostic potential, promising results for HPV detection and monitoring treatment response suggest more than just a diagnosis prospective. A greater body of evidence is however necessary before Raman spectroscopy is fully validated for clinical use and larger comprehensive studies are required to fully establish the role of Raman spectroscopy in the molecular diagnostics of cervical cancer. PMID:26180802

  19. Novel gene expression tools for rice biotechnology

    USDA-ARS?s Scientific Manuscript database

    Biotechnology is an effective and important method of improving both quality and agronomic traits in rice. We are developing novel molecular tools for genetic engineering, with a focus on developing novel transgene expression control elements (i.e. promoters) for rice. A suite of monocot grass promo...

  20. Anti-RAINBOW dye-specific antibodies as universal tools for the visualization of prestained protein molecular weight markers in Western blot analysis.

    PubMed

    Schüchner, Stefan; Andorfer, Peter; Mudrak, Ingrid; Ogris, Egon

    2016-08-17

    Western blotting is one of the most widely used techniques in molecular biology and biochemistry. Prestained proteins are used as molecular weight standards in protein electrophoresis. In the chemiluminescent Western blot analysis, however, these colored protein markers are invisible leaving researchers with the unsatisfying situation that the signal for the protein of interest and the signal for the markers are not captured simultaneously and have to be merged in an error-prone step. To allow the simultaneous detection of marker proteins we generated monoclonal antibodies specific for the protein dyes. To elicit a dye rather than protein specific immune response we immunized mice sequentially with dye-carrier protein complexes, in which a new carrier protein was used for each subsequent immunization. Moreover, by sequentially immunizing with dye-carrier protein complexes, in which different but structurally related dyes were used, we could also generate an antibody, termed anti-RAINBOW, that cross-reacted even with structurally related dyes not used in the immunizations. Our novel antibodies represent convenient tools for the simultaneous Western blot detection of commercially available prestained marker proteins in combination with the detection of any specific protein of interest. These antibodies will render obsolete the anachronistic tradition of manually charting marker bands on film.

  1. Anti-RAINBOW dye-specific antibodies as universal tools for the visualization of prestained protein molecular weight markers in Western blot analysis

    PubMed Central

    Schüchner, Stefan; Andorfer, Peter; Mudrak, Ingrid; Ogris, Egon

    2016-01-01

    Western blotting is one of the most widely used techniques in molecular biology and biochemistry. Prestained proteins are used as molecular weight standards in protein electrophoresis. In the chemiluminescent Western blot analysis, however, these colored protein markers are invisible leaving researchers with the unsatisfying situation that the signal for the protein of interest and the signal for the markers are not captured simultaneously and have to be merged in an error-prone step. To allow the simultaneous detection of marker proteins we generated monoclonal antibodies specific for the protein dyes. To elicit a dye rather than protein specific immune response we immunized mice sequentially with dye-carrier protein complexes, in which a new carrier protein was used for each subsequent immunization. Moreover, by sequentially immunizing with dye-carrier protein complexes, in which different but structurally related dyes were used, we could also generate an antibody, termed anti-RAINBOW, that cross-reacted even with structurally related dyes not used in the immunizations. Our novel antibodies represent convenient tools for the simultaneous Western blot detection of commercially available prestained marker proteins in combination with the detection of any specific protein of interest. These antibodies will render obsolete the anachronistic tradition of manually charting marker bands on film. PMID:27531616

  2. The Chemistry and Flow Dynamics of Molecular Biological Tools Used to Confirm In Situ Bioremediation of Benzene, TBA, and MTBE

    NASA Astrophysics Data System (ADS)

    North, K. P.; Mackay, D. M.; Scow, K. M.

    2010-12-01

    In situ bioremediation has typically been confirmed by collecting sediment and groundwater samples to directly demonstrate a degradation process in a laboratory microcosm. However, recent advances in molecular biological tools present options for demonstrating degradation processes with field-based tools that are less time-consuming. We have been investigating the capability of some of these molecular biological tools to evaluate in situ biodegradation of tert-butyl alcohol (TBA), methyl tert-butyl ether (MTBE), and benzene at two field sites in California. At both sites, we have deployed Bio-Traps® (“traps”), made of Bio-Sep® beads in slotted PVC pipe, which provide ideal environments for microbial colonization. Stable Isotope Probing can be accomplished by sorbing the13C-labeled organic contaminant of concern onto Bio-Sep® beads (“baiting”); incorporation of 13C into the biomass collected by the trap would indicate that the microbial community was capable of degrading the labeled compound. In addition, we examined the chemistry and flow dynamics of these traps and present those results here. We performed a field experiment and a lab experiment to, in part, define the rate that different baits leached off various traps. At a TBA- and MTBE-contaminated site at Vandenberg AFB, Lompoc, CA, the TBA-dominant plume was effectively treated by recirculation/oxygenation of groundwater, decreasing TBA and MTBE concentrations to detection limits along predicted flowpaths created by two pairs of recirculation wells. We used the generated aerobic treatment zone to deploy traps baited with 13C-labeled MTBE or TBA in a novel, ex situ experimental setup. The groundwater flow extracted from the aerobic treatment zone was split through several chambers, each containing a trap and monitoring of influent and effluent. The chamber effluent was measured throughout a six-week deployment and analyzed for both TBA and MTBE; the majority of mass leached from the baited traps did

  3. Matrix-assisted laser desorption/ionization mass spectrometry imaging: a powerful tool for probing the molecular topology of plant cutin polymer.

    PubMed

    Veličković, Dušan; Herdier, Hélène; Philippe, Glenn; Marion, Didier; Rogniaux, Hélène; Bakan, Bénédicte

    2014-12-01

    The cutin polymers of different fruit cuticles (tomato, apple, nectarine) were examined using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI MSI) after in situ release of the lipid monomers by alkaline hydrolysis. The mass spectra were acquired from each coordinate with a lateral spatial resolution of approximately 100 μm. Specific monomers were released at their original location in the tissue, suggesting that post-hydrolysis diffusion can be neglected. Relative quantification of the species was achieved by introducing an internal standard, and the collection of data was subjected to non-supervised and supervised statistical treatments. The molecular images obtained showed a specific distribution of ions that could unambiguously be ascribed to cutinized and suberized regions observed at the surface of fruit cuticles, thus demonstrating that the method is able to probe some structural changes that affect hydrophobic cuticle polymers. Subsequent chemical assignment of the differentiating ions was performed, and all of these ions could be matched to cutin and suberin molecular markers. Therefore, this MALDI-MSI procedure provides a powerful tool for probing the surface heterogeneity of plant lipid polymers. This method should facilitate rapid investigation of the relationships between cuticle phenotypes and the structure of cutin within a large population of mutants. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  4. Computer tools for systems engineering at LaRC

    NASA Technical Reports Server (NTRS)

    Walters, J. Milam

    1994-01-01

    The Systems Engineering Office (SEO) has been established to provide life cycle systems engineering support to Langley research Center projects. over the last two years, the computing market has been reviewed for tools which could enhance the effectiveness and efficiency of activities directed towards this mission. A group of interrelated applications have been procured, or are under development including a requirements management tool, a system design and simulation tool, and project and engineering data base. This paper will review the current configuration of these tools and provide information on future milestones and directions.

  5. Peltier cooling in molecular junctions

    NASA Astrophysics Data System (ADS)

    Cui, Longji; Miao, Ruijiao; Wang, Kun; Thompson, Dakotah; Zotti, Linda Angela; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2018-02-01

    The study of thermoelectricity in molecular junctions is of fundamental interest for the development of various technologies including cooling (refrigeration) and heat-to-electricity conversion1-4. Recent experimental progress in probing the thermopower (Seebeck effect) of molecular junctions5-9 has enabled studies of the relationship between thermoelectricity and molecular structure10,11. However, observations of Peltier cooling in molecular junctions—a critical step for establishing molecular-based refrigeration—have remained inaccessible. Here, we report direct experimental observations of Peltier cooling in molecular junctions. By integrating conducting-probe atomic force microscopy12,13 with custom-fabricated picowatt-resolution calorimetric microdevices, we created an experimental platform that enables the unified characterization of electrical, thermoelectric and energy dissipation characteristics of molecular junctions. Using this platform, we studied gold junctions with prototypical molecules (Au-biphenyl-4,4'-dithiol-Au, Au-terphenyl-4,4''-dithiol-Au and Au-4,4'-bipyridine-Au) and revealed the relationship between heating or cooling and charge transmission characteristics. Our experimental conclusions are supported by self-energy-corrected density functional theory calculations. We expect these advances to stimulate studies of both thermal and thermoelectric transport in molecular junctions where the possibility of extraordinarily efficient energy conversion has been theoretically predicted2-4,14.

  6. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  7. Capturing structure and function in an embryonic heart with biophotonic tools

    PubMed Central

    Karunamuni, Ganga H.; Gu, Shi; Ford, Matthew R.; Peterson, Lindsy M.; Ma, Pei; Wang, Yves T.; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko

    2014-01-01

    Disturbed cardiac function at an early stage of development has been shown to correlate with cellular/molecular, structural as well as functional cardiac anomalies at later stages culminating in the congenital heart defects (CHDs) that present at birth. While our knowledge of cellular and molecular steps in cardiac development is growing rapidly, our understanding of the role of cardiovascular function in the embryo is still in an early phase. One reason for the scanty information in this area is that the tools to study early cardiac function are limited. Recently developed and adapted biophotonic tools may overcome some of the challenges of studying the tiny fragile beating heart. In this chapter, we describe and discuss our experience in developing and implementing biophotonic tools to study the role of function in heart development with emphasis on optical coherence tomography (OCT). OCT can be used for detailed structural and functional studies of the tubular and looping embryo heart under physiological conditions. The same heart can be rapidly and quantitatively phenotyped at early and again at later stages using OCT. When combined with other tools such as optical mapping (OM) and optical pacing (OP), OCT has the potential to reveal in spatial and temporal detail the biophysical changes that can impact mechanotransduction pathways. This information may provide better explanations for the etiology of the CHDs when interwoven with our understanding of morphogenesis and the molecular pathways that have been described to be involved. Future directions for advances in the creation and use of biophotonic tools are discussed. PMID:25309451

  8. Quantitative molecular analysis in mantle cell lymphoma.

    PubMed

    Brízová, H; Hilská, I; Mrhalová, M; Kodet, R

    2011-07-01

    A molecular analysis has three major roles in modern oncopathology--as an aid in the differential diagnosis, in molecular monitoring of diseases, and in estimation of the potential prognosis. In this report we review the application of the molecular analysis in a group of patients with mantle cell lymphoma (MCL). We demonstrate that detection of the cyclin D1 mRNA level is a molecular marker in 98% of patients with MCL. Cyclin D1 quantitative monitoring is specific and sensitive for the differential diagnosis and for the molecular monitoring of the disease in the bone marrow. Moreover, the dynamics of cyclin D1 in bone marrow reflects the disease development and it predicts the clinical course. We employed the molecular analysis for a precise quantitative detection of proliferation markers, Ki-67, topoisomerase IIalpha, and TPX2, that are described as effective prognostic factors. Using the molecular approach it is possible to measure the proliferation rate in a reproducible, standard way which is an essential prerequisite for using the proliferation activity as a routine clinical tool. Comparing with immunophenotyping we may conclude that the quantitative PCR-based analysis is a useful, reliable, rapid, reproducible, sensitive and specific method broadening our diagnostic tools in hematopathology. In comparison to interphase FISH in paraffin sections quantitative PCR is less technically demanding and less time-consuming and furthermore it is more sensitive in detecting small changes in the mRNA level. Moreover, quantitative PCR is the only technology which provides precise and reproducible quantitative information about the expression level. Therefore it may be used to demonstrate the decrease or increase of a tumor-specific marker in bone marrow in comparison with a previously aspirated specimen. Thus, it has a powerful potential to monitor the course of the disease in correlation with clinical data.

  9. The Development and Comparison of Molecular Dynamics Simulation and Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Chen, Jundong

    2018-03-01

    Molecular dynamics is an integrated technology that combines physics, mathematics and chemistry. Molecular dynamics method is a computer simulation experimental method, which is a powerful tool for studying condensed matter system. This technique not only can get the trajectory of the atom, but can also observe the microscopic details of the atomic motion. By studying the numerical integration algorithm in molecular dynamics simulation, we can not only analyze the microstructure, the motion of particles and the image of macroscopic relationship between them and the material, but can also study the relationship between the interaction and the macroscopic properties more conveniently. The Monte Carlo Simulation, similar to the molecular dynamics, is a tool for studying the micro-molecular and particle nature. In this paper, the theoretical background of computer numerical simulation is introduced, and the specific methods of numerical integration are summarized, including Verlet method, Leap-frog method and Velocity Verlet method. At the same time, the method and principle of Monte Carlo Simulation are introduced. Finally, similarities and differences of Monte Carlo Simulation and the molecular dynamics simulation are discussed.

  10. Agent-Based Modeling in Molecular Systems Biology.

    PubMed

    Soheilypour, Mohammad; Mofrad, Mohammad R K

    2018-07-01

    Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.

  11. Establishing a molecular relationship between chondritic and cometary organic solids

    PubMed Central

    Cody, George D.; Heying, Emily; Alexander, Conel M. O.; Nittler, Larry R.; Kilcoyne, A. L. David; Sandford, Scott A.

    2011-01-01

    Multidimensional solid-state NMR spectroscopy is used to refine the identification and abundance determination of functional groups in insoluble organic matter (IOM) isolated from a carbonaceous chondrite (Murchison, CM2). It is shown that IOM is composed primarily of highly substituted single ring aromatics, substituted furan/pyran moieties, highly branched oxygenated aliphatics, and carbonyl groups. A pathway for producing an IOM-like molecular structure through formaldehyde polymerization is proposed and tested experimentally. Solid-state 13C NMR analysis of aqueously altered formaldehyde polymer reveals considerable similarity with chondritic IOM. Carbon X-ray absorption near edge structure spectroscopy of formaldehyde polymer reveals the presence of similar functional groups across certain Comet 81P/Wild 2 organic solids, interplanetary dust particles, and primitive IOM. Variation in functional group concentration amongst these extraterrestrial materials is understood to be a result of various degrees of processing in the parent bodies, in space, during atmospheric entry, etc. These results support the hypothesis that chondritic IOM and cometary refractory organic solids are related chemically and likely were derived from formaldehyde polymer. The fine-scale morphology of formaldehyde polymer produced in the experiment reveals abundant nanospherules that are similar in size and shape to organic nanoglobules that are ubiquitous in primitive chondrites. PMID:21464292

  12. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories

    PubMed Central

    2014-01-01

    Background Molecular Dynamics (MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. Results On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. Conclusions MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes. PMID:25077693

  13. MDcons: Intermolecular contact maps as a tool to analyze the interface of protein complexes from molecular dynamics trajectories.

    PubMed

    Abdel-Azeim, Safwat; Chermak, Edrisse; Vangone, Anna; Oliva, Romina; Cavallo, Luigi

    2014-01-01

    Molecular Dynamics (MD) simulations of protein complexes suffer from the lack of specific tools in the analysis step. Analyses of MD trajectories of protein complexes indeed generally rely on classical measures, such as the RMSD, RMSF and gyration radius, conceived and developed for single macromolecules. As a matter of fact, instead, researchers engaged in simulating the dynamics of a protein complex are mainly interested in characterizing the conservation/variation of its biological interface. On these bases, herein we propose a novel approach to the analysis of MD trajectories or other conformational ensembles of protein complexes, MDcons, which uses the conservation of inter-residue contacts at the interface as a measure of the similarity between different snapshots. A "consensus contact map" is also provided, where the conservation of the different contacts is drawn in a grey scale. Finally, the interface area of the complex is monitored during the simulations. To show its utility, we used this novel approach to study two protein-protein complexes with interfaces of comparable size and both dominated by hydrophilic interactions, but having binding affinities at the extremes of the experimental range. MDcons is demonstrated to be extremely useful to analyse the MD trajectories of the investigated complexes, adding important insight into the dynamic behavior of their biological interface. MDcons specifically allows the user to highlight and characterize the dynamics of the interface in protein complexes and can thus be used as a complementary tool for the analysis of MD simulations of both experimental and predicted structures of protein complexes.

  14. Molecular Evolution in Historical Perspective.

    PubMed

    Suárez-Díaz, Edna

    2016-12-01

    In the 1960s, advances in protein chemistry and molecular genetics provided new means for the study of biological evolution. Amino acid sequencing, nucleic acid hybridization, zone gel electrophoresis, and immunochemistry were some of the experimental techniques that brought about new perspectives to the study of the patterns and mechanisms of evolution. New concepts, such as the molecular evolutionary clock, and the discovery of unexpected molecular phenomena, like the presence of repetitive sequences in eukaryotic genomes, eventually led to the realization that evolution might occur at a different pace at the organismic and the molecular levels, and according to different mechanisms. These developments sparked important debates between defendants of the molecular and organismic approaches. The most vocal confrontations focused on the relation between primates and humans, and the neutral theory of molecular evolution. By the 1980s and 1990s, the construction of large protein and DNA sequences databases, and the development of computer-based statistical tools, facilitated the coming together of molecular and evolutionary biology. Although in its contemporary form the field of molecular evolution can be traced back to the last five decades, the field has deep roots in twentieth century experimental life sciences. For historians of science, the origins and consolidation of molecular evolution provide a privileged field for the study of scientific debates, the relation between technological advances and scientific knowledge, and the connection between science and broader social concerns.

  15. Amphibian molecular ecology and how it has informed conservation.

    PubMed

    McCartney-Melstad, Evan; Shaffer, H Bradley

    2015-10-01

    Molecular ecology has become one of the key tools in the modern conservationist's kit. Here we review three areas where molecular ecology has been applied to amphibian conservation: genes on landscapes, within-population processes, and genes that matter. We summarize relevant analytical methods, recent important studies from the amphibian literature, and conservation implications for each section. Finally, we include five in-depth examples of how molecular ecology has been successfully applied to specific amphibian systems. © 2015 John Wiley & Sons Ltd.

  16. The wavelet transform as an analysis tool for structure identification in molecular clouds

    NASA Astrophysics Data System (ADS)

    Gill, Arnold Gerald

    1993-01-01

    Of the many methods used to attempt to understand the complex structure of giant molecular clouds, perhaps the most commonly used are the autocorrelation functions (ACF), the structure function, and the power spectrum. However, these do not give unique interpretations of structure, as is shown by explicit examples compared to the Taurus Molecular Complex. Thus, another, independent method of analysis is indicated. Here, the wavelet transform is presented, a relatively new technique less than 10 years old. It can be thought of as a band-pass filter that identifies structures of specific sizes. In addition, its mathematical properties allow it to be used to identify fractal structures and accurately identify the scaling exponent. This is shown by the wavelet transform identifying the fractal dimension of a hierarchical rain cloud model first proposed by Frisch et al. (1978). A wavelet analysis is then carried out for a range of astronomical CO data, including the clouds Orion A and B and NGC 7538 (in (12)CO) and Orion A and B, Mon R2, and L1551 (in (13)CO). The data analyzed consists of the velocities of the fitted Gaussians to the individual spectra, the halfwidths and amplitude of these Gaussians, and the total area of the spectral line. For most of the clouds investigated, each of these data types showed a very high degree of scaling coherence over a wide range of scales, from down at the beam spacing up to the full size of the cloud. The analysis carried out uses both the scaling and structure identification strengths of the wavelet transform The fragmentation parameters used by Scalo (1985) and the parameters of the geometric molecular cloud description introduced by Henriksen (1986) are calculated for each cloud. These results are all consistent with previous observations of these and other molecular clouds, though they are obtained individually for each cloud investigated. It is found that the uncertainties are of a magnitude that the differentiation of

  17. Genetic diagnosis as a tool for personalized treatment of Duchenne muscular dystrophy.

    PubMed

    Bello, Luca; Pegoraro, Elena

    2016-12-01

    Accurate definition of genetic mutations causing Duchenne muscular dystrophy (DMD) has always been relevant in order to provide genetic counseling to patients and families, and helps to establish the prognosis in the case where the distinction between Duchenne, Becker, or intermediate muscular dystrophy is not obvious. As molecular treatments aimed at dystrophin restoration in DMD are increasingly available as commercialized drugs or within clinical trials, genetic diagnosis has become an indispensable tool in order to determine eligibility for these treatments. DMD patients in which multiplex ligation-dependent probe amplification (MLPA) or similar techniques show a deletion suitable to exon skipping of exons 44, 45, 51, or 53, may be currently treated with AONs targeting these exons, in the context of clinical trials, or, as is the case for exon 51 skipping in the United States, with the first commercialized drug (eteplirsen). Patients who test negative at MLPA, but in whom DMD gene sequencing shows a nonsense mutation, may be amenable for treatment with stop codon readthrough compounds such as ataluren. Novel molecular approaches such as CRISPR-Cas9 targeting of specific DMD mutations are still in the preclinical stages, but appear promising. In conclusion, an accurate genetic diagnosis represents the entrance into a new scenario of personalized medicine in DMD.

  18. Molecular diagnostics for Chagas disease: up to date and novel methodologies.

    PubMed

    Alonso-Padilla, Julio; Gallego, Montserrat; Schijman, Alejandro G; Gascon, Joaquim

    2017-07-01

    Chagas disease is caused by the parasite Trypanosoma cruzi. It affects 7 million people, mainly in Latin America. Diagnosis is usually made serologically, but at some clinical scenarios serology cannot be used. Then, molecular detection is required for early detection of congenital transmission, treatment response follow up, and diagnosis of immune-suppression reactivation. However, present tests are technically demanding and require well-equipped laboratories which make them unfeasible in low-resources endemic regions. Areas covered: Available molecular tools for detection of T. cruzi DNA, paying particular attention to quantitative PCR protocols, and to the latest developments of user-friendly molecular diagnostic methodologies. Expert commentary: In the absence of appropriate biomarkers, molecular diagnosis is the only option for the assessment of treatment response. Besides, it is very useful for the early detection of acute infections, like congenital cases. Since current Chagas disease molecular tests are restricted to referential labs, research efforts must focus in the implementation of easy-to-use diagnostic tools in order to overcome the access to diagnosis gap.

  19. Systems biology for molecular life sciences and its impact in biomedicine.

    PubMed

    Medina, Miguel Ángel

    2013-03-01

    Modern systems biology is already contributing to a radical transformation of molecular life sciences and biomedicine, and it is expected to have a real impact in the clinical setting in the next years. In this review, the emergence of systems biology is contextualized with a historic overview, and its present state is depicted. The present and expected future contribution of systems biology to the development of molecular medicine is underscored. Concerning the present situation, this review includes a reflection on the "inflation" of biological data and the urgent need for tools and procedures to make hidden information emerge. Descriptions of the impact of networks and models and the available resources and tools for applying them in systems biology approaches to molecular medicine are provided as well. The actual current impact of systems biology in molecular medicine is illustrated, reviewing two cases, namely, those of systems pharmacology and cancer systems biology. Finally, some of the expected contributions of systems biology to the immediate future of molecular medicine are commented.

  20. Space Research Program on Planarian Schmidtea Mediterranea's Establishment of the Anterior-Posterior Axis in Altered Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Auletta, G.; Adell, T.; Colagè, I.; D'Ambrosio, P.; Salò, E.

    2012-12-01

    Planarians of the species Schmidtea mediterranea are a well-established model for regeneration studies. In this paper, we first recall the morphological characters and the molecular mechanisms involved in the regeneration process, especially focussing on the Wnt pathway and the establishment of the antero-posterior axial polarity. Then, after an assessment of a space-experiment (run in 2006 on the Russian Segment of the International Space Station) on planarians of the species Girardia tigrina, we present our experimental program to ascertain the effects that altered-gravity conditions may have on regeneration processes in S. mediterrnea at the molecular and genetic level.

  1. Whole Genome Sequence Analysis Using JSpecies Tool Establishes Clonal Relationships between Listeria monocytogenes Strains from Epidemiologically Unrelated Listeriosis Outbreaks

    DOE PAGES

    Burall, Laurel S.; Grim, Christopher J.; Mammel, Mark K.; ...

    2016-03-07

    In an effort to build a comprehensive genomic approach to food safety challenges, the FDA has implemented a whole genome sequencing effort, GenomeTrakr, which involves the sequencing and analysis of genomes of foodborne pathogens. As a part of this effort, we routinely sequence whole genomes of Listeria monocytogenes (Lm) isolates associated with human listeriosis outbreaks, as well as those isolated through other sources. To rapidly establish genetic relatedness of these genomes, we evaluated tetranucleotide frequency analysis via the JSpecies program to provide a cursory analysis of strain relatedness. The JSpecies tetranucleotide (tetra) analysis plots standardized (z-score) tetramer word frequencies ofmore » two strains against each other and uses linear regression analysis to determine similarity (r 2). This tool was able to validate the close relationships between outbreak related strains from four different outbreaks. Included in this study was the analysis of Lm strains isolated during the recent caramel apple outbreak and stone fruit incident in 2014. We identified that many of the isolates from these two outbreaks shared a common 4b variant (4bV) serotype, also designated as IVb-v1, using a qPCR protocol developed in our laboratory. The 4bV serotype is characterized by the presence of a 6.3 Kb DNA segment normally found in serotype 1/2a, 3a, 1/2c and 3c strains but not in serotype 4b or 1/2b strains. We decided to compare these strains at a genomic level using the JSpecies Tetra tool. Specifically, we compared several 4bV and 4b isolates and identified a high level of similarity between the stone fruit and apple 4bV strains, but not the 4b strains co-identified in the caramel apple outbreak or other 4b or 4bV strains in our collection. This finding was further substantiated by a SNP-based analysis. Additionally, we were able to identify close relatedness between isolates from clinical cases from 1993–1994 and a single case from 2011 as well as links

  2. Whole Genome Sequence Analysis Using JSpecies Tool Establishes Clonal Relationships between Listeria monocytogenes Strains from Epidemiologically Unrelated Listeriosis Outbreaks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burall, Laurel S.; Grim, Christopher J.; Mammel, Mark K.

    In an effort to build a comprehensive genomic approach to food safety challenges, the FDA has implemented a whole genome sequencing effort, GenomeTrakr, which involves the sequencing and analysis of genomes of foodborne pathogens. As a part of this effort, we routinely sequence whole genomes of Listeria monocytogenes (Lm) isolates associated with human listeriosis outbreaks, as well as those isolated through other sources. To rapidly establish genetic relatedness of these genomes, we evaluated tetranucleotide frequency analysis via the JSpecies program to provide a cursory analysis of strain relatedness. The JSpecies tetranucleotide (tetra) analysis plots standardized (z-score) tetramer word frequencies ofmore » two strains against each other and uses linear regression analysis to determine similarity (r 2). This tool was able to validate the close relationships between outbreak related strains from four different outbreaks. Included in this study was the analysis of Lm strains isolated during the recent caramel apple outbreak and stone fruit incident in 2014. We identified that many of the isolates from these two outbreaks shared a common 4b variant (4bV) serotype, also designated as IVb-v1, using a qPCR protocol developed in our laboratory. The 4bV serotype is characterized by the presence of a 6.3 Kb DNA segment normally found in serotype 1/2a, 3a, 1/2c and 3c strains but not in serotype 4b or 1/2b strains. We decided to compare these strains at a genomic level using the JSpecies Tetra tool. Specifically, we compared several 4bV and 4b isolates and identified a high level of similarity between the stone fruit and apple 4bV strains, but not the 4b strains co-identified in the caramel apple outbreak or other 4b or 4bV strains in our collection. This finding was further substantiated by a SNP-based analysis. Additionally, we were able to identify close relatedness between isolates from clinical cases from 1993–1994 and a single case from 2011 as well as links

  3. Integrating Evolutionary and Molecular Genetics of Aging

    PubMed Central

    Flatt, Thomas; Schmidt, Paul S.

    2010-01-01

    Aging or senescence is an age-dependent decline in physiological function, demographically manifest as decreased survival and fecundity with increasing age. Since aging is disadvantageous it should not evolve by natural selection. So why do organisms age and die? In the 1940’s and 1950’s evolutionary geneticists resolved this paradox by positing that aging evolves because selection is inefficient at maintaining function late in life. By the 1980’s and 1990’s this evolutionary theory of aging had received firm empirical support, but little was known about the mechanisms of aging. Around the same time biologists began to apply the tools of molecular genetics to aging and successfully identified mutations that affect longevity. Today, the molecular genetics of aging is a burgeoning field, but progress in evolutionary genetics of aging has largely stalled. Here we argue that some of the most exciting and unresolved questions about aging require an integration of molecular and evolutionary approaches. Is aging a universal process? Why do species age at different rates? Are the mechanisms of aging conserved or lineage-specific? Are longevity genes identified in the laboratory under selection in natural populations? What is the genetic basis of plasticity in aging in response to environmental cues and is this plasticity adaptive? What are the mechanisms underlying trade-offs between early fitness traits and life span? To answer these questions evolutionary biologists must adopt the tools of molecular biology, while molecular biologists must put their experiments into an evolutionary framework. The time is ripe for a synthesis of molecular biogerontology and the evolutionary biology of aging. PMID:19619612

  4. Silane and Germane Molecular Electronics.

    PubMed

    Su, Timothy A; Li, Haixing; Klausen, Rebekka S; Kim, Nathaniel T; Neupane, Madhav; Leighton, James L; Steigerwald, Michael L; Venkataraman, Latha; Nuckolls, Colin

    2017-04-18

    This Account provides an overview of our recent efforts to uncover the fundamental charge transport properties of Si-Si and Ge-Ge single bonds and introduce useful functions into group 14 molecular wires. We utilize the tools of chemical synthesis and a scanning tunneling microscopy-based break-junction technique to study the mechanism of charge transport in these molecular systems. We evaluated the fundamental ability of silicon, germanium, and carbon molecular wires to transport charge by comparing conductances within families of well-defined structures, the members of which differ only in the number of Si (or Ge or C) atoms in the wire. For each family, this procedure yielded a length-dependent conductance decay parameter, β. Comparison of the different β values demonstrates that Si-Si and Ge-Ge σ bonds are more conductive than the analogous C-C σ bonds. These molecular trends mirror what is seen in the bulk. The conductance decay of Si and Ge-based wires is similar in magnitude to those from π-based molecular wires such as paraphenylenes However, the chemistry of the linkers that attach the molecular wires to the electrodes has a large influence on the resulting β value. For example, Si- and Ge-based wires of many different lengths connected with a methyl-thiomethyl linker give β values of 0.36-0.39 Å -1 , whereas Si- and Ge-based wires connected with aryl-thiomethyl groups give drastically different β values for short and long wires. This observation inspired us to study molecular wires that are composed of both π- and σ-orbitals. The sequence and composition of group 14 atoms in the σ chain modulates the electronic coupling between the π end-groups and dictates the molecular conductance. The conductance behavior originates from the coupling between the subunits, which can be understood by considering periodic trends such as bond length, polarizability, and bond polarity. We found that the same periodic trends determine the electric field

  5. Ribosome-inactivating proteins: potent poisons and molecular tools.

    PubMed

    Walsh, Matthew J; Dodd, Jennifer E; Hautbergue, Guillaume M

    2013-11-15

    Ribosome-inactivating proteins (RIPs) were first isolated over a century ago and have been shown to be catalytic toxins that irreversibly inactivate protein synthesis. Elucidation of atomic structures and molecular mechanism has revealed these proteins to be a diverse group subdivided into two classes. RIPs have been shown to exhibit RNA N-glycosidase activity and depurinate the 28S rRNA of the eukaryotic 60S ribosomal subunit. In this review, we compare archetypal RIP family members with other potent toxins that abolish protein synthesis: the fungal ribotoxins which directly cleave the 28S rRNA and the newly discovered Burkholderia lethal factor 1 (BLF1). BLF1 presents additional challenges to the current classification system since, like the ribotoxins, it does not possess RNA N-glycosidase activity but does irreversibly inactivate ribosomes. We further discuss whether the RIP classification should be broadened to include toxins achieving irreversible ribosome inactivation with similar turnovers to RIPs, but through different enzymatic mechanisms.

  6. Cell specific aptamer-photosensitizer conjugates as a molecular tool in photodynamic therapy

    PubMed Central

    Mallikaratchy, Prabodhika; Tang, Zhiwen

    2010-01-01

    This paper describes the application of a molecular construct of a photosensitizer and an aptamer for photo-therapeutically targeting tumor cells. The key step in increasing selectivity in chemotherapeutic drugs is to create effective molecular platforms that could target cancer cells but not normal cells. Recently, we have developed a strategy via cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) to obtain cell specific aptamers using intact viable cells as targets to select aptamers that can recognize cell membrane proteins with high selectivity and excellent affinity. We have identified an aptamer TD05 that only recognizes Ramos cells, a Burkitt’s lymphoma cell line. Here, the high specificity of aptamers in target cell binding and an efficient phototherapy reagent, Ce6, are molecularly engineered to construct a highly selective Aptamer-photosensitizer conjugates (APS) to effectively destroy target cancer cells. Introduction of the APS conjugates followed by irradiation of light selectively destroyed target Ramos cells but not acute lymphoblastic leukemia and myeloid leukemia cell lines. This study demonstrates that the use of cancer specific aptamers conjugated to a photosensitizer will enhance the selectivity of photodynamic therapy. Coupled with the advantages of the cell-SELEX in generating multiple effective aptamers for diseased cell recognition, we will be able to develop highly efficient photosensitizer based therapeutical reagents for clinical applications. PMID:18058891

  7. Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation

    PubMed Central

    Ramirez, Samuel A.; Elston, Timothy C.

    2018-01-01

    Polarity establishment, the spontaneous generation of asymmetric molecular distributions, is a crucial component of many cellular functions. Saccharomyces cerevisiae (yeast) undergoes directed growth during budding and mating, and is an ideal model organism for studying polarization. In yeast and many other cell types, the Rho GTPase Cdc42 is the key molecular player in polarity establishment. During yeast polarization, multiple patches of Cdc42 initially form, then resolve into a single front. Because polarization relies on strong positive feedback, it is likely that the amplification of molecular-level fluctuations underlies the generation of multiple nascent patches. In the absence of spatial cues, these fluctuations may be key to driving polarization. Here we used particle-based simulations to investigate the role of stochastic effects in a Turing-type model of yeast polarity establishment. In the model, reactions take place either between two molecules on the membrane, or between a cytosolic and a membrane-bound molecule. Thus, we developed a computational platform that explicitly simulates molecules at and near the cell membrane, and implicitly handles molecules away from the membrane. To evaluate stochastic effects, we compared particle simulations to deterministic reaction-diffusion equation simulations. Defining macroscopic rate constants that are consistent with the microscopic parameters for this system is challenging, because diffusion occurs in two dimensions and particles exchange between the membrane and cytoplasm. We address this problem by empirically estimating macroscopic rate constants from appropriately designed particle-based simulations. Ultimately, we find that stochastic fluctuations speed polarity establishment and permit polarization in parameter regions predicted to be Turing stable. These effects can operate at Cdc42 abundances expected of yeast cells, and promote polarization on timescales consistent with experimental results. To our

  8. Dereplication, Aggregation and Scoring Tool (DAS Tool) v1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SIEBER, CHRISTIAN

    Communities of uncultivated microbes are critical to ecosystem function and microorganism health, and a key objective of metagenomic studies is to analyze organism-specific metabolic pathways and reconstruct community interaction networks. This requires accurate assignment of genes to genomes, yet existing binning methods often fail to predict a reasonable number of genomes and report many bins of low quality and completeness. Furthermore, the performance of existing algorithms varies between samples and biotypes. Here, we present a dereplication, aggregation and scoring strategy, DAS Tool, that combines the strengths of a flexible set of established binning algorithms. DAS Tools applied to a constructedmore » community generated more accurate bins than any automated method. Further, when applied to samples of different complexity, including soil, natural oil seeps, and the human gut, DAS Tool recovered substantially more near-complete genomes than any single binning method alone. Included were three genomes from a novel lineage . The ability to reconstruct many near-complete genomes from metagenomics data will greatly advance genome-centric analyses of ecosystems.« less

  9. Microbial interactions: ecology in a molecular perspective.

    PubMed

    Braga, Raíssa Mesquita; Dourado, Manuella Nóbrega; Araújo, Welington Luiz

    2016-12-01

    The microorganism-microorganism or microorganism-host interactions are the key strategy to colonize and establish in a variety of different environments. These interactions involve all ecological aspects, including physiochemical changes, metabolite exchange, metabolite conversion, signaling, chemotaxis and genetic exchange resulting in genotype selection. In addition, the establishment in the environment depends on the species diversity, since high functional redundancy in the microbial community increases the competitive ability of the community, decreasing the possibility of an invader to establish in this environment. Therefore, these associations are the result of a co-evolution process that leads to the adaptation and specialization, allowing the occupation of different niches, by reducing biotic and abiotic stress or exchanging growth factors and signaling. Microbial interactions occur by the transference of molecular and genetic information, and many mechanisms can be involved in this exchange, such as secondary metabolites, siderophores, quorum sensing system, biofilm formation, and cellular transduction signaling, among others. The ultimate unit of interaction is the gene expression of each organism in response to an environmental (biotic or abiotic) stimulus, which is responsible for the production of molecules involved in these interactions. Therefore, in the present review, we focused on some molecular mechanisms involved in the microbial interaction, not only in microbial-host interaction, which has been exploited by other reviews, but also in the molecular strategy used by different microorganisms in the environment that can modulate the establishment and structuration of the microbial community. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Symbiotic factors in Burkholderia essential for establishing an association with the bean bug, Riptortus pedestris.

    PubMed

    Kim, Jiyeun Kate; Lee, Bok Luel

    2015-01-01

    Symbiotic bacteria are common in insects and intimately affect the various aspects of insect host biology. In a number of insect symbiosis models, it has been possible to elucidate the effects of the symbiont on host biology, whereas there is a limited understanding of the impact of the association on the bacterial symbiont, mainly due to the difficulty of cultivating insect symbionts in vitro. Furthermore, the molecular features that determine the establishment and persistence of the symbionts in their host (i.e., symbiotic factors) have remained elusive. However, the recently established model, the bean bug Riptortus pedestris, provides a good opportunity to study bacterial symbiotic factors at a molecular level through their cultivable symbionts. Bean bugs acquire genus Burkholderia cells from the environment and harbor them as gut symbionts in the specialized posterior midgut. The genome of the Burkholderia symbiont was sequenced, and the genomic information was used to generate genetically manipulated Burkholderia symbiont strains. Using mutant symbionts, we identified several novel symbiotic factors necessary for establishing a successful association with the host gut. In this review, these symbiotic factors are classified into three categories based on the colonization dynamics of the mutant symbiont strains: initiation, accommodation, and persistence factors. In addition, the molecular characteristics of the symbiotic factors are described. These newly identified symbiotic factors and on-going studies of the Riptortus-Burkholderia symbiosis are expected to contribute to the understanding of the molecular cross-talk between insects and bacterial symbionts that are of ecological and evolutionary importance. © 2014 Wiley Periodicals, Inc.

  11. Comparison of (GTG)5-oligonucleotide and ribosomal intergenic transcribed spacer (ITS)-PCR for molecular typing of Klebsiella isolates.

    PubMed

    Ryberg, Anna; Olsson, Crister; Ahrné, Siv; Monstein, Hans-Jürg

    2011-02-01

    Molecular typing of Klebsiella species has become important for monitoring dissemination of β-lactamase-producers in hospital environments. The present study was designed to evaluate poly-trinucleotide (GTG)(5)- and rDNA intergenic transcribed spacer (ITS)-PCR fingerprint analysis for typing of Klebsiella pneumoniae and Klebsiella oxytoca isolates. Multiple displacement amplified DNA derived from 19 K. pneumoniae (some with an ESBL-phenotype), 35 K. oxytoca isolates, five K. pneumoniae, two K. oxytoca, three Raoultella, and one Enterobacter aerogenes type and reference strains underwent (GTG)(5) and ITS-PCR analysis. Dendrograms were constructed using cosine coefficient and the Neighbour joining method. (GTG)(5) and ITS-PCR analysis revealed that K. pneumoniae and K. oxytoca isolates, reference and type strains formed distinct cluster groups, and tentative subclusters could be established. We conclude that (GTG)(5) and ITS-PCR analysis combined with automated capillary electrophoresis provides promising tools for molecular typing of Klebsiella isolates. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Establishment and characterization of immortalized bovine endometrial epithelial cells

    PubMed Central

    Bai, Hanako; Sakurai, Toshihiro; Bai, Rulan; Yamakoshi, Sachiko; Aoki, Etsunari; Kuse, Mariko; Okuda, Kiyoshi; Imakawa, Kazuhiko

    2014-01-01

    Bovine primary uterine endometrial epithelial cells (EECs) are not ideal for long-term studies, because primary EECs lose hormone responsiveness quickly, and/or they tend to have a short life span. The aims of this study were to establish immortalized bovine EECs and to characterize these cells following long-term cultures. Immortalized bovine EECs were established by transfecting retroviral vectors encoding human papillomavirus (HPV) E6 and E7, and human telomerase reverse transcriptase (hTERT) genes. Established bovine immortalized EECs (imEECs) showed the same morphology as primary EECs, and could be grown without any apparent changes for over 60 passages. In addition, imEECs have maintained the features as EECs, exhibiting oxytocin (OT) and interferon tau (IFNT) responsiveness. Therefore, these imEECs, even after numbers of passages, could be used as an in vitro model to investigate cellular and molecular mechanisms, by which the uterine epithelium responds to IFNT stimulation, the event required for the maternal recognition of pregnancy in the bovine species. PMID:24735401

  13. Genomic Tools in Cowpea Breeding Programs: Status and Perspectives

    PubMed Central

    Boukar, Ousmane; Fatokun, Christian A.; Huynh, Bao-Lam; Roberts, Philip A.; Close, Timothy J.

    2016-01-01

    Cowpea is one of the most important grain legumes in sub-Saharan Africa (SSA). It provides strong support to the livelihood of small-scale farmers through its contributions to their nutritional security, income generation and soil fertility enhancement. Worldwide about 6.5 million metric tons of cowpea are produced annually on about 14.5 million hectares. The low productivity of cowpea is attributable to numerous abiotic and biotic constraints. The abiotic stress factors comprise drought, low soil fertility, and heat while biotic constraints include insects, diseases, parasitic weeds, and nematodes. Cowpea farmers also have limited access to quality seeds of improved varieties for planting. Some progress has been made through conventional breeding at international and national research institutions in the last three decades. Cowpea improvement could also benefit from modern breeding methods based on molecular genetic tools. A number of advances in cowpea genetic linkage maps, and quantitative trait loci associated with some desirable traits such as resistance to Striga, Macrophomina, Fusarium wilt, bacterial blight, root-knot nematodes, aphids, and foliar thrips have been reported. An improved consensus genetic linkage map has been developed and used to identify QTLs of additional traits. In order to take advantage of these developments single nucleotide polymorphism (SNP) genotyping is being streamlined to establish an efficient workflow supported by genotyping support service (GSS)-client interactions. About 1100 SNPs mapped on the cowpea genome were converted by LGC Genomics to KASP assays. Several cowpea breeding programs have been exploiting these resources to implement molecular breeding, especially for MARS and MABC, to accelerate cowpea variety improvement. The combination of conventional breeding and molecular breeding strategies, with workflow managed through the CGIAR breeding management system (BMS), promises an increase in the number of improved

  14. Molecular galactose-galectin association in neuroblastoma cells: An unconventional tool for qualitative/quantitative screening.

    PubMed

    Pastorino, Fabio; Ponzoni, Mirco; Simone, Giuseppina

    2017-05-01

    Galectin decorates the cell membrane and forms an extracellular molecular association with galactoside units. Here, galactoside probes have been used to study galectin expression in neuroblastoma cells. The hypothesis behind this investigation has been that the molecular mechanisms by which glycans modulate neural metastatic cells involve a protein-carbohydrate association, galectin-galactose. Preliminary screening to validate the hypothesis has been performed with galactose moieties anchored to beads. The molecular association has been studied by FACS. In vitro experiments reveal the molecular binding preferences of the metastatic neuroblastoma cells. Ex vivo, the galactose probes discriminate healthy tissues. The unconventional assay in microfluidics used in this study displayed results analogous to the above (GI-LI-N cell capture efficiency overcomes IMR-32). At the point of equilibrium of shear and binding forces, the capture yield inside the chamber was measured to 60 ± 4.4% in GI-LI-N versus 40 ± 2.1% in IMR-32. Staining of the fished cells and subsequent conjugation with red beads bearing the galactose also have evidenced that microfluidics can be used to study and quantify the molecular association of galectin-galactose. Most importantly, a crucial insight for obtaining single-cell qualitative/quantitative glycome analysis has been achieved. Finally, the specificity of the assay performed in microfluidics is demonstrated by comparing GI-LI-N fishing efficiency in galactose and fucose environments. The residual adhesion to fucose confirmed the existence of receptors for this glycan and that its eventual unspecific binding (i.e. due to electrostatic interactions) is insignificant compared with the molecular binding. Identification and understanding of this mechanism of discrimination can be relevant for diagnostic monitoring and for producing probes tailored to interfere with galectin activities associated with the malignant phenotype. Besides, the given

  15. Live Imaging of Centriole Dynamics by Fluorescently Tagged Proteins in Starfish Oocyte Meiosis.

    PubMed

    Borrego-Pinto, Joana; Somogyi, Kálmán; Lénárt, Péter

    2016-01-01

    High throughput DNA sequencing, the decreasing costs of DNA synthesis, and universal techniques for genetic manipulation have made it much easier and quicker to establish molecular tools for any organism than it has been 5 years ago. This opens a great opportunity for reviving "nonconventional" model organisms, which are particularly suited to study a specific biological process and many of which have already been established before the era of molecular biology. By taking advantage of transcriptomics, in particular, these systems can now be easily turned into full fetched models for molecular cell biology.As an example, here we describe how we established molecular tools in the starfish Patiria miniata, which has been a popular model for cell and developmental biology due to the synchronous and rapid development, transparency, and easy handling of oocytes, eggs, and embryos. Here, we detail how we used a de novo assembled transcriptome to produce molecular markers and established conditions for live imaging to investigate the molecular mechanisms underlying centriole elimination-a poorly understood process essential for sexual reproduction of animal species.

  16. Establishment of mouse expanded potential stem cells

    PubMed Central

    Gao, Xuefei; Antunes, Liliana; Yu, Yong; Zhu, Zhexin; Wang, Juexuan; Kolodziejczyk, Aleksandra A.; Campos, Lia S.; Wang, Cui; Yang, Fengtang; Zhong, Zhen; Fu, Beiyuan; Eckersley-Maslin, Melanie A.; Woods, Michael; Tanaka, Yosuke; Chen, Xi; Wilkinson, Adam C.; Bussell, James; White, Jacqui; Ramirez-Solis, Ramiro; Reik, Wolf; Göttgens, Berthold; Teichmann, Sarah A.; Tam, Patrick P. L.; Nakauchi, Hiromitsu; Zou, Xiangang; Lu, Liming; Liu, Pentao

    2018-01-01

    Mouse embryonic stem cells derived from the epiblast1 contribute to the somatic lineages and the germline but are excluded from the extra-embryonic tissues that are derived from the trophectoderm and the primitive endoderm2 upon reintroduction to the blastocyst. Here we report that cultures of expanded potential stem cells can be established from individual eight-cell blastomeres, and by direct conversion of mouse embryonic stem cells and induced pluripotent stem cells. Remarkably, a single expanded potential stem cell can contribute both to the embryo proper and to the trophectoderm lineages in a chimaera assay. Bona fide trophoblast stem cell lines and extra-embryonic endoderm stem cells can be directly derived from expanded potential stem cells in vitro. Molecular analyses of the epigenome and single-cell transcriptome reveal enrichment for blastomere-specific signature and a dynamic DNA methylome in expanded potential stem cells. The generation of mouse expanded potential stem cells highlights the feasibility of establishing expanded potential stem cells for other mammalian species. PMID:29019987

  17. Role of Open Source Tools and Resources in Virtual Screening for Drug Discovery.

    PubMed

    Karthikeyan, Muthukumarasamy; Vyas, Renu

    2015-01-01

    Advancement in chemoinformatics research in parallel with availability of high performance computing platform has made handling of large scale multi-dimensional scientific data for high throughput drug discovery easier. In this study we have explored publicly available molecular databases with the help of open-source based integrated in-house molecular informatics tools for virtual screening. The virtual screening literature for past decade has been extensively investigated and thoroughly analyzed to reveal interesting patterns with respect to the drug, target, scaffold and disease space. The review also focuses on the integrated chemoinformatics tools that are capable of harvesting chemical data from textual literature information and transform them into truly computable chemical structures, identification of unique fragments and scaffolds from a class of compounds, automatic generation of focused virtual libraries, computation of molecular descriptors for structure-activity relationship studies, application of conventional filters used in lead discovery along with in-house developed exhaustive PTC (Pharmacophore, Toxicophores and Chemophores) filters and machine learning tools for the design of potential disease specific inhibitors. A case study on kinase inhibitors is provided as an example.

  18. Spotlight on Fluorescent Biosensors—Tools for Diagnostics and Drug Discovery

    PubMed Central

    2013-01-01

    Fluorescent biosensors constitute potent tools for probing biomolecules in their natural environment and for visualizing dynamic processes in complex biological samples, living cells, and organisms. They are well suited for highlighting molecular alterations associated with pathological disorders, thereby offering means of implementing sensitive and alternative technologies for diagnostic purposes. They constitute attractive tools for drug discovery programs, from high throughput screening assays to preclinical studies. PMID:24900780

  19. Standardized Procedures for Use of Nucleic Acid-Based Tools

    EPA Science Inventory

    Groundwater and soil samples are frequently analyzed using molecular biological tools (MBTs) to detect unique genetic biomarkers associated with Dehalococcoides (Dhc) and other environmentally relevant microorganisms. The results of these analyses are increasingly used b...

  20. Molecular biomimetics: nanotechnology through biology.

    PubMed

    Sarikaya, Mehmet; Tamerler, Candan; Jen, Alex K-Y; Schulten, Klaus; Baneyx, François

    2003-09-01

    Proteins, through their unique and specific interactions with other macromolecules and inorganics, control structures and functions of all biological hard and soft tissues in organisms. Molecular biomimetics is an emerging field in which hybrid technologies are developed by using the tools of molecular biology and nanotechnology. Taking lessons from biology, polypeptides can now be genetically engineered to specifically bind to selected inorganic compounds for applications in nano- and biotechnology. This review discusses combinatorial biological protocols, that is, bacterial cell surface and phage-display technologies, in the selection of short sequences that have affinity to (noble) metals, semiconducting oxides and other technological compounds. These genetically engineered proteins for inorganics (GEPIs) can be used in the assembly of functional nanostructures. Based on the three fundamental principles of molecular recognition, self-assembly and DNA manipulation, we highlight successful uses of GEPI in nanotechnology.

  1. CADRE-SS, an in Silico Tool for Predicting Skin Sensitization Potential Based on Modeling of Molecular Interactions.

    PubMed

    Kostal, Jakub; Voutchkova-Kostal, Adelina

    2016-01-19

    Using computer models to accurately predict toxicity outcomes is considered to be a major challenge. However, state-of-the-art computational chemistry techniques can now be incorporated in predictive models, supported by advances in mechanistic toxicology and the exponential growth of computing resources witnessed over the past decade. The CADRE (Computer-Aided Discovery and REdesign) platform relies on quantum-mechanical modeling of molecular interactions that represent key biochemical triggers in toxicity pathways. Here, we present an external validation exercise for CADRE-SS, a variant developed to predict the skin sensitization potential of commercial chemicals. CADRE-SS is a hybrid model that evaluates skin permeability using Monte Carlo simulations, assigns reactive centers in a molecule and possible biotransformations via expert rules, and determines reactivity with skin proteins via quantum-mechanical modeling. The results were promising with an overall very good concordance of 93% between experimental and predicted values. Comparison to performance metrics yielded by other tools available for this endpoint suggests that CADRE-SS offers distinct advantages for first-round screenings of chemicals and could be used as an in silico alternative to animal tests where permissible by legislative programs.

  2. USE OF COMPUTER-AIDED PROCESS ENGINEERING TOOL IN POLLUTION PREVENTION

    EPA Science Inventory

    Computer-Aided Process Engineering has become established in industry as a design tool. With the establishment of the CAPE-OPEN software specifications for process simulation environments. CAPE-OPEN provides a set of "middleware" standards that enable software developers to acces...

  3. Broadening the horizon – level 2.5 of the HUPO-PSI format for molecular interactions

    PubMed Central

    Kerrien, Samuel; Orchard, Sandra; Montecchi-Palazzi, Luisa; Aranda, Bruno; Quinn, Antony F; Vinod, Nisha; Bader, Gary D; Xenarios, Ioannis; Wojcik, Jérôme; Sherman, David; Tyers, Mike; Salama, John J; Moore, Susan; Ceol, Arnaud; Chatr-aryamontri, Andrew; Oesterheld, Matthias; Stümpflen, Volker; Salwinski, Lukasz; Nerothin, Jason; Cerami, Ethan; Cusick, Michael E; Vidal, Marc; Gilson, Michael; Armstrong, John; Woollard, Peter; Hogue, Christopher; Eisenberg, David; Cesareni, Gianni; Apweiler, Rolf; Hermjakob, Henning

    2007-01-01

    Background Molecular interaction Information is a key resource in modern biomedical research. Publicly available data have previously been provided in a broad array of diverse formats, making access to this very difficult. The publication and wide implementation of the Human Proteome Organisation Proteomics Standards Initiative Molecular Interactions (HUPO PSI-MI) format in 2004 was a major step towards the establishment of a single, unified format by which molecular interactions should be presented, but focused purely on protein-protein interactions. Results The HUPO-PSI has further developed the PSI-MI XML schema to enable the description of interactions between a wider range of molecular types, for example nucleic acids, chemical entities, and molecular complexes. Extensive details about each supported molecular interaction can now be captured, including the biological role of each molecule within that interaction, detailed description of interacting domains, and the kinetic parameters of the interaction. The format is supported by data management and analysis tools and has been adopted by major interaction data providers. Additionally, a simpler, tab-delimited format MITAB2.5 has been developed for the benefit of users who require only minimal information in an easy to access configuration. Conclusion The PSI-MI XML2.5 and MITAB2.5 formats have been jointly developed by interaction data producers and providers from both the academic and commercial sector, and are already widely implemented and well supported by an active development community. PSI-MI XML2.5 enables the description of highly detailed molecular interaction data and facilitates data exchange between databases and users without loss of information. MITAB2.5 is a simpler format appropriate for fast Perl parsing or loading into Microsoft Excel. PMID:17925023

  4. Using molecular recognition of beta-cyclodextrin to determine molecular weights of low-molecular-weight explosives by MALDI-TOF mass spectrometry.

    PubMed

    Zhang, Min; Shi, Zhen; Bai, Yinjuan; Gao, Yong; Hu, Rongzu; Zhao, Fenqi

    2006-02-01

    This study presents a novel method for determining the molecular weights of low molecular weight (MW) energetic compounds through their complexes of beta-cyclodextrin (beta-CD) and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) in a mass range of 500 to 1700 Da, avoiding matrix interference. The MWs of one composite explosive composed of 2,6-DNT, TNT, and RDX, one propellant with unknown components, and 14 single-compound explosives (RDX, HMX, 3,4-DNT, 2,6-DNT, 2,5-DNT, 2,4,6-TNT, TNAZ, DNI, BTTN, NG, TO, NTO, NP, and 662) were measured. The molecular recognition and inclusion behavior of beta-CD to energetic materials (EMs) were investigated. The results show that (1) the established method is sensitive, simple, accurate, and suitable for determining the MWs of low-MW single-compound explosives and energetic components in composite explosives and propellants; and (2) beta-CD has good inclusion and modular recognition abilities to the above EMs.

  5. Molecular and Cellular Biology Animations: Development and Impact on Student Learning

    ERIC Educational Resources Information Center

    McClean, Phillip; Johnson, Christina; Rogers, Roxanne; Daniels, Lisa; Reber, John; Slator, Brian M.; Terpstra, Jeff; White, Alan

    2005-01-01

    Educators often struggle when teaching cellular and molecular processes because typically they have only two-dimensional tools to teach something that plays out in four dimensions. Learning research has demonstrated that visualizing processes in three dimensions aids learning, and animations are effective visualization tools for novice learners…

  6. Angle-resolved high-order above-threshold ionization of a molecule: sensitive tool for molecular characterization.

    PubMed

    Busuladzić, M; Gazibegović-Busuladzić, A; Milosević, D B; Becker, W

    2008-05-23

    The strong-field approximation for ionization of diatomic molecules by an intense laser field is generalized to include rescattering of the ionized electron off the various centers of its molecular parent ion. The resulting spectrum and its interference structure strongly depend on the symmetry of the ground state molecular orbital. For N2, if the laser polarization is perpendicular to the molecular axis, we observe a distinct minimum in the emission spectrum, which survives focal averaging and allows determination of, e.g., the internuclear separation. In contrast, for O2, rescattering is absent in the same situation.

  7. Molecular epidemiology of African sleeping sickness.

    PubMed

    Hide, G; Tait, A

    2009-10-01

    Human sleeping sickness in Africa, caused by Trypanosoma brucei spp. raises a number of questions. Despite the widespread distribution of the tsetse vectors and animal trypanosomiasis, human disease is only found in discrete foci which periodically give rise to epidemics followed by periods of endemicity A key to unravelling this puzzle is a detailed knowledge of the aetiological agents responsible for different patterns of disease--knowledge that is difficult to achieve using traditional microscopy. The science of molecular epidemiology has developed a range of tools which have enabled us to accurately identify taxonomic groups at all levels (species, subspecies, populations, strains and isolates). Using these tools, we can now investigate the genetic interactions within and between populations of Trypanosoma brucei and gain an understanding of the distinction between human- and nonhuman-infective subspecies. In this review, we discuss the development of these tools, their advantages and disadvantages and describe how they have been used to understand parasite genetic diversity, the origin of epidemics, the role of reservoir hosts and the population structure. Using the specific case of T.b. rhodesiense in Uganda, we illustrate how molecular epidemiology has enabled us to construct a more detailed understanding of the origins, generation and dynamics of sleeping sickness epidemics.

  8. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    PubMed Central

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  9. Sasquatch Footprint Tool

    NASA Technical Reports Server (NTRS)

    Bledsoe, Kristin

    2013-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is the parachute system for NASA s Orion spacecraft. The test program consists of numerous drop tests, wherein a test article rigged with parachutes is extracted or released from an aircraft. During such tests, range safety is paramount, as is the recoverability of the parachutes and test article. It is crucial to establish an aircraft release point that will ensure that the article and all items released from it will land in safe locations. A new footprint predictor tool, called Sasquatch, was created in MATLAB. This tool takes in a simulated trajectory for the test article, information about all released objects, and atmospheric wind data (simulated or actual) to calculate the trajectories of the released objects. Dispersions are applied to the landing locations of those objects, taking into account the variability of winds, aircraft release point, and object descent rate. Sasquatch establishes a payload release point (e.g., where the payload will be extracted from the carrier aircraft) that will ensure that the payload and all objects released from it will land in a specified cleared area. The landing locations (the final points in the trajectories) are plotted on a map of the test range. Sasquatch was originally designed for CPAS drop tests and includes extensive information about both the CPAS hardware and the primary test range used for CPAS testing. However, it can easily be adapted for more complex CPAS drop tests, other NASA projects, and commercial partners. CPAS has developed the Sasquatch footprint tool to ensure range safety during parachute drop tests. Sasquatch is well correlated to test data and continues to ensure the safety of test personnel as well as the safe recovery of all equipment. The tool will continue to be modified based on new test data, improving predictions and providing added capability to meet the requirements of more complex testing.

  10. Value and Methods for Molecular Subtyping of Bacteria

    NASA Astrophysics Data System (ADS)

    Moorman, Mark; Pruett, Payton; Weidman, Martin

    Tracking sources of microbial contaminants has been a concern since the early days of commercial food processing; however, recent advances in the development of molecular subtyping methods have provided tools that allow more rapid and highly accurate determinations of these sources. Only individuals with an understanding of the molecular subtyping methods, and the epidemiological techniques used, can evaluate the reliability of a link between a food-manufacturing plant, a food, and a foodborne disease outbreak.

  11. Nucleic acid tool enzymes-aided signal amplification strategy for biochemical analysis: status and challenges.

    PubMed

    Qing, Taiping; He, Dinggeng; He, Xiaoxiao; Wang, Kemin; Xu, Fengzhou; Wen, Li; Shangguan, Jingfang; Mao, Zhengui; Lei, Yanli

    2016-04-01

    Owing to their highly efficient catalytic effects and substrate specificity, the nucleic acid tool enzymes are applied as 'nano-tools' for manipulating different nucleic acid substrates both in the test-tube and in living organisms. In addition to the function as molecular scissors and molecular glue in genetic engineering, the application of nucleic acid tool enzymes in biochemical analysis has also been extensively developed in the past few decades. Used as amplifying labels for biorecognition events, the nucleic acid tool enzymes are mainly applied in nucleic acids amplification sensing, as well as the amplification sensing of biorelated variations of nucleic acids. With the introduction of aptamers, which can bind different target molecules, the nucleic acid tool enzymes-aided signal amplification strategies can also be used to sense non-nucleic targets (e.g., ions, small molecules, proteins, and cells). This review describes and discusses the amplification strategies of nucleic acid tool enzymes-aided biosensors for biochemical analysis applications. Various analytes, including nucleic acids, ions, small molecules, proteins, and cells, are reviewed briefly. This work also addresses the future trends and outlooks for signal amplification in nucleic acid tool enzymes-aided biosensors.

  12. Establishment of a bleeding score as a diagnostic tool for patients with rare bleeding disorders.

    PubMed

    Palla, Roberta; Siboni, Simona M; Menegatti, Marzia; Musallam, Khaled M; Peyvandi, Flora

    2016-12-01

    Bleeding manifestations among patients with rare bleeding disorders (RBDs) vary significantly between disorders and patients, even when affected with the same disorder. In response to the challenge represented by the clinical assessment of the presence and severity of bleeding symptoms, a number of bleeding score systems (BSSs) or bleeding assessment tools (BATs) were developed. The majority of these were specifically developed for patients with more common bleeding disorders than RBDs. Few RBDs patients were evaluated with these tools and without conclusive results. A new BSS was developed using data retrieved from a large group of patients with RBDs enrolled in the EN-RBD database and from healthy subjects. These data included previous bleeding symptoms, frequency, spontaneity, extent, localization, and relationship to prophylaxis and acute treatment. The predictive power of this BSS was also compared with the ISTH-BAT and examined for the severity of RBDs based on coagulant factor activity. This BSS was able to differentiate patients with RBDs from healthy individuals with a bleeding score value of 1.5 having the highest sum of sensitivity (67.1%) and specificity (73.8%) in discriminating patients with RBD from those without. An easy-to-use calculation was also developed to assess the probability of having a RBD. Its comparison with the ISTH-BAT confirmed its utility. Finally, in RBDs patients, there was a significant negative correlation between BS and coagulant factor activity level, which was strongest for fibrinogen and FXIII deficiencies. The use of this quantitative method may represent a valuable support tool to clinicians. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Lymph Node Metastases Optical Molecular Diagnostic and Radiation Therapy

    DTIC Science & Technology

    2017-03-01

    because most imaging is based upon structures and not molecular functions. The one tool commonly used for metastases imaging is nuclear medicine...imaging, which is that micro metastases cannot be visualized at a relevant stage., largely because most imaging is based upon structures and not...evaluate the limits on structural , metabolic and immunologic probes for molecular imaging, and (4) to complete studies on metastatic breast cancer

  14. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database--the quality controlled standard tool for routine identification of human and animal pathogenic fungi.

    PubMed

    Irinyi, Laszlo; Serena, Carolina; Garcia-Hermoso, Dea; Arabatzis, Michael; Desnos-Ollivier, Marie; Vu, Duong; Cardinali, Gianluigi; Arthur, Ian; Normand, Anne-Cécile; Giraldo, Alejandra; da Cunha, Keith Cassia; Sandoval-Denis, Marcelo; Hendrickx, Marijke; Nishikaku, Angela Satie; de Azevedo Melo, Analy Salles; Merseguel, Karina Bellinghausen; Khan, Aziza; Parente Rocha, Juliana Alves; Sampaio, Paula; da Silva Briones, Marcelo Ribeiro; e Ferreira, Renata Carmona; de Medeiros Muniz, Mauro; Castañón-Olivares, Laura Rosio; Estrada-Barcenas, Daniel; Cassagne, Carole; Mary, Charles; Duan, Shu Yao; Kong, Fanrong; Sun, Annie Ying; Zeng, Xianyu; Zhao, Zuotao; Gantois, Nausicaa; Botterel, Françoise; Robbertse, Barbara; Schoch, Conrad; Gams, Walter; Ellis, David; Halliday, Catriona; Chen, Sharon; Sorrell, Tania C; Piarroux, Renaud; Colombo, Arnaldo L; Pais, Célia; de Hoog, Sybren; Zancopé-Oliveira, Rosely Maria; Taylor, Maria Lucia; Toriello, Conchita; de Almeida Soares, Célia Maria; Delhaes, Laurence; Stubbe, Dirk; Dromer, Françoise; Ranque, Stéphane; Guarro, Josep; Cano-Lira, Jose F; Robert, Vincent; Velegraki, Aristea; Meyer, Wieland

    2015-05-01

    Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org/ and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Assessment of microscopic and molecular tools for the diagnosis and follow-up of cryptosporidiosis in patients at risk.

    PubMed

    Le Govic, Y; Guyot, K; Certad, G; Deschildre, A; Novo, R; Mary, C; Sendid, B; Viscogliosi, E; Favennec, L; Dei-Cas, E; Fréalle, E; Dutoit, E

    2016-01-01

    Cryptosporidiosis is an important though underreported public health concern. Molecular tools might be helpful in improving its diagnosis. In this study, ZR Fecal DNA MiniPrep™ Kit (ZR) and NucliSens® easyMAG® (EM) were compared using four Cryptosporidium-seeded feces and 29 Cryptosporidium-positive stools. Thereafter, ZR was selected for prospective evaluation of Cryptosporidium detection by 18S rDNA and LAXER quantitative PCR (qPCR) in 69 stools from 56 patients after Cryptosporidium detection by glycerin, modified Ziehl-Neelsen (ZN) and auramine-phenol (AP) stainings. The combination of any of the two extraction methods with 18S qPCR yielded adequate detection of Cryptosporidium in seeded stools, but the ZR kit showed the best performance. All 29 Cryptosporidium-positive samples were positive with 18S qPCR, after both ZR and EM extraction. However, false-negative results were found with LAXER qPCR or nested PCR. Cryptosporidiosis was diagnosed in 7/56 patients. All the microscopic methods enabled the initial diagnosis, but Cryptosporidium was detected in 12, 13, and 14 samples from these seven patients after glycerin, ZN, and AP staining respectively. Among these samples, 14 and 12 were positive with 18S and LAXER qPCR respectively. In two patients, Cryptosporidium DNA loads were found to be correlated with clinical evolution. Although little known, glycerin is a sensitive method for the initial detection of Cryptosporidium. When combined with 18S qPCR, ZR extraction, which had not been evaluated so far for Cryptosporidium, was an accurate tool for detecting Cryptosporidium and estimating the oocyst shedding in the course of infection.

  16. Unicellular eukaryotes as models in cell and molecular biology: critical appraisal of their past and future value.

    PubMed

    Simon, Martin; Plattner, Helmut

    2014-01-01

    Unicellular eukaryotes have been appreciated as model systems for the analysis of crucial questions in cell and molecular biology. This includes Dictyostelium (chemotaxis, amoeboid movement, phagocytosis), Tetrahymena (telomere structure, telomerase function), Paramecium (variant surface antigens, exocytosis, phagocytosis cycle) or both ciliates (ciliary beat regulation, surface pattern formation), Chlamydomonas (flagellar biogenesis and beat), and yeast (S. cerevisiae) for innumerable aspects. Nowadays many problems may be tackled with "higher" eukaryotic/metazoan cells for which full genomic information as well as domain databases, etc., were available long before protozoa. Established molecular tools, commercial antibodies, and established pharmacology are additional advantages available for higher eukaryotic cells. Moreover, an increasing number of inherited genetic disturbances in humans have become elucidated and can serve as new models. Among lower eukaryotes, yeast will remain a standard model because of its peculiarities, including its reduced genome and availability in the haploid form. But do protists still have a future as models? This touches not only the basic understanding of biology but also practical aspects of research, such as fund raising. As we try to scrutinize, due to specific advantages some protozoa should and will remain favorable models for analyzing novel genes or specific aspects of cell structure and function. Outstanding examples are epigenetic phenomena-a field of rising interest. © 2014 Elsevier Inc. All rights reserved.

  17. Molecular pathology of bone tumours: diagnostic implications.

    PubMed

    Puls, Florian; Niblett, Angela J; Mangham, D Chas

    2014-03-01

    Alongside histomorphology and immunohistochemistry, molecular pathology is now established as one of the cornerstones in the tissue diagnosis of bone tumours. We describe the principal molecular pathological techniques employed, and each of the bone tumour entities where their identified characteristic molecular pathological changes can be detected to support and confirm the suspected histological diagnosis. Tumours discussed include fibrous dysplasia, classical and subtype osteosarcomas, central and surface cartilaginous tumours, Ewing's sarcoma, vascular tumours, aneurysmal bone cyst, chordoma, myoepithelioma, and angiomatoid fibrous histiocytoma. This is a rapidly evolving field with discoveries occurring every few months, and some of the newer entities (the Ewing's-like sarcomas), which are principally identified by their molecular pathology characteristics, are discussed. © 2013 John Wiley & Sons Ltd.

  18. Quantum and semiclassical spin networks: from atomic and molecular physics to quantum computing and gravity

    NASA Astrophysics Data System (ADS)

    Aquilanti, Vincenzo; Bitencourt, Ana Carla P.; Ferreira, Cristiane da S.; Marzuoli, Annalisa; Ragni, Mirco

    2008-11-01

    The mathematical apparatus of quantum-mechanical angular momentum (re)coupling, developed originally to describe spectroscopic phenomena in atomic, molecular, optical and nuclear physics, is embedded in modern algebraic settings which emphasize the underlying combinatorial aspects. SU(2) recoupling theory, involving Wigner's 3nj symbols, as well as the related problems of their calculations, general properties, asymptotic limits for large entries, nowadays plays a prominent role also in quantum gravity and quantum computing applications. We refer to the ingredients of this theory—and of its extension to other Lie and quantum groups—by using the collective term of 'spin networks'. Recent progress is recorded about the already established connections with the mathematical theory of discrete orthogonal polynomials (the so-called Askey scheme), providing powerful tools based on asymptotic expansions, which correspond on the physical side to various levels of semi-classical limits. These results are useful not only in theoretical molecular physics but also in motivating algorithms for the computationally demanding problems of molecular dynamics and chemical reaction theory, where large angular momenta are typically involved. As for quantum chemistry, applications of these techniques include selection and classification of complete orthogonal basis sets in atomic and molecular problems, either in configuration space (Sturmian orbitals) or in momentum space. In this paper, we list and discuss some aspects of these developments—such as for instance the hyperquantization algorithm—as well as a few applications to quantum gravity and topology, thus providing evidence of a unifying background structure.

  19. Establishing an unusual cell type: How to make a dikaryon

    PubMed Central

    Kruzel, Emilia K.; Hull, Christina M.

    2010-01-01

    Summary The dikaryons of basidiomycete fungi represent an unusual cell type required for complete sexual development. Dikaryon formation occurs via the activities of cell type-specific homeodomain transcription factors, which form regulatory complexes to establish the dikaryotic state. Decades of classical genetic and cell biological studies in mushrooms have provided a foundation for more recent molecular studies in the pathogenic species Ustilago maydis and Cryptococcus neoformans. Studies in these systems have revealed novel mechanisms of regulation that function downstream of classic homeodomain complexes to ensure that dikaryons are established and propagated. Comparisons of these dikaryon-specific networks promise to reveal the nature of regulatory network evolution and the adaptations responsible for driving complex eukaryotic development. PMID:21036099

  20. Prediction of industrial tomato hybrids from agronomic traits and ISSR molecular markers.

    PubMed

    Figueiredo, A S T; Resende, J T V; Faria, M V; Da-Silva, P R; Fagundes, B S; Morales, R G F

    2016-05-13

    Heterosis is a highly relevant phenomenon in plant breeding. This condition is usually established in hybrids derived from crosses of highly divergent parents. The success of a breeder in obtaining heterosis is directly related to the correct identification of genetically contrasting parents. Currently, the diallel cross is the most commonly used methodology to detect contrasting parents; however, it is a time- and cost-consuming procedure. Therefore, new tools capable of performing this task quickly and accurately are required. Thus, the purpose of this study was to estimate the genetic divergence in industrial tomato lines, based on agronomic traits, and to compare with estimates obtained using inter-simple sequence repeat (ISSR) molecular markers. The genetic divergence among 10 industrial tomato lines, based on nine morphological characters and 12 ISSR primers was analyzed. For data analysis, Pearson and Spearman correlation coefficients were calculated between the genetic dissimilarity measures estimated by Mahalanobis distance and Jaccard's coefficient of genetic dissimilarity from the heterosis estimates, combining ability, and means of important traits of industrial tomato. The ISSR markers efficiently detected contrasting parents for hybrid production in tomato. Parent RVTD-08 was indicated as the most divergent, both by molecular and morphological markers, that positively contributed to increased heterosis and by the specific combining ability in the crosses in which it participated. The genetic dissimilarity estimated by ISSR molecular markers aided the identification of the best hybrids of the experiment in terms of total fruit yield, pulp yield, and soluble solids content.

  1. Proteasix: a tool for automated and large-scale prediction of proteases involved in naturally occurring peptide generation.

    PubMed

    Klein, Julie; Eales, James; Zürbig, Petra; Vlahou, Antonia; Mischak, Harald; Stevens, Robert

    2013-04-01

    In this study, we have developed Proteasix, an open-source peptide-centric tool that can be used to predict in silico the proteases involved in naturally occurring peptide generation. We developed a curated cleavage site (CS) database, containing 3500 entries about human protease/CS combinations. On top of this database, we built a tool, Proteasix, which allows CS retrieval and protease associations from a list of peptides. To establish the proof of concept of the approach, we used a list of 1388 peptides identified from human urine samples, and compared the prediction to the analysis of 1003 randomly generated amino acid sequences. Metalloprotease activity was predominantly involved in urinary peptide generation, and more particularly to peptides associated with extracellular matrix remodelling, compared to proteins from other origins. In comparison, random sequences returned almost no results, highlighting the specificity of the prediction. This study provides a tool that can facilitate linking of identified protein fragments to predicted protease activity, and therefore into presumed mechanisms of disease. Experiments are needed to confirm the in silico hypotheses; nevertheless, this approach may be of great help to better understand molecular mechanisms of disease, and define new biomarkers, and therapeutic targets. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An Easily Constructed and Versatile Molecular Model

    NASA Astrophysics Data System (ADS)

    Hernandez, Sandra A.; Rodriguez, Nora M.; Quinzani, Oscar

    1996-08-01

    Three-dimensional molecular models are powerful tools used in basic courses of general and organic chemistry when the students must visualize the spatial distributions of atoms in molecules and relate them to the physical and chemical properties of such molecules. This article discusses inexpensive, easily carried, and semipermanent molecular models that the students may build by themselves. These models are based upon two different types of arrays of thin flexible wires, like telephone hook-up wires, which may be bent easily but keep their shapes.

  3. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE PAGES

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.; ...

    2016-06-01

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  4. Molecular clock of HIV-1 envelope genes under early immune selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.

    Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.

  5. Establishing a sense of urgency for leading transformational change.

    PubMed

    Shirey, Maria R

    2011-04-01

    This department highlights change management strategies that may be successful in strategically planning and executing organizational change initiatives. With the goal of presenting practical approaches helpful to nurse leaders advancing organizational change, content includes evidence-based projects, tools, and resources that mobilize and sustain organizational change initiatives. In this article, the author discusses successful tactics for establishing a sense of urgency to facilitate organizational change.

  6. An RNA Phage Lab: MS2 in Walter Fiers' laboratory of molecular biology in Ghent, from genetic code to gene and genome, 1963-1976.

    PubMed

    Pierrel, Jérôme

    2012-01-01

    The importance of viruses as model organisms is well-established in molecular biology and Max Delbrück's phage group set standards in the DNA phage field. In this paper, I argue that RNA phages, discovered in the 1960s, were also instrumental in the making of molecular biology. As part of experimental systems, RNA phages stood for messenger RNA (mRNA), genes and genome. RNA was thought to mediate information transfers between DNA and proteins. Furthermore, RNA was more manageable at the bench than DNA due to the availability of specific RNases, enzymes used as chemical tools to analyse RNA. Finally, RNA phages provided scientists with a pure source of mRNA to investigate the genetic code, genes and even a genome sequence. This paper focuses on Walter Fiers' laboratory at Ghent University (Belgium) and their work on the RNA phage MS2. When setting up his Laboratory of Molecular Biology, Fiers planned a comprehensive study of the virus with a strong emphasis on the issue of structure. In his lab, RNA sequencing, now a little-known technique, evolved gradually from a means to solve the genetic code, to a tool for completing the first genome sequence. Thus, I follow the research pathway of Fiers and his 'RNA phage lab' with their evolving experimental system from 1960 to the late 1970s. This study illuminates two decisive shifts in post-war biology: the emergence of molecular biology as a discipline in the 1960s in Europe and of genomics in the 1990s.

  7. The nucleic acid revolution continues - will forensic biology become forensic molecular biology?

    PubMed

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to "forensic molecular biology." Aside from DNA's established role in identifying the "who" in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about "when" a crime took place and "what" took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future.

  8. Contemporary molecular tools in microbial ecology and their application to advancing biotechnology.

    PubMed

    Rashid, Mamoon; Stingl, Ulrich

    2015-12-01

    Novel methods in microbial ecology are revolutionizing our understanding of the structure and function of microbes in the environment, but concomitant advances in applications of these tools to biotechnology are mostly lagging behind. After more than a century of efforts to improve microbial culturing techniques, about 70-80% of microbial diversity - recently called the "microbial dark matter" - remains uncultured. In early attempts to identify and sample these so far uncultured taxonomic lineages, methods that amplify and sequence ribosomal RNA genes were extensively used. Recent developments in cell separation techniques, DNA amplification, and high-throughput DNA sequencing platforms have now made the discovery of genes/genomes of uncultured microorganisms from different environments possible through the use of metagenomic techniques and single-cell genomics. When used synergistically, these metagenomic and single-cell techniques create a powerful tool to study microbial diversity. These genomics techniques have already been successfully exploited to identify sources for i) novel enzymes or natural products for biotechnology applications, ii) novel genes from extremophiles, and iii) whole genomes or operons from uncultured microbes. More can be done to utilize these tools more efficiently in biotechnology. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Web-TCGA: an online platform for integrated analysis of molecular cancer data sets.

    PubMed

    Deng, Mario; Brägelmann, Johannes; Schultze, Joachim L; Perner, Sven

    2016-02-06

    The Cancer Genome Atlas (TCGA) is a pool of molecular data sets publicly accessible and freely available to cancer researchers anywhere around the world. However, wide spread use is limited since an advanced knowledge of statistics and statistical software is required. In order to improve accessibility we created Web-TCGA, a web based, freely accessible online tool, which can also be run in a private instance, for integrated analysis of molecular cancer data sets provided by TCGA. In contrast to already available tools, Web-TCGA utilizes different methods for analysis and visualization of TCGA data, allowing users to generate global molecular profiles across different cancer entities simultaneously. In addition to global molecular profiles, Web-TCGA offers highly detailed gene and tumor entity centric analysis by providing interactive tables and views. As a supplement to other already available tools, such as cBioPortal (Sci Signal 6:pl1, 2013, Cancer Discov 2:401-4, 2012), Web-TCGA is offering an analysis service, which does not require any installation or configuration, for molecular data sets available at the TCGA. Individual processing requests (queries) are generated by the user for mutation, methylation, expression and copy number variation (CNV) analyses. The user can focus analyses on results from single genes and cancer entities or perform a global analysis (multiple cancer entities and genes simultaneously).

  10. [Molecular epidemiology in the epidemiological transition].

    PubMed

    Tapia-Conyer, R

    1997-01-01

    The epidemiological transition describes the changes in the health profile of populations where infectious diseases are substituted by chronic or non-communicable diseases. Even in industrialized countries, infectious diseases emerge as important public health problems and with a very important association with several type of neoplasm. Molecular epidemiology brings in new tools for the study of the epidemiological transition by discovering infectious agents as etiology of diseases, neither of both new. Much has been advanced in the understanding of the virulence and resistance mechanism of different strains, or improving the knowledge on transmission dynamics and dissemination pathways of infectious diseases. As to the non-communicable diseases, molecular epidemiology has enhanced the identification of endogenous risk factors link to alterations, molecular changes in genetic material, that will allow a more detail definition of risk and the identification of individual and groups at risk of several diseases. The potential impact of molecular epidemiology in other areas as environmental, lifestyles and nutritional areas are illustrated with several examples.

  11. Quality control in mutation analysis: the European Molecular Genetics Quality Network (EMQN).

    PubMed

    Müller, C R

    2001-08-01

    The demand for clinical molecular genetics testing has steadily grown since its introduction in the 1980s. In order to reach and maintain the agreed quality standards of laboratory medicine, the same internal and external quality assurance (IQA/EQA) criteria have to be applied as for "conventional" clinical chemistry or pathology. In 1996 the European Molecular Genetics Quality Network (EMQN) was established in order to spread QA standards across Europe and to harmonise the existing national activities. EMQN is operated by a central co-ordinator and 17 national partners from 15 EU countries; since 1998 it is being funded by the EU commission for a 3-year period. EMQN promotes QA by two tools: by providing disease-specific best practice meetings (BPM) and EQA schemes. A typical BPM is focussed on one disease or group of related disorders. International experts report on the latest news of gene characterisation and function and the state-of-the-art techniques for mutation detection. Disease-specific EQA schemes are provided by experts in the field. DNA samples are sent out together with mock clinical referrals and a diagnostic question is asked. Written reports must be returned which are marked for genotyping and interpretation. So far, three BPMs have been held and six EQA schemes are in operation at various stages. Although mutation types and diagnostic techniques varied considerably between schemes, the overall technical performance showed a high diagnostic standard. Nevertheless, serious genotyping errors have been occurred in some schemes which underline the necessity of quality assurance efforts. The European Molecular Genetics Quality Network provides a necessary platform for the internal and external quality assurance of molecular genetic testing.

  12. SHAPEMOL: Modelling molecular line emission in protoplanetary and planetary nebulae with SHAPE

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Bujarrabal, V.; Steffen, W.; Koning, N.

    2014-04-01

    Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA will reach unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window for probing molecular warm gas (˜50-1000 K). On the other hand, the SHAPE software has emerged in the last few years as the standard tool for determining the morphology and velocity field of different kinds of gaseous emission nebulae via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Being aware of the growing importance of the development of tools for easying the analyses of molecular data from new era observatories, we introduce the computer code shapemol, a plug-in for SHAPE v5.0 with which we intend to fill the so far empty molecular niche. Shapemol enables spatio-kinematic modeling with accurate non-LTE calculations of line excitation and radiative transfer in molecular species. This code has been succesfully tested in the study of the excitation conditions of the molecular envelope of the young planetary nebula NGC 7027 using data from Herschel/HIFI and IRAM 30m. Currently, it allows radiative transfer solving in the 12CO and 13CO J=1-0 to J=17-16 lines. Shapemol, used along SHAPE, allows to easily generate synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations.

  13. Importance and pitfalls of molecular analysis to parasite epidemiology.

    PubMed

    Constantine, Clare C

    2003-08-01

    Molecular tools are increasingly being used to address questions about parasite epidemiology. Parasites represent a diverse group and they might not fit traditional population genetic models. Testing hypotheses depends equally on correct sampling, appropriate tool and/or marker choice, appropriate analysis and careful interpretation. All methods of analysis make assumptions which, if violated, make the results invalid. Some guidelines to avoid common pitfalls are offered here.

  14. Nuances of Morphology in Myelodysplastic Diseases in the Age of Molecular Diagnostics.

    PubMed

    Shaver, Aaron C; Seegmiller, Adam C

    2017-10-01

    Morphologic dysplasia is an important factor in diagnosis of myelodysplastic syndrome (MDS). However, the role of dysplasia is changing as new molecular genetic and genomic technologies take a more prominent place in diagnosis. This review discusses the role of morphology in the diagnosis of MDS and its interactions with cytogenetic and molecular testing. Recent changes in diagnostic criteria have attempted to standardize approaches to morphologic diagnosis of MDS, recognizing significant inter-observer variability in assessment of dysplasia. Definitive correlates between cytogenetic/molecular and morphologic findings have been described in only a small set of cases. However, these genetic and morphologic tools do play a complementary role in the diagnosis of both MDS and other myeloid neoplasms. Diagnosis of MDS requires a multi-factorial approach, utilizing both traditional morphologic as well as newer molecular genetic techniques. Understanding these tools, and the interplay between them, is crucial in the modern diagnosis of myeloid neoplasms.

  15. Molecular Approaches to Thyroid Cancer Diagnosis

    PubMed Central

    Hsiao, Susan J.; Nikiforov, Yuri E.

    2014-01-01

    Thyroid nodules are common, and the accurate diagnosis of cancer or benign disease is important for the effective clinical management of these patients. Molecular markers are a helpful diagnostic tool, particularly for cytologically indeterminate thyroid nodules. In the past few years, significant progress has been made in developing molecular markers for clinical use in fine needle aspiration (FNA) specimens, including gene mutation panels and gene expression classifiers. With the availability of next generation sequencing technology, gene mutation panels can be expanded to interrogate multiple genes simultaneously and to provide yet more accurate diagnostic information. In addition, recently several new molecular markers in thyroid cancer have been identified that offer diagnostic, prognostic, and therapeutic information that could potentially be of value in guiding individualized management of patients with thyroid nodules. PMID:24829266

  16. A practical tool for modeling biospecimen user fees.

    PubMed

    Matzke, Lise; Dee, Simon; Bartlett, John; Damaraju, Sambasivarao; Graham, Kathryn; Johnston, Randal; Mes-Masson, Anne-Marie; Murphy, Leigh; Shepherd, Lois; Schacter, Brent; Watson, Peter H

    2014-08-01

    The question of how best to attribute the unit costs of the annotated biospecimen product that is provided to a research user is a common issue for many biobanks. Some of the factors influencing user fees are capital and operating costs, internal and external demand and market competition, and moral standards that dictate that fees must have an ethical basis. It is therefore important to establish a transparent and accurate costing tool that can be utilized by biobanks and aid them in establishing biospecimen user fees. To address this issue, we built a biospecimen user fee calculator tool, accessible online at www.biobanking.org . The tool was built to allow input of: i) annual operating and capital costs; ii) costs categorized by the major core biobanking operations; iii) specimen products requested by a biobank user; and iv) services provided by the biobank beyond core operations (e.g., histology, tissue micro-array); as well as v) several user defined variables to allow the calculator to be adapted to different biobank operational designs. To establish default values for variables within the calculator, we first surveyed the members of the Canadian Tumour Repository Network (CTRNet) management committee. We then enrolled four different participants from CTRNet biobanks to test the hypothesis that the calculator tool could change approaches to user fees. Participants were first asked to estimate user fee pricing for three hypothetical user scenarios based on their biobanking experience (estimated pricing) and then to calculate fees for the same scenarios using the calculator tool (calculated pricing). Results demonstrated significant variation in estimated pricing that was reduced by calculated pricing, and that higher user fees are consistently derived when using the calculator. We conclude that adoption of this online calculator for user fee determination is an important first step towards harmonization and realistic user fees.

  17. SHAPEMOL: the companion to SHAPE in the molecular era of ALMA and HERSCHEL

    NASA Astrophysics Data System (ADS)

    Santander-García, M.; Bujarrabal, V.; Alcolea, J.

    2013-05-01

    Modern instrumentation in radioastronomy constitutes a valuable tool for studying the Universe: ALMA will reach unprecedented sensitivities and spatial resolution, while Herschel/HIFI has opened a new window (most of the sub-mm and far infrared ranges are only accessible from space) for probing molecular warm gas (˜50-1000 K), complementing ground-based telescopes, which are better suited to study molecular molecular gas with temperatures under ˜100 K. On the other hand, the SHAPE software has emerged in the last few years as the standard tool for determinging the morphology and velocity field of different kinds of gaseous nebulae (mainly planetary nebulae, protoplanetary nebulae and nebulae around massive stars, although it can also be applied to H II regions and molecular clouds) via spatio-kinematical modelling. Standard SHAPE implements radiative transfer solving, but it is only available for atomic species and not for molecules. Being aware of the growing importance of the development of tools for easying the analyses of molecular data from new era observatories, we introduce the computer code shapemol, a plug-in for SHAPE with which we intend to fill the so far empty molecular niche. shapemol enables spatio-kinematic modeling with accurate non-LTE calculations of line excitation and radiative transfer in molecular species. This code has been succesfully tested in the study of the excitation conditions of the molecular envelope of the planetary nebula NGC 7027 using data from Herschel/HIFI and IRAM 30m. Currently, it allows radiative transfer solving in the ^{12}CO and ^{13}CO J=1-0 to J=17-16 lines. shapemol, used along SHAPE, allows to easily generate synthetic maps to test against interferometric observations, as well as synthetic line profiles to match single-dish observations.

  18. Molecular markers in the epidemiology and diagnosis of coccidioidomycosis.

    PubMed

    Duarte-Escalante, Esperanza; Frías-De-León, María Guadalupe; Zúñiga, Gerardo; Martínez-Herrera, Erick; Acosta-Altamirano, Gustavo; Reyes-Montes, María Del Rocío

    2014-01-01

    The prevalence of coccidioidomycosis in endemic areas has been observed to increase daily. To understand the causes of the spread of the disease and design strategies for fungal detection in clinical and environmental samples, scientists have resorted to molecular tools that allow fungal detection in a natural environment, reliable identification in clinical cases and the study of biological characteristics, such as reproductive and genetic structure, demographic history and diversification. We conducted a review of the most important molecular markers in the epidemiology of Coccidioides spp. and the diagnosis of coccidioidomycosis. A literature search was performed for scientific publications concerning the application of molecular tools for the epidemiology and diagnosis of coccidioidomycosis. The use of molecular markers in the epidemiological study and diagnosis of coccidioidomycosis has allowed for the typing of Coccidioides spp. isolates, improved understanding of their mode of reproduction, genetic variation and speciation and resulted in the development specific, rapid and sensitive strategies for detecting the fungus in environmental and clinical samples. Molecular markers have revealed genetic variability in Coccidioides spp. This finding influences changes in the epidemiology of coccidioidomycosis, such as the emergence of more virulent or antifungal resistant genotypes. Furthermore, the molecular markers currently used to identify Coccidioides immitis and Coccidioides posadasii are specific and sensitive. However, they must be validated to determine their application in diagnosis. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  19. The Design of Molecular Hosts, Guests, and Their Complexes.

    ERIC Educational Resources Information Center

    Cram, Donald J.

    1988-01-01

    Describes the origins, definitions, tools, and principles of host-guest chemistry. Gives examples of chiral recognition in complexation, of partial transacylase mimics, of caviplexes, and of a synthetic molecular cell. (Author/RT)

  20. Establishment and Characterization of Novel Human Primary and Metastatic Anaplastic Thyroid Cancer Cell Lines and Their Genomic Evolution Over a Year as a Primagraft

    PubMed Central

    Okamoto, Ryoko; Nagata, Yasunobu; Kanojia, Deepika; Venkatesan, Subhashree; M. T., Anand; Braunstein, Glenn D.; Said, Jonathan W.; Doan, Ngan B.; Ho, Quoc; Akagi, Tadayuki; Gery, Sigal; Liu, Li-zhen; Tan, Kar Tong; Chng, Wee Joo; Yang, Henry; Ogawa, Seishi; Koeffler, H. Phillip

    2015-01-01

    Context: Anaplastic thyroid cancer (ATC) has no effective treatment, resulting in a high rate of mortality. We established cell lines from a primary ATC and its lymph node metastasis, and investigated the molecular factors and genomic changes associated with tumor growth. Objective: The aim of the study was to understand the molecular and genomic changes of highly aggressive ATC and its clonal evolution to develop rational therapies. Design: We established unique cell lines from primary (OGK-P) and metastatic (OGK-M) ATC specimen, as well as primagraft from the metastatic ATC, which was serially xeno-transplanted for more than 1 year in NOD scid gamma mice were established. These cell lines and primagraft were used as tools to examine gene expression, copy number changes, and somatic mutations using RNA array, SNP Chip, and whole exome sequencing. Results: Mice carrying sc (OGK-P and OGK-M) tumors developed splenomegaly and neutrophilia with high expression of cytokines including CSF1, CSF2, CSF3, IL-1β, and IL-6. Levels of HIF-1α and its targeted genes were also elevated in these tumors. The treatment of tumor carrying mice with Bevacizumab effectively decreased tumor growth, macrophage infiltration, and peripheral WBCs. SNP chip analysis showed homozygous deletion of exons 3–22 of the PARD3 gene in the cells. Forced expression of PARD3 decreased cell proliferation, motility, and invasiveness, restores cell-cell contacts and enhanced cell adhesion. Next generation exome sequencing identified the somatic changes present in the primary, metastatic, and primagraft tumors demonstrating evolution of the mutational signature over the year of passage in vivo. Conclusion: To our knowledge, we established the first paired human primary and metastatic ATC cell lines offering unique possibilities for comparative functional investigations in vitro and in vivo. Our exome sequencing also identified novel mutations, as well as clonal evolution in both the metastasis and

  1. DensToolKit: A comprehensive open-source package for analyzing the electron density and its derivative scalar and vector fields

    NASA Astrophysics Data System (ADS)

    Solano-Altamirano, J. M.; Hernández-Pérez, Julio M.

    2015-11-01

    DensToolKit is a suite of cross-platform, optionally parallelized, programs for analyzing the molecular electron density (ρ) and several fields derived from it. Scalar and vector fields, such as the gradient of the electron density (∇ρ), electron localization function (ELF) and its gradient, localized orbital locator (LOL), region of slow electrons (RoSE), reduced density gradient, localized electrons detector (LED), information entropy, molecular electrostatic potential, kinetic energy densities K and G, among others, can be evaluated on zero, one, two, and three dimensional grids. The suite includes a program for searching critical points and bond paths of the electron density, under the framework of Quantum Theory of Atoms in Molecules. DensToolKit also evaluates the momentum space electron density on spatial grids, and the reduced density matrix of order one along lines joining two arbitrary atoms of a molecule. The source code is distributed under the GNU-GPLv3 license, and we release the code with the intent of establishing an open-source collaborative project. The style of DensToolKit's code follows some of the guidelines of an object-oriented program. This allows us to supply the user with a simple manner for easily implement new scalar or vector fields, provided they are derived from any of the fields already implemented in the code. In this paper, we present some of the most salient features of the programs contained in the suite, some examples of how to run them, and the mathematical definitions of the implemented fields along with hints of how we optimized their evaluation. We benchmarked our suite against both a freely-available program and a commercial package. Speed-ups of ˜2×, and up to 12× were obtained using a non-parallel compilation of DensToolKit for the evaluation of fields. DensToolKit takes similar times for finding critical points, compared to a commercial package. Finally, we present some perspectives for the future development and

  2. On simulation of local fluxes in molecular junctions

    NASA Astrophysics Data System (ADS)

    Cabra, Gabriel; Jensen, Anders; Galperin, Michael

    2018-05-01

    We present a pedagogical review of the current density simulation in molecular junction models indicating its advantages and deficiencies in analysis of local junction transport characteristics. In particular, we argue that current density is a universal tool which provides more information than traditionally simulated bond currents, especially when discussing inelastic processes. However, current density simulations are sensitive to the choice of basis and electronic structure method. We note that while discussing the local current conservation in junctions, one has to account for the source term caused by the open character of the system and intra-molecular interactions. Our considerations are illustrated with numerical simulations of a benzenedithiol molecular junction.

  3. Moving Genetic Biomonitoring from a Concept to a Tool

    EPA Science Inventory

    Molecular genetic techniques like DNA barcoding and environmental DNA have been proposed as tools for aquatic biomonitoring for nearly a decade, but have yet to break through into widespread acceptance. The potential benefits of these methods, such as quicker, cheaper, more detai...

  4. Establishment of primary mixed cell cultures from spontaneous canine mammary tumors: Characterization of classic and new cancer-associated molecules

    PubMed Central

    Gentile, Luciana B.; Nagamine, Marcia K.; Biondi, Luiz R.; Sanches, Daniel S.; Toyota, Fábio; Giovani, Tatiane M.; de Jesus, Isis P.; da Fonseca, Ivone I. M.; Queiroz-Hazarbassanov, Nicolle; Diaz, Bruno L.; Salles Gomes, Cristina de O. Massoco

    2017-01-01

    There are many factors which make canine cancer like cancer in humans. The occurrence of spontaneous mammary tumors in pet dogs, tumor genetics, molecular targets and exposure to the same environmental risk factors are among these factors. Therefore, the study of canine cancer can provide useful information to the oncology field. This study aimed to establish and characterize a panel of primary mixed cell cultures obtained from spontaneous canine mammary tumors. Eight established cell cultures obtained from one normal mammary gland, one complex adenoma, one mixed adenoma, two complex carcinomas and two mixed carcinomas were analyzed. The gene expression levels of classic molecular cancer players such as fibroblast growth factor receptor (FGFR) 2, breast cancer (BRCA) 1, BRCA2 and estrogen receptor (ESR) 1 were evaluated. For the first time, three orphan nuclear receptors, estrogen-related receptors (ERRs) α, β and γ were studied in canine mammary cancer. The highest expression level of ERRα was observed in complex carcinoma-derived cell culture, while the highest levels of ERRβ and γ were observed in cells derived from a mixed carcinoma. Meanwhile, complex carcinomas presented the highest levels of expression of ESR1, BRCA1 and FGFR2 among all samples. BRCA2 was found exclusively in complex adenoma. The transcription factor GATA3 had its highest levels in mixed carcinoma samples and its lowest levels in complex adenoma. Proliferation assays were also performed to evaluate the mixed cell cultures response to ER ligands, genistein and DES, both in normoxia and hypoxic conditions. Our results demonstrate that morphological and functional studies of primary mixed cell cultures derived from spontaneous canine mammary tumors are possible and provide valuable tool for the study of various stages of mammary cancer development. PMID:28945747

  5. Mass spectrometric profiling of low-molecular-weight volatile compounds--diagnostic potential and latest applications.

    PubMed

    Lechner, Matthias; Rieder, Josef

    2007-01-01

    The theoretical use of mass spectrometric profiling of low-molecular-weight volatile compounds, as one possible method to non-invasively and rapidly diagnose a variety of diseases, such as cancer, infection, and metabolic disorders has greatly raised the profile of this technique over the last ten years. Despite a number of promising results, this technique has not been introduced into common clinical practice yet. The use of mass spectrometric profiling of exhaled air is particularly hampered by various technical problems and basic methodological issues which have only been partially overcome. However, breath analysis aside, recently published studies reveal completely new ideas and concepts on how to establish fast and reliable diagnosis by using this valuable tool. These studies focussed on the headspace screening of various bodily fluids and sample fluids obtained during diagnostic procedures, as well as microbial cell cultures and demonstrated the vast diagnostic potential of this technique in a wide variety of settings, predominantly in vitro. It is the aim of the present review to discuss the most commonly detected low-molecular-weight volatile compounds and to summarize the current potential applications, latest developments and future perspectives of this promising diagnostic approach.

  6. Data-mining of potential antitubercular activities from molecular ingredients of traditional Chinese medicines.

    PubMed

    Jamal, Salma; Scaria, Vinod

    2014-01-01

    Background. Traditional Chinese medicine encompasses a well established alternate system of medicine based on a broad range of herbal formulations and is practiced extensively in the region for the treatment of a wide variety of diseases. In recent years, several reports describe in depth studies of the molecular ingredients of traditional Chinese medicines on the biological activities including anti-bacterial activities. The availability of a well-curated dataset of molecular ingredients of traditional Chinese medicines and accurate in-silico cheminformatics models for data mining for antitubercular agents and computational filters to prioritize molecules has prompted us to search for potential hits from these datasets. Results. We used a consensus approach to predict molecules with potential antitubercular activities from a large dataset of molecular ingredients of traditional Chinese medicines available in the public domain. We further prioritized 160 molecules based on five computational filters (SMARTSfilter) so as to avoid potentially undesirable molecules. We further examined the molecules for permeability across Mycobacterial cell wall and for potential activities against non-replicating and drug tolerant Mycobacteria. Additional in-depth literature surveys for the reported antitubercular activities of the molecular ingredients and their sources were considered for drawing support to prioritization. Conclusions. Our analysis suggests that datasets of molecular ingredients of traditional Chinese medicines offer a new opportunity to mine for potential biological activities. In this report, we suggest a proof-of-concept methodology to prioritize molecules for further experimental assays using a variety of computational tools. We also additionally suggest that a subset of prioritized molecules could be used for evaluation for tuberculosis due to their additional effect against non-replicating tuberculosis as well as the additional hepato-protection offered by

  7. Data-mining of potential antitubercular activities from molecular ingredients of traditional Chinese medicines

    PubMed Central

    Jamal, Salma

    2014-01-01

    Background. Traditional Chinese medicine encompasses a well established alternate system of medicine based on a broad range of herbal formulations and is practiced extensively in the region for the treatment of a wide variety of diseases. In recent years, several reports describe in depth studies of the molecular ingredients of traditional Chinese medicines on the biological activities including anti-bacterial activities. The availability of a well-curated dataset of molecular ingredients of traditional Chinese medicines and accurate in-silico cheminformatics models for data mining for antitubercular agents and computational filters to prioritize molecules has prompted us to search for potential hits from these datasets. Results. We used a consensus approach to predict molecules with potential antitubercular activities from a large dataset of molecular ingredients of traditional Chinese medicines available in the public domain. We further prioritized 160 molecules based on five computational filters (SMARTSfilter) so as to avoid potentially undesirable molecules. We further examined the molecules for permeability across Mycobacterial cell wall and for potential activities against non-replicating and drug tolerant Mycobacteria. Additional in-depth literature surveys for the reported antitubercular activities of the molecular ingredients and their sources were considered for drawing support to prioritization. Conclusions. Our analysis suggests that datasets of molecular ingredients of traditional Chinese medicines offer a new opportunity to mine for potential biological activities. In this report, we suggest a proof-of-concept methodology to prioritize molecules for further experimental assays using a variety of computational tools. We also additionally suggest that a subset of prioritized molecules could be used for evaluation for tuberculosis due to their additional effect against non-replicating tuberculosis as well as the additional hepato-protection offered by

  8. RFID as a Tool in Cyber Warfare

    DTIC Science & Technology

    2010-11-01

    RTO-MP-IST-091 P4 - 1 RFID as a Tool in Cyber Warfare Mikko Kiviharju P.O.Box 10 FIN-11311 Riihimaki FINLAND mikko.kiviharju@mil.fi...auditing existing systems and planning new establishments. 1 INTRODUCTION Cyber warfare , especially computer network operations (CNO) have a deep...SUBTITLE RFID as a Tool in Cyber Warfare 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK

  9. Application of computer-assisted molecular modeling (CAMM) for immunoassay of low molecular weight food contaminants: A review

    USDA-ARS?s Scientific Manuscript database

    Immunoassay for low molecular weight food contaminants, such as pesticides, veterinary drugs, and mycotoxins is now a well-established technique which meets the demands for a rapid, reliable, and cost-effective analytical method. However, due to limited understanding of the fundamental aspects of i...

  10. Structural analysis, molecular docking and molecular dynamics of an edematogenic lectin from Centrolobium microchaete seeds.

    PubMed

    Neco, Antonio Hadson Bastos; Pinto-Junior, Vanir Reis; Araripe, David Alencar; Santiago, Mayara Queiroz; Osterne, Vinicius Jose Silva; Lossio, Claudia Figueiredo; Nobre, Clareane Avelino Simplicio; Oliveira, Messias Vital; Silva, Mayara Torquato Lima; Martins, Maria Gleiciane Queiroz; Cajazeiras, Joao Batista; Marques, Gabriela Fernandes Oliveira; Costa, Diego Rabelo; Nascimento, Kyria Santiago; Assreuy, Ana Maria Sampaio; Cavada, Benildo Sousa

    2018-05-24

    Lectins represent a class of proteins or glycoproteins capable of reversibly binding to carbohydrates. Seed lectins from the Dalbergieae tribe (Leguminosae) have structural variability, carbohydrate specificity, and biological effects, such as inflammation, vasorelaxation and cancer antigen binding. To comprehensively address these factors, the present work aimed to establish and characterize the three-dimensional structure of Centrolobium microchaete lectin (CML) by homology modeling, investigate protein-carbohydrate interactions and evaluate its inflammatory effect on mice. Molecular docking was performed to analyze interactions of the lectin with monosaccharides, disaccharides and N-glycans. Two dimannosides, methyl mannose-1,3-α-D-mannose (MDM) and mannose-1,3-α-D-mannose (M13), were used in molecular dynamics (MD) simulations to study the behavior of the carbohydrate-recognition domain (CRD) over time. Results showed an expanded domain within which hydrophobic interactions with the methyl group in the MDM molecule were established, thus revealing novel interactions for mannose-specific Dalbergieae lectins. To examine its biological activities, CML was purified in a single step by affinity chromatography on Sepharose-mannose matrix. The lectin demonstrated inflammatory response in the paw edema model and stimulated leukocyte migration to the animal peritoneal cavities, an effect elicited by CRD. For the first time, this work reports the molecular dynamics of a lectin from the Dalbergieae tribe. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Verification Tools Secure Online Shopping, Banking

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Just like rover or rocket technology sent into space, the software that controls these technologies must be extensively tested to ensure reliability and effectiveness. Ames Research Center invented the open-source Java Pathfinder (JPF) toolset for the deep testing of Java-based programs. Fujitsu Labs of America Inc., based in Sunnyvale, California, improved the capabilities of the JPF Symbolic Pathfinder tool, establishing the tool as a means of thoroughly testing the functionality and security of Web-based Java applications such as those used for Internet shopping and banking.

  12. In Silico PCR Tools for a Fast Primer, Probe, and Advanced Searching.

    PubMed

    Kalendar, Ruslan; Muterko, Alexandr; Shamekova, Malika; Zhambakin, Kabyl

    2017-01-01

    The polymerase chain reaction (PCR) is fundamental to molecular biology and is the most important practical molecular technique for the research laboratory. The principle of this technique has been further used and applied in plenty of other simple or complex nucleic acid amplification technologies (NAAT). In parallel to laboratory "wet bench" experiments for nucleic acid amplification technologies, in silico or virtual (bioinformatics) approaches have been developed, among which in silico PCR analysis. In silico NAAT analysis is a useful and efficient complementary method to ensure the specificity of primers or probes for an extensive range of PCR applications from homology gene discovery, molecular diagnosis, DNA fingerprinting, and repeat searching. Predicting sensitivity and specificity of primers and probes requires a search to determine whether they match a database with an optimal number of mismatches, similarity, and stability. In the development of in silico bioinformatics tools for nucleic acid amplification technologies, the prospects for the development of new NAAT or similar approaches should be taken into account, including forward-looking and comprehensive analysis that is not limited to only one PCR technique variant. The software FastPCR and the online Java web tool are integrated tools for in silico PCR of linear and circular DNA, multiple primer or probe searches in large or small databases and for advanced search. These tools are suitable for processing of batch files that are essential for automation when working with large amounts of data. The FastPCR software is available for download at http://primerdigital.com/fastpcr.html and the online Java version at http://primerdigital.com/tools/pcr.html .

  13. Molecular gastronomy, a scientific look at cooking.

    PubMed

    This, Hervé

    2009-05-19

    Food preparation is such a routine activity that we often do not question the process. For example, why do we cook as we do? Why do we eat certain foods and avoid other perfectly edible ingredients? To help answer these questions, it is extremely important to study the chemical changes that food undergoes during preparation; even simply cutting a vegetable can lead to enzymatic reactions. For many years, these molecular transformations were neglected by the food science field. In 1988, the scientific discipline called "molecular gastronomy" was created, and the field is now developing in many countries. Its many applications fall into two categories. First, there are technology applications for restaurants, for homes, or even for the food industry. In particular, molecular gastronomy has led to "molecular cooking", a way of food preparation that uses "new" tools, ingredients, and methods. According to a British culinary magazine, the three "top chefs" of the world employ elements of molecular cooking. Second, there are educational applications of molecular gastronomy: new insights into the culinary processes have led to new culinary curricula for chefs in many countries such as France, Canada, Italy, and Finland, as well as educational programs in schools. In this Account, we focus on science, explain why molecular gastronomy had to be created, and consider its tools, concepts, and results. Within the field, conceptual tools have been developed in order to make the necessary studies. The emphasis is on two important parts of recipes: culinary definitions (describing the objective of recipes) and culinary "precisions" (information that includes old wives' tales, methods, tips, and proverbs, for example). As for any science, the main objective of molecular gastronomy is, of course, the discovery of new phenomena and new mechanisms. This explains why culinary precisions are so important: cooks of the past could see, but not interpret, phenomena that awaited scientific

  14. New concepts for molecular magnets

    NASA Astrophysics Data System (ADS)

    Pilawa, Bernd

    1999-03-01

    Miller and Epstein (1994) define molecular magnets as magnetic materials which are prepared by the low-temperature methods of the preparative chemistry. This definition includes molecular crystals of neutral radicals, radical salts and charge transfer complexes as well as metal complexes and polymers with unpaired spins (Dormann 1995). The challenge of molecular magnets consists in tailoring magnetic properties by specific modifications of the molecular units. The combination of magnetism with mechanical or electrical properties of molecular compounds promise materials of high technical interest (Gatteschi 1994a and 1994b, Möhwald 1996) and both the chemical synthesis of new molecular materials with magnetic properties as well as the physical investigation and explanation of these properties is important, in order to achieve any progress. This work deals with the physical characterization of the magnetic properties of molecular materials. It is organized as follows. In the first part molecular crystals of neutral radicals are studied. After briefly discussing the general magnetic properties of these materials and after an overview over the physical principles of exchange interaction between organic radicals I focus on the interplay between the crystallographic structure and the magnetic properties of various derivatives of the verdazyl and nitronyl nitroxide radicals. The magnetic properties of metal complexes are the subject of the second part. After an overview over the experimental and theoretical tools which are used for the investigation of the magnetic properties I shortly discuss the exchange coupling of transition metal ions and the magnetic properties of complexes of two and three metal ions. Special emphasis is given to spin cluster compounds. Spin cluster denote complexes of many magnetic ions. They are attractive as building blocks of molecular magnets as well as magnetic model compounds for the study of spin frustration, molecular super

  15. State Analysis Database Tool

    NASA Technical Reports Server (NTRS)

    Rasmussen, Robert; Bennett, Matthew

    2006-01-01

    The State Analysis Database Tool software establishes a productive environment for collaboration among software and system engineers engaged in the development of complex interacting systems. The tool embodies State Analysis, a model-based system engineering methodology founded on a state-based control architecture (see figure). A state represents a momentary condition of an evolving system, and a model may describe how a state evolves and is affected by other states. The State Analysis methodology is a process for capturing system and software requirements in the form of explicit models and states, and defining goal-based operational plans consistent with the models. Requirements, models, and operational concerns have traditionally been documented in a variety of system engineering artifacts that address different aspects of a mission s lifecycle. In State Analysis, requirements, models, and operations information are State Analysis artifacts that are consistent and stored in a State Analysis Database. The tool includes a back-end database, a multi-platform front-end client, and Web-based administrative functions. The tool is structured to prompt an engineer to follow the State Analysis methodology, to encourage state discovery and model description, and to make software requirements and operations plans consistent with model descriptions.

  16. The European Classical Swine Fever Virus Database: Blueprint for a Pathogen-Specific Sequence Database with Integrated Sequence Analysis Tools

    PubMed Central

    Postel, Alexander; Schmeiser, Stefanie; Zimmermann, Bernd; Becher, Paul

    2016-01-01

    Molecular epidemiology has become an indispensable tool in the diagnosis of diseases and in tracing the infection routes of pathogens. Due to advances in conventional sequencing and the development of high throughput technologies, the field of sequence determination is in the process of being revolutionized. Platforms for sharing sequence information and providing standardized tools for phylogenetic analyses are becoming increasingly important. The database (DB) of the European Union (EU) and World Organisation for Animal Health (OIE) Reference Laboratory for classical swine fever offers one of the world’s largest semi-public virus-specific sequence collections combined with a module for phylogenetic analysis. The classical swine fever (CSF) DB (CSF-DB) became a valuable tool for supporting diagnosis and epidemiological investigations of this highly contagious disease in pigs with high socio-economic impacts worldwide. The DB has been re-designed and now allows for the storage and analysis of traditionally used, well established genomic regions and of larger genomic regions including complete viral genomes. We present an application example for the analysis of highly similar viral sequences obtained in an endemic disease situation and introduce the new geographic “CSF Maps” tool. The concept of this standardized and easy-to-use DB with an integrated genetic typing module is suited to serve as a blueprint for similar platforms for other human or animal viruses. PMID:27827988

  17. Molecular Imaging of Vulnerable Atherosclerotic Plaques in Animal Models

    PubMed Central

    Gargiulo, Sara; Gramanzini, Matteo; Mancini, Marcello

    2016-01-01

    Atherosclerosis is characterized by intimal plaques of the arterial vessels that develop slowly and, in some cases, may undergo spontaneous rupture with subsequent heart attack or stroke. Currently, noninvasive diagnostic tools are inadequate to screen atherosclerotic lesions at high risk of acute complications. Therefore, the attention of the scientific community has been focused on the use of molecular imaging for identifying vulnerable plaques. Genetically engineered murine models such as ApoE−/− and ApoE−/−Fbn1C1039G+/− mice have been shown to be useful for testing new probes targeting biomarkers of relevant molecular processes for the characterization of vulnerable plaques, such as vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, intercellular adhesion molecule (ICAM)-1, P-selectin, and integrins, and for the potential development of translational tools to identify high-risk patients who could benefit from early therapeutic interventions. This review summarizes the main animal models of vulnerable plaques, with an emphasis on genetically altered mice, and the state-of-the-art preclinical molecular imaging strategies. PMID:27618031

  18. Engineered coryneform bacteria as a bio-tool for arsenic remediation.

    PubMed

    Villadangos, Almudena F; Ordóñez, Efrén; Pedre, Brandán; Messens, Joris; Gil, Jose A; Mateos, Luis M

    2014-12-01

    Despite current remediation efforts, arsenic contamination in water sources is still a major health problem, highlighting the need for new approaches. In this work, strains of the nonpathogenic and highly arsenic-resistant bacterium Corynebacterium glutamicum were used as inexpensive tools to accumulate inorganic arsenic, either as arsenate (As(V)) or arsenite (As(III)) species. The assays made use of "resting cells" from these strains, which were assessed under well-established conditions and compared with C. glutamicum background controls. The two mutant As(V)-accumulating strains were those used in a previously published study: (i) ArsC1/C2, in which the gene/s encoding the mycothiol-dependent arsenate reductases is/are disrupted, and (ii) MshA/C mutants unable to produce mycothiol, the low molecular weight thiol essential for arsenate reduction. The As(III)-accumulating strains were either those lacking the arsenite permease activities (Acr3-1 and Acr3-2) needed in As(III) release or recombinant strains overexpressing the aquaglyceroporin genes (glpF) from Corynebacterium diphtheriae or Streptomyces coelicolor, to improve As(III) uptake. Both genetically modified strains accumulated 30-fold more As(V) and 15-fold more As(III) than the controls. The arsenic resistance of the modified strains was inversely proportional to their metal accumulation ability. Our results provide the basis for investigations into the use of these modified C. glutamicum strains as a new bio-tool in arsenic remediation efforts.

  19. Molecular medicine: a path towards a personalized medicine.

    PubMed

    Miranda, Debora Marques de; Mamede, Marcelo; Souza, Bruno Rezende de; Almeida Barros, Alexandre Guimarães de; Magno, Luiz Alexandre; Alvim-Soares, Antônio; Rosa, Daniela Valadão; Castro, Célio José de; Malloy-Diniz, Leandro; Gomez, Marcus Vinícius; Marco, Luiz Armando De; Correa, Humberto; Romano-Silva, Marco Aurélio

    2012-03-01

    Psychiatric disorders are among the most common human illnesses; still, the molecular and cellular mechanisms underlying their complex pathophysiology remain to be fully elucidated. Over the past 10 years, our group has been investigating the molecular abnormalities in major signaling pathways involved in psychiatric disorders. Recent evidences obtained by the Instituto Nacional de Ciência e Tecnologia de Medicina Molecular (National Institute of Science and Technology - Molecular Medicine, INCT-MM) and others using behavioral analysis of animal models provided valuable insights into the underlying molecular alterations responsible for many complex neuropsychiatric disorders, suggesting that "defects" in critical intracellular signaling pathways have an important role in regulating neurodevelopment, as well as in pathophysiology and treatment efficacy. Resources from the INCT have allowed us to start doing research in the field of molecular imaging. Molecular imaging is a research discipline that visualizes, characterizes, and quantifies the biologic processes taking place at cellular and molecular levels in humans and other living systems through the results of image within the reality of the physiological environment. In order to recognize targets, molecular imaging applies specific instruments (e.g., PET) that enable visualization and quantification in space and in real-time of signals from molecular imaging agents. The objective of molecular medicine is to individualize treatment and improve patient care. Thus, molecular imaging is an additional tool to achieve our ultimate goal.

  20. A molecular engineering toolbox for the structural biologist.

    PubMed

    Debelouchina, Galia T; Muir, Tom W

    2017-01-01

    Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease.

  1. The low molecular weight fraction of compounds released from immature wheat pistils supports barley pollen embryogenesis.

    PubMed

    Lippmann, Rico; Friedel, Swetlana; Mock, Hans-Peter; Kumlehn, Jochen

    2015-01-01

    Pollen embryogenesis provides a useful means of generating haploid plants for plant breeding and basic research. Although it is well-established that the efficacy of the process can be enhanced by the provision of immature pistils as a nurse tissue, the origin and compound class of the signal molecule(s) involved is still elusive. Here, a micro-culture system was established to enable the culturing of populations of barley pollen at a density too low to allow unaided embryogenesis to occur, and this was then exploited to assess the effect of using various parts of the pistil as nurse tissue. A five-fold increase in the number of embryogenic calli formed was obtained by simply cutting the pistils in half. The effectiveness of the pistil-conditioned medium was transitory, since it needed replacement at least every 4 days to measurably ensure embryogenic development. The differential effect of various size classes of compounds present in the pistil-conditioned medium showed that the relevant molecule(s) was of molecular weight below 3 kDa. This work narrows down possible feeder molecules to lower molecular weight compounds and showed that the cellular origin of the active compound(s) is not specific to any tested part of the pistil. Furthermore, the increased recovery of calli during treatment with cut pistils may provide a useful tool for plant breeders and researchers using haploid technology in barley and other plant species.

  2. The Use of Proteomic Tools to Address Challenges Faced in Clonal Propagation of Tropical Crops through Somatic Embryogenesis.

    PubMed

    Chin, Chiew Foan; Tan, Hooi Sin

    2018-05-04

    In many tropical countries with agriculture as the mainstay of the economy, tropical crops are commonly cultivated at the plantation scale. The successful establishment of crop plantations depends on the availability of a large quantity of elite seedling plants. Many plantation companies establish plant tissue culture laboratories to supply planting materials for their plantations and one of the most common applications of plant tissue culture is the mass propagation of true-to-type elite seedlings. However, problems encountered in tissue culture technology prevent its applications being widely adopted. Proteomics can be a powerful tool for use in the analysis of cultures, and to understand the biological processes that takes place at the cellular and molecular levels in order to address these problems. This mini review presents the tissue culture technologies commonly used in the propagation of tropical crops. It provides an outline of some the genes and proteins isolated that are associated with somatic embryogenesis and the use of proteomic technology in analysing tissue culture samples and processes in tropical crops.

  3. Induction of peritoneal endometriosis in nude mice with use of human immortalized endometriosis epithelial and stromal cells: a potential experimental tool to study molecular pathogenesis of endometriosis in humans.

    PubMed

    Banu, Sakhila K; Starzinski-Powitz, Anna; Speights, V O; Burghardt, Robert C; Arosh, Joe A

    2009-05-01

    To determine whether a mixed population of immortalized human endometriosis epithelial and stromal cells is able to induce peritoneal endometriosis in nude mice. Prospective experimental study. Human immortalized endometriosis epithelial and stromal cells were xenografted into ovariectomized nude mice. Macroscopically, the number of induced endometriosis-like lesions and their color were determined. Microscopically, histomorphology of endometriosis glands and their structure were analyzed, and comparisons were made with tissue from spontaneous endometriosis in women. College of Veterinary Medicine and Biomedical Sciences, Texas A&M University. Seven ovariectomized nude mice. Minimal invasive procedures were performed to administer estrogen pellets and transplant immortalized human endometriosis epithelial and stromal cells into nude mice. Peritoneal endometriosis-like lesions induced in nude mice were characterized and compared with spontaneous peritoneal endometriosis in women. Xenografts of human immortalized endometriosis epithelial and stromal cells into the peritoneal cavity of the recipient nude mice are able to proliferate, attach, invade, reorganize, and establish peritoneal endometriosis. Endometriosis glands at different stages of growth were present in induced endometriosis-like lesions. Proliferating cell nuclear antigen, metalloproteinase 2, estrogen receptor-alpha, cyclooxygenase-2, and prostaglandin E(2) receptors EP2 and EP4 proteins were expressed in both endometriosis glandular epithelial and stromal cells of the induced endometriosis-like lesions. This xenograft model could be used as a potential experimental tool to understand the molecular and cellular aspects of the pathogenesis of endometriosis in humans.

  4. Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.

    PubMed

    Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A

    2015-10-26

    Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Commercial Molecular Tests for Fungal Diagnosis from a Practical Point of View.

    PubMed

    Lackner, Michaela; Lass-Flörl, Cornelia

    2017-01-01

    The increasing interest in molecular diagnostics is a result of tremendously improved knowledge on fungal infections in the past 20 years and the rapid development of new methods, in particular polymerase chain reaction. High expectations have been placed on molecular diagnostics, and the number of laboratories now using the relevant technology is rapidly increasing-resulting in an obvious need for standardization and definition of laboratory organization. In the past 10 years, multiple new molecular tools were marketed for the detection of DNA, antibodies, cell wall components, or other antigens. In contrast to classical culture methods, molecular methods do not detect a viable organisms, but only molecules which indicate its presence; this can be nucleic acids, cell components (antigens), or antibodies (Fig. 1). In this chapter, an overview is provided on commercially available detection tools, their strength and how to use them. A main focus is laid on providing tips and tricks that make daily life easier. We try to focus and mention methodical details which are not highlighted in the manufacturer's instructions of these test kits, but are based on our personal experience in the laboratory. Important to keep in mind is that molecular tools cannot replace culture, microscopy, or a critical view on patients' clinical history, signs, and symptoms, but provide a valuable add on tool. Diagnosis should not be based solely on a molecular test, but molecular tools might deliver an important piece of information that helps matching the diagnostic puzzle to a diagnosis, in particular as few tests are in vitro diagnostic tests (IVD) or only part of the whole test carries the IVD certificate (e.g., DNA extraction is often not included). Please be aware that the authors do not claim to provide a complete overview on all commercially available diagnostic assays being currently marketed for fungal detection, as those are subject to constant change. A main focus is put on

  6. Establishing Tools for Computing Hybrids

    DTIC Science & Technology

    2006-10-01

    moorelaw.html. September 26. pp. 1-28. 47. Sharma , Vijay . 2004. Is it Possible to Build Computers from Living Cells? BioTeach Journal, 2, 53-60. 48...by Vijay K. Varadan, Proceedings of SPIE Vol. 5389, SPIE, Bellingham, WA. Pp. 298-305. 58. Warren, Paul. 2002. The Future of Computing: New

  7. Developing and using a rubric for evaluating evidence-based medicine point-of-care tools

    PubMed Central

    Foster, Margaret J

    2011-01-01

    Objective: The research sought to establish a rubric for evaluating evidence-based medicine (EBM) point-of-care tools in a health sciences library. Methods: The authors searched the literature for EBM tool evaluations and found that most previous reviews were designed to evaluate the ability of an EBM tool to answer a clinical question. The researchers' goal was to develop and complete rubrics for assessing these tools based on criteria for a general evaluation of tools (reviewing content, search options, quality control, and grading) and criteria for an evaluation of clinical summaries (searching tools for treatments of common diagnoses and evaluating summaries for quality control). Results: Differences between EBM tools' options, content coverage, and usability were minimal. However, the products' methods for locating and grading evidence varied widely in transparency and process. Conclusions: As EBM tools are constantly updating and evolving, evaluation of these tools needs to be conducted frequently. Standards for evaluating EBM tools need to be established, with one method being the use of objective rubrics. In addition, EBM tools need to provide more information about authorship, reviewers, methods for evidence collection, and grading system employed. PMID:21753917

  8. Developing and using a rubric for evaluating evidence-based medicine point-of-care tools.

    PubMed

    Shurtz, Suzanne; Foster, Margaret J

    2011-07-01

    The research sought to establish a rubric for evaluating evidence-based medicine (EBM) point-of-care tools in a health sciences library. The authors searched the literature for EBM tool evaluations and found that most previous reviews were designed to evaluate the ability of an EBM tool to answer a clinical question. The researchers' goal was to develop and complete rubrics for assessing these tools based on criteria for a general evaluation of tools (reviewing content, search options, quality control, and grading) and criteria for an evaluation of clinical summaries (searching tools for treatments of common diagnoses and evaluating summaries for quality control). Differences between EBM tools' options, content coverage, and usability were minimal. However, the products' methods for locating and grading evidence varied widely in transparency and process. As EBM tools are constantly updating and evolving, evaluation of these tools needs to be conducted frequently. Standards for evaluating EBM tools need to be established, with one method being the use of objective rubrics. In addition, EBM tools need to provide more information about authorship, reviewers, methods for evidence collection, and grading system employed.

  9. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers

    PubMed Central

    Steenkeste, Nicolas; Incardona, Sandra; Chy, Sophy; Duval, Linda; Ekala, Marie-Thérèse; Lim, Pharath; Hewitt, Sean; Sochantha, Tho; Socheat, Doung; Rogier, Christophe; Mercereau-Puijalon, Odile; Fandeur, Thierry; Ariey, Frédéric

    2009-01-01

    Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the molecular methods. Dot18S and

  10. Software Tools | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The CPTAC program develops new approaches to elucidate aspects of the molecular complexity of cancer made from large-scale proteogenomic datasets, and advance them toward precision medicine.  Part of the CPTAC mission is to make data and tools available and accessible to the greater research community to accelerate the discovery process.

  11. Calcium-dependent molecular fMRI using a magnetic nanosensor.

    PubMed

    Okada, Satoshi; Bartelle, Benjamin B; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan

    2018-06-01

    Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales 1 . Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue 2 . Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca 2+ ] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.

  12. Molecular mechanisms influencing efficiency of RNA interference in insects.

    PubMed

    Cooper, Anastasia M W; Silver, Kristopher; Jianzhen, Zhang; Park, Yoonseong; Zhu, Kun Yan

    2018-06-21

    RNA interference (RNAi) is an endogenous, sequence-specific gene silencing mechanism elicited by small RNA molecules. RNAi is a powerful reverse genetic tool, and is currently being utilized for managing insects and viruses. Widespread implementation of RNAi-based pest management strategies is currently hindered by inefficient and highly variable results when different insect species, strains, developmental stages, tissues, and genes are targeted. Mechanistic studies have shown that double-stranded ribonucleases (dsRNases), endosomal entrapment, deficient function of the core machinery, and inadequate immune stimulation contribute to limited RNAi efficiency. However, a comprehensive understanding of the molecular mechanisms limiting RNAi efficiency remains elusive. The recent advances in dsRNA stability in physiological tissues, dsRNA internalization into cells, the composition and function of the core RNAi machinery, as well as small-interfering RNA/double-stranded RNA amplification and spreading mechanisms are reviewed to establish a global understanding of the obstacles impeding wider understanding of RNAi mechanisms in insects. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Calcium-dependent molecular fMRI using a magnetic nanosensor

    NASA Astrophysics Data System (ADS)

    Okada, Satoshi; Bartelle, Benjamin B.; Li, Nan; Breton-Provencher, Vincent; Lee, Jiyoung J.; Rodriguez, Elisenda; Melican, James; Sur, Mriganka; Jasanoff, Alan

    2018-06-01

    Calcium ions are ubiquitous signalling molecules in all multicellular organisms, where they mediate diverse aspects of intracellular and extracellular communication over widely varying temporal and spatial scales1. Though techniques to map calcium-related activity at a high resolution by optical means are well established, there is currently no reliable method to measure calcium dynamics over large volumes in intact tissue2. Here, we address this need by introducing a family of magnetic calcium-responsive nanoparticles (MaCaReNas) that can be detected by magnetic resonance imaging (MRI). MaCaReNas respond within seconds to [Ca2+] changes in the 0.1-1.0 mM range, suitable for monitoring extracellular calcium signalling processes in the brain. We show that the probes permit the repeated detection of brain activation in response to diverse stimuli in vivo. MaCaReNas thus provide a tool for calcium-activity mapping in deep tissue and offer a precedent for the development of further nanoparticle-based sensors for dynamic molecular imaging with MRI.

  14. [Clinical applications of molecular imaging methods for patients with ischemic stroke].

    PubMed

    Yamauchi, Hiroshi; Fukuyama, Hidenao

    2007-02-01

    Several molecular imaging methods have been developed to visualize pathophysiology of cerebral ischemia in humans in vivo. PET and SPECT with specific ligands have been mainly used as diagnostic tools for the clinical usage of molecular imaging in patients with ischemic stroke. Recently, cellular MR imaging with specific contrast agents has been developed to visualize targeted cells in human stroke patients. This article reviews the current status in the clinical applications of those molecular imaging methods for patients with ischemic stroke.

  15. Bacterial Chemotaxis: The Early Years of Molecular Studies

    PubMed Central

    Hazelbauer, Gerald L.

    2014-01-01

    This review focuses on the early years of molecular studies of bacterial chemotaxis and motility, beginning in the 1960s with Julius Adler's pioneering work. It describes key observations that established the field and made bacterial chemotaxis a paradigm for the molecular understanding of biological signaling. Consideration of those early years includes aspects of science seldom described in journals: the accidental findings, personal interactions, and scientific culture that often drive scientific progress. PMID:22994495

  16. Beyond a pedagogical tool: 30 years of Molecular biology of the cell.

    PubMed

    Serpente, Norberto

    2013-02-01

    In 1983, a bulky and profusely illustrated textbook on molecular and cell biology began to inhabit the shelves of university libraries worldwide. The effect of capturing the eyes and souls of biologists was immediate as the book provided them with a new and invigorating outlook on what cells are and what they do.

  17. Using molecular tools to identify the geographical origin of a case of human brucellosis.

    PubMed

    Muchowski, J K; Koylass, M S; Dainty, A C; Stack, J A; Perrett, L; Whatmore, A M; Perrier, C; Chircop, S; Demicoli, N; Gatt, A B; Caruana, P A; Gopaul, K K

    2015-10-01

    Although Malta is historically linked with the zoonosis brucellosis, there had not been a case of the disease in either the human or livestock population for several years. However, in July 2013 a case of human brucellosis was identified on the island. To determine whether this recent case originated in Malta, four isolates from this case were subjected to molecular analysis. Molecular profiles generated using multilocus sequence analysis and multilocus variable number tandem repeat for the recent human case isolates and 11 Brucella melitensis strains of known Maltese origin were compared with others held on in-house and global databases. While the 11 isolates of Maltese origin formed a distinct cluster, the recent human isolation was not associated with these strains but instead clustered with isolates originating from the Horn of Africa. These data was congruent with epidemiological trace-back showed that the individual had travelled to Malta from Eritrea. This work highlights the potential of using molecular typing data to aid in epidemiological trace-back of Brucella isolations and assist in monitoring of the effectiveness of brucellosis control schemes.

  18. Developments in the CCP4 molecular-graphics project.

    PubMed

    Potterton, Liz; McNicholas, Stuart; Krissinel, Eugene; Gruber, Jan; Cowtan, Kevin; Emsley, Paul; Murshudov, Garib N; Cohen, Serge; Perrakis, Anastassis; Noble, Martin

    2004-12-01

    Progress towards structure determination that is both high-throughput and high-value is dependent on the development of integrated and automatic tools for electron-density map interpretation and for the analysis of the resulting atomic models. Advances in map-interpretation algorithms are extending the resolution regime in which fully automatic tools can work reliably, but at present human intervention is required to interpret poor regions of macromolecular electron density, particularly where crystallographic data is only available to modest resolution [for example, I/sigma(I) < 2.0 for minimum resolution 2.5 A]. In such cases, a set of manual and semi-manual model-building molecular-graphics tools is needed. At the same time, converting the knowledge encapsulated in a molecular structure into understanding is dependent upon visualization tools, which must be able to communicate that understanding to others by means of both static and dynamic representations. CCP4 mg is a program designed to meet these needs in a way that is closely integrated with the ongoing development of CCP4 as a program suite suitable for both low- and high-intervention computational structural biology. As well as providing a carefully designed user interface to advanced algorithms of model building and analysis, CCP4 mg is intended to present a graphical toolkit to developers of novel algorithms in these fields.

  19. Molecular design of new aggrecanases-2 inhibitors.

    PubMed

    Shan, Zhi Jie; Zhai, Hong Lin; Huang, Xiao Yan; Li, Li Na; Zhang, Xiao Yun

    2013-10-01

    Aggrecanases-2 is a very important potential drug target for the treatment of osteoarthritis. In this study, a series of known aggrecanases-2 inhibitors was analyzed by the technologies of three-dimensional quantitative structure-activity relationships (3D-QSAR) and molecular docking. Two 3D-QSAR models, which based on comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) methods, were established. Molecular docking was employed to explore the details of the interaction between inhibitors and aggrecanases-2 protein. According to the analyses for these models, several new potential inhibitors with higher activity predicted were designed, and were supported by the simulation of molecular docking. This work propose the fast and effective approach to design and prediction for new potential inhibitors, and the study of the interaction mechanism provide a better understanding for the inhibitors binding into the target protein, which will be useful for the structure-based drug design and modifications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Dipolar filtered magic-sandwich-echoes as a tool for probing molecular motions using time domain NMR

    NASA Astrophysics Data System (ADS)

    Filgueiras, Jefferson G.; da Silva, Uilson B.; Paro, Giovanni; d'Eurydice, Marcel N.; Cobo, Márcio F.; deAzevedo, Eduardo R.

    2017-12-01

    We present a simple 1 H NMR approach for characterizing intermediate to fast regime molecular motions using 1 H time-domain NMR at low magnetic field. The method is based on a Goldmann Shen dipolar filter (DF) followed by a Mixed Magic Sandwich Echo (MSE). The dipolar filter suppresses the signals arising from molecular segments presenting sub kHz mobility, so only signals from mobile segments are detected. Thus, the temperature dependence of the signal intensities directly evidences the onset of molecular motions with rates higher than kHz. The DF-MSE signal intensity is described by an analytical function based on the Anderson Weiss theory, from where parameters related to the molecular motion (e.g. correlation times and activation energy) can be estimated when performing experiments as function of the temperature. Furthermore, we propose the use of the Tikhonov regularization for estimating the width of the distribution of correlation times.

  1. Building ProteomeTools based on a complete synthetic human proteome

    PubMed Central

    Zolg, Daniel P.; Wilhelm, Mathias; Schnatbaum, Karsten; Zerweck, Johannes; Knaute, Tobias; Delanghe, Bernard; Bailey, Derek J.; Gessulat, Siegfried; Ehrlich, Hans-Christian; Weininger, Maximilian; Yu, Peng; Schlegl, Judith; Kramer, Karl; Schmidt, Tobias; Kusebauch, Ulrike; Deutsch, Eric W.; Aebersold, Ruedi; Moritz, Robert L.; Wenschuh, Holger; Moehring, Thomas; Aiche, Stephan; Huhmer, Andreas; Reimer, Ulf; Kuster, Bernhard

    2018-01-01

    The ProteomeTools project builds molecular and digital tools from the human proteome to facilitate biomedical and life science research. Here, we report the generation and multimodal LC-MS/MS analysis of >330,000 synthetic tryptic peptides representing essentially all canonical human gene products and exemplify the utility of this data. The resource will be extended to >1 million peptides and all data will be shared with the community via ProteomicsDB and proteomeXchange. PMID:28135259

  2. Molecular Detection of 10 of the Most Unwanted Alien Forest Pathogens in Canada Using Real-Time PCR

    PubMed Central

    Lamarche, Josyanne; Potvin, Amélie; Pelletier, Gervais; Stewart, Don; Feau, Nicolas; Alayon, Dario I. O.; Dale, Angela L.; Coelho, Aaron; Uzunovic, Adnan; Bilodeau, Guillaume J.; Brière, Stephan C.; Hamelin, Richard C.; Tanguay, Philippe

    2015-01-01

    Invasive alien tree pathogens can cause significant economic losses as well as large-scale damage to natural ecosystems. Early detection to prevent their establishment and spread is an important approach used by several national plant protection organizations (NPPOs). Molecular detection tools targeting 10 of the most unwanted alien forest pathogens in Canada were developed as part of the TAIGA project (http://taigaforesthealth.com/). Forest pathogens were selected following an independent prioritization. Specific TaqMan real-time PCR detection assays were designed to function under homogeneous conditions so that they may be used in 96- or 384-well plate format arrays for high-throughput testing of large numbers of samples against multiple targets. Assays were validated for 1) specificity, 2) sensitivity, 3) precision, and 4) robustness on environmental samples. All assays were highly specific when evaluated against a panel of pure cultures of target and phylogenetically closely-related species. Sensitivity, evaluated by assessing the limit of detection (with a threshold of 95% of positive samples), was found to be between one and ten target gene region copies. Precision or repeatability of each assay revealed a mean coefficient of variation of 3.4%. All assays successfully allowed detection of target pathogen on positive environmental samples, without any non-specific amplification. These molecular detection tools will allow for rapid and reliable detection of 10 of the most unwanted alien forest pathogens in Canada. PMID:26274489

  3. Uncovering the molecular networks in periodontitis

    PubMed Central

    Trindade, Fábio; Oppenheim, Frank G.; Helmerhorst, Eva J.; Amado, Francisco; Gomes, Pedro S.; Vitorino, Rui

    2015-01-01

    Periodontitis is a complex immune-inflammatory disease that results from a preestablished infection in gingiva, mainly due to Gram-negative bacteria that colonize deeper in gingival sulcus and latter periodontal pocket. Host inflammatory and immune responses have both protective and destructive roles. Although cytokines, prostaglandins, and proteases struggle against microbial burden, these molecules promote connective tissue loss and alveolar bone resorption, leading to several histopathological changes, namely destruction of periodontal ligament, deepening of periodontal pocket, and bone loss, which can converge to attain tooth loss. Despite the efforts of genomics, transcriptomics, proteomics/peptidomics, and metabolomics, there is no available biomarker for periodontitis diagnosis, prognosis, and treatment evaluation, which could assist on the established clinical evaluation. Nevertheless, some genes, transcripts, proteins and metabolites have already shown a different expression in healthy subjects and in patients. Though, so far, ‘omics approaches only disclosed the host inflammatory response as a consequence of microbial invasion in periodontitis and the diagnosis in periodontitis still relies on clinical parameters, thus a molecular tool for assessing periodontitis lacks in current dental medicine paradigm. Saliva and gingival crevicular fluid have been attracting researchers due to their diagnostic potential, ease, and noninvasive nature of collection. Each one of these fluids has some advantages and disadvantages that are discussed in this review. PMID:24828325

  4. Incorporating Molecular and Cellular Biology into a Chemical Engineering Degree Program

    ERIC Educational Resources Information Center

    O'Connor, Kim C.

    2005-01-01

    There is a growing need for a workforce that can apply engineering principles to molecular based discovery and product development in the biological sciences. To this end, Tulane University established a degree program that incorporates molecular and cellular biology into the chemical engineering curriculum. In celebration of the tenth anniversary…

  5. Molecular Screening Tools to Study Arabidopsis Transcription Factors

    PubMed Central

    Wehner, Nora; Weiste, Christoph; Dröge-Laser, Wolfgang

    2011-01-01

    In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs), which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF open reading frame (ORF) collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publically available GATEWAY®-compatible ORF collections. (1) The Arabidopsis thaliana TF ORF over-Expression (AtTORF-Ex) library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2) A high-throughput microtiter plate based protoplast trans activation (PTA) system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta. PMID:22645547

  6. Molecular hyperfine fields in organic magnetoresistance devices

    NASA Astrophysics Data System (ADS)

    Giro, Ronaldo; Rosselli, Flávia P.; dos Santos Carvalho, Rafael; Capaz, Rodrigo B.; Cremona, Marco; Achete, Carlos A.

    2013-03-01

    We calculate molecular hyperfine fields in organic magnetoresistance (OMAR) devices using ab initio calculations. To do so, we establish a protocol for the accurate determination of the average hyperfine field Bhf and apply it to selected molecular ions: NPB, TPD, and Alq3. Then, we make devices with precisely the same molecules and perform measurements of the OMAR effect, in order to address the role of hole-transport layer in the characteristic magnetic field B0 of OMAR. Contrary to common belief, we find that molecular hyperfine fields are not only caused by hydrogen nuclei. We also find that dipolar contributions to the hyperfine fields can be comparable to the Fermi contact contributions. However, such contributions are restricted to nuclei located in the same molecular ion as the charge carrier (intramolecular), as extramolecular contributions are negligible.

  7. Establishment and Characterization of a New Muscle Cell Line of Zebrafish (Danio rerio) as an In Vitro Model for Gene Expression Studies.

    PubMed

    Kumar, Amit; Singh, Neha; Goswami, Mukunda; Srivastava, J K; Mishra, Akhilesh K; Lakra, W S

    2016-01-01

    A new continuous fibroblast cell line was established from the muscle tissue of healthy juvenile Danio rerio (Zebrafish) through explant method. Fish cell lines serve as useful tool for investigating basic fish biology, as a model for bioassay of environmental toxicant, toxicity ranking, and for developing molecular biomarkers. The cell line was continuously subcultured for a period of 12 months (61 passages) and maintained at 28 °C in L-15 medium supplemented with 10% FBS and 10 ng/mL of basic fibroblastic growth factor (bFGF) without use of antibiotics. Its growth rate was proportional to the FBS concentration, with optimum growth at 15% FBS. DNA barcoding (16SrRNA and COX1) was used to authenticate the cell line. Cells were incubated with propidium iodide and sorted via flow cytometry to calculate the DNA content to confirm the genetic stability. Significant green fluorescent protein (GFP) signals confirmed the utility of cell line in transgenic and genetic manipulation studies. In vitro assay was performed with MTT to examine the growth potential of the cell line. The muscle cell line would provide a novel invaluable in vitro model to identify important genes to understand regulatory mechanisms that govern the molecular regulation of myogenesis and should be useful in biomedical research.

  8. Knowledge Mapping: A Multipurpose Task Analysis Tool.

    ERIC Educational Resources Information Center

    Esque, Timm J.

    1988-01-01

    Describes knowledge mapping, a tool developed to increase the objectivity and accuracy of task difficulty ratings for job design. Application in a semiconductor manufacturing environment is discussed, including identifying prerequisite knowledge for a given task; establishing training development priorities; defining knowledge levels; identifying…

  9. The Jukes-Cantor Model of Molecular Evolution

    ERIC Educational Resources Information Center

    Erickson, Keith

    2010-01-01

    The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…

  10. Molecular environmental geochemistry

    NASA Astrophysics Data System (ADS)

    O'Day, Peggy A.

    1999-05-01

    The chemistry, mobility, and bioavailability of contaminant species in the natural environment are controlled by reactions that occur in and among solid, aqueous, and gas phases. These reactions are varied and complex, involving changes in chemical form and mass transfer among inorganic, organic, and biochemical species. The field of molecular environmental geochemistry seeks to apply spectroscopic and microscopic probes to the mechanistic understanding of environmentally relevant chemical processes, particularly those involving contaminants and Earth materials. In general, empirical geochemical models have been shown to lack uniqueness and adequate predictive capability, even in relatively simple systems. Molecular geochemical tools, when coupled with macroscopic measurements, can provide the level of chemical detail required for the credible extrapolation of contaminant reactivity and bioavailability over ranges of temperature, pressure, and composition. This review focuses on recent advances in the understanding of molecular chemistry and reaction mechanisms at mineral surfaces and mineral-fluid interfaces spurred by the application of new spectroscopies and microscopies. These methods, such as synchrotron X-ray absorption and scattering techniques, vibrational and resonance spectroscopies, and scanning probe microscopies, provide direct chemical information that can elucidate molecular mechanisms, including element speciation, ligand coordination and oxidation state, structural arrangement and crystallinity on different scales, and physical morphology and topography of surfaces. Nonvacuum techniques that allow examination of reactions in situ (i.e., with water or fluids present) and in real time provide direct links between molecular structure and reactivity and measurements of kinetic rates or thermodynamic properties. Applications of these diverse probes to laboratory model systems have provided fundamental insight into inorganic and organic reactions at

  11. Development of a biomimetic enzyme-linked immunosorbent assay based on molecularly imprinted polymers on paper for the detection of carbaryl.

    PubMed

    Zhang, Can; Cui, Hanyu; Han, Yufeng; Yu, Fangfang; Shi, Xiaoman

    2018-02-01

    A biomimetic enzyme-linked immunosorbent assay (BELISA) which was based on molecularly imprinted polymers on paper (MIPs-paper) with specific recognition was developed. As a detector, the surface of paper was modified with γ-MAPS by hydrolytic action and anchored the MIP layer on γ-MAPS modified-paper by copolymerization to construct the artificial antibody Through a series of experimentation and verification, we successful got the MIPs-paper and established BELISA for the detection of carbaryl. The development of MIPs-paper based on BELISA was applied to detect carbaryl in real samples and validated by an enzyme-linked immunosorbent assay (ELISA) based on anti-carbaryl biological antibody. The results of these two methods (BELISA and ELISA) were well correlated (R 2 =0.944). The established method of MIPs-paper BELISA exhibits the advantages of low cost, higher stability and being re-generable, which can be applied as a convenient tool for the fast and efficient detection of carbaryl. Copyright © 2017. Published by Elsevier Ltd.

  12. Global Molecular Epidemiology of Cryptococcus neoformans and Cryptococcus gattii: An Atlas of the Molecular Types

    PubMed Central

    Cogliati, Massimo

    2013-01-01

    Cryptococcosis is a fungal disease affecting more than one million people per year worldwide. The main etiological agents of cryptococcosis are the two sibling species Cryptococcus neoformans and Cryptococcus gattii that present numerous differences in geographical distribution, ecological niches, epidemiology, pathobiology, clinical presentation and molecular characters. Genotyping of the two Cryptococcus species at subspecies level supplies relevant information to understand how this fungus has spread worldwide, the nature of its population structure, and how it evolved to be a deadly pathogen. At present, nine major molecular types have been recognized: VNI, VNII, VNB, VNIII, and VNIV among C. neoformans isolates, and VGI, VGII, VGIII, and VGIV among C. gattii isolates. In this paper all the information available in the literature concerning the isolation of the two Cryptococcus species has been collected and analyzed on the basis of their geographical origin, source of isolation, level of identification, species, and molecular type. A detailed analysis of the geographical distribution of the major molecular types in each continent has been described and represented on thematic maps. This study represents a useful tool to start new epidemiological surveys on the basis of the present knowledge. PMID:24278784

  13. Nonadiabatic molecular dynamics simulations: synergies between theory and experiments.

    PubMed

    Tavernelli, Ivano

    2015-03-17

    Recent developments in nonadiabatic dynamics enabled ab inito simulations of complex ultrafast processes in the condensed phase. These advances have opened new avenues in the study of many photophysical and photochemical reactions triggered by the absorption of electromagnetic radiation. In particular, theoretical investigations can be combined with the most sophisticated femtosecond experimental techniques to guide the interpretation of measured time-resolved observables. At the same time, the availability of experimental data at high (spatial and time) resolution offers a unique opportunity for the benchmarking and the improvement of those theoretical models used to describe complex molecular systems in their natural environment. The established synergy between theory and experiments can produce a better understanding of new ultrafast physical and chemical processes at atomistic scale resolution. Furthermore, reliable ab inito molecular dynamics simulations can already be successfully employed as predictive tools to guide new experiments as well as the design of novel and better performing materials. In this paper, I will give a concise account on the state of the art of molecular dynamics simulations of complex molecular systems in their excited states. The principal aim of this approach is the description of a given system of interest under the most realistic ambient conditions including all environmental effects that influence experiments, for instance, the interaction with the solvent and with external time-dependent electric fields, temperature, and pressure. To this end, time-dependent density functional theory (TDDFT) is among the most efficient and accurate methods for the representation of the electronic dynamics, while trajectory surface hopping gives a valuable representation of the nuclear quantum dynamics in the excited states (including nonadiabatic effects). Concerning the environment and its effects on the dynamics, the quantum mechanics/molecular

  14. Diversity in parasitic helminths of Australasian marsupials and monotremes: a molecular perspective.

    PubMed

    Beveridge, Ian; Gasser, Robin B

    2014-10-15

    Marsupials and monotremes are a prominent part of the mammalian fauna in Australia, and harbour an extremely diverse and highly distinctive array of helminth parasites. Their study has been relatively neglected, likely because they have no direct, adverse socioeconomic impact. As the body plans of helminths generally are very simple and morphological characterisation likely underestimates true diversity, molecular tools have been employed to assess genetic diversity. Using biochemical and/or molecular methods, recent studies show extensive diversity in helminths of marsupials, with cryptic species being commonly encountered. The purpose of this article is to review current knowledge about the diversity of parasitic helminths of marsupials and monotremes, to raise questions as to whether current molecular data can be used to estimate diversity, what mechanisms lead to such diversity, to critically appraise the molecular tools that have been employed thus far to explore diversity and to discuss the directions which might be taken in the future employing improved techniques. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  15. SpectraPlot.com: Integrated spectroscopic modeling of atomic and molecular gases

    NASA Astrophysics Data System (ADS)

    Goldenstein, Christopher S.; Miller, Victor A.; Mitchell Spearrin, R.; Strand, Christopher L.

    2017-10-01

    SpectraPlot is a web-based application for simulating spectra of atomic and molecular gases. At the time this manuscript was written, SpectraPlot consisted of four primary tools for calculating: (1) atomic and molecular absorption spectra, (2) atomic and molecular emission spectra, (3) transition linestrengths, and (4) blackbody emission spectra. These tools currently employ the NIST ASD, HITRAN2012, and HITEMP2010 databases to perform line-by-line simulations of spectra. SpectraPlot employs a modular, integrated architecture, enabling multiple simulations across multiple databases and/or thermodynamic conditions to be visualized in an interactive plot window. The primary objective of this paper is to describe the architecture and spectroscopic models employed by SpectraPlot in order to provide its users with the knowledge required to understand the capabilities and limitations of simulations performed using SpectraPlot. Further, this manuscript discusses the accuracy of several underlying approximations used to decrease computational time, in particular, the use of far-wing cutoff criteria.

  16. Molecular Rift: Virtual Reality for Drug Designers.

    PubMed

    Norrby, Magnus; Grebner, Christoph; Eriksson, Joakim; Boström, Jonas

    2015-11-23

    Recent advances in interaction design have created new ways to use computers. One example is the ability to create enhanced 3D environments that simulate physical presence in the real world--a virtual reality. This is relevant to drug discovery since molecular models are frequently used to obtain deeper understandings of, say, ligand-protein complexes. We have developed a tool (Molecular Rift), which creates a virtual reality environment steered with hand movements. Oculus Rift, a head-mounted display, is used to create the virtual settings. The program is controlled by gesture-recognition, using the gaming sensor MS Kinect v2, eliminating the need for standard input devices. The Open Babel toolkit was integrated to provide access to powerful cheminformatics functions. Molecular Rift was developed with a focus on usability, including iterative test-group evaluations. We conclude with reflections on virtual reality's future capabilities in chemistry and education. Molecular Rift is open source and can be downloaded from GitHub.

  17. Biology Needs Evolutionary Software Tools: Let’s Build Them Right

    PubMed Central

    Team, Galaxy; Goecks, Jeremy; Taylor, James

    2018-01-01

    Abstract Research in population genetics and evolutionary biology has always provided a computational backbone for life sciences as a whole. Today evolutionary and population biology reasoning are essential for interpretation of large complex datasets that are characteristic of all domains of today’s life sciences ranging from cancer biology to microbial ecology. This situation makes algorithms and software tools developed by our community more important than ever before. This means that we, developers of software tool for molecular evolutionary analyses, now have a shared responsibility to make these tools accessible using modern technological developments as well as provide adequate documentation and training. PMID:29688462

  18. Molecular inversion probe assay.

    PubMed

    Absalan, Farnaz; Ronaghi, Mostafa

    2007-01-01

    We have described molecular inversion probe technologies for large-scale genetic analyses. This technique provides a comprehensive and powerful tool for the analysis of genetic variation and enables affordable, large-scale studies that will help uncover the genetic basis of complex disease and explain the individual variation in response to therapeutics. Major applications of the molecular inversion probes (MIP) technologies include targeted genotyping from focused regions to whole-genome studies, and allele quantification of genomic rearrangements. The MIP technology (used in the HapMap project) provides an efficient, scalable, and affordable way to score polymorphisms in case/control populations for genetic studies. The MIP technology provides the highest commercially available multiplexing levels and assay conversion rates for targeted genotyping. This enables more informative, genome-wide studies with either the functional (direct detection) approach or the indirect detection approach.

  19. FORT Molecular Ecology Laboratory

    USGS Publications Warehouse

    Oyler-McCance, Sara J.; Stevens, P.D.

    2011-01-01

    The mission of the U.S. Geological Survey (USGS) at the Fort Collins Science Center Molecular Ecology Laboratory is to use the tools and concepts of molecular genetics to address a variety of complex management questions and conservation issues facing the management of the Nation's fish and wildlife resources. Together with our partners, we design and implement studies to document genetic diversity and the distribution of genetic variation among individuals, populations, and species. Information from these studies is used to support wildlife-management planning and conservation actions. Current and past studies have provided information to assess taxonomic boundaries, inform listing decisions made under the Endangered Species Act, identify unique or genetically depauperate populations, estimate population size or survival rates, develop management or recovery plans, breed wildlife in captivity, relocate wildlife from one location to another, and assess the effects of environmental change.

  20. Preface: Special Topic on Frontiers in Molecular Scale Electronics

    NASA Astrophysics Data System (ADS)

    Evers, Ferdinand; Venkataraman, Latha

    2017-03-01

    The electronic, mechanical, and thermoelectric properties of molecular scale devices have fascinated scientists across several disciplines in natural sciences and engineering. The interest is partially technological, driven by the fast miniaturization of integrated circuits that now have reached characteristic features at the nanometer scale. Equally important, a very strong incentive also exists to elucidate the fundamental aspects of structure-function relations for nanoscale devices, which utilize molecular building blocks as functional units. Thus motivated, a rich research field has established itself, broadly termed "Molecular Electronics," that hosts a plethora of activities devoted to this goal in chemistry, physics, and electrical engineering. This Special Topic on Frontiers of Molecular Scale Electronics captures recent theoretical and experimental advances in the field.

  1. Molecular classification of gastric cancer.

    PubMed

    Chia, N-Y; Tan, P

    2016-05-01

    Gastric cancer (GC), a heterogeneous disease characterized by epidemiologic and histopathologic differences across countries, is a leading cause of cancer-related death. Treatment of GC patients is currently suboptimal due to patients being commonly treated in a uniform fashion irrespective of disease subtype. With the advent of next-generation sequencing and other genomic technologies, GCs are now being investigated in great detail at the molecular level. High-throughput technologies now allow a comprehensive study of genomic and epigenomic alterations associated with GC. Gene mutations, chromosomal aberrations, differential gene expression and epigenetic alterations are some of the genetic/epigenetic influences on GC pathogenesis. In addition, integrative analyses of molecular profiling data have led to the identification of key dysregulated pathways and importantly, the establishment of GC molecular classifiers. Recently, The Cancer Genome Atlas (TCGA) network proposed a four subtype classification scheme for GC based on the underlying tumor molecular biology of each subtype. This landmark study, together with other studies, has expanded our understanding on the characteristics of GC at the molecular level. Such knowledge may improve the medical management of GC in the future. © The Author 2016. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  2. Molecular diagnostics for human leptospirosis.

    PubMed

    Waggoner, Jesse J; Pinsky, Benjamin A

    2016-10-01

    The definitive diagnosis of leptospirosis, which results from infection with spirochetes of the genus Leptospira, currently relies on the use of culture, serological testing (microscopic agglutination testing), and molecular detection. The purpose of this review is to describe new molecular diagnostics for Leptospira and discuss advancements in the use of available methods. Efforts have been focused on improving the clinical sensitivity of Leptospira detection using molecular methods. In this review, we describe a reoptimized pathogenic species-specific real-time PCR (targeting lipL32) that has demonstrated improved sensitivity, findings by two groups that real-time reverse-transcription PCR assays targeting the 16S rrs gene can improve detection, and two new loop-mediated amplification techniques. Quantitation of leptospiremia, detection in different specimen types, and the complementary roles played by molecular detection and microscopic agglutination testing will be discussed. Finally, a protocol for Leptospira strain subtyping using variable number tandem repeat targets and high-resolution melting will be described. Molecular diagnostics have an established role for the diagnosis of leptospirosis and provide an actionable diagnosis in the acute setting. The use of real-time reverse-transcription PCR for testing serum/plasma and cerebrospinal fluid, when available, may improve the detection of Leptospira without decreasing clinical specificity.

  3. "Plasmo2D": an ancillary proteomic tool to aid identification of proteins from Plasmodium falciparum.

    PubMed

    Khachane, Amit; Kumar, Ranjit; Jain, Sanyam; Jain, Samta; Banumathy, Gowrishankar; Singh, Varsha; Nagpal, Saurabh; Tatu, Utpal

    2005-01-01

    Bioinformatics tools to aid gene and protein sequence analysis have become an integral part of biology in the post-genomic era. Release of the Plasmodium falciparum genome sequence has allowed biologists to define the gene and the predicted protein content as well as their sequences in the parasite. Using pI and molecular weight as characteristics unique to each protein, we have developed a bioinformatics tool to aid identification of proteins from Plasmodium falciparum. The tool makes use of a Virtual 2-DE generated by plotting all of the proteins from the Plasmodium database on a pI versus molecular weight scale. Proteins are identified by comparing the position of migration of desired protein spots from an experimental 2-DE and that on a virtual 2-DE. The procedure has been automated in the form of user-friendly software called "Plasmo2D". The tool can be downloaded from http://144.16.89.25/Plasmo2D.zip.

  4. Simrank: Rapid and sensitive general-purpose k-mer search tool

    PubMed Central

    2011-01-01

    Background Terabyte-scale collections of string-encoded data are expected from consortia efforts such as the Human Microbiome Project http://nihroadmap.nih.gov/hmp. Intra- and inter-project data similarity searches are enabled by rapid k-mer matching strategies. Software applications for sequence database partitioning, guide tree estimation, molecular classification and alignment acceleration have benefited from embedded k-mer searches as sub-routines. However, a rapid, general-purpose, open-source, flexible, stand-alone k-mer tool has not been available. Results Here we present a stand-alone utility, Simrank, which allows users to rapidly identify database strings the most similar to query strings. Performance testing of Simrank and related tools against DNA, RNA, protein and human-languages found Simrank 10X to 928X faster depending on the dataset. Conclusions Simrank provides molecular ecologists with a high-throughput, open source choice for comparing large sequence sets to find similarity. PMID:21524302

  5. R-based Tool for a Pairwise Structure-activity Relationship Analysis.

    PubMed

    Klimenko, Kyrylo

    2018-04-01

    The Structure-Activity Relationship analysis is a complex process that can be enhanced by computational techniques. This article describes a simple tool for SAR analysis that has a graphic user interface and a flexible approach towards the input of molecular data. The application allows calculating molecular similarity represented by Tanimoto index & Euclid distance, as well as, determining activity cliffs by means of Structure-Activity Landscape Index. The calculation is performed in a pairwise manner either for the reference compound and other compounds or for all possible pairs in the data set. The results of SAR analysis are visualized using two types of plot. The application capability is demonstrated by the analysis of a set of COX2 inhibitors with respect to Isoxicam. This tool is available online: it includes manual and input file examples. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DEVELOPMENT AND USE OF COMPUTER-AIDED PROCESS ENGINEERING TOOLS FOR POLLUTION PREVENTION

    EPA Science Inventory

    The use of Computer-Aided Process Engineering (CAPE) and process simulation tools has become established industry practice to predict simulation software, new opportunities are available for the creation of a wide range of ancillary tools that can be used from within multiple sim...

  7. Molecular detection of pathogens in water--the pros and cons of molecular techniques.

    PubMed

    Girones, Rosina; Ferrús, Maria Antonia; Alonso, José Luis; Rodriguez-Manzano, Jesus; Calgua, Byron; Corrêa, Adriana de Abreu; Hundesa, Ayalkibet; Carratala, Anna; Bofill-Mas, Sílvia

    2010-08-01

    Pollution of water by sewage and run-off from farms produces a serious public health problem in many countries. Viruses, along with bacteria and protozoa in the intestine or in urine are shed and transported through the sewer system. Even in highly industrialized countries, pathogens, including viruses, are prevalent throughout the environment. Molecular methods are used to monitor viral, bacterial, and protozoan pathogens, and to track pathogen- and source-specific markers in the environment. Molecular techniques, specifically polymerase chain reaction-based methods, provide sensitive, rapid, and quantitative analytical tools with which to study such pathogens, including new or emerging strains. These techniques are used to evaluate the microbiological quality of food and water, and to assess the efficiency of virus removal in drinking and wastewater treatment plants. The range of methods available for the application of molecular techniques has increased, and the costs involved have fallen. These developments have allowed the potential standardization and automation of certain techniques. In some cases they facilitate the identification, genotyping, enumeration, viability assessment, and source-tracking of human and animal contamination. Additionally, recent improvements in detection technologies have allowed the simultaneous detection of multiple targets in a single assay. However, the molecular techniques available today and those under development require further refinement in order to be standardized and applicable to a diversity of matrices. Water disinfection treatments may have an effect on the viability of pathogens and the numbers obtained by molecular techniques may overestimate the quantification of infectious microorganisms. The pros and cons of molecular techniques for the detection and quantification of pathogens in water are discussed. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Soil Organic Matter (SOM): Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Amity

    Molecular simulation is a powerful tool used to gain an atomistic, molecular, and nanoscale level understanding of the structure, dynamics, and interactions from adsorption on minerals and assembly in aggregates of soil organic matter (SOM). Given the importance of SOM fate and persistence in soils and the current knowledge gaps, applications of atomistic scale simulations to study the complex compounds in SOM and their interactions in self-assembled aggregates composed of different organic matter compounds and with mineral surfaces of different types common in soils are few and far between. Here, we describe various molecular simulation methods that are currently inmore » use in various areas and applicable to SOM research, followed by a brief survey of specific applications to SOM research and an illustration with our own recent efforts in this area. We conclude with an outlook and the challenges for future research in this area.« less

  9. Direct mapping of electrical noise sources in molecular wire-based devices

    NASA Astrophysics Data System (ADS)

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-02-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices.

  10. Direct mapping of electrical noise sources in molecular wire-based devices

    PubMed Central

    Cho, Duckhyung; Lee, Hyungwoo; Shekhar, Shashank; Yang, Myungjae; Park, Jae Yeol; Hong, Seunghun

    2017-01-01

    We report a noise mapping strategy for the reliable identification and analysis of noise sources in molecular wire junctions. Here, different molecular wires were patterned on a gold substrate, and the current-noise map on the pattern was measured and analyzed, enabling the quantitative study of noise sources in the patterned molecular wires. The frequency spectra of the noise from the molecular wire junctions exhibited characteristic 1/f2 behavior, which was used to identify the electrical signals from molecular wires. This method was applied to analyze the molecular junctions comprising various thiol molecules on a gold substrate, revealing that the noise in the junctions mainly came from the fluctuation of the thiol bonds. Furthermore, we quantitatively compared the frequencies of such bond fluctuations in different molecular wire junctions and identified molecular wires with lower electrical noise, which can provide critical information for designing low-noise molecular electronic devices. Our method provides valuable insights regarding noise phenomena in molecular wires and can be a powerful tool for the development of molecular electronic devices. PMID:28233821

  11. The Emergence of Theileria parva in Jonglei State, South Sudan: Confirmation Using Molecular and Serological Diagnostic Tools.

    PubMed

    Marcellino, W L; Salih, D A; Njahira, M N; Ndiwa, N; Araba, A; El Hussein, A M; Seitzer, U; Ahmed, J S; Bishop, R P; Skilton, R A

    2017-08-01

    A cross-sectional survey was carried out in four counties of Jonglei State, South Sudan, between May and June 2012 to determine the distribution and northern limit of Theileria parva, the causative agent of East Coast fever in cattle, and its tick vector Rhipicephalus appendiculatus, as a prerequisite to the deployment of relevant control strategies. A total of 1636 ticks, 386 serum samples and 399 blood samples were collected from indigenous, apparently healthy, cattle of different age groups. Tick species were identified morphologically, and the identity of R. appendiculatus was confirmed by DNA barcoding. Overall, the T. parva infection rate in R. appendiculatus was 25% as shown by nested PCR. ELISA was used to assess antibodies to T. parva, and the overall seroprevalence was 22.8%. PCR of the blood samples showed 55 (13.8%) were positive for T. parva. This is the first molecular confirmation of T. parva DNA in areas north of Juba, where it was previously known and established. The northern limit of T. parva was determined as N⁰06.17.792, about 242 Km north from Juba. Implication of this limit on the epidemiology and control of ECF is discussed. © 2016 Blackwell Verlag GmbH.

  12. Molecularly Imprinted Intelligent Scaffolds for Tissue Engineering Applications.

    PubMed

    Neves, Mariana I; Wechsler, Marissa E; Gomes, Manuela E; Reis, Rui L; Granja, Pedro L; Peppas, Nicholas A

    2017-02-01

    The development of molecularly imprinted polymers (MIPs) using biocompatible production methods enables the possibility to further exploit this technology for biomedical applications. Tissue engineering (TE) approaches use the knowledge of the wound healing process to design scaffolds capable of modulating cell behavior and promote tissue regeneration. Biomacromolecules bear great interest for TE, together with the established recognition of the extracellular matrix, as an important source of signals to cells, both promoting cell-cell and cell-matrix interactions during the healing process. This review focuses on exploring the potential of protein molecular imprinting to create bioactive scaffolds with molecular recognition for TE applications based on the most recent approaches in the field of molecular imprinting of macromolecules. Considerations regarding essential components of molecular imprinting technology will be addressed for TE purposes. Molecular imprinting of biocompatible hydrogels, namely based on natural polymers, is also reviewed here. Hydrogel scaffolds with molecular memory show great promise for regenerative therapies. The first molecular imprinting studies analyzing cell adhesion report promising results with potential applications for cell culture systems, or biomaterials for implantation with the capability for cell recruitment by selectively adsorbing desired molecules.

  13. Validity of Molecular Tagging Velocimetry in a Cavitating Flow for Turbopump Analysis

    NASA Astrophysics Data System (ADS)

    Kuzmich, Kayla; Bohl, Doug

    2012-11-01

    This research establishes multi-phase molecular tagging velocimetry (MTV) use and explores its limitations. The flow conditions and geometry in the inducer of an upper stage liquid Oxygen (LOX)/LH2 engine frequently cause cavitation which decreases turbopump performance. Complications arise in performing experiments in liquid hydrogen and oxygen due to high costs, high pressures, extremely low fluid temperatures, the presence of cavitation, and associated safety risks. Due to the complex geometry and hazardous nature of the fluids, a simplified throat geometry with water as a simulant fluid is used. Flow characteristics are measured using MTV, a noninvasive flow diagnostic technique. MTV is found to be an applicable tool in cases of low cavitation. Highly cavitating flows reflect and scatter most of the laser beam disallowing penetration into the cavitation cloud. However, data can be obtained in high cavitation cases near the cloud boundary layer. Distribution A: Public Release, Public Affairs Clearance Number: 12654

  14. Molecular diagnosis and immunotherapy.

    PubMed

    Sastre, Joaquín; Sastre-Ibañez, Marina

    2016-12-01

    To describe recent insights into how molecular diagnosis can improve indication and selection of suitable allergens for specific immunotherapy and increase the safety of this therapy. As specific allergen immunotherapy targets specific allergens, identification of the disease-eliciting allergen is a prerequisite for accurate prescription of treatment. In areas of complex sensitization to aeroallergens or in cases of hymenoptera venom allergy, the use of molecular diagnosis has demonstrated that it may lead to a change in indication and selection of allergens for immunotherapy in a large proportion of patients when compared with diagnosis based on skin prick testing and/or specific IgE determination with commercial extracts. These changes in immunotherapy prescription aided by molecular diagnosis have been demonstrated to be cost-effective in some scenarios. Certain patterns of sensitization to grass or olive pollen and bee allergens may identify patients with higher risk of adverse reaction during immunotherapy. Molecular diagnosis, when used with other tools and patients' clinical records, can help clinicians better to select the most appropriate patients and allergens for specific immunotherapy and, in some cases, predict the risk of adverse reactions. The pattern of sensitization to allergens could potentially predict the efficacy of allergen immunotherapy provided that these immunotherapy products contain a sufficient amount of these allergens. Nevertheless, multiplex assay remains a third-level approach, not to be used as screening method in current practice.

  15. Defining the molecular structure of teixobactin analogues and understanding their role in antibacterial activities.

    PubMed

    Parmar, Anish; Prior, Stephen H; Iyer, Abhishek; Vincent, Charlotte S; Van Lysebetten, Dorien; Breukink, Eefjan; Madder, Annemieke; Taylor, Edward J; Singh, Ishwar

    2017-02-07

    The discovery of the highly potent antibiotic teixobactin, which kills the bacteria without any detectable resistance, has stimulated interest in its structure-activity relationship. However, a molecular structure-activity relationship has not been established so far for teixobactin. Moreover, the importance of the individual amino acids in terms of their l/d configuration and their contribution to the molecular structure and biological activity are still unknown. For the first time, we have defined the molecular structure of seven teixobactin analogues through the variation of the d/l configuration of its key residues, namely N-Me-d-Phe, d-Gln, d-allo-Ile and d-Thr. Furthermore, we have established the role of the individual d amino acids and correlated this with the molecular structure and biological activity. Through extensive NMR and structural calculations, including molecular dynamics simulations, we have revealed the residues for maintaining a reasonably unstructured teixobactin which is imperative for biological activity.

  16. [Establishment and Management of Multicentral Collection Bio-sample Banks of Malignant Tumors from Digestive System].

    PubMed

    Shen, Si; Shen, Junwei; Zhu, Liang; Wu, Chaoqun; Li, Dongliang; Yu, Hongyu; Qiu, Yuanyuan; Zhou, Yi

    2015-11-01

    To establish and manage of multicentral collection bio-sample banks of malignant tumors from digestive system, the paper designed a multicentral management system, established the standard operation procedures (SOPs) and leaded ten hospitals nationwide to collect tumor samples. The biobank has been established for half a year, and has collected 695 samples from patients with digestive system malignant tumor. The clinical data is full and complete, labeled in a unified way and classified to be managed. The clinical and molecular biology researches were based on the biobank, and obtained achievements. The biobank provides a research platform for malignant tumor of digestive system from different regions and of different types.

  17. A comparison of drill and broadcast methods for establishing cover crops on beds

    USDA-ARS?s Scientific Manuscript database

    Cover crops stands that are sufficiently dense soon after planting are more likely to suppress weeds, scavenge nutrients, and reduce erosion. Small-scale organic vegetable farmers often use broadcasting methods to establish cover crops but lack information on the most effective tool to incorporate ...

  18. Herschel and the Molecular Universe

    NASA Technical Reports Server (NTRS)

    Tielens, A. G. G. M.; Helmich, F. P.

    2006-01-01

    Over the next decade, space-based missions will open up the universe to high spatial and spectral resolution studies at infrared and submillimeter wavelengths. This will allow us to study, in much greater detail, the composition and the origin and evolution of molecules in space. Moreover, molecular transitions in these spectral ranges provide a sensitive probe of the dynamics and the physical and chemical conditions in a wide range of objects at scales ranging from budding planetary systems to galactic and extragalactic sizes. Hence, these missions provide us with the tools to study key astrophysical and astrochemical processes involved in the formation and evolution of planets, stars, and galaxies. These new missions can be expected to lead to the detection of many thousands of new spectral features. Identification, analysis and interpretation of these features in terms of the physical and chemical characteristics of the astronomical sources will require detailed astronomical modeling tools supported by laboratory measurements and theoretical studies of chemical reactions and collisional excitation rates on species of astrophysical relevance. These data will have to be made easily accessible to the scientific community through web-based data archives. In this paper, we will review the Herschel mission and its expected impact on our understanding of the molecular universe.

  19. Molecular Identification and Genetic Analysis of Norovirus Genogroups I and II in Water Environments: Comparative Analysis of Different Reverse Transcription-PCR Assays▿

    PubMed Central

    La Rosa, G.; Fontana, S.; Di Grazia, A.; Iaconelli, M.; Pourshaban, M.; Muscillo, M.

    2007-01-01

    Noroviruses have received increased attention in recent years because their role as etiologic agents in acute gastroenteritis outbreaks is now clearly established. Our inability to grow them in cell culture and the lack of an animal model hinder the characterization of these viruses. More recently, molecular approaches have been used to study the genetic relationships that exist among them. In the present study, environmental samples from seawater, estuarine water, and effluents of sewage treatment plants were analyzed in order to evaluate the role of environmental surface contamination as a possible vehicle for transmission of norovirus genogroups I and II. Novel broad-range reverse transcription-PCR/nested assays targeting the region coding for the RNA-dependent RNA polymerase were developed, amplifying fragments of 516 bp and 687 bp in the nested reactions for genogroups II and I, respectively. The assays were evaluated and compared against widely used published assays. The newly designed assays provide long regions for high-confidence BLAST searches in public databases and therefore are useful diagnostic tools for molecular diagnosis and typing of human noroviruses in clinical and environmental samples, as well as for the study of molecular epidemiology and the evolution of these viruses. PMID:17483265

  20. Insight into the molecular genetics of myopia

    PubMed Central

    Li, Jiali

    2017-01-01

    Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia. PMID:29386878

  1. Insight into the molecular genetics of myopia.

    PubMed

    Li, Jiali; Zhang, Qingjiong

    2017-01-01

    Myopia is the most common cause of visual impairment worldwide. Genetic and environmental factors contribute to the development of myopia. Studies on the molecular genetics of myopia are well established and have implicated the important role of genetic factors. With linkage analysis, association studies, sequencing analysis, and experimental myopia studies, many of the loci and genes associated with myopia have been identified. Thus far, there has been no systemic review of the loci and genes related to non-syndromic and syndromic myopia based on the different approaches. Such a systemic review of the molecular genetics of myopia will provide clues to identify additional plausible genes for myopia and help us to understand the molecular mechanisms underlying myopia. This paper reviews recent genetic studies on myopia, summarizes all possible reported genes and loci related to myopia, and suggests implications for future studies on the molecular genetics of myopia.

  2. The Use of Molecular Techniques at Hazardous Waste Sites

    EPA Science Inventory

    It is clear that typical protocols used for soil analysis would certainly fail to adequately interrogate ground-water treatment systems unless they were substantially modified. The modifications found necessary to compensate for the low biomass include molecular tools and techniq...

  3. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors.

    PubMed

    Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2017-02-24

    Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology.

  4. Molecular Imprinting Technology in Quartz Crystal Microbalance (QCM) Sensors

    PubMed Central

    Emir Diltemiz, Sibel; Keçili, Rüstem; Ersöz, Arzu; Say, Rıdvan

    2017-01-01

    Molecularly imprinted polymers (MIPs) as artificial antibodies have received considerable scientific attention in the past years in the field of (bio)sensors since they have unique features that distinguish them from natural antibodies such as robustness, multiple binding sites, low cost, facile preparation and high stability under extreme operation conditions (higher pH and temperature values, etc.). On the other hand, the Quartz Crystal Microbalance (QCM) is an analytical tool based on the measurement of small mass changes on the sensor surface. QCM sensors are practical and convenient monitoring tools because of their specificity, sensitivity, high accuracy, stability and reproducibility. QCM devices are highly suitable for converting the recognition process achieved using MIP-based memories into a sensor signal. Therefore, the combination of a QCM and MIPs as synthetic receptors enhances the sensitivity through MIP process-based multiplexed binding sites using size, 3D-shape and chemical function having molecular memories of the prepared sensor system toward the target compound to be detected. This review aims to highlight and summarize the recent progress and studies in the field of (bio)sensor systems based on QCMs combined with molecular imprinting technology. PMID:28245588

  5. Animal Movement and Establishment of Vaccinia Virus Cantagalo Strain in Amazon Biome, Brazil

    PubMed Central

    Quixabeira-Santos, Jociane Cristina; Medaglia, Maria Luiza G.; Pescador, Caroline A.

    2011-01-01

    To understand the emergence of vaccinia virus Cantagalo strain in the Amazon biome of Brazil, during 2008–2010 we conducted a molecular and epidemiologic survey of poxvirus outbreaks. Data indicate that animal movement was the major cause of virus dissemination within Rondônia State, leading to the establishment and spread of this pathogen. PMID:21470472

  6. A molecular engineering toolbox for the structural biologist

    PubMed Central

    Debelouchina, Galia T.; Muir, Tom W.

    2018-01-01

    Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease. PMID:29233219

  7. Establishing Baseline Normative Values for the Child Sport Concussion Assessment Tool.

    PubMed

    Brooks, M Alison; Snedden, Traci R; Mixis, Benjamin; Hetzel, Scott; McGuine, Timothy A

    2017-07-01

    The Child Sport Concussion Assessment Tool (SCAT3) is a postconcussion sideline assessment tool measuring symptoms, cognition, and balance in preadolescent children. Minimal normative baseline data exist to aid decision making in clinical and athletic settings. To collect normative baseline data for the Child SCAT3 in a large cohort of young athletes. A cross-sectional study was conducted from May 31 to August 12, 2014, at various sporting events (basketball, soccer, baseball, and swimming) in Central Wisconsin among children 5 to 13 years of age who were English-speaking and did not report a lower leg injury within the past 2 months or a concussion within the past month. Data were analyzed between October 8, 2014, and September 12, 2016. All Child SCAT3 components were assessed: child and parent report of symptom number and severity, cognition (Standardized Assessment of Concussion-child version [SAC-C]), and balance (modified Balance Error Scoring System [mBESS] and tandem gait). Summary statistics, mean differences, and effect sizes were calculated for each test component. Participants included 478 children (234 girls and 241 boys; mean [SD] age, 9.9 [1.9] years]) and their parents. Age had the largest effect on all Child SCAT3 components, with children 5 to 7 years of age reporting higher mean (SD) symptom severity scores compared with those 11 to 13 years of age (18.2 [10.0] vs 11.3 [9.0]; mean difference, 6.86 [95% CI, 4.22-9.50]; effect size, 0.74) and performing more poorly on the total SAC-C (mean [SD] score, 19.5 [5.1] vs 26.1 [2.1]; mean difference, -6.59 [95% CI, -7.49 to -5.68]; effect size, -2.1), mBESS (mean [SD] score, 1.67 [1.8] vs 0.76 [1.2]; mean difference, 0.91 [95% CI, 0.53-1.29]; effect size, 0.68), and tandem gait (mean [SD] time, 22.2 [8.3] vs 14.0 [3.7] seconds; mean difference, 8.23 seconds [95% CI, 6.63-9.82]; effect size, 1.55). Sex had a small effect on the mean (SD) number and severity of symptoms reported by the child (severity: boys

  8. The nucleic acid revolution continues – will forensic biology become forensic molecular biology?

    PubMed Central

    Gunn, Peter; Walsh, Simon; Roux, Claude

    2014-01-01

    Molecular biology has evolved far beyond that which could have been predicted at the time DNA identity testing was established. Indeed we should now perhaps be referring to “forensic molecular biology.” Aside from DNA’s established role in identifying the “who” in crime investigations, other developments in medical and developmental molecular biology are now ripe for application to forensic challenges. The impact of DNA methylation and other post-fertilization DNA modifications, plus the emerging role of small RNAs in the control of gene expression, is re-writing our understanding of human biology. It is apparent that these emerging technologies will expand forensic molecular biology to allow for inferences about “when” a crime took place and “what” took place. However, just as the introduction of DNA identity testing engendered many challenges, so the expansion of molecular biology into these domains will raise again the issues of scientific validity, interpretation, probative value, and infringement of personal liberties. This Commentary ponders some of these emerging issues, and presents some ideas on how they will affect the conduct of forensic molecular biology in the foreseeable future. PMID:24634675

  9. Tracing molecular dephasing in biological tissue

    NASA Astrophysics Data System (ADS)

    Mokim, M.; Carruba, C.; Ganikhanov, F.

    2017-10-01

    We demonstrate the quantitative spectroscopic characterization and imaging of biological tissue using coherent time-domain microscopy with a femtosecond resolution. We identify tissue constituents and perform dephasing time (T2) measurements of characteristic Raman active vibrations. This was shown in subcutaneous mouse fat embedded within collagen rich areas of the dermis and the muscle connective tissue. The demonstrated equivalent spectral resolution (<0.3 cm-1) is an order of magnitude better compared to commonly used frequency-domain methods for characterization of biological media. This provides with the important dimensions and parameters in biological media characterization and can become an effective tool in detecting minute changes in the bio-molecular composition and environment that is critical for molecular level diagnosis.

  10. Scoria: a Python module for manipulating 3D molecular data.

    PubMed

    Ropp, Patrick; Friedman, Aaron; Durrant, Jacob D

    2017-09-18

    Third-party packages have transformed the Python programming language into a powerful computational-biology tool. Package installation is easy for experienced users, but novices sometimes struggle with dependencies and compilers. This presents a barrier that can hinder the otherwise broad adoption of new tools. We present Scoria, a Python package for manipulating three-dimensional molecular data. Unlike similar packages, Scoria requires no dependencies, compilation, or system-wide installation. One can incorporate the Scoria source code directly into their own programs. But Scoria is not designed to compete with other similar packages. Rather, it complements them. Our package leverages others (e.g. NumPy, SciPy), if present, to speed and extend its own functionality. To show its utility, we use Scoria to analyze a molecular dynamics trajectory. Our FootPrint script colors the atoms of one chain by the frequency of their contacts with a second chain. We are hopeful that Scoria will be a useful tool for the computational-biology community. A copy is available for download free of charge (Apache License 2.0) at http://durrantlab.com/scoria/ . Graphical abstract .

  11. Rational Design of Molecular Gelator - Solvent Systems Guided by Solubility Parameters

    NASA Astrophysics Data System (ADS)

    Lan, Yaqi

    Self-assembled architectures, such as molecular gels, have attracted wide interest among chemists, physicists and engineers during the past decade. However, the mechanism behind self-assembly remains largely unknown and no capability exists to predict a priori whether a small molecule will gelate a specific solvent or not. The process of self-assembly, in molecular gels, is intricate and must balance parameters influencing solubility and those contrasting forces that govern epitaxial growth into axially symmetric elongated aggregates. Although the gelator-gelator interactions are of paramount importance in understanding gelation, the solvent-gelator specific (i.e., H-bonding) and nonspecific (dipole-dipole, dipole-induced and instantaneous dipole induced forces) intermolecular interactions are equally important. Solvent properties mediate the self-assembly of molecular gelators into their self-assembled fibrillar networks. Herein, solubility parameters of solvents, ranging from partition coefficients (logP), to Henry's law constants (HLC), to solvatochromic ET(30) parameters, to Kamlet-Taft parameters (beta, alpha and pi), to Hansen solubility parameters (deltap, deltad, deltah), etc., are correlated with the gelation ability of numerous classes of molecular gelators. Advanced solvent clustering techniques have led to the development of a priori tools that can identify the solvents that will be gelled and not gelled by molecular gelators. These tools will greatly aid in the development of novel gelators without solely relying on serendipitous discoveries.

  12. STOCK: Structure mapper and online coarse-graining kit for molecular simulations

    DOE PAGES

    Bevc, Staš; Junghans, Christoph; Praprotnik, Matej

    2015-03-15

    We present a web toolkit STructure mapper and Online Coarse-graining Kit for setting up coarse-grained molecular simulations. The kit consists of two tools: structure mapping and Boltzmann inversion tools. The aim of the first tool is to define a molecular mapping from high, e.g. all-atom, to low, i.e. coarse-grained, resolution. Using a graphical user interface it generates input files, which are compatible with standard coarse-graining packages, e.g. VOTCA and DL_CGMAP. Our second tool generates effective potentials for coarse-grained simulations preserving the structural properties, e.g. radial distribution functions, of the underlying higher resolution model. The required distribution functions can be providedmore » by any simulation package. Simulations are performed on a local machine and only the distributions are uploaded to the server. The applicability of the toolkit is validated by mapping atomistic pentane and polyalanine molecules to a coarse-grained representation. Effective potentials are derived for systems of TIP3P (transferable intermolecular potential 3 point) water molecules and salt solution. The presented coarse-graining web toolkit is available at http://stock.cmm.ki.si.« less

  13. Molecular epidemiology of Giardia and Cryptosporidium infections.

    PubMed

    Thompson, R C A; Ash, A

    2016-06-01

    Giardia and Cryptosporidium are ubiquitous enteric protozoan pathogens of vertebrates. Although recognised as the aetiological agents of disease in humans and domestic animals for many years, fundamental questions concerning their ecology have been unresolved. Molecular tools have helped to better understand their genetic diversity and in so doing have helped to resolve questions about their transmission patterns and associated impacts on public health. However, the value of molecular tools is often complicated by questions concerning their applications, interpretation of results and terminology. Taxonomic issues have, until recently, made it difficult to determine the epidemiology of infections with both Giardia and Cryptosporidium. Similarly, improved understanding of their respective phylogenetic relationships has helped to resolve questions about zoonotic potential and distribution in wildlife. In the case of Cryptosporidium, imaging technologies have complemented phylogenetic studies in demonstrating the parasite's affinities with gregarine protozoa and have further supported its extracellular developmental capability and potential role as an environmental pathogen. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Evaluation of the Orbitrap Mass Spectrometer for the Molecular Fingerprinting Analysis of Natural Dissolved Organic Matter.

    PubMed

    Hawkes, Jeffrey A; Dittmar, Thorsten; Patriarca, Claudia; Tranvik, Lars; Bergquist, Jonas

    2016-08-02

    We investigated the application of the LTQ-Orbitrap mass spectrometer (LTQ-Velos Pro, Thermo Fisher) for resolving complex mixtures of natural aquatic dissolved organic matter (DOM) and compared this technique to the more established state-of-the-art technique, Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS, Bruker Daltonics), in terms of the distribution of molecular masses detected and the reproducibility of the results collected. The Orbitrap was capable of excellent reproducibility: Bray-Curtis dissimilarity between duplicate measurements was 2.85 ± 0.42% (mean ± standard deviation). The Orbitrap was also capable of the detection of most major ionizable organic molecules in typical aquatic mixtures, with the exception of most sulfur and phosphorus containing masses. This result signifies that the Orbitrap is an appropriate technique for the investigation of very subtle biogeochemical processing of bulk DOM. The lower costs (purchase and maintenance) and wider availability of Orbitrap mass spectrometers in university departments means that the tools necessary for research into DOM processing at the molecular level should be accessible to a much wider group of scientists than before. The main disadvantage of the technique is that substantially fewer molecular formulas can be resolved from a complex mixture (roughly one third as many), meaning some loss of information. In balance, most biogeochemical studies that aim at molecularly fingerprinting the source of natural DOM could be satisfactorily carried out with Orbitrap mass spectrometry. For more targeted metabolomic studies where individual compounds are traced through natural systems, FTICR-MS remains advantageous.

  15. Urinary PCR as an increasingly useful tool for an accurate diagnosis of leptospirosis in livestock.

    PubMed

    Hamond, C; Martins, G; Loureiro, A P; Pestana, C; Lawson-Ferreira, R; Medeiros, M A; Lilenbaum, W

    2014-03-01

    The aim of the present study was to consider the wide usage of urinary PCR as an increasingly useful tool for an accurate diagnosis of leptospirosis in livestock. A total of 512 adult animals (300 cattle, 138 horses, 59 goats and 15 pigs), from herds/flocks with reproductive problems in Rio de Janeiro, Brazil was studied by serology and urinary PCR. From the 512 serum samples tested, 223 (43.5 %) were seroreactive (cattle: 45.6 %, horses: 41.3 %, goats: 34%and pigs: 60 %). PCR detected leptospiral DNA in 32.4 % (cattle: 21.6 %, horses: 36.2 %, goats: 77.4 % and pigs: 33.3 %. To our knowledge there is no another study including such a large number of samples (512) from different species, providing a comprehensive analysis of the usage of PCR for detecting leptospiral carriers in livestock. Serological and molecular results were discrepant, regardless the titre, what was an expected outcome. Nevertheless, it is impossible to establish agreement between these tests, since the two methodologies are conducted on different samples (MAT - serum; PCR - urine). Additionally, the MAT is an indirect method and PCR is a direct one. In conclusion, we have demonstrated that urinary PCR should be considered and encouraged as an increasingly useful tool for an accurate diagnosis of leptospirosis in livestock.

  16. Molecular dynamics simulations of collision-induced absorption: Implementation in LAMMPS

    NASA Astrophysics Data System (ADS)

    Fakhardji, W.; Gustafsson, M.

    2017-02-01

    We pursue simulations of collision-induced absorption in a mixture of argon and xenon gas at room temperature by means of classical molecular dynamics. The established theoretical approach (Hartmann et al. 2011 J. Chem. Phys. 134 094316) is implemented with the molecular dynamics package LAMMPS. The bound state features in the absorption spectrum are well reproduced with the molecular dynamics simulation in comparison with a laboratory measurement. The magnitude of the computed absorption, however, is underestimated in a large part of the spectrum. We suggest some aspects of the simulation that could be improved.

  17. Theory of attosecond delays in molecular photoionization.

    PubMed

    Baykusheva, Denitsa; Wörner, Hans Jakob

    2017-03-28

    We present a theoretical formalism for the calculation of attosecond delays in molecular photoionization. It is shown how delays relevant to one-photon-ionization, also known as Eisenbud-Wigner-Smith delays, can be obtained from the complex dipole matrix elements provided by molecular quantum scattering theory. These results are used to derive formulae for the delays measured by two-photon attosecond interferometry based on an attosecond pulse train and a dressing femtosecond infrared pulse. These effective delays are first expressed in the molecular frame where maximal information about the molecular photoionization dynamics is available. The effects of averaging over the emission direction of the electron and the molecular orientation are introduced analytically. We illustrate this general formalism for the case of two polyatomic molecules. N 2 O serves as an example of a polar linear molecule characterized by complex photoionization dynamics resulting from the presence of molecular shape resonances. H 2 O illustrates the case of a non-linear molecule with comparably simple photoionization dynamics resulting from a flat continuum. Our theory establishes the foundation for interpreting measurements of the photoionization dynamics of all molecules by attosecond metrology.

  18. Molecular Imprinting of Macromolecules for Sensor Applications.

    PubMed

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-04-19

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting.

  19. Molecular Imprinting of Macromolecules for Sensor Applications

    PubMed Central

    Saylan, Yeşeren; Yilmaz, Fatma; Özgür, Erdoğan; Derazshamshir, Ali; Yavuz, Handan; Denizli, Adil

    2017-01-01

    Molecular recognition has an important role in numerous living systems. One of the most important molecular recognition methods is molecular imprinting, which allows host compounds to recognize and detect several molecules rapidly, sensitively and selectively. Compared to natural systems, molecular imprinting methods have some important features such as low cost, robustness, high recognition ability and long term durability which allows molecularly imprinted polymers to be used in various biotechnological applications, such as chromatography, drug delivery, nanotechnology, and sensor technology. Sensors are important tools because of their ability to figure out a potentially large number of analytical difficulties in various areas with different macromolecular targets. Proteins, enzymes, nucleic acids, antibodies, viruses and cells are defined as macromolecules that have wide range of functions are very important. Thus, macromolecules detection has gained great attention in concerning the improvement in most of the studies. The applications of macromolecule imprinted sensors will have a spacious exploration according to the low cost, high specificity and stability. In this review, macromolecules for molecularly imprinted sensor applications are structured according to the definition of molecular imprinting methods, developments in macromolecular imprinting methods, macromolecular imprinted sensors, and conclusions and future perspectives. This chapter follows the latter strategies and focuses on the applications of macromolecular imprinted sensors. This allows discussion on how sensor strategy is brought to solve the macromolecules imprinting. PMID:28422082

  20. Coarse-Grained Structural Modeling of Molecular Motors Using Multibody Dynamics

    PubMed Central

    Parker, David; Bryant, Zev; Delp, Scott L.

    2010-01-01

    Experimental and computational approaches are needed to uncover the mechanisms by which molecular motors convert chemical energy into mechanical work. In this article, we describe methods and software to generate structurally realistic models of molecular motor conformations compatible with experimental data from different sources. Coarse-grained models of molecular structures are constructed by combining groups of atoms into a system of rigid bodies connected by joints. Contacts between rigid bodies enforce excluded volume constraints, and spring potentials model system elasticity. This simplified representation allows the conformations of complex molecular motors to be simulated interactively, providing a tool for hypothesis building and quantitative comparisons between models and experiments. In an example calculation, we have used the software to construct atomically detailed models of the myosin V molecular motor bound to its actin track. The software is available at www.simtk.org. PMID:20428469